National Library of Energy BETA

Sample records for manufacture advanced lithium

  1. Manufacturing of Protected Lithium Electrodes for Advanced Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy of Protected Lithium Electrodes for Advanced Batteries Manufacturing of Protected Lithium Electrodes for Advanced Batteries PolyPlus Battery Company - Berkeley, CA A protected lithium electrode, solid electrolyte, and scaled-up manufacturing process will be developed for high-energy-density lithium batteries. This project will scale up production from a batch mode to a high-volume process. Commercial introduction of this manufacturing process could extend the driving

  2. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water, and Lithium-Sulfur batteries

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Protected Lithium Electrodes for Advanced Batteries Manufacturing of Protected Lithium Electrodes for Advanced Lithium- Air, Lithium-Water, and Lithium-Sulfur Batteries Developing a Lower Cost and Higher Energy Density Alternative to Lithium- Ion Batteries Introduction As the world moves toward increased electric transportation and the use of renewable sources of energy for grid power, advanced electrochemical energy storage technologies will become more and more important. The introduction of

  3. Manufacturing of Protected Lithium Electrodes for Advanced Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the largest manufacturer of rechargeable lead-acid batteries in the world and recognized as ... entirely petroleum-based > 20B battery industry PLE-based batteries provide ...

  4. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    SciTech Connect

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  5. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program ...

  6. Advanced Manufacturing Office News

    SciTech Connect

    2013-08-08

    News stories about advanced manufacturing, events, and office accomplishments. Subscribe to receive updates.

  7. National Alliance for Advanced Transportation Battery Cell Manufacture...

    OpenEI (Open Energy Information) [EERE & EIA]

    Manufacture Product: US-based consortium formed to research, develop, and mass produce lithium ion batteries. References: National Alliance for Advanced Transportation Battery Cell...

  8. The Advanced Manufacturing Partnership and the Advanced Manufacturing Program Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office Webcasts for Industry Advanced Manufacturing Office US Department of Energy Mike Molnar Chief Manufacturing Officer National Institute of Standards and Technology Carrie Houtman Senior Public Policy Manager Dow Chemical Overview * Advanced Manufacturing Activities * Advanced Manufacturing Partnership (AMP) * AMP Steering Committee * AMP Workstream Study Groups * Office of Manufacturing Policy (OMP) * NSTC

  9. The Advanced Manufacturing Partnership and the Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    National Program Office | Department of Energy The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office This presentation describes the Advanced Manufacturing Partnership from its beginning as a recommendation of the President's Council of Advisers on Science and Technology to its development and organization. The Advanced Manufacturing Partnership and the

  10. Advanced Vehicles Manufacturing Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects DOE-LPO_ATVM-Economic-Growth_Thumbnail.png DRIVING ECONOMIC GROWTH: ADVANCED TECHNOLOGY VEHICLES

  11. Advanced Materials Manufacturing (AMM) Session

    Energy.gov [DOE] (indexed site)

    ... Advanced Manufacturing Office (AMO) manufacturing.energy.gov 12 An AMM InstituteConsortium Approach Offers... ComputationalExperimentalBig Data Synergies: The AMM ...

  12. Advanced Manufacture of Reflectors

    Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  13. Advanced Lithium Power Inc ALP | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lithium Power Inc ALP Jump to: navigation, search Name: Advanced Lithium Power Inc (ALP) Place: Vancouver, British Columbia, Canada Product: They develop lithium ion and advanced...

  14. Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Separator | Department of Energy Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt009_es_rumierz_2012_p.pdf (745.7 KB) More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US

  15. Institute for Advanced Composites Manufacturing Innovation Holds...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Institute for Advanced Composites Manufacturing Innovation Holds Second Membership Meeting Institute for Advanced Composites Manufacturing Innovation Holds Second Membership Meeting ...

  16. Advanced Manufacturing Technician

    Energy.gov [DOE]

    Alternate Title(s):Manufacturing Production Technician; Electro-Mechanical Technician; Electronics Maintenance Technician  

  17. Advanced Manufacturing | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The U.S. Department of Energy funds the research, development, and demonstration of highly ... that enable the development and demonstration of advanced manufacturing ...

  18. Advanced Lithium Ion Battery Technologies - Energy Innovation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Find More Like This Return to Search Advanced Lithium Ion Battery Technologies Lawrence ... improved battery life when used in the fabrication of negative silicon electrodes. ...

  19. Development of Polymer Electrolytes for Advanced Lithium Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  20. Lithium ion batteries and their manufacturing challenges

    SciTech Connect

    Daniel, Claus

    2015-03-01

    There is no single lithium ion battery. With the variety of materials and electrochemical couples available, it is possible to design battery cells specific to their applications in terms of voltage, state of charge use, lifetime needs, and safety. Selection of specific electrochemical couples also facilitates the design of power and energy ratios and available energy. Integration in a large format cell requires optimized roll-to-roll electrode manufacturing and use of active materials. Electrodes are coated on a metal current collector foil in a composite structure of active material, binders, and conductive additives, requiring careful control of colloidal chemistry, adhesion, and solidification. But the added inactive materials and the cell packaging reduce energy density. Furthermore, degree of porosity and compaction in the electrode can affect battery performance.

  1. Lithium ion batteries and their manufacturing challenges

    DOE PAGES [OSTI]

    Daniel, Claus

    2015-03-01

    There is no single lithium ion battery. With the variety of materials and electrochemical couples available, it is possible to design battery cells specific to their applications in terms of voltage, state of charge use, lifetime needs, and safety. Selection of specific electrochemical couples also facilitates the design of power and energy ratios and available energy. Integration in a large format cell requires optimized roll-to-roll electrode manufacturing and use of active materials. Electrodes are coated on a metal current collector foil in a composite structure of active material, binders, and conductive additives, requiring careful control of colloidal chemistry, adhesion, andmore » solidification. But the added inactive materials and the cell packaging reduce energy density. Furthermore, degree of porosity and compaction in the electrode can affect battery performance.« less

  2. Advanced Manufacture of Reflectors

    SciTech Connect

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of

  3. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel ...

  4. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry

  5. Advanced Technology Vehicles Manufacturing Incentive Program | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles manufacturing incentive program. Advanced Technology Vehicles Manufacturing Incentive Program (1.49 MB) More Documents & Publications Advanced Technology Vehicles Manufacturing Incentive Program MEMA: Comments MEMA: Letter

  6. Advanced Battery Manufacturing Facilities and Equipment Program...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program Fact Sheet: Grid-Scale ...

  7. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    D.C. PDF icon esarravt002flicker2010p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing...

  8. Advanced Qualification of Additive Manufacturing Materials Workshop

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Advanced Qualification of Additive Manufacturing Materials Workshop Advanced Qualification of Additive Manufacturing Materials Workshop WHEN: Jul 20, 2015 8:30 AM - Jul 21, 2015...

  9. Manufacturing Innovation Institute for Smart Manufacturing: Advanced...

    Energy.gov [DOE] (indexed site)

    Energy Manufacturing Innovation Institute, which will be focused on smart manufacturing. ... As part of President Obama's National Network for Manufacturing Innovation (NNMI) ...

  10. Advanced Manufacturing Office At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ADVANCED MANUFACTURING OFFICE FY 2017 BUDGET AT-A-GLANCE The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector. What We Do The Advanced Manufacturing Offce uses an integrated approach that relies on three

  11. Advanced Manufacturing Office (Formerly Industrial Technologies Program) |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. DOE's Advanced Manufacturing Office (85.03 KB) More Documents & Publications Innovative Manufacturing Initiative Recognition Day Manufacturing Demonstration Facilities Workshop Agenda, March 2012 Advanced Manufacturing

  12. Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...

    Energy.gov [DOE] (indexed site)

    for Low-Cost Lithium-Ion Batteries Vehicle Technologies Office Merit Review 2014: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries Vehicle Technologies ...

  13. Advanced Manufacturing Office: Smart Manufacturing Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Smart Manufacturing is a network data-driven process that combines innovative automation ... Smart Manufacturing is a network data-driven process that combines innovative automation ...

  14. Ohio Advanced Energy Manufacturing Center

    SciTech Connect

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry

  15. Advanced Qualification of Additive Manufacturing Workshop

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors, diagnostics...

  16. Advanced Technology Vehicles Manufacturing Loan Program | Department...

    Office of Environmental Management (EM)

    Technology Vehicles Manufacturing Loan Program Advanced Technology Vehicles Manufacturing Loan Program ATVM-Program-Application-Overview.pdf More Documents & Publications ATVM...

  17. Advanced Manufacturing Office and Potential Technologies for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Clean Energy Manufacturing Innovation October 8, 2014 DOEDOD Planning ... is a leader in advanced manufacturing innovation and implementing the National Network ...

  18. Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes Electrolytes - ...

  19. Toxicity of materials used in the manufacture of lithium batteries

    SciTech Connect

    Archuleta, M.M.

    1994-05-01

    The growing interest in battery systems has led to major advances in high-energy and/or high-power-density lithium batteries. Potential applications for lithium batteries include radio transceivers, portable electronic instrumentation, emergency locator transmitters, night vision devices, human implantable devices, as well as uses in the aerospace and defense programs. With this new technology comes the use of new solvent and electrolyte systems in the research, development, and production of lithium batteries. The goal is to enhance lithium battery technology with the use of non-hazardous materials. Therefore, the toxicity and health hazards associated with exposure to the solvents and electrolytes used in current lithium battery research and development is evaluated and described.

  20. A National Strategic Plan For Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE)

    A National Strategic Plan For Advanced Manufacturing February 2012 Executive Office of the President National Science and Technology Council

  1. Process for manufacturing a lithium alloy electrochemical cell

    DOEpatents

    Bennett, William R.

    1992-10-13

    A process for manufacturing a lithium alloy, metal sulfide cell tape casts slurried alloy powders in an organic solvent containing a dissolved thermoplastic organic binder onto casting surfaces. The organic solvent is then evaporated to produce a flexible tape removable adhering to the casting surface. The tape is densified to increase its green strength and then peeled from the casting surface. The tape is laminated with a separator containing a lithium salt electrolyte and a metal sulfide electrode to form a green cell. The binder is evaporated from the green cell at a temperature lower than the melting temperature of the lithium salt electrolyte. Lithium alloy, metal sulfide and separator powders may be tape cast.

  2. Advanced Manufacturing Initiative Improves Turbine Blade Productivity |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an excerpt from the Second Quarter 2011 edition of the Wind Program R&D Newsletter. The Advanced Manufacturing Initiative (AMI) at DOE's Sandia National Laboratories is working with industry to improve manufacturing processes and create U.S. jobs by improving labor productivity in wind

  3. Webtrends Archives by Fiscal Year - Advanced Manufacturing Office...

    Energy.gov [DOE] (indexed site)

    Advanced Manufacturing Office, Webtrends archives by fiscal year. Advanced Manufacturing FY09 (2.15 MB) Advanced Manufacturing FY10 (2.13 MB) Advanced Manufacturing FY11 (2.13 MB) ...

  4. Advanced Methods for Manufacturing Newsletter- Issue 2

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Methods for Manufacturing (AMM) newsletter includes information about selected projects pertaining to additive manufacturing, concrete technologies, and welding innovations currently funded by the Department of Energy’s Office of Nuclear Energy.

  5. Advanced Methods for Manufacturing Newslettter- Issue 3

    Energy.gov [DOE]

    The Advanced Methods for Manufacturing newsletter includes information about selected projects pertaining to additive manufacturing, concrete technologies, welding innovations and imaging techniques for design reconstruction currently funded by the Department of Energy's Office of Nuclear Energy.

  6. advanced manufacturing office | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Advanced Manufacturing Office The U.S. Department of Energy (DOE) funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies. DOE has supported the development of more than 250 energy-saving industrial technologies that have been commercialized since 1976. DOE is also working to create a network of Manufacturing Innovation Institutes, each of which will create collaborative communities to target a unique technology in advanced manufacturing.

  7. Advanced Materials Manufacturing and Innovative Technologies...

    Energy Saver

    Director, Office of Research & Development November 12, 2014 Advanced Materials Manufacturing and Innovative Technologies for Natural Gas Pipeline Systems and Components DOE ...

  8. advanced manufacturing office | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DOE has supported the development of more than 250 energy-saving industrial technologies that ... collaborative communities to target a unique technology in advanced manufacturing. ...

  9. Welcome and Advanced Manufacturing Partnership (Text Version)

    Energy.gov [DOE]

    This is a text version of the Welcome and Advanced Manufacturing Partnership video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  10. Advanced Battery Manufacturing Facilities and Equipment Program...

    Energy.gov [DOE] (indexed site)

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  11. A National Strategic Plan For Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... and Census, U.S. International Trade in Goods and ... Currently, Federal investments in advanced manufacturing-related research, ... engineering, and mathematics (STEM) emphasis is ...

  12. Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battery Technology - High Voltage Electrolyte | Department of Energy Daikin Advanced Lithium Ion Battery Technology - High Voltage Electrolyte Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion Battery Technology - High Voltage Electrolyte Presentation given by Daikin America at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion battery technology - high

  13. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress...

  14. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries High Energy Novel Cathode Alloy Automotive Cell Develop & evaluate materials & ...

  15. Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...

    Energy.gov [DOE] (indexed site)

    Electrolytes - Interfacial and Bulk Properties and Stability Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of ...

  16. Working with SRNL - The Advanced Manufacturing Collaborative

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4/2016 SEARCH SRNL GO The Advanced Manufacturing Collaborative Academia Government Industry AMC Leadership Contact AMC Home SRNL Home Working with SRNL The Advanced Manufacturing Collaborative For over 50 years, the Savannah River National Laboratory (SRNL) has been providing the science behind nuclear chemical manufacturing at the Savannah River Site (SRS), a sprawling nuclear complex that was once part of our nation's Cold War. Time has changed the mission at SRS from nuclear production for

  17. Advanced Drivetrain Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Drivetrain Manufacturing Advanced Drivetrain Manufacturing The U.S. Department of Energy (DOE) supports advanced manufacturing techniques that are leading to the "next-generation" of more reliable, affordable, and efficient wind turbine drivetrains. As turbines continue to increase in size, each and every component must also be scaled to meet the demands for renewable energy. What is the Drivetrain? The drivetrain of a wind turbine is composed of the gearbox and the generator, the

  18. Manufacturing Leadership Council recognizes advancements at KCNSC |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Manufacturing Leadership Council recognizes advancements at KCNSC Wednesday, July 20, 2016 - 11:01am Team members from the Kansas City National Security Campus took back three Manufacturing Leadership Awards from the ceremony in Carlsbad, CA. The spotlight was shining on the Kansas City National Security Campus (KCNSC) on June 8 at the Manufacturing Leadership Awards Summit. The Manufacturing Leadership Council recognized KCNSC's achievements

  19. Institute for Advanced Composites Manufacturing Innovation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Facilities » Institute for Advanced Composites Manufacturing Innovation Institute for Advanced Composites Manufacturing Innovation Institute for Advanced Composites Manufacturing Innovation Thumbnail on opening image of linked video. The Institute for Advanced Composites Manufacturing Innovation (IACMI) is a public-private partnership creating clean energy solutions and catalyzing manufacturing competitiveness across the U.S. advanced composite ecosystem. This partnership of

  20. Advanced manufacturing: Technology and international competitiveness

    SciTech Connect

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  1. Advanced Methods for Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Methods for Manufacturing Advanced Methods for Manufacturing The overall purpose of the AMM subprogram is to accelerate innovations that reduce the cost and schedule of constructing new nuclear plants and make fabrication of nuclear power plant components faster, cheaper, and more reliable. Based on past industry work and new stakeholder input, this effort will focus on opportunities that provide simplified, standardized, and labor-saving outcomes for manufacturing, fabrication, assembly, and

  2. Advanced Qualification of Additive Manufacturing Workshop

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Additive Manufacturing Workshop Advanced Qualification of Additive Manufacturing Materials (AM) Workshop Our goal is to define opportunities and research gaps within additive manufacturing (AM) and to engage the broader scientific/engineering community to discuss future research directions. thumbnail of thumbnail of Contact Institute Director Dr. Alexander V. Balatsky Institute for Materials Science (505) 665-0077 Email Deputy Director Dr. Jennifer S. Martinez Institute for Materials Science

  3. Advanced Blade Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Blade Manufacturing Advanced Blade Manufacturing While the blades of a turbine may be one of the most recognizable features of any wind installation, they also represent one of the largest physical challenges in the manufacturing process. Turbine blades can reach up to 75 meters (250 feet) in length, and will continue to increase in size as the demand for renewable energy grows and as wind turbines are deployed offshore. Because of their size and aerodynamic complexity, wind turbine blades are

  4. Advanced Manufacturing Office Peer Review Final Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ADVANCED MANUFACTURING OFFICE PEER REVIEW MAY 28-29, 2015 ... Difficult Materials LLC 10:10 - 10:30 am Coatings and Process Development Reduced PPG Industries, Inc. Energy Automotive ...

  5. Panel on Advanced Manufacturing Technology Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    on Advanced Manufacturing Technology Analysis: Session 1- Impacts at the Unit Operations & Plant/Facility Levels Session 2 - Analysis Methodology & Tools AMO Peer Review Meeting June 14, 2016 Joe Cresko, DOE-AMO Alberta Carpenter, NREL William Morrow, LBNL Sachin Nimbalkar, ORNL Diane Graziano, ANL 1 Advanced Manufacturing - Impacts at the Unit Operations & Plant/Facility Levels - PH accounts for about 70% of all process energy 1 - Overall, process heating systems lose more than

  6. Berkeley Lab Highlights HPC at Advanced Manufacturing Event

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Highlights HPC at Advanced Manufacturing Event Berkeley Lab Highlights HPC at Advanced Manufacturing Event September 14, 2015 Peter Nugent, Division Deputy for Scientific...

  7. Recent advances in lithium ion technology

    SciTech Connect

    Levy, S.C.

    1995-01-01

    Lithium ion technology is based on the use of lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells (1) and in 1983 for ambient temperature systems (2) it was not until Sony Energytech announced a new lithium ion rechargeable cell containing a lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these cells have the high energy density, high voltage and fight weight of metallic lithium systems plus a very long cycle life, but without the disadvantages of dendrite formation on charge and the safety considerations associated with metallic lithium.

  8. Private-Public Partnerships for U.S. Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fiber Reinforced Polymer Composite Manufacturing Workshop Crystal City January 13, 2014 Private-Public Partnerships for U.S. Advanced Manufacturing Dr. Frank W. Gayle Advanced Manufacturing National Program Office www.manufacturing.gov U.S. Trade Balance of Advanced Technology 11% of U.S. GDP 12 million U.S. jobs * ~ half of U.S. Exports U.S. Trade Balance Advanced Technology Manufacturing Products ($ Billions) AMNPO Advanced Manufacturing National Program Office A White House chartered

  9. Advanced Methods for Manufacturing Newsletter - Issue 4, September 2016 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Methods for Manufacturing Newsletter - Issue 4, September 2016 Advanced Methods for Manufacturing Newsletter - Issue 4, September 2016 Advanced Methods for Manufacturing - Issue 4 The Advanced Methods for Manufacturing newsletter includes information about selected projects pertaining to additive manufacturing, concrete technologies, welding innovations and imaging techniques for design reconstruction currently funded by the Department of Energy's Office of Nuclear

  10. USCAR LEP ESST Advanced Manufacturing

    SciTech Connect

    Lazarus, L.J.

    2000-09-25

    The objective of this task was to provide processing information data summaries on powder metallurgy (PM) alloys that meet the partner requirements for the production of low mass, highly accurate, near-net-shape powertrain components. This required modification to existing ISO machinability test procedures and development of a new drilling test procedure. These summaries could then be presented in a web page format. When combined with information generated from the USCAR CRADA this would allow chemical, metallurgical, and machining data on PM alloys to be available to all engineering and manufacturing personnel that have access to in-house networks. The web page format also allows for the additions of other wrought materials, making this a valuable tool to the technical staffs.

  11. Advanced Qualification of Additive Manufacturing Workshop

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors, diagnostics and modeling Contact Institute Director Dr. Alexander V. Balatsky Institute for Materials Science (505) 665-0077 Email Deputy Director Dr. Jennifer S. Martinez Institute for Materials Science (505) 665-0045 Email Deputy Director Dr. Nathan A. Mara Institute for Materials Science (505) 667 8665 Email Institute

  12. Driving Economic Growth: Advanced Technology Vehicles Manufacturing

    Energy.gov [DOE]

    With $8 billion in loans and commitments to projects that have supported the production of more than 4 million fuel-efficient cars and more than 35,000 direct jobs across eight states, the Loan Programs Office Advanced Technology Vehicles Manufacturing (ATVM) loan program has played a key role in helping the American auto industry propel the resurgence of manufacturing in the United States.

  13. Webtrends Archives by Fiscal Year — Advanced Manufacturing Office

    Energy.gov [DOE]

    From the EERE Web Statistics Archive: Advanced Manufacturing Office, Webtrends archives by fiscal year.

  14. Weekly Announcements from the Advanced Manufacturing Office, March 2, 2016

    Energy.gov [DOE]

    Summary of weekly announcements from the Office of Energy Efficiency and Renewable Energy's Advanced Manufacturing Office

  15. 3 Reasons Why Advanced Manufacturing Institutes Matter | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Why Advanced Manufacturing Institutes Matter 3 Reasons Why Advanced Manufacturing Institutes Matter February 1, 2016 - 3:06pm Addthis Watch how manufacturing Institutes like the Institute for Advanced Composites Manufacturing Innovation are revolutionizing America's clean energy economy. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs KEY FACTS National Network for Manufacturing Innovation aims to drive down the cost of advanced manufacturing technologies.

  16. Advanced Manufacturing: Using Composites for Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Advanced fiber-reinforced polymer composites, which combine strong fibers with tough plastics, are lighter and stronger than steel. These materials could lower overall production costs in U.S. manufacturing and ultimately drive the adoption of a new clean energy way of life.

  17. Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing

    Energy.gov [DOE]

    Office: Advanced ManufacturingPost date: 9/15/15Original Closing Date for Applications: Jan 29, 2016 A mandatory Concept Paper is due 11/04/2015 at 5:00pm ET.

  18. Development of Advanced Ceramic Manufacturing Technology

    SciTech Connect

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  19. Innovative manufacturing and materials for low cost lithium ion batteries

    SciTech Connect

    Carlson, Steven

    2015-12-29

    This project demonstrated entirely new manufacturing process options for lithium ion batteries with major potential for improved cost and performance. These new manufacturing approaches are based on the use of the new electrode-coated separators instead of the conventional electrode-coated metal current collector foils. The key enabler to making these electrode-coated separators is a new and unique all-ceramic separator with no conventional porous plastic separator present. A simple, low cost, and high speed manufacturing process of a single coating of a ceramic pigment and polymer binder onto a re-usable release film, followed by a subsequent delamination of the all-ceramic separator and any layers coated over it, such as electrodes and metal current collectors, was utilized. A suitable all-ceramic separator was developed that demonstrated the following required features needed for making electrode-coated separators: (1) no pores greater than 100 nanometer (nm) in diameter to prevent any penetration of the electrode pigments into the separator; (2) no shrinkage of the separator when heated to the high oven heats needed for drying of the electrode layer; and (3) no significant compression of the separator layer by the high pressure calendering step needed to densify the electrodes by about 30%. In addition, this nanoporous all-ceramic separator can be very thin at 8 microns thick for increased energy density, while providing all of the performance features provided by the current ceramic-coated plastic separators used in vehicle batteries: improved safety, longer cycle life, and stability to operate at voltages up to 5.0 V in order to obtain even more energy density. The thin all-ceramic separator provides a cost savings of at least 50% for the separator component and by itself meets the overall goal of this project to reduce the cell inactive component cost by at least 20%. The all-ceramic separator also enables further cost savings by its excellent heat stability

  20. Automotive Lithium-ion Cell Manufacturing: Regional Cost Structures and Supply Chain Considerations

    Energy.gov [DOE]

    Manufacturing capacity for lithium-ion batteries (LIBs)—which power many consumer electronics and are increasingly used to power electric vehicles—is heavily concentrated in East Asia. To...

  1. Advanced Methods for Manufacturing Newsletter - Issue 1 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 1 Advanced Methods for Manufacturing Newsletter - Issue 1 The Advanced Methods for Manufacturing (AMM) newsletter includes information about selected projects pertaining to additive manufacturing, concrete technologies, and welding innovations currently funded by the Department of Energy's Office of Nuclear Energy. NEET-Advanced Methods fo Manufacturing Newsletter - Issue 1.pdf (5.82 MB) More Documents & Publications FY 2016 Advanced Methods for Manufacturing Program Review

  2. Advanced Manufacture of Second-Surface, Silvered Glass Reflectors...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for ...

  3. Advanced Manufacturing Office FY14 Budget At-a-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... by 25 percent over ten years and a culture of continuous improvement in energy management. ... Advanced manufacturing R&D facilities such as the Clean Energy Manufacturing Innovation ...

  4. Evaluation of advanced polymers for additive manufacturing (Technical...

    Office of Scientific and Technical Information (OSTI)

    Title: Evaluation of advanced polymers for additive manufacturing The goal of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Oak Ridge ...

  5. USFOE: Extended Summary - Lithium ion batteries and their manufacturing challenges

    SciTech Connect

    Daniel, Claus

    2014-01-01

    There is no one lithium ion battery. With the variety of materials and electrochemical couples at our disposal as shown in the previous talks, we have the opportunity to design battery cells specific for their applications. Such applications require optimization of voltage, state of charge utilization, lifetime needs, and safety considerations. Electrochemical couples allow for designing power and energy ratios and available energy for the application. Integration in a large format cell requires optimized roll to roll electrode manufacturing and active material utilization. Electrodes are coated on a current collector in a composite structure comprised of active material, binders, and conductive additives which requires careful control of colloidal chemistry, adhesion, and solidification. These added inactive materials and the cell packaging reduce energy density. Degree of porosity and compaction in the electrode can impede or enhance battery performance. Pathways are explored to bring batteries from currently commercially available 100Wh/kg and 200Wh/L at $500/kWh to 250Wh/kg and 400Wh/L at $125/kWh.

  6. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives Electrolytes - Advanced ...

  7. Advances in Manufactured Home Energy Efficient Design

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EERE Building America Webinar April 27, 2016 Advances in Manufactured Home Energy Efficient Design 2 "Integrated Design" Concept * Goal: Reduce space conditioning energy use by at least 50% while holding the line on affordability * Components of the strategy as an optimized system:  Ultra-efficient thermal envelope  Low capacity, highly efficient mechanical system  Innovative distribution system  Affordable and effective ventilation 3 ID Performance in Hot, Humid Climates

  8. Advanced Manufacturing Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Manufacturing Office Funding Opportunity: New Lab-Embedded Program for Energy Entrepreneurs, Innovation Crossroads Funding Opportunity: New Lab-Embedded Program for Energy Entrepreneurs, Innovation Crossroads Innovation Crossroads is a new program out of ORNL that is supported by AMO and co-managed by EERE's Technology-to-Market Program. This program seeks to match aspiring energy entrepreneurs with the experts, mentors, and networks in technology-related fields to use up to $350,000 to

  9. Solid Lithium Ion Conducting Electrolytes Suitable for Manufacturing...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryThe lithium ion battery found in electronics like cell phones uses liquid electrolytes ...

  10. U.S. Advanced Manufacturing and Clean Energy Technology Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer Review Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 Outline * Big Picture on Manufacturing in US * Focus on Advanced Manufacturing * AMO Organization * Technical Assistance * R&D Facilities * R&D Projects * Goals for Meeting 3 Products invented here, now made

  11. Advanced Battery Materials Synthesis and Manufacturing R&D Program...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Advanced Battery Materials Synthesis and Manufacturing R&D Program Argonne's Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials...

  12. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar

    Energy.gov [DOE]

    Presentation slides from the joint Fuel Cell Technologies Office and Advanced Manufacturing Office webinar held November 20, 2012.

  13. Manufacture of Advanced Battery Metal Containers & Components | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Manufacture of Advanced Battery Metal Containers & Components Manufacture of Advanced Battery Metal Containers & Components 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt013_es_lauinger_2012_p.pdf (2.6 MB) More Documents & Publications Manufacture of Advanced Battery Metal Containers & Components Manufacture of Advanced Battery Metal Containers & Components FY 2011 Annual Progress

  14. DOEs Advanced Manufacturing Office & Tech Assist Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Manufacturing Office DOE's Advanced Manufacturing Office & Tech Assist Overview Jay Wrobel Manager Advanced Manufacturing Office 2 | Advanced Manufacturing Office TA: Addressing the Current Opportunity Current opportunities represent energy savings that could be achieved by deploying the most energy-efficient commercial technologies available worldwide. R&D opportunities represent potential savings that could be attained through successful deployment of applied R&D

  15. Contacts for the Advanced Manufacturing Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Contacts for the Advanced Manufacturing Office Contacts for the Advanced Manufacturing Office Welcome to the Advanced Manufacturing Office (AMO). Our address, email, and phone number are provided below. U.S. Department of Energy - Advanced Manufacturing Office (formerly Industrial Technologies Program) Room 5F-065, MS EE-5A 1000 Independence Ave, SW Washington, DC 20585 Phone: (202) 586-9488 Nearest Metro stop: Smithsonian (blue/orange line) Get directions Website Contact: Send us your comments,

  16. Automotive Lithium-ion Cell Manufacturing: Regional Cost Structures...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... these numbers do not include the Tesla "gigafactory", which at the announced 35 GWh manufacturing capacity will significantly alter the global manufacturing landscape (Tesla 2016). ...

  17. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6: Innovating Clean Energy Technologies in Advanced Manufacturing September 2015 Quadrennial Technology Review 6 Innovating Clean Energy Technologies in Advanced Manufacturing Issues and RDD&D Opportunities  Manufacturing affects the way products are designed, fabricated, used, and disposed; hence, manufacturing technologies have energy impacts extending beyond the industrial sector.  Life-cycle analysis is essential to assess the total energy impact of a manufactured product. 

  18. FY 2015 Advanced Methods for Manufacturing Program Review Meeting |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 5 Advanced Methods for Manufacturing Program Review Meeting FY 2015 Advanced Methods for Manufacturing Program Review Meeting The Advanced Methods for Manufacturing (AMM) program held its annual review meeting on September 29, 2015 in Arlington, Va. The purpose of this meeting was to review the 17 currently funded projects encompassing additive manufacturing, welding and joining technologies, concrete materials and rebar innovations, surface modification and cladding

  19. 2016 NEET Advanced Methods for Manufacturing Award Summaries | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Methods for Manufacturing Award Summaries 2016 NEET Advanced Methods for Manufacturing Award Summaries The Nuclear Energy Enabling Technologies Crosscutting Technology Development (NEET- CTD) Advanced Methods for Manufacturing (AMM) Award Summaries describe the research achievements and planned accomplishments for ongoing projects. This Award Summaries document will be updated annually, as needed. 2016 ADVANCED METHODS FOR MANUFACTURING AWARD SUMMARIES.pdf (1.23 MB) More Documents

  20. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Advanced Sensors, Controls, Platforms and Modeling for Manufacturing is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between

  1. The Institute for Advanced Composites Manufacturing Innovation | Wind |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL The Institute for Advanced Composites Manufacturing Innovation Building on its 30-year history of collaboration with major wind turbine original equipment manufacturers and U.S. blade manufacturers, NREL leads the wind turbine technology area of the Institute for Advanced Composites Manufacturing Innovation (IACMI). Photo of a crowd of people milling about outside of a domed building. In this role, NREL works to drive down the cost of energy for wind power and achieve DOE and IACMI

  2. Institute for Advanced Composites Manufacturing Innovation Holds Second

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Membership Meeting | Department of Energy Institute for Advanced Composites Manufacturing Innovation Holds Second Membership Meeting Institute for Advanced Composites Manufacturing Innovation Holds Second Membership Meeting January 27, 2016 - 9:56am Addthis On January 13-14, the Institute for Advanced Composites Manufacturing Innovation (IACMI) held its second membership meeting near Detroit, Michigan. IACMI, headquartered in Knoxville, TN is a public-private partnership creating clean

  3. Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Advanced Technology Vehicles Manufacturing Loan Program Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program November 6, 2008 - 4:47pm Addthis On November 5, 2008, the Department of Energy issued the Interim Final Rule and accomplished writing the rule for Section 136 of EISA 2007 in approximately half of the 60-day expedited timeframe mandated by Congress. Historically, rulemaking at DOE takes 18 months. The Advanced Technology Vehicles Manufacturing Loan

  4. Advanced Manufacturing Office Update, January 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    January 2015 Advanced Manufacturing Office Update, January 2015 January 26, 2015 - 2:00pm Addthis In This Issue Featured Articles Expert Panel Releases Final Report on Strengthening Advanced Manufacturing in America 3D Printed Shelby Cobra Demonstrates Further Advances in Additive Manufacturing Partners in the Spotlight Legrand Energy Marathon Leads to Big Savings Better Plants Welcomes First Five Wastewater Treatment Partners Third Volvo Facility Certified to Superior Energy Performance Honda

  5. EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Project in Dearborn, MI | Department of Energy ATVM » ATVM Environmental Compliance » EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn, MI EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn, MI February 1, 2011 EA-1834: Final Environmental Assessment Loan to Severstal Dearborn, Inc., for Advanced Technology Vehicles Manufacturing Project in Dearborn, Michigan February 18, 2011 EA-1834: Finding of No Significant

  6. Request for Information (RFI): Advanced Manufacturing Office (AMO) Software

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tools | Department of Energy Advanced Manufacturing Office (AMO) Software Tools Request for Information (RFI): Advanced Manufacturing Office (AMO) Software Tools July 25, 2014 - 1:00pm Addthis Funding: This RFI is not a Funding Opportunity Announcement (FOA); therefore, EERE is not accepting applications at this time. Open Date: 07/25/2014 Close Date: 09/30/2014 Funding Organization: The Advanced Manufacturing Office of the Office of Energy Efficiency and Renewable Energy Funding Number:

  7. Bandwidth Study U.S. Advanced High Strength Steel Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The study examines energy consumption and potential energy savings opportunities in advanced high strength steel manufacturing in the U.S. The study relies on multiple sources to ...

  8. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar...

    Energy.gov [DOE] (indexed site)

    the presentation slides from the "Joint Fuel Cell Technologies Office and Advanced Manufacturing Office Webinar" held November 20, 2012. PDF icon Joint Fuel Cell Technologies ...

  9. Advanced Manufacturing pipeline brings NSC and Minority Serving...

    National Nuclear Security Administration (NNSA)

    Advanced Manufacturing pipeline brings NSC and Minority Serving Institutions together Thursday, August 27, 2015 - 4:41pm In an ongoing effort to build a sustainable STEM pipeline ...

  10. AMO's New Institute for Advanced Composites Manufacturing Innovation...

    Energy.gov [DOE] (indexed site)

    the National Network for Manufacturing Innovation (NNMI). The Institute will focus on lowering the cost of advanced fiber-reinforced polymer composite materials by 50 percent, ...

  11. Institute for Advanced Composites Manufacturing Innovation-Inaugural...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for Advanced Composites Manufacturing Innovation-Inaugural Members Meeting - Sandia Energy ... Center for Infrastructure Research and Innovation Combustion Research Facility Joint ...

  12. An Update on Advanced Battery Manufacturing | Department of Energy

    Energy Saver

    ... From Columbus, Georgia to Batesville, Arkansas to Brownstown, Michigan, our investments in manufacturing advanced batteries and other electric vehicle components are putting ...

  13. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Electrolyte Additives for PHEV/EV Lithium-ion Battery Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es025_zhang_2012_o.pdf (1.97 MB) More Documents & Publications Electrolytes - Advanced Electrolyte and Electrolyte Additives Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte

  14. Changing the Advanced Energy Manufacturing Game in America's Heartland |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Advanced Energy Manufacturing Game in America's Heartland Changing the Advanced Energy Manufacturing Game in America's Heartland December 16, 2010 - 9:32am Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? Clean energy manufacturing is expanding across the Midwest. This was spurred in large part by the Advanced Energy Manufacturing Tax Credit, also known as 48C, which was part of the Recovery Act. The $2.3

  15. Berkeley Lab Highlights HPC at Advanced Manufacturing Event

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lab Highlights HPC at Advanced Manufacturing Event Berkeley Lab Highlights HPC at Advanced Manufacturing Event September 14, 2015 Peter Nugent, Division Deputy for Scientific Engagement in Berkeley Lab's Computational Research Division, and David Skinner, who leads NERSC's Strategic Partnerships effort, are participating this week in the third annual 2015 American Energy & Manufacturing Competitiveness Summit, where they will be discussing the increasing role of high performance computing in

  16. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Additive Manufacturing Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Additive Manufacturing is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  17. Advanced Qualification of Additive Manufacturing Workshop

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    To increase acceptance of additive manufacturing as a viable processing method, pathways ... Included in this Gordon style workshop will be panel discussions with the invited ...

  18. Advanced Qualification of Additive Manufacturing Materials Workshop

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    To increase acceptance of additive manufacturing as a viable processing method, pathways ... Included in this Gordon style workshop will be panel discussions with the invited ...

  19. Advanced Manufacturing Office Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Microwave and Radio Frequency Workshop Manufacturing Demonstration Facility Workshop Microwave (MW) and Radio Frequency (RF) as Enabling Technologies ...

  20. Advanced Manufacturing Office Small Business Innovation Research...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Office Small Business Innovation Research Small Business Technology ... in thermal and degradation resistance, high-performance, and lower-cost for energy systems. ...

  1. Advanced Materials and Manufacturing | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Materials and Manufacturing Argonne researchers prepare silicon wafers for full-scale deposition testing of dielectric coatings for large area detectors. Argonne researchers...

  2. Advanced Manufacturing Office Update, November 2014 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Better Plants Partners Celebrated at National Conference World's First 3D Printed Car Shows Additive Manufacturing Has Come of Age Partners in the Spotlight Schneider Electric ...

  3. Wind Program Manufacturing Research Advances Processes and Reduces Costs |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Manufacturing Research Advances Processes and Reduces Costs Wind Program Manufacturing Research Advances Processes and Reduces Costs March 31, 2014 - 11:22am Addthis Tower sections being installed for a 2-MW wind turbine. Knowing that reducing the overall cost of wind energy begins on the factory floor, the Department of Energy's (DOE's) Wind Program supports research and development efforts and funding opportunities that integrate new designs, materials, and advanced

  4. Advanced Manufacturing Office Update, September 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    September 2014 Advanced Manufacturing Office Update, September 2014 September 18, 2014 - 4:34pm Addthis In This Issue Featured Article Veterans Receive Valuable Advanced Manufacturing Training under AMO-Sponsored Internship Partners in the Spotlight Iowa Water and Wastewater Operators Seek SEP Certification in New Pilot Program Darigold Steps Up to the Better Plants Challenge Velocys Advances Small-Scale Gas-to-Liquid Technology with AMO Support HARBEC's $52,000 Annual Energy Savings under SEP

  5. Building a More Competitive American Manufacturing Industry with Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Composites | Department of Energy a More Competitive American Manufacturing Industry with Advanced Composites Building a More Competitive American Manufacturing Industry with Advanced Composites January 9, 2015 - 10:21am Addthis Pictured above is the Shelby Cobra, a vehicle 3-D printed at Oak Ridge National Laboratory. Using advanced composites and 3-D printing both cut the car's weight in half and improved performance and safety. | Photo by Carlos Jones. Pictured above is the Shelby Cobra,

  6. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Ren, J.; Zuo, G. Z.; Hu, J. S.; Sun, Z.; Yang, Q. X.; Li, J. G.; Xie, H.; Chen, Z. X.; Zakharov, L. E.

    2015-02-15

    A program involving the extensive and systematic use of lithium (Li) as a “first,” or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.

  7. Scale-up of Lithium Aluminate Pellet Manufacturing with a Flowable Powder

    SciTech Connect

    Hollenberg, Glenn W.; Bagaasen, Larry M.; Kurosky, Randal P.; Tonn, D.; Carty, W.

    2004-01-01

    Thin-walled, high-density lithium aluminate pellets are challenging to manufacture for nuclear reactor applications. The key to scale-up of production was the development of flowable, high density, lithium aluminate powder that permitted (1) automated isostatic pressing, (2) low compaction during pressing, (3) low shrinkage during firing, (4) elimination of chlorine-containing fumed alumina and (5) near-net shape forming. A triple spray drying process was developed that included: (I) a unique-feedstock blend cycle, (II) a post-calcination grinding cycle, and (III) a high-pH final cycle with high solids loading slurry that was spray dried into flowable high-density spheres with large, uniform diameters. Today, pellet manufacturing at a rate of more than 400,000 per year is possible.

  8. Weekly Announcements from the Advanced Manufacturing Office,...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Not only is Dr. Rachuri an expert in Smart Manufacturing, he is also an American Society ... experiments to simulating particle collisions to giving a tour of a 3D-printed house. ...

  9. Roll-to-Roll Electrode Processing and Materials NDE for Advanced Lithium

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Secondary Batteries | Department of Energy 3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es165_wood_2013_p.pdf (4.5 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Roll-to-Roll Electrode Processing NDE for Advanced Lithium Secondary Batteries Lithium Ion Electrode Production NDE and QC Considerations Roll-to-Roll Electrode Processing and Materials NDE for Advanced Lithium Secondary

  10. Office of Energy Efficiency & Renewable Energy Advanced Manufacturing Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Office of Energy Efficiency & Renewable Energy Advanced Manufacturing Office Quadrennial Technology Review (QTR): Technology Assessment - Sustainable Manufacturing/Flow of Materials Through Industry Joe Cresko - joe.cresko@ee.doe.gov Sustainable Manufacturing Workshop Portland, OR January 6, 2016 2 Quadrennial Technology Review-2015 hOp://www.energy.gov/quadrennial-technology-review-2015 The QTR is a comprehensive assessment of science and energy technology R&D opportuniHes to address

  11. Wind Program Manufacturing Research Advances Processes and Reduces...

    Energy Saver

    Wind Program Manufacturing Research Advances Processes and Reduces Costs March 31, 2014 - 11:22am Addthis Tower sections being installed for a 2-MW wind turbine. Knowing that ...

  12. New Institute for Advanced Composites Manufacturing Innovation Announced

    Energy.gov [DOE]

    AMO's New Institute for Advanced Composites Manufacturing Innovation will Focus on Reducing Energy Use "Places like this are who we are. We create. We innovate. We build. We do it together." —President Obama, January 9, 2015

  13. FY 2016 Advanced Methods for Manufacturing Program Review Meeting

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Methods for Manufacturing (AMM) program held its annual review meeting on October 18-19, 2016 in Germantown, Md. The purpose of this meeting was to review the currently funded projects encompassing additive manufacturing, welding and joining technologies, concrete materials and rebar innovations, surface modification and cladding processes, and imaging techniques for design reconstruction.

  14. Evaluation of advanced polymers for additive manufacturing

    SciTech Connect

    Rios, Orlando; Morrison, Crystal

    2015-09-01

    The goal of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Oak Ridge National Laboratory (ORNL) and PPG Industries, Inc. was to evaluate the feasibility of using conventional coatings chemistry and technology to build up material layer-by-layer. The PPG-ORNL study successfully demonstrated that polymeric coatings formulations may overcome many limitations of common thermoplastics used in additive manufacturing (AM), allow lightweight nozzle design for material deposition and increase build rate. The materials effort focused on layer-by-layer deposition of coatings with each layer fusing together. The combination of materials and deposition results in an additively manufactured build that has sufficient mechanical properties to bear the load of additional layers, yet is capable of bonding across the z-layers to improve build direction strength. The formulation properties were tuned to enable a novel, high-throughput deposition method that is highly scalable, compatible with high loading of reinforcing fillers, and is inherently low-cost.

  15. Advanced Blade Manufacturing Project - Final Report

    SciTech Connect

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  16. Advanced Battery Manufacturing Making Strides in Oregon | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Advanced Battery Manufacturing Making Strides in Oregon Advanced Battery Manufacturing Making Strides in Oregon February 16, 2012 - 12:09pm Addthis EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program What are the key facts? Through the Recovery Act, the Department has

  17. Advanced Manufacturing Office Update, July 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 Advanced Manufacturing Office Update, July 2015 July 7, 2015 - 4:05pm Addthis In This Issue Featured Articles Institute for Advanced Composites Manufacturing Innovation Launched 2015 Better Buildings Summit Celebrates Continued Energy and Cost Savings DOE Recognizes High-Achieving Better Plants and Superior Energy Performance Partners AMO Peer Review Highlights Cutting-Edge Energy Efficiency Projects Partners in the Spotlight Better Plants Welcomes Six New Partners Schneider Electric Certifies

  18. Advances in Manufactured Home Energy Efficient Design | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Advances in Manufactured Home Energy Efficient Design Advances in Manufactured Home Energy Efficient Design Making significant strides in energy performance in the affordable housing space is the Holy Grail for the research community. The work presented in this webinar is a collaborative endeavor by the ARIES Building America team and two major affordable housing providers: Habitat for Humanity International and the factory building industry. The effort is exploring options for making

  19. Energy Department Trains Veterans in Advanced Manufacturing | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Department Trains Veterans in Advanced Manufacturing Energy Department Trains Veterans in Advanced Manufacturing August 15, 2014 - 11:30am Addthis Deputy Secretary of Energy Daniel Poneman addresses attendees at a ceremony at Pellissippi State Community College on August 15, 2014. | Energy Department file photo. Deputy Secretary of Energy Daniel Poneman addresses attendees at a ceremony at Pellissippi State Community College on August 15, 2014. | Energy Department file photo. NEWS

  20. Advanced Manufacturing pipeline brings NSC and Minority Serving

    National Nuclear Security Administration (NNSA)

    Institutions together | National Nuclear Security Administration | (NNSA) Advanced Manufacturing pipeline brings NSC and Minority Serving Institutions together Thursday, August 27, 2015 - 4:41pm In an ongoing effort to build a sustainable STEM pipeline between DOE's sites/labs and historically black colleges and universities, the National Security Campus (NSC) helped form the Advanced Manufacturing Consortium under the Minority Serving Institutes Partnership Program (MSIPP). This year MSIPP

  1. Lithium-vanadium advanced blanket development. ITER final report on U.S. contribution: Task T219/T220

    SciTech Connect

    Smith, D.L.; Mattas, R.F.

    1997-07-01

    The objective of this task is to develop the required data base and demonstrate the performance of a liquid lithium-vanadium advanced blanket design. The task has two main activities related to vanadium structural material and liquid lithium system developments. The vanadium alloy development activity included four subtasks: (1.1) baseline mechanical properties of non irradiated base metal and weld metal joints; (1.2) compatibility with liquid lithium; (1.3) material irradiation tests; and (1.4) development of material manufacturing and joining methods. The lithium blanket technology activity included four subtasks: (2.1) electrical insulation development and testing for liquid metal systems; (2.2) MHD pressure drop and heat transfer study for self-cooled liquid metal systems; (2.3) chemistry of liquid lithium; and (2.4) design, fabrication and testing of ITER relevant size blanket mockups. A summary of the progress and results obtained during the period 1995 and 1996 in each of the subtask areas is presented in this report.

  2. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    SciTech Connect

    Yakovleva, Marina

    2012-12-31

    FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  3. New Institute for Advanced Composites Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Institute will focus on lowering the cost of advanced fiber-reinforced polymer composite materials by 50 percent, reducing the energy used to make composites by 75 percent, and ...

  4. Advanced Manufacture of Reflectors (Fact Sheet)

    SciTech Connect

    Not Available

    2012-09-01

    The University of Arizona is one of the 2012 SunShot CSP R&D awardees for their advanced collectors. This fact sheet explains the motivation, description, and impact of the project.

  5. Advanced Manufacturing Office FY 2017 Budget At-A-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy About Us » Advanced Manufacturing Office FY 2017 Budget At-A-Glance Advanced Manufacturing Office FY 2017 Budget At-A-Glance The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector. AMO FY17

  6. Advanced ceramic manufacturing of SiAlON exhaust valves

    SciTech Connect

    Bright, E.; Eckalbar, J.F.; McEntire, B.J.; Pujari, V.K.; Tricard, M.

    1996-09-01

    Norton Advanced Ceramic`s (NAC) is performing ceramic manufacturing development as part of the DOE-sponsored Advanced Ceramic Manufacturing Technology (ACMT) Program. NAC`s ACMT effort is focused on developing a cost effective manufacturing process for a ceramic exhaust valve. An industry team has been assembled to address cost reduction for this ceramic component. Technical progress made by NAC`s ACMT industry team in reducing the cost of ceramic valves is summarized within this communication. Particular emphasis is placed on describing progress in the development of intelligent processing systems for the powder processing, spray drying, and forming operations. Ceramic valve manufacturing process enhancements including continuous sintering, high-speed diamond grinding, and cost effective proof testing are summarized as well.

  7. Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

  8. Advanced Manufacturing Office Update, March 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    March 2015 Advanced Manufacturing Office Update, March 2015 March 30, 2015 - 3:13pm Addthis In This Issue Featured Articles Better Plants Welcomes New Partners from Diverse Sectors Better Plants Challenge Partners Share Energy-Saving Solutions Harbec Receives 2014 Environmental Excellence Award from New York State AMO and Industry News Heat Exchange Materials Research Advances Accomplishments Highlighted at Critical Materials Institute Annual Peer Review Benefits of Combined Heat and Power

  9. Roll-to-Roll Electrode Processing and Materials NDE for Advanced Lithium

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Secondary Batteries | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es165_wood_2012_o.pdf (3.53 MB) More Documents & Publications Roll-to-Roll Electrode Processing and Materials NDE for Advanced Lithium Secondary Batteries Vehicle Technologies Office Merit Review 2014: Roll-to-Roll Electrode Processing NDE for Advanced Lithium Secondary Batteries In-situ characterization and diagnostics of

  10. Advanced Manufacturing Office FY14 Budget At-a-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Advanced Manufacturing Office FY14 Budget At-a-Glance Advanced Manufacturing Office FY14 Budget At-a-Glance Advanced Manufacturing Office FY14 Budget At-a-Glance, a publication of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. manufacturing_ataglance_2014.pdf (202.99 KB) More Documents & Publications Advanced Manufacturing Office FY 2017 Budget At-A-Glance Advanced Manufacturing Office FY 2016 Budget At-A-Glance Advanced Manufacturing Office FY

  11. Process development status report for advanced manufacturing projects

    SciTech Connect

    Brinkman, J.R.; Homan, D.A.

    1990-03-30

    This is the final status report for the approved Advanced Manufacturing Projects for FY 1989. Five of the projects were begun in FY 1987, one in FY 1988, and one in FY 1989. The approved projects cover technology areas in welding, explosive material processing and evaluation, ion implantation, and automated manufacturing. It is expected that the successful completion of these projects well result in improved quality and/or reduced cost for components produced by Mound. Those projects not brought to completion will be continued under Process development in FY 1990.

  12. Advanced Manufacturing Office Update, July 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Advanced Manufacturing Office Update, July 2014 July 14, 2014 - 4:00pm Addthis In This Issue Featured Article Cummins Achieves Dramatic Energy Savings through DOE Collaboration Partners in the Spotlight Legrand and UTC Suppliers Join Better Plants Seven Industry Partners Focus on Improving Water Efficiency in a Better Buildings Challenge Pilot Nissan, 3M, and Schneider Electric Highlight the Benefits of SEP at IETC 2014 DOE Collaboration Enables 3D Printed Car Challenge AMO and Industry News

  13. DOE High Performance Computing for Manufacturing Program Seeks to Fund New Proposals to Advance Energy Technologies

    Energy.gov [DOE]

    The Energy Department’s Advanced Manufacturing Office today announced up to $3 million in available funding for manufacturers to use high-performance computing resources at the Department's national laboratories to tackle major manufacturing challenges.

  14. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...

    Energy.gov [DOE] (indexed site)

    MB) More Documents & Publications Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA Li-Ion Battery Cell Manufacturing 2010 DOE, Li-Ion Battery Cell Manufacturing

  15. Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

  16. Bandwidth Study U.S. Advanced High Strength Steel Manufacturing, Draft |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Advanced High Strength Steel Manufacturing, Draft Bandwidth Study U.S. Advanced High Strength Steel Manufacturing, Draft Bandwidth Study U.S. Advanced High Strength Steel Manufacturing, Draft Energy bandwidth studies can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities in manufacturing. This bandwidth study is one of a series of six energy bandwidth studies on manufacturing lightweight structural materials.

  17. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    DOE PAGES [OSTI]

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; et al

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and themore » oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.« less

  18. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    SciTech Connect

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; Wang, Dapeng; Amine, Khalil; Thevuthasan, Suntharampillai

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and the oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.

  19. ADVANCED MANUFACTURING OFFICE HIGH VALUE ROLL TO ROLL (HV R2R...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ADVANCED MANUFACTURING OFFICE HIGH VALUE ROLL TO ROLL (HV R2R) WORKSHOP DECEMBER 2-3, 2015 ADVANCED MANUFACTURING OFFICE HIGH VALUE ROLL TO ROLL (HV R2R) WORKSHOP DECEMBER 2-3, ...

  20. Veterans and Others Can Apply for an AMO-sponsored Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Internship | Department of Energy Veterans and Others Can Apply for an AMO-sponsored Advanced Manufacturing Internship Veterans and Others Can Apply for an AMO-sponsored Advanced Manufacturing Internship August 15, 2014 - 3:18pm Addthis Applications are being accepted for the new Advanced Manufacturing Internship program starting today. Pellissippi State Community College in Knoxville, TN, developed the curriculum for Veterans with funding from the Advanced Manufacturing Office (AMO). The

  1. Materials/manufacturing element of the Advanced Turbine Systems Program

    SciTech Connect

    Karnitz, M.A.; Holcomb, R.S.; Wright, I.G.; Ferber, M.K.; Hoffman, E.E.

    1995-12-31

    The technology based portion of the Advanced Turbine Systems Program (ATS) contains several subelements which address generic technology issues for land-based gas-turbine systems. One subelement is the Materials/ Manufacturing Technology Program which is coordinated by DOE Oak Ridge Operations and Oak Ridge National Laboratory (ORNL). The work in this subelement is being performed predominantly by industry with assistance from universities and the national laboratories. Projects in this sub-element are aimed toward hastening the incorporation of new materials and components in gas turbines.

  2. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    SciTech Connect

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  3. Influence of Manufacturing Processes and Microstructures on the Performance and Manufacturability of Advanced High Strength Steels

    SciTech Connect

    Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-10-01

    Advanced high strength steels (AHSS) are performance-based steel grades and their global material properties can be achieved with various steel chemistries and manufacturing processes, leading to various microstructures. In this paper, we investigate the influence of supplier variation and resulting microstructure difference on the overall mechanical properties as well as local formability behaviors of advanced high strength steels (AHSS). For this purpose, we first examined the basic material properties and the transformation kinetics of TRansformation Induced Plasticity (TRIP) 800 steels from three different suppliers under different testing temperatures. The experimental results show that there is a significant supplier (i.e., manufacturing process) dependency of the TRIP 800 steel mechanical and microstructure properties. Next, we examined the local formability of two commercial Dual Phase (DP) 980 steels during stamping process. The two commercial DP 980 steels also exhibit noticeably different formability during stamping process in the sense that one of them shows severe tendency for shear fracture. Microstructure-based finite element analyses are carried out next to simulate the localized deformation process with the two DP 980 microstructures, and the results suggest that the possible reason for the difference in formability lies in the morphology of the hard martensite phase in the DP microstructure.

  4. Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...

    Energy.gov [DOE] (indexed site)

    nnovative M anufacturing and M aterials for Low -Cost Lithium -I on Batteries This presentation does not contain any proprietary, confidential, or otherwise restricted information...

  5. Advanced Manufacturing Office, U.S. Department of Energy

    Energy.gov [DOE] (indexed site)

    ... * Bio-manufacturing (sustainable nano-manufacturing) Lower energy production ... Allow higher operating temperatures and increased efficiency. DOE Nano Investment by ...

  6. Cathode material for lithium batteries (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Title: Cathode material for lithium batteries A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium ...

  7. 48C Phase II Advanced Energy Manufacturing Tax Credit Program Selections |

    Energy.gov [DOE] (indexed site)

    Department of Energy Departments of Energy and the Treasury worked in partnership to develop, launch, and award the funds for 48C Advanced Energy Manufacturing Tax Credit program. The Advanced Energy Manufacturing Tax Credit authorized Treasury to provide developers with an investment tax credit of 30 percent for the manufacture of particular types of energy equipment. Funded at $2.3 billion, the tax credit was made available to 183 domestic clean energy manufacturing facilities during Phase

  8. Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    information about thin-film lithium batteries is available in full-text and on the Web. ... Additional Web Pages: Thin Films for Advanced Batteries Thin-Film Rechargeable Lithium, ...

  9. Report to the President Capturing a Domestic Competitive Advantage in Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    REPORT TO THE PRESIDENT CAPTURING A DOMESTIC COMPETITIVE ADVANTAGE IN ADVANCED MANUFACTURING Report of the Advanced Manufacturing Partnership Steering Committee Annex 1: Technology Development Workstream Report Executive Office of the President President's Council of Advisors on Science and Technology JULY 2012 PREFACE In June 2011, the President established the Advanced Manufacturing Partnership (AMP), which is led by a Steering Committee that operates within the framework of the President's

  10. Report to the President: Capturing a Domestic Competitive Advantage in Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    REPORT TO THE PRESIDENT CAPTURING A DOMESTIC COMPETITIVE ADVANTAGE IN ADVANCED MANUFACTURING Report of the Advanced Manufacturing Partnership Steering Committee Annex 2: Shared Infrastructure and Facilities Workstream Report Executive Office of the President President's Council of Advisors on Science and Technology JULY 2012 PREFACE In June 2011, the President established the Advanced Manufacturing Partnership (AMP), which is led by a Steering Committee that operates within the framework of the

  11. Chapter 6 — Innovating Clean Energy Technologies in Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE)

    This chapter examines the opportunities for improvements in energy and materials utilization within three spaces: individual manufacturing processes and unit operations; goods-producing facilities, including manufacturing business processes; and manufacturing supply chains and manufactured goods, including impacts from all phases of the product life cycle.

  12. Advanced Manufacturing and Engineering Equipment at the University of Southern Indiana

    SciTech Connect

    Mitchell, Zane Windsor; Gordon, Scott Allen

    2014-08-04

    Department of Energy grant DE-SC0005231was awarded to the University of Southern Indiana for the purchase of Advanced Manufacturing and Engineering equipment.

  13. Energy Department Announces $4.4 Million to Support Next-Generation Advanced Hydropower Manufacturing

    Energy.gov [DOE]

    The Energy Department today announced $4.4 million to support the application of advanced materials and manufacturing techniques to the development of next-generation hydropower technologies.

  14. EVENT: 2016 DOE ADVANCED MANUFACTURING OFFICE PEER REVIEW – JUNE 14-15, 2016

    Energy.gov [DOE]

    The Energy Efficiency and Renewable Energy’s Advanced Manufacturing Office will hold a Peer Review of its Research and Development Projects, Research and Development Facilities and Analysis...

  15. ADVANCED MANUFACTURING OFFICE HIGH VALUE ROLL TO ROLL (HV R2R) WORKSHOP

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DECEMBER 2-3, 2015 | Department of Energy ADVANCED MANUFACTURING OFFICE HIGH VALUE ROLL TO ROLL (HV R2R) WORKSHOP DECEMBER 2-3, 2015 ADVANCED MANUFACTURING OFFICE HIGH VALUE ROLL TO ROLL (HV R2R) WORKSHOP DECEMBER 2-3, 2015 Draft Agenda (215.67 KB) More Documents & Publications WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW Workshop: High Value Roll to Roll (HV R2R) Manufacturing Innovation, December 2-3, 2015 WORKSHOP: SUSTAINABILITY IN MANUFACTURING, JANUARY 6-7

  16. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Li-Ion Polymer Battery Cell Manufacturing Plant in USA Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt001_es_koo_2012_p.pdf (2.94 MB) More Documents & Publications Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA Li-Ion Battery Cell Manufacturing 2010 DOE, Li-Ion Battery Cell Manufacturing

  17. Evaluation of potential performance additives for the advanced lithium bromide chiller

    SciTech Connect

    Reiner, R.H.; Del Cul, W.; Perez-Blanco, H.; Ally, M.R.; Zaltash, A.

    1991-04-01

    The effectiveness and stability of potential heat-and-mass transfer (performance) additives for an advanced lithium bromide (LiBr) chiller were evaluated in a series of experimental studies. These studies of additive effectiveness and stability were necessary because many currently used performance additives decompose at the high generator temperatures (220{degrees}C to 260{degrees}C) desired for this particular advanced LiBr chiller. For example, one common performance additive, 2-ethyl-l-hexanol (2EH), reacts with the corrosion inhibitor, lithium chromate (Li{sub 2}CrO{sub 4}), even at moderate generator temperatures ({ge}180{degrees}C). These stability problems can be mitigated by using less reactive corrosion inhibitors such as lithium molybdate (Li{sub 2}MoO{sub 4}) and by using more stable performance additives such as 1-heptanol (HEP) or 1H,1H,7H-dodecafluoro-1-heptanol (DFH). There seems to be a trade-off between additive stability and effectiveness: the most effective performance additives are not the most stable additives. These studies indicate that HEP or DFH may be effective additives in the advanced LiBr chiller if Li{sub 2}MoO{sub 4} is used as a corrosion inhibitor.

  18. Advanced Manufacturing Office FY 2016 Budget At-A-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 6 Budget At-A-Glance Advanced Manufacturing Office FY 2016 Budget At-A-Glance The Advanced Manufacturing Office (AMO) partners with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to create high-quality manufacturing jobs, enhance the global competitiveness of the United States, and reduce energy use by encouraging a culture of continuous enrichment in corporate energy management. AMO FY 2016 Budget

  19. Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative 1 of 1 Summary: DOE will launch a collaborative effort with industry to evaluate and scope high- impact manufacturing R&D to improve natural gas system efficiency and reduce leaks with the goal of establishing an advanced manufacturing initiative. This will include a formal request for information, public workshops, and technical analysis and will leverage technology development areas already in progress through DOE's

  20. An Overview of Strategic Energy Analysis by DOEs Advanced Manufacturing Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Office of Energy Efficiency & Renewable Energy Advanced Manufacturing Office An Overview of Strategic Energy Analysis by DOE's Advanced Manufacturing Office Joe Cresko (joe.cresko@ee.doe.gov) Strategic Analysis Technology Mgr. AMO Peer Review June 14, 2016 Transformative: Results in significant change in the life-cycle impact (energetic or economic) of manufactured products. Pervasive: Creates value in multiple supply chains, diversifies the end use/markets, applies to many industrial/use

  1. AMO's New Institute for Advanced Composites Manufacturing Innovation Will Focus on Reducing Energy Use

    Energy.gov [DOE]

    The Institute for Advanced Composites Manufacturing Innovation announced by President Obama today is a public-private consortium of 122 leading U.S. manufacturers, universities, and non-profits that will focus on advanced composites—materials that are three times as strong and twice as light as the lightest metals. These advanced materials have the potential to transform products ranging from wind turbines to automobiles. This new Innovation Institute, headquartered in Knoxville, Tennessee and led by the University of Tennessee, will receive $70 million in federal funding provided by the U.S. Department of Energy's Advanced Manufacturing Office.

  2. Strengthening U.S. Leadership in Advanced Manufacturing | Department...

    Energy.gov [DOE] (indexed site)

    of workers at its manufacturing facilities in California, Michigan, and Tennessee. ... The businesses represented yesterday ranged from solar and battery to fuel cell and ...

  3. Advanced Manufacturing Office FY 2015 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    use by encouraging a culture of continuous improvement in corporate energy management. ... creation of Clean Energy Manufacturing Innovation Institutes consistent with the ...

  4. Advanced Manufacturing Office FY 2016 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    use by encouraging a culture of continuous enrichment in corporate energy management. ... creation of Clean Energy Manufacturing Innovation Institutes consistent with the ...

  5. Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing...

    Energy.gov [DOE] (indexed site)

    this program is available to small businesses located in Michigan who are seeking to invest and diversify in clean energy sectors, manufacturing renewable energy and energy...

  6. DOE Invests $20 Million in U.S. Solar Manufacturing and Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Photovoltaic Technologies | Department of Energy Invests $20 Million in U.S. Solar Manufacturing and Advanced Photovoltaic Technologies DOE Invests $20 Million in U.S. Solar Manufacturing and Advanced Photovoltaic Technologies February 4, 2011 - 4:10pm Addthis As part of the U.S. Department of Energy's SunShot Initiative, DOE is investing up to $20.3 million in innovative projects to strengthen the U.S. solar manufacturing industry, improve manufacturing efficiencies, and reduce costs. This

  7. TODAY: AMO Director Talks Advanced Manufacturing LIVE on Facebook, 9/21 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy TODAY: AMO Director Talks Advanced Manufacturing LIVE on Facebook, 9/21 TODAY: AMO Director Talks Advanced Manufacturing LIVE on Facebook, 9/21 September 21, 2016 - 2:00pm Addthis AMO Director Talks Advanced Manufacturing LIVE on Facebook TODAY at 1:00 PM EST The 39th WEEC kicks off today at the Walter E. Washington Convention Center in Washington, DC. For a behind the scenes look at the World Energy Engineering Congress (WEEC), watch AMO Director, Mark Johnson, on the

  8. Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems

    Energy.gov [DOE]

    Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems

  9. Lithium Salts for Advanced Lithium Batteries: Li-metal, Li-O2, and Li-S

    SciTech Connect

    Younesi, Reza; Veith, Gabriel M; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-01-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions and conditions within such cells. This review explores the critical role Li-salts play in ensuring in these batteries viability.

  10. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S

    SciTech Connect

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-06-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions and conditions within such cells. Furthermore, this review explores the critical role Li-salts play in ensuring in these batteries viability.

  11. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S

    DOE PAGES [OSTI]

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-06-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions andmore » conditions within such cells. Furthermore, this review explores the critical role Li-salts play in ensuring in these batteries viability.« less

  12. Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative 1 of 1 Summary: DOE will launch a collaborative effort with industry to evaluate and scope high- impact ...

  13. 48C Phase II Advanced Energy Manufacturing Tax Credit Program Fact Sheet

    Energy.gov [DOE]

    The 48C Advanced Energy Manufacturing Tax Credit program was initiated under the American Recovery and Reinvestment Act of 2009 to support investments in projects that establish, expand or re-equip...

  14. Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Advanced Natural Gas Systems Manufacturing R&D Initiative Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D Initiative The following fact sheet outlines one of the Department of Energy's series of actions, partnerships, and stakeholder commitments to help modernize the nation¹s natural gas transmission and distribution systems and reduce methane emissions. DOE will launch a collaborative effort with industry to evaluate and scope high-impact

  15. DOE Announces Effort to Advance U.S. Wind Power Manufacturing Capacity |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Effort to Advance U.S. Wind Power Manufacturing Capacity DOE Announces Effort to Advance U.S. Wind Power Manufacturing Capacity June 2, 2008 - 12:51pm Addthis MOU Launches Government-Industry Effort to Define and Develop Technologies and Siting Strategies Necessary to Achieve 20% Wind Energy by 2030 HOUSTON, TEXAS -The U.S. Department of Energy (DOE) Assistant Secretary of Energy Efficiency and Renewable Energy Andy Karsner today announced a Memorandum of Understanding

  16. Strengthening U.S. Leadership in Advanced Manufacturing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    a corporate research and development contract, the National Labs work as the research arm for desalination advancement while CAP develops the technologies. When asked about the...

  17. Advanced Manufacturing Office FY 2015 Budget At-A-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 5 Budget At-A-Glance Advanced Manufacturing Office FY 2015 Budget At-A-Glance The Advanced Manufacturing Office (AMO) partners with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to create high-quality U.S. manufacturing jobs, enhance global competitiveness, and reduce energy use by encouraging a culture of continuous improvement in corporate energy management. fy15_at-a-glance_amo.pdf (494.02 KB) More

  18. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FCT and AMO Webinar 11202012 eere.energy.gov Joint Fuel Cell Technologies and Advanced ... of R&D Progress Reduced high-volume cost of Reduced cost of electrolyzer fuel ...

  19. AMO Seeks the Next Big Idea to Advance Clean Energy Manufacturing

    Energy.gov [DOE]

    AMO Seeks the Next Big Idea to Advance Clean Energy Manufacturing The Office of Energy Efficiency and Renewable Energy (EERE), on behalf of its Advanced Manufacturing Office, seeks feedback from industry, academia, research laboratories, government agencies, and other stakeholders on technical focus areas for graduate-level traineeship programs. DOE funded Traineeship Programs focus on advancing critical STEM disciplines and competencies specifically relevant to the EERE and AMO missions where other U.S. Government or academic workforce development programs either do not exist or where DOE-relevant applications are not being leveraged to support specific DOE mission responsibilities.

  20. Part A - Advanced turbine systems. Part B - Materials/manufacturing element of the Advanced Turbine Systems Program

    SciTech Connect

    Karnitz, M.A.

    1996-06-01

    The DOE Offices of Fossil Energy and Energy Efficiency and Renewable Energy have initiated a program to develop advanced turbine systems for power generation. The objective of the Advanced Turbine Systems (ATS) Program is to develop ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for utility and industrial applications. One of the supporting elements of the ATS Program is the Materials/Manufacturing Technologies Task. The objective of this element is to address the critical materials and manufacturing issues for both industrial and utility gas turbines.

  1. Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries

    SciTech Connect

    Li, Xuemin; Wolden, Colin A.; Ban, Chunmei; Yang, Yongan

    2015-12-03

    This work reports a new method of synthesizing anhydrous lithium sulfide (Li2S) nanocrystals and demonstrates their potential as cathode materials for advanced rechargeable batteries. Li2S is synthesized by reacting hydrogen sulfide (H2S) with lithium naphthalenide (Li-NAP), a thermodynamically spontaneous reaction that proceeds to completion rapidly at ambient temperature and pressure. The process completely removes H2S, a major industrial waste, while cogenerating 1,4-dihydronaphthalene, itself a value-added chemical that can be used as liquid fuel. The phase purity, morphology, and homogeneity of the resulting nanopowders were confirmed by X-ray diffraction and scanning electron microscopy. The synthesized Li2S nanoparticles (100 nm) were assembled into cathodes, and their performance was compared to that of cathodes fabricated using commercial Li2S micropowders (1–5 μm). As a result, electrochemical analyses demonstrated that the synthesized Li2S were superior in terms of (dis)charge capacity, cycling stability, output voltage, and voltage efficiency.

  2. Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries

    DOE PAGES [OSTI]

    Li, Xuemin; Wolden, Colin A.; Ban, Chunmei; Yang, Yongan

    2015-12-03

    This work reports a new method of synthesizing anhydrous lithium sulfide (Li2S) nanocrystals and demonstrates their potential as cathode materials for advanced rechargeable batteries. Li2S is synthesized by reacting hydrogen sulfide (H2S) with lithium naphthalenide (Li-NAP), a thermodynamically spontaneous reaction that proceeds to completion rapidly at ambient temperature and pressure. The process completely removes H2S, a major industrial waste, while cogenerating 1,4-dihydronaphthalene, itself a value-added chemical that can be used as liquid fuel. The phase purity, morphology, and homogeneity of the resulting nanopowders were confirmed by X-ray diffraction and scanning electron microscopy. The synthesized Li2S nanoparticles (100 nm) were assembledmore » into cathodes, and their performance was compared to that of cathodes fabricated using commercial Li2S micropowders (1–5 μm). As a result, electrochemical analyses demonstrated that the synthesized Li2S were superior in terms of (dis)charge capacity, cycling stability, output voltage, and voltage efficiency.« less

  3. AMO Announces Funding Opportunity for Low-Cost, Energy Efficient Manufacturing and Recycling of Advanced Fiber-Reinforced Polymer Composites

    Energy.gov [DOE]

    A new Advanced Composite Manufacturing Institute, one of six National Network for Manufacturing Innovation Institutes to launch in 2014, will receive up to $70 million over five years in Energy Department funding.

  4. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Composite Materials Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Composite Materials Chapter 6: Technology Assessments This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Composite Materials is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology assessments

  5. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Critical Materials Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Critical Materials Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Critical Materials is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  6. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Process Heating Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Process Heating Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Process Heating is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology assessments are

  7. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Process Intensification Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Process Intensification Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Process Intensification is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  8. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Roll-to-Roll Processing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roll to Roll Processing Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Roll-to-Roll Processing is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  9. Lithium Energy Japan | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Japan Jump to: navigation, search Name: Lithium Energy Japan Place: Kyoto, Japan Zip: 6018520 Product: Kyoto-based developer, manufacturer and seller of large lithium-ion...

  10. US Lithium Energetics | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energetics Jump to: navigation, search Name: US Lithium Energetics Product: Batteries manufacturer References: US Lithium Energetics1 This article is a stub. You can help OpenEI...

  11. Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Flow of Materials through Industry / Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 1 5 1.1 Supply chain and material flow analysis ....................................................................................... 1 6 2. Technology Assessment and Potential

  12. Isotope separation and advanced manufacturing technology. Volume 2, No. 2, Semiannual report, April--September 1993

    SciTech Connect

    Kan, Tehmanu; Carpenter, J.

    1993-12-31

    This is the second issue of a semiannual report for the Isotope Separation and Advanced Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives of the ISAM Program include: the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) process, and advanced manufacturing technologies which include industrial laser materials processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. Topics included in this issue are: production plant product system conceptual design, development and operation of a solid-state switch for thyratron replacement, high-performance optical components for high average power laser systems, use of diode laser absorption spectroscopy for control of uranium vaporization rates, a two-dimensional time dependent hydrodynamical ion extraction model, and design of a formaldehyde photodissociation process for carbon and oxygen isotope separation.

  13. Cathode material for lithium batteries

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  14. Cathode material for lithium batteries

    SciTech Connect

    Park, Sang-Ho; Amine, Khalil

    2015-01-13

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  15. Advanced manufacturing

    SciTech Connect

    Love, Lonnie

    2014-07-14

    Lonnie Love is breaking new ground in three-dimensional printing and training the upcoming scientists and engineers whose creations may be limited only by their imaginations.

  16. Advanced manufacturing

    ScienceCinema

    Love, Lonnie

    2014-07-15

    Lonnie Love is breaking new ground in three-dimensional printing and training the upcoming scientists and engineers whose creations may be limited only by their imaginations.

  17. Calendar Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries

    SciTech Connect

    Wright, Randy Ben; Motloch, Chester George

    2001-03-01

    This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70°C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

  18. Cycle Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries

    SciTech Connect

    Wright, Randy Ben; Motloch, Chester George

    2001-03-01

    This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70°C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

  19. Advanced Technology Development Program for Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report

    SciTech Connect

    Jon P. Christophersen; Ira Bloom; Edward V. Thomas; Kevin L. Gering; Gary L. Henriksen; Vincent S. Battaglia; David Howell

    2006-07-01

    The Advanced Technology Development Program has completed performance testing of the second generation of lithium-ion cells (i.e., Gen 2 cells). The 18650-size Gen 2 cells, with a baseline and variant chemistry, were distributed over a matrix consisting of three states-of-charge (SOCs) (60, 80, and 100% SOC), four temperatures (25, 35, 45, and 55°C), and three life tests (calendar-, cycle-, and accelerated-life). The calendar- and accelerated-life cells were clamped at an open-circuit voltage corresponding to the designated SOC and were subjected to a once-per-day pulse profile. The cycle-life cells were continuously pulsed using a profile that was centered around 60% SOC. Life testing was interrupted every four weeks for reference performance tests (RPTs), which were used to quantify changes in cell degradation as a function of aging. The RPTs generally consisted of C1/1 and C1/25 static capacity tests, a low-current hybrid pulse power characterization test, and electrochemical impedance spectroscopy. The rate of cell degradation generally increased with increasing test temperature, and SOC. It was also usually slowest for the calendar-life cells and fastest for the accelerated-life cells. Detailed capacity-, power-, and impedance-based performance results are reported.

  20. Selected Activities of the Office of Energy Efficiency and Renewable Energy's Advanced Manufacturing Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    AUDIT REPORT Selected Activities of the Office of Energy Efficiency and Renewable Energy's Advanced Manufacturing Office OAS-RA-14-04 June 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 June 17, 2014 MEMORANDUM FOR THE ASSISTANT SECRETARY FOR ENERGY EFFICIENCY AND RENEWABLE ENERGY FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit

  1. Improving Steam System Performance: A Sourcebook for Industry, Second Edition (Book) (Revised), Advanced Manufacturing Office (AMO)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Steam System Performance: A Sourcebook for Industry Second Edition The Office of Energy Efficiency and Renewable Energy (EERE) invests in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. IMPROVING STEAM SYSTEM PERFORMANCE: A SOURCEBOOK FOR INDUSTRY ACKNOWLEDGMENTS Improving Steam System Performance: A Sourcebook for Industry was developed for the U.S. Department of Energy's (DOE) Advanced Manufacturing Office (AMO), formerly

  2. Secretary Chu Visits Advanced Battery Plant in Michigan, Announces New Army

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Partnership | Department of Energy Advanced Battery Plant in Michigan, Announces New Army Partnership Secretary Chu Visits Advanced Battery Plant in Michigan, Announces New Army Partnership July 18, 2011 - 1:09pm Addthis Secretary Chu speaks at the A123 Systems lithium-ion battery manufacturing plant in Romulus, Michigan, while employees look on. | Photo Courtesy of Damien LaVera, Energy Department Secretary Chu speaks at the A123 Systems lithium-ion battery manufacturing plant in Romulus,

  3. Final Merit Review Agenda, DOE Advanced Manufacturing Office, Peer Review, May 6-7, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE ADVANCED MANUFACTURING OFFICE PEER REVIEW MAY 6-7, 2014 FINAL AGENDA Day 1 (May 6) Washington Marriott West End Ballroom A/B/C 1221 22nd Street NW, Washington, DC 20037 8:30 - 9:45 am Peer Reviewer Briefing Breakfast Mark Johnson, Isaac Chan, Mark Shuart, and Jay Wrobel, DOE-AMO 9:45 - 10:00 am BREAK 9:00 - 10:00 am REGISTRATION FOR ATTENDEES 10:00 - 10:30 am Welcome and AMO Overview (Organization, Strategies and Initiatives) Mark Johnson, DOE-AMO 10:30 - 10:50 am Paired Straight Hearth

  4. Vehicle Technologies Office Merit Review 2014: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries

    Energy.gov [DOE]

    Presentation given by Optodot Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative manufacturing...

  5. Vehicle Technologies Office Merit Review 2015: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries

    Energy.gov [DOE]

    Presentation given by Optodot Corporation at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative manufacturing...

  6. Si composite electrode with Li metal doping for advanced lithium-ion battery

    SciTech Connect

    Liu, Gao; Xun, Shidi; Battaglia, Vincent

    2015-12-15

    A silicon electrode is described, formed by combining silicon powder, a conductive binder, and SLMP.TM. powder from FMC Corporation to make a hybrid electrode system, useful in lithium-ion batteries. In one embodiment the binder is a conductive polymer such as described in PCT Published Application WO 2010/135248 A1.

  7. A Material Change: Bringing Lithium Production Back to America | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy A Material Change: Bringing Lithium Production Back to America A Material Change: Bringing Lithium Production Back to America June 29, 2012 - 5:34pm Addthis The Rockwood Lithium manufacturing facility in Kings Mountain, North Carolina. | Photo courtesy of Rockwood Lithium. The Rockwood Lithium manufacturing facility in Kings Mountain, North Carolina. | Photo courtesy of Rockwood Lithium. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Between 1980 and

  8. New Electrode Manufacturing Process Equipment: Novel High Energy Density Lithium-Ion Cell Designs via Innovative Manufacturing Process Modules for Cathode and Integrated Separator

    SciTech Connect

    2010-07-01

    BEEST Project: Applied Materials is developing new tools for manufacturing Li-Ion batteries that could dramatically increase their performance. Traditionally, the positive and negative terminals of Li-Ion batteries are mixed with glue-like materials called binders, pressed onto electrodes, and then physically kept apart by winding a polymer mesh material between them called a separator. With the Applied Materials system, many of these manually intensive processes will be replaced by next generation coating technology to apply each component. This process will improve product reliability and performance of the cells at a fraction of the current cost. These novel manufacturing techniques will also increase the energy density of the battery and reduce the size of several of the batterys components to free up more space within the cell for storage.

  9. Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries

    SciTech Connect

    Gallego, Nidia C; Contescu, Cristian I; Meyer III, Harry M; Howe, Jane Y; Meisner, Roberta Ann; Payzant, E Andrew; Lance, Michael J; Yoon, Steve; Denlinger, Matthew; Wood III, David L

    2014-01-01

    Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

  10. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Wide Bandgap Semiconductors for Power Electronics Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wide Bandgap Semiconductors for Power Electronics Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Wide Bandgap Semiconductors for Power Electronics is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR

  11. Sales and Use Tax Exclusion for Advanced Transportation and Alternative Energy Manufacturing Program

    Energy.gov [DOE]

    To date, the Program has approved financial assistance for private entities in the following fields: electric vehicle manufacturing, solar photovoltaic manufacturing, landfill gas capture and...

  12. Atmospheric corrosion of lithium electrodes

    SciTech Connect

    Johnson, C.J.

    1981-10-01

    Atmospheric corrosion of lithium during lithium-cell assembly and the dry storage of cells prior to electrolyte fill has been found to initiate lithium corrosion pits and to form corrosion products. Scanning Electron Microscopy (SEM) was used to investigate lithium pitting and the white floccullent corrosion products. Electron Spectroscopy for Chemical Analysis (ESCA) and Auger spectroscopy in combination with X-ray diffraction were used to characterize lithium surfaces. Lithium surfaces with corrosion products were found to be high in carbonate content indicating the presence of lithium carbonate. Lithium electrodes dry stored in unfilled batteries were found to contain high concentration of lithium flouride a possible corrosion product from gaseous materials from the carbon monofluoride cathode. Future investigations of the corrosion phenomena will emphasize the effect of the corrosion products on the electrolyte and ultimate battery performance. The need to protect lithium electrodes from atmospheric exposure is commonly recognized to minimize corrosion induced by reaction with water, oxygen, carbon dioxide or nitrogen (1). Manufacturing facilities customarily limit the relative humidity to less than two percent. Electrodes that have been manufactured for use in lithium cells are typically stored in dry-argon containers. In spite of these precautions, lithium has been found to corrode over a long time period due to residual gases or slow diffusion of the same into storage containers. The purpose of this investigation was to determine the nature of the lithium corrosion.

  13. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    SciTech Connect

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  14. Microsoft PowerPoint - Gandy-Advanced Manufacturing for SMRs Rev 11. 9-28-2016.pptx

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gandy, FASM, davgandy@epri.com Craig Stover, cstover@epri.com Electric Power Research Institute (US) Keith Bridger, k.bridger@sheffield.ac.uk Nuclear-AMRC (UK) DOE AMM Meeting October 17-18, 2016 Advanced Manufacturing to Enable the Next Generation of Nuclear Plants 2 © 2016 Electric Power Research Institute, Inc. All rights reserved. Imagine if You Could Produce a Reactor Pressure Vessel in Under 12 Months! 3 © 2016 Electric Power Research Institute, Inc. All rights reserved. Advanced

  15. EnerDel Expanding Battery Manufacturing in Indiana | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EnerDel Expanding Battery Manufacturing in Indiana EnerDel Expanding Battery Manufacturing in Indiana October 5, 2010 - 2:00pm Addthis EnerDel is expanding its Mt. Comfort-based factory to produce advanced lithium-ion batteries such as this.| Photo courtesy of EnderDel EnerDel is expanding its Mt. Comfort-based factory to produce advanced lithium-ion batteries such as this.| Photo courtesy of EnderDel Lindsay Gsell What are the key facts? EnerDel uses $118 in Recovery Act funding to expand

  16. Development of advanced manufacturing technologies for low cost hydrogen storage vessels

    SciTech Connect

    Leavitt, Mark; Lam, Patrick

    2014-12-29

    The U.S. Department of Energy (DOE) defined a need for low-cost gaseous hydrogen storage vessels at 700 bar to support cost goals aimed at 500,000 units per year. Existing filament winding processes produce a pressure vessel that is structurally inefficient, requiring more carbon fiber for manufacturing reasons, than would otherwise be necessary. Carbon fiber is the greatest cost driver in building a hydrogen pressure vessel. The objective of this project is to develop new methods for manufacturing Type IV pressure vessels for hydrogen storage with the purpose of lowering the overall product cost through an innovative hybrid process of optimizing composite usage by combining traditional filament winding (FW) and advanced fiber placement (AFP) techniques. A numbers of vessels were manufactured in this project. The latest vessel design passed all the critical tests on the hybrid design per European Commission (EC) 79-2009 standard except the extreme temperature cycle test. The tests passed include burst test, cycle test, accelerated stress rupture test and drop test. It was discovered the location where AFP and FW overlap for load transfer could be weakened during hydraulic cycling at 85°C. To design a vessel that passed these tests, the in-house modeling software was updated to add capability to start and stop fiber layers to simulate the AFP process. The original in-house software was developed for filament winding only. Alternative fiber was also investigated in this project, but the added mass impacted the vessel cost negatively due to the lower performance from the alternative fiber. Overall the project was a success to show the hybrid design is a viable solution to reduce fiber usage, thus driving down the cost of fuel storage vessels. Based on DOE’s baseline vessel size of 147.3L and 91kg, the 129L vessel (scaled to DOE baseline) in this project shows a 32% composite savings and 20% cost savings when comparing Vessel 15 hybrid design and the Quantum

  17. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    SciTech Connect

    No, author

    2013-09-29

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team

  18. Final Report - Advanced MEA's for Enhanced Operating Conditions, Amenable to High Volume Manufacture

    SciTech Connect

    Debe, Mark K.

    2007-09-30

    This report summarizes the work completed under a 3M/DOE contract directed at advancing the key fuel cell (FC) components most critical for overcoming the polymer electrolyte membrane fuel cell (PEMFC) performance, durability & cost barriers. This contract focused on the development of advanced ion exchange membranes & electrocatalysts for PEMFCs that will enable operation under ever more demanding automotive operating conditions & the use high volume compatible processes for their manufacture. Higher performing & more durable electrocatalysts must be developed for PEMFCs to meet the power density & lifetime hours required for FC vehicles. At the same time the amount of expensive Pt catalyst must be reduced to lower the MEA costs. While these two properties are met, the catalyst must be made resistant to multiple degradation mechanisms to reach necessary operating lifetimes. In this report, we present the work focused on the development of a completely new approach to PEMFC electrocatalyts, called nanostructured thin film (NSTF) catalysts. The carbon black supports are eliminated with this new approach which eliminates the carbon corrosion issue. The thin film nature of the catalyst significantly improves its robustness against dissolution & grain growth, preserving the surface area. Also, the activity of the NSTF for oxygen reduction is improved by over 500% compared to dispersed Pt catalyts. Finally, the process for fabricating the NSTF catalysts is consistent with high volume roll-good manufacturing & extremely flexible towards the introduction of new catalyst compositions & structures. This report documents the work done to develop new multi-element NSTF catalysts with properties that exceed pure Pt, that are optimized for use with the membranes discussed below, & advance the state-of-the-art towards meeting the DOE 2010 targets for PEMFC electrocatalysts. The work completed advances the understanding of the NSTF catalyst technology, identifies new NSTF

  19. Longer Life Lithium Ion Batteries with Silicon Anodes - Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Longer Life Lithium Ion Batteries with Silicon Anodes Lawrence Berkeley National ... Researchers have developed a new technology to advance the life of lithium-ion batteries. ...

  20. Modeling the Performance and Cost of Lithium-Ion Batteries for...

    Office of Scientific and Technical Information (OSTI)

    National Laboratory for lithium-ion battery packs used in automotive transportation. ... calculated by accounting for every step in the lithium-ionbattery manufacturing process. ...

  1. Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources

    DOE PAGES [OSTI]

    Mohanty, D.; Hockaday, E.; Li, J.; Hensley, D. K.; Daniel, C.; Wood, D. L.

    2016-02-21

    During LIB electrode manufacturing, it is difficult to avoid the certain defects that diminish LIB performance and shorten the life span of the batteries. This study provides a systematic investigation correlating the different plausible defects (agglomeration/blisters, pinholes/divots, metal particle contamination, and non-uniform coating) in a LiNi0.5Mn0.3Co0.2O2 positive electrode with its electrochemical performance. Additionally, an infrared thermography technique was demonstrated as a nondestructive tool to detect these defects. The findings show that cathode agglomerates aggravated cycle efficiency, and resulted in faster capacity fading at high current density. Electrode pinholes showed substantially lower discharge capacities at higher current densities than baseline NMCmore » 532 electrodes. Metal particle contaminants have an extremely negative effect on performance, at higher C-rates. The electrodes with more coated and uncoated interfaces (non-uniform coatings) showed poor cycle life compared with electrodes with fewer coated and uncoated interfaces. Further, microstructural investigation provided evidence of presence of carbon-rich region in the agglomerated region and uneven electrode coating thickness in the coated and uncoated interfacial regions that may lead to the inferior electrochemical performance. In conclusion, this study provides the importance of monitoring and early detection of the electrode defects during LIB manufacturing processes to minimize the cell rejection rate after fabrication and testing.« less

  2. Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources

    SciTech Connect

    Mohanty, D.; Hockaday, E.; Li, J.; Hensley, D. K.; Daniel, C.; Wood, D. L.

    2016-01-01

    During LIB electrode manufacturing, it is difficult to avoid the certain defects that diminish LIB performance and shorten the life span of the batteries. This study provides a systematic investigation correlating the different plausible defects (agglomeration/blisters, pinholes/divots, metal particle contamination, and non-uniform coating) in a LiNi0.5Mn0.3Co0.2O2 positive electrode with its electrochemical performance. Additionally, an infrared thermography technique was demonstrated as a nondestructive tool to detect these defects. The findings show that cathode agglomerates aggravated cycle efficiency, and resulted in faster capacity fading at high current density. Electrode pinholes showed substantially lower discharge capacities at higher current densities than baseline NMC 532 electrodes. Metal particle contaminants have an extremely negative effect on performance, at higher C-rates. The electrodes with more coated and uncoated interfaces (non-uniform coatings) showed poor cycle life compared with electrodes with fewer coated and uncoated interfaces. Further, microstructural investigation provided evidence of presence of carbon-rich region in the agglomerated region and uneven electrode coating thickness in the coated and uncoated interfacial regions that may lead to the inferior electrochemical performance. In conclusion, this study provides the importance of monitoring and early detection of the electrode defects during LIB manufacturing processes to minimize the cell rejection rate after fabrication and testing.

  3. Manufacturing Demonstration Facility Workshop Videos | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Demonstration Facility Workshop Videos Manufacturing Demonstration Facility Workshop Videos Dr. Leo Christodoulou, Program Manager, EERE Advanced Manufacturing ...

  4. Office\tof\tEnergy\tEfficiency\t&\tRenewable\tEnergy Advanced\tManufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    AdministraHon prioriHes Expanded Scope of QTR 2015 The QTR evaluates major changes since ... Manufacturing Technology Assessment - Scope: * Supply chain issues, from resource ...

  5. Stay informed with current announcements from the Advanced Manufacturing Office (AMO).

    Energy.gov [DOE]

    Lawrence Livermore National Laboratory Leads DOE’s New HPC for Manufacturing Program Lawrence Livermore National Laboratory (LLNL) is collaborating with Lawrence Berkeley and Oak Ridge National Laboratories (LBNL and ORNL) to lead a new US Department of Energy (DOE) program designed to fund and foster public-private R&D projects that enhance US competitiveness in clean energy manufacturing. The High Performance Computing for Manufacturing Program (HPC4Mfg) was announced by David Danielson, DOE assistant secretary for Energy Efficiency and Renewable Energy, during the third annual American Energy and Manufacturing Competitiveness Summit (AEMC).

  6. IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS

    SciTech Connect

    Xiaodi Huang; Richard Gertsch

    2005-02-04

    Michigan Technological University, together with The Robbins Group, Advanced Ceramic Research, Advanced Ceramic Manufacturing, and Superior Rock Bits, evaluated a new process and a new material for producing drill bit inserts and disc cutters for the mining industry. Difficulties in the material preparation stage slowed the research initially. Prototype testing of the drill bit inserts showed that the new inserts did not perform up to the current state of the art. Due to difficulties in the prototype production of the disc cutters, the disc cutter was manufactured but not tested. Although much promising information was obtained as a result of this project, the objective of developing an effective means for producing rock drill bits and rock disc cutters that last longer, increase energy efficiency and penetration rate, and lower overall production cost was not met.

  7. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    SciTech Connect

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  8. Teaming Up to Apply Advanced Manufacturing Methods to Wind Turbine Production

    Energy.gov [DOE]

    Last spring, a 3D-printed replica Shelby Cobra, manufactured at Oak Ridge National Laboratory (ORNL), visited the U.S. Department of Energy (DOE) headquarters in Washington, DC. Now, DOE’s Wind...

  9. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Combined Heat and Power Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Platforms and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial

  10. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Materials for Harsh Service Conditions Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology

  11. Manufacturing Fuel Cell Manhattan Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document communicates the major fuel cell manufacturing cost drivers, gaps, and industry best practices, as well as recommends manufacturing projects to advance fuel cell manufacturing.

  12. Quantification of Electrochemical Nanoscale Processes in Lithium...

    Office of Scientific and Technical Information (OSTI)

    In addition, extensive worldwide research efforts are now being devoted to more advanced "beyond Li-ion" battery chemistries - such as lithium-sulfur (Li-S) and lithium-air (Li-O2) ...

  13. California Lithium Battery, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage

  14. Laser Manufacturing | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Home > Impact > Advanced Laser Manufacturing Tools Deliver Higher Performance Click to ... Advanced Laser Manufacturing Tools Deliver Higher Performance In a research lab looking ...

  15. Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional Information...

  16. Vehicle Technologies Office Merit Review 2015: Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    Energy.gov [DOE]

    Presentation given by Lambda Technologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced drying process...

  17. Manufacturing Innovation in the DOE

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Innovation in the DOE January 13, 2014 Mark Johnson Director Advanced Manufacturing Office manufacturing.energy.gov Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 What is Advanced Manufacturing? A family of activities that: * Depend on the use and coordination of information, automation, computation, software, sensing, and networking; and/or * Make use of cutting edge materials and emerging capabilities. Advanced Manufacturing involves both: * New ways to

  18. Sustainable Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Principal Investigator (Presenter): Dr. Troy D. Marusich , CTO Washington, D.C. May 6-7, 2014 Third Wave Systems Inc. U.S. DOE Advanced Manufacturing Office Peer Review Meeting This presentation does not contain any proprietary, confidential, or otherwise restricted information. o Project Objective  What are you trying to do?  Develop and demonstrate a new manufacturing-informed design paradigm to dramatically improve manufacturing productivity, quality, and costs of machined components

  19. Manufacturing technologies

    SciTech Connect

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  20. Vehicle Technologies Office Merit Review 2015: Daikin Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Daikin Advanced Lithium Ion Battery Technology High Voltage Electrolyte Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion Battery Technology High ...

  1. Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Manufacturing is how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Manufacturing is the lifeblood of the American economy -- providing jobs

  2. Lithium-Ion Battery Electrolyte Material Scale-Up | Argonne National

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Laboratory Lithium-Ion Battery Electrolyte Material Scale-Up June 1, 2011 Tweet EmailPrint Scientists at Argonne have recently developed an improved, scalable process for the synthesis of the lithium-ion battery solvent (ANL-1NM3) and have successfully generated 3,357g of high purity (>99.95%) material in a single batch. This is the second material scaled-up by Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program. This process development work is a

  3. Development of Advanced Manufacturing Methods for Warm White LEDs for General Lighting

    SciTech Connect

    Deshpande, Anirudha; Kolodin, Boris; Jacob, Cherian; Chowdhury, Ashfaqul; Kuenzler, Glenn; Sater, Karen; Aesram, Danny; Glaettli, Steven; Gallagher, Brian; Langer, Paul; Setlur, Anant; Beers, Bill

    2012-03-31

    GE Lighting Solutions will develop precise and efficient manufacturing techniques for the remote phosphor platform of warm-white LED products. In volume, this will be demonstrated to drive significant materials, labor and capital productivity to achieve a maximum possible 53% reduction in overall cost. In addition, the typical total color variation for these white LEDs in production will be well within the ANSI bins and as low as a 4-step MacAdam ellipse centered on the black body curve. Achievement of both of these objectives will be demonstrated while meeting a performance target of > 75 lm/W for a warm-white LED and a reliability target of <30% lumen drop / <2-step MacAdam ellipse shift, estimated over 50,000 hrs.

  4. Next generation grinding spindle for cost-effective manufacture of advanced ceramic components

    SciTech Connect

    Kovach, J.A.; Laurich, M.A.

    2000-01-01

    Finish grinding of advanced structural ceramics has generally been considered an extremely slow and costly process. Recently, however, results from the High-Speed, Low-Damage (HSLD) program have clearly demonstrated that numerous finish-process performance benefits can be realized by grinding silicon nitride at high wheel speeds. A new, single-step, roughing-process capable of producing high-quality silicon nitride parts at high material removal rates while dramatically reducing finishing costs has been developed.

  5. A Better Anode Design to Improve Lithium-Ion Batteries

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... this composite anode exhibits the best performance so far in lithium-ion batteries, while retaining an economical cost and compatibility with existing manufacturing ...

  6. Advanced Methods for Manufacturing Newsletter Issue 4 Sept 2016_0.pdf

    Office of Environmental Management (EM)

    Bamdad Bahar bamdad.bahar@xergyinc.com Xergy, Inc. Advanced Hybrid Water-Heater Using Electrochemical Compression (ECC) 2015 Building Technologies Office Peer Review 2 Project Summary: Phase II SBIR Timeline: Start date: May 19th, 2014 Planned end date: May 19th, 2016 Key Milestones: 1. Design and build five cell test stands; 02/15 2. Construct component membrane line; 01/15 3. Design and build scale device for GE testing; 06/15 Budget: Total DOE $ to date: 454,892.94 (5/19/2015 to 3/3/2015)

  7. Implementation of a TMP Advanced Quality Control System at a Newsprint Manufacturing Plant

    SciTech Connect

    Sebastien Kidd

    2006-02-14

    This project provided for the implementation of an advanced, model predictive multi-variant controller that works with the mill that has existing distributed control system. The method provides real time and online predictive models and modifies control actions to maximize quality and minimize energy costs. Using software sensors, the system can predict difficult-to-measure quality and process variables and make necessary process control decisions to accurately control pulp quality while minimizing electrical usage. This method of control has allowed Augusta Newsprint Company to optimize the operation of its Thermo Mechanical Pulp mill for lower energy consumption and lower pulp quality variance.

  8. Designation Order No. 00-12.00 to the Executive Director of Loan Programs and Director of the Advanced Technology Vehicles Manufacturing Incentive Program

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2010-04-30

    Secretary or Energy designates each of the Executive Director of Loan Programs and the Director of the Advanced Technology Vehicles Manufacturing Incentive Program, as their designee, as the term is used in the Internal Revenue Manual, Part 11, Chapter 3, Section 29.6, acting separately to request tax delinquency account status and other tax related information from the Internal Revenue Service, pursuant to 26 U .S.C. 6103(1)(3), for applicants to the Department's Advanced Technology Vehicles Manufacturing Incentive Program under Section 136 of the Energy Independence and Security Act of2007 (P. L. 110-140), as amended.

  9. Smart Manufacturing Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Smart Manufacturing Innovation Smart Manufacturing Innovation Addthis Find out how advanced technologies developed by our latest institute will make U.S. manufacturing more productive, energy efficient, and competitive. Learn more about advanced manufacturing

  10. Lithium battery

    SciTech Connect

    Koch, V. R.

    1981-02-24

    An electrolyte for a rechargeable electrochemical cell featuring diethylether, a cosolvent, and a lithium salt is disclosed.

  11. Obama Administration Launches $26 Million Multi-Agency Competition to Strengthen Advanced Manufacturing Clusters Across the Nation

    Energy.gov [DOE]

    Fourteen Federal Agencies Collaborate to Enhance Global Competitiveness of U.S. Manufacturers and Create Jobs

  12. Industrialization of Biology. A Roadmap to Accelerate the Advanced Manufacturing of Chemicals

    SciTech Connect

    Friedman, Douglas C.

    2015-09-01

    The report stresses the need for efforts to inform the public of the nature of industrial biotechnology and of its societal benefits, and to make sure that concerns are communicated effectively between the public and other stakeholders. In addition to scientific advances, a number of governance and societal factors will influence the industrialization of biology. Industry norms and standards need to be established in areas such as read/write accuracy for DNA, data and machine technology specifications, and organism performance in terms of production rates and yields. An updated regulatory regime is also needed to accelerate the safe commercialization of new host organisms, metabolic pathways, and chemical products, and regulations should be coordinated across nations to enable rapid, safe, and global access to new technologies and products.

  13. The Advanced High-Temperature Reactor (AHTR) for Producing Hydrogen to Manufacture Liquid Fuels

    SciTech Connect

    Forsberg, C.W.; Peterson, P.F.; Ott, L.

    2004-10-06

    Conventional world oil production is expected to peak within a decade. Shortfalls in production of liquid fuels (gasoline, diesel, and jet fuel) from conventional oil sources are expected to be offset by increased production of fuels from heavy oils and tar sands that are primarily located in the Western Hemisphere (Canada, Venezuela, the United States, and Mexico). Simultaneously, there is a renewed interest in liquid fuels from biomass, such as alcohol; but, biomass production requires fertilizer. Massive quantities of hydrogen (H2) are required (1) to convert heavy oils and tar sands to liquid fuels and (2) to produce fertilizer for production of biomass that can be converted to liquid fuels. If these liquid fuels are to be used while simultaneously minimizing greenhouse emissions, nonfossil methods for the production of H2 are required. Nuclear energy can be used to produce H2. The most efficient methods to produce H2 from nuclear energy involve thermochemical cycles in which high-temperature heat (700 to 850 C) and water are converted to H2 and oxygen. The peak nuclear reactor fuel and coolant temperatures must be significantly higher than the chemical process temperatures to transport heat from the reactor core to an intermediate heat transfer loop and from the intermediate heat transfer loop to the chemical plant. The reactor temperatures required for H2 production are at the limits of practical engineering materials. A new high-temperature reactor concept is being developed for H2 and electricity production: the Advanced High-Temperature Reactor (AHTR). The fuel is a graphite-matrix, coated-particle fuel, the same type that is used in modular high-temperature gas-cooled reactors (MHTGRs). The coolant is a clean molten fluoride salt with a boiling point near 1400 C. The use of a liquid coolant, rather than helium, reduces peak reactor fuel and coolant temperatures 100 to 200 C relative to those of a MHTGR. Liquids are better heat transfer fluids than gases

  14. Nanostructured Anodes for Lithium-Ion Batteries - Energy Innovation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Advanced Materials Find More Like This Return to Search Nanostructured Anodes for Lithium-Ion Batteries New Anodes for Lithium-ion Batteries Increase Energy Density Four-Fold...

  15. Hydrogen, lithium, and lithium hydride production

    SciTech Connect

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  16. Expanded North Carolina Lithium Facility Opens, Boosting U.S. Production of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    a Key Manufacturing Material | Department of Energy North Carolina Lithium Facility Opens, Boosting U.S. Production of a Key Manufacturing Material Expanded North Carolina Lithium Facility Opens, Boosting U.S. Production of a Key Manufacturing Material June 29, 2012 - 12:28pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Today, U.S. Energy Secretary Steven Chu recognized the opening of Rockwood Lithium's expanded manufacturing facility in Kings Mountain, North Carolina. Rockwood is

  17. Nanocomposite Materials for Lithium-Ion Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nanocomposite Materials for Lithium-Ion Batteries Nanocomposite Materials for Lithium-Ion Batteries nanocomposite_materials_li_ion.pdf (508.08 KB) More Documents & Publications Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress Report Energy Storage R&D and ARRA

  18. Advanced Manufacturing Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... sector Gap "Valley of Death" (Risk Spike) DOE Energy ... capability for the United States * Impactful: Has a ... or products: * Production rate * Processes established * ...

  19. Advanced Methods for Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    R. Shane Johnson Deputy Assistant Secretary for Science and Technology Innovation (NE-4) December 11, 2015 Gateway for Accelerated Innovation in Nuclear GAIN 2 Accelerating Nuclear ...

  20. Advanced Battery Manufacturing (VA)

    SciTech Connect

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATTs products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATTs work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

  1. Innovative Manufacturing Initiative Project Selections

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department announced nearly $23 million for 12 projects across the country to advance technologies aimed at helping American manufacturers dramatically increase the energy efficiency of their manufacturing facilities, lower costs, and develop new manufacturing technologies.

  2. Solving the Big Data (BD) Problem in Advanced Manufacturing (Subcategory for work done at Georgia Tech. Study Process and Design Factors for Additive Manufacturing Improvement)

    SciTech Connect

    Clark, Brett W.; Diaz, Kimberly A.; Ochiobi, Chinaza Darlene; Paynabar, Kamran

    2015-09-01

    3D printing originally known as additive manufacturing is a process of making 3 dimensional solid objects from a CAD file. This ground breaking technology is widely used for industrial and biomedical purposes such as building objects, tools, body parts and cosmetics. An important benefit of 3D printing is the cost reduction and manufacturing flexibility; complex parts are built at the fraction of the price. However, layer by layer printing of complex shapes adds error due to the surface roughness. Any such error results in poor quality products with inaccurate dimensions. The main purpose of this research is to measure the amount of printing errors for parts with different geometric shapes and to analyze them for finding optimal printing settings to minimize the error. We use a Design of Experiments framework, and focus on studying parts with cone and ellipsoid shapes. We found that the orientation and the shape of geometric shapes have significant effect on the printing error. From our analysis, we also determined the optimal orientation that gives the least printing error.

  3. U.S. DOE FreedomCAR and Vehicle Technologies Advanced Technology Development Program for Lithium-Ion Batteries: Gen 2 Performance Evaluation Interim Report

    SciTech Connect

    Jon P. Christophersen; Chet Motloch; Ira D. Bloom; Vince Battaglia; Ganesan Nagasubramanian; Tien Q. Duong

    2003-02-01

    The Advanced Technology Development Program is currently evaluating the performance of the second generation of Lithium-ion cells (i.e., Gen 2 cells). The 18650-size Gen 2 cells consist of a baseline chemistry and one variant chemistry. These cells were distributed over a matrix consisting of three states-of-charge (SOC) (60, 80, and 100% SOC), four temperatures (25, 35, 45, and 55°C), and three life tests (calendar-, cycle-, and accelerated-life). The calendar-life cells are clamped at an opencircuit voltage corresponding to 60% SOC and undergo a once-per-day pulse profile. The cycle-life cells are continuously pulsed using a profile that is centered around 60% SOC. The accelerated-life cells are following the calendar-life test procedures, but using the cycle-life pulse profile. Life testing is interrupted every four weeks for reference performance tests (RPTs), which are used to quantify changes in capacity, resistance, and power. The RPTs consist of a C1/1 and C1/25 static capacity tests, a low-current hybrid pulse power characterization test, and electrochemical impedance spectroscopy at 60% SOC. Capacity-, power-, and electrochemical impedance spectroscopy-based performance results are reported.

  4. Lithium battery

    SciTech Connect

    Ikeda, H.; Nakaido, S.; Narukara, S.

    1983-08-16

    In a lithium battery having a negative electrode formed with lithium as active material and the positive electrode formed with manganese dioxide, carbon fluoride or the like as the active material, the discharge capacity of the negative electrode is made smaller than the discharge capacity of the positive electrode, whereby a drop in the battery voltage during the final discharge stage is steepened, and prevents a device using such a lithium battery as a power supply from operating in an unstable manner, thereby improving the reliability of such device.

  5. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Direct Thermal Energy Conversion Materials, Devices, and Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology

  6. Nevada manufacturer installing geothermal power plant | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant August 26, 2010 - 4:45pm Addthis Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Joshua DeLung Chemetall supplies materials for lithium-ion batteries for electric vehicles

  7. Lithium literature review: lithium's properties and interactions...

    Office of Scientific and Technical Information (OSTI)

    Lithium may be used as a breeding blanket and reactor coolant in these facilities. Physical and chemical properties of lithium as well as the chemical interactions of lithium with ...

  8. Approaches to Evaluating and Improving Lithium-Ion Battery Safety...

    Office of Scientific and Technical Information (OSTI)

    Conference: Approaches to Evaluating and Improving Lithium-Ion Battery Safety. Citation ... presentation at the Advanced Automotive Batteries Conference held February 4-8, 2013 in ...

  9. Lithium uptake data of lithium imprinted polymers

    SciTech Connect

    Susanna Ventura

    2015-12-04

    Batch tests of lithium imprinted polymers of variable composition to assess their ability to extract lithium from synthetic brines at T=45C. Initial selectivity data are included

  10. Manufacturing Demonstration Facility

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Demonstration Facility Bill Peter Director, Manufacturing Demonstration Facility Oak Ridge National Laboratory Advanced Manufacturing Office Peer Review June 14-15, 2016 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Today, ORNL is a leading science and energy laboratory The Manufacturing Demonstration Facility at Oak Ridge National Laboratory * R&D in materials, systems, and computational applications to develop broad of

  11. Manufacturing Innovation Topics Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Manufacturing Office (AMO) and the Office of the Secretary of Defense Manufacturing Technology Program (OSD ManTech) will host a workshop to discuss AMO's recent Request for Information (RFI) on Clean Energy Manufacturing Topic Areas as well as the recent areas of interest announced by OSD ManTech for a new Manufacturing Innovation Institute on October 8-9, 2014 in Fort Worth, TX.

  12. Notice of Intent (NOI): Clean Energy Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Notice of Intent (NOI): Clean Energy Manufacturing Innovation ...

  13. Third Annual American Energy and Manufacturing Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and included showpieces highlighting advanced composites manufacturing and large scale additive manufacturing. Image: Photo courtesy of Attlee Photography View All Galleries

  14. clean energy manufacturing | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. Clean Energy Manufacturing Initiative: http://www1.eere.energy.gov/energymanufacturing

  15. Roll-to-Roll Electrode Processing and Materials NDE for Advanced...

    Energy.gov [DOE] (indexed site)

    Lithium Secondary Batteries Vehicle Technologies Office Merit Review 2014: Roll-to-Roll Electrode Processing NDE for Advanced Lithium Secondary Batteries In-situ ...

  16. Sustainable Manufacturing

    Energy.gov [DOE] (indexed site)

    Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR DOE Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR Sustainable Manufacturing: Definitions ...

  17. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations

    Energy.gov [DOE]

    This Clean Energy Manufacturing Analysis Center report is intended to provide credible, objective analysis regarding the regional competitiveness contexts of manufacturing lithium-­ion batteries ...

  18. Notice of Intent (NOI): Clean Energy Manufacturing Innovation Institute on

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing | Department of Energy Clean Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Notice of Intent (NOI): Clean Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing December 11, 2014 - 11:30am Addthis The purpose of this Notice of Intent is

  19. Additive Manufacturing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MST » MST Research Programs » Additive Manufacturing Additive Manufacturing A method allowing unparalleled manufacturing control, data visualization, and high-value parts repair. Through additive manufacturing, Los Alamos is developing materials for the future. Taking complex manufacturing challenges from design to fabrication. A science and engineering approach for additive manufacturing solutions. Get Expertise John Carpenter Technical Staff Member Metallurgy Email Division Leader Materials

  20. lithium cobalt oxide cathode

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    lithium cobalt oxide cathode - Sandia Energy Energy Search Icon Sandia Home Locations ... SunShot Grand Challenge: Regional Test Centers lithium cobalt oxide cathode Home...

  1. Clean Energy Manufacturing Initiative

    SciTech Connect

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  2. Insertion of lithium into electrochromic devices after completion

    SciTech Connect

    Berland, Brian Spencer; Lanning, Bruce Roy; Frey, Jonathan Mack; Barrett, Kathryn Suzanne; DuPont, Paul Damon; Schaller, Ronald William

    2015-12-22

    The present disclosure describes methods of inserting lithium into an electrochromic device after completion. In the disclosed methods, an ideal amount of lithium can be added post-fabrication to maximize or tailor the free lithium ion density of a layer or the coloration range of a device. Embodiments are directed towards a method to insert lithium into the main device layers of an electrochromic device as a post-processing step after the device has been manufactured. In an embodiment, the methods described are designed to maximize the coloration range while compensating for blind charge loss.

  3. Polymers For Advanced Lithium Batteries

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Polymers For Advanced Lithium Batteries

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  5. Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Manufacturing Office (AMO) manufacturing.energy.gov 3 Morning Agenda 9:00am - 9:05am Welcome Mark Johnson Director, Advanced Manufacturing Office 9:05am - 9:20am Clean Energy Manufacturing Initiative David Danielson Assistant Secretary Energy Efficiency and Renewable Energy 9:20am - 9:50am Advanced Manufacturing Office Overview and Review of RFI Results Mark Johnson Director, Advanced Manufacturing Office 9:50am - 10:30am Panel Discussion: DOE Perspectives Mark Shuart, Advanced

  6. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    by ensuring critical feedback from the production phase to invention and discovery. Additive manufacturing is just one of several technologies advanced by the Energy...

  7. Manufacturing Innovation in the DOE

    Energy.gov [DOE] (indexed site)

    Products Swung to historic deficit, lost 13 of workforce Data Source: http:www.census.govforeign-tradePress-Releaseft900index.html Advanced Manufacturing Office (AMO) ...

  8. Lithium Iron Phosphate Composites for Lithium Batteries (IN-11...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lithium Iron Phosphate Composites for Lithium Batteries (IN-11-024) Low-Cost Phosphate Compounds Enhance Lithium Battery Performance Argonne National Laboratory Contact ANL About ...

  9. Washington: Battery Manufacturer Brings Material Production Home...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    can be used in ultracapacitors, lithium-ion batteries, and advanced lead acid batteries. ... EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo ...

  10. Lithium Balance | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Balance Jump to: navigation, search Name: Lithium Balance Place: Copenhagen, Denmark Product: Lithium ion battery developer. References: Lithium Balance1 This article is a stub....

  11. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries

    DOE PAGES [OSTI]

    Wang, Deli; Wang, Jie; He, Huan; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wu, Zexing; Liu, Hongfang

    2015-12-30

    Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of CoxFe3–xO4 hollow spheres supported by carbon nanotubes via an impregnation–reduction–oxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, we directly visualize themore » particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. As a result, this study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion.« less

  12. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries

    SciTech Connect

    Wang, Deli; Wang, Jie; He, Huan; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wu, Zexing; Liu, Hongfang

    2015-12-30

    Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of CoxFe3–xO4 hollow spheres supported by carbon nanotubes via an impregnation–reduction–oxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, we directly visualize the particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. As a result, this study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion.

  13. Fully Coupled Simulation of Lithium Ion Battery Cell Performance

    SciTech Connect

    Trembacki, Bradley L.; Murthy, Jayathi Y.; Roberts, Scott Alan

    2015-09-01

    Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulated and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.

  14. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    SciTech Connect

    Harry Littleton; John Griffin

    2011-07-31

    This project was a subtask of Energy Saving Melting and Revert Reduction Technology (“Energy SMARRT”) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy saving estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU’s/year and 6.46 trillion BTU’s/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).

  15. Advanced Battery Technologies Inc ABAT | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Product: China-based developer, manufacturer and distributer of rechargeable polymer lithium-ion (PLI) batteries. Coordinates: 45.363708, 126.314621 Show Map Loading map......

  16. Lithium metal oxide electrodes for lithium cells and batteries...

    Office of Scientific and Technical Information (OSTI)

    Title: Lithium metal oxide electrodes for lithium cells and batteries A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in ...

  17. Revolutionizing Clean Energy Technology with Advanced Composites

    SciTech Connect

    Hockfield, Susan; Holliday Jr, Charles O.; Markell, Brad

    2015-01-13

    Energy conservation and manufacturing leaders discuss manufacturing products with advance composites to revolutionize the future with clean energy technology.

  18. Institute for Advanced Study Christine Di Bella Institute for Advanced Study

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Facilities » Institute for Advanced Composites Manufacturing Innovation Institute for Advanced Composites Manufacturing Innovation Institute for Advanced Composites Manufacturing Innovation Thumbnail on opening image of linked video. The Institute for Advanced Composites Manufacturing Innovation (IACMI) is a public-private partnership creating clean energy solutions and catalyzing manufacturing competitiveness across the U.S. advanced composite ecosystem. This partnership of

  19. Transformational Manufacturing | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and

  20. A lithium oxygen secondary battery

    SciTech Connect

    Semkow, K.W.; Sammells, A.F.

    1987-08-01

    In principle the lithium-oxygen couple should provide one of the highest energy densities yet investigated for advanced battery systems. The problem to this time has been one of identifying strategies for achieving high electrochemical reversibilities at each electrode under conditions where one might anticipate to also achieve long materials lifetimes. This has been addressed in recent work by us via the application of stabilized zirconia oxygen vacancy conducting solid electrolytes, for the effective separation of respective half-cell reactions.

  1. Explore Careers in Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Explore Careers in Manufacturing The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a transformation in U.S. manufacturing. The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a

  2. Energy 101: Clean Energy Manufacturing

    SciTech Connect

    2015-07-09

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  3. Energy 101: Clean Energy Manufacturing

    Energy.gov [DOE]

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  4. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  5. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  6. Molten salt lithium cells

    DOEpatents

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  7. Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing- Informed Design

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing ADVANCED MANUFACTURING OFFICE Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing- Informed Design Improving Product and Manufacturing Process Design through a More Accurate and Widely Applicable Modeling Framework. This project aims to fll the knowledge gap between upstream design and downstream manufacturing processes by developing a manufacturing-informed design framework enabled by multi-scale, physics-based process models. This framework

  8. Advanced Battery Factory | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Battery Factory Place: Shen Zhen City, Guangdong Province, China Product: Producers of lithium polymer batteries, established in 1958. References: Advanced Battery Factory1 This...

  9. DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards

    Energy.gov [DOE]

    Today, the Department of Energy announced that three manufacturers -- Aspen Manufacturing, Inc., Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat pump...

  10. Integrated Manufacturing for Advanced MEAs

    SciTech Connect

    Emory S. De Castro; Yu-Min Tsou; Mark G. Roelofs; Olga Polevaya

    2007-03-30

    This program addressed a two-pronged goal for developing fuel cell components: lowering of precious metal content in membrane electrode assemblies (MEAs), thereby reducing the fuel cell cost, and creating MEAs that can operate at 120oC and 25% RH whereby the system efficiency and effectiveness is greatly improved. In completing this program, we have demonstrated a significant reduction in precious metal while at the same time increasing the power output (achieved 2005 goal of 0.6g/Kw). We have also identified a technology that allows for one step fabrication of MEAs and appears to be a feasible path toward achieving DOE’s 2010 targets for precious metal and power (approaches 0.2g/Kw). Our team partner Du Pont invented a new class of polymer electrolyte membrane that has sufficient stability and conductivity to demonstrate feasibility for operation at 120 oC and low relative humidity. Through the course of this project, the public has benefited greatly from numerous presentations and publications on the technical understanding necessary to achieve these goals.

  11. Electrode Structures and Surfaces for Lithium Batteries | Argonne National

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Laboratory Structures and Surfaces for Lithium Batteries Technology available for licensing: Lithium-metal-oxide electrode materials with modified surfaces to protect the materials from highly oxidizing potentials in the cells and from other undesirable effects, such as electrolyte oxidation, oxygen loss, and/or dissolution A low-cost manufacturing method. Improves stability of composite electrode structures. PDF icon electrode_structures

  12. AMO Requests Technical Topics Suitable for a Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Innovation Institute AMO Requests Technical Topics Suitable for a Manufacturing Innovation Institute April 17, 2014 - 12:23pm Addthis The Advanced Manufacturing Office...

  13. Oak Ridge Manufacturing Demonstration Facility (MDF)

    Energy.gov [DOE]

    The Manufacturing Demonstration Facility (MDF) is a collaborative manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

  14. Oak Ridge Manufacturing Demonstration Facility (MDF)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Manufacturing Demonstration Facility (MDF) is a collabora­tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

  15. Surface-Modified Active Materials for Lithium Ion Battery Electrodes -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Innovation Portal Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Surface-Modified Active Materials for Lithium Ion Battery Electrodes Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Berkeley Lab researcher Gao Liu has developed a new fabrication technique for lithium ion battery electrodes that lowers binder cost without sacrificing performance and reliability. Description

  16. CUBICON Materials that Outperform Lithium-Ion Batteries - Energy Innovation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Portal Advanced Materials Advanced Materials Find More Like This Return to Search CUBICON Materials that Outperform Lithium-Ion Batteries Brookhaven National Laboratory Contact BNL About This Technology Micrograph of CUBICON material. Micrograph of CUBICON material. Technology Marketing Summary The demand for batteries to meet high-power and high-energy system applications has resulted in substantial research and development activities. Lithium-ion batteries are a chief contender today, but

  17. Report to the President on Ensuring American Leadership in Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing | Department of Energy to the President on Ensuring American Leadership in Advanced Manufacturing Report to the President on Ensuring American Leadership in Advanced Manufacturing pcast_june2011.pdf (975.42 KB) More Documents & Publications Report to the President on Capturing Domestic Competitive Advantage in Advanced Manufacturing A National Strategic Plan For Advanced Manufacturing The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program

  18. FACT SHEET: 48C MANUFACTURING TAX CREDITS

    Energy.gov [DOE]

    The Advanced Energy Manufacturing Tax Credit Program is helping build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment. On February 7,...

  19. AMO Hosted Workshop on Composite Manufacturing

    Energy.gov [DOE]

    The U.S. Department of Energy's Advanced Manufacturing Office will host a workshop on Fiber Reinforced Polymer Composite Manufacturing on January 13, 2014 at the Hilton Crystal City in Arlington, VA.

  20. Solid lithium-ion electrolyte (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    uses in lithium batteries, electrochromic devices and other electrochemical applications. ... conductivity; suitable; lithium; batteries; electrochromic; devices; ...

  1. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations

    Energy.gov [DOE]

    This study highlights the U.S. foothold in automotive lithium-ion battery (LIB) production, globally. U.S.-based manufacturers comprise 17% of global production capacity. With increasing demand for...

  2. Method of recycling lithium borate to lithium borohydride through diborane

    DOEpatents

    Filby, Evan E.

    1976-01-01

    This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a diborane intermediate to complete the recycle scheme.

  3. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Manufacturing Initiative (CEMI) is a U.S. Department of Energy (DOE)- wide commitment to innovation and breaking down market barriers in order to enhance U.S. manufacturing competitiveness while advancing the nation's energy goals. As part of its mission, CEMI builds partnerships around strategic priorities to increase U.S. clean energy manufacturing competitiveness. This requires an "all-hands-on-deck" approach that involves the nation's private and public sectors,

  4. Manufacturing Glossary

    Annual Energy Outlook

    Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing...

  5. additive manufacturing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    additive manufacturing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power ...

  6. Clean Anodic Lithium Films for Longer Life, Rechargeable Lithium...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Clean Anodic Lithium ... polymer electrolytes are used to prepare clean anodic lithium films for use in safe, ...

  7. FACT SHEET: President Obama Announces Winner of New Smart Manufacturing Innovation Institute and New Manufacturing Hub Competitions

    Energy.gov [DOE]

    The Smart Manufacturing Innovation Institute, headquartered in Los Angeles, CA, brings over $140 million in public-private investment from leading universities and manufacturers to develop smart sensors for use in advanced manufacturing.

  8. Lithium Redistribution in Lithium-Metal Batteries

    SciTech Connect

    Ferrese, A; Albertus, P; Christensen, J; Newman, J

    2012-01-01

    A model of a lithium-metal battery with a CoO2 positive electrode has been modeled in order to predict the movement of lithium in the negative electrode along the negative electrode/separator interface during cell cycling. A finite-element approach was used to incorporate an intercalation positive electrode using superposition, electrode tabbing, transport using concentrated solution theory, as well as the net movement of the lithium electrode during cycling. From this model, it has been found that movement of lithium along the negative electrode/separator interface does occur during cycling and is affected by three factors: the cell geometry, the slope of the open-circuit-potential function of the positive electrode, and concentration gradients in both the solid and liquid phases in the cell. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.027210jes] All rights reserved.

  9. additive manufacturing | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    The Manufacturing Leadership Council recognized KCNSC's achievements with awards in three categories, including Big Data & Advanced Analytics Leadership,... Labs in NNSA lead the ...

  10. Dispatchable Distributed Generation: Manufacturing's Role in...

    Energy.gov [DOE] (indexed site)

    Advanced Manufacturing Office (AMO) held a workshop in Austin, Texas at the Embassy Suites ... More Documents & Publications 2008 Texas State Energy Plan Application to Export Electric ...

  11. Dispatchable Distributed Generation: Manufacturing's Role in...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Advanced Manufacturing Office (AMO) held a workshop in Austin, Texas at the Embassy ... ERCOTDOE DER.PDF (393.39 KB) WASHOM Austin Opportunities & Challenges for Microgrids ...

  12. Manufacturing Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Advanced Manufacturing Office; John Dennis, Mayor of West Lafayette; Mitch Daniels, President of Purdue University; R. Byron Pipes, John Leighton Bray Distinguished...

  13. Manufacturing Energy and Carbon Footprint References

    Energy.gov [DOE] (indexed site)

    References AMO (Advanced Manufacturing Office), EERE (Energy Efficiency and Renewable Energy). 2012. Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators. ...

  14. Clean Energy Manufacturing Initiative | Department of Energy

    Energy.gov [DOE] (indexed site)

    Dave Danielson for an unforgettable dialogue on advances and obstacles in clean energy ... Read more Leadership Perspectives: The Opportunity for Clean Energy Manufacturing ...

  15. Princeton Plasma Physics Lab - Lithium

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    lithium Nearly everybody knows about lithium - a light, silvery alkali metal - used in rechargeable batteries powering everything from laptops to hybrid cars. What may not be so...

  16. Lithium purification technique

    DOEpatents

    Keough, Robert F.; Meadows, George E.

    1985-01-01

    A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.

  17. Lithium purification technique

    DOEpatents

    Keough, R.F.; Meadows, G.E.

    1984-01-10

    A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.

  18. 3 Ways Our Manufacturing Institutes Are Changing the Clean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Composites Manufacturing Innovation just announced a new industry ... members who are working together to lower the cost of advanced composites like carbon ...

  19. Innovation Meets Performance Demands of Advanced Lithium-ion Batteries (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Advancements in high capacity and high density battery technologies have led to a growing need for battery materials with greater charge capacity and therefore stability. NREL's developments in ALD and MLD allow for thin film coatings to battery composite electrodes, which can improve battery lifespan, high charge capacity, and stability. Key Result Silicon, one of the best high-energy anode materials for Li-ion batteries, can experience capacity fade from volumetric expansion. Using ALD and MLD

  20. Report to the President on Ensuring American Leadership in Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to the President on Ensuring American Leadership in Advanced Manufacturing Report to the President on Ensuring American Leadership in Advanced Manufacturing pcastjune2011.pdf ...

  1. ZAP Advanced Battery Technologies JV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    battery manufacturer Advanced Battery Technologies focusing on manufacturing and marketing of advanced batteries for electric cars using the latest in nanotechnology....

  2. WEDNESDAY: Deputy Secretary Poneman to Speak at Nissan Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    at Nissan Advanced Battery Manufacturing Facility Groundbreaking in Smyrna, TN WEDNESDAY: Deputy Secretary Poneman to Speak at Nissan Advanced Battery Manufacturing Facility ...

  3. Additive Manufacturing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... laser-sintering) Optomec LENS MR-7 Sciaky EBAM 68 Non-metal additive manufacturing Powder bed FORMIGA P 110 PolyJet 3D ... Fused deposition modeling print technology MakerBot ...

  4. High Voltage Electrolyte for Lithium Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electrolyte for Lithium Batteries High Voltage Electrolyte for Lithium Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es113_zhang_2012_o.pdf (1.74 MB) More Documents & Publications Electrolytes - Advanced Electrolyte and Electrolyte Additives Progress in Electrolyte Component R&D within the ABR Program, 2009 thru 2013 Vehicle Technologies Office Merit Review 2015: Fluorinated Electrolyte for 5-V Li-Ion

  5. Lithium Droplet Injector......Inventors ..--..Lane Roquemore...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lithium Droplet Injector......Inventors ..--..Lane Roquemore, Daniel Andruczyk A liquid lithium device has been invented that produces spherical droplets of lithium for the control ...

  6. American Lithium Energy Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lithium Energy Corp Jump to: navigation, search Name: American Lithium Energy Corp Place: San Marcos, California Zip: 92069 Product: California-based developer of lithium ion...

  7. Hierarchically Structured Materials for Lithium Batteries (Journal...

    Office of Scientific and Technical Information (OSTI)

    Hierarchically Structured Materials for Lithium Batteries Citation Details In-Document Search Title: Hierarchically Structured Materials for Lithium Batteries Lithium-ion battery ...

  8. Electrolytic orthoborate salts for lithium batteries (Patent...

    Office of Scientific and Technical Information (OSTI)

    Electrolytic orthoborate salts for lithium batteries Title: Electrolytic orthoborate salts for lithium batteries Orthoborate salts suitable for use as electrolytes in lithium ...

  9. Rechargeable lithium-ion cell

    DOEpatents

    Bechtold, Dieter; Bartke, Dietrich; Kramer, Peter; Kretzschmar, Reiner; Vollbert, Jurgen

    1999-01-01

    The invention relates to a rechargeable lithium-ion cell, a method for its manufacture, and its application. The cell is distinguished by the fact that it has a metallic housing (21) which is electrically insulated internally by two half shells (15), which cover electrode plates (8) and main output tabs (7) and are composed of a non-conductive material, where the metallic housing is electrically insulated externally by means of an insulation coating. The cell also has a bursting membrane (4) which, in its normal position, is located above the electrolyte level of the cell (1). In addition, the cell has a twisting protection (6) which extends over the entire surface of the cover (2) and provides centering and assembly functions for the electrode package, which comprises the electrode plates (8).

  10. Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing ADVANCED MANUFACTURING OFFICE Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Development of an Open Architecture, Widely Applicable Smart Manufacturing Platform While many U.S. manufacturing operations utilize optimization for individual unit processes, smart manufacturing (SM) systems that integrate manufacturing intelligence in real time across an entire production operation are rare in large companies and virtually

  11. The President's Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The President's Manufacturing Initiative Manufacturing Initiative Roadmap Workshop on Roadmap Workshop on Manufacturing R&D for Manufacturing R&D for the Hydrogen Economy the ...

  12. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  13. Contribution to Nanotechnology Manufacturing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    shares Nano 50 award for directed assembly September 3, 2008 Contribution to Nanotechnology Manufacturing LOS ALAMOS, New Mexico, September 3, 2008-A team of scientists spanning three institutions, including Los Alamos National Laboratory, has discovered a more efficient way of fusing charge-carrying electrical contacts to tiny "nanowires" of silicon to create the nanotechnology at the heart of potential future advances in modern electronics, sensing, and energy collection. Nanotech

  14. Indiana Manufacturing Institute Breaks Ground at Purdue University in support of Composites Manufacturing Research

    Energy.gov [DOE]

    The Institute for Advanced Composites Manufacturing Innovation (IACMI) that was officially launched by the Energy Departments Assistant Secretary for Energy Efficiency and Renewable Energy Dr....

  15. Advanced Reciprocating Engine Systems

    Energy.gov [DOE]

    The Advanced Reciprocating Engine Systems (ARES) program is designed to promote separate but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the...

  16. Improving Manufacturing through Technology and Innovation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Improving Manufacturing through Technology and Innovation Improving Manufacturing through Technology and Innovation June 20, 2016 - 11:12am Addthis Find out how advanced technologies developed by our latest institute will make U.S. manufacturing more productive, energy efficient and competitive. | Advanced Manufacturing Office video. Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy KEY FACTS Since February 2010, the U.S. manufacturing sector has added more than 800,000 jobs.

  17. Welcome! Presentation: Fiber Reinforced Polymer Composite Manufacturing Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 | Energy Efficiency and Renewable Energy eere.energy.gov Mark Johnson Director Advanced Manufacturing Office manufacturing.energy.gov Breakout Instructions January 13, 2014 Advanced Manufacturing Office (AMO) manufacturing.energy.gov 6 Breakout Objectives Let's dig deeper: * Manufacturing Process Technologies - Blue Teams A and B (e.g. lay-up techniques, out of the autoclave, novel cure techniques, resin infusion, pultrusion, SMC, tooling, machining) * Enabling Technologies and Approaches -

  18. Lithium Dendrite Formation

    SciTech Connect

    2015-03-06

    Scientists at the Department of Energy’s Oak Ridge National Laboratory have captured the first real-time nanoscale images of lithium dendrite structures known to degrade lithium-ion batteries. The ORNL team’s electron microscopy could help researchers address long-standing issues related to battery performance and safety. Video shows annular dark-field scanning transmission electron microscopy imaging (ADF STEM) of lithium dendrite nucleation and growth from a glassy carbon working electrode and within a 1.2M LiPF6 EC:DM battery electrolyte.

  19. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  20. High Performance Binderless Electrodes for Rechargeable Lithium...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    High Performance Binderless Electrodes for Rechargeable Lithium Batteries National ... Electrode for fast-charging Lithium Ion Batteries, Accelerating Innovation Webinar ...

  1. APPARATUS FOR THE PRODUCTION OF LITHIUM METAL

    DOEpatents

    Baker, P.S.; Duncan, F.R.; Greene, H.B.

    1961-08-22

    Methods and apparatus for the production of high-purity lithium from lithium halides are described. The apparatus is provided for continuously contacting a molten lithium halide with molten barium, thereby forming lithium metal and a barium halide, establishing separate layers of these reaction products and unreacted barium and lithium halide, and continuously withdrawing lithium and barium halide from the reaction zone. (AEC)

  2. Novel Electrolytes for Lithium ...

    Office of Scientific and Technical Information (OSTI)

    Electrolytes for Lithium Ion Batteries Brett L. Lucht Department of Chemistry University of Rhode Island 51 Lower College Rd. Kingston, RI 02881 Tel (401)874-5071 Fax (401) ...

  3. Innovative Manufacturing Initiative Recognition Day

    Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers dramatically increase the energy efficiency of their operations and reduce costs. Each project will advance transformational technologies and materials that can benefit a broad cross-section of the domestic economy. This event created a platform for inter-agency and industry networking and also raised awareness among congressional staff and private investors.

  4. Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This is illustrated no more clearly than in Michigan and North Carolina. Last week, Secretary Chu toured the A123 Systems advanced battery manufacturing facility in Romulus, ...

  5. California Geothermal Power Plant to Help Meet High Lithium Demand...

    Office of Environmental Management (EM)

    Ever wonder how we get the materials for the advanced batteries that power our cell ... to manufacture its high concentration photovoltaic (HCPV) solar modules and is expected ...

  6. Why Should Americans Care About Manufacturing Day? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Why Should Americans Care About Manufacturing Day? Why Should Americans Care About Manufacturing Day? October 7, 2016 - 10:50am Addthis Mark Johnson Mark Johnson Advanced Manufacturing Office Director Today we join communities across the nation in celebrating Manufacturing Day. Manufacturing has been a foundation for the nation since 1791 when Alexander Hamilton, our first Secretary of the Treasury, delivered the "Report on the Subject of Manufactures" to Congress. He emphasized,

  7. Clean Energy Manufacturing Initiative: Technology Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Clean Energy Manufacturing Initiative: Technology Research and Development Clean Energy Manufacturing Initiative: Technology Research and Development Through the Clean Energy Manufacturing Initiative, U.S. Department of Energy offices and programs have increased funding for manufacturing research and development (R&D) across the board with the goal of growing the clean energy manufacturing industry in the United States. The Advanced Manufacturing Office's R&D

  8. Solid-state lithium battery

    DOEpatents

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  9. Lithium formate ion clusters formation during electrospray ionization...

    Office of Scientific and Technical Information (OSTI)

    Biological Sciences Division, Fundamental and Computational Sciences Directorate, Pacific ... LITHIUM; LITHIUM 3; LITHIUM IONS; MASS SPECTROSCOPY; MONOMERS; STABILITY; SYMMETRY Word ...

  10. Lithium battery management system

    DOEpatents

    Dougherty, Thomas J.

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  11. Working with U.S. Manufacturers to Succeed in Global Markets (Poster)

    SciTech Connect

    Not Available

    2012-06-01

    Poster created for the Advanced Manufacturing Office to be used at meetings, presentations, and exhibits. The Advanced Manufacturing Office (AMO) fosters advanced manufacturing innovation, facilitates public and private partnerships, and drives rapid deployment of technologies to help manufacturers: Save energy and money, Reduce environmental impacts, Enhance workforce development, and Improve national energy security and competitiveness throughout the supply chain.

  12. Manufacturing Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 BOEING is a trademark of Boeing Management Company. Copyright © 2009 Boeing. All rights reserved. Compressed Hydrogen Storage Workshop Manufacturing Perspective Karl M. Nelson (karl.m.nelson@boeing.com) Boeing Research & Technology Engineering, Operations & Technology | Boeing Research & Technology Materials & Fabrication Technology EOT_RT_Sub_Template.ppt | 1/12/2009 | Structural Tech 2 Copyright © 2009 Boeing. All rights reserved. DOE

  13. Green Manufacturing

    SciTech Connect

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  14. Autogenic Pressure Reactions for Battery Materials Manufacture | Argonne

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    National Laboratory Autogenic Pressure Reactions for Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture A one-step, solvent-free reaction for producing unique electrode materials that do not need further chemical processing treatment Offers the ability to smooth current distribution at the anode surface when charging Li-ion batteries, thereby reducing the risk of lithium dendrites, short circuits and resulting fire PDF icon

  15. Lithium | Princeton Plasma Physics Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    reactions also have used lithium to coat the walls of donut-shaped tokamak reactors. ... lithium that may be used to coat components that face the plasma in future tokamaks. ...

  16. Phostech Lithium | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Phostech Lithium Jump to: navigation, search Name: Phostech Lithium Place: St-Bruno-de-Montarville, Quebec, Canada Zip: J3V 6B7 Sector: Hydro Product: String representation...

  17. Smart Manufacturing: Transforming American Manufacturing with Information

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology | Department of Energy Smart Manufacturing: Transforming American Manufacturing with Information Technology Smart Manufacturing: Transforming American Manufacturing with Information Technology June 30, 2016 - 4:30pm Addthis Watch the video above to learn more about how technologies developed by the smart manufacturing institute will make U.S. manufacturing more productive, energy efficient, and competitive. Our country is known for its culture of innovation. We are a country of

  18. Increasing U.S. Manufacturing Competitiveness The Clean Energy Manufacturing Initia-

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    U.S. Manufacturing Competitiveness The Clean Energy Manufacturing Initia- tive (CEMI) is a U.S. Department of Energy (DOE)-wide commitment to innovation and breaking down market barriers in order to enhance U.S. manufacturing competitiveness while advancing the nation's energy goals. As a part of this initiative, DOE is committing resources across technol- ogy areas to catalyze clean energy manufacturing research and development (R&D), as well as to catalyze greater energy pro-ductivity in

  19. Polymer Electrolytes for Advanced Lithium Batteries

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  20. DOE High Performance Computing for Manufacturing Program Seeks to Fund New

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Proposals to Advance Energy Technologies | Department of Energy Program Seeks to Fund New Proposals to Advance Energy Technologies DOE High Performance Computing for Manufacturing Program Seeks to Fund New Proposals to Advance Energy Technologies September 12, 2016 - 4:46pm Addthis News release from DOE's Advanced Manufacturing Office, September 12, 2016. The Energy Department's Advanced Manufacturing Office today announced up to $3 million in available funding for manufacturers to use

  1. Ceramic-Metal Composites for Electrodes of Lithium Ion Batteries - Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Innovation Portal Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Ceramic-Metal Composites for Electrodes of Lithium Ion Batteries Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryLithium's high energy density makes it desirable for use in rechargeable batteries, but its tendency to form dendrites has limited its use to primary batteries. This limitation can be addressed by using

  2. WORKSHOP: SUSTAINABILITY IN MANUFACTURING, JANUARY 6-7

    Energy.gov [DOE]

    The Advanced Manufacturing Office (AMO) is planning to host a workshop in Portland, Oregon on January 6-7, 2016. The topic of this 2 day workshop is Sustainable Manufacturing.

  3. President Obama Announces New Public-Private Manufacturing Innovation Institute

    Energy.gov [DOE]

    The President today will announce new steps with the private sector to strengthen the manufacturing sector, boost advanced manufacturing, and attract the good paying jobs that a growing middle class requires.

  4. AMO Requests Technical Topics Suitable for a Manufacturing Innovation Institute

    Energy.gov [DOE]

    The Advanced Manufacturing Office (AMO) seeks information on mid-Technology Readiness Level (TRL) research and development (R&D) needs, market challenges, supply chain challenges, and shared facility needs to address challenges associated with clean energy manufacturing.

  5. EERE's Southeast Swing: Clean Energy Manufacturing in the Southeast...

    Office of Environmental Management (EM)

    ... I also visited the headquarters and cell manufacturing facilities of Suniva, Inc., an advanced U.S.-based high-efficiency solar cell and module manufacturer based in Norcross, ...

  6. WORKSHOP: SUSTAINABILITY IN MANUFACTURING, JANUARY 6-7

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Manufacturing Office (AMO) held a workshop in Portland, Oregon on January 6-7, 2016. The topic of this 2 day workshop was Sustainable Manufacturing. This workshop included discussions...

  7. East Penn Manufacturing Keeps Moving Forward After 65 Years

    Energy.gov [DOE]

    How East Penn Manufacturing went from a small business, founded by a father and son just after the close of World War II, to an expanding manufacturer of advanced batteries for hybrid electric vehicles.

  8. AMO's New Institute Focused on Wide Bandgap Power Electronics Manufacturing

    Energy.gov [DOE]

    The Next Generation Power Electronics National Manufacturing Institute announced by President Obama today will use $70 million provided by the U.S. Department of Energy's Advanced Manufacturing Office to support and manage its programs over the next five years.

  9. Categorical Exclusion Determinations: Advanced Technology Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Loan Program | Department of Energy Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations: Advanced Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations issued by Advanced Technology Vehicles Manufacturing Loan Program. DOCUMENTS AVAILABLE FOR DOWNLOAD September 6, 2011 CX-006488: Categorical Exclusion Determination Chrysler Group LLC, Revised Specific Project Application 2, Retooling, Reequipping and Engineering

  10. Advanced Solar Photonics | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Advanced Solar Photonics Place: Lake Mary, Florida Zip: 32746 Product: Florida-based thin film PV module manufacturer. References: Advanced Solar Photonics1 This article is...

  11. Manufacturing Innovation Multi-Topic Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Innovation Multi-Topic Workshop Manufacturing Innovation Multi-Topic Workshop DOE's Advanced Manufacturing Office (AMO) and the Office of Secretary of Defense Manufacturing Technology Program (OSD ManTech) held a joint workshop October 8 and 9, 2014 in Fort Worth, TX. This workshop identified mid-Technology Readiness Level (TRL) research and development (R&D) needs, market and supply chain challenges, and shared facility needs for advanced manufacturing. The workshop complemented a recently

  12. Fiber Reinforced Polymer Composite Manufacturing Workshop: Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fiber Reinforced Polymer Composite Manufacturing Workshop: Summary Report 1 | P a g e Fiber Reinforced Polymer Composite Manufacturing Workshop: Summary Report 2 | P a g e THE DEPARTMENT OF ENERGY (DOE)'S ADVANCED MANUFACTURING OFFICE PROVIDED FUNDING FOR THIS MEETING AND SUMMARY REPORT. The DOE Office of Energy Efficiency and Renewable Energy (EERE)'s Advanced Manufacturing Office partners with private and public stakeholders to support development and deployment of innovative technologies that

  13. Celebrating Clean Energy Manufacturing in the Big Apple | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Celebrating Clean Energy Manufacturing in the Big Apple Celebrating Clean Energy Manufacturing in the Big Apple June 15, 2016 - 10:51am Addthis Dr. Mark Johnson (left), Director of the Energy Department’s Advanced Manufacturing Office, moderates a panel on shared infrastructure and innovation ecosystems. Dr. Mark Johnson (left), Director of the Energy Department's Advanced Manufacturing Office, moderates a panel on shared infrastructure and innovation ecosystems. Dr. Dave

  14. Battery resource assessment. Subtask II. 5. Battery manufacturing capability recycling of battery materials. Draft final report

    SciTech Connect

    Pemsler, P.

    1981-02-01

    Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials. Each recycle process has been designed to produce a product material which can be used directly as a raw material by the battery manufacturer. Metal recoverabilities are in the range of 93 to 95% for all processes. In each case, capital and operating costs have been developed for a recycling plant which processes 100,000 electric vehicle batteries per year. These costs have been developed based on material and energy balances, equipment lists, factored installation costs, and manpower estimates. In general, there are no technological barriers for recycling in the Nickel/Zinc, Nickel/Iron, Zinc/Chlorine and Zinc/Bromine battery systems. The recycling processes are based on essentially conventional, demonstrate technology. The lead times required to build battery recycling plants based on these processes is comparable to that of any other new plant. The total elapsed time required from inception to plant operation is approximately 3 to 5 y. The recycling process for the sodium/sulfur and lithium-aluminum/sulfide battery systems are not based on conventional technology. In particular, mechanical systems for dismantling these batteries must be developed.

  15. Thin film method of conducting lithium-ions (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    uses in lithium batteries, electrochromic devices and other electrochemical applications. ... conductivity; suitable; lithium; batteries; electrochromic; devices; ...

  16. California Geothermal Power Plant to Help Meet High Lithium Demand

    Energy.gov [DOE]

    Ever wonder how we get the materials for the advanced batteries that power our cell phones, laptops, and even some electric vehicles? The U.S. Department of Energy's Geothermal Technologies Program (GTP) is working with California's Simbol Materials to develop technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines produced during the geothermal production process.

  17. Fiber Reinforced Polymer Composite Manufacturing Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fiber Reinforced Polymer Composite Manufacturing Workshop January 13, 2014 Participant Provided Discussion Starter Presentations Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the

  18. Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - 11:50am Inter-Agency Perspectives Mick Maher, DARPA Steve McKnight, NSF John Vickers, NASA 11:50am-12:00pm Breakout Instructions Mark Johnson Advanced Manufacturing Office (AMO) ...

  19. Innovative Manufacturing Initiative Recognition Day - Final Participan...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lynn Daniels DOE Advanced Manufacturing Office Lutgard De Jonghe PolyPlus Battery Company Emmanuel De Moor Colorado School of Mines Michael Drenski Tulane University PolyRMC Chad ...

  20. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing A screenshot of the cover of the 3D blade manufacturing brochure. Innovation in the design and manufacturing of wind power generation components continues to be critical to achieving our national goals. As a result of this challenge, the U.S. Department of Energy's Wind Program and Advanced Manufacturing Office are partnering with public

  1. Innovative Manufacturing Initiative Recognition Day, Advanced Manufacturing Office (AMO)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Dr. Leo Christodoulou (U.S. Department of Energy) on June 20, 2012 overviewing AMO's goals and strategies

  2. Lithium ion conducting electrolytes

    DOEpatents

    Angell, C. Austen; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

  3. Lithium ion conducting electrolytes

    DOEpatents

    Angell, C.A.; Liu, C.

    1996-04-09

    A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

  4. Lithium disulfide battery

    DOEpatents

    Kaun, Thomas D.

    1988-01-01

    A negative electrode limited secondary electrochemical cell having dense FeS.sub.2 positive electrode operating exclusively on the upper plateau, a Li alloy negative electrode and a suitable lithium-containing electrolyte. The electrolyte preferably is 25 mole percent LiCl, 38 mole percent LiBr and 37 mole percent KBr. The cell may be operated isothermally.

  5. AMO to Issue FOA for New Innovation Institute on Smart Manufacturing |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy to Issue FOA for New Innovation Institute on Smart Manufacturing AMO to Issue FOA for New Innovation Institute on Smart Manufacturing December 11, 2014 - 4:06pm Addthis The Advanced Manufacturing Office posted a Notice of Intent (NOI) entitled "Clean Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing." President Obama today announced that the Energy Department will lead this

  6. Novel Platinum/Chromium Alloy for the Manufacture of Improved...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Materials Advanced Materials Return to Search Novel PlatinumChromium Alloy for the Manufacture of Improved Coronary Stents National Energy Technology Laboratory Success Story...

  7. Manufacturing Demonstration Facility: Roll-to-Roll Processing...

    Office of Scientific and Technical Information (OSTI)

    effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. ...

  8. Request for Information (RFI): Specific Clean Energy Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Areas Suitable for a Manufacturing Innovation Institute August 29, 2014 - 10:13am ... Open Date: 08292014 Close Date: 10032014 Funding Organization: The Advanced ...

  9. WORKSHOP: HIGH VALUE ROLL TO ROLL MANUFACTURING INNOVATION, DECEMBER 2-3

    Energy.gov [DOE]

    The Advanced Manufacturing Office (AMO) is planning to host a workshop at the Westin Alexandria on 2-3 December, 2015. This 2-day workshop will focus on the on the advanced manufacturing technology...

  10. Electrochromic Nickel Oxide Simultaneously Doped with Lithium and a Metal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Dopant - Energy Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Electrochromic Nickel Oxide Simultaneously Doped with Lithium and a Metal Dopant National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Certain materials, referred to as electrochromic materials, are known to change their optical properties in response to the application of an electrical potential. This property has been taken advantage of

  11. High Power Performance Lithium Ion Battery - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search High Power Performance Lithium Ion Battery Lawrence Berkeley National Laboratory Contact LBL About This Technology Hybrid Pulse Power Characterization Test (HPPC) results for 3 coin cells of various AB:PVDF ratios. Hybrid Pulse Power Characterization Test (HPPC) results for 3 coin cells of various AB:PVDF ratios. Technology Marketing SummaryGao Liu and colleagues at Berkeley Lab have

  12. Chapter 6 - Innovating Clean Energy Technologies in Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing | Department of Energy 6 - Innovating Clean Energy Technologies in Advanced Manufacturing Chapter 6 - Innovating Clean Energy Technologies in Advanced Manufacturing Chapter 6 - Innovating Clean Energy Technologies in Advanced Manufacturing Clean energy manufacturing involves the minimization of the energy and environmental impacts of the production, use, and disposal of manufactured goods, which range from fundamental commodities such as metals and chemicals to sophisticated

  13. Advanced Combustion | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Combustion Advanced Combustion Combustion engines drive a large percentage of our nation's transportation vehicles and power generation and manufacturing facilities. Today's...

  14. Lithium Iron Phosphate Composites for Lithium Batteries | Argonne...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Batteries Technology available for licensing: Inexpensive, electrochemically active phosphate compounds with high functionality for high-power and high-energy lithium batteries ...

  15. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Energy.gov [DOE] (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt009esrumierz2012

  16. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Energy.gov [DOE] (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt009esrumierz2011

  17. Expanding U.S.-based Lithium-ion Battery Manufacturing

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon esarravt009rumierz2010p.pdf More...

  19. Expanding U.S.-based Lithium-ion Battery Manufacturing

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Experimental lithium system. Final report

    SciTech Connect

    Kolowith, R.; Berg, J.D.; Miller, W.C.

    1985-04-01

    A full-scale mockup of the Fusion Materials Irradiation Test (FMIT) Facility lithium system was built at the Hanford Engineering Development Laboratory (HEDL). This isothermal mockup, called the Experimental Lithium System (ELS), was prototypic of FMIT, excluding the accelerator and dump heat exchanger. This 3.8 m/sup 3/ lithium test loop achieved over 16,000 hours of safe and reliable operation. An extensive test program demonstrated satisfactory performance of the system components, including the HEDL-supplied electromagnetic lithium pump, the lithium jet target, the purification and characterization hardware, as well as the auxiliary argon and vacuum systems. Experience with the test loop provided important information on system operation, performance, and reliability. This report presents a complete overview of the entire Experimental Lithium System test program and also includes a summary of such areas as instrumentation, coolant chemistry, vapor/aerosol transport, and corrosion.

  1. Structural Interactions within Lithium Salt Solvates: Acyclic...

    Office of Scientific and Technical Information (OSTI)

    Structural Interactions within Lithium Salt Solvates: Acyclic Carbonates and Esters Citation Details In-Document Search Title: Structural Interactions within Lithium Salt Solvates: ...

  2. "Radiative Liquid Lithium (metal) Divertor" Inventor..-- Masayuki...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    "Radiative Liquid Lithium (metal) Divertor" Inventor..-- Masayuki Ono The invention utilizes liquid lithium as a radiative material. The radiative process greatly reduces the ...

  3. characterizing lithium-ion electrode microstructures

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    characterizing lithium-ion electrode microstructures - Sandia Energy Energy Search Icon ... SunShot Grand Challenge: Regional Test Centers characterizing lithium-ion electrode ...

  4. Lithium Ion Conducting Ionic Electrolytes - Energy Innovation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Lithium Ion Conducting ... electrolytes which combine lithium salts with high molecular weight anionic polymers. ...

  5. Manganese Oxide Composite Electrodes for Lithium Batteries |...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Manganese Oxide Composite Electrodes for Lithium Batteries Technology available for licensing: Improved spinel-containing "layered-layered" lithium metal oxide electrodes Materials ...

  6. Self-Regulating, Nonflamable Rechargeable Lithium Batteries ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    lithium metal and, in the most serious cases, result in explosive chemical reactions. ... Automatic shutoff mechanism prevents lithium from melting and avoids explosive chemical ...

  7. Strong Lithium Polysulfide Chemisorption on Electroactive Sites...

    Office of Scientific and Technical Information (OSTI)

    For High-Performance Lithium-Sulfur Battery Cathodes Citation Details In-Document ... For High-Performance Lithium-Sulfur Battery Cathodes Despite the high theoretical ...

  8. Y-12 lithium-6 production

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    lithium-6 production The United States was not expecting the Soviet Union's explosion of their first nuclear device using hydrogen and other fusion materials on August 12, 1953....

  9. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Breakout Session 1: New Developments and ...

  10. Manufacturing Demonstration Facility

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to develop broad dissemination of additive manufacturing Industry Collaborations * ... 5 DOE-AMO 2015 Peer Review Understanding Additive Manufacturing Mainstream applications ...

  11. National Electrical Manufacturers Association

    Office of Environmental Management (EM)

    3, 2014) Dear Mr. Croley, The National Electrical Manufacturers Association (NEMA) thanks ... As you may know, NEMA is the trade association of choice for the electrical manufacturing ...

  12. Next Generation Manufacturing Processes

    Energy.gov [DOE]

    New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high...

  13. HPC4Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lab capabilities Manufacturing domain expertise National mission and guidance Bringing HPC to U.S. Manufacturers Energy Efficient Processes Energy Efficient Products...

  14. Advanced Combustion

    SciTech Connect

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  15. Solid lithium-ion electrolyte

    DOEpatents

    Zhang, Ji-Guang; Benson, David K.; Tracy, C. Edwin

    1998-01-01

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  16. Solid lithium-ion electrolyte

    DOEpatents

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-02-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  17. Additive Manufacturing: Pursuing the Promise

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lower energy intensity: These techniques save energy by eliminating production steps, using substantially less material, enabling reuse of by-products, and producing lighter products. Remanufacturing parts through advanced additive manufacturing and surface treatment processes can also return end-of-life products to as-new condition, 1 using only 2-25% of the energy required to make new parts. 2 * Less waste: Building objects up layer by layer, instead of traditional machining processes that cut

  18. Energy Efficient Thermoplastic Composite Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Boeing Research & Technology (Marc Matsen) U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 14-15, 2016 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  The objective of the project is to establish an effective and affordable method to lay- up and consolidate/join large thermoplastic composite aerospace structure with cycle times measured in minutes rather than hours.  Composite

  19. Advanced Combustion Systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Advanced Battery Manufacturing Making Strides in Oregon Advanced Battery Manufacturing Making Strides in Oregon February 16, 2012 - 12:09pm Addthis EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program What are the key facts? Through the Recovery Act, the Department has

  20. Organosilicon-Based Electrolytes for Long-Life Lithium Primary Batteries

    SciTech Connect

    Fenton, Kyle R.; Nagasubramanian, Ganesan; Staiger, Chad L.; Pratt, III, Harry D.; Rempe, Susan B.; Leung, Kevin; Chaudhari, Mangesh I.; Anderson, Travis Mark

    2015-09-01

    This report describes advances in electrolytes for lithium primary battery systems. Electrolytes were synthesized that utilize organosilane materials that include anion binding agent functionality. Numerous materials were synthesized and tested in lithium carbon monofluoride battery systems for conductivity, impedance, and capacity. Resulting electrolytes were shown to be completely non-flammable and showed promise as co-solvents for electrolyte systems, due to low dielectric strength.

  1. Advances in Manufactured Home Energy Efficient Design

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    envelope Low capacity, highly efficient mechanical system Innovative distribution system Affordable and effective ventilation 3 ID Performance in Hot, Humid Climates ...

  2. Advanced Battery Manufacturing Facilities and Equipment Program

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  3. Sec. Moniz Discusses Advanced Technology Vehicle Manufacturing...

    Energy Saver

    ... states: California, Illinois, Michigan, Missouri, Ohio, Kentucky, New York and Tennessee. ... farms; several of the world's largest solar generation and thermal energy storage ...

  4. Advanced Manufacturing Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    data as of December 31, 2015. The DOE database of CHP installations provides ... the United States including locations, organizations served, and facility characteristics. ...

  5. Laboratory Holds Advanced Manufacturing Collaborative Workshop | Department

    Energy Saver

    Energy Lab-Corps Pilot Trains Scientists in Commercialization Lab-Corps Pilot Trains Scientists in Commercialization June 27, 2016 - 2:15pm Addthis The Office of Energy Efficiency and Renewable Energy's Lab-Corps pilot helps lab researchers transition their discoveries to the marketplace. Trish Williams Communications Specialist, EERE Communications Office Key Facts About Lab-Corps Specialized training curriculum aimed at accelerating the transfer of clean energy technologies from national

  6. Agenda Advanced Methods for Manufacturing Workshop

    Energy Saver

    - Modular Connection Technologies for SC Walls INL - Monitoring and Control of Hybrid Laser-GMAW Process 10:45 - 11:00 Break 11:00 - 12:00 2013 Projects, 30 minutes with questions ...

  7. Advanced Manufacturing Office Update, March 2015 | Department...

    Energy.gov [DOE] (indexed site)

    that seek to fill the innovation pipeline of U.S. industry: Next-Generation ... We want to encourage the business community to propose fundamental applied R&D projects ...

  8. Advanced Manufacturing Initiative Improves Turbine Blade Productivity...

    Energy.gov [DOE] (indexed site)

    and create U.S. jobs by improving labor productivity in wind turbine blade construction. ... Certain components of wind turbine blades are naturally more suitable to domestic ...

  9. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Innovation Can Change the World 1884: The price of aluminum was 1oz and the price of gold was 20oz. The pay of the highest skilled craftsman working on the Washington Monument ...

  10. Advanced Battery Manufacturing Facilities and Equipment Program

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Advanced Battery Manufacturing Facilities and Equipment Program

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  12. Power America - Advanced Manufacturing Office Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    bandgap semiconductor-based power electronics, which allow electronic systems to be smaller, faster and more efficient than power electronics made from silicon. - US ...

  13. Advanced Manufacturing Office Update, July 2015 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Innovation Launched 2015 Better Buildings Summit Celebrates Continued Energy and Cost Savings DOE Recognizes High-Achieving Better Plants and Superior Energy Performance...

  14. Project Profile: Advanced Manufacture of Reflectors | Department...

    Energy Saver

    University of Arizona logo -- This project is inactive -- The University of Arizona and its partners, under the 2012 Concentrating Solar Power (CSP) SunShot R&D funding opportunity ...

  15. Advanced Manufacturing Office Update, January 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    Welcome Message Happy New Year! 2014 was a wonderful year for AMO. I was pleased to reconnect with old friends and meet new colleagues at organizations in D.C., West Virginia, and South Carolina, among others.

  16. Manufacture of Advanced Battery Metal Containers & Components...

    Energy.gov [DOE] (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt013esmoffa2011p.pdf (563.21 KB

  17. Request for Information (RFI): Advanced Manufacturing Office...

    Energy.gov [DOE] (indexed site)

    to enhance and expand upon certain AMO system software tools and related assets. ... Maintenance Strategy for AMO's Software Tools DOE's AMO Releases Workshop "Save the ...

  18. Advanced Manufacturing Office Update January 2016 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology (IT) will play in innovation in the ... companies to use high performance computing resources at the ... is the creation of the plug from which the mold is ...

  19. Manufacture of Advanced Battery Metal Containers & Components

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Develop and demonstrate pervasive materials technologies that reduce life-cycle energy ... and industry) to bridge the "Valley of Death" for new technologies and material systems. ...

  1. Novel Lithium Ion Anode Structures: Overview of New DOE BATT...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects Novel Lithium Ion ... Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Lithium-Ion Anodes

  2. Thin-Film Lithium-Based Electrochromic Devices - Energy Innovation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Find More Like This Return to Search Thin-Film Lithium-Based Electrochromic Devices ... For lithium-based electrochromic cells, the electrolyte contains mobile lithium which ...

  3. Lithium Methyl Carbonate as a Reaction Product of Metallic Lithiumand...

    Office of Scientific and Technical Information (OSTI)

    Lithium methyl carbonate is only one of the components, the others being lithium oxalate and lithium methoxide. Authors: Zhuang, Guorong V. ; Yang, Hui ; Ross Jr., Philip N. ; Xu, ...

  4. Linking Ion Solvation and Lithium Battery Electrolyte Properties...

    Energy.gov [DOE] (indexed site)

    Liquids for Lithium Battery Electrolytes Inexpensive, Nonfluorinated (or Partially Fluorinated) Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes ...

  5. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles

    SciTech Connect

    Love, Lonnie J.

    2015-08-01

    This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local Motors Inc. Phase 1 was previously reported as Advanced Manufacturing of Complex Cyber Mechanical Devices through Community Engagement and Micro-manufacturing and demonstrated the integration of components onto a prototype body part for a vehicle. Phase 2 was reported as Utility of Big Area Additive Manufacturing (BAAM) for the Rapid Manufacture of Customized Electric Vehicles and demonstrated the high profile live printing of an all-electric vehicle using ONRL s Big Area Additive Manufacturing (BAAM) technology. This demonstration generated considerable national attention and successfully demonstrated the capabilities of the BAAM system as developed by ORNL and Cincinnati, Inc. and the feasibility of additive manufacturing of a full scale electric vehicle as envisioned by the CRADA partner Local Motors, Inc.

  6. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect

    Not Available

    1992-10-01

    This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS Eureka'' facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the Eureka'' facility to Chronar's batch'' plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

  7. Industrial Activities at DOE: Efficiency, Manufacturing, Process, and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Materials R&D | Department of Energy Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D Overview of industrial activities at DOE by Joe Cresko, EERE Advanced Manufacturing Office, at the EERE QC Workshop held December 9-10, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. Industrial Activities at DOE: Efficiency, Manufacturing, Process, and

  8. Funding Opportunity Announcement for Water Power Manufacturing | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Water Power Manufacturing Funding Opportunity Announcement for Water Power Manufacturing April 11, 2014 - 11:23am Addthis On April 11, 2014, the funding opportunity titled "Water Power Manufacturing" was released by the Water Power Program to support the application of advanced materials and manufacturing techniques to the development of new hydropower technologies. There is a significant opportunity across the country to increase the efficiency of existing equipment or

  9. Join Us for the Clean Energy Manufacturing Initiative's Western Regional

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Summit | Department of Energy Join Us for the Clean Energy Manufacturing Initiative's Western Regional Summit Join Us for the Clean Energy Manufacturing Initiative's Western Regional Summit March 25, 2014 - 1:45pm Addthis Additive manufacturing is just one of several technologies that are being advanced by the Energy Department’s Clean Energy Manufacturing Initiative, which aims to strengthen U.S. competitiveness in the production of clean energy products | Photo by Oak Ridge National

  10. Department of Energy Announces New Partnerships to Support Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Job Training | Department of Energy Partnerships to Support Manufacturing Job Training Department of Energy Announces New Partnerships to Support Manufacturing Job Training June 29, 2011 - 12:00am Addthis Washington, D.C. - To complement the Obama Administration's launch last week of the Advanced Manufacturing Partnership, U.S. Secretary of Energy Steven Chu today announced a series of new manufacturing job training partnerships using the Department of Energy's National Training and

  11. DOE Manufacturing Pre-Solicitation Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Pre-Solicitation Workshop DOE Manufacturing Pre-Solicitation Workshop The U.S. Department of Energy (DOE) held a Manufacturing Pre-Solicitation Workshop in Arlington, Va., on May 18, 2007. Workshop participants reviewed the application process and discussed proposed topics for a research and development funding opportunity to advance manufacturing technologies for hydrogen and fuel cell systems. The workshop was held in conjunction with the DOE Hydrogen Program's 2007 Annual Merit

  12. Celebrate Manufacturing Day Virtually at AMO Headquarters! | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Day Virtually at AMO Headquarters! Celebrate Manufacturing Day Virtually at AMO Headquarters! October 7, 2016 - 10:00am Addthis Top Stories: Celebrate Manufacturing Day Virtually at the Advanced Manufacturing Office Headquarters! FUNDING OPPORTUNITY: New Lab-Embedded Program for Energy Entrepreneurs Feedback for Technical Focus Areas for Traineeships Due on October 14 Concept Papers Due for the High Performance Computing for Manufacturing Program on October 14 DOE Office of Science

  13. Sustainability Manufacturing Workshop - Summary Report, January 6-7, 2016

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Sustainability Manufacturing Workshop - Summary Report, January 6-7, 2016 Sustainability Manufacturing Workshop - Summary Report, January 6-7, 2016 The Department of Energy's (DOE) Office of Energy Efficiency & Renewable Energy (EERE)'s Advanced Manufacturing Office (AMO) held a workshop on Sustainable Manufacturing to gather input from stakeholders on future opportunities and technical challenges facing development and scale-up of transformative technologies,

  14. A Lithium-Air Battery Based on Lithium Superoxide | Argonne National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A Lithium-Air Battery Based on Lithium Superoxide January 20, 2016 Tweet EmailPrint ... However there have been no reports of a battery based on lithium superoxide (LiO2), ...

  15. Lithium niobate explosion monitor

    DOEpatents

    Bundy, Charles H.; Graham, Robert A.; Kuehn, Stephen F.; Precit, Richard R.; Rogers, Michael S.

    1990-01-01

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

  16. Lithium niobate explosion monitor

    DOEpatents

    Bundy, C.H.; Graham, R.A.; Kuehn, S.F.; Precit, R.R.; Rogers, M.S.

    1990-01-09

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier. 8 figs.

  17. Smart Manufacturing: Transforming American Manufacturing with...

    Energy Saver

    ... House fact sheet on President Obama's announcement of investments in new manufacturing hubs. Addthis Related Articles AMO to Issue FOA for New Innovation Institute on Smart ...

  18. Method of recycling lithium borate to lithium borohydride through methyl borate

    DOEpatents

    Filby, Evan E.

    1977-01-01

    This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a methyl borate intermediate to complete the recycle scheme.

  19. Additive Manufacturing: Pursuing the Promise

    Energy.gov [DOE]

    Fact sheet overviewing additive manufacturing techniques that are projected to exert a profound impact on manufacturing.

  20. Lithium-based Technologies | Y-12 National Security Complex

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lithium-based Technologies Lithium-based Technologies Y-12's 60 years of rich lithium operational history and expertise make it the clear choice for deployment of new lithium-based ...