National Library of Energy BETA

Sample records for material testing technology

  1. NREL: Technology Transfer - Materials Exposure Testing Market...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Materials Exposure Testing Market Expands with Ultra-Accelerated Weathering System In this video, NREL researchers Gary Jorgenson and Carl Bingham discuss the NREL-developed ultra...

  2. Vehicle Technologies Office - Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Materials Technologies Ed Owens Jerry Gibbs Will Joost eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $36.9 M Lightweight Materials $28.0 M Values are FY14 enacted Propulsion Materials $8.9 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M

  3. Testing technology

    SciTech Connect

    Not Available

    1993-10-01

    This bulletin from Sandia National Laboratories presents current research highlights in testing technology. Ion microscopy offers new nondestructive testing technique that detects high resolution invisible defects. An inexpensive thin-film gauge checks detonators on centrifuge. Laser trackers ride the range and track helicopters at low-level flights that could not be detected by radar. Radiation transport software predicts electron/photon effects via cascade simulation. Acoustic research in noise abatement will lead to quieter travelling for Bay Area Rapid Transport (BART) commuters.

  4. Materials Science and Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PADSTE » ADEPS » MST Materials Science and Technology Providing world-leading, innovative, and agile materials science and technology solutions for national security missions. MST is metallurgy. The Materials Science and Technology Division provides scientific and technical leadership in materials science and technology for Los Alamos National Laboratory. READ MORE MST is engineered materials. The Materials Science and Technology Division provides scientific and technical leadership in

  5. LANSCE | Materials Test Station

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Training Office Contact Administrative nav background Materials Test Station dotline ... Materials Test Station: the Preferred Alternative When completed, the Materials Test ...

  6. Vehicle Technologies Office Propulsion Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Propulsion Materials Technologies Jerry Gibbs eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $35.6 M Lightweight Materials $28.5 M Values are FY15 enacted Propulsion Materials $7.1 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M $11.9 M FY14

  7. Vehicle Technologies Office Merit Review 2016: Post-Test Analysis of Lithium-Ion Battery Materials

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  8. Overview of VTO Material Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    VTO Material Technologies Stephen Goguen, Jerry Gibbs, Carol Schutte, and Will Joost LM000 June 9, 2015 VEHICLE TECHNOLOGIES OFFICE eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $35.6 M Lightweight Materials $28.5 M Values are FY15 enacted Propulsion Materials $7.1 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts

  9. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    SciTech Connect

    Ivanov, A; Kulcinski, J; Molvik, A; Ryutov, D; Santarius, J; Simonen, T; Wirth, B D; Ying, A

    2009-11-23

    The successful operation (with {beta} {le} 60%, classical ions and electrons with Te = 250 eV) of the Gas Dynamic Trap (GDT) device at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia, extrapolates to a 2 MW/m{sup 2} Dynamic Trap Neutron Source (DTNS), which burns only {approx}100 g of tritium per full power year. The DTNS has no serious physics, engineering, or technology obstacles; the extension of neutral beam lines to steady state can use demonstrated engineering; and it supports near-term tokamaks and volume neutron sources. The DTNS provides a neutron spectrum similar to that of ITER and satisfies the missions specified by the materials community to test fusion materials (listed as one of the top grand challenges for engineering in the 21st century by the U.S. National Academy of Engineering) and subcomponents (including tritium-breeding blankets) needed to construct DEMO. The DTNS could serve as the first Fusion Nuclear Science Facility (FNSF), called for by ReNeW, and could provide the data necessary for licensing subsequent FSNFs.

  10. Vehicle Technologies Office Merit Review 2015: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

  11. Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

  12. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  13. Materials Discovery across Technological Readiness Levels | Materials

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science | NREL Materials Discovery across Technological Readiness Levels Materials discovery is important across technology readiness levels: basic science, applied research, and device development. Over the past several years, NREL has worked at each of these levels, demonstrating our competence in a broad range of materials discovery problems. Basic Science An image of a triangular diagram with tantalum-cobalt-tin at the top vertex, tantalum at the lower left vertex, and cobalt at the

  14. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  15. Materials Science / Data Technology Nexus

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Materials Science / Data Technology Nexus Materials Science / Data Technology Nexus: IMS mini-symposium This one day mini-symposium is aligned with the CINT 2016 User Meeting, September 19 - 20 thumbnail of Contact Institute Director Dr. Alexander V. Balatsky Institute for Materials Science (505) 665-0077 Email Deputy Director Dr. Jennifer S. Martinez Institute for Materials Science (505) 665-0045 Email Deputy Director Dr. Nathan A. Mara Institute for Materials Science (505) 667 8665 Email

  16. Materials Science / Data Technology Nexus

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    (505) 665-3950 Email Materials Science and Data Technology Nexus Dates: September 21, 2016 Venue: La Fonda on the Plaza, Santa Fe, NM, USA Registration: New Mexico Consortium (NMC) ...

  17. Sun Materials Technology aka Shanyang Technology | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Technology aka Shanyang Technology Jump to: navigation, search Name: Sun Materials Technology (aka Shanyang Technology) Place: Yilan County, Taiwan Product: A US-Taiwan JV company...

  18. Materials Technologies: Goals, Strategies, and Top Accomplishments

    SciTech Connect

    2010-08-02

    Fact sheet describing the goals, strategies, and top accomplishments of the Materials Technologies subprogram of the Vehicle Technologies Program.

  19. Zenith Materials Technology Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Materials Technology Corp Jump to: navigation, search Name: Zenith Materials Technology Corp. Place: Hsinchu, Taiwan Sector: Solar Product: Taiwan-based manufacturer of solar ingot...

  20. Innovative Materials Processing Technologies Ltd IMPT | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Materials Processing Technologies Ltd IMPT Jump to: navigation, search Name: Innovative Materials Processing Technologies Ltd (IMPT) Place: United Kingdom Zip: NG1 1GF Sector:...

  1. Testing Technology, June 1992

    SciTech Connect

    Getsch, B; Floyd, H L; Parrott, L; Van Arsdall, A

    1992-01-01

    This report highlights the following topics: Photon Correlation Spectroscopy--a new application in jet fuel analysis, Testing news in brief; Solar test facility supports space station research; Shock isolation technique developed for piezoresistive accelerometer; High-speed photography captures Distant Image measurements; and, Radiation effects test revised for CMOS electronics.

  2. CANMET Gasifier Liner Coupon Material Test Plan

    SciTech Connect

    Mark Fitzsimmons; Alan Darby; Fred Widman

    2005-10-30

    The test plan detailed in this topical report supports Task 1 of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources - Advanced Gasification Systems Development (AGSD)''. The purpose of these tests is to verify that materials planned for use in an advanced gasifier pilot plant will withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) has developed and designed the cooled liner test assembly article that will be tested at CANMET Energy Technology Centre (CETC-O) in Ottawa, Ontario, Canada (CETC-O). The Test Plan TP-00364 is duplicated in its entirety, with formatting changes to comply with the format required for this Topical Report. The table of contents has been modified to include the additional material required by this topical report. Test Request example and drawings of non-proprietary nature are also included as appendices.

  3. 2012 Annual Merit Review Results Report - Materials Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies: Propulsion Materials 2012 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials Merit review of DOE Vehicle Technologies research ...

  4. 2013 Annual Merit Review Results Report - Materials Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies: Propulsion Materials 2013 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials Merit review of DOE Vehicle Technologies research ...

  5. 2011 Annual Merit Review Results Report - Materials Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies: Propulsion Materials 2011 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials Merit review of DOE Vehicle Technologies research ...

  6. Vehicle Technologies Office: Materials Technologies | Department...

    Energy.gov [DOE] (indexed site)

    Advanced materials are essential for boosting the fuel economy of modern automobiles while maintaining safety and performance. Because it takes less energy to accelerate a lighter...

  7. Testing technology. A Sandia Technology Bulletin

    SciTech Connect

    Goetsch, B.; Floyd, H.L.; Doran, L.

    1994-02-01

    This Sandia publication seeks to facilitate technology exchange with industries, universities, and government agencies. It presents brief highlights of four projects. First is a project to simulate the use of airbags to soften the landing of a probe on Mars. Second is the use of a computer simulation system to facilitate the testing of designs for different experiments, both for experimental layout and results analysis. Third is the development of a system for in-house testing of batteries and capacitive energy storage systems, for deployment at the manufacturing sites, as opposed to final use areas. Finally is information on a noncontact measurement system which can be used to determine axes on objects of different shapes, with high precision.

  8. Module Encapsulation Materials, Processing and Testing (Presentation...

    Office of Scientific and Technical Information (OSTI)

    Module Encapsulation Materials, Processing and Testing (Presentation) Pern, J. 14 SOLAR ENERGY; 36 MATERIALS SCIENCE; ENCAPSULATION; PROCESSING; RELIABILITY; TESTING PV; MODULE...

  9. Atlas Material Testing Solutions | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Atlas Material Testing Solutions Jump to: navigation, search Name: Atlas Material Testing Solutions Place: Chicago, IL Zip: 60613 Website: atlas-mts.com Coordinates: 41.9529209,...

  10. Roadmap for Process Equipment Materials Technology

    SciTech Connect

    none,

    2003-10-01

    This Technology Roadmap addresses the ever-changing material needs of the chemical and allied process industries, and the energy, economic and environmental burdens associated with corrosion and other materials performance and lifetime issues. This Technology Roadmap outlines the most critical of these R&D needs, and how they can impact the challenges facing today’s materials of construction.

  11. National Spill Test Technology Database

    DOE Data Explorer

    Sheesley, David [Western Research Institute

    Western Research Institute established, and ACRC continues to maintain, the National Spill Technology database to provide support to the Liquified Gaseous Fuels Spill Test Facility (now called the National HAZMAT Spill Center) as directed by Congress in Section 118(n) of the Superfund Amendments and Reauthorization Act of 1986 (SARA). The Albany County Research Corporation (ACRC) was established to make publicly funded data developed from research projects available to benefit public safety. The founders since 1987 have been investigating the behavior of toxic chemicals that are deliberately or accidentally spilled, educating emergency response organizations, and maintaining funding to conduct the research at the DOEÆs HAZMAT Spill Center (HSC) located on the Nevada Test Site. ACRC also supports DOE in collaborative research and development efforts mandated by Congress in the Clean Air Act Amendments. The data files are results of spill tests conducted at various times by the Silicones Environmental Health and Safety Council (SEHSC) and DOE, ANSUL, Dow Chemical, the Center for Chemical Process Safety (CCPS) and DOE, Lawrence Livermore National Laboratory (LLNL), OSHA, and DOT; DuPont, and the Western Research Institute (WRI), Desert Research Institute (DRI), and EPA. Each test data page contains one executable file for each test in the test series as well as a file named DOC.EXE that contains information documenting the test series. These executable files are actually self-extracting zip files that, when executed, create one or more comma separated value (CSV) text files containing the actual test data or other test information.

  12. National Spill Test Technology Database

    DOE Data Explorer

    Sheesley, David [Western Research Institute

    Western Research Institute established, and ACRC continues to maintain, the National Spill Technology database to provide support to the Liquified Gaseous Fuels Spill Test Facility (now called the National HAZMAT Spill Center) as directed by Congress in Section 118(n) of the Superfund Amendments and Reauthorization Act of 1986 (SARA). The Albany County Research Corporation (ACRC) was established to make publicly funded data developed from research projects available to benefit public safety. The founders since 1987 have been investigating the behavior of toxic chemicals that are deliberately or accidentally spilled, educating emergency response organizations, and maintaining funding to conduct the research at the DOEs HAZMAT Spill Center (HSC) located on the Nevada Test Site. ACRC also supports DOE in collaborative research and development efforts mandated by Congress in the Clean Air Act Amendments. The data files are results of spill tests conducted at various times by the Silicones Environmental Health and Safety Council (SEHSC) and DOE, ANSUL, Dow Chemical, the Center for Chemical Process Safety (CCPS) and DOE, Lawrence Livermore National Laboratory (LLNL), OSHA, and DOT; DuPont, and the Western Research Institute (WRI), Desert Research Institute (DRI), and EPA. Each test data page contains one executable file for each test in the test series as well as a file named DOC.EXE that contains information documenting the test series. These executable files are actually self-extracting zip files that, when executed, create one or more comma separated value (CSV) text files containing the actual test data or other test information.

  13. Fusion materials science and technology research opportunities...

    Office of Scientific and Technical Information (OSTI)

    the ITER era Citation Details In-Document Search Title: Fusion materials science and technology research opportunities now and during the ITER era Several high-priority...

  14. Advanced Materials Manufacturing and Innovative Technologies...

    Energy Saver

    Director, Office of Research & Development November 12, 2014 Advanced Materials Manufacturing and Innovative Technologies for Natural Gas Pipeline Systems and Components DOE ...

  15. Advanced Thermoelectric Materials and Generator Technology for...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Electrical and Thermal Transport Optimization of High ...

  16. Preventing Proliferation of Nuclear Materials and Technology...

    National Nuclear Security Administration (NNSA)

    Preventing Proliferation of Nuclear Materials and Technology January 31, 2011 NNSA's ... Yearly reviewing thousands of export license requests for proliferation risks in ...

  17. Corrosion Test Cell for Biopolar Plate Materials - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Find More Like This Return to Search Corrosion Test Cell for Biopolar Plate Materials Los Alamos National Laboratory Contact LANL About This Technology Technology Marketing SummaryA corrosion test cell for screening candidate bipolar plate materials for use in polymer electrolyte membrane (PEM) fuel cells.DescriptionThe corrosion test cell has a transparent or translucent cell body having a pair of identical cell body members that seal against opposite sides of a bipolar plate. The cell

  18. 2014 Annual Merit Review Results Report - Materials Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Review Results Report - Materials Technologies: Propulsion Materials 2014 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials Merit review of DOE ...

  19. Applying RFID technology in nuclear materials management.

    SciTech Connect

    Tsai, H.; Chen, K.; Liu, Y.; Norair, J. P.; Bellamy, S.; Shuler, J.; SRL; Savi Technology; DOE

    2008-01-01

    The Packaging Certification Program (PCP) of US Department of Energy (DOE) Environmental Management (EM), Office of Safety Management and Operations (EM-60), has developed a radio frequency identification (RFID) system for the management of nuclear materials. Argonne National Laboratory, a PCP supporting laboratory, and Savi Technology, a Lockheed Martin Company, are collaborating in the development of the RFID system, a process that involves hardware modification (form factor, seal sensor and batteries), software development and irradiation experiments. Savannah River National Laboratory and Argonne will soon field test the active RFID system on Model 9975 drums, which are used for storage and transportation of fissile and radioactive materials. Potential benefits of the RFID system are enhanced safety and security, reduced need for manned surveillance, real time access of status and history data, and overall cost effectiveness.

  20. DOE - NETL Gasification Technology Test Sites

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    technology test sites Once a technology is ready to be tested at pilot or commercial scale, the cost of building a test facility becomes significant -- often beyond the funding...

  1. Module Encapsulation Materials, Processing and Testing (Presentation)

    SciTech Connect

    Pern, J.

    2008-12-01

    Study of PV module encapsulation materials, processing, and testing shows that overall module reliability is determined by all component materials and processing factors.

  2. Materials performance in advanced fossil technologies

    SciTech Connect

    Natesan, K. )

    1991-11-01

    A number of advanced technologies are being developed to convert coal into clean fuels for use as a feedstock in chemical plants and for power generation. From the standpoint of component materials, the environments created by coal conversion and combustion in these technologies and their interactions with materials are of interest. This article identifies several modes of materials degradation and possible mechanisms for metal wastage. Available data on the performance of materials in several of the environments are highlighted, and examples of promising research activities to improve the corrosion resistance of materials are presented.

  3. 2014 Annual Merit review Results Report - Materials Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    review Results Report - Materials Technologies 2014 Annual Merit review Results Report - Materials Technologies Merit review of DOE Vehicle Technologies research activities ...

  4. Safety and Security Technologies for Radioactive Material Shipments...

    Office of Environmental Management (EM)

    and Security Technologies for Radioactive Material Shipments Safety and Security Technologies for Radioactive Material Shipments PDF icon Safety and Security Technologies for...

  5. Environmental Mitigation Technology (Innovative System Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fish-Friendly Turbine Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine Environmental ...

  6. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    SciTech Connect

    Tsai, H.; Gomes, I.C.; Smith, D.L.; Palmer, A.J.; Ingram, F.W.; Wiffen, F.W.

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  7. Blade Materials and Substructures Testing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Wind turbine blades are subjected to a higher number of complex loading cycles not ... polymers (composites) and other materials used to construct wind-turbine blades. ...

  8. Nondestructive ultrasonic testing of materials

    DOEpatents

    Hildebrand, Bernard P.

    1994-01-01

    Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges.

  9. Nondestructive ultrasonic testing of materials

    DOEpatents

    Hildebrand, B.P.

    1994-08-02

    Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges. 4 figs.

  10. Module Encapsulation Materials, Processing and Testing (Presentation...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 14 SOLAR ENERGY; 36 MATERIALS SCIENCE; ENCAPSULATION; PROCESSING; RELIABILITY; TESTING PV; MODULE ENCAPSULATION; ...

  11. The nuclear materials control technology briefing book

    SciTech Connect

    Hartwell, J.K.; Fernandez, S.J.

    1992-03-01

    As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

  12. Materials Science and Technology Teachers Handbook

    SciTech Connect

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  13. Zhongke Photovoltaic Material Technology Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Zhongke Photovoltaic Material Technology Co Ltd Jump to: navigation, search Name: Zhongke Photovoltaic Material Technology Co Ltd Place: Pingxiang, Jiangxi Province, China Product:...

  14. Zhongsheng Technology New Materials Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technology New Materials Ltd Jump to: navigation, search Name: Zhongsheng Technology New Materials Ltd Place: Bayannaoer, Inner Mongolia Autonomous Region, China Product: Maker of...

  15. Advanced Ceramic Materials and Packaging Technologies for Realizing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors ...

  16. Nuclear Materials Research and Technology/Los Alamos National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... dication (nitrogen atoms in blue). 2 Nuclear Materials Research and TechnologyLos ... A. Bartsch (Texas Tech University). 3 Nuclear Materials Research and TechnologyLos ...

  17. Nuclear Materials Technology Division/Los Alamos National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technical Accomplish- ments for 1994 2 Nuclear Materials Technology DivisionLos Alamos ... Figure 1. Acid recycle and recovery system. 3 Nuclear Materials Technology DivisionLos ...

  18. Tianjin HuanOu Semiconductor Material Technology Co Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    HuanOu Semiconductor Material Technology Co Ltd Jump to: navigation, search Name: Tianjin HuanOu Semiconductor Material Technology Co Ltd Place: Tianjin, Tianjin Municipality,...

  19. Edison Material Technology Center EMTEC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Material Technology Center EMTEC Jump to: navigation, search Name: Edison Material Technology Center (EMTEC) Place: Dayton, Ohio Zip: 45420 Product: String representation "A...

  20. Jiangsu Tehua New Materials Technology Co Ltd | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Tehua New Materials Technology Co Ltd Jump to: navigation, search Name: Jiangsu Tehua New Materials Technology Co Ltd Place: Yancheng, Jiangsu Province, China Product: A...

  1. Materials and Components Technology Division research summary, 1991

    SciTech Connect

    Not Available

    1991-04-01

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base.

  2. Ionized cluster beam technology for material science

    SciTech Connect

    Takagi, Toshinori

    1997-06-20

    The most suitable kinetic energy range of ionized materials in film formation and epitaxial growth is from a few eV to a few hundreds eV, especially, less than about 100eV, when ions are used as a host. The main roles of ions in film formation are the effects due to their kinetic energy and the electronic charge effects which involve the effect to active film formation and the effect acceleration of chemical reactions. Therefore, it is important to develope the technology to transport large volume of a flux of ionized particles with an extremely low incident energy without any troubles due to the space charge effects and charge up problems on the surface. This is the exact motivation for us to have been developing the Ionized Cluster Beam (ICB) technology since 1972. By ICB technology materials (actually wide varieties of materials such as metal, semiconductor, magnetic material, insulator, organic material, etc.) are vaporized and ejected through a small hole nozzle into a high vacuum, where the vaporized material condenses into clusters with loosely coupled atoms with the sizes about from 100 to a few 1000 atoms (mainly 100-2000 atoms) by supercondensation phenomena due to the adiabatic expansion in this evaporation process through a small hole nozzle. In the ICB technology an atom in each cluster is ionized by irradiated by electron shower, and the ionized clusters are accelerated by electric field onto a substrate. The ionized clusters with neutral clusters impinged onto a substrate are spreaded separately into atoms migrating over the substrate, so that the surface migration energy of the impinged atoms, that is, surface diffusion energy are controlled by an incident energy of a cluster. In this report the theoretical and also experimental results of ICB technology are summarized.

  3. Nanotwinned Materials for Energy Technologies | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nanotwinned Materials for Energy Technologies Research Personnel Updates Publications Imperfections at Boundaries Key to Understanding Nanostructured Materials Read More...

  4. 2011 Annual Merit Review Results Report - Materials Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies 2011 Annual Merit Review Results Report - Materials Technologies Merit review of DOE Vehicle Technologies research activities 2011amr06.pdf (5.51 MB) More Documents ...

  5. 2013 Annual Merit Review Results Report - Materials Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies 2013 Annual Merit Review Results Report - Materials Technologies Merit review of DOE Vehicle Technologies research activities 2013amr06.pdf (4.04 MB) More Documents ...

  6. 2012 Annual Merit Review Results Report - Materials Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies 2012 Annual Merit Review Results Report - Materials Technologies Merit review of DOE Vehicle Technologies research activities 2012amr06.pdf (5.04 MB) More Documents ...

  7. Ceramic materials testing and modeling

    SciTech Connect

    Wilfinger, K. R., LLNL

    1998-04-30

    corrosion by limiting the transport of water and oxygen to the ceramic-metal interface. Thermal spray techniques for ceramic coating metallic structures are currently being explored. The mechanics of thermal spray resembles spray painting in many respects, allowing large surfaces and contours to be covered smoothly. All of the relevant thermal spray processes use a high energy input to melt or partially melt a powdered oxide material, along with a high velocity gas to impinge the molten droplets onto a substrate where they conform, quench, solidify and adhere mechanically. The energy input can be an arc generated plasma, an oxy-fuel flame or an explosion. The appropriate feed material and the resulting coating morphologies vary with technique as well as with application parameters. To date on this project, several versions of arc plasma systems, a detonation coating system and two variations of high velocity oxy-fuel (HVOF) fired processes have been investigated, operating on several different ceramic materials.

  8. Materials challenges in advanced coal conversion technologies

    SciTech Connect

    Powem, C.A.; Morreale, B.D.

    2008-04-15

    Coal is a critical component in the international energy portfolio, used extensively for electricity generation. Coal is also readily converted to liquid fuels and/or hydrogen for the transportation industry. However, energy extracted from coal comes at a large environmental price: coal combustion can produce large quantities of ash and CO{sub 2}, as well as other pollutants. Advanced technologies can increase the efficiencies and decrease the emissions associated with burning coal and provide an opportunity for CO{sub 2} capture and sequestration. However, these advanced technologies increase the severity of plant operating conditions and thus require improved materials that can stand up to the harsh operating environments. The materials challenges offered by advanced coal conversion technologies must be solved in order to make burning coal an economically and environmentally sound choice for producing energy.

  9. Vehicle Technologies Office: US DRIVE Materials Technical Team...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    US DRIVE Materials Technical Team Roadmap Vehicle Technologies Office: US DRIVE Materials Technical Team Roadmap The Materials Technical Team (MTT) of the U.S. DRIVE Partnership ...

  10. Wind Technology Testing Center Acquires New Blade Fatigue Test System |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Acquires New Blade Fatigue Test System Wind Technology Testing Center Acquires New Blade Fatigue Test System August 1, 2013 - 4:33pm Addthis This is an excerpt from the Second Quarter 2013 edition of the Wind Program R&D Newsletter. The Wind Technology Testing Center (WTTC) in Boston, Massachusetts, recently acquired a significant piece of testing equipment needed to offer its industry partners a full state-of-the-art suite of wind turbine blade certification tests.

  11. Materials Technologies: Goals, Strategies, and Top Accomplishments (Brochure)

    SciTech Connect

    Not Available

    2010-08-01

    Document details the goals, strategies, and top accomplishments of DOE's Materials Technologies subprogram.

  12. Superhydrophobic Materials Technology-PVC Bonding Techniques

    SciTech Connect

    Hunter, Scott R.; Efird, Marty

    2013-05-03

    The purpose of the technology maturation project was to develop an enhanced application technique for applying diatomaceous earth with pinned polysiloxane oil to PVC pipes and materials. The oil infiltration technique is applied as a spray of diluted oil in a solvent onto the superhydrophobic diatomaceous earth substrate. This makes the surface take on the following characteristics: wet-cleanable; anti-biofouling; waterproof; and anti-corrosion. The project involved obtaining input and supplies from VeloxFlow and the development of successful techniques that would quickly result in a commercial license agreement with VeloxFlow and other companies that use PVC materials in a variety of other fields of use.

  13. Vehicle Technologies Office Merit Review 2015: Overview of VTO Material

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies | Department of Energy Material Technologies Vehicle Technologies Office Merit Review 2015: Overview of VTO Material Technologies Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about overview of VTO Material Technologies. lm000_joost_2015_o.pdf (3.21 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Overview of VTO

  14. IHE material qualification tests description and criteria

    SciTech Connect

    Slape, R J

    1984-06-01

    This report describes the qualification tests presently being used at Pantex Plant, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory that are required by the Department of Energy prior to the approval for an explosive as an Insensitive High Explosive (IHE) material. The acceptance criteria of each test for IHE qualification is also discussed. 5 references, 10 figures.

  15. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2003-08-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a reasonably high alkali content, thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was well within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that the aggressive alkali-iron-trisulfate constituent was present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. This report provides the results of the evaluation of Test Section C, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. The analysis of Test Section C followed much the same protocol that was employed in the assessment of Test Section A. Again, the focus was on determining and documenting the relative corrosion rates of the candidate materials. The detailed results of the investigation are included in this report as a series of twelve appendices. Each appendix is devoted to the performance of one of the candidate alloys. The table below summarizes metal loss rate for the worst case sample of each of the candidate materials for both Test Sections A and C

  16. Vehicle Technologies Office Merit Review 2014: Multi-Material...

    Energy Saver

    Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight Vehicles Presentation given by VEHMA at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies ...

  17. Vehicle Technologies Office Merit Review 2014: Tailored Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Merit Review 2014: Tailored Materials for Improved ... at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit ...

  18. Vehicle Technologies Office: Materials for Hybrid and Electric...

    Energy Saver

    Hybrid and Electric Drive Systems Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems The Vehicle Technologies Office (VTO) is working to lower the cost ...

  19. Vehicle Technologies Office Merit Review 2015: Multi-Material...

    Energy Saver

    Vehicle Technologies Office Merit Review 2015: Multi-Material Lightweight Vehicles Presentation given by VEHMA at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies ...

  20. Vehicle Technologies Office Merit Review 2014: Novel Anode Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Vehicle Technologies Office Merit Review 2014: First Principles Calculations and NMR Spectroscopy of Electrode Materials Vehicle Technologies Office ...

  1. Materials Technologies: Goals, Strategies, and Top Accomplishments (Brochure), Vehicle Technologies Program (VTP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Document details the goals, strategies, and top accomplishments of DOE's Materials Technologies subprogram.

  2. Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    08 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual Progress Report PDF icon 2008propulsionmaterials.pdf More ...

  3. Nuclear Materials Research and Technology/Los Alamos National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Crown Ether Complex 6 "Excess" Nuclear Materials Hold Keys to Medicine, ... that culminates in plutonium. 2 Nuclear Materials Research and TechnologyLos ...

  4. Solar Applied Materials Technology Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Solar Applied Materials Technology Corp Place: Tainan, Taiwan Product: Taiwan's material process specialists with over 20 years experience and in the areas of sputtering...

  5. Vehicle Technologies Office: 2014 Lightweight Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Annual Progress Report Vehicle Technologies Office: 2014 Lightweight Materials R&D Annual Progress Report The Lightweight Materials research and development (R&D) area within the ...

  6. Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PDF icon 2013ProgressReportforPropulsionMaterials.pdf More Documents & Publications NOx sensor development Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual ...

  7. Testing a Variety of Encryption Technologies

    SciTech Connect

    Henson, T J

    2001-04-09

    Review and test speeds of various encryption technologies using Entrust Software. Multiple encryption algorithms are included in the product. Algorithms tested were IDEA, CAST, DES, and RC2. Test consisted of taking a 7.7 MB Word document file which included complex graphics and timing encryption, decryption and signing. Encryption is discussed in the GIAC Kickstart section: Information Security: The Big Picture--Part VI.

  8. Coal Ash Corrosion Resistant Materials Testing Program

    SciTech Connect

    McDonald, D K

    2003-04-22

    The "Coal Ash Corrosion Resistant Materials Testing Program" is being conducted by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) at Reliant Energy's Niles plant in Niles, Ohio to provide full-scale, in-situ testing of recently developed boiler superheater materials. Fireside corrosion is a key issue for improving efficiency of new coal fired power plants and improving service life in existing plants. In November 1998, B&W began development of a system to permit testing of advanced tube materials at metal temperatures typical of advanced supercritical steam temperatures (1100°F and higher) in a boiler exhibiting coal ash corrosive conditions. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. In the spring of 1999 a system consisting of three identical sections, each containing multiple segments of twelve different materials, was installed. The sections are cooled by reheat steam, and are located just above the furnace entrance in Niles' Unit #1, a 110 MWe unit firing high sulfur Ohio coal. In November 2001 the first section was removed for thorough metallurgical evaluation after 33 months of operation. The second and third sections remain in service and the second is expected to be removed in the fall of 2003; the last is tentatively planned for the fall of 2004. This paper describes the program; its importance; the design, fabrication, installation and operation of the test system; materials utilized; experience to date; and results of the evaluation of the first section.

  9. New Materials and Technologies Available for Use in Industrial Infrastructure

    SciTech Connect

    none,

    2003-03-01

    This paper provides an overview of different types of new industrial infrastructure materials and technologies that are available.

  10. Double Retort System for Materials Compatibility Testing

    SciTech Connect

    V. Munne; EV Carelli

    2006-02-23

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the Space Nuclear Power Plant (SNPP) for Project Prometheus (References a and b) there was a need to investigate compatibility between the various materials to be used throughout the SNPP. Of particular interest was the transport of interstitial impurities from the nickel-base superalloys, which were leading candidates for most of the piping and turbine components to the refractory metal alloys planned for use in the reactor core. This kind of contamination has the potential to affect the lifetime of the core materials. This letter provides technical information regarding the assembly and operation of a double retort materials compatibility testing system and initial experimental results. The use of a double retort system to test materials compatibility through the transfer of impurities from a source to a sink material is described here. The system has independent temperature control for both materials and is far less complex than closed loops. The system is described in detail and the results of three experiments are presented.

  11. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Composite Materials Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Composite Materials Chapter 6: Technology Assessments This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Composite Materials is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology assessments

  12. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Critical Materials Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Critical Materials Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Critical Materials is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  13. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  14. Vehicle Technologies Office Merit Review 2014: Overiew of Materials

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies R&D | Department of Energy Overiew of Materials Technologies R&D Vehicle Technologies Office Merit Review 2014: Overiew of Materials Technologies R&D Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting providing an overview of the Materials Technologies Program. 2014_materials_amr_overview_5-29.pdf (2.89 MB) More Documents & Publications Vehicle

  15. Test device for measuring permeability of a barrier material - Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Innovation Portal 64,963 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Test device for

  16. DOE and Partners Test Enhanced Geothermal Systems Technologies...

    Office of Environmental Management (EM)

    and Partners Test Enhanced Geothermal Systems Technologies DOE and Partners Test Enhanced Geothermal Systems Technologies February 20, 2008 - 4:33pm Addthis DOE has embarked on a ...

  17. BOEM Issues First Renewable Energy Lease for MHK Technology Testing...

    Energy Saver

    BOEM Issues First Renewable Energy Lease for MHK Technology Testing in Federal Waters BOEM Issues First Renewable Energy Lease for MHK Technology Testing in Federal Waters June 23, ...

  18. Idaho National Laboratory Testing of Advanced Technology Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Idaho National Laboratory Testing of Advanced Technology Vehicles Vehicle Technologies Office Merit Review 2014: Idaho National Laboratory Testing of ...

  19. Material Testing of Coated Alloys in a Syngas Combustion Environment...

    Office of Scientific and Technical Information (OSTI)

    Material Testing of Coated Alloys in a Syngas Combustion Environment Year 6 - Activity ... Title: Material Testing of Coated Alloys in a Syngas Combustion Environment Year 6 - ...

  20. Irradiation Environment of the Materials Test Station

    SciTech Connect

    Pitcher, Eric John

    2012-06-21

    Conceptual design of the proposed Materials Test Station (MTS) at the Los Alamos Neutron Science Center (LANSCE) is now complete. The principal mission is the irradiation testing of advanced fuels and materials for fast-spectrum nuclear reactor applications. The neutron spectrum in the fuel irradiation region of MTS is sufficiently close to that of fast reactor that MTS can match the fast reactor fuel centerline temperature and temperature profile across a fuel pellet. This is an important characteristic since temperature and temperature gradients drive many phenomena related to fuel performance, such as phase stability, stoichiometry, and fission product transport. The MTS irradiation environment is also suitable in many respects for fusion materials testing. In particular, the rate of helium production relative to atomic displacements at the peak flux position in MTS matches well that of fusion reactor first wall. Nuclear transmutation of the elemental composition of the fusion alloy EUROFER97 in MTS is similar to that expected in the first wall of a fusion reactor.

  1. Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles | Department of Energy Multi-Material Lightweight Vehicles Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight Vehicles Presentation given by VEHMA at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-material lightweight vehicles. lm072_skszek_2014_o.pdf (1.89 MB) More Documents & Publications Multi-Material Lightweight Prototype Vehicle Vehicle Technologies Office Merit

  2. Vehicle Technologies Office Merit Review 2015: Multi-Material Lightweight

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles | Department of Energy Multi-Material Lightweight Vehicles Vehicle Technologies Office Merit Review 2015: Multi-Material Lightweight Vehicles Presentation given by VEHMA at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-material lightweight vehicles. lm072_skszek_2015_o.pdf (2.3 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight Vehicles

  3. Vehicle Technologies Office: Lightweight Materials for Cars and Trucks |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Fuel Efficiency & Emissions » Vehicle Technologies Office: Lightweight Materials for Cars and Trucks Vehicle Technologies Office: Lightweight Materials for Cars and Trucks PBS's Motorweek highlights the research and development on lightweight materials supported by the Vehicle Technologies Office at Oak Ridge National Laboratory. Read the text version. Advanced materials are essential for boosting the fuel economy of modern automobiles while maintaining safety and

  4. Vehicle Technologies Office Merit Review 2015: Lightweight Materials

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Overview | Department of Energy Lightweight Materials Overview Vehicle Technologies Office Merit Review 2015: Lightweight Materials Overview Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about lightweight materials overview. lm999_joost_2015_o.pdf (3.16 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Overview of VTO Material

  5. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    SciTech Connect

    BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

    2000-01-27

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic

  6. Historical hydronuclear testing: Characterization and remediation technologies

    SciTech Connect

    Shaulis, L.; Wilson, G.; Jacobson, R.

    1997-09-01

    This report examines the most current literature and information available on characterization and remediation technologies that could be used on the Nevada Test Site (NTS) historical hydronuclear test areas. Historical hydronuclear tests use high explosives and a small amount of plutonium. The explosion scatters plutonium within a contained subsurface environment. There is currently a need to characterize these test areas to determine the spatial extent of plutonium in the subsurface and whether geohydrologic processes are transporting the plutonium away from the event site. Three technologies were identified to assist in the characterization of the sites. These technologies are the Pipe Explorer{trademark}, cone penetrometer, and drilling. If the characterization results indicate that remediation is needed, three remediation technologies were identified that should be appropriate, namely: capping or sealing the surface, in situ grouting, and in situ vitrification. Capping the surface would prevent vertical infiltration of water into the soil column, but would not restrict lateral movement of vadose zone water. Both the in situ grouting and vitrification techniques would attempt to immobilize the radioactive contaminants to restrict or prevent leaching of the radioactive contaminants into the groundwater. In situ grouting uses penetrometers or boreholes to inject the soil below the contaminant zone with low permeability grout. In situ vitrification melts the soil containing contaminants into a solid block. This technique would provide a significantly longer contaminant immobilization, but some research and development would be required to re-engineer existing systems for use at deep soil depths. Currently, equipment can only handle shallow depth vitrification. After existing documentation on the historical hydronuclear tests have been reviewed and the sites have been visited, more specific recommendations will be made.

  7. Blade Testing at NREL's National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect

    Hughes, S.

    2010-07-20

    Presentation of Blade Testing at NREL's National Wind Technology Center for the 2010 Sandia National Laboratories Blade Testing Workshop.

  8. Advanced Hot Section Materials and Coatings Test Rig

    SciTech Connect

    Dan Davis

    2006-09-30

    Phase I of the Hyperbaric Advanced Hot Section Materials & Coating Test Rig Program has been successfully completed. Florida Turbine Technologies has designed and planned the implementation of a laboratory rig capable of simulating the hot gas path conditions of coal gas fired industrial gas turbine engines. Potential uses of this rig include investigations into environmental attack of turbine materials and coatings exposed to syngas, erosion, and thermal-mechanical fatigue. The principle activities during Phase 1 of this project included providing several conceptual designs for the test section, evaluating various syngas-fueled rig combustor concepts, comparing the various test section concepts and then selecting a configuration for detail design. Conceptual definition and requirements of auxiliary systems and facilities were also prepared. Implementation planning also progressed, with schedules prepared and future project milestones defined. The results of these tasks continue to show rig feasibility, both technically and economically.

  9. Vehicle Technologies Office: Materials by Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    by Design Vehicle Technologies Office: Materials by Design According to the Materials Genome Initiative, it generally requires more than 20 years to develop and implement a new or improved material for automotive applications. To accelerate this process, the Vehicle Technologies Office (VTO) supports research to develop and implement new or improved application-specific materials through Integrated Computational Materials Engineering (ICME). This approach combines advanced characterization,

  10. Materials Technologies: Goals, Strategies, and Top Accomplishments...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FY 2009 Progress Report for Lightweighting Materials - 12. Materials Crosscutting Research and Development Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus

  11. NREL Researchers Test Solar Thermal Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A prototype heliostat which could take solar technology a step into the future is being tested at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL). It was developed by Science Applications International Corporations (SAIC) Golden office. The heliostat is a large tracking mirror for use in solar thermal power plants. SAIC's prototype heliostat incorporates a number of design and manufacturing modifications that could lead to significant cost reductions. The major

  12. NREL's Controllable Grid Interface for Testing Renewable Energy Technologies (Presentation)

    SciTech Connect

    Gevorgian, V.

    2014-09-01

    This presentation is an overview of NREL's Controllable Grid Interface capabilities for testing renewable energy technologies.

  13. Vehicle Technologies Office: Integration, Validation and Testing Tools and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Procedures | Department of Energy Modeling, Testing, Data & Results » Vehicle Technologies Office: Integration, Validation and Testing Tools and Procedures Vehicle Technologies Office: Integration, Validation and Testing Tools and Procedures The Vehicle Technologies Office supports facilities and tools such as Oak Ridge National Laboratory's Vehicle Systems Integration Laboratory to integrate, validate, and test advanced vehicle technologies. Read the text version. The Vehicle

  14. Integrated Performance Testing Workshop - Supplemental Materials (Scripts and Procedures)

    SciTech Connect

    Baum, Gregory A.

    2014-02-01

    A variety of performance tests are described relating to: Material Transfers; Emergency Evacuation; Alarm Response Assessment; and an Enhanced Limited Scope Performance Test (ELSPT). Procedures are given for: nuclear material physical inventory and discrepancy; material transfers; and emergency evacuation.

  15. Vehicle Technologies Office Merit Review 2014: Overiew of Materials...

    Energy Saver

    Vehicle Technologies Office Merit Review 2014: Overiew of Materials Technologies R&D Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and ...

  16. Breakout Session: Disruptive Solar Technologies: Frontiers in New Materials

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Approaches | Department of Energy Disruptive Solar Technologies: Frontiers in New Materials and Approaches Breakout Session: Disruptive Solar Technologies: Frontiers in New Materials and Approaches May 21, 2014 2:45PM to 3:45PM PDT Pacific A Disruptive solar technologies entering the PV and CSP landscape today hold the potential to greatly impact the future of solar energy conversion. This session will highlight new techniques, processes, materials, and 'game changing' revelations over

  17. Innovative Process and Materials Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research & Development Projects » Innovative Process and Materials Technologies Innovative Process and Materials Technologies R&D Projects support the development of a wide range of processes and technologies, including (left) development of a manufacturing process for, and commercialization of, advanced Protected Lithium Electrodes (image courtesy of Polyplus Battery Company); and (right) the design, build, and commissioning of a RApid Freeform sheet metal Forming Technology (RAFFT)

  18. Vehicle Technologies Office: 2010 Propulsion Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development. ...

  19. Jiangsu Chenfeng New Material Technology Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jiangsu Province, China Sector: Wind energy Product: Jiangsu-based wind turbine blade manufacturing joint venture company. References: Jiangsu Chenfeng New Material Technology...

  20. Base Technology for Radioactive Material Transportation Packaging Systems

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1992-07-08

    To establish Department of Energy (DOE) policies and responsibilities for coordinating and planning base technology for radioactive material transportation packaging systems.

  1. Critical Materials Institute signs new member United Technologies...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    signs new member United Technologies Research Center Contacts: For release: Aug. 18, 2015 Alex King, Director, Critical Materials Institute, (515) 296-4505 Laura Millsaps, Ames...

  2. Vehicle Technologies Office Merit Review 2015: Materials Development...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy High Power Battery Exceeding PHEV-40 Requirements Vehicle Technologies Office Merit Review 2015: Materials Development for High Energy High Power Battery Exceeding PHEV-40 ...

  3. Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual Progress Report PDF icon 2008propulsionmaterials.pdf More Documents & Publications Vehicle ...

  4. Vehicle Technologies Office Merit Review 2014: Multi-Material...

    Energy Saver

    Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight Vehicles: Mach II Design Presentation given by VEHMA at 2014 DOE Hydrogen and Fuel Cells Program and ...

  5. Vehicle Technologies Office: 2013 Lightweight Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lightweight Materials R&D Annual Progress Report Vehicle Technologies Office: 2013 Lightweight Materials R&D Annual Progress Report As part of the U.S. Department of Energy's ...

  6. Proceedings of the international workshop on spallation materials technology

    SciTech Connect

    Mansur, L.K.; Ullmaier, H. [comps.] [comps.

    1996-10-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility.

  7. Advanced Materials Technologies Available for Licensing - Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels ...

  8. Utility advanced turbine systems (ATS) technology readiness testing

    SciTech Connect

    2000-09-15

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  9. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is

  10. materials technologies | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Replacing cast iron and traditional steel components with lightweight materials such as high-strength steel, magnesium (Mg) alloys, aluminum (Al) alloys, carbon fiber, and polymer ...

  11. Vehicle Technologies Office Merit Review 2016: Material Technologies- Overview

    Energy.gov [DOE]

    Presentation given by Department of Energy (DOE) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Lightweighting

  12. Environmental Mitigation Technology (Innovative System Testing)-Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Testing of the Alden Hydropower Fish-Friendly Turbine | Department of Energy Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine

  13. Battery Technology Life Verification Testing and Analysis

    SciTech Connect

    Jon P. Christophersen; Gary L. Hunt; Ira Bloom; Ed Thomas; Vince Battaglia

    2007-12-01

    A critical component to the successful commercialization of batteries for automotive applications is accurate life prediction. The Technology Life Verification Test (TLVT) Manual was developed to project battery life with a high level of statistical confidence within only one or two years of accelerated aging. The validation effort that is presently underway has led to several improvements to the original methodology. For example, a newly developed reference performance test revealed a voltage path dependence effect on resistance for lithium-ion cells. The resistance growth seems to depend on how a target condition is reached (i.e., by a charge or a discharge). Second, the methodology for assessing the level of measurement uncertainty was improved using a propagation of errors in the fundamental measurements to the derived response (e.g., resistance). This new approach provides a more realistic assessment of measurement uncertainty. Third, the methodology for allocating batteries to the test matrix has been improved. The new methodology was developed to assign batteries to the matrix such that the average of each test group would be representative of the overall population. These changes to the TLVT methodology will help to more accurately predict a battery technology’s life capability with a high degree of confidence.

  14. 2015 SSL TECHNOLOGY DEVELOPMENT WORKSHOP PRESENTATIONS AND MATERIALS |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 5 SSL TECHNOLOGY DEVELOPMENT WORKSHOP PRESENTATIONS AND MATERIALS 2015 SSL TECHNOLOGY DEVELOPMENT WORKSHOP PRESENTATIONS AND MATERIALS Download presentations from the 2015 DOE SSL Technology Development Workshop, held November 17-18 in Portland, OR. Please note: Some speakers did not present slides or grant permission for online posting. Workshop Highlights AGENDA DAY 1 Workshop Welcome James Brodrick, U.S. Department of Energy Keynote: Tuning the Spectrum for Plant

  15. Technology Options for a Fast Spectrum Test Reactor

    SciTech Connect

    D. M. Wachs; R. W. King; I. Y. Glagolenko; Y. Shatilla

    2006-06-01

    Idaho National Laboratory in collaboration with Argonne National Laboratory has evaluated technology options for a new fast spectrum reactor to meet the fast-spectrum irradiation requirements for the USDOE Generation IV (Gen IV) and Advanced Fuel Cycle Initiative (AFCI) programs. The US currently has no capability for irradiation testing of large volumes of fuels or materials in a fast-spectrum reactor required to support the development of Gen IV fast reactor systems or to demonstrate actinide burning, a key element of the AFCI program. The technologies evaluated and the process used to select options for a fast irradiation test reactor (FITR) for further evaluation to support these programmatic objectives are outlined in this paper.

  16. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Materials for Harsh Service Conditions Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology

  17. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  18. Vehicle Technologies Office: Materials for Hybrid and Electric Drive

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems | Department of Energy Hybrid and Electric Drive Systems Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems The Vehicle Technologies Office (VTO) is working to lower the cost and increase the convenience of electric drive vehicles, which include hybrid and plug-in electric vehicles. These vehicles use advanced power electronics and electric motors that face barriers because their subcomponents have specific material limitations. Novel propulsion materials

  19. Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles: Mach II Design | Department of Energy Multi-Material Lightweight Vehicles: Mach II Design Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight Vehicles: Mach II Design Presentation given by VEHMA at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-material lightweight vehicles: Mach II design. lm088_skszek_2014_o.pdf (2.33 MB) More Documents & Publications Vehicle

  20. Vehicle Technologies Office Merit Review 2015: High Temperature Materials

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for High Efficiency Engines | Department of Energy High Temperature Materials for High Efficiency Engines Vehicle Technologies Office Merit Review 2015: High Temperature Materials for High Efficiency Engines Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high temperature materials for high efficiency engines. pm053_muralidharan_2015_o.pdf (1.51 MB) More

  1. Vehicle Technologies Office Merit Review 2015: Materials Development for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Energy High Power Battery Exceeding PHEV-40 Requirements | Department of Energy Materials Development for High Energy High Power Battery Exceeding PHEV-40 Requirements Vehicle Technologies Office Merit Review 2015: Materials Development for High Energy High Power Battery Exceeding PHEV-40 Requirements Presentation given by TIAX LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about materials development for

  2. Test device for measuring permeability of a barrier material

    DOEpatents

    Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

    2014-03-04

    A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

  3. Letter report: Evaluation of dryer/calciner technologies for testing

    SciTech Connect

    Sevigny, G.

    1996-02-01

    This letter report describes some past experiences on the drying and calcination of radioactive materials or corresponding simulants; and the information needed from testing. The report also includes an assessment of informational needs including possible impacts to a full-scale plant. This includes reliability, maintenance, and overall size versus throughput. Much of the material was previously compiled and reported by Mike Elliott of PNL {open_quotes}Melter Performance Assessment{close_quotes} and Larry Eisenstatt of SEG on contract to WHC in a letter to Rod Powell. Also, an annotated bibliography was prepared by Reagan Seymour of WHC. Descriptions of the drying and calciner technologies, development status, advantages and disadvantages of using a WFE or calciner, and recommendations for future testing are discussed in this report.

  4. TEST DEVICE FOR MEASURING PERMEABILITY OF A BARRIER MATERIAL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Partners (27) Visual Patent Search Success Stories Return to Search TEST DEVICE FOR ... Transfer Website Abstract: A test device for measuring permeability of a barrier material. ...

  5. Utility Advanced Turbine Systems (ATS) technology readiness testing

    SciTech Connect

    1999-05-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  6. Utility Advanced Turbine Systems (ATS) Technology Readiness Testing

    SciTech Connect

    1998-10-29

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. This report summarizes work accomplished in 2Q98. The most significant accomplishments are listed in the report.

  7. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Unknown

    1998-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between Ge and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially be GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished from 4Q97 through 3Q98.

  8. Researchers Devise New Stress Test for Irradiated Materials

    Energy.gov [DOE]

    How do you tell if materials are stressed-out? Conventional stress tests for irradiated materials require a significant amount of material, but a new nano-size technique can test the strength of materials using an infinitesimal amount. Learn more.

  9. Vehicle Technologies Office Merit Review 2014: INL Testing of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    INL Testing of Wireless Charging Systems Vehicle Technologies Office Merit Review 2014: INL Testing of Wireless Charging Systems Presentation given by Idaho National Laboratory at ...

  10. Idaho National Laboratory Testing of Advanced Technology Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing Advanced Vehicle ...

  11. Vehicle Technologies Office: AVTA - Battery Testing Data | Department...

    Energy Saver

    Battery Testing Data Vehicle Technologies Office: AVTA - Battery Testing Data For plug-in electric vehicles to achieve widespread market adoption, vehicle batteries must have ...

  12. Trusted materials using orthogonal testing. 2015 Annual report

    SciTech Connect

    Van Benthem, Mark

    2015-09-01

    The purpose of this project is to prove (or disprove) that a reasonable number of simple tests can be used to provide a unique data signature for materials, changes in which could serve as a harbinger of material deviation, prompting further evaluations. The routine tests are mutually orthogonal to any currently required materials specification tests.

  13. Technologies for detection of nuclear materials

    SciTech Connect

    DeVolpi, A.

    1996-03-30

    Detection of smuggled nuclear materials at transit points requires monitoring unknown samples in large closed packages. This review contends that high-confidence nuclear-material detection requires induced fission as the primary mechanism, with passive radiation screening in a complementary role. With the right equipment, even small quantities of nuclear materials are detectable with a high probability at transit points. The equipment could also be linked synergistically with detectors of other contrabond. For screening postal mail and packages, passive monitors are probably more cost-effective. When a suspicious item is detected, a single active probe could then be used. Until active systems become mass produced, this two-stage screening/interrogation role for active/passive equipment is more economic for cargo at border crossings. For widespread monitoring of nuclear smuggling, it will probably be necessary to develop a system for simultaneously detecting most categories of contraband, including explosives and illicit drugs. With control of nuclear materials at known storage sites being the first line of defense, detection capabilities at international borders could establish a viable second line of defense against smuggling.

  14. Wind Technology Testing Center Acquires New Blade Fatigue Test...

    Energy.gov [DOE] (indexed site)

    Act, the WTTC is one of the largest blade test facilities in the world, testing some of ... tests on the larger blades at higher test frequencies-and thus shorter testing ...

  15. Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Results | Department of Energy Advanced Vehicle Testing Activity (AVTA) Data and Results Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies through the Advanced Vehicle Testing Activity (AVTA). This effort collects performance data from a wide range of light-duty alternative fuel and advanced

  16. Vehicle Technologies Office Merit Review 2014: Innovative Cell Materials

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Design for 300 Mile Range EVs | Department of Energy Innovative Cell Materials and Design for 300 Mile Range EVs Vehicle Technologies Office Merit Review 2014: Innovative Cell Materials and Design for 300 Mile Range EVs Presentation given by OneD Material, LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative cell materials and design for 300 mile range EVs. es130_zhu_2014_p.pdf (2.02 MB) More

  17. Demonstration and Field Test of airjacket technology

    SciTech Connect

    Faulkner, D.; Fisk, W.J.; Gadgil, A.J.; Sullivan, D.P.

    1998-06-01

    There are approximately 600,000 paint spray workers in the United States applying paints and coatings with some type of sprayer. Approximately 5% of these spray workers are in the South Coast Air Quality Management District (SCAQMD). These spray workers apply paints or other coatings to products such as bridges, houses, automobiles, wood and metal furniture, and other consumer and industrial products. The materials being sprayed include exterior and interior paints, lacquers, primers, shellacs, stains and varnishes. Our experimental findings indicate that the Airjacket does not significantly reduce the exposure of spray workers to paint fumes during HVLP spraying. The difference between ideal and actual spray paint procedures influence the mechanisms driving spray workers exposures to paint fumes and influence the viability of the Airjacket technology. In the ideal procedure, for which the Airjacket was conceived, the spray worker's exposure to paint fumes is due largely to the formation of a recirculating eddy between the spray worker and the object painted. The Airjacket ejects air to diminish and ventilate this eddy. In actual practice, exposures may result largely from directing paint upstream and from the bounce-back of the air/paint jet of the object being painted. The Airjacket, would not be expected to dramatically reduce exposures to paint fumes when the paint is not directed downstream or when the bounce-back of paint on the object creates a cloud of paint aerosols around the spray worker.

  18. Testing at Cryogenic Temperatures: Engineering, Materials, and...

    Energy.gov [DOE] (indexed site)

    prototypes - Temperatures down to 15 K "Big part of ATK's material characterization program on the James Webb Space Telescope. Their data is extremely thorough and comprehensive." ...

  19. Post-Shred Materials Recovery Technology Development and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    -- Washington D.C. PDF icon lm29jody.pdf More Documents & Publications Overview of Recycling Technology R&D FY 2008 Progress Report for Lightweighting Materials - 11. Recycling...

  20. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Unknown

    1999-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

  1. Vehicle Technologies Office: Materials for High-Efficiency Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Engines | Department of Energy High-Efficiency Combustion Engines Vehicle Technologies Office: Materials for High-Efficiency Combustion Engines The Vehicle Technologies Office (VTO) is supporting work to improve the efficiency of advanced internal combustion engines for automotive, light trucks, and heavy-truck applications by 25% to 50%. However, many of these combustion strategies require high operating temperatures and pressures that exceed current materials' abilities to reliably operate

  2. Hydrogen-Assisted Fracture: Materials Testing and Variables Governing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fracture | Department of Energy Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture SNL has 40+ years experience with effects of high-pressure hydrogen gas on materials hpwgw_matresearch_somerday.pdf (1.16 MB) More Documents & Publications Mechanical Properties of Structural Steels in Hydrogen Materials Compatibility Properties, Behavior and Material Compatibility of Hydrogen,

  3. DOE and Partners Test Enhanced Geothermal Systems Technologies | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy and Partners Test Enhanced Geothermal Systems Technologies DOE and Partners Test Enhanced Geothermal Systems Technologies February 20, 2008 - 4:33pm Addthis DOE has embarked on a project with a number of partners to test Enhanced Geothermal Systems (EGS) technologies at a commercial geothermal power facility near Reno, Nevada. EGS technology enhances the permeability of underground strata, typically by injecting water into the strata at high pressure. The concept was initially

  4. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Unknown

    1999-04-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

  5. Vehicle Technologies Office: Long-Term Lightweight Materials Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (Magnesium and Carbon Fiber) | Department of Energy Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber) Vehicle Technologies Office: Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber) In the long term, advanced materials such as magnesium and carbon fiber reinforced composites could reduce the weight of some components by 50-75 percent. Magnesium Even though magnesium (Mg) can reduce component weight by more than 60 percent, its use is currently limited

  6. Vehicle Technologies Office: Short-Term Lightweight Materials Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (Advanced High-Strength Steel and Aluminum) | Department of Energy Short-Term Lightweight Materials Research (Advanced High-Strength Steel and Aluminum) Vehicle Technologies Office: Short-Term Lightweight Materials Research (Advanced High-Strength Steel and Aluminum) In the short term, replacing heavy steel components with materials such as high-strength steel, aluminum, or glass fiber-reinforced polymer composites can decrease component weight by 10-60 percent. Advanced High-Strength Steel

  7. Vehicle Technologies Office: US DRIVE Materials Technical Team Roadmap |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy US DRIVE Materials Technical Team Roadmap Vehicle Technologies Office: US DRIVE Materials Technical Team Roadmap The Materials Technical Team (MTT) of the U.S. DRIVE Partnership focuses primarily on reducing the mass of structural systems such as the body and chassis in light-duty vehicles (including passenger cars and light trucks). Mass reduction also enables improved vehicle efficiency regardless of the vehicle size or propulsion system employed. This roadmap lays out

  8. Scale-up and Testing of Advanced Materials from the BATT Program |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy up and Testing of Advanced Materials from the BATT Program Scale-up and Testing of Advanced Materials from the BATT Program 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es029_battaglia_2012_o.pdf (3.08 MB) More Documents & Publications FY 2012 Annual Progress Report for Energy Storage R&D Scale-up and Testing of Advanced Materials from the BATT Program Scale-up and Testing of Advanced

  9. Test fire environmental testing operations at Mound Applied Technologies

    SciTech Connect

    1992-03-01

    This paper describes Mound Laboratory`s environmental testing operations. The function of environmental testing is to perform quality environmental (thermal, mechanical, spin, resistance, visual) testing/conditioning of inert/explosive products to assure their compliance with specified customer acceptance criteria. Capabilities, organization, equipment specifications, and test facilities are summarized.

  10. Hydrogen Sensor Testing, Hydrogen Technologies (Fact Sheet)

    SciTech Connect

    Not Available

    2008-11-01

    Factsheet describing the hydrogen sensor testing laboratory at the National Renewable Energy Laboratory.

  11. Apparatus and method for fatigue testing of a material specimen...

    Office of Scientific and Technical Information (OSTI)

    fluid environment Citation Details In-Document Search Title: Apparatus and method for fatigue testing of a material specimen in a high-pressure fluid environment The ...

  12. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  13. Marine and Hydrokinetic Technology Development and Testing | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Technology Development and Testing Marine and Hydrokinetic Technology Development and Testing The Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. In order to meet its generation goals, the program supports the design, development, testing, and demonstration of technologies that can capture

  14. DOE Approves Field Test for Promising Carbon Capture Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Approves Field Test for Promising Carbon Capture Technology DOE Approves Field Test for Promising Carbon Capture Technology November 20, 2012 - 12:00pm Addthis Washington, DC - A promising post combustion membrane technology that can separate and capture 90 percent of the carbon dioxide (CO2) from a pulverized coal plant has been successfully demonstrated and received Department of Energy (DOE) approval to advance to a larger-scale field test. In an $18.75 million

  15. Technology Test Drive: PNNL Offers Exploratory Licenses | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Technology Test Drive: PNNL Offers Exploratory Licenses Technology Test Drive: PNNL Offers Exploratory Licenses May 10, 2016 - 11:59am Addthis News release from Pacific Northwest National Laboratory, May 9, 2016. RICHLAND, Wash. - Signing a two-page agreement and paying just $1,000 can get U.S. companies an opportunity to test drive promising technologies through a new, user-friendly commercialization option being offered at the Department of Energy's Pacific Northwest National

  16. Charpy impact test results on five materials and NIST verification...

    Office of Scientific and Technical Information (OSTI)

    test results on five materials and NIST verification specimens using instrumented 2-mm and 8-mm strikers Citation Details In-Document Search Title: Charpy impact test results on ...

  17. Impact Limiter Tests of Four Commonly Used Materials And Limiter...

    Office of Scientific and Technical Information (OSTI)

    ... of four impact limiter materials was tested at four different load rates, quasi-statically, 44 feet per second (ftjs), (a 9 meter drop test per lOCF71), 33 fts and 22 fts. ...

  18. Instrumentation of Current Technology Testing and Replicating...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3 ORPC Technology o TideGen Power System (TGU) o Designed to generate electricity at water depths of 50 to 100 ... in sedimented (Cook inlet) salt water and, therefore, have no ...

  19. NREL Controllable Grid Interface for Testing of Renewable Energy Technologies

    SciTech Connect

    Gevorgian, Vahan; Wallen, Robb; McDade, Mark; Shirazi, Mari; Lundstrom, Blake

    2015-11-05

    This presentation provides a high-level overview of NREL's multi-megawatt testing facilities and capabilities for the grid integration of renewable technologies.

  20. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  1. Testing Promising Technologies: A Role for Federal Facilities

    Energy.gov [DOE]

    Presentation covers the testing of promising technologies and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  2. Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

  3. Material Testing Priorities for Hydrogen (H2) Infrastructure | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Material Testing Priorities for Hydrogen (H2) Infrastructure Material Testing Priorities for Hydrogen (H2) Infrastructure American Society of Mechanical Engineers (ASME) Pressure Boundary Needs, Tests and Data Requirements, Recent Testing by Secat, Inc. and Sandia pipeline_group_hayden_ms.pdf (979.17 KB) More Documents & Publications Hydrogen Embrittlement Fundamentals, Modeling, and Experiment Permeation, Diffusion, Solubility Measurements: Results and Issues From Cleanup to

  4. Means for ultrasonic testing when material properties vary

    DOEpatents

    Beller, Laurence S.

    1979-01-01

    A device is provided for maintaining constant sensitivity in an ultrasonic testing device, despite varying attenuation due to the properties of the material being tested. The device includes a sensor transducer for transmitting and receiving a test signal and a monitor transducer positioned so as to receive ultrasonic energy transmitted through the material to be tested. The received signal of the monitor transducer is utilized in analyzing data obtained from the sensor transducer.

  5. E3T Emerging Technology Field Tests

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Field Test 1 February 5, 2015 Brown Bag Mira Vowles, BPA Wesley Saway, BPA 2 BPA is seeking utilities to participate in an ET Field Test that will fully fund up to 30 retrofits of...

  6. Vehicle Technologies Office: Materials for Energy Recovery Systems and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Controlling Exhaust Gases | Department of Energy Energy Recovery Systems and Controlling Exhaust Gases Vehicle Technologies Office: Materials for Energy Recovery Systems and Controlling Exhaust Gases The typical internal combustion engine wastes about 30 percent of its chemical energy in the form of hot exhaust gases. To improve fuel efficiency, the Vehicle Technologies Office (VTO) supports research on turbochargers and thermoelectric devices that can convert some of this lost energy to

  7. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    SciTech Connect

    Miller, Michael A.; Page, Richard A.

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to

  8. Industrial Materials and Inspection Technologies | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Industrial Materials and Inspection Technologies Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Industrial Materials and Inspection Technologies Waseem Faidi 2013.06.12 Hi, I am Waseem Faidi and I lead the Inspection and Metrology Lab at GE Global Research in developing novel inspection and process monitoring solutions

  9. Creating Technological Options for Assuring Material Supply Chains

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technological Options for Assuring Material Supply Chains Rod Eggert, Deputy Director This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 Outline * Overview * Technical highlights * Economic highlights * Plans & final thoughts 3 The Critical Materials Institute * An Energy Innovation Hub - Supported by the US Department of Energy, Advanced Manufacturing Office - One of only four such Hubs supported by DOE. * Budget of $120M, over five

  10. Technologies to characterize natural gas emissions tested in field

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    experiments Natural gas emissions tested in field experiments Technologies to characterize natural gas emissions tested in field experiments A new collaborative science program is pioneering the development of ultra-sensitive methane-sensing technology. October 28, 2013 The Rocky Mountain Oilfield Test Center, RMOTC, which includes a small areas with active oil and gas production. The Rocky Mountain Oilfield Test Center, RMOTC, which includes a small areas with active oil and gas production.

  11. RADBALL TECHNOLOGY TESTING FOR HOT CELL CHARACTERIZATION

    SciTech Connect

    Farfan, E.; Jannik, T.

    2010-03-25

    Operations at various U.S. Department of Energy sites have resulted in substantial radiological contamination of tools, equipment, and facilities. It is essential to use remote technologies for characterization and decommissioning to keep worker exposures as low as reasonably achievable in these highly contaminated environments. A significant initial step in planning and implementing D&D of contaminated facilities involves the development of an accurate assessment of the radiological, chemical, and structural conditions inside of the facilities. Collected information describing facility conditions using remote technologies could reduce the conservatism associated with planning initial worker entry (and associated cost).

  12. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Saver

    It tests a number of types of electric vehicle supply equipment (EVSE), including wireless charging, conductive EVSE, DC conductive EVSE, bi-directional transfer (vehicle-to-grid ...

  13. Vehicle Technologies Office: Modeling, Testing, Data and Results |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Modeling, Testing, Data and Results Vehicle Technologies Office: Modeling, Testing, Data and Results Along with work in individual technologies, the Vehicle Technologies Office (VTO) funds research that explores how to connect these components and systems together in the most effective, efficient way possible. Much of this work uses specialized equipment and software that VTO developed in partnership with the national laboratories, including the industry-leading modeling

  14. A new tribological test for candidate brush seal materials evaluation

    SciTech Connect

    Fellenstein, J.A.; DellaCorte, C.

    1994-10-01

    A new tribological test for candidate brush seal materials evaluation has been developed. The sliding contact between the brush seal wires and their mating counterface journal is simulated by testing a small tuft of wire against the outside diameter of a high speed rotating shaft. The test configuration is similar to a standard block on ring geometry. The new tester provides the capability to measure both the friction and wear of candidate wire and counterface materials under controlled loading conditions in the gram to kilogram range. A wide test condition latitude of speeds (1 to 27 m/s), temperatures (25 to 700C), and loads (0.5 to 10 N) enables the simulation of many of the important tribological parameters found in turbine engine brush seals. This paper describes the new test rig and specimen configuration and presents initial data for candidate seal materials comparing tuft test results and wear surface morphology to field tested seal components.

  15. Thermionic Technology Program: A, Insulator test and evaluation: Final report

    SciTech Connect

    Dobson, J.C.; Witt, T.

    1987-11-30

    The Thermionic Technology Program (TTP) consisted of two major efforts, evaluation of insulators and evaluation of thermionic converters. This report details the work performed on the insulator phase of the program. Efforts were made to better understand the mechanisms involved in the electrochemistry of insulators at elevated temperatures by modelling the ionic transport through the various layers of the insulator package. Although rigorous analytic solutions could not be obtained owing to a lack of detailed data, a simplified model indicated that alumina should not fail by depletion of aluminum for thousands of years, whereas calculations for yttria revealed a far more rapid depletion of oxygen and consequently earlier failure. Methods for microscopic and electrical testing of cylindrical insulator samples were developed, and an improved test oven design was initiated. Testing of alumina/niobium cermet samples revealed rapid failure contrary to the theoretical predictions for alumina. Large discrepancies in the initial conduction activation energy among the various samples suggested that different mechanisms could have controlled the conduction and hence the failure in different samples, although all had undergone nominally identical processing. The short lifetimes reveal how rapidly ambient conditions in thermionic power conversion can degrade the performance of insulating oxides. It was concluded that minor dopants could have been responsible for the early breakdowns. Thus, high purity materials with precise quality control will be necessary for trilayer package development. 35 refs., 28 figs., 5 tabs.

  16. Test plan for the irradiation of nonmetallic materials.

    SciTech Connect

    Brush, Laurence H.; Farnum, Cathy Ottinger; Dahl, M.; Joslyn, C. C.; Venetz, T. J.

    2013-05-01

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford tank farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  17. Test plan for the irradiation of nonmetallic materials.

    SciTech Connect

    Brush, Laurence H.; Farnum, Cathy Ottinger; Gelbard, Fred; Dahl, M.; Joslyn, C. C.; Venetz, T. J.

    2013-03-01

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford Tank Farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  18. High temperature ultrasonic testing of materials for internal flaws

    DOEpatents

    Kupperman, David S.; Linzer, Melvin

    1990-01-01

    An apparatus is disclosed for nondestructive evaluation of defects in hot terials, such as metals and ceramics, by sonic signals, which includes a zirconia buffer in contact with a hot material being tested, a liquid couplant of borax in contact with the zirconia buffer and the hot material to be tested, a transmitter mounted on the zirconia buffer sending sonic signals through the buffer and couplant into the hot material, and a receiver mounted on the zirconia buffer receiving sonic signals reflected from within the hot material through the couplant and the buffer.

  19. Impact Testing of Stainless Steel Material at Cold Temperatures

    SciTech Connect

    Spencer D. Snow; D. Keith Morton; Robert K. Blandford

    2008-07-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern are not well documented. However, a previous paper [1] reported on impact testing and analysis results performed at the Idaho National Laboratory using 304/304L and 316/316L stainless steel base material specimens at room and elevated temperatures. The goal of the work presented herein is to add recently completed impact tensile testing results at -20 degrees F conditions for dual-marked 304/304L and 316/316L stainless steel material specimens (hereafter referred to as 304L and 316L, respectively). Recently completed welded material impact testing at -20 degrees F, room, 300 degrees F, and 600 degrees F is also reported. Utilizing a drop-weight impact test machine and 1/4-inch to 1/2-inch thick dog-bone shaped test specimens, the impact tests achieved strain rates in the 4 to 40 per second range, depending upon the material temperature. Elevated true stress-strain curves for these materials reflecting varying strain rates and temperatures are presented herein.

  20. NREL Researchers Test Solar Thermal Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Motorists who look north while driving on Interstate 70 may notice a large, alien-looking device on the mesa-top above the main research facilities of the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL). The 40-foot high, mirror-laden machine actually is a heliostat, a down-to-earth way of converting the sun's heat into electricity. Researchers at the lab are testing the prototype heliostat developed by Science Applications International Corporation's (SAIC) Golden

  1. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    SciTech Connect

    Corwin, William R; Burchell, Timothy D; Katoh, Yutai; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Wilson, Dane F

    2008-08-01

    materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels

  2. Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture Brian Somerday, Chris San Marchi, and Dorian Balch Sandia National Laboratories Livermore, CA Hydrogen Pipeline Working Group Workshop Augusta, GA August 30-31, 2005 SNL has 40+ years experience with effects of high-pressure hydrogen gas on materials * Design and maintenance of welded stainless steel pressure vessels for containment of high-pressure H 2 isotopes - Extensive testing of stainless steels exposed to

  3. CMI Unique Facility: Filtration Test Facility | Critical Materials

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Institute Filtration Test Facility filtration set up for CMI unique facility at Idaho National Laboratory The Filtration Test Facility is one of more than a dozen unique facilities developed by the Critical Materials Institute, an Energy Innovation Hub of the U.S. Department of Energy. The chemical separation of materials is often water-intensive. It is important to establish filtration methods that are both efficient and environmentally sound. Mineral processing streams are particularly

  4. Improved flywheel materials : characterization of nanofiber modified flywheel test specimen.

    SciTech Connect

    Boyle, Timothy J.; Bell, Nelson Simmons; Ehlen, Mark Andrew; Anderson, Benjamin John; Miller, William Kenneth

    2013-09-01

    As alternative energy generating devices (i.e., solar, wind, etc) are added onto the electrical energy grid (AC grid), irregularities in the available electricity due to natural occurrences (i.e., clouds reducing solar input or wind burst increasing wind powered turbines) will be dramatically increased. Due to their almost instantaneous response, modern flywheel-based energy storage devices can act a mechanical mechanism to regulate the AC grid; however, improved spin speeds will be required to meet the necessary energy levels to balance thesegreen' energy variances. Focusing on composite flywheels, we have investigated methods for improving the spin speeds based on materials needs. The so-called composite flywheels are composed of carbon fiber (C-fiber), glass fiber, and aglue' (resin) to hold them together. For this effort, we have focused on the addition of fillers to the resin in order to improve its properties. Based on the high loads required for standard meso-sized fillers, this project investigated the utility of ceramic nanofillers since they can be added at very low load levels due to their high surface area. The impact that TiO2 nanowires had on the final strength of the flywheel material was determined by athree-point-bend' test. The results of the introduction of nanomaterials demonstrated an increase instrength' of the flywheel's C-fiber-resin moiety, with an upper limit of a 30% increase being reported. An analysis of the economic impact concerning the utilization of the nanowires was undertaken and after accounting for new-technology and additional production costs, return on improved-nanocomposite investment was approximated at 4-6% per year over the 20-year expected service life. Further, it was determined based on the 30% improvement in strength, this change may enable a 20-30% reduction in flywheel energy storage cost (%24/kW-h).

  5. Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report | Department of Energy 8 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual Progress Report 2008_propulsion_materials.pdf (16.36 MB) More Documents & Publications Vehicle Technologies Office: 2010 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2009 Propulsion Materials

  6. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies | Lightweight Automotive Materials Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lightweight Automotive Materials Chapter 8: Technology Assessments Introduction to the Technology/System Overview of vehicle lightweighting Reducing vehicle weight affects transportation energy consumption by improving efficiency. Upwards of 85% of the energy in fuel is lost to thermal and mechanical inefficiency in the drivetrain 1 while the remaining 12-15% is used to overcome the tractive forces that resist forward motion. 2 Of these tractive forces, vehicle weight most significantly affects

  7. ADVANCED HOT SECTION MATERIALS AND COATINGS TEST RIG

    SciTech Connect

    Scott Reome; Dan Davies

    2004-04-30

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activity during this reporting period were the evaluation of syngas combustor concepts, the evaluation of test section concepts and the selection of the preferred rig configuration.

  8. Advanced Hot Section Materials and Coatings Test Rig

    SciTech Connect

    Dan Davies

    2004-10-30

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activities during this reporting period were the continuation of test section detail design and developing specifications for auxiliary systems and facilities.

  9. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    SciTech Connect

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test.

  10. Fracture toughness test results of thermal aged reactor vessel materials

    SciTech Connect

    DeVan, M.J.; Lowe, A.L. Jr.; Hall, J.B.

    1996-12-31

    Thermal-aged surveillance materials consisting of Sa-533, Grade B, Class 1 plate material; SA-508, Class 2 forging material; and 2 Mn-Mo-Ni/Linde 80 weld metals were removed from two commercial reactor pressure vessels. The material from the first reactor vessel received a thermal exposure of approximately 103,000 hours at 282 C, while the material from the second reactor vessel received a thermal exposure of approximately 93,000 hours at 282 C. Tensile and 1/2 T compact fracture toughness specimens were fabricated from these materials and tested. In addition, to examine the effects of annealing, selected thermal-aged and unaged specimens were annealed at 454 C (850 F) and tested. Varying responses in the fracture toughness properties were observed for all materials after exposure to the thermal-aging temperature. The base metal plate had an observed decrease in J-values after its respective aging exposure, while no significant difference in the J-values were observed for the Linde 80 weld metals. No significant difference was seen in the J-data for the aged/annealed materials, but because of the small number of test specimens available, no conclusion could be determined for the response to annealing.

  11. A Cryogenic RF Material Testing Facility at SLAC

    SciTech Connect

    Guo, Jiquan; Martin, David; Tantawi, Sami; Yoneda, Charles; /SLAC

    2012-06-22

    The authors have developed an X-band SRF testing system using a high-Q copper cavity with an interchangeable flat bottom for the testing of different materials. By measuring the Q of the cavity, the system is capable to characterize the quenching magnetic field of the superconducting samples at different power level and temperature, as well as the surface resistivity. This paper presents the most recent development of the system and testing results.

  12. Field testing of new multilateral drilling and completion technology at the Rocky Mountain Oilfield Testing Center

    SciTech Connect

    Giangiacomo, L.A.

    1998-12-31

    The Rocky Mountain Oilfield Testing Center (RMOTC) has played an important role in bringing new multilateral well technology to the marketplace. Multilateral technology is more complex than most new technologies being brought to the oilfield. It is very difficult to test new designs in the laboratory or conventional test wells. They must be tested downhole in specialized wells to work out design and procedural details. Most of the applications for multilateral technology are in high cost drilling areas, such as offshore or in remote, environmentally sensitive areas. For this reason, opportunities for testing the new technology in the course of routine drilling and completion operations are scarce. Operators are not willing to risk expensive rig time, or losing a wellbore itself, on a test. RMOTC offers a neutral site where the technology can be tested in a relatively low cost environment. There are two drilling rigs and three workover and completion rigs available. Most associated services such as warehouse, roustabouts, backhoe, welders, and mechanics are also available on site, while specialized oilfield services and machine shops are available in nearby Casper. Technologies such as the hollow whipstock, adjustable stabilizer, downhole kickoff assembly, single trip sidetrack tool, stacked multidrain system, rotary steerable systems, and procedures for abandoning an open hole lateral have benefited through the use of RMOTC`s facilities. This paper details the capabilities of the new technologies and the benefits of testing them in a real oilfield environment before taking them to market.

  13. Radioactive material package testing capabilities at Sandia National Laboratories

    SciTech Connect

    Uncapher, W.L.; Hohnstreiter, G.F.

    1995-12-31

    Evaluation and certification of radioactive and hazardous material transport packages can be accomplished by subjecting these packages to normal transport and hypothetical accident test conditions. The regulations allow package designers to certify packages using analysis, testing, or a combination of analysis and testing. Testing can be used to substantiate assumptions used in analytical models and to demonstrate package structural and thermal response. Regulatory test conditions include impact, puncture, crush, penetration, water spray, immersion, and thermal environments. Testing facilities are used to simulate the required test conditions and provide measurement response data. Over the past four decades, comprehensive testing facilities have been developed at Sandia National Laboratories to perform a broad range of verification and certification tests on hazardous and radioactive material packages or component sections. Sandia`s facilities provide an experience base that has been established during the development and certification of many package designs. These unique facilities, along with innovative instrumentation data collection capabilities and techniques, simulate a broad range of testing environments. In certain package designs, package testing can be an economical alternative to complex analysis to resolve regulatory questions or concerns.

  14. METHOD OF TESTING THERMAL NEUTRON FISSIONABLE MATERIAL FOR PURITY

    DOEpatents

    Fermi, E.; Anderson, H.L.

    1961-01-24

    A process is given for determining the neutronic purity of fissionable material by the so-called shotgun test. The effect of a standard neutron absorber of known characteristics and amounts on a neutronic field also of known characteristics is measured and compared with the effect which the impurities derived from a known quantity of fissionable material has on the same neutronic field. The two readings are then made the basis of calculation from which the amount of impurities can be computed.

  15. Building America Technology Solutions Case Study: Field Testing an Unvented

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roof with Asphalt Shingles in a Cold Climate | Department of Energy Testing an Unvented Roof with Asphalt Shingles in a Cold Climate Building America Technology Solutions Case Study: Field Testing an Unvented Roof with Asphalt Shingles in a Cold Climate In this project, Building America team Building Science Corporation devised an experiment to build and instrument unvented test roofs using air-permeable insulation (dense-pack cellulose and fiberglass) in a cold climate (Chicago, Illinois

  16. Mercury Emission Control Technologies for PPL Montana-Colstrip Testing

    SciTech Connect

    John P. Kay; Michael L. Jones; Steven A. Benson

    2007-04-01

    The Energy & Environmental Research Center (EERC) was asked by PPL Montana LLC (PPL) to provide assistance and develop an approach to identify cost-effective options for mercury control at its coal-fired power plants. The work conducted focused on baseline mercury level and speciation measurement, short-term parametric testing, and week long testing of mercury control technology at Colstrip Unit 3. Three techniques and various combinations of these techniques were identified as viable options for mercury control. The options included oxidizing agents or sorbent enhancement additives (SEAs) such as chlorine-based SEA1 and an EERC proprietary SEA2 with and without activated carbon injection. Baseline mercury emissions from Colstrip Unit 3 are comparatively low relative to other Powder River Basin (PRB) coal-fired systems and were found to range from 5 to 6.5 g/Nm3 (2.9 to 3.8 lb/TBtu), with a rough value of approximately 80% being elemental upstream of the scrubber and higher than 95% being elemental at the outlet. Levels in the stack were also greater than 95% elemental. Baseline mercury removal across the scrubber is fairly variable but generally tends to be about 5% to 10%. Parametric results of carbon injection alone yielded minimal reduction in Hg emissions. SEA1 injection resulted in 20% additional reduction over baseline with the maximum rate of 400 ppm (3 gal/min). Week long testing was conducted with the combination of SEA2 and carbon, with injection rates of 75 ppm (10.3 lb/hr) and 1.5 lb/MMacf (40 lb/hr), respectively. Reduction was found to be an additional 30% and, overall during the testing period, was measured to be 38% across the scrubber. The novel additive injection method, known as novel SEA2, is several orders of magnitude safer and less expensive than current SEA2 injection methods. However, used in conjunction with this plant configuration, the technology did not demonstrate a significant level of mercury reduction. Near-future use of this

  17. Hybrid bearing technology for advanced turbomachinery: Rolling contact fatigue testing

    SciTech Connect

    Dill, J.F.

    1996-01-01

    The purpose of this paper is to describe the basic structure and results to date of a major ARPA funded effort to provide a tribological performance database on ceramic bearing materials and their interaction with standard bearing steels. Program efforts include studies of material physical properties, machining characteristics, and tribological performance. The majority of the testing completed to date focuses on rolling contact fatigue testing of the ceramic materials, including efforts to arrive at optimum approaches to evaluating ceramic/steel hybrid combinations in rolling contact fatigue.

  18. Slurry Molding Technologies for Novel Carbon and Graphite Materials

    SciTech Connect

    Burchell, T.D.

    2004-06-30

    The Oak Ridge National Laboratory (ORNL) has developed a slurry molding technology for the manufacture of porous, high surface area, carbon fiber composites molecular sieves, and carbon-carbon composite preforms. Potentially, this technology could be applied to the manufacture of a host of novel carbon materials including porous adsorbent carbons, low-pressure drop adsorbent carbon composites, ultra-fine-grained graphite, and carbon fiber reinforced graphite. New opportunities for high surface carbon fiber composite molecular sieve (CFCMS) materials are now emerging. Many of these opportunities are driven by increasingly harsh environmental pressures. Traditional granular activated carbon (GAC) is not suitable for many of these applications because of the difficulties encountered with attrition and in forming ''structures'' which have the necessary mechanical and physical properties. In addition, the electrical desorption of adsorbed species is not possible with GAC due to its low bulk electrical conductivity. Activated carbon fibers have been found to be useful in some applications. Work by ORNL has shown, for example, that CFCMS materials are capable of adsorbing various gases and desorbing them under electrical stimulation. For some applications these fibers have to be formed into a structure that can offer the desired mechanical integrity and pressure drop characteristics. To date, the work by ORNL has focused on the use of a single manufacturer's isotropic pitch fibers which, when activated, may be cost prohibitive for many applications. Fine-grained graphite is attractive for many applications including the chemical processing industry where their unique combination of properties--including high strength and chemical inertness, are particularly attractive. However, a lack of toughness can limit their utility in certain applications. The use of ultra-fine powders in conjunction with slurry molding and hot pressing offers the possibility of higher strength

  19. Materials issues in lithium ion rechargeable battery technology

    SciTech Connect

    Doughty, D.H.

    1995-07-01

    Lithium ion rechargeable batteries are predicted to replace Ni/Cd as the workhorse consumer battery. The pace of development of this battery system is determined in large part by the availability of materials and the understanding of interfacial reactions between materials. Lithium ion technology is based on the use of two lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells and in 1983 for ambient temperature systems, it was not until Sony Energytech announced a new lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these electrochemical cells have the high energy density, high voltage and light weight of metallic lithium, but without the disadvantages of dendrite formation on charge, improving their safety and cycle life.

  20. Vehicle Technologies Office: 2009 Propulsion Materials R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report | Department of Energy 09 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2009 Propulsion Materials R&D Annual Progress Report 2009_propulsion_materials.pdf (20.14 MB) More Documents & Publications Magnetic Material for PM Motors Permanent Magnet Development for Automotive Traction Motors Vehicle Technologies Office: 2011 Propulsion Materials

  1. ADVANCED HOT SECTION MATERIALS AND COATINGS TEST RIG

    SciTech Connect

    Scott Reome; Dan Davies

    2004-01-01

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program initiated this quarter, provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principle activity during this first reporting period were preparing for and conducting a project kick-off meeting, working through plans for the project implementation, and beginning the conceptual design of the test section.

  2. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Direct Thermal Energy Conversion Materials, Devices, and Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology

  3. Vehicle Technologies Office Merit Review 2014: Idaho National Laboratory Testing of Advanced Technology Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing of advanced...

  4. Duct injection technology prototype development. Materials corrosion report, Revision 1

    SciTech Connect

    Harper, S.L.

    1991-08-01

    This report describes a test program conducted to determine the corrosion rate of materials in the dry scrubber or duct injection systems. Four materials were evaluated: 1010 carbon steel, Corten, 317SS and Hastelloy C-276. The results show that acidic conditions result in higher corrosion rates than alkaline conditions for all the materials. The carbon steel, Corten and stainless steel show moderate to heavy pitting attack in the acidic environment. For the alkaline conditions, the corrosion rates of carbon steel and Corten were higher than the stainless steel or Hastelloy C-276. Also, the corrosion rate of abraded specimens were four time those of unabraded specimens in the flue gas. It is probable that areas of wall-wetting and plugging in the duct injection process will exhibit high rates of corrosion for the carbon steel, Corten, and stainless steel materials. General corrosion and pitting corrosion will predominate. Additionally, abraded duct areas will corrode at a significantly higher rate than unabraded duct materials. 6 refs., 11 figs., 7 tabs.

  5. Materials Exposure Testing Market Expands with Ultra-Accelerated Weathering

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    System | NREL Materials Exposure Testing Market Expands with Ultra-Accelerated Weathering System In this video, NREL researchers Gary Jorgenson and Carl Bingham discuss the NREL-developed, ultra-accelerated weathering system and its ability to revolutionize the weathering industry

  6. Design of a Compact Fatigue Tester for Testing Irradiated Materials

    SciTech Connect

    Hartsell, Brian; Campbell, Michael; Fitton, Michael; Hurh, Patrick; Ishida, Taku; Nakadaira, Takeshi

    2015-06-01

    A compact fatigue testing machine that can be easily inserted into a hot cell for characterization of irradiated materials is beneficial to help determine relative fatigue performance differences between new and irradiated material. Hot cell use has been carefully considered by limiting the size and weight of the machine, simplifying sample loading and test setup for operation via master-slave manipulator, and utilizing an efficient design to minimize maintenance. Funded from a US-Japan collaborative effort, the machine has been specifically designed to help characterize titanium material specimens. These specimens are flat cantilevered beams for initial studies, possibly utilizing samples irradiated at other sources of beam. The option to test spherically shaped samples cut from the T2K vacuum window is also available. The machine is able to test a sample to $10^7$ cycles in under a week, with options to count cycles and sense material failure. The design of this machine will be presented along with current status.

  7. Materials Development Program: Ceramic Technology Project bibliography, 1984--1992

    SciTech Connect

    Not Available

    1994-03-01

    The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

  8. Assessment of dome-fill technology and potential fill materials for the Hanford single-shell tanks

    SciTech Connect

    Smyth, J.D.; Shade, J.W.; Somasundaram, S.

    1992-05-01

    This study is part of a task that will identify dome-fill materials to stabilize and prevent the collapse of the structures of 149 single- shell tanks (SSTs). The SSTs were built at the Hanford Site in Washington State and used between 1944 and 1980 to store radioactive and other hazardous wastes. In addition to identifying suitable fill materials, this task will develop the technology and methods required to fill the tanks with the selected material. To date, basalt is the only candidate fill material with any testing conducted for its suitability as a dome-fill material. Sufficient data do not exist to select or eliminate basalt as a candidate material. This report documents a review of past dome-fill work at the Hanford Site and of other pertinent literature to establish a baseline for the dome-fill technology. In addition, the report identifies existing dome-fill technology, preliminary performance criteria for dome-fill technology development, potential testing strategies, and potential fill materials. As a part of this study, potential fill materials are qualitatively evaluated and a list of preliminary candidate fill materials is identified. Future work will further screen these materials. The dome-fill task work will ultimately contribute to the development of a final waste form package and the safe isolation of wastes from the Hanford Site SSTs.

  9. Effects of Introduced Materials in the Drift Scale Test

    SciTech Connect

    DeLoach, L; Jones, RL

    2002-01-11

    Water samples previously acquired from superheated (>140 C) zones within hydrological test boreholes of the Drift Scale Test (DST) show relatively high fluoride concentrations (5-66 ppm) and low pH (3.1-3.5) values. In these high temperature regions of the rock, water is present superheated vapor only--liquid water for sampling purposes is obtained during the sampling process by cooling. Based on data collected to date, it is evident that the source of the fluoride and low pH is from introduced man-made materials (Teflon{trademark} and/or Viton{trademark} fluoroelastomer) used in the test. The test materials may contribute fluoride either by degassing hydrogen fluoride (HF) directly to produce trace concentrations of HF gas ({approx}0.1 ppm) in the high temperature steam, or by leaching fluoride in the sampling tubes after condensation of the superheated steam. HF gas is known to be released from Viton{trademark} at high temperatures (Dupont Dow Elastomers L.L.C., Elkton, MD, personal communication) and the sample water compositions indicate near stoichiometric balance of hydrogen ion and fluoride ion, indicating dissolution of HF gas into the aqueous phase. These conclusions are based on a series of water samples collected to determine if the source of the fluoride is from the degradation of materials originally installed to facilitate measurements. Analyses of these water samples show that the source of the fluoride is the introduced materials, that is the Viton{trademark} packers used to isolate test zones and/or Teflon{trademark} tubing used to draw water and steam from the test zones. In particular, water samples collected from borehole (BH) 72 high temperatures ({approx} 170 C) prior to introduction of any Viton{trademark} or Teflon{trademark} show pH Values (4.8 to 5.5) and fluoride concentrations well below 1 ppm over a period of six months. These characteristics are typical of condensing DST steam that contains only some dissolved carbon dioxide generated

  10. NREL: Technology Transfer - Innovative Way to Test Batteries...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    applications. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements...

  11. Wind Technology Testing Center Earns A2LA Accreditation for Blade Testing |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Earns A2LA Accreditation for Blade Testing Wind Technology Testing Center Earns A2LA Accreditation for Blade Testing October 1, 2012 - 12:16pm Addthis This is an excerpt from the Third Quarter 2012 edition of the Wind Program R&D Newsletter. The Massachusetts Wind Technology Testing Center (WTTC), a joint effort by the U.S. Department of Energy (DOE), the Massachusetts Clean Energy Center, and the National Renewable Energy Laboratory (NREL), was recently accredited

  12. Controlled Chemistry Helium High Temperature Materials Test Loop

    SciTech Connect

    Richard N. WRight

    2005-08-01

    A system to test aging and environmental effects in flowing helium with impurity content representative of the Next Generation Nuclear Plant (NGNP) has been designed and assembled. The system will be used to expose microstructure analysis coupons and mechanical test specimens for up to 5,000 hours in helium containing potentially oxidizing or carburizing impurities controlled to parts per million levels. Impurity levels in the flowing helium are controlled through a feedback mechanism based on gas chromatography measurements of the gas chemistry at the inlet and exit from a high temperature retort containing the test materials. Initial testing will focus on determining the nature and extent of combined aging and environmental effects on microstructure and elevated temperature mechanical properties of alloys proposed for structural applications in the NGNP, including Inconel 617 and Haynes 230.

  13. Battery Technology Life Verification Test Manual Revision 1

    SciTech Connect

    Jon P. Christophersen

    2012-12-01

    The purpose of this Technology Life Verification Test (TLVT) Manual is to help guide developers in their effort to successfully commercialize advanced energy storage devices such as battery and ultracapacitor technologies. The experimental design and data analysis discussed herein are focused on automotive applications based on the United States Advanced Battery Consortium (USABC) electric vehicle, hybrid electric vehicle, and plug-in hybrid electric vehicle (EV, HEV, and PHEV, respectively) performance targets. However, the methodology can be equally applied to other applications as well. This manual supersedes the February 2005 version of the TLVT Manual (Reference 1). It includes criteria for statistically-based life test matrix designs as well as requirements for test data analysis and reporting. Calendar life modeling and estimation techniques, including a user’s guide to the corresponding software tool is now provided in the Battery Life Estimator (BLE) Manual (Reference 2).

  14. Application of Telepresence Technologies to Nuclear Material Safeguards

    SciTech Connect

    Wright, M.C.; Rome, J.A.

    1999-09-20

    Implementation of remote monitoring systems has become a priority area for the International Atomic Energy Agency and other international inspection regimes. For the past three years, DOE2000 has been the US Department of Energy's (DOE's) initiative to develop innovative applications to exploit the capabilities of broadband networks and media integration. The aim is to enhance scientific collaboration by merging computing and communications technologies. These Internet-based telepresence technologies could be easily extended to provide remote monitoring and control for confidence building and transparency systems at nuclear facilities around the world. One of the original DOE2000 projects, the Materials Microcharacterization Collaboratory is an interactive virtual laboratory, linking seven DOE user facilities located across the US. At these facilities, external collaborators have access to scientists, data, and instrumentation, all of which are available to varying degrees using the Internet. Remote operation of the instruments varies between passive (observational) to active (direct control), in many cases requiring no software at the remote site beyond a Web browser. Live video streams are continuously available on the Web so that participants can see what is happening at a particular location. An X.509 certificate system provides strong authentication, The hardware and software are commercially available and are easily adaptable to safeguards applications.

  15. Safety and Security Technologies for Radioactive Material Shipments

    Office of Environmental Management (EM)

    Safety & Security Technologies Study Emerging Technologies Continued 7. Nanopiezoelectronics. 8. Plastic thin-film organic solar cells. 9. Container integrity. Safety & Security ...

  16. Enhanced In-pile Instrumentation for Material Testing Reactors

    SciTech Connect

    Joy Rempe; Darrell Knudson; Joshua Daw; Troy Unruh; Benjamin Chase; Kurt Davis; Robert Schley

    2012-07-01

    An increasing number of U.S. nuclear research programs are requesting enhanced in-pile instrumentation capable of providing real-time measurements of key parameters during irradiations. For example, fuel research and development funded by the U.S. Department of Energy now emphasize approaches that rely on first principle models to develop optimized fuel designs that offer significant improvements over current fuels. To facilitate this approach, high fidelity, real-time data are essential for characterizing the performance of new fuels during irradiation testing. Furthermore, sensors that obtain such data must be miniature, reliable and able to withstand high flux/high temperature conditions. Depending on user requirements, sensors may need to obtain data in inert gas, pressurized water, or liquid metal environments. To address these user needs, in-pile instrumentation development efforts have been initiated as part of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF), the Fuel Cycle Research & Development (FCR&D), and the Nuclear Energy Enabling Technology (NEET) programs. This paper reports on recent INL achievements to support these programs. Specifically, an overview of the types of sensors currently available to support in-pile irradiations and those sensors currently available to MTR users are identified. In addition, recent results and products available from sensor research and development are detailed. Specifically, progress in deploying enhanced in-pile sensors for detecting elongation and thermal conductivity are reported. Results from research to evaluate the viability of ultrasonic and fiber optic technologies for irradiation testing are also summarized.

  17. Vehicle Technologies Office: 2014 Lightweight Materials R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report | Department of Energy Lightweight Materials R&D Annual Progress Report Vehicle Technologies Office: 2014 Lightweight Materials R&D Annual Progress Report The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and

  18. Vehicle Technologies Office: 2012 Lightweight Materials R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report | Department of Energy Lightweight Materials R&D Annual Progress Report Vehicle Technologies Office: 2012 Lightweight Materials R&D Annual Progress Report As part of the U.S. Department of Energys (DOEs) Vehicle Technologies Office (VTO), the Lightweight Materials activity (LM) focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such

  19. Vehicle Technologies Office: 2013 Lightweight Materials R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report | Department of Energy Lightweight Materials R&D Annual Progress Report Vehicle Technologies Office: 2013 Lightweight Materials R&D Annual Progress Report As part of the U.S. Department of Energy's (DOE's) Vehicle Technologies Program (VTO), the Lightweight Materials (LM) activity focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such

  20. Materials tests in support of an MHD (magnetohydrodynamic) coal combustor

    SciTech Connect

    Natesan, K.; Wang, D.Y.; Soppet, W.K.

    1989-11-01

    Corrosion tests were conducted to evaluate the compatibility of candidate alloys in simulated fireside and high-temperature, high- pressure waterside environments of slagging magnetohydrodynamic combustors. The fireside tests were conducted with uncoated specimens and specimens covered with deposit layers of slag or a mixture of slag and seed for as long as 750 h at 600 and 800{degree}F. The waterside corrosion tests were conducted at 450{degree}F in a high-pressure autoclave in which water with two different chemistries was used. Detailed results on the scaling kinetics are presented and the data are used to analyze the material options for different locations in the combustor system. 10 refs., 25 figs., 13 tabs.

  1. Exploratory battery technology development and testing report for 1989

    SciTech Connect

    Magnani, N.J.; Diegle, R.B.; Braithwaite, J.W.; Bush, D.M.; Freese, J.M.; Akhil, A.A.; Lott, S.E.

    1990-12-01

    Sandia National Laboratories, Albuquerque, has been designated as Lead Center for the Exploratory Battery Technology Development and Testing Project, which is sponsored by the US Department of Energy's Office of Energy Storage and Distribution. In this capacity, Sandia is responsible for the engineering development of advanced rechargeable batteries for both mobile and stationary energy storage applications. This report details the technical achievements realized in pursuit of the Lead Center's goals during calendar year 1989. 4 refs., 84 figs., 18 tabs.

  2. Vehicle Technologies Office: 2010 Lightweight Materials R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report | Department of Energy Lightweight Materials R&D Annual Progress Report Vehicle Technologies Office: 2010 Lightweight Materials R&D Annual Progress Report The Lightweight Materials activity (LM) focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance,recyclability, and cost. 2010_lightweighting_materials.pdf (9.04

  3. Vehicle Technologies Office: 2010 Propulsion Materials R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report | Department of Energy Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2010 Propulsion Materials R&D Annual Progress Report 2010 annual progress report focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development. 2010_propulsion_materials.pdf (21.92 MB) More Documents & Publications

  4. Vehicle Technologies Office: 2011 Propulsion Materials R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report | Department of Energy Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2011 Propulsion Materials R&D Annual Progress Report 2011 annual progress report focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development. 2011_propulsion_materials.pdf (21.95 MB) More Documents & Publications

  5. Vehicle Technologies Office: 2012 Propulsion Materials R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report | Department of Energy Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2012 Propulsion Materials R&D Annual Progress Report 2012 annual progress report focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development. 2012_propulsion_materials.pdf (22.34 MB) More Documents & Publications

  6. Adaptation of Crack Growth Detection Techniques to US Material Test Reactors

    SciTech Connect

    A. Joseph Palmer; Sebastien P. Teysseyre; Kurt L. Davis; Joy L. Rempe; Gordon Kohse; Yakov Ostrovsky; David M. Carpenter

    2014-04-01

    A key component in evaluating the ability of Light Water Reactors to operate beyond 60 years is characterizing the degradation of materials exposed to radiation and various water chemistries. Of particular concern is the response of reactor materials to Irradiation Assisted Stress Corrosion Cracking (IASCC). Some materials testing reactors (MTRs) outside the U.S., such as the Halden Boiling Water Reactor (HBWR), have deployed a technique to measure crack growth propagation during irradiation. This technique incorporates a compact loading mechanism to stress the specimen during irradiation. A crack in the specimen is monitored using the Direct Current Potential Drop (DCPD) method. A project is underway to develop and demonstrate the performance of a similar type of test rig for use in U.S. MTRs. The first year of this three year project was devoted to designing, analyzing, fabricating, and bench top testing a mechanism capable of applying a controlled stress to specimens while they are irradiated in a pressurized water loop (simulating PWR reactor conditions). During the second year, the mechanism will be tested in autoclaves containing high pressure, high temperature water with representative water chemistries. In addition, necessary documentation and safety reviews for testing in a reactor environment will be completed. In the third year, the assembly will be tested in the Massachusetts Institute of Technology Reactor (MITR) and Post Irradiation Examinations (PIE) will be performed.

  7. Nuclear Materials Technology Division/Los Alamos National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    0 Publications Nuclear Fuels Ceramics Materials Charac- terization Synthesis Metallurgy ... As a partial fulfillment of this re- sponsibility, in October 1994, the Nuclear Materials ...

  8. Nuclear Materials Technology Division/Los Alamos National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    plus a concentrated plutonium oxide that would be stored as special nuclear material. ... in the form of a concentrated plutonium oxide, will be stored as special nuclear material. ...

  9. Vehicle Technologies Office: Propulsion Materials for Cars and Trucks

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine,...

  10. 1000–ton testing machine for cyclic fatigue tests of materials at liquid nitrogen temperatures

    SciTech Connect

    Khitruk, A. A.; Klimchenko, Yu. A.; Kovalchuk, O. A.; Marushin, E. L.; Mednikov, A. A.; Nasluzov, S. N.; Privalova, E. K.; Rodin, I. Yu.; Stepanov, D. B.; Sukhanova, M. V.

    2014-01-29

    One of the main tasks of superconductive magnets R and D is to determine the mechanical and fatigue properties of structural materials and the critical design elements in the cryogenic temperature range. This paper describes a new facility built based on the industrial 1000-ton (10 MN) testing machine Schenk PC10.0S. Special equipment was developed to provide the mechanical and cyclic tensile fatigue tests of large-scale samples at the liquid nitrogen temperature and in a given load range. The main feature of the developed testing machine is the cryostat, in which the device converting a standard compression force of the testing machine to the tensile force affected at the test object is placed. The control system provides the remote control of the test and obtaining, processing and presentation of test data. As an example of the testing machine operation the test program and test results of the cyclic tensile fatigue tests of fullscale helium inlet sample of the PF1 coil ITER are presented.

  11. Materials property testing using a stress-strain microprobe

    SciTech Connect

    Panayotou, N.F.; Baldrey, D.G.; Haggag, F.M.

    1998-09-01

    The Stress-Strain Microprobe (SSM) uses an automated ball indentation technique to obtain flow data from a localized region of a test specimen or component. This technique is used to rapidly determine the yield strength and microstructural condition of a variety of materials including pressure vessel steels, stainless steels, and nickel-base alloys. The SSM provides an essentially non-destructive technique for the measurement of yield strength data. This technique is especially suitable for the study of complex or highly variable microstructures such as weldments and weld heat affected zones. In this study 119 distinct SSM determinations of the yield strength of eight engineering alloys are discussed and compared to data obtained by conventional tensile tests. The sensitivity of the SSM to the presence of residual stresses is also discussed.

  12. Materials Evaluation Test Series (METS) 04, 05, and 06

    SciTech Connect

    Zalk, D; Ingram, C; Simmons, L; Arganbright, R; Lyle, J; Wong, K

    2006-03-23

    The purpose of this work is to examine the environmental, safety, health and operational aspects of detonating a confined explosive test apparatus that has been designed to maximize the dynamics of impact on beryllium metal components for Contained Firing Facility (CFF) applications. A combination of experimental collection and evaluation methods were designed and implemented to provide an evaluation of immediately postdetonation by-products reflecting a potential worst-case scenario beryllium aerosolization explosive event. The collective Material Evaluation Test Series (METS) 04 - 06 provided explosive devices designed to scale for the dedicated METS firing tank that would provide a post-detonation internal environment comparable to the CFF. The experimental results provided appropriate information to develop operational parameters to be considered for conducting full-scale beryllium-containing experimental tests with similar designs within CFF and B801A. These operational procedures include the inclusion of chelating agents in pre-shot CFF cardboard containers with a minimum of 600 gallons content, an extended time period post-test before purging the CFF chamber, and an adaptation of approaches toward applications of the scrubber and HEPA systems during the post-shot sequence for an integrated environmental, safety, and health approach. In addition, re-entry and film retrieval procedures will be adapted, in line with abatement techniques for cleaning the chamber, that will be required for work inside a CFF that will contain an elevated concentration of spherical and highly aerosolizable beryllium particulate.

  13. Alternate retrieval technology demonstrations program - test report (ARD Environmental, Inc.)

    SciTech Connect

    Berglin, E.J.

    1997-07-31

    A prototype vehicle, control system, and waste and water scavenging system were designed and fabricated with essentially the full capabilities of the vehicle system proposed by ARD Environmental. A test tank mockup, including riser and decontamination chamber were designed and fabricated, and approximately 830 cubic feet of six varieties of waste simulants poured. The tests were performed by ARD Environmental personnel at its site in Laurel, Maryland, from 4/22/97 through 5/2/97. The capabilities tested were deployment and retrieval, extended mobility and productivity, the ability to operate the system using video viewing only, retrieval after simulated failure, and retrieval and decontamination. Testing commenced with deployment of the vehicle into the tank. Deployment was accomplished using a crane and auxiliary winch to position the vehicle and lower it through the decontamination chamber, into the 36`` diameter x 6` high riser, and touch down on the waste field in the tank. The initial mobility tests were conducted immediately after deployment, prior to sluicing, as the waste field exhibited the greatest amount of variation at this time. This test demonstrated the ability of the vehicle to maneuver over the simulated waste field, and the ability of the operator to work with only video viewing available. In addition, the ability of the vehicle to right itself after being turned on its side was demonstrated. The production rate was evaluated daily through the testing period by measuring the surface and estimating the amount of material removed. The test demonstrated the ability of the vehicle to reduce the waste surface using 400 psi (nominal) water jets, scavenge water and material from the work area, and move to any location, even in the relatively confined space of the 20` diameter test tank. In addition, the ability to sluice to a remote scavenging module was demonstrated. The failure mode test demonstrated the ability to retrieve a stuck vehicle by pulling

  14. TESTING OF THE RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect

    Farfan, E.; Foley, T.

    2010-02-10

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, nonelectrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. Positive results from initial deployment trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and the anticipated future potential use of RadBall throughout the U.S. Department of Energy Complex have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further test, underpin, and strengthen the technical performance of the technology. The study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment were successful in that for each trial radiation tracks were visible. The deployment of RadBall can be accomplished in different ways depending on the size and characteristics of the contaminated area (e.g., a hot cell that already has a crane/manipulator available or highly contaminated room that requires the use of a remote control device with sensor and video equipment to position RadBall). This report also presents SRNL-designed RadBall accessories for future RadBall deployment (a harness, PODS, and robot).

  15. GATE Center of Excellence in Lightweight Materials and Manufacturing Technologies

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Vehicle Technologies Office: 2015 Lightweight Materials R&D Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under...

  17. Impact of corrosion test container material in molten fluorides

    SciTech Connect

    Olson, Luke C.; Fuentes, Roderick E.; Martinez-Rodriguez, Michael J.; Ambrosek, James W.; Sridharan, Kumar; Anderson, Mark H.; Garcia-Diaz, Brenda L.; Gray, Joshua; Allen, Todd R.

    2015-10-15

    The effects of crucible material choice on alloy corrosion rates in immersion tests in molten LiF–NaF–KF (46.5–11.5-42 mol. %) salt held at 850 °C for 500 hrs are described. Four crucible materials were studied. Molten salt exposures of Incoloy-800H in graphite, Ni, Incoloy-800H, and pyrolytic boron nitride (PyBN) crucibles all led to weight-loss in the Incoloy-800H coupons. Alloy weight loss was ~30 times higher in the graphite and Ni crucibles in comparison to the Incoloy-800H and PyBN crucibles. It is hypothesized galvanic coupling between the alloy coupons and crucible materials contributed to the higher corrosion rates. Alloy salt immersion in graphite and Ni crucibles had similar weight-loss hypothesized to occur due to the rate limiting out diffusion of Cr in the alloys to the surface where it reacts with and dissolves into the molten salt, followed by the reduction of Cr from solution at the molten salt and graphite/Ni interfaces. As a result, both the graphite and the Ni crucibles provided sinks for the Cr, in the formation of a Ni–Cr alloy in the case of the Ni crucible, and Cr carbide in the case of the graphite crucible.

  18. Impact of corrosion test container material in molten fluorides

    DOE PAGES [OSTI]

    Olson, Luke C.; Fuentes, Roderick E.; Martinez-Rodriguez, Michael J.; Ambrosek, James W.; Sridharan, Kumar; Anderson, Mark H.; Garcia-Diaz, Brenda L.; Gray, Joshua; Allen, Todd R.

    2015-10-15

    The effects of crucible material choice on alloy corrosion rates in immersion tests in molten LiF–NaF–KF (46.5–11.5-42 mol. %) salt held at 850 °C for 500 hrs are described. Four crucible materials were studied. Molten salt exposures of Incoloy-800H in graphite, Ni, Incoloy-800H, and pyrolytic boron nitride (PyBN) crucibles all led to weight-loss in the Incoloy-800H coupons. Alloy weight loss was ~30 times higher in the graphite and Ni crucibles in comparison to the Incoloy-800H and PyBN crucibles. It is hypothesized galvanic coupling between the alloy coupons and crucible materials contributed to the higher corrosion rates. Alloy salt immersion inmore » graphite and Ni crucibles had similar weight-loss hypothesized to occur due to the rate limiting out diffusion of Cr in the alloys to the surface where it reacts with and dissolves into the molten salt, followed by the reduction of Cr from solution at the molten salt and graphite/Ni interfaces. As a result, both the graphite and the Ni crucibles provided sinks for the Cr, in the formation of a Ni–Cr alloy in the case of the Ni crucible, and Cr carbide in the case of the graphite crucible.« less

  19. DYNA3D Material Model 71 - Solid Element Test Problem

    SciTech Connect

    Zywicz, E

    2008-01-24

    A general phenomenological-based elasto-plastic nonlinear isotropic strain hardening material model was implemented in DYNA3D for use in solid, beam, truss, and shell elements. The constitutive model, Model 71, is based upon conventional J2 plasticity and affords optional temperature and rate dependence (visco-plasticity). The expressions for strain hardening, temperature dependence, and rate dependence allow it to represent a wide variety of material responses. Options to capture temperature changes due to adiabatic heating and thermal straining are incorporated into the constitutive framework as well. The verification problem developed for this constitutive model consists of four uni-axial right cylinders subject to constant true strain-rate boundary conditions. Three of the specimens have different constant strain rates imposed, while the fourth specimen is subjected to several strain rate jumps. The material parameters developed by Fehlmann (2005) for 21-6-9 Nitronic steel are utilized. As demonstrated below, the finite element (FE) simulations are in excellent agreement with the theoretical responses and indicated the model is functioning as desired. Consequently, this problem serves as both a verification problem and regression test problem for DYNA3D.

  20. Impact of corrosion test container material in molten fluorides

    SciTech Connect

    Olson, Luke C.; Fuentes, Roderick E.; Martinez-Rodriguez, Michael J.; Ambrosek, James W.; Sridharan, Kumar; Anderson, Mark H.; Garcia-Diaz, Brenda L.; Gray, Joshua; Allen, Todd R.

    2015-10-15

    The effects of crucible material choice on alloy corrosion rates in immersion tests in molten LiFNaFKF (46.511.5-42 mol. %) salt held at 850 C for 500 hrs are described. Four crucible materials were studied. Molten salt exposures of Incoloy-800H in graphite, Ni, Incoloy-800H, and pyrolytic boron nitride (PyBN) crucibles all led to weight-loss in the Incoloy-800H coupons. Alloy weight loss was ~30 times higher in the graphite and Ni crucibles in comparison to the Incoloy-800H and PyBN crucibles. It is hypothesized galvanic coupling between the alloy coupons and crucible materials contributed to the higher corrosion rates. Alloy salt immersion in graphite and Ni crucibles had similar weight-loss hypothesized to occur due to the rate limiting out diffusion of Cr in the alloys to the surface where it reacts with and dissolves into the molten salt, followed by the reduction of Cr from solution at the molten salt and graphite/Ni interfaces. As a result, both the graphite and the Ni crucibles provided sinks for the Cr, in the formation of a NiCr alloy in the case of the Ni crucible, and Cr carbide in the case of the graphite crucible.

  1. Material Open Test Assembly Specimen Retrieval from Hanford's Shielded Material Facility

    SciTech Connect

    Valdez, Patrick LJ; Rinker, Michael W.

    2009-06-14

    Hanford’s 324 Building, the Shielded Material Facility (SMF), was developed to provide containment for research and fabrication development studies on highly radioactive metallic and ceramic nuclear reactor fuels and structural materials. Between 1983 and 1992, the SMF was used in support of the Department of Energy (DOE)-funded Fast Flux Test Facility (FFTF) Materials Open Test Assembly (MOTA) program. In this program, metallurgical specimens were irradiated in FFTF and then sent to SMF for processing and storage in two cabinets. This effort was abruptly ended in early 1990s due to programmatic shifts within the DOE, leaving many specimens unexamined. In recent years, these specimens have become of high value to new DOE programs. Pacific Northwest National Laboratory (PNNL) was tasked with retrieving specimens from one of the cabinets in support of fuel clad and duct development for the Advanced Fuel Cycle Initiative. Cesium contamination of the cell and failure of the overhead crane system utilized for opening the cabinets prevented PNNL from using the built-in hot cell equipment to gain access to the cabinets. PNNL designed and tested a lifting device to fit through a standard 10 inch diameter mechanical manipulator port in the SMF South Cell wall. The tool was successfully deployed in June 2008 with the support of Washington Closure Hanford.

  2. Optical materials technology for energy efficiency and solar energy conversion XIV

    SciTech Connect

    Lampert, C.M.; Deb, S.K.; Grandqvist, C.G.

    1995-12-31

    This volume gives the reader an update on the progress in the field of optical materials research for energy efficiency and solar energy conversion applications. The field covers a wide range of technology for the control, modification, and conversion of radiant energy. Currently, there is very strong activity in the development of materials for the modification of energy-propagating through glazings. These ``smart windows`` are presently given increased interest by industry, while the basic understanding of materials and devices is improving. The technology of device fabrication is gaining maturity as better thin film layers are developed. Thermotropic glazing appears to be gaining commercial interest again with new hydrogel formulations. Thermotropic glazing changes strongly from transparent to opaque with temperature. Other developments are in nanocrystalline materials where dye-modified TiO{sub 2} films have been shown to be electrochromic. Other work in this volume includes results on photovoltaic work on fullerenes, C{sub 60}. This material is of keen interest for a variety of optical applications. Other photovoltaic progress is reported for nanocrystalline, porous silicon, and thin film Cu(In, Ga)Se devices. Further advances are reported on solar absorber lifetime testing. Testing procedures are presented covering several years of study by a group of European institutes. Also continuing progress on wavelength-selective paints is presented. This coating represents a high-performance/low-cost solution to expensive selective absorbers for low and medium temperature collectors. Finally, interesting results are given on angle selective low-emittance coatings. By modification of microstructure, an angle, dependency can be produced. Separate abstracts were prepared for most papers.

  3. Test results, Industrial Solar Technology parabolic trough solar collector

    SciTech Connect

    Dudley, V.E.; Evans, L.R.; Matthews, C.W.

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  4. Quality Assurance Protocol for AFCI Advanced Structural Materials Testing

    SciTech Connect

    Busby, Jeremy T

    2009-05-01

    The objective of this letter is to inform you of recent progress on the development of advanced structural materials in support of advanced fast reactors and AFCI. As you know, the alloy development effort has been initiated in recent months with the procurement of adequate quantities of the NF616 and HT-UPS alloys. As the test alloys become available in the coming days, mechanical testing, evaluation of optimizing treatments, and screening of environmental effects will be possible at a larger scale. It is therefore important to establish proper quality assurance protocols for this testing effort in a timely manner to ensure high technical quality throughout testing. A properly implemented quality assurance effort will also enable preliminary data taken in this effort to be qualified as NQA-1 during any subsequent licensing discussions for an advanced design or actual prototype. The objective of this report is to describe the quality assurance protocols that will be used for this effort. An essential first step in evaluating quality protocols is assessing the end use of the data. Currently, the advanced structural materials effort is part of a long-range, basic research and development effort and not, as yet, involved in licensing discussions for a specific reactor design. After consultation with Mark Vance (an ORNL QA expert) and based on the recently-issued AFCI QA requirements, the application of NQA-1 quality requirements will follow the guidance provided in Part IV, Subpart 4.2 of the NQA-1 standard (Guidance on Graded Application of QA for Nuclear-Related Research and Development). This guidance mandates the application of sound scientific methodology and a robust peer review process in all phases, allowing for the data to be qualified for use even if the programmatic mission changes to include licensing discussions of a specific design or prototype. ORNL has previously implemented a QA program dedicated to GNEP activities and based on an appropriately graded

  5. High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Key technologies and system approaches to excellent record of thermoelectric power sources in deep space missions and development of higher performance TE materials for the next generation systems

  6. Vehicle Technologies Office Merit Review 2015: Materials Benchmarking Activities for CAMP Facility

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about materials...

  7. Vehicle Technologies Office Merit Review 2015: Materials Issues Associated with EGR Systems

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about materials...

  8. Advanced Technology and Materials Co Ltd AT M | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    and Materials Co Ltd AT M Jump to: navigation, search Name: Advanced Technology and Materials Co Ltd (AT&M) Place: Beijing, Beijing Municipality, China Zip: 100081 Sector: Solar...

  9. Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM

    Office of Energy Efficiency and Renewable Energy (EERE)

    Overview of design, fabrication, integration, and test of working prototype TEG for engine waste heat recovery on Suburban test vehicle, and continuing investigation of skutterudite materials systems

  10. Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report | Department of Energy Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual Progress Report This report describes the progress made during 2013 on the research and development projects funded by the Propulsion Materials subprogram in the Vehicle Technologies Office. Past year's reports are listed on the Annual Progress Reports page. 2013_Progress_Report_for_Propulsion_Materials.pdf (10.88 MB) More Documents &

  11. DWPF (Defense Waste Processing Facility) canister impact testing and analyses for the Transportation Technology Center

    SciTech Connect

    Farnsworth, R.K.; Mishima, J.

    1988-12-01

    A legal weight truck cask design has been developed for the US Department of Energy by GA Technologies, Inc. The cask will be used to transport defense high-level waste canisters produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The development of the cask required the collection of impact data for the DWPF canisters. The Materials Characterization Center (MCC) performed this work under the guidance of the Transportation Technology Center (TTC) at Sandia National Laboratories. Two full-scale DWPF canisters filled with nonradioactive borosilicate glass were impacted under ''normal'' and ''hypothetical'' accident conditions. Two canisters, supplied by the DWPF, were tested. Each canister was vertically dropped on the bottom end from a height of either 0.3 m or 9.1 m (for normal or hypothetical accident conditions, respectively). The structural integrity of each canister was then examined using helium leak and dye penetrant testing. The canisters' diameters and heights, which had been previously measured, were then remeasured to determine how the canister dimensions had changed. Following structural integrity testing, the canisters were flaw leak tested. For transportation flaw leak testing, four holes were fabricated into the shell of canister A-27 (0.3 m drop height). The canister was then transported a total distance of 2069 miles. During transport, the waste form material that fell from each flaw was collected to determine the amount of size distribution of each flaw release. 2 refs., 8 figs., 12 tabs.

  12. Vorbeck Materials Licenses Graphene-based Battery Technologies...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Direct Link to Article:http:www.whitehouse.govblog20130405lab-market-does-america-s-next-top-energy-innovator-program Pacific Northwest National Laboratory Technology ...

  13. Post-Shred Materials Recovery Technology Development and Demonstration

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  14. Vehicle Technologies Office Merit Review 2014: Novel Anode Materials

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel anode...

  15. Building State-of-the-Art Wind Technology Testing Facilities (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    The new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to 90 meters in length. A critical factor to wind turbine design and development is the ability to test new designs, components, and materials. In addition, wind turbine blade manufacturers are required to test their blades as part of the turbine certification process. The National Renewable Energy Laboratory (NREL) partnered with the U.S. Department of Energy (DOE) Wind Program and the Massachusetts Clean Energy Center (MassCEC) to design, construct, and operate the Wind Technology Center (WTTC) in Boston, Massachusetts. The WTTC offers a full suite of certification tests for turbine blades up to 90 meters in length. NREL worked closely with MTS Systems Corporation to develop the novel large-scale test systems needed to conduct the static and fatigue tests required for certification. Static tests pull wind turbine blades horizontally and vertically to measure blade deflection and strains. Fatigue tests cycle the blades millions of times to simulate what a blade goes through in its lifetime on a wind turbine. For static testing, the WTTC is equipped with servo-hydraulic winches and cylinders that are connected to the blade through cables to apply up to an 84-mega Newton meter maximum static bending moment. For fatigue testing, MTS developed a commercial version of NREL's patented resonant excitation system with hydraulic cylinders that actuate linear moving masses on the blade at one or more locations. This system applies up to a 21-meter tip-to-tip fatigue test tip displacement to generate 20-plus years of cyclic field loads in a matter of months. NREL also developed and supplied the WTTC with an advanced data acquisition system capable of measuring and recording hundreds of data channels at very fast sampling rates while communicating with test control systems.

  16. Fusion Materials Science and Technology Research Needs: Now and During the ITER era

    SciTech Connect

    Wirth, Brian D.; Kurtz, Richard J.; Snead, Lance L.

    2013-09-30

    The plasma facing components, first wall and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National Academy of Engineering has recently ranked the quest for fusion as one of the top grand challenges for engineering in the 21st Century. These challenges are even more pronounced by the lack of experimental testing facilities that replicate the extreme operating environment involving simultaneous high heat and particle fluxes, large time varying stresses, corrosive chemical environments, and large fluxes of 14-MeV peaked fusion neutrons. This paper will review, and attempt to prioritize, the materials research and development challenges facing fusion nuclear science and technology into the ITER era and beyond to DEMO. In particular, the presentation will highlight the materials degradation mechanisms we anticipate to occur in the fusion environment, the temperature- displacement goals for fusion materials and plasma facing components and the near and long-term materials challenges required for both ITER, a fusion nuclear science facility and longer term ultimately DEMO.

  17. The materials test station: a fast spectrum irradiation facility

    SciTech Connect

    Pitcher, Eric J.

    2007-07-01

    The Materials Test Station is a fast-neutron spectrum irradiation facility under design at the Los Alamos National Laboratory in support of the United States Department of Energy's Global Nuclear Energy Partnership. The facility will be capable of rodlets-scale irradiations of candidate fuel forms being developed to power the next generation of fast reactors. Driven by a powerful proton beam, the fuel irradiation region exhibits a neutron spectrum similar to that seen in a fast reactor, with a peak neutron flux of 1.6 x 10{sup 15} n.cm{sup -2}.s{sup -1}. Site preparation and construction are estimated to take four years, with a cost range of $60 M to $90 M. (author)

  18. Testing a Stakeholder Participation Framework for Fielding Bioremediation Technologies

    SciTech Connect

    Anex, Robert P.; Focht, Will

    2004-03-17

    This research is investigating stakeholder attitudes about the use of bioremediation technologies with the objective of reducing conflict among stakeholders. The research protocol includes four closely related components. First, we are testing a framework for stakeholder participation that prescribes appropriate stakeholder involvement strategies based on stakeholders trust of the other parties involved in technology deployment decision-making. Second, we are assessing conflict among stakeholders regarding the acceptability of in situ bioremediation as a means to reduce risks posed by radionuclides and metals in the environment. Third, we are assessing the role that awareness of risk exposure plays in the willingness of stakeholders to engage in problem-solving and making risk tradeoffs. Fourth, we are assessing the potential of using the results of these first three components to forge consensus among stakeholders regarding the use and oversight of bioremediation technologies and stakeholder involvement in the decision process. This poster presents preliminary results of a Q methodological survey of stakeholders who are familiar with radionuclide and heavy metal contamination and DOE efforts to remediate that contamination at Los Alamos, Oak Ridge and Hanford reservations. The Q study allows the research team to diagnose conflict among stakeholders and discover opportunities for consensus.

  19. Design of a Compact Fatigue Tester for Testing Irradiated Materials...

    Office of Scientific and Technical Information (OSTI)

    a hot cell for characterization of irradiated materials is beneficial to help determine relative fatigue performance differences between new and irradiated material. Hot cell use ...

  20. Hydrogen-Assisted Fracture: Materials Testing and Variables Governing...

    Energy.gov [DOE] (indexed site)

    high-pressure hydrogen gas on materials hpwgwmatresearchsomerday.pdf (1.16 MB) More Documents & Publications Mechanical Properties of Structural Steels in Hydrogen Materials ...

  1. Micromechanical tests of ion irradiated materials: Atomistic simulations and experiments

    SciTech Connect

    Shin, C.; Jin, H. H.; Kwon, J.

    2012-07-01

    We investigated irradiation effects on Fe-Cr binary alloys by using a nano-indentation combined with a continuous stiffness measurement (CSM) technique. We modeled the nano-indentation test by using a finite element method. We could extract the intrinsic hardness and the yield stress of an irradiation hardened region by using a so-called inverse method. SiC micro-pillars of various sizes were fabricated by mask and inductively coupled plasma etching technique and compressed by using flat punch nano-indentation. Compressive fracture strength showed a clear specimen size effect. Brittle-to-Ductile transition at room temperature was observed as the specimen size decreases. The effect of irradiation on the fracture strength of SiC micro-pillars was evaluated by performing ion irradiation with Si ions. We have performed molecular dynamics simulations of nano-indentation and nano-pillar compression tests. Radiation effect was observed which is found to be due to the interaction of dislocations nucleated by spherical indenter with pre-existing radiation defects (voids). These atomistic simulations are expected to significantly contribute to the investigation of the fundamental deformation mechanism of small scale irradiated materials. (authors)

  2. Vehicle Technologies Office: Short-Term Lightweight Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    In the short term, replacing heavy steel components with materials such as high-strength steel, aluminum, or glass fiber-reinforced polymer composites can decrease component weight ...

  3. Nuclear Materials Technology Division/Los Alamos National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reduces the Nuclear Danger, Responds to National Need 6 Division Director Discusses Plutonium Future 8 NMT Designs and Fabricates Standards for Nuclear Material Assay 10 ...

  4. Vehicle Technologies Office: 2009 Propulsion Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PDF icon 2009propulsionmaterials.pdf More Documents & Publications Magnetic Material for PM Motors Permanent Magnet Development for Automotive Traction Motors Vehicle ...

  5. Vehicle Technologies Office: 2011 Propulsion Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    engines by providing enabling materials support for combustion, hybrid, and power electronics development. 2011propulsionmaterials.pdf (21.95 MB) More Documents & ...

  6. Vehicle Technologies Office: 2010 Propulsion Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    engines by providing enabling materials support for combustion, hybrid, and power electronics development. 2010propulsionmaterials.pdf (21.92 MB) More Documents & ...

  7. Vehicle Technologies Office: 2012 Propulsion Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    engines by providing enabling materials support for combustion, hybrid, and power electronics development. 2012propulsionmaterials.pdf (22.34 MB) More Documents & ...

  8. 2013 Annual Merit Review Results Report - Materials Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Various brazing materials have been investigated. Silicon ... Replacing them with titanium may increase the cost and ... slides that Task 2 (FSP of steel forgingscastings) had not ...

  9. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    DOE PAGES [OSTI]

    Garrison, L. M.; Zenobia, Samuel J.; Egle, Brian J.; Kulcinski, Gerald L.; Santarius, John F.

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000°C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ionmore » gun can irradiate the samples with ion currents of 20 μA–500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. In conclusion, the MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.« less

  10. Spencer Robbins > Materials Scientist - TeraPore Technologies, Inc. >

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center Alumni > The Energy Materials Center at Cornell Spencer Robbins Materials Scientist - TeraPore Technologies, Inc. swr43@cornell.edu Formerly a member of the DiSalvo Group, Spencer received his PhD in January 2015. He joined the team at TeraPore Technologies a month later

  11. Engine Materials for Clean Diesel Technology: An Overview

    Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  12. Shenzhen Institute of Nano Materials and Technology | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Product: An institute of nano technology, which could be applied in DLC film coated solar cells (diamond solar cells). Coordinates: 22.546789, 114.112556 Show Map Loading...

  13. Utility advanced turbine systems (ATS) technology readiness testing. Technical progress report, January 1--March 31, 1998

    SciTech Connect

    1998-08-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished in 1Q98.

  14. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING: PHASE 3R

    SciTech Connect

    1999-09-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q99.

  15. Vehicle Technologies Office: Materials for High-Efficiency Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    engines for automotive, light trucks, and heavy-truck applications by 25% to 50%. ... light-weight engine materials for automotive applications as well as new iron-based ...

  16. Zhejiang Bone New Material Technology Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    China Zip: 318000 Product: Zhejiang Province-based LiFePO4 cathode material maker for Lithium secondary batteries. Coordinates: 28.736931, 121.000931 Show Map Loading map......

  17. Materials and Chemical Science and Technology | Solar Research...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    High-efficiency crystalline materials and devices, including high-efficiency single-crystal silicon, silicon tandems, III-V multijunctions, and low-cost III-V 1-sun devices Cell ...

  18. Materials Technology Support for Radioisotope Power Systems Final Report

    SciTech Connect

    Daniel P. Kramer; Chadwick D. Barklay

    2008-10-07

    Over the period of this sponsored research, UDRI performed a number of materials related tasks that helped to facilitate increased understanding of the properties and applications of a number of candidate program related materials including; effects of neutron irradiation on tantalum alloys using a 500kW reactor, thermodynamic based modeling of the chemical species in weld pools, and the application of candidate coatings for increased oxidation resistance of FWPF (Fine Weave Pierced Fabric) modules.

  19. ESP – Data from Restarted Life Tests of Various Silicon Materials

    SciTech Connect

    Schneider, Jim

    2010-10-06

    Current funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until funding allowed the restart in FY97. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.

  20. Bleed water testing program for controlled low strength material

    SciTech Connect

    Langton, C.A.

    1996-11-12

    Bleed water measurements for two Controlled Low Strength Material (CLSM) mixes were conducted to provide engineering data for the Tank 20F closure activities. CLSM Mix 1 contained 150 pounds of cement per cubic yard whereas CLSM Mix 2 contained 50 pounds per cub yard. SRS currently used CLSM Mix 2 for various applications. Bleed water percentages and generation rates were measured along with flow and compressive strength. This information will be used to select a mix design for the Tank 20F closure activities and to establish the engineering requirements, such as, lift height, time required between lifts and quantity of bleed water to be removed from the tank during the placement activities. Mix 1 is recommended for placement within Tank 20F because it has better flow characteristics, less segregation, lower percentage of bleed water and slightly higher strength. Optimization of Mix 1 was beyond the scope of this study. However, further testing of thickening additives, such as clays (bentonite), sodium silicate or fine silicas maybe useful for decreasing or eliminating bleed water.

  1. OTEC (Ocean Thermal Energy Conversion) CWP (Cold Water Pipe) Laboratory Test Program. Materials Project Test Report

    SciTech Connect

    Not Available

    1981-04-01

    Fiberglass sandwich wall structures emerged as leading candidates for the OTEC cold water pipe because of their high strength to weight ratio, their flexibility in selecting directional properties, their resistance to electrochemical interaction, their ease of deployment and their relative low cost. A review of the literature established reasonable confidence that FRP laminates could meet the OTEC requirements; however, little information was available on the performance of core materials suitable for OTEC applications. Syntactic foam cores of various composition and density were developed and tested for mechanical properties and seawater absorption.

  2. BUILDING MATERIAL CHARACTERIZATION USING A CONCRETE FLOOR AND WALL CONTAMINATION PROFILING TECHNOLOGY

    SciTech Connect

    Aggarwal, Dr. S.,; Charters, G.; Thacker, Dr. D.

    2003-02-27

    Certain radioisotopes can penetrate concrete and contaminate the concrete well below the surface. The challenge is to determine the extent and magnitude of the contamination problem in real-time. The concrete profiling technology, TRUPROSM in conjunction with portable radiometric instrumentation produces a profile of radiological or chemical contamination through the material being studied. The data quality, quantity, and representativeness may be used to produce an activity profile from the hot spot surface into the material being sampled. This activity profile may then be expanded to ultimately characterize the facility and expedite waste segregation and facility closure at a reduced cost and risk. Performing a volumetric concrete or metal characterization safer and faster (without lab intervention) is the objective of this characterization technology. This way of determining contamination can save considerable time and money. Currently, concrete core bores are shipped to certified laboratories where the concrete residue is run through a battery of tests to determine the contaminants. The existing core boring operation volatilizes or washes out some of the contaminants (like tritium) and oftentimes cross-contaminates the area around the core bore site. The volatilization of the contaminants can lead to airborne problems in the immediate vicinity of the core bore. Cross-contamination can increase the contamination area and thereby increase the amount of waste generated. The goal is to avoid those field activities that could cause this type of release.

  3. Abrasion and Erosion testing of Materials used in Power Production...

    Office of Scientific and Technical Information (OSTI)

    of wear test procedures and equipment. Research capabilities at ARC include Pin-on-Drum, Pin-on-Disk, and Dry SandRubber Wheel abrasion tests, Jaw Crusher gouging test, ...

  4. Materials technology assessment for a 1050 K Stirling Space Engine design

    SciTech Connect

    Scheuermann, C.M.; Dreshfield, R.L.; Gaydosh, D.J.; Kiser, J.D.; MacKay, R.A.; McDanels, D.L.; Petrasek, D.W.; Vannucci, R.D.; Bowles, K.J.; Watson, G.K.

    1988-10-01

    An assessment of materials technology and proposed materials selection was made for the 1050 K (superalloy) Stirling Space Engine design. The objectives of this assessment were to evaluate previously proposed materials selections, evaluate the current state-of-the-art materials, propose potential alternate materials selections and identify research and development efforts needed to provide materials that can meet the stringent system requirements. This assessment generally reaffirmed the choices made by the contractor; however, in many cases alternative choices were described and suggestions for needed materials and fabrication research and development were made.

  5. Vehicle Technologies Office Merit Review 2015: Applied Integrated Computational Materials Engineering (ICME) for New Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Applied...

  6. ESP – Data from Restarted Life Tests of Various Silicone Materials - 2011

    SciTech Connect

    Jim Schneider

    2011-12-31

    Current funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until funding allowed the restart in FY97. This report will provide data on materials used in production and on experimental materials not used in production. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.

  7. ESP - Data From Restarted Life Tests of Various Silicone Materials - 2009

    SciTech Connect

    J. W. Schneider

    2010-02-24

    Enhanced Surveillance Project (ESP) funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until ESP funding allowed the restart in FY97. This report will provide data on materials used on various programs and on experimental materials not used in production. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.

  8. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    SciTech Connect

    Liby, Alan L; Rogers, Hiram

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  9. Toxicity of Uranium Adsorbent Materials using the Microtox Toxicity Test

    SciTech Connect

    Park, Jiyeon; Jeters, Robert T.; Gill, Gary A.; Kuo, Li-Jung; Bonheyo, George T.

    2015-10-01

    The Marine Sciences Laboratory at the Pacific Northwest National Laboratory evaluated the toxicity of a diverse range of natural and synthetic materials used to extract uranium from seawater. The uranium adsorbent materials are being developed as part of the U. S. Department of Energy, Office of Nuclear Energy, Fuel Resources Program. The goal of this effort was to identify whether deployment of a farm of these materials into the marine environment would have any toxic effects on marine organisms.

  10. Stanislav Golubov, and Roger Stoller - Materials Science and Technology Division, Oak Ridge

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stanislav Golubov, and Roger Stoller - Materials Science and Technology Division, Oak Ridge National Laboratory Alexander Barashev - Department of Materials Science and Engineering, University of Tennessee Bachu Singh - Materials Research Department, Risø National Laboratory (Technical University of Denmark) During service in a commercial power reactor, the components are subjected to high heat and pressure, and bombarded by radiation. The combination of these stressors causes most materials to

  11. National Ignition Facility quality assurance plan for laser materials and optical technology

    SciTech Connect

    Wolfe, C.R.

    1996-05-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This subtier Quality Assurance Plan (QAP) applies to activities of the Laser Materials & Optical Technology (LM&OT) organization and its subcontractors. It responds to the NIF Quality Assurance Program Plan (QAPP, L-15958-2, NIF-95-499) and Department of Energy (DOE) Order 5700.6C. This Plan is organized according to 10 Quality Assurance (QA) criteria and subelements of a management system as outlined in the NIF QAPP. This Plan describes how those QA requirements are met. This Plan is authorized by the Associate Project Leader for the LM&OT organization, who has assigned responsibility to the Optics QA engineer to maintain this plan, with the assistance of the NIF QA organization. This Plan governs quality-affecting activities associated with: design; procurement; fabrication; testing and acceptance; handling and storage; and installation of NIF Project optical components into mounts and subassemblies.

  12. Idaho National Laboratory Testing of Advanced Technology Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Idaho National Laboratory Testing of Advanced Technology Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Idaho National Laboratory Testing of Advanced Technology Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  15. Scuffing: From Basic Understanding to Engine Materials Testing

    Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  16. Technology development: HEPA filter service life test plan

    SciTech Connect

    Kirchner, K.N.; Cummings, K.G.; Leck, W.C.; Fretthold, J.K.

    1995-05-31

    Rocky Flats Environmental Technology Site (the Site) has approximately 10,000 High Efficiency Particulate Air (HEPA) Filters installed in a variety of filter plenums. These ventilation/filtration plenum systems are used to control the release of airborne particulate contaminates to the environment during normal operations and also during potential design-based accidents. The operational integrity of the HEPA filter plenums is essential to maintaining the margins of safety as required by building specific Final Safety Analysis Reports (FSARS) for protection of the public and environment. An Unreviewed Safety Question Determination (USQD), USDQ-RFP94.0615-ARS, was conducted in 1994 addressing the potential inadequacy of the safety envelope for Protected Area building HEPA plenums. While conducting this USQD, questions were raised concerning the maximum service life criteria for HEPA filters. Accident scenarios in existing FSARs identify conditions that could potentially cause plugging or damage of down stream HEPA filters as a result of impaction from failed filters. Additionally, available data indicates that HEPA filters experience structural degradation due to the effects of age. The Unresolved Safety Question (USQ) compensatory measures thus require testing and analysis of used HEPA filters in order to determine and implement service life criteria.

  17. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    SciTech Connect

    1992-10-01

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  18. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  19. Vehicle Technologies Office Merit Review 2015: Advanced Bus and Truck Radial Materials for Fuel Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by PPG at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced bus and truck radial materials...

  20. Vehicle Technologies Office Merit Review 2015: High Energy Anode Material Development for Li-ion Batteries

    Energy.gov [DOE]

    Presentation given by Sinode Systems at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy anode material...

  1. Vehicle Technologies Office Merit Review 2014: A Materials Approach to Fuel-Efficient Tires

    Energy.gov [DOE]

    Presentation given by PPG Industries at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a materials approach to fuel...

  2. Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon Fiber Composite Structures

    Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...

  3. Fuel Cell Technologies Program Overview: 2012 DOE Polymer and Composite Materials Meetings

    Energy.gov [DOE]

    Overview of the Fuel Cell Technologies Program presented by Sunita Satyapal at the U.S. Department of Energy Polymer and Composite Materials Meetings held October 17-18, 2012, in Washington, D.C.

  4. Nuclear Materials Technology Division/Los Alamos National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Summer 1996 Los Alamos National Laboratory o f t h e N u c l e a r M a t e r i a l s T e c h n o l o g y D i v i s i o n Quarterly In This Issue 1 Researcher Offers a Technical Perspective on Plutonium in the Environment 4 Plutonium Materials Science Supports Science-Based Stockpile Stewardship and Management 6 Division Director Discusses Plutonium Future-part 2 8 Does the Interaction of Plutonium Oxide with Water Pose a Potential Storage Hazard? 10 Recent Publications, Presentations, and

  5. Vehicle Technologies Office: Exploratory Battery Materials R&D | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Vehicle Technologies Office: Exploratory Battery Materials R&D Vehicle Technologies Office: Exploratory Battery Materials R&D Lowering the cost and improving the performance of batteries for plug-in electric vehicles (PEVs) requires improving every part of the battery, from underlying chemistry to packaging. To reach the EV Everywhere Grand Challenge goal of making plug-in electric vehicles as affordable and practical as a 2012 baseline conventional vehicle by 2022, the

  6. Assessment of research needs for wind turbine rotor materials technology

    SciTech Connect

    Not Available

    1991-01-01

    Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

  7. Vitrification of ion exchange materials. Innovative technology summary report

    SciTech Connect

    Not Available

    1999-07-01

    Ion exchange is a process that safely and efficiently removes radionuclides from tank waste. Cesium and strontium account for a large portion of the radioactivity in waste streams from US Department of Energy (DOE) weapons production. Crystalline silicotitanate (CST) is an inorganic sorbent that strongly binds cesium, strontium, and several other radionuclides. Developed jointly by Sandia National Laboratory and Texas A and M University, CST was commercialized through a cooperative research and development agreement with an industrial partner. Both an engineered (mesh pellets) and powdered forms are commercially available. Cesium removal is a baseline in HLW treatment processing. CST is very effective at removing cesium from HLW streams and is being considered for adoption at several sites. However, CST is nonregenerable, and it presents a significant secondary waste problem. Treatment options include vitrification of the CST, vitrification of the CST coupled with HLW, direct disposal, and low-temperature processes such as grouting. The work presented in this report demonstrates that it is effective to immobilize CST using a baseline technology such as vitrification. Vitrification produces a durable waste form. CST vitrification was not demonstrated before 1996. In FY97, acceptable glass formulations were developed using cesium-loaded CST obtained from treating supernatants from Oak Ridge Reservation (ORR) tanks, and the CST was vitrified in a research melter at the Savannah River Technology Center (SRTC). In FY98, SRS decided to reevaluate the use of in-tank precipitation using tetraphenylborate to remove cesium from tank supernatant and to consider other options for cesium removal, including CST. Hanford and Idaho National Engineering and Environmental Laboratory also require radionuclide removal in their baseline flowsheets.

  8. Post Test Evaluation of NSWCCD Materials at EERC

    SciTech Connect

    Dr. Eric Wuchina

    2001-12-31

    The higher combustion temperatures, particulate erosion, multivalent metal impurities, and local gas composition variations will all have dramatic effects on the performance of materials used for the cyclone combustor deflector cone.

  9. Marketing research for EE G Mound Applied Technologies' heat treatment process of high strength materials

    SciTech Connect

    Shackson, R.H.

    1991-10-09

    This report summarizes research conducted by ITI to evaluate the commercialization potential of EG G Mound Applied Technologies' heat treatment process of high strength materials. The remainder of the report describes the nature of demand for maraging steel, extent of demand, competitors, environmental trends, technology life cycle, industry structure, and conclusion. (JL)

  10. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix materials

    SciTech Connect

    Not Available

    1993-09-30

    The pages that follow contain summaries of the nine R&TD Program Element Plans for Fiscal Year 1993 that were completed in the Spring of 1993. The nine program elements are aggregated into three program clusters as follows: Design Sciences and Advanced Computation; Advanced Manufacturing Technologies and Capabilities; and Advanced Materials Sciences and Technology.

  11. Advancing Technology Readiness: Wave Energy Testing and Demonstration

    Energy.gov [DOE]

    EEREs support enabled Northwest Energy Innovations to verify the functionality of its Wave Energy TechnologyNew Zealand (WET-NZ) device.

  12. Vehicle Technologies Office Merit Review 2014: Electrochemical Performance Testing

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrochemical...

  13. Vehicle Technologies Office Merit Review 2015: INL Electrochemical Performance Testing

    Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about INL electrochemical...

  14. Vehicle Technologies Office Merit Review 2015: Electrochemical Performance Testing

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrochemical...

  15. Webinar: Eagle Impact Minimization Technology Development and Field Testing Opportunities

    Energy.gov [DOE]

    Today, the Energy Department's Wind Program issued a Funding Opportunity Announcement (FOA) to advance the readiness of technologies intended to reduce eagle mortalities at operational wind...

  16. Vehicle Technologies Office Merit Review 2014: INL Electrochemical Performance Testing

    Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about INL electrochemical...

  17. Vehicle Technologies Office Merit Review 2014: Battery Safety Testing

    Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery safety...

  18. Vehicle Technologies Office Merit Review 2015: Battery Safety Testing

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery safety...

  19. Vehicle Technologies Office Merit Review 2016: Advanced Vehicle Testing & Evaluation

    Energy.gov [DOE]

    Presentation given by Intertek at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  20. LOCA simulation in the NRU reactor: materials test-1

    SciTech Connect

    Russcher, G.E.; Marshall, R.K.; Hesson, G.M.; Wildung, N.J.; Rausch, W.N.

    1981-10-01

    A simulated loss-of-coolant accident was performed with a full-length test bundle of pressurized water reactor fuel rods. This second experiment of the program produced peak fuel cladding temperatures of 1148K (1607/sup 0/F) and resulted in six ruptured fuel rods. Test data and initial results from the experiment are presented here in the form of photographs and graphical summaries. These results are also compared with the preceding prototypic thermal-hydraulic test results and with computer model test predictions.

  1. Material Testing of Coated Alloys in a Syngas Combustion Environment...

    Office of Scientific and Technical Information (OSTI)

    was discovered after the fact that the methodology used was producing very low recoveries ... Week 2. The revised carbonyl sampling methodology used during the second week of testing ...

  2. Material test machine for tension-compression tests at high temperature

    DOEpatents

    Cioletti, Olisse C.

    1988-01-01

    Apparatus providing a device for testing the properties of material specimens at high temperatures and pressures in controlled water chemistries includes, inter alia, an autoclave housing the specimen which is being tested. The specimen is connected to a pull rod which couples out of the autoclave to an external assembly which includes one or more transducers, a force balance chamber and a piston type actuator. The pull rod feeds through the force balance chamber and is compensated thereby for the pressure conditions existing within the autoclave and tending to eject the pull rod therefrom. The upper end of the push rod is connected to the actuator through elements containing a transducer comprising a linear variable differential transformer (LVDT). The housing and coil assembly of the LVDT is coupled to a tube which runs through a central bore of the pull rod into the autoclave where it is connected to one side of the specimen. The movable core of the LVDT is coupled to a stem which runs through the tube where it is then connected to the other side of the specimen through a coupling member. A transducer in the form of a load cell including one or more strain gages is located on a necked-down portion of the upper part of the pull rod intermediate the LVDT and force balance chamber.

  3. Utility Advanced Turbine Systems (ATS) technology readiness testing and pre-commercialization demonstration. Quarterly report, October 1--December 31, 1996

    SciTech Connect

    1997-06-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

  4. Utility advanced turbine systems (ATS) technology readiness testing -- Phase 3. Annual report, October 1, 1996--September 30, 1997

    SciTech Connect

    1997-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  5. Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, January 1--March 31, 1997

    SciTech Connect

    1997-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 1Q97.

  6. Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, April 1--June 30, 1997

    SciTech Connect

    1997-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q97.

  7. Approved reference and testing materials for use in Nuclear Waste Management Research and Development Programs

    SciTech Connect

    Mellinger, G.B.; Daniel, J.L.

    1984-12-01

    This document, addressed to members of the waste management research and development community summarizes reference and testing materials available from the Nuclear Waste Materials Characterization Center (MCC). These materials are furnished under the MCC's charter to distribute reference materials essential for quantitative evaluation of nuclear waste package materials under development in the US. Reference materials with known behavior in various standard waste management related tests are needed to ensure that individual testing programs are correctly performing those tests. Approved testing materials are provided to assist the projects in assembling materials data base of defensible accuracy and precision. This is the second issue of this publication. Eight new Approved Testing Materials are listed, and Spent Fuel is included as a separate section of Standard Materials because of its increasing importance as a potential repository storage form. A summary of current characterization information is provided for each material listed. Future issues will provide updates of the characterization status of the materials presented in this issue, and information about new standard materials as they are acquired. 7 references, 1 figure, 19 tables.

  8. Neutron-Irradiated Samples as Test Materials for MPEX

    DOE PAGES [OSTI]

    Ellis, Ronald James; Rapp, Juergen

    2015-10-09

    Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by fast neutron irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. This paper presents assessments of the calculated induced radioactivity and resulting radiation dose rates of a variety of potential fusion reactor plasma-facing materials (such as tungsten). The scientific code packages MCNP and SCALE were used to simulate irradiation of themore » samples in HFIR including the generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. A challenge of the MPEX project is to minimize the radioactive inventory in the preparation of the samples and the sample dose rates for inclusion in the MPEX facility.« less

  9. Neutron-Irradiated Samples as Test Materials for MPEX

    SciTech Connect

    Ellis, Ronald James; Rapp, Juergen

    2015-10-09

    Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by fast neutron irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. This paper presents assessments of the calculated induced radioactivity and resulting radiation dose rates of a variety of potential fusion reactor plasma-facing materials (such as tungsten). The scientific code packages MCNP and SCALE were used to simulate irradiation of the samples in HFIR including the generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. A challenge of the MPEX project is to minimize the radioactive inventory in the preparation of the samples and the sample dose rates for inclusion in the MPEX facility.

  10. Field Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing Wells

    SciTech Connect

    Cunningham, Alfred

    2015-12-21

    This research project addresses one of the goals of the U.S. Department of Energy (DOE) Carbon Storage Program (CSP) aimed at developing Advanced Wellbore Integrity Technologies to Ensure Permanent Geologic Carbon Storage. The technology field-tested in this research project is referred to as microbially induced calcite precipitation (MICP), which utilizes a biologically-based process to precipitate calcium carbonate. If properly controlled MICP can successfully seal fractures, high permeability zones, and compromised wellbore cement in the vicinity of wellbores and in nearby caprock, thereby improving the storage security of geologically-stored carbon dioxide. This report describes an MICP sealing field test performed on a 24.4 cm (9.625 inch) diameter well located on the Gorgas Steam Generation facility near Jasper, Alabama. The research was aimed at (1) developing methods for delivering MICP promoting fluids downhole using conventional oil field technologies and (2) assessing the ability of MICP to seal cement and formation fractures in the near wellbore region in a sandstone formation. Both objectives were accomplished successfully during a field test performed during the period April 1-11, 2014. The test resulted in complete biomineralization sealing of a horizontal fracture located 340.7 m (1118 feet) below ground surface. A total of 24 calcium injections and six microbial inoculation injections were required over a three day period in order to achieve complete sealing. The fractured region was considered completely sealed when it was no longer possible to inject fluids into the formation without exceeding the initial formation fracture pressure. The test was accomplished using conventional oil field technology including an 11.4 L (3.0 gallon) wireline dump bailer for injecting the biomineralization materials downhole. Metrics indicating successful MICP sealing included reduced injectivity during seal formation, reduction in pressure falloff, and

  11. 20th Hazmat Challenge tests skills of hazardous materials response teams

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hazmat Challenge tests skills of hazardous materials response teams 20th Hazmat Challenge tests skills of hazardous materials response teams Ten hazardous materials response teams from New Mexico, Missouri, Oklahoma and Nebraska test their skills in a series of graded, timed exercises. July 21, 2016 The Laboratory began the Hazmat Challenge in 1996 to hone the skills of its own hazmat team members. The Laboratory began the Hazmat Challenge in 1996 to hone the skills of its own hazmat team

  12. Innovative technologies for recycling and reusing radioactively contaminated materials from DOE facilities

    SciTech Connect

    Bossart, S.J. ); Hyde, J. )

    1993-01-01

    Through award of ten contracts under the solicitation, DOE is continuing efforts to develop innovative technologies for decontamination and recycling or reusing of process equipment, scrap metal, and concrete. These ten technologies are describe briefly in this report. There is great economic incentive for recycling or reusing materials generated during D D of DOE's facilities. If successfully developed, these superior technologies will enable DOE to clean its facilities by 2019. These technologies will also generate a reusable or recyclable product, while achieving D D in less time at lower cost with reduced health and safety risks to the workers, the public and the environment.

  13. Innovative technologies for recycling and reusing radioactively contaminated materials from DOE facilities

    SciTech Connect

    Bossart, S.J.; Hyde, J.

    1993-06-01

    Through award of ten contracts under the solicitation, DOE is continuing efforts to develop innovative technologies for decontamination and recycling or reusing of process equipment, scrap metal, and concrete. These ten technologies are describe briefly in this report. There is great economic incentive for recycling or reusing materials generated during D&D of DOE`s facilities. If successfully developed, these superior technologies will enable DOE to clean its facilities by 2019. These technologies will also generate a reusable or recyclable product, while achieving D&D in less time at lower cost with reduced health and safety risks to the workers, the public and the environment.

  14. Vehicle Technologies Office Merit Review 2016: Electrochemical Performance Testing

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  15. Vehicle Technologies Office Merit Review 2016: Battery Safety Testing

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Sandia National Laboratory (SNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  16. Vehicle Technologies Office Merit Review 2016: INL Electrochemical Performance Testing

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Idaho National Laboratory (INL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  17. Quantifying and Addressing the DOE Material Reactivity Requirements with Analysis and Testing of Hydrogen Storage Materials & Systems

    SciTech Connect

    Khalil, Y. F

    2015-01-05

    The objective of this project is to examine safety aspects of candidate hydrogen storage materials and systems being developed in the DOE Hydrogen Program. As a result of this effort, the general DOE safety target will be given useful meaning by establishing a link between the characteristics of new storage materials and the satisfaction of safety criteria. This will be accomplished through the development and application of formal risk analysis methods, standardized materials testing, chemical reactivity characterization, novel risk mitigation approaches and subscale system demonstration. The project also will collaborate with other DOE and international activities in materials based hydrogen storage safety to provide a larger, highly coordinated effort.

  18. Materials Test-2 LOCA Simulation in the NRU Reactor

    SciTech Connect

    Barner, J. O.; Hesson, G. M.; King, I. L.; Marshall, R. K.; Parchen, L. J.; Pilger, J. P.; Rausch, W. N.; Russcher, G. E.; Webb, B. J.; Wildung, N. J.; Wilson, C. L.; Wismer, M. D.; Mohr, C. L.

    1982-03-01

    A simulated loss-of-coolant accident was performed with a full-length test bundle of pressurized water reactor fuel rods. This third experiment of the program produced fuel cladding temperatures exceeding 1033 K (1400F) for 155 s and resulted in eight ruptured fuel rods. Experiment data and initial results are presented in the form of photographs and graphical summaries.

  19. High temperature materials experience at the Central Receiver Test Facility

    SciTech Connect

    Holmes, J.T.

    1982-01-01

    During four years of operation at the Central Receiver Test Facility (CRTF) ceramics have performed well in cyclic solar flux densities of less than 30 W/cm/sup 2/. Above 100 W/cm/sup 2/, serious limitations exist. Important application considerations include: the geometry, cyclic and long time exposures, flux density gradients, thermal shock, weathering, and soiling.

  20. Vehicle Technologies Office Merit Review 2014: CoolCab Test and...

    Energy.gov [DOE] (indexed site)

    and Peer Evaluation Meeting about CoolCab test and evaluation and CoolCalc HVAC tool ... Vehicle Technologies Office Merit Review 2015: CoolCab Test and Evaluation and CoolCalc ...

  1. Vehicle Technologies Office Merit Review 2015: CoolCab Test and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CoolCab Test and Evaluation and CoolCalc HVAC Tool Development Vehicle Technologies Office Merit Review 2015: CoolCab Test and Evaluation and CoolCalc HVAC Tool Development...

  2. ENERGY SMART SCHOOLS - APPLIED RESEARCH, FIELD TESTING, AND TECHNOLOGY INTEGRATION

    SciTech Connect

    Kate Burke

    2004-01-01

    This multi-state collaborative project will coordinate federal, state, and private sector resources and high-priority school-related energy research under a comprehensive initiative that includes tasks that increase adoption of advanced energy efficiency high-performance technologies in both renovation of existing schools and building new ones; educate and inform school administrators, architects, engineers, and manufacturers nationwide as to the energy, economic, and environmental benefits of energy efficiency technologies; and improve the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in schools.

  3. Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012

    DOE Data Explorer

    Jaffe, Todd

    2012-01-01

    Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

  4. Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012

    DOE Data Explorer

    Jaffe, Todd

    Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

  5. 1995 Federal Research and Development Program in Materials Science and Technology

    SciTech Connect

    1995-12-01

    The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The

  6. IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS

    SciTech Connect

    Xiaodi Huang; Richard Gertsch

    2005-02-04

    Michigan Technological University, together with The Robbins Group, Advanced Ceramic Research, Advanced Ceramic Manufacturing, and Superior Rock Bits, evaluated a new process and a new material for producing drill bit inserts and disc cutters for the mining industry. Difficulties in the material preparation stage slowed the research initially. Prototype testing of the drill bit inserts showed that the new inserts did not perform up to the current state of the art. Due to difficulties in the prototype production of the disc cutters, the disc cutter was manufactured but not tested. Although much promising information was obtained as a result of this project, the objective of developing an effective means for producing rock drill bits and rock disc cutters that last longer, increase energy efficiency and penetration rate, and lower overall production cost was not met.

  7. DOE-Funded Carbon Capture Technology Moves Forward to Large-Scale Testing |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy DOE-Funded Carbon Capture Technology Moves Forward to Large-Scale Testing DOE-Funded Carbon Capture Technology Moves Forward to Large-Scale Testing October 12, 2016 - 10:00am Addthis The Department of Energy (DOE) today announced that a DOE-funded project on second-generation carbon dioxide (CO2) solvent technology will begin testing at the Technology Centre Mongstad (TCM) in western Norway. The DOE and the Royal Norwegian Ministry of Petroleum and Energy have a

  8. High temperature materials technology for industrial energy systems and processes. Final report, April 1984-May 1986

    SciTech Connect

    Bortz, S.A.

    1986-06-01

    GRI is pursuing new technologies that will improve the performance of natural gas in industrial processes and enable natural gas to be competitive in the industrial sector with other energy alternatives. The program focused on three areas of interest that require establishing a ceramic materials data base for technical input to GRI's RandD planning efforts. These areas are: Ceramics for Heat-Exchanger Applications in High-Temperature Corrosive Flue Streams; Advanced Material and Component Technology for Gas-Fueled Prime Movers; and Gas-Fired Indirect Heating and Melting Systems.

  9. Transient Testing of Nuclear Fuels and Materials in United States

    SciTech Connect

    Daniel M. Wachs

    2012-12-01

    The US Department of Energy (DOE) has been engaged in an effort to develop and qualify next generation LWR fuel with enhanced performance and safety and reduced waste generation since 2010. This program, which has emphasized collaboration between the DOE, U.S. national laboratories and nuclear industry, was refocused from enhanced performance to enhanced accident tolerance following the events at Fukushima in 2011. Accident tolerant fuels have been specifically described as fuels that, in comparison with standard UO2-Zircaloy, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, as well as design-basis and beyond design-basis events. The program maintains an ambitious goal to insert a lead test assembly (LTA) of the new design into a commercial power reactor by 2022 .

  10. Melter system technology testing for Hanford Site low-level tank waste vitrification

    SciTech Connect

    Wilson, C.N. [Westinghouse Hanford Company, Richland, WA (United States)

    1996-12-31

    Following revisions to the Tri-Party Agreement for Hanford Site cleanup, which specified vitrification for immobilization of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks, commercially available melter technologies were tested during 1994 to 1995 as part of a multiphase program to select reference technologies for the new LLW vitrification mission. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes were also tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection and recommendations for Phase 2 testing completed. This paper describes the Phase 1 LLW melter vendor testing program and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

  11. RESTORING A DAMAGED 16-YEAR -OLD INSULATING POLYMER CONCRETE DIKE OVERLAY: REPAIR MATERIALS AND TECHNOLOGIES.

    SciTech Connect

    SUGAMA,T.

    2007-01-01

    The objective of this program was to design and formulate organic polymer-based material systems suitable for repairing and restoring the overlay panels of insulating lightweight polymer concrete (ILPC) from the concrete floor and slope wall of a dike at KeySpan liquefied natural gas (LNG) facility in Greenpoint, Brooklyn, NY, just over sixteen years ago. It also included undertaking a small-scale field demonstration to ensure that the commercial repairing technologies were applicable to the designed and formulated materials.

  12. Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer

    SciTech Connect

    Burn, G.

    1990-07-01

    The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Programs is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months..

  13. Establishing a Testing Center for Ocean Energy Technologies in...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    NNMREC offers a full range of capabilities to support wave and tidal energy development ... UW plans to deploy and test tidal turbines in Puget Sound, which provides a useful natural ...

  14. NREL: Technology Transfer - NREL's ESIF Offers Equipment Testing...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    stores information from all ESIF labs. It also connects to outside test beds such as microgrids, he added. QUOTABLE: We set up a microgrid being built by the defense contractor...

  15. Building America Technology Solutions Case Study: Field Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    test roofs using air-permeable insulation (dense-pack cellulose and fiberglass) in a cold climate (Chicago, Illinois area, zone 5A) and to analyze the moisture effects over time. ...

  16. Evaluation of the Materials Technology Required for a 760?C Power Steam Boiler

    SciTech Connect

    Shingledecker, John P; Wright, Ian G

    2006-01-01

    The U.S. Ultra-supercritical (USC) Steam Boiler Consortium, funded by the U.S. Department of Energy and the Ohio Coal Development Office, has been working to develop the necessary materials technology to construct a steam power boiler with maximum steam conditions of 760 C and 35MPa. One large component of this work is to evaluate the properties of the materials chosen for such a boiler. While long-term creep strength of base metal is initially used to set temperatures, stresses, and simple design rules, it is clear that base metal creep strength is not always the material property of most importance when selecting an alloy. The fabrication issues (typically weldability), the properties of materials after fabrication, the corrosion resistance of the material, and material cost all need to be considered in addition to baseline mechanical properties. Work is ongoing at Oak Ridge National Laboratory to evaluate the material technologies being developed by the USC Steam Boiler Consortium and perform additional advanced research activities in areas where new materials developments and better fundamental understanding are needed to ensure the long-term success of a 760 C power steam boiler.

  17. FIELD TESTING & OPTIMIZATION OF CO2/SAND FRACTURING TECHNOLOGY

    SciTech Connect

    Raymond L. Mazza

    2004-11-30

    These contract efforts involved the demonstration of a unique liquid free stimulation technology which was, at the beginning of these efforts, in 1993 unavailable in the US. The process had been developed, and patented in Canada in 1981, and held promise for stimulating liquid sensitive reservoirs in the US. The technology differs from that conventionally used in that liquid carbon dioxide (CO{sub 2}), instead of water is the base fluid. The CO{sub 2} is pumped as a liquid and then vaporizes at reservoir conditions, and because no other liquids or chemicals are used, a liquid free fracture is created. The process requires a specialized closed system blender to mix the liquid CO{sub 2} with proppant under pressure. These efforts were funded to consist of up to 21 cost-shared stimulation events. Because of the vagaries of CO{sub 2} supplies, service company support and operator interest only 19 stimulation events were performed in Montana, New Mexico, and Texas. Final reports have been prepared for each of the four demonstration groups, and the specifics of those demonstrations are summarized. A summary of the demonstrations of a novel liquid-free stimulation process which was performed in four groups of ''Candidate Wells'' situated in Crockett Co., TX; San Juan Co., NM; Phillips Co., MT; and Blaine Co., MT. The stimulation process which employs CO{sub 2} as the working fluid and the production responses were compared with those from wells treated with conventional stimulation technologies, primarily N{sub 2} foam, excepting those in Blaine Co., MT where the reservoir pressure is too low to clean up spent stimulation liquids. A total of 19 liquid-free CO{sub 2}/sand stimulations were performed in 16 wells and the production improvements were generally uneconomic.

  18. BOEM Issues First Renewable Energy Lease for MHK Technology Testing in

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Federal Waters | Department of Energy BOEM Issues First Renewable Energy Lease for MHK Technology Testing in Federal Waters BOEM Issues First Renewable Energy Lease for MHK Technology Testing in Federal Waters June 23, 2014 - 2:30pm Addthis On June 3rd, 2014 the Bureau of Ocean Energy Management (BOEM) issued the first ever lease to test marine and hydrokinetic (MHK) energy devices in federal waters to Florida Atlantic University (FAU). Harnessing the power of ocean currents, FAU's Southeast

  19. Low-cost thin-material solar technology, the key to a viable energy alternative

    SciTech Connect

    Wilhelm, W.G.; Ripel, B.D.

    1985-08-01

    The creation of a solar technology based on a dramatic reduction in material intensity and greater simplicity of design is the result of a cost-guided research approach. It takes advantage of a progressive material science based on polymer films and unique construction methods that optimize material requirements, performance and durability. The current level of technical maturity has revealed a solar collector design that has the potential for a dramatic reduction in installed cost while maintaining high thermal performance and durability. In addition, the same methodology has guided total solar system designs with similar economies and performance advantages.

  20. Technology Solutions Case Study: Combustion Safety Simplified Test Protocol

    SciTech Connect

    L. Brand, D. Cautley, D. Bohac, P. Francisco, L. Shen, and S. Gloss

    2015-12-01

    Combustions safety is an important step in the process of upgrading homes for energy efficiency. There are several approaches used by field practitioners, but researchers have indicated that the test procedures in use are complex to implement and provide too many false positives. Field failures often mean that the house is not upgraded until after remediation or not at all, if not include in the program. In this report the PARR and NorthernSTAR DOE Building America Teams provide a simplified test procedure that is easier to implement and should produce fewer false positives.

  1. Field Test of Advanced Duct-Sealing Technologies Within the Weatherization Assistance Program

    SciTech Connect

    Ternes, MP

    2001-12-05

    A field test of an aerosol-spray duct-sealing technology and a conventional, best-practice approach was performed in 80 homes to determine the efficacy and programmatic needs of the duct-sealing technologies as applied in the U.S. Department of Energy Weatherization Assistance Program. The field test was performed in five states: Iowa, Virginia, Washington, West Virginia, and Wyoming. The study found that, compared with the best-practice approach, the aerosol-spray technology is 50% more effective at sealing duct leaks and can potentially reduce labor time and costs for duct sealing by 70%, or almost 4 crew-hours. Further study to encourage and promote use of the aerosol-spray technology within the Weatherization Assistance Program is recommended. A pilot test of full production weatherization programs using the aerosol-spray technology is recommended to develop approaches for integrating this technology with other energy conservation measures and minimizing impacts on weatherization agency logistics. In order to allow or improve adoption of the aerosol spray technology within the Weatherization Assistance Program, issues must be addressed concerning equipment costs, use of the technology under franchise arrangements with Aeroseal, Inc. (the holders of an exclusive license to use this technology), software used to control the equipment, safety, and training. Application testing of the aerosol-spray technology in mobile homes is also recommended.

  2. Vehicle Technologies Office Merit Review 2016: Idaho National Laboratory Testing of Advanced Technology Vehicles

    Energy.gov [DOE]

    Presentation given by Idaho National Laboratory (INL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle...

  3. SOLIDIFICATION TESTING FOR A HIGH ACTIVITY WASTESTREAM FROM THE SAVANNAH RIVER SITE USING GROUT AND GAMMA RADIATION SHEILDING MATERIALS - 10017

    SciTech Connect

    Burns, H.

    2009-11-10

    The U.S. Department of Energy (DOE) tasked MSE Technology Applications, Inc. (MSE) with evaluating grouts that include gamma radiation shielding materials to solidify surrogates of liquid aqueous radioactive wastes from across the DOE Complex. The Savannah River Site (SRS) identified a High Activity Waste (HAW) that will be treated and solidified at the Waste Solidification Building (WSB) for surrogate grout testing. The HAW, which is produced at the Mixed Oxide Fuel Fabrication Facility (MFFF), is an acidic aqueous wastestream generated by the alkaline treatment process and the aqueous purification process. The HAW surrogate was solidified using Portland cement with and without the inclusion of different gamma radiation shielding materials to determine the shielding material that is the most effective to attenuate gamma radiation for this application.

  4. DEVELOPMENT OF BURN TEST SPECIFICATIONS FOR FIRE PROTECTION MATERIALS IN RAM PACKAGES

    SciTech Connect

    Gupta, N.

    2010-03-03

    The regulations in 10 CFR 71 require that the radioactive material (RAM) packages must be able to withstand specific fire conditions given in 10 CFR 71.73 during Hypothetical Accident Conditions (HAC). This requirement is normally satisfied by extensive testing of full scale test specimens under required test conditions. Since fire test planning and execution is expensive and only provides a single snapshot into a package performance, every effort is made to minimize testing and supplement tests with results from computational thermal models. However, the accuracy of such thermal models depends heavily on the thermal properties of the fire insulating materials that are rarely available at the regulatory fire temperatures. To the best of authors knowledge no test standards exist that could be used to test the insulating materials and derive their thermal properties for the RAM package design. This paper presents a review of the existing industry fire testing standards and proposes testing methods that could serve as a standardized specification for testing fire insulating materials for use in RAM packages.

  5. Vehicle Technologies Office Merit Review 2014: Integrated Computational Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by USAMP at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about integrated computational materials...

  6. Vehicle Technologies Office Merit Review 2014: Materials Issues Associated with EGR Systems (Agreement ID:18571) Project ID:18518

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about materials...

  7. Adsorbent materials development and testing for the extraction of uranium from seawater

    SciTech Connect

    Felker, L.K.; Dai, S.; Hay, B.P.; Janke, C.J.; Mayes, R.T.; Sun, X.; Tsouris, C.

    2013-07-01

    The extraction of uranium from seawater has been the focus of a research project for the U.S. Department of Energy to develop amidoxime functional group adsorbents using radiation-induced graphing on polymer-based fiber materials and subsequent chemical conversion of the radical sites to form the desired adsorbent material. Materials with promising uranium adsorption capacities were prepared through a series of parametric studies on radiation dose, time, temperature, graphing solutions, and properties of the base polymer materials. A laboratory screening protocol was developed to determine the uranium adsorption capacity to identify the most promising candidate materials for seawater testing. (authors)

  8. Enhanced Sampling and Analysis, Selection of Technology for Testing

    SciTech Connect

    Svoboda, John; Meikrantz, David

    2010-02-01

    The focus of this study includes the investigation of sampling technologies used in industry and their potential application to nuclear fuel processing. The goal is to identify innovative sampling methods using state of the art techniques that could evolve into the next generation sampling and analysis system for metallic elements. This report details the progress made in the first half of FY 2010 and includes a further consideration of the research focus and goals for this year. Our sampling options and focus for the next generation sampling method are presented along with the criteria used for choosing our path forward. We have decided to pursue the option of evaluating the feasibility of microcapillary based chips to remotely collect, transfer, track and supply microliters of sample solutions to analytical equipment in support of aqueous processes for used nuclear fuel cycles. Microchip vendors have been screened and a choice made for the development of a suitable microchip design followed by production of samples for evaluation by ANL, LANL, and INL on an independent basis.

  9. Smart sensor technology for joint test assembly flights.

    SciTech Connect

    Berry, Nina M.; Sheaffer, Donald A.; Bierbaum, Rene Lynn; Dimkoff, Jason L.; Walsh, Edward J.; Deyle, Travis Jay ); Marx, Kenneth D.; Pancerella, Carmen M.; Doser, Adele Beatrice; Armstrong, Robert C.

    2003-09-01

    The world relies on sensors to perform a variety of tasks from the mundane to sophisticated. Currently, processors associated with these sensors are sufficient only to handle rudimentary logic tasks. Though multiple sensors are often present in such devices, there is insufficient processing power for situational understanding. Until recently, no processors that met the electrical power constraints for embedded systems were powerful enough to perform sophisticated computations. Sandia performs many expensive tests using sensor arrays. Improving the efficacy, reliability and information content resulting from these sensor arrays is of critical importance. With the advent of powerful commodity processors for embedded use, a new opportunity to do just that has presented itself. This report describes work completed under Laboratory-Directed Research and Development (LDRD) Project 26514, Task 1. The goal of the project was to demonstrate the feasibility of using embedded processors to increase the amount of useable information derived from sensor arrays while improving the believability of the data. The focus was on a system of importance to Sandia: Joint Test Assemblies for ICBM warheads. Topics discussed include: (1) two electromechanical systems to provide data, (2) sensors used to monitor those systems, (3) the processors that provide decision-making capability and data manipulation, (4) the use of artificial intelligence and other decision-making software, and (5) a computer model for the training of artificial intelligence software.

  10. Proceedings of the Symposium on Structural and Refractory Materials for Fusion and Fission Technologies

    SciTech Connect

    Aktaa, J.; Samaras, M.; Serrano de Caro, M.; Victoria, M.; Wirth, B.

    2008-07-01

    The development of future fusion and Generation IV fission reactor power plant concepts will require extensive materials research to solve numerous technological problems. Structural components in these future reactors will be subjected to complex thermomechanical loading, higher operating temperatures, and high-irradiation doses (up to 100 dpa) which are beyond the current capabilities of conventional materials. Consequently, numerous worldwide research activities are under way to develop and qualify novel structural materials. At present, the most attractive candidate materials include low-activation ferritic martensitic steels and their ODS variants, vanadium alloys, SiC/SiC composites, as well as refractory materials like tungsten alloys and their ODS variants. The aim of this symposium is to provide an open forum for the discussion of materials issues and problems, and to promote future collaborations. Papers cover the following areas: Materials processing and development by composition and treatment; Irradiation effects, microstructure evolution, and mechanical properties degradation; Modeling of damage evolution and alloy stability; Mechanical properties and structural integrity; Materials-design interface, characterization, and modeling of constitutive behavior; Nuclear fuel element modeling; Ferritic/martensitic steels and ODS variants.

  11. Performance testing of elastomeric seal materials under low and high temperature conditions: Final report

    SciTech Connect

    BRONOWSKI,DAVID R.

    2000-06-01

    The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.

  12. Vehicle Technologies Office Merit Review 2014: INL Testing of Wireless Charging Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about INL testing of...

  13. Methane Hydrate Production Technologies to be Tested on Alaska's North Slope

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and ConocoPhillips will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope.

  14. NEAC Nuclear Reactor Technology (NRT) Subcommittee Advanced Test and/or Demonstration Reactor Planning Study

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nuclear Reactor Technology (NRT) Subcommittee Advanced Test and/or Demonstration Reactor Planning Study October 6 th , 2015 Meeting Summary and Comments Given direction from Congress, the Department of Energy's Office of Nuclear Energy (DOE- NE) is conducting a planning study for an advanced test and/or demonstration reactor (AT/DR study) in the United States. The Nuclear Energy Advisory Committee (NEAC) and specifically its Nuclear Reactor Technology (NRT) subcommittee has been asked to provide

  15. Fabrication and characterization of MCC (Materials Characterization Center) approved testing material: ATM-10 glass

    SciTech Connect

    Maupin, G.D.; Bowen, W.M.; Daniel, J.L.

    1988-04-01

    The Materials Characterization Center ATM-10 glass represents a reference commercial high-level waste form similar to that which will be produced by the West Valley Nuclear Service Co. Inc., West Valley, New York. The target composition and acceptable range of composition were defined by the sponsor, West Valley Nuclear Service. The ATM-10 glass was produced in accordance with the Pacific Northwest Laboratory QA Manual for License-Related Programs, MCC technical procedures, and MCC QA Plan that were in effect during the course of the work. The method and procedure to be used in the fabrication and characterization of the ATM-10 glass were specified in two run plans for glass preparation and a characterization plan. All of the ATM-10 glass was produced in the form of bars 1.9 /times/ 1.9 /times/ 10 cm nominal size, and 93 g nominal mass. A total of 15 bars of ATM-10 glass weighing 1394 g was produced. The production bars were characterized to determine the mean composition, oxidation state, and microstructure of the ATM-10 product. Table A summarizes the characterization results. The ATM-10 glass meets all specifications. The elemental composition and oxidation state of the glass are within the specifications of the client. Visually, the ATM-10 glass bars appear uniformly glassy and generally without exterior features. Microscopic examination revealed low (less than 2 wt %) concentractions of 3-..mu..m iron-chrome (suspected spinel) crystals and /approximately/0.5-..mu..m ruthenium inclusions scattered randomly throughout the glassy matrix. Closed porosity, with pores ranging in diameter from 5 to 250 ..mu..m, was observed in all samples. 4 refs., 10 figs., 21 tabs.

  16. Alternatives Generation and Analysis for Lower Knuckle Ultrasonic Testing Technology

    SciTech Connect

    WOLFF, J.J.

    2001-02-21

    Environmental regulations applicable to the River Protection Project require integrity assessment of the double-shell tank (DST) system. In the early 1990s a strategy and plans were developed to conduct the required tank system examinations and integrity assessments. This included plans to conduct ultrasonic testing of six DSTs. In 1997, an ad hoc committee (Tank Structural Integrity Panel, TSIP) working under the direction of the Office of Environmental Restoration and Waste Management, U.S. Department of Energy, published guidelines for managing risks associated with aging degradation of high level waste storage tanks. This included recommendations on non-destructive examination of specific regions of tanks. For the lower knuckle region, defined as the curved transition from the vertical portion of the tank wall to the flat portion of the tank bottom, the TSIP guidelines contained the following recommendation: ''Examine the lower knuckle region including 5% of the length of the upper weld, at least 2.5% of the area of the predicted maximum stress region of the knuckle base metal and 2.5% of the lower weld if accessible. Emphasis should be on weld/HAZ cracking such as SCC. If the lower weld is not accessible, one-square-foot sections whose length adds up to 5% of the circumference of the knuckle base metal shall be examined.'' Also in 1997, the U.S. Department of Energy and Washington Department of Ecology formalized an agreement on the DST system integrity assessment work scope required to satisfy the applicable regulatory requirements. This cited the TSIP guidelines, and included an agreement to conduct ultrasonic examination on six representative DSTs for determination and extent of cracks, corrosion, and pitting.

  17. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    SciTech Connect

    Donley, Tim

    2014-12-31

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  18. Compendium of information on identification and testing of materials for plastic solar thermal collectors

    SciTech Connect

    McGinniss, V.D.; Sliemers, F.A.; Landstrom, D.K.; Talbert, S.G.

    1980-07-31

    This report is intended to organize and summarize prior and current literature concerning the weathering, aging, durability, degradation, and testing methodologies as applied to materials for plastic solar thermal collectors. Topics covered include (1) rate of aging of polymeric materials; (2) environmental factors affecting performance; (3) evaluation and prediction of service life; (4) measurement of physical and chemical properties; (5) discussion of evaluation techniques and specific instrumentation; (6) degradation reactions and mechanisms; (7) weathering of specific polymeric materials; and (8) exposure testing methodology. Major emphasis has been placed on defining the current state of the art in plastics degradation and on identifying information that can be utilized in applying appropriate and effective aging tests for use in projecting service life of plastic solar thermal collectors. This information will also be of value where polymeric components are utilized in the construction of conventional solar collectors or any application where plastic degradation and weathering are prime factors in material selection.

  19. Utility advanced turbine systems (ATS) technology readiness testing -- Phase 3. Technical progress report, October 1--December 31, 1997

    SciTech Connect

    1997-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 4Q97.

  20. Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

    DOE Data Explorer

    Jaffe, Todd

    2012-01-01

    Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

  1. Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

    DOE Data Explorer

    Jaffe, Todd

    Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

  2. Field Testing of Low-Cost Bio-Based Phase Change Material

    SciTech Connect

    Biswas, Kaushik; Childs, Phillip W; Atchley, Jerald Allen

    2013-03-01

    A test wall built with phase change material (PCM)-enhanced loose-fill cavity insulation was monitored for a period of about a year in the warm-humid climate of Charleston, South Carolina. The test wall was divided into various sections, one of which contained only loose-fill insulation and served as a control for comparing and evaluating the wall sections with the PCM-enhanced insulation. This report summarizes the findings of the field test.

  3. Compositions, Functions, and Testing of Friction Brake Materials and Their Additives

    SciTech Connect

    Blau, PJ

    2001-10-22

    The purpose of this report is to present a survey of commercial brake materials and additives, and to indicate their typical properties and functions, especially as regards their use in heavy trucks. Most truck pad and shoe materials described here were designed to wear against cast iron. Brake material test methods are also briefly described. This report does not address issues associated with the fabrication and manufacturing of brake materials. Since there are literally thousands of brake material additives, and their combinations are nearly limitless, it is impractical to list them all here. Rather, an attempt has been made to capture the primary constituents and their functions. An Appendix contains thermo-physical properties of some current and potential brake materials.

  4. Vehicle Technologies Office Merit Review 2014: CoolCab Test and Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and CoolCalc HVAC Tool Development | Department of Energy CoolCab Test and Evaluation and CoolCalc HVAC Tool Development Vehicle Technologies Office Merit Review 2014: CoolCab Test and Evaluation and CoolCalc HVAC Tool Development Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about CoolCab test and evaluation and CoolCalc HVAC tool development.

  5. Vehicle Technologies Office Merit Review 2015: CoolCab Test and Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and CoolCalc HVAC Tool Development | Department of Energy CoolCab Test and Evaluation and CoolCalc HVAC Tool Development Vehicle Technologies Office Merit Review 2015: CoolCab Test and Evaluation and CoolCalc HVAC Tool Development Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about CoolCab test and evaluation and CoolCalc HVAC tool development.

  6. Fossil Energy Advanced Research and Technology Development Materials Program. Semiannual progress report for the period ending September 30, 1992

    SciTech Connect

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  7. Regulatory and extra-regulatory testing to demonstrate radioactive material packaging safety

    SciTech Connect

    Ammerman, D.J.

    1997-06-01

    Packages for the transportation of radioactive material must meet performance criteria to assure safety and environmental protection. The stringency of the performance criteria is based on the degree of hazard of the material being transported. Type B packages are used for transporting large quantities of radioisotopes (in terms of A{sub 2} quantities). These packages have the most stringent performance criteria. Material with less than an A{sub 2} quantity are transported in Type A packages. These packages have less stringent performance criteria. Transportation of LSA and SCO materials must be in {open_quotes}strong-tight{close_quotes} packages. The performance requirements for the latter packages are even less stringent. All of these package types provide a high level of safety for the material being transported. In this paper, regulatory tests that are used to demonstrate this safety will be described. The responses of various packages to these tests will be shown. In addition, the response of packages to extra-regulatory tests will be discussed. The results of these tests will be used to demonstrate the high level of safety provided to workers, the public, and the environment by packages used for the transportation of radioactive material.

  8. Cornell Fuel Cell Institute: Materials Discovery to Enable Fuel Cell Technologies

    SciTech Connect

    Abruna, H.D.; DiSalvo, Francis J.

    2012-06-29

    The discovery and understanding of new, improved materials to advance fuel cell technology are the objectives of the Cornell Fuel Cell Institute (CFCI) research program. CFCI was initially formed in 2003. This report highlights the accomplishments from 2006-2009. Many of the grand challenges in energy science and technology are based on the need for materials with greatly improved or even revolutionary properties and performance. This is certainly true for fuel cells, which have the promise of being highly efficient in the conversion of chemical energy to electrical energy. Fuel cells offer the possibility of efficiencies perhaps up to 90 % based on the free energy of reaction. Here, the challenges are clearly in the materials used to construct the heart of the fuel cell: the membrane electrode assembly (MEA). The MEA consists of two electrodes separated by an ionically conducting membrane. Each electrode is a nanocomposite of electronically conducting catalyst support, ionic conductor and open porosity, that together form three percolation networks that must connect to each catalyst nanoparticle; otherwise the catalyst is inactive. This report highlights the findings of the three years completing the CFCI funding, and incudes developments in materials for electrocatalyts, catalyst supports, materials with structured and functional porosity for electrodes, and novel electrolyte membranes. The report also discusses developments at understanding electrocatalytic mechanisms, especially on novel catalyst surfaces, plus in situ characterization techniques and contributions from theory. Much of the research of the CFCI continues within the Energy Materials Center at Cornell (emc2), a DOE funded, Office of Science Energy Frontier Research Center (EFRC).

  9. Impact Testing of Stainless Steel Material at Room and Elevated Temperatures

    SciTech Connect

    Dana K. Morton; Spencer D. Snow; Tom E. Rahl; Robert K. Blandford

    2007-07-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern are not well documented. However, three previous papers [1, 2, 3] reported on impact testing and analysis results performed at the Idaho National Laboratory using 304/304L and 316/316L stainless steel base material specimens that began the investigation of these characteristics. The goal of the work presented herein is to add the results of additional tensile impact testing for 304/304L and 316/316L stainless steel material specimens. Utilizing a drop-weight impact test machine and 1/4-inch to 1/2-inch thick dog-bone shaped test specimens, additional tests achieved target strain rates of 5, 10, and 22 per second at room temperature, 300, and 600 degrees Fahrenheit. Elevated true stress-strain curves for these materials at each designated strain rate and temperature are presented herein.

  10. Arms Control and nonproliferation technologies: Technology options and associated measures for monitoring a Comprehensive Test Ban, Second quarter

    SciTech Connect

    Casey, Leslie A.

    1994-01-01

    This newsletter contains reprinted papers discussing technology options and associated measures for monitoring a Comprehensive Test Ban Treaty (CTBT). These papers were presented to the Conference on Disarmament (CD) in May and June 1994. An interagency Verification Monitoring Task Force developed the papers. The task force included participants from the Arms Control and Disarmament Agency, the Department of Defense, the Department of Energy, the Intelligence Community, the Department of Interior, and the Department of State. The purpose of this edition of Arms Control and Nonproliferation Technologies is to share these papers with the broad base of stakeholders in a CTBT and to facilitate future technology discussions. The papers in the first group discuss possible technology options for monitoring a CTBT in all environments (underground, underwater, atmosphere, and space). These technologies, along with on-site inspections, would facilitate CTBT monitoring by treaty participants. The papers in the second group present possible associated measures, e.g., information exchanges and transparency measures, that would build confidence among states participating in a CTBT.

  11. Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules

    SciTech Connect

    Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.

    2011-10-01

    Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.

  12. Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization J. Vernon Cole and Ashok Gidwani CFDRC Prepared for: DOE Hydrogen Fuel Cell Kickoff Meeting February 13, 2007 This presentation does not contain any proprietary or confidential information. Background Water Management Issues Arise From: ƒ Generation of water by cathodic reaction ƒ Membrane humidification requirements ƒ Capillary pressure driven transport through porous MEA and GDL materials ƒ Scaling

  13. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    SciTech Connect

    Young, J K

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  14. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    SciTech Connect

    Young, J.K.

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R&D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  15. Special Form Testing of Sealed Source Encapsulation for High-Alpha-Activity Actinide Materials

    SciTech Connect

    Martinez, Oscar A

    2016-01-01

    In the United States all transportation of radioactive material is regulated by the U.S. Department of Transportation (DOT). Beginning in 2008 a new type of sealed-source encapsulation package was developed and tested by Oak Ridge National Laboratory (ORNL). These packages contain high-alpha-activity actinides and are regulated and transported in accordance with the requirements for DOT Class 7 hazardous material. The DOT provides specific regulations pertaining to special form encapsulation designs. The special form designation indicates that the encapsulated radioactive contents have a very low probability of dispersion even when subjected to significant structural events. The special form designs have been shown to simplify the delivery, transport, acceptance, and receipt processes. It is intended for these sealed-source encapsulations to be shipped to various facilities making it very advantageous for them to be certified as special form. To this end, DOT Certificates of Competent Authority (CoCAs) have been sought for the design suitable for containing high-alpha-activity actinide materials. This design consists of the high-alpha-activity material encapsulated within a triangular zirconia canister, referred to as a ZipCan, tile that is then enclosed by a spherical shell. The spherical shell design, with ZipCan tile inside, was tested for compliance with the special form regulations found in 49 CFR 173.469. The spherical enclosure was subjected to 9-m impact, 1 m percussion, and 10-minute thermal tests at the Packaging Evaluation Facility located at the National Transportation Research Center in Knoxville, TN USA and operated by ORNL. Before and after each test, the test units were subjected to a helium leak check and a bubble test. The ZipCan tiles and core were also subjected to the tests required for ISO 2919:2012(E), including a Class IV impact test and heat test and subsequently subjected to helium leakage rate tests [49 CFR 173.469(a)(4)(i)]. The impact

  16. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    SciTech Connect

    Corwin, William R; Burchell, Timothy D; Halsey, William; Hayner, George; Katoh, Yutai; Klett, James William; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Stoller, Roger E; Wilson, Dane F

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  17. Evaluation of melter technologies for vitrification of Hanford site low-level tank waste - phase 1 testing summary report

    SciTech Connect

    Wilson, C.N., Westinghouse Hanford

    1996-06-27

    Following negotiation of the fourth amendment to the Tri- Party Agreement for Hanford Site cleanup, commercially available melter technologies were tested during 1994 and 1995 for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes also were tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection completed. This report describes the Phase 1 LLW melter vendor testing and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

  18. Melter system technology testing for Hanford Site low-level tankwaste vitrification

    SciTech Connect

    Wilson, C.N.

    1996-05-03

    Following revisions to the Tri-Party Agreement for Hanford Site cleanup, which specified vitrification for Complete melter feasibility and system operability immobilization of the low-level waste (LLW) tests, select reference melter(s), and establish reference derived from retrieval and pretreatment of the radioactive LLW glass formulation that meets complete systems defense wastes stored in 177 underground tanks, commercial requirements (June 1996). Available melter technologies were tested during 1994 to 1995 as part of a multiphase program to select reference Submit conceptual design and initiate definitive design technologies for the new LLW vitrification mission.

  19. ADAPTATION OF CRACK GROWTH DETECTION TECHNIQUES TO US MATERIAL TEST REACTORS

    SciTech Connect

    A. Joseph Palmer; Sebastien P. Teysseyre; Kurt L. Davis; Gordon Kohse; Yakov Ostrovsky; David M. Carpenter; Joy L. Rempe

    2015-04-01

    A key component in evaluating the ability of Light Water Reactors to operate beyond 60 years is characterizing the degradation of materials exposed to radiation and various water chemistries. Of particular concern is the response of reactor materials to Irradiation Assisted Stress Corrosion Cracking (IASCC). Some test reactors outside the United States, such as the Halden Boiling Water Reactor (HBWR), have developed techniques to measure crack growth propagation during irradiation. The basic approach is to use a custom-designed compact loading mechanism to stress the specimen during irradiation, while the crack in the specimen is monitored in-situ using the Direct Current Potential Drop (DCPD) method. In 2012 the US Department of Energy commissioned the Idaho National Laboratory and the MIT Nuclear Reactor Laboratory (MIT NRL) to take the basic concepts developed at the HBWR and adapt them to a test rig capable of conducting in-pile IASCC tests in US Material Test Reactors. The first two and half years of the project consisted of designing and testing the loader mechanism, testing individual components of the in-pile rig and electronic support equipment, and autoclave testing of the rig design prior to insertion in the MIT Reactor. The load was applied to the specimen by means of a scissor like mechanism, actuated by a miniature metal bellows driven by pneumatic pressure and sized to fit within the small in-core irradiation volume. In addition to the loader design, technical challenges included developing robust connections to the specimen for the applied current and voltage measurements, appropriate ceramic insulating materials that can endure the LWR environment, dealing with the high electromagnetic noise environment of a reactor core at full power, and accommodating material property changes in the specimen, due primarily to fast neutron damage, which change the specimen resistance without additional crack growth. The project culminated with an in

  20. Developing an Innovative Field Expedient Fracture Toughness Testing Protocol for Concrete Materials

    SciTech Connect

    Wang, Jy-An John; Liu, Ken C; Naus, Dan J

    2008-09-01

    The Spiral Notch Torsion Fracture Toughness Test (SNTT) was developed recently to determine the intrinsic fracture toughness (KIC) of structural materials. The SNTT system operates by applying pure torsion to uniform cylindrical specimens with a notch line that spirals around the specimen at a 45 pitch. KIC values are obtained with the aid of a three-dimensional finite-element computer code, TOR3D-KIC. The SNTT method is uniquely suitable for testing a wide variety of materials used extensively in pressure vessel and piping structural components and weldments. Application of the method to metallic, ceramic, and graphite materials has been demonstrated. One important characteristic of SNTT is that neither a fatigue precrack or a deep notch are required for the evaluation of brittle materials, which significantly reduces the sample size requirement. In this paper we report results for a Portland cement-based mortar to demonstrate applicability of the SNTT method to cementitious materials. The estimated KIC of the tested mortar samples with compressive strength of 34.45 MPa was found to be 0.19 MPa m.

  1. Nuclear Test Scenarios for Discussion of On-Site Inspection Technologies

    SciTech Connect

    Sweeney, J J; Hawkins, W

    2009-03-13

    The purpose of the ISS OSI Invited Meeting being held in Vienna March 24-27, 2009 is to obtain a better understanding of the phenomenology of underground nuclear explosions for On-Site Inspection (OSI) purposes. In order to focus the technology discussions, we have developed two very general scenarios, or models, of underground nuclear test configurations and phenomena that will help us explore the application of OSI methodologies and techniques. The scenarios describe testing environments, operations, logistics, equipment, and facilities that might be used in conducting an underground nuclear test. One scenario involves emplacement of a nuclear device into a vertical borehole in an area with relatively flat terrain; the other involves emplacement within a tunnel (horizontally) in an area with mountainous terrain. Vertical borehole geometry The example for this scenario is an intermediate yield nuclear explosion carried out in a flat desert area. The ground was cleared and smoothed over a 200 X 200 m fenced area for operational support activities, access to the borehole, and in order to place a few structures to house diagnostics equipment and control functions. Power lines were provided for local electrical power. The vertical emplacement borehole was 2 m in diameter and bored to a depth of 350 m. The emplacement hole was lined with steel pipe in order to keep the hole open and to avoid cave-ins during emplacement of the nuclear device. Emplacement was above the local water table, and the top of the saturation zone is about 30 m below the bottom of the emplacement hole. The detonation point was at a depth of 340 m. All of the rock material removed while drilling the borehole was removed to another place. Diagnostics and control for the test were relatively simple: about 2 dozen high capacity coaxial cables feed from the down hole instruments to the surface and then about 100 m laterally to a diagnostics trailer. Two strong steel cables were used to emplace the

  2. Vehicle Technologies Office Merit Review 2015: Validation of Material Models for Crash Simulation of Automotive Carbon Fiber Composite Structures (VMM)

    Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material...

  3. Vehicle Technologies Office Merit Review 2014: Materials for Advanced Turbocharger Designs (Agreement ID:17257) Project ID:18518

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about materials for...

  4. Developing standard performance testing procedures for material control and accounting components at a site

    SciTech Connect

    Scherer, Carolynn P; Bushlya, Anatoly V; Efimenko, Vladimir F; Ilyanstev, Anatoly; Regoushevsky, Victor I

    2010-01-01

    The condition of a nuclear material control and accountability system (MC&A) and its individual components, as with any system combining technical elements and documentation, may be characterized through an aggregate of values for the various parameters that determine the system's ability to perform. The MC&A system's status may be functioning effectively, marginally or not functioning based on a summary of the values of the individual parameters. This work included a review of the following subsystems, MC&A and Detecting Material Losses, and their respective elements for the material control and accountability system: (a) Elements of the MC&A Subsystem - Information subsystem (Accountancy/Inventory), Measurement subsystem, Nuclear Material Access subsystem, including tamper-indicating device (TID) program, and Automated Information-gathering subsystem; (b) Elements for Detecting Nuclear Material Loses Subsystem - Inventory Differences, Shipper/receiver Differences, Confirmatory Measurements and differences with accounting data, and TID or Seal Violations. In order to detect the absence or loss of nuclear material there must be appropriate interactions among the elements and their respective subsystems from the list above. Additionally this work includes a review of regulatory requirements for the MC&A system component characteristics and criteria that support the evaluation of the performance of the listed components. The listed components had performance testing algorithms and procedures developed that took into consideration the regulatory criteria. The developed MC&A performance-testing procedures were the basis for a Guide for MC&A Performance Testing at the material balance areas (MBAs) of State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering (SSC RF-IPPE).

  5. Examination of a Size-Change Test for Photovoltaic Encapsulation Materials: Preprint

    SciTech Connect

    Miller, D. C.; Wohlgemuth, J. H.; Gu, X.; Ji, L.; Kelly, G.; Gu, X.; Nickel, N.; Norum, P.; Shioda, T.; Tamizhmani, G.

    2012-08-01

    We examine a proposed test standard that can be used to evaluate the maximum representative change in linear dimensions of sheet encapsulation products for photovoltaic modules (resulting from their thermal processing). The proposed protocol is part of a series of material-level tests being developed within Working Group 2 of the Technical Committee 82 of the International Electrotechnical Commission. The characterization tests are being developed to aid module design (by identifying the essential characteristics that should be communicated on a datasheet), quality control (via internal material acceptance and process control), and failure analysis. Discovery and interlaboratory experiments were used to select particular parameters for the size-change test. The choice of a sand substrate and aluminum carrier is explored relative to other options. The temperature uniformity of +/- 5C for the substrate was confirmed using thermography. Considerations related to the heating device (hot-plate or oven) are explored. The time duration of 5 minutes was identified from the time-series photographic characterization of material specimens (EVA, ionomer, PVB, TPO, and TPU). The test procedure was revised to account for observed effects of size and edges. The interlaboratory study identified typical size-change characteristics, and also verified the absolute reproducibility of +/- 5% between laboratories.

  6. LONG-TERM CORROSION TESTING OF CANDIDATE MATERIALS FOR HIGH-LEVEL RADIOACTIVE WASTE CONTAINMENT

    SciTech Connect

    Estill, J. C.; Doughty, S.; Gdowski, G. E.; Gordon, S.; King, K.; McCright, R. D.; Wang, F.

    1997-10-01

    Preliminary results are presented from the long-term corrosion test program of candidate materials for the high-level radioactive waste packages that would be emplaced in the potential repository at Yucca Mountain, Nevada. The present waste package design is based on a multi-barrier concept having an inner container of a corrosion resistant material and an outer container of a corrosion allowance material. Test specimens have been exposed to simulated bounding environments that may credibly develop in the vicinity of the waste packages. Corrosion rates have been calculated for weight loss and crevice specimens, and U-bend specimens have been examined for evidence of stress corrosion cracking (SCC). Galvanic testing has been started recently and initial results are forthcoming. Pitting characterization of test specimens will be conducted in the coming year. This test program is expected to continue for a minimum of five years so that long-term corrosion data can be determined to support corrosion model development, performance assessment, and waste package design.

  7. The TSCA Interagency Testing Committee (ITC) -- influencing science, technology and public policy

    SciTech Connect

    Walker, J.D.

    1994-12-31

    The purpose of this presentation is to briefly describe the ITC and how the ITC`s work over the past 17 years has influenced science, technology and public policy. In 1976, under section 4(e) of the Toxic Substances Control Act (TSCA), the US Congress created the ITC to implement the initial phases of testing TSCA-regulable chemicals. Congress directed the ITC to: (1) make testing decisions on about 70,000 chemicals, (2) develop the TSCA Section 4(e) Priority Testing List, (3) coordinate chemical testing and (4) revise the List at least every six months. The creation, structure, functions and contributions of the.ITC from 1977 to 1992 have been previously described. The ITC has made testing decisions on about 50,000 chemicals. Most chemicals on domestic and international regulatory lists have ITC testing decisions. Science has been influenced by the ITC`s testing decisions to add chemicals to the List, to designate or recommend the added chemicals, to recommend different types of testing, to defer chemicals for testing or to remove chemicals on the List. Technology has been influenced because test methods were developed, laboratory equipment designed, etc. Public Policy has been influenced by ITC`s suggestions to the Civil Service Commission that registers be created for toxicologists and environmental scientists, ITC`s discussions of a National Testing Policy, by EPA`s decisions to publish over 200 Federal Register notices requesting that manufacturers of ITC chemicals submit unpublished data or conduct testing and by chemical manufacturers submission of over 25,000 unpublished studies and conduct of over 900 tests.

  8. CRC handbook of laser science and technology. Volume 4. Optical materials, Part 2 - Properties

    SciTech Connect

    Weber, M.J.

    1986-01-01

    This book examines the optical properties of laser materials. Topics considered include: fundamental properties; transmitting materials; crystals; glasses; plastics; filter materials; mirror and reflector materials; polarizer materials; special properties; linear electrooptic materials; magnetooptic materials; elastooptic materials; photorefractive materials; and liquid crystals.

  9. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    SciTech Connect

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed

  10. Utility Advanced Turbine System (ATS) technology readiness testing and pre-commercial demonstration -- Phase 3. Quarterly report, April 1--June 30, 1996

    SciTech Connect

    1996-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished during the period 2Q96.

  11. GSA's Green Proving Ground: Identifying, Testing and Evaluating Innovative Technologies; Preprint

    SciTech Connect

    Kandt, A.; Lowell, M.

    2012-05-01

    This paper will provide an overview of the GPG program and its objectives as well as a summary and status update of the 16 technologies selected for enhanced testing and evaluation in 2011. The federal government's General Services Administration's (GSA) Public Buildings Service (PBS) acquires space on behalf of the federal government through new construction and leasing, and acts as a caretaker for federal properties across the country. PBS owns or leases 9,624 assets and maintains an inventory of more than 370.2 million square feet of workspace, and as such has enormous potential for implementing energy efficient and renewable energy technologies to reduce energy and water use and associated emissions. The Green Proving Ground (GPG) program utilizes GSA's real estate portfolio to test and evaluate innovative and underutilized sustainable building technologies and practices. Findings are used to support the development of GSA performance specifications and inform decision making within GSA, other federal agencies, and the real estate industry. The program aims to drive innovation in environmental performance in federal buildings and help lead market transformation through deployment of new technologies. In 2011, the GPG program selected 16 technologies or practices for rigorous testing and evaluation. Evaluations are currently being performed in collaboration with the Department of Energy's National Laboratories, and a steady stream of results will be forthcoming throughout 2012. This paper will provide an overview of the GPG program and its objectives as well as a summary and status update of the 16 technologies selected for enhanced testing and evaluation in 2011. Lastly, it provides a general overview of the 2012 program.

  12. RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES

    SciTech Connect

    Smith, A

    2008-12-31

    The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

  13. FEASIBILITY STUDY FOR THE DEVELOPMENT OF A TEST BED PROGRAM FOR NOVEL DETECTORS AND DETECTOR MATERIALS AT SRS H-CANYON SEPARATIONS FACILITY

    SciTech Connect

    Sexton, L.; Mendez-Torres, A.; Hanks, D.

    2011-06-07

    Researchers at the Savannah River National Laboratory (SRNL) have proposed that a test bed for advanced detectors be established at the H-Canyon separations facility located on the DOE Savannah River Site. The purpose of the proposed test bed will be to demonstrate the capabilities of emerging technologies for national and international safeguards applications in an operational environment, and to assess the ability of proven technologies to fill any existing gaps. The need for such a test bed has been expressed in the National Nuclear Security Administration's (NNSA) Next Generation Safeguards Initiative (NGSI) program plan and would serve as a means to facilitate transfer of safeguards technologies from the laboratory to an operational environment. New detectors and detector materials open the possibility of operating in a more efficient and cost effective manner, thereby strengthening national and international safeguards objectives. In particular, such detectors could serve the DOE and IAEA in improving timeliness of detection, minimizing uncertainty and improving confidence in results. SRNL's concept for the H Canyon test bed program would eventually open the facility to other DOE National Laboratories and establish a program for testing national and international safeguards related equipment. The initial phase of the test bed program is to conduct a comprehensive feasibility study to determine the benefits and challenges associated with establishing such a test bed. The feasibility study will address issues related to the planning, execution, and operation of the test bed program. Results from the feasibility study will be summarized and discussed in this paper.

  14. Final Report: Part 1. In-Place Filter Testing Instrument for Nuclear Material Containers. Part 2. Canister Filter Test Standards for Aerosol Capture Rates.

    SciTech Connect

    Brown, Austin Douglas; Runnels, Joel T.; Moore, Murray E.; Reeves, Kirk Patrick

    2014-11-02

    A portable instrument has been developed to assess the functionality of filter sand o-rings on nuclear material storage canisters, without requiring removal of the canister lid. Additionally, a set of fifteen filter standards were procured for verifying aerosol leakage and pressure drop measurements in the Los Alamos Filter Test System. The US Department of Energy uses several thousand canisters for storing nuclear material in different chemical and physical forms. Specialized filters are installed into canister lids to allow gases to escape, and to maintain an internal ambient pressure while containing radioactive contaminants. Diagnosing the condition of container filters and canister integrity is important to ensure worker and public safety and for determining the handling requirements of legacy apparatus. This report describes the In-Place-Filter-Tester, the Instrument Development Plan and the Instrument Operating Method that were developed at the Los Alamos National Laboratory to determine the “as found” condition of unopened storage canisters. The Instrument Operating Method provides instructions for future evaluations of as-found canisters packaged with nuclear material. Customized stainless steel canister interfaces were developed for pressure-port access and to apply a suction clamping force for the interface. These are compatible with selected Hagan-style and SAVY-4000 storage canisters that were purchased from NFT (Nuclear Filter Technology, Golden, CO). Two instruments were developed for this effort: an initial Los Alamos POC (Proof-of-Concept) unit and the final Los Alamos IPFT system. The Los Alamos POC was used to create the Instrument Development Plan: (1) to determine the air flow and pressure characteristics associated with canister filter clogging, and (2) to test simulated configurations that mimicked canister leakage paths. The canister leakage scenarios included quantifying: (A) air leakage due to foreign material (i.e. dust and hair

  15. Design and Testing of CO2 Compression Using Supersonic Shock Wave Technology

    SciTech Connect

    Koopman, Aaron

    2015-06-01

    This report summarizes work performed by Ramgen and subcontractors in pursuit of the design and construction of a 10 MW supersonic CO2 compressor and supporting facility. The compressor will demonstrate application of Ramgen’s supersonic compression technology at an industrial scale using CO2 in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aerodynamic tools. A summary of Ramgen's ISC Engine program activity is also included. This program will demonstrate the adaptation of Ramgen's supersonic compression and advanced vortex combustion technology to result in a highly efficient and cost effective alternative to traditional gas turbine engines. The build out of a 1.5 MW test facility to support the engine and associated subcomponent test program is summarized.

  16. Leach test methodology for the Waste/Rock Interactions Technology Program

    SciTech Connect

    Bradley, D.J.; McVay, G.L.; Coles, D.G.

    1980-05-01

    Experimental leach studies in the WRIT Program have two primary functions. The first is to determine radionuclide release from waste forms in laboratory environments which attempt to simulate repository conditions. The second is to elucidate leach mechanisms which can ultimately be incorporated into nearfield transport models. The tests have been utilized to generate rates of removal of elements from various waste forms and to provide specimens for surface analysis. Correlation between constituents released to the solution and corresponding solid state profiles is invaluable in the development of a leach mechanism. Several tests methods are employed in our studies which simulate various proposed leach incident scenarios. Static tests include low temperature (below 100/sup 0/C) and high temperature (above 100/sup 0/C) hydrothermal tests. These tests reproduce nonflow or low-flow repository conditions and can be used to compare materials and leach solution effects. The dynamic tests include single-pass, continuous-flow(SPCF) and solution-change (IAA)-type tests in which the leach solutions are changed at specific time intervals. These tests simulate repository conditions of higher flow rates and can also be used to compare materials and leach solution effects under dynamic conditions. The modified IAEA test is somewhat simpler to use than the one-pass flow and gives adequate results for comparative purposes. The static leach test models the condition of near-zero flow in a repository and provides information on element readsorption and solubility limits. The SPCF test is used to study the effects of flowing solutions at velocities that may be anticipated for geologic groundwaters within breached repositories. These two testing methods, coupled with the use of autoclaves, constitute the current thrust of WRIT leach testing.

  17. Combustion aspects of the reapplication of energetic materials as fuels as a viable demil technology

    SciTech Connect

    Baxter, L.; Davis, K.; Sinquefield, S.; Huey, S.; Lipkin, J.; Shah, D.; Ross, J.; Sclippa, G.

    1996-05-01

    This investigation addresses the combustion-related aspects of the reapplication of energetic materials as fuels in boilers as an economically viable and environmentally acceptable use of excess energetic materials. The economics of this approach indicate that the revenues from power generation and chemical recovery approximately equal the costs of boiler modification and changes in operation. The primary tradeoff is the cost of desensitizing the fuels against the cost of open burn/open detonation (OB/OD) or other disposal techniques. Two principal combustion-related obstacles to the use of energetic-material-derived fuels are NO{sub x} generation and the behavior of metals. NO{sub x} measurements obtained in this investigation indicate that the nitrated components (nitrocellulose, nitroglycerin, etc.) of energetic materials decompose with NO{sub x} as the primary product. This can lead to high uncontrolled NO{sub x} levels (as high as 2,600 ppm on a 3% O{sub 2} basis for a 5% blend of energetic material in the fuel). NO{sub x} levels are sensitive to local stoichiometry and temperature. The observed trends resemble those common during the combustion of other nitrogen-containing fuels. Implications for NO{sub x} control strategies are discussed. The behavior of inorganic components in energetic materials tested in this investigation could lead to boiler maintenance problems such as deposition, grate failure, and bed agglomeration. The root cause of the problem is the potentially extreme temperature generated during metal combustion. Implications for furnace selection and operation are discussed.

  18. Vehicle Technologies Office Merit Review 2016: Collision Welding of Dissimilar Materials by Vaporizing Foil Actuator: A Breakthrough Technology for Dissimilar Materials Joining

    Energy.gov [DOE]

    Presentation given by Ohio State University at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Lightweighting

  19. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  20. Performance Evaluation of Advanced Retrofit Roof Technologies Using Field-Test Data Phase Three Final Report, Volume 2

    SciTech Connect

    Biswas, Kaushik; Childs, Phillip W.; Atchley, Jerald Allen

    2015-01-01

    This article presents some miscellaneous data from two low-slope and two steep-slope experimental roofs. The low-slope roofs were designed to compare the performance of various roof coatings exposed to natural weatherization. The steep-slope roofs contained different combinations of phase change material, rigid insulation, low emittance surface and above-sheathing ventilation, with standing-seam metal panels on top. The steep-slope roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. This article describes phase three (3) of a study that began in 2009 to evaluate the energy benefits of a sustainable re-roofing technology utilizing standing-seam metal roofing panels combined with energy efficient features like above-sheathing-ventilation (ASV), phase change material (PCM) and rigid insulation board. The data from phases 1 and 2 have been previously published and reported [Kosny et al., 2011; Biswas et al., 2011; Biswas and Childs, 2012; Kosny et al., 2012]. Based on previous data analyses and discussions within the research group, additional test roofs were installed in May 2012, to test new configurations and further investigate different components of the dynamic insulation systems. Some experimental data from phase 3 testing from May 2012 to December 2013 and some EnergyPlus modeling results have been reported in volumes 1 and 3, respectively, of the final report [Biswas et al., 2014; Biswas and Bhandari, 2014].

  1. Advanced Researech and Technology Development fossil energy materials program: Semiannual progress report for the period ending September 30, 1988

    SciTech Connect

    Not Available

    1989-01-01

    The objective of the ARandTD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The ORNL Fossil Energy Materials Program Office compiles and issues this combined semiannual progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure in which projects are organized according to materials research thrust areas. These areas are (1) Structural Ceramics, (2) Alloy Development and Mechanical Properties, (3) Corrosion and Erosion of Alloys, and (4) Assessments and Technology Transfer. Individual projects are processed separately for the data bases.

  2. TECHNICAL EVALUATION OF REMEDIATION TECHNOLOGIES FOR PLUTONIUM-CONTAMINATED SOILS AT THE NEVADA TEST SITE (NTS)

    SciTech Connect

    Steve Hoeffner

    2003-12-31

    The Clemson Environmental Technologies Laboratory (CETL) was contracted by the National Energy Technology Center to evaluate technologies that might be used to reduce the volume of plutonium-contaminated soil at the Nevada Test Site. The project has been systematically approached. A thorough review and summary was completed for: (1) The NTS soil geological, geochemical and physical characteristics; (2) The characteristics and chemical form of the plutonium that is in these soils; (3) Previous volume reduction technologies that have been attempted on the NTS soils; (4) Vendors with technology that may be applicable; and (5) Related needs at other DOE sites. Soils from the Nevada Test Site were collected and delivered to the CETL. Soils were characterized for Pu-239/240, Am-241 and gross alpha. In addition, wet sieving and the subsequent characterization were performed on soils before and after attrition scrubbing to determine the particle size distribution and the distribution of Pu-239/240 and gross alpha as a function of particle size. Sequential extraction was performed on untreated soil to provide information about how tightly bound the plutonium was to the soil. Magnetic separation was performed to determine if this could be useful as part of a treatment approach. Using the information obtained from these reviews, three vendors were selected to demonstration their volume reduction technologies at the CETL. Two of the three technologies, bioremediation and soil washing, met the performance criteria. Both were able to significantly reduce the concentration plutonium in the soil from around 1100 pCi/g to 200 pCi/g or less with a volume reduction of around 95%, well over the target 70%. These results are especially encouraging because they indicate significant improvement over that obtained in these earlier pilot and field studies. Additional studies are recommended.

  3. Testing of organic waste surrogate materials in support of the Hanford organic tank program. Final report

    SciTech Connect

    Turner, D.A.; Miron, Y.

    1994-01-01

    To address safety issues regarding effective waste management efforts of underground organic waste storage tanks at the Hanford Site, the Bureau of Mines conducted a series of tests, at the request of the Westinghouse Hanford company. In this battery of tests, the thermal and explosive characteristics of surrogate materials, chosen by Hanford, were determined. The surrogate materials were mixtures of inorganic and organic sodium salts, representing fuels and oxidants. The oxidants were sodium nitrate and sodium nitrite. The fuels were sodium salts of oxalate, citrate and ethylenediamine tetraacetic acid (EDTA). Polyethylene powder was also used as a fuel with the oxidant(s). Sodium aluminate was used as a diluent. In addition, a sample of FeCN, supplied by Hanford was also investigated.

  4. New radiological material detection technologies for nuclear forensics: Remote optical imaging and graphene-based sensors.

    SciTech Connect

    Harrison, Richard Karl; Martin, Jeffrey B.; Wiemann, Dora K.; Choi, Junoh; Howell, Stephen W.

    2015-09-01

    We developed new detector technologies to identify the presence of radioactive materials for nuclear forensics applications. First, we investigated an optical radiation detection technique based on imaging nitrogen fluorescence excited by ionizing radiation. We demonstrated optical detection in air under indoor and outdoor conditions for alpha particles and gamma radiation at distances up to 75 meters. We also contributed to the development of next generation systems and concepts that could enable remote detection at distances greater than 1 km, and originated a concept that could enable daytime operation of the technique. A second area of research was the development of room-temperature graphene-based sensors for radiation detection and measurement. In this project, we observed tunable optical and charged particle detection, and developed improved devices. With further development, the advancements described in this report could enable new capabilities for nuclear forensics applications.

  5. Preliminary results for HIP bonding Ta to W targets for the materials test station

    SciTech Connect

    Dombrowski, David E; Maloy, Stuart A

    2009-01-01

    Tungsten targets for the Materials Test Station (MTS) were clad with thin tantalum cover plates and a tantalum frame using hot isostatic pressing (HIP). A preliminary HIP parameter study showed good bonding and intimate mechanical contact for Ta cover plate thicknesses of 0.25 mm (0.010 inch) and 0.38 mm (0.015 inch). HIP temperatures of full HIP runs were 1500 C (2732 F). HIP pressure was 203 MPa (30 ksi).

  6. Abrasion and erosion testing of materials used in power production from coal

    SciTech Connect

    Tylczak, Joseph H.; Adler, Thomas A.; Rawers, James C.

    2003-09-01

    The Albany Research Center (ARC) has a long history of studying abrasive wear, related to mineral testing, handling, and processing. The center has also been instrumental in the design and development of wear test procedures and equipment. Research capabilities at ARC include Pin-on-Drum, Pin-on-Disk, and Dry Sand/Rubber Wheel abrasion tests, Jaw Crusher gouging test, Ball-on-Ball Impact test, and Jet erosion tests. Abrasive and erosive wear studies have been used to develop both new alloys and improved heat treatments of commercial alloys. As part of ARC’s newest iteration on wear testing to evaluate materials for use in new and existing pulverized coal combustion and gasifier power systems, the ARC has designed and constructed a new High Temperature Hostile Atmosphere Erosion Wear Test (HAET). This new piece of test apparatus is designed for erosive particle velocities of 10-40 m/sec and temperatures from room temperature (23°C) to 800+°C, with special control over the gas atmosphere. A variable speed whirling arm design is used to vary the impact energy of the gravity fed erosive particles. The specimens are mounted at the edge of a disk and allow a full range of impingement angles to be selected. An electric furnace heats the specimens in an enclosed retort to the selected temperature. Tests include both oxidizing conditions and reducing conditions. A range of gases, including CO, CO2, CH4, H2, H2S, HCl, N2, O2, and SO2 can be mixed and delivered to the retort. During the erosion testing a stream of abrasive powder is delivered in front of the specimens. This apparatus is designed to use low abrasive fluxes, which simulate real operating conditions in commercial power plants. Currently ~270 μm SiO2 particles are being used to simulate the abrasive impurities typically found in coal. Since operators are always striving for longer lifetimes and higher operating temperatures, this apparatus can help elucidate mechanisms of wastage and identify superior

  7. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    SciTech Connect

    Bradley, R.A.

    1981-12-01

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  8. ENVIRONMENTAL REACTIVITY OF SOLID STATE HYDRIDE MATERIALS: MODELING AND TESTING FOR AIR AND WATER EXPOSURE

    SciTech Connect

    Anton, D.; James, C.; Cortes-Concepcion, J.; Tamburello, D.; Brinkman, K.; Gray, J.

    2010-05-18

    To make commercially acceptable condensed phase hydrogen storage systems, it is important to understand quantitatively the risks involved in using these materials. A rigorous set of environmental reactivity tests have been developed based on modified testing procedures codified by the United Nations for the transportation of dangerous goods. Potential hydrogen storage material, 2LiBH4{center_dot}MgH2 and NH3BH3, have been tested using these modified procedures to evaluate the relative risks of these materials coming in contact with the environment in hypothetical accident scenarios. It is apparent that an ignition event will only occur if both a flammable concentration of hydrogen and sufficient thermal energy were available to ignite the hydrogen gas mixture. In order to predict hydride behavior for hypothesized accident scenarios, an idealized finite element model was developed for dispersed hydride from a breached system. Empirical thermodynamic calculations based on precise calorimetric experiments were performed in order to quantify the energy and hydrogen release rates and to quantify the reaction products resulting from water and air exposure. Both thermal and compositional predictions were made with identification of potential ignition event scenarios.

  9. Status and Planned Experiments of the Hiradmat Pulsed Beam Material Test Facility at CERN SPS

    SciTech Connect

    Charitonidis, Nikolaos; Efthymiopoulos, Ilias; Fabich, Adrian; Meddahi, Malika; Gianfelice-Wendt, Eliana

    2015-06-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in a dedicated environment, excluding long-time irradiation studies. The facility is designed for a maximum number of 1016 protons per year, in order to limit the activation of the irradiated samples to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and go through examples of upcoming experiments scheduled in the beam period 2015/2016.

  10. CONTROL TESTING OF THE UK NATIONAL NUCLEAR LABORATORY'S RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect

    Farfan, E.

    2009-11-23

    The UK National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. To date, the RadBall has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK. The trials have demonstrated the successful ability of the RadBall technology to be deployed and retrieved from active areas. The positive results from these initial deployment trials and the anticipated future potential of RadBall have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further underpin and strengthen the technical performance of the technology. RadBall consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. It has no power requirements and can be positioned in tight or hard-to reach places. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly less transparent, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation maps provides information on the spatial distribution and strength of the sources in a given area forming a 3D characterization of the area of interest. This study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of

  11. FOURTH STATUS REPORT: TESTING OF AGED SOFTWOOD FIBERBOARD MATERIAL FOR THE 9975 SHIPPING PACKAGE

    SciTech Connect

    Daugherty, W.

    2013-03-05

    Samples have been prepared from a 9975 lower fiberboard subassembly fabricated from softwood fiberboard. Physical, mechanical and thermal properties have been measured following varying periods of conditioning in each of several environments. These tests have been conducted in the same manner as previous testing on cane fiberboard samples. Overall, similar aging trends are observed for softwood and cane fiberboard samples, with a few differences. Some softwood fiberboard properties tend to degrade faster in elevated humidity environments, while some cane fiberboard properties degrade faster in the hotter dry environments. As a result, it is premature to assume both materials will age at the same rates, and the preliminary aging models developed for cane fiberboard might not apply to softwood fiberboard. However, it is expected that both cane and softwood fiberboard assemblies will perform satisfactorily in conforming packages stored in a typical KAMS environment for up to 15 years. Aging and testing of softwood fiberboard will continue and additional data will be collected. Post-conditioning data have been measured on samples from a single softwood fiberboard assembly, and baseline data are also available from a limited number of vendor-provided samples. This provides minimal information on the possible sample-to-sample variation exhibited by softwood fiberboard. Data to date are generally consistent with the range seen in cane fiberboard, but some portions of the data trends are skewed toward the lower end of that range. Further understanding of the variability of softwood fiberboard properties will require testing of additional material.

  12. Characterization of Ceramic Material Produced From a Cold Crucible Induction Melter Test

    SciTech Connect

    Amoroso, J.; Marra, J.

    2015-04-30

    This report summarizes the results from characterization of samples from a melt processed surrogate ceramic waste form. Completed in October of 2014, the first scaled proof of principle cold crucible induction melter (CCIM) test was conducted to process a Fe-hollandite-rich titanate ceramic for treatment of high level nuclear waste. X-ray diffraction, electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the CCIM material produced. Core samples at various radial locations from the center of the CCIM were taken. These samples were also sectioned and analyzed vertically. Together, the various samples were intended to provide an indication of the homogeneity throughout the CCIM with respect to phase assemblage, chemical composition, and chemical durability. Characterization analyses confirmed that a crystalline ceramic with desirable phase assemblage was produced from a melt using a CCIM. Hollandite and zirconolite were identified in addition to possible highly-substituted pyrochlore and perovskite. Minor phases rich in Fe, Al, or Cs were also identified. Remarkably only minor differences were observed vertically or radially in the CCIM material with respect to chemical composition, phase assemblage, and durability. This recent CCIM test and the resulting characterization in conjunction with demonstrated compositional improvements support continuation of CCIM testing with an improved feed composition and improved melter system.

  13. Ceramics Technology Project database: September 1991 summary report. [Materials for piston ring-cylinder liner for advanced heat/diesel engines

    SciTech Connect

    Keyes, B.L.P.

    1992-06-01

    The piston ring-cylinder liner area of the internal combustion engine must withstand very-high-temperature gradients, highly-corrosive environments, and constant friction. Improving the efficiency in the engine requires ring and cylinder liner materials that can survive this abusive environment and lubricants that resist decomposition at elevated temperatures. Wear and friction tests have been done on many material combinations in environments similar to actual use to find the right materials for the situation. This report covers tribology information produced from 1986 through July 1991 by Battelle columbus Laboratories, Caterpillar Inc., and Cummins Engine Company, Inc. for the Ceramic Technology Project (CTP). All data in this report were taken from the project's semiannual and bimonthly progress reports and cover base materials, coatings, and lubricants. The data, including test rig descriptions and material characterizations, are stored in the CTP database and are available to all project participants on request. Objective of this report is to make available the test results from these studies, but not to draw conclusions from these data.

  14. Design and Testing of CO2 Compression Using Supersonic Shockware Technology

    SciTech Connect

    Joe Williams; Michael Aarnio; Kirk Lupkes; Sabri Deniz

    2010-08-31

    Documentation of work performed by Ramgen and subcontractors in pursuit of design and construction of a 10 MW supersonic CO{sub 2} compressor and supporting facility. The compressor will demonstrate application of Ramgen's supersonic compression technology at an industrial scale using CO{sub 2} in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aero tools.

  15. Examination of an Optical Transmittance Test for Photovoltaic Encapsulation Materials (Presentation)

    SciTech Connect

    Miller, D.; Bengoechea, J.; Bokria, J.; Kohl, M.; Powell, N. E.; Smith, M. E.; White, M. D.; Wilson, H. R.; Wohlgemuth, J. H.

    2013-09-01

    The optical transmittance of encapsulation materials is a key characteristic for their use in photovoltaic (PV) modules. Changes in transmittance with time in the field affect module performance, which may impact product warranties. Transmittance is important in product development, module manufacturing, and field power production (both immediate and long-term). Therefore, an international standard (IEC 62788-1-4) has recently been proposed by the Encapsulation Task-Group within the Working Group 2 (WG2) of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC82) for the quantification of the optical performance of PV encapsulation materials. Existing standards, such as ASTM E903, are general and more appropriately applied to concentrated solar power than to PV. Starting from the optical transmittance measurement, the solar-weighted transmittance of photon irradiance, yellowness index (which may be used in aging studies to assess durability), and ultraviolet (UV) cut-off wavelength may all be determined using the proposed standard. The details of the proposed test are described. The results of a round-robin experiment (for five materials) conducted at seven laboratories to validate the test procedure using representative materials are also presented. For example, the Encapsulation Group actively explored the measurement requirements (wavelength range and resolution), the requirements for the spectrophotometer (including the integrating sphere and instrument accessories, such as a depolarizer), specimen requirements (choice of glass-superstrate and -substrate), and data analysis (relative to the light that may be used in the PV application). The round-robin experiment identified both intra- and inter-laboratory instrument precision and bias for five encapsulation materials (encompassing a range of transmittance and haze-formation characteristics).

  16. Examination of an Optical Transmittance Test for Photovoltaic Encapsulation Materials: Preprint

    SciTech Connect

    Miller, D. C.; Bengoechea, J.; Bokria, J. G.; Kohl, M.; Powell, N. E.; Smith, M. E.; White, M. D.; Wilson, H. R.; Wohlgemuth, J. H.

    2013-09-01

    The optical transmittance of encapsulation materials is a key characteristic for their use in photovoltaic (PV) modules. Changes in transmittance with time in the field affect module performance, which may impact product warranties. Transmittance is important in product development, module manufacturing, and field power production (both immediate and long-term). Therefore, an international standard (IEC 62788-1-4) has recently been proposed by the Encapsulation Task-Group within the Working Group 2 (WG2) of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC82) for the quantification of the optical performance of PV encapsulation materials. Existing standards, such as ASTM E903, are general and more appropriately applied to concentrated solar power than to PV. Starting from the optical transmittance measurement, the solar-weighted transmittance of photon irradiance, yellowness index (which may be used in aging studies to assess durability), and ultraviolet (UV) cut-off wavelength may all be determined using the proposed standard. The details of the proposed test are described. The results of a round-robin experiment (for five materials) conducted at seven laboratories to validate the test procedure using representative materials are also presented. For example, the Encapsulation Group actively explored the measurement requirements (wavelength range and resolution), the requirements for the spectrophotometer (including the integrating sphere and instrument accessories, such as a depolarizer), specimen requirements (choice of glass-superstrate and -substrate), and data analysis (relative to the light that may be used in the PV application). The round-robin experiment identified both intra- and inter-laboratory instrument precision and bias for five encapsulation materials (encompassing a range of transmittance and haze-formation characteristics).

  17. Dynamic materials testing and constitutive modeling of structural sheet steel for automotive applications. Final progress report

    SciTech Connect

    Cady, C.M.; Chen, S.R.; Gray, G.T. III

    1996-08-23

    The objective of this study was to characterize the dynamic mechanical properties of four different structural sheet steels used in automobile manufacture. The analysis of a drawing quality, special killed (DQSK) mild steel; high strength, low alloy (HSLA) steel; interstitial free (IF); and a high strength steel (M-190) have been completed. In addition to the true stress-true strain data, coefficients for the Johnson-Cook, Zerilli-Armstrong, and Mechanical Threshold Stress constitutive models have been determined from the mechanical test results at various strain rates and temperatures and are summarized. Compression, tensile, and biaxial bulge tests and low (below 0.1/s) strain rate tests were completed for all four steels. From these test results it was determined to proceed with the material modeling optimization using the through thickness compression results. Compression tests at higher strain rates and temperatures were also conducted and analyzed for all the steels. Constitutive model fits were generated from the experimental data. This report provides a compilation of information generated from mechanical tests, the fitting parameters for each of the constitutive models, and an index and description of data files.

  18. Vehicle Technologies Office Merit Review 2014: First Principles Calculations of Existing and Novel Electrode Materials

    Energy.gov [DOE]

    Presentation given by Massachusetts Institute of Technology at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about first...

  19. Vehicle Technologies Office Merit Review 2015: First Principles Calculations of Existing and Novel Electrode Material

    Energy.gov [DOE]

    Presentation given by Massachusetts Institute of Technology at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about first...

  20. Materials Development Program, Ceramic Technology Project addendum to program plan: Cost effective ceramics for heat engines

    SciTech Connect

    Not Available

    1992-08-01

    This is a new thrust in the Ceramic Technology project. This effort represents an expansion of the program and an extension through FY 1997. Moderate temperature applications in conventional automobile and truck engines will be included along with high-temp. gas turbine and low heat rejection diesel engines. The reliability goals are expected to be met on schedule by end of FY 1993. Ceramic turbine rotors have been run (in DOE's ATTAP program) for 1000 h at 1370C and full speed. However, the cost of ceramic components is a deterrrent to near-term commercialization. A systematic approach to reducing this cost includes the following elements: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, and testing and data base development. A draft funding plan is outlined. 6 figs, 1 tab.

  1. Materials Development Program, Ceramic Technology Project addendum to program plan: Cost effective ceramics for heat engines

    SciTech Connect

    Not Available

    1992-08-01

    This is a new thrust in the Ceramic Technology project. This effort represents an expansion of the program and an extension through FY 1997. Moderate temperature applications in conventional automobile and truck engines will be included along with high-temp. gas turbine and low heat rejection diesel engines. The reliability goals are expected to be met on schedule by end of FY 1993. Ceramic turbine rotors have been run (in DOE`s ATTAP program) for 1000 h at 1370C and full speed. However, the cost of ceramic components is a deterrrent to near-term commercialization. A systematic approach to reducing this cost includes the following elements: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, and testing and data base development. A draft funding plan is outlined. 6 figs, 1 tab.

  2. TBM/MTM for HTS-FNSF: An innovative testing strategy to qualify/validate fusion technologies for U.S. DEMO

    DOE PAGES [OSTI]

    El-Guebaly, Laila; Rowcliffe, Arthur; Menard, Jonathan; Brown, Thomas

    2016-08-11

    The qualification and validation of nuclear technologies are daunting tasks for fusion demonstration (DEMO) and power plants. This is particularly true for advanced designs that involve harsh radiation environment with 14 MeV neutrons and high-temperature operating regimes. This paper outlines the unique qualification and validation processes developed in the U.S., offering the only access to the complete fusion environment, focusing on the most prominent U.S. blanket concept (the dual cooled PbLi (DCLL)) along with testing new generations of structural and functional materials in dedicated test modules. The venue for such activities is the proposed Fusion Nuclear Science Facility (FNSF), whichmore » is viewed as an essential element of the U.S. fusion roadmap. A staged blanket testing strategy has been developed to test and enhance the DCLL blanket performance during each phase of FNSF D-T operation. A materials testing module (MTM) is critically important to include in the FNSF as well to test a broad range of specimens of future, more advanced generations of materials in a relevant fusion environment. Here, the most important attributes for MTM are the relevant He/dpa ratio (10–15) and the much larger specimen volumes compared to the 10–500 mL range available in the International Fusion Materials Irradiation Facility (IFMIF) and European DEMO-Oriented Neutron Source (DONES).« less

  3. US program on materials technology for ultra-supercritical coal power plants

    SciTech Connect

    Viswanathan, R.; Henry, J.F.; Tanzosh, J.; Stanko, G.; Shingledecker, J.; Vitalis, B.; Purgert, R.

    2005-06-01

    The study reported on here is aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers that are capable of operating with steam at temperatures of 760{sup o}C (1400{sup o}F) and pressures of 35 MPa (5000 psi). The economic viability of such a plant has been explored. Candidate alloys applicable to various ranges of temperatures have been identified. Stress rupture tests have been completed on the base metal and on welds to a number of alloys. Steamside oxidation tests in an autoclave at 650{sup o}C (1200{sup o}F) and 800{sup o}C (1475 {sup o}F) have been completed. Fireside corrosion tests have been conducted under conditions simulating those of waterwalls and superheater/reheater tubes. The weldability and fabricability of the alloys have been investigated. The capabilities of various overlay coatings and diffusion coatings have been examined. This article provides a status report on the progress achieved to date on this project.

  4. Geothermal fracture stimulation technology. Volume II. High-temperature proppant testing

    SciTech Connect

    Not Available

    1980-07-01

    Data were obtained from a newly built proppant tester, operated at actual geothermal temperatures. The short term test results show that most proppants are temperature sensitive, particularly at the higher closure stresses. Many materials have been tested using a standard short-term test, i.e., fracture-free sand, bauxite, and a resin-coated sand retained good permeability at the high fluid temperatures in brine over a range of closure stresses. The tests were designed to simulate normal closure stress ranges for geothermal wells which are estimated to be from 2000 to 6000 psi. Although the ultra high closure stresses in oil and gas wells need not be considered with present geothermal resources, there is a definite need for chemically inert proppants that will retain high permeability for long time periods in the high temperature formations.

  5. Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility - Final Report

    SciTech Connect

    Chang H. Oh

    2006-06-01

    Generation IV reactors will need to be intrinsically safe, having a proliferation-resistant fuel cycle and several advantages relative to existing light water reactor (LWR). They, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30 percent reduction in power cost for stateof-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to the Very-High-Temperature Gas-Cooled Reactor (VHTR), (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which eventually increase plant net efficiency.

  6. Analysis of molybdenum-99 production capability in the materials test station

    SciTech Connect

    Pitcher, Eric J

    2009-01-01

    The United States of America currently relies on foreign suppliers to meet all of it needs for molybdenum-99 (Mo-99) used in medical diagnostic procedures. The current US demand is at least 5000 six-day curies per week. Neutronics calculations have been performed to assess whether the proposed Materials Test Station (MTS) could potentially generate Mo-99. Two target material options have been explored for Mo-99 production in the MTS: low enriched uranium (LEU) and Tc-99. For LEU, scoping calculations indicate that MTS can supply nearly half of the current US demand with only minor neutronic impact on the MTS primary mission. For the Tc-99 option, the MTS could produce about one-tenth of the US demand.

  7. Subtask 5.10 - Testing of an Advanced Dry Cooling Technology for Power Plants

    SciTech Connect

    Martin, Christopher; Pavlish, John

    2013-09-30

    The University of North Dakota’s Energy & Environmental Research Center (EERC) is developing a market-focused dry cooling technology that is intended to address the key shortcomings of conventional dry cooling technologies: high capital cost and degraded cooling performance during daytime temperature peaks. The unique aspect of desiccant dry cooling (DDC) is the use of a hygroscopic working fluid—a liquid desiccant—as a heat-transfer medium between a power plant’s steam condenser and the atmosphere. This configuration enables a number of beneficial features for large-scale heat dissipation to the atmosphere, without the consumptive use of cooling water. The overall goal of this project was to accurately define the performance and cost characteristics of DDC to determine if further development of the concept is warranted. A balanced approach of modeling grounded in applied experimentation was pursued to substantiate DDC-modeling efforts and outline the potential for this technology to cool full-scale power plants. The resulting analysis shows that DDC can be a lower-cost dry cooling alternative to an air-cooled condenser (ACC) and can even be competitive with conventional wet recirculating cooling under certain circumstances. This project has also highlighted the key technological steps that must be taken in order to transfer DDC into the marketplace. To address these issues and to offer an extended demonstration of DDC technology, a next-stage project should include the opportunity for outdoor ambient testing of a small DDC cooling cell. This subtask was funded through the EERC–U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the Wyoming State Legislature under an award made through the Wyoming Clean Coal Technologies Research Program.

  8. Materials

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Materials Materials Access to Hopper Phase II (Cray XE6) If you are a current NERSC user, you are enabled to use Hopper Phase II. Use your SSH client to connect to Hopper II:...

  9. Solar tests of aperture plate materials for solar thermal dish collectors

    SciTech Connect

    Jaffe, L.D.

    1983-08-15

    In parabolic dish solar collectors, walk-off of the spot of concentrated sunlight can be a hazard if a malfunction causes the concentration to stop following the sun. Therefore, a test program was carried out to evaluate the behavior of various ceramics, metals, and polymers under solar irradiation of about 7000 kW/m/sup 2/ (peak) for 15 minutes. The only materials that did not slump or shatter were two grades of medium-grain extruded graphite. High-purity, slip-cast silica might be satisfactory at somewhat lower flux. Oxidation of the graphite appeared acceptable during tests simulating walk-off, acquisition (2000 cycles on/off sun), and spillage (continuous on-sun operation).

  10. Pilot Testing of WRI'S Novel Mercury Control Technology by Pre-Combustion Thermal Treatment of Coal

    SciTech Connect

    Alan Bland; Jesse Newcomer; Kumar Sellakumar

    2008-08-17

    The challenges to the coal-fired power industry continue to focus on the emission control technologies, such as mercury, and plant efficiency improvements. An alternate approach to post-combustion control of mercury, while improving plant efficiency deals with Western Research Institute's (WRI)'s patented pre-combustion mercury removal and coal upgrading technology. WRI was awarded under the DOE's Phase III Mercury program, to evaluate the effectiveness of WRI's novel thermal pretreatment process to achieve >50% mercury removal, and at costs of <$30,000/lb of Hg removed. WRI has teamed with Etaa Energy, Energy and Environmental Research Center (EERC), Foster Wheeler North America Corp. (FWNA), and Washington Division of URS (WD-URS), and with project co-sponsors including Electric Power Research Institute (EPRI), Southern Company, Basin Electric Power Cooperative (BEPC), Montana-Dakota Utilities (MDU), North Dakota Industrial Commission (NDIC), Detroit Edison (DTE), and SaskPower to undertake this evaluation. The technical objectives of the project were structured in two phases: Phase I--coal selection and characterization, and bench-and PDU-scale WRI process testing and; and Phase II--pilot-scale pc combustion testing, design of an integrated boiler commercial configuration, its impacts on the boiler performance and the economics of the technology related to market applications. This report covers the results of the Phase I testing. The conclusion of the Phase I testing was that the WRI process is a technically viable technology for (1) removing essentially all of the moisture from low rank coals, thereby raising the heating value of the coal by about 30% for subbituminous coals and up to 40% for lignite coals, and (2) for removing volatile trace mercury species (up to 89%) from the coal prior to combustion. The results established that the process meets the goals of DOE of removing <50% of the mercury from the coals by pre-combustion methods. As such, further

  11. FUNDAMENTAL ENVIRONMENTAL REACTIVITY TESTING AND ANALYSIS OF THE HYDROGEN STORAGE MATERIAL 2LIBH4 MGH2

    SciTech Connect

    James, C.; Anton, D.; Cortes-Concepcion, J.; Brinkman, K.; Gray, J.

    2012-01-10

    While the storage of hydrogen for portable and stationary applications is regarded as critical in bringing PEM fuel cells to commercial acceptance, little is known of the environmental exposure risks posed in utilizing condensed phase chemical storage options as in complex hydrides. It is thus important to understand the effect of environmental exposure of metal hydrides in the case of accident scenarios. Simulated tests were performed following the United Nations standards to test for flammability and water reactivity in air for a destabilized lithium borohydride and magnesium hydride system in a 2 to 1 molar ratio respectively. It was determined that the mixture acted similarly to the parent, lithium borohydride, but at slower rate of reaction seen in magnesium hydride. To quantify environmental exposure kinetics, isothermal calorimetry was utilized to measure the enthalpy of reaction as a function of exposure time to dry and humid air, and liquid water. The reaction with liquid water was found to increase the heat flow significantly during exposure compared to exposure in dry or humid air environments. Calorimetric results showed the maximum normalized heat flow the fully charged material was 6 mW/mg under liquid phase hydrolysis; and 14 mW/mg for the fully discharged material also occurring under liquid phase hydrolysis conditions.

  12. Long-term materials test program. Quarterly report, January-March 1983

    SciTech Connect

    1984-03-01

    Exposure of gas turbine materials to a PFBC effluent under the Long-Term Materials Test Program has reached 1507 hours. Unprotected nickel and cobalt base blade and vane alloys show susceptibility to hot corrosion at 1500/sup 0/F (gas temperature), 1300/sup 0/F, and 1100/sup 0/F (air-cooled pins). Precious metal aluminide and M (Co,Fe) CrAlY overlay coatings continue to show good resistance to corrosion above 1450/sup 0/F, but are susceptible to varying degrees of pitting attack between 1050 and 1300/sup 0/F. Significant erosion/corrosion degradation of both base alloys and protective coatings/claddings has been observed on airfoil specimens exposed at 1350/sup 0/F, 800 to 900 fps and dust loadings less than 100 ppM for 1085 hours. Corrosion predominately occurred in areas of direct particle impaction; i.e., leading edge and pressure surface, indicating an erosion/corrosion synergism. At gas velocities of 1200 to 1400 fps, a platinum-aluminide coated IN-738 pin experienced a metal recession rate of 8 mils/1000-hours. The PFBC facility continues to show excellent operational reliability, accumulating over 1100 test hours this quarter. The only concern from an operations standpoint is the gradual thinning of the in-bed heat exchanger tubing at a rate of about 5 mils/100 hours off the diameter.

  13. DEVELOPMENT OF A SENSOR NETWORK TEST BED FOR ISD MATERIALS AND STRUCUTRAL CONDITION MONITORING

    SciTech Connect

    Zeigler, K.; Ferguson, B.; Karapatakis, D.; Herbst, C.; Stripling, C.

    2011-07-06

    The P Reactor at the Savannah River Site is one of the first reactor facilities in the US DOE complex that has been placed in its end state through in situ decommissioning (ISD). The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. To evaluate the feasibility and utility of remote sensors to provide verification of ISD system conditions and performance characteristics, an ISD Sensor Network Test Bed has been designed and deployed at the Savannah River National Laboratory. The test bed addresses the DOE-EM Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of: (1) Groutable thermistors for temperature and moisture monitoring; (2) Strain gauges for crack growth monitoring; (3) Tiltmeters for settlement monitoring; and (4) A communication system for data collection. Preliminary baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment.

  14. EA-1954: Resumption of Transient Testing of Nuclear Fuels and Materials at the Idaho National Laboratory, Idaho

    Energy.gov [DOE]

    This Environmental Assessment (EA) evaluates U.S. Department of Energy (DOE) activities associated with its proposal to resume testing of nuclear fuels and materials under transient high-power test conditions at the Transient Reactor Test (TREAT) Facility at the Idaho National Laboratory. The State of Idaho and Shoshone-Bannock Tribes are cooperating agencies.

  15. Residual-oil-saturation-technology test, Bell Creek Field, Montana. Final report

    SciTech Connect

    Not Available

    1981-06-01

    A field test was conducted of the technology available to measure residual oil saturation following waterflood secondary oil recovery processes. The test was conducted in a new well drilled solely for that purpose, located immediately northwest of the Bell Creek Micellar Polymer Pilot. The area where the test was conducted was originally drilled during 1968, produced by primary until late 1970, and was under line drive waterflood secondary recovery until early 1976, when the area was shut in at waterflood depletion. This report presents the results of tests conducted to determine waterflood residual oil saturation in the Muddy Sandstone reservoir. The engineering techniques used to determine the magnitude and distribution of the remaining oil saturation included both pressure and sidewall cores, conventional well logs (Dual Laterolog - Micro Spherically Focused Log, Dual Induction Log - Spherically Focused Log, Borehole Compensated Sonic Log, Formation Compensated Density-Compensated Neutron Log), Carbon-Oxygen Logs, Dielectric Logs, Nuclear Magnetism Log, Thermal Decay Time Logs, and a Partitioning Tracer Test.

  16. DEVELOPMENT OF ADVANCED DRILL COMPONENTS FOR BHA USING MICROWAVE TECHNOLOGY INCORPORATING CARBIDE, DIAMOND COMPOSITES AND FUNCTIONALLY GRADED MATERIALS

    SciTech Connect

    Dinesh Agrawal; Rustum Roy

    2003-01-01

    The microwave processing of materials is a new emerging technology with many attractive advantages over the conventional methods. The advantages of microwave technology for various ceramic systems has already been demonstrated and proven. The recent developments at Penn State have succeeded in applying the microwave technology for the commercialization of WC/Co and diamond based cutting and drilling tools, effectively sintering of metallic materials, and fabrication of transparent ceramics for advanced applications. In recent years, the Microwave Processing and Engineering Center at Penn State University in collaboration with our industrial partner, Dennis Tool Co. has succeeded in commercializing the developed microwave technology partially funded by DOE for WC/Co and diamond based cutting and drilling tools for gas and oil exploration operations. In this program we have further developed this technology to make diamond-carbide composites and metal-carbide-diamond functionally graded materials. Several actual product of diamond-carbide composites have been processed in microwave with better performance than the conventional product. The functionally graded composites with diamond as one of the components has been for the first time successfully developed. These are the highlights of the project.

  17. Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  18. FIFTH STATUS REPORT: TESTING OF AGED SOFTWOOD FIBERBOARD MATERIAL FOR THE 9975 SHIPPING PACKAGE

    SciTech Connect

    Daugherty, W.; Skidmore, E.; Dunn, K.

    2014-04-15

    Samples have been prepared from a 9975 lower fiberboard subassembly fabricated from softwood fiberboard. Physical, mechanical and thermal properties have been measured following varying periods of conditioning in each of several environments. These tests have been conducted in the same manner as previous testing on cane fiberboard samples. Overall, similar aging trends are observed for softwood and cane fiberboard samples, with a few differences. Some softwood fiberboard properties tend to degrade faster in elevated humidity environments, while some cane fiberboard properties degrade faster in the hotter dry environments. As a result, it is premature to assume both materials will age at the same rates, and the preliminary aging models developed for cane fiberboard might not apply to softwood fiberboard. However, it is expected that both cane and softwood fiberboard assemblies will perform satisfactorily in conforming packages stored in a typical KAC storage environment for up to 15 years. Aging and testing of softwood fiberboard will continue and additional data will be collected. Additional samples will be added to each aging environment, to support development of an aging model specific to softwood fiberboard. Post-conditioning data have been measured on samples from a single softwood fiberboard assembly, and baseline data are also available from a limited number of vendor-provided samples. This provides minimal information on the possible sample-to-sample variation exhibited by softwood fiberboard. Data to date are generally consistent with the range seen in cane fiberboard, but some portions of the data trends are skewed toward the lower end of that range. Two additional softwood fiberboard source packages have been obtained and will begin to provide data on the range of variability of this material.

  19. Characterization and testing of amidoxime-based adsorbent materials to extract uranium from natural seawater

    SciTech Connect

    Kuo, Li-Jung; Janke, Christopher James; Wood, Jordana; Strivens, Jonathan E.; Gill, Gary

    2015-11-19

    Extraction of uranium (U) from seawater for use as a nuclear fuel is a significant challenge due to the low concentration of U in seawater (~3.3 ppb) and difficulties to selectively extract U from the background of major and trace elements in seawater. The Pacific Northwest National Laboratory (PNNL) s Marine Sciences Laboratory (MSL) has been serving as a marine test site for determining performance characteristics (adsorption capacity, adsorption kinetics, and selectivity) of novel amidoxime-based polymeric adsorbents developed at Oak Ridge National Laboratory (ORNL) under natural seawater exposure conditions. This report describes the performance of three formulations (38H, AF1, AI8) of amidoxime-based polymeric adsorbent produced at ORNL in MSL s ambient seawater testing facility. The adsorbents were produced in two forms, fibrous material (40-100 mg samples) and braided material (5-10 g samples), exposed to natural seawater using flow-through columns and recirculating flumes. All three formulations demonstrated high 56 day uranium adsorption capacity (>3 gU/kg adsorbent). The AF1 formulation had the best uranium adsorption performance, with 56-day capacity of 3.9 g U/kg adsorbent, saturation capacity of 5.4 g U/kg adsorbent, and ~25 days half-saturation time. The two exposure methods, flow-through columns and flumes were demonstrated to produce similar performance results, providing confidence that the test methods were reliable, that scaling up from 10 s of mg quantities of exposure in flow-through columns to gram quantities in flumes produced similar results, and that the manufacturing process produces a homogenous adsorbent. Adsorption kinetics appear to be element specific, with half-saturation times ranging from minutes for the major cations in seawater to 8-10weeks for V and Fe. Reducing the exposure time provides a potential pathway to improve the adsorption capacity of U by reducing the V/U ratio on the adsorbent.

  20. Laboratory corrosion tests for simulating fireside wastage of superheater materials in waste incinerators

    SciTech Connect

    Otsuka, N.; Kawahara, Y.; Fukuda, Y.; Hosoda, T.

    1999-11-01

    Laboratory corrosion tests were performed to clarify the effects of relative amounts of fused salts in tube deposits on corrosion rates of superheater materials in WTE plants. All test exposures were at 550 C and of 100 hour duration. The nine synthetic ashes used as corrodents consisted of mixtures of chlorides, sulfates and oxides. The test materials were alloy steel T22, stainless steels TP347H, TP310HCbN, and alloys HR11N and 625. The gas atmosphere consisted of 500 to 3000 ppm HCl-30ppm SO{sub 2}-10%O{sub 2}-10%CO{sub 2}-20%H{sub 2}O-bal.N{sub 2}. Generally, the relative amount of fused salts in non-fused ash constituents at 550 C increased with increasing the chlorine content of the ashes. The corrosion rate of T22 steel did not depend directly on ash chlorine content, but for ashes of 7.7 wt.%Cl, the corrosion rate depended on the calculated amount of fused salt at 500 C. The corrosion rates of TP347H steel and alloy 625 were maximum for ashes of 6--8 wt%Cl. For ashes of 7.7 wt.%Cl, the corrosion rates of T22 steel, stainless steels, and alloys increased with ashes having higher amounts of fused salts. Increased HCl content of the gas caused higher corrosion of the stainless steels and high-nickel alloys, but there was no clear corrosion-exacerbating effect with T22 steel.

  1. Sixth Status Report: Testing of Aged Softwood Fiberboard Material for the 9975 Shipping Package

    SciTech Connect

    Daugherty, W.

    2015-03-31

    Samples have been prepared from several 9975 lower fiberboard subassemblies fabricated from softwood fiberboard. Physical, mechanical and thermal properties have been measured following varying periods of conditioning in each of several environments. These tests have been conducted in the same manner as previous testing on cane fiberboard samples. Overall, similar aging trends are observed for softwood and cane fiberboard samples, with a few differences. Some softwood fiberboard properties tend to degrade faster in some environments, while some cane fiberboard properties degrade faster in the two most aggressive environments. As a result, it is premature to assume both materials will age at the same rates, and the preliminary aging models developed for cane fiberboard might not apply to softwood fiberboard. However, it is expected that both cane and softwood fiberboard assemblies will perform satisfactorily in conforming packages stored in a typical KAC storage environment for up to 15 years. Samples from an additional 3 softwood fiberboard assemblies have begun aging during the past year to provide information on the variability of softwood fiberboard behavior. Aging and testing of softwood fiberboard will continue and additional data will be collected to support development of an aging model specific to softwood fiberboard.

  2. Available Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    application. Search Our Technologies submit Advanced Materials Advanced Materials Biotechnology Biotechnology Chemistry Chemistry Energy Energy High Performance Computing:...

  3. Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technologies Technologies Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate-affect, detect, and neutralize & mitigate all types of explosive threats. v Technologies Since its inception in 1943, Los Alamos National Laboratory has been a driving force in explosives science. Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate, detect, and mitigate all types of explosive threats. ANDE:

  4. Energy Smart Schools--Applied Research, Field Testing, and Technology Integration

    SciTech Connect

    Nebiat Solomon; Robin Vieira; William L. Manz; Abby Vogen; Claudia Orlando; Kimberlie A. Schryer

    2004-12-01

    The National Association of State Energy Officials (NASEO) in conjunction with the California Energy Commission, the Energy Center of Wisconsin, the Florida Solar Energy Center, the New York State Energy Research and Development Authority, and the Ohio Department of Development's Office of Energy Efficiency conducted a four-year, cost-share project with the U.S. Department of Energy (USDOE), Office of Energy Efficiency and Renewable Energy to focus on energy efficiency and high-performance technologies in our nation's schools. NASEO was the program lead for the MOU-State Schools Working group, established in conjunction with the USDOE Memorandum of Understanding process for collaboration among state and federal energy research and demonstration offices and organizations. The MOU-State Schools Working Group included State Energy Offices and other state energy research organizations from all regions of the country. Through surveys and analyses, the Working Group determined the school-related energy priorities of the states and established a set of tasks to be accomplished, including the installation and evaluation of microturbines, advanced daylighting research, testing of schools and classrooms, and integrated school building technologies. The Energy Smart Schools project resulted in the adoption of advanced energy efficiency technologies in both the renovation of existing schools and building of new ones; the education of school administrators, architects, engineers, and manufacturers nationwide about the energy-saving, economic, and environmental benefits of energy efficiency technologies; and improved the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in classrooms. It also provided an opportunity for states to share and replicate successful projects to increase their energy efficiency while at the same time driving down their energy costs.

  5. Fracture toughness testing of bi-material joints with high strength mis-match

    SciTech Connect

    Kocak, M.; Hornet, P.; Cornec, A.; Schwalbe, K.H.

    1995-12-31

    This paper deals with the influence of strength mis-match on CTOD ({delta}{sub 5}) R-curves obtained from homogeneous and electron beam (EB) welded bimaterial CT and SENB specimens of two aluminum alloys. The R-curves of metal-metal bimaterial specimens are compared with the R-curves of each alloy to determine the effect of strength mismatch on the locally measured CTOD ({delta}{sub 5}) fracture toughness properties. The homogeneous specimens of two different aluminum alloys, namely 2024-FC and 2024-T351 with yield strengths of 80 and 360 MPa respectively, as well as EB welded bi-material 5 mm thick CT and SENB specimens (a/W = 0.15 and 0.5) have been tested at room temperature. The local CTOD ({delta}{sub 5}) fracture toughness measurements on such composite specimen configurations produced generally strength mis-match and geometry independent R-curves.

  6. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program, April 1, 1991--March 31, 1993

    SciTech Connect

    Carlson, P.T.

    1993-05-01

    Objective of DOE`s Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications, with focus on longer-term needs. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. Scope of the program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. Research conducted on the Program is divided among the following areas: (1) ceramics, (2) new alloys, (3) corrosion research, and (4) program development and technology transfer. This bibliography covers the period of April 1, 1992, through March 31, 1993, and is a supplement to previous bibliographies in this series. The publications listed are limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles.

  7. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program, April 1, 1991--March 31, 1993

    SciTech Connect

    Carlson, P.T.

    1993-01-01

    Objective of DOE's Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications, with focus on longer-term needs. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. Scope of the program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. Research conducted on the Program is divided among the following areas: (1) ceramics, (2) new alloys, (3) corrosion research, and (4) program development and technology transfer. This bibliography covers the period of April 1, 1992, through March 31, 1993, and is a supplement to previous bibliographies in this series. The publications listed are limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles.

  8. A Residual Mass Ballistic Testing Method to Compare Armor Materials or Components (Residual Mass Ballistic Testing Method)

    SciTech Connect

    Benjamin Langhorst; Thomas M Lillo; Henry S Chu

    2014-05-01

    A statistics based ballistic test method is presented for use when comparing multiple groups of test articles of unknown relative ballistic perforation resistance. The method is intended to be more efficient than many traditional methods for research and development testing. To establish the validity of the method, it is employed in this study to compare test groups of known relative ballistic performance. Multiple groups of test articles were perforated using consistent projectiles and impact conditions. Test groups were made of rolled homogeneous armor (RHA) plates and differed in thickness. After perforation, each residual projectile was captured behind the target and its mass was measured. The residual masses measured for each test group were analyzed to provide ballistic performance rankings with associated confidence levels. When compared to traditional V50 methods, the residual mass (RM) method was found to require fewer test events and be more tolerant of variations in impact conditions.

  9. Ocean Thermal Energy Conversion cold water pipe at-sea test program status report. Design, fabrication, materials testing

    SciTech Connect

    Not Available

    1982-02-01

    This report describes the selection, testing, fabrication, and eventual deployment of a piping system for an OTEC platform.

  10. Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Battery Testing, Design and Analysis Activity

    Energy.gov [DOE]

    Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the battery testing, design, and analysis activity.

  11. DTE Energy Technologies With Detroit Edison Co. and Kinectrics Inc.: Distributed Resources Aggregation Modeling and Field Configuration Testing

    SciTech Connect

    Not Available

    2003-10-01

    Summarizes the work of DTE Energy Technologies, Detroit Edison, and Kinectrics, under contract to DOE's Distribution and Interconnection R&D, to develop distributed resources aggregation modeling and field configuration testing.

  12. Application of soil barriers for encapsulation of contaminants using special blocking materials and sealing technologies

    SciTech Connect

    Kretzschmar, H.J.; Lakatos, I.

    1997-12-31

    This paper describes the use of Montanwax and polymersilicate solution for use as blocking materials for the containment of pollutants.

  13. A Virtual Test Approach to Incorporate Materials and Manufacturing Processes to Aid Design choices in High Performance Composites

    SciTech Connect

    Gonzalez-Murillo, C.; Price, M.

    2011-05-04

    The increasing use of fibre reinforced composites in structural components in the aerospace industry is providing many challenges to designers in understanding how they can be used more effectively to exploit their advantages. One of the main challenges is the selection of lay-ups for a given application. The difficulty lies in the variability that is achievable with composites. Each new layup or configuration is effectively a new material and requires and extensive test programme to validate the performance, from coupons which give basic material characteristics, up through the test pyramid through to large sub-component which contains basic assemblies. This variety of testing gives confidence in understanding the material behaviour and performance in structural assemblies. On the other hand, the manufacturing process is also important here with different processes sometimes needed for different materials or thicknesses. This is a time consuming and expensive process requiring many thousands of small tests leading up to a few major tests which are complex to set up and carry out. This research is attempting to address this by developing a virtual test system which will sit hand-in-hand with a physical test system. The goal of virtual tests appears reachable using the finite element analysis technique in which many experimental tests can be replaced by high fidelity simulations. The payoff in reduced cycle time and costs for designing and certifying composite structures is very attractive; and the possibility also arises of considering material configurations that are too complex to certify by purely empirical methods. The validated simulations could then be subsequently used for variants or derivatives of composites to inform design choices and establish new validation programmes where appropriate. This paper presents a series of simulations of the critical testing procedures needed to validate high performance composites materials using linear and non

  14. Vehicle Technologies Office Merit Review 2015: Continuum Modeling as a Guide to Developing New Battery Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Lawrence Berkley National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  15. Vehicle Technologies Office Merit Review 2015: Process Development and Scale up of Advanced Active Battery Materials

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Process...

  16. Vehicle Technologies Office Merit Review 2014: Process Development and Scale Up of Advanced Electrolyte Materials

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about process...

  17. Vehicle Technologies Office Merit Review 2015: Design of High Performance, High Energy Cathode Materials

    Energy.gov [DOE]

    Presentation given by Lawrence Berkley National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

  18. Diesel Particulate Filtration (DPF) Technology: Success stories at the High Temperature Materials Laboratory (HTML) User Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  19. Vehicle Technologies Office Merit Review 2014: First Principles Calculations and NMR Spectroscopy of Electrode Materials

    Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about first principles calculations...

  20. Vehicle Technologies Office Merit Review 2014: Development of High-Energy Cathode Materials

    Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...