National Library of Energy BETA

Sample records for liquid water print

  1. Supercooled liquid water Estimation Tool

    Energy Science and Technology Software Center

    2012-05-04

    The Cloud Supercooled liquid water Estimation Tool (SEET) is a user driven Graphical User Interface (GUI) that estimates cloud supercooled liquid water (SLW) content in terms of vertical column and total mass from Moderate resolution Imaging Supercooled liquid water Estimation Tool Spectroradiometer (MODIS) spatially derived cloud products and realistic vertical cloud parameterizations that are user defined. It also contains functions for post-processing of the resulting data in tabular and graphical form.

  2. ARM - Measurement - Liquid water path

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    path ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Liquid water path A measure of the weight of the liquid water droplets in the atmosphere above a unit surface area on the earth, given in units of kg m-2. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument

  3. Energetics of Hydrogen Bond Network Rearrangements in Liquid...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly directional hydrogen ...

  4. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer

    Maria Cadeddu

    2004-02-19

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  5. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer

    Maria Cadeddu

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  6. Dataset used to improve liquid water absorption models in the...

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Dataset used to improve liquid water absorption models in the microwave Title: Dataset used to improve liquid water absorption models in the microwave ...

  7. Transport diffusion of liquid water and methanol through membranes...

    Office of Scientific and Technical Information (OSTI)

    Transport diffusion of liquid water and methanol through membranes Citation Details In-Document Search Title: Transport diffusion of liquid water and methanol through membranes The ...

  8. Dataset used to improve liquid water absorption models in the...

    Office of Scientific and Technical Information (OSTI)

    Dataset used to improve liquid water absorption models in the microwave Title: Dataset used to improve liquid water absorption models in the microwave Two datasets, one a ...

  9. Thin Liquid Water Clouds: Their Importance and Our Challenge...

    Office of Scientific and Technical Information (OSTI)

    Thin Liquid Water Clouds: Their Importance and Our Challenge Citation Details In-Document Search Title: Thin Liquid Water Clouds: Their Importance and Our Challenge Many of the ...

  10. Leaching behavior of copper from waste printed circuit boards with Brnsted acidic ionic liquid

    SciTech Connect

    Huang, Jinxiu; Chen, Mengjun Chen, Haiyan; Chen, Shu; Sun, Quan

    2014-02-15

    Highlights: A Brnsted acidic ILs was used to leach Cu from WPCBs for the first time. The particle size of WPCBs has significant influence on Cu leaching rate. Cu leaching rate was higher than 99% under the optimum leaching conditions. The leaching process can be modeled with shrinking core model, and the E{sub a} was 25.36 kJ/mol. - Abstract: In this work, a Brnsted acidic ionic liquid, 1-butyl-3-methyl-imidazolium hydrogen sulfate ([bmim]HSO{sub 4}), was used to leach copper from waste printed circuit boards (WPCBs, mounted with electronic components) for the first time, and the leaching behavior of copper was discussed in detail. The results showed that after the pre-treatment, the metal distributions were different with the particle size: Cu, Zn and Al increased with the increasing particle size; while Ni, Sn and Pb were in the contrary. And the particle size has significant influence on copper leaching rate. Copper leaching rate was higher than 99%, almost 100%, when 1 g WPCBs powder was leached under the optimum conditions: particle size of 0.10.25 mm, 25 mL 80% (v/v) ionic liquid, 10 mL 30% hydrogen peroxide, solid/liquid ratio of 1/25, 70 C and 2 h. Copper leaching by [bmim]HSO{sub 4} can be modeled with the shrinking core model, controlled by diffusion through a solid product layer, and the kinetic apparent activation energy has been calculated to be 25.36 kJ/mol.

  11. Liquid chromatographic determination of water

    DOEpatents

    Fortier, Nancy E.; Fritz, James S.

    1990-11-13

    A sensitive method for the determination of water in the presence of common interferences is presented. The detection system is based on the effect of water on the equilibrium which results from the reaction aryl aldehydes, such as cinnamaldehyde and methanol in the eluent to form cinnamaldehyde dimethylacetal, plus water. This equilibrium is shifted in a catalytic atmosphere of a hydrogen ion form past column reactor. The extent of the shift and the resulting change in absorbance are proportional to the amount of water present.

  12. Liquid chromatographic determination of water

    DOEpatents

    Fortier, N.E.; Fritz, J.S.

    1990-11-13

    A sensitive method for the determination of water in the presence of common interferences is presented. The detection system is based on the effect of water on the equilibrium which results from the reaction aryl aldehydes, such as cinnamaldehyde and methanol in the eluent to form cinnamaldehyde dimethylacetal, plus water. This equilibrium is shifted in a catalytic atmosphere of a hydrogen ion form past column reactor. The extent of the shift and the resulting change in absorbance are proportional to the amount of water present. 1 fig.

  13. Posters Radar/Radiometer Retrievals of Cloud Liquid Water and

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for retrieving cloud liquid water content and drizzle characteristics using a K -band Doppler radar (Kropfli et al. 1990) and microwave radiometer (Hogg et al. 1983). The...

  14. Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transport Membrane (OTM) (Presentation) | Department of Energy Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) (Presentation) Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. 11_anl_distributed_reforming_using_otm.pdf (809.59 KB) More Documents & Publications Cost

  15. Thermoluminescence dosimetry measurements of brachytherapy sources in liquid water

    SciTech Connect

    Tailor, Ramesh; Tolani, Naresh; Ibbott, Geoffrey S.

    2008-09-15

    Radiation therapy dose measurements are customarily performed in liquid water. The characterization of brachytherapy sources is, however, generally based on measurements made with thermoluminescence dosimeters (TLDs), for which contact with water may lead to erroneous readings. Consequently, most dosimetry parameters reported in the literature have been based on measurements in water-equivalent plastics, such as Solid Water. These previous reports employed a correction factor to transfer the dose measurements from a plastic phantom to liquid water. The correction factor most often was based on Monte Carlo calculations. The process of measuring in a water-equivalent plastic phantom whose exact composition may be different from published specifications, then correcting the results to a water medium leads to increased uncertainty in the results. A system has been designed to enable measurements with TLDs in liquid water. This system, which includes jigs to support water-tight capsules of lithium fluoride in configurations suitable for measuring several dosimetric parameters, was used to determine the correction factor from water-equivalent plastic to water. Measurements of several {sup 125}I and {sup 131}Cs prostate brachytherapy sources in liquid water and in a Solid Water phantom demonstrated a correction factor of 1.039{+-}0.005 at 1 cm distance. These measurements are in good agreement with a published value of this correction factor for an {sup 125}I source.

  16. Elucidating through-plane liquid water profile in a polymer electrolyt...

    Office of Scientific and Technical Information (OSTI)

    liquid water profile in a polymer electrolyte membrane fuel cell. Citation Details In-Document Search Title: Elucidating through-plane liquid water profile in a ...

  17. Isotope and Temperature Effects in Liquid Water Probed by Soft...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... If the temperature is increased, more hydrogen bonds are broken, and consequently the team ... Left: Resonant-XES map of the electronic structure of liquid water (H2O) measured with a ...

  18. ARM - Publications: Science Team Meeting Documents: Liquid water path

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    estimates in marine stratus Liquid water path estimates in marine stratus Zuidema, Paquita RSMAS/MPO University of Miami Fairall, Chris NOAA/Environmental Technology Laboratory Westwater, Ed University of Colorado/CIRES Hazen, Duane NOAA/Environmental Technology Laboratory We examine liquid water paths (LWPs) derived from ship-based microwave radiometer brightness temperature ($T_b$) measurements collected in overcast, well-mixed boundary layer conditions within the southeastern Pacific. 3

  19. ARM - Evaluation Product - MWR Retrievals of Cloud Liquid Water and Water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Vapor ProductsMWR Retrievals of Cloud Liquid Water and Water Vapor ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : MWR Retrievals of Cloud Liquid Water and Water Vapor A new algorithm is being developed for the ARM Program to derive liquid water path (LWP) and precipitable water vapor (PWV) from the

  20. ARM - PI Product - MWR Retrievals of Cloud Liquid Water and Water Vapor

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    govDataPI Data ProductsMWR Retrievals of Cloud Liquid Water and Water Vapor ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : MWR Retrievals of Cloud Liquid Water and Water Vapor A new algorithm is being developed for the ARM Program to derive liquid water path (LWP) and precipitable water vapor (PWV) from the 2-channel (23.8 and 31.4 GHz) microwave radiometers (MWRs) deployed at ARM climate research

  1. Process for blending coal with water immiscible liquid

    DOEpatents

    Heavin, Leonard J.; King, Edward E.; Milliron, Dennis L.

    1982-10-26

    A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.

  2. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    SciTech Connect

    Bignell, L. J.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; Rosero, R.; Vigdor, S.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 0.55 % and 1.31 0.59 % after ? 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.

  3. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    SciTech Connect

    Bignell, L. J.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; Rosero, R.; Vigdor, S.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % and 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.

  4. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    DOE PAGES [OSTI]

    Bignell, L. J.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; Rosero, R.; Vigdor, S.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % andmore » 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.« less

  5. Water-saving liquid-gas conditioning system (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Patent: Water-saving liquid-gas conditioning system Citation Details In-Document Search Title: Water-saving liquid-gas conditioning system A method for treating a process gas with ...

  6. Molecular Structure of Water at Gold Electrodes Revealed

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Molecular Structure of Water at Gold Electrodes Revealed Print The structure of liquid water has been intensely studied, but until recently, it has not been clear what happens to ...

  7. MWRRET Value-Added Product: The Retrieval of Liquid Water Path...

    Office of Scientific and Technical Information (OSTI)

    MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Data Sets (Revision 2) Citation Details In-Document ...

  8. Distributed Reforming of Renewable Liquids via Water Splitting...

    Energy.gov [DOE] (indexed site)

    Cost Analysis of Bio-Derived Liquids Reforming (Presentation) Agenda for the Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Hydrogen Production Technical ...

  9. Dataset used to improve liquid water absorption models in the microwave

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer Dataset used to improve liquid water absorption models in the microwave Title: Dataset used to improve liquid water absorption models in the microwave Two datasets, one a compilation of laboratory data and one a compilation from three field sites, are provided here. These datasets provide measurements of the real and imaginary refractive indices and absorption as a function of cloud temperature. These datasets were used in the development of the new liquid water

  10. Electrokinetic Hydrogen Generation from Liquid WaterMicrojets

    SciTech Connect

    Duffin, Andrew M.; Saykally, Richard J.

    2007-05-31

    We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

  11. Characterization and Modeling of a Water-based Liquid Scintillator

    SciTech Connect

    L. J. Bignell; Beznosko, D.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; S. Kettell; Rosero, R.; Themann, H. W.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-12-15

    We characterised Water-based Liquid Scintillator (WbLS) using low energy protons, UV-VIS absorbance, and fluorescence spectroscopy. We have also developed and validated a simulation model that describes the behaviour of WbLS in our detector configurations for proton beam energies of 210 MeV, 475 MeV, and 2 GeV and for two WbLS compositions. These results have enabled us to estimate the light yield and ionisation quenching of WbLS, as well as to understand the influence of the wavelength shifting of Cherenkov light on our measurements. These results are relevant to the suitability of WbLS materials for next generation intensity frontier experiments.

  12. Detachment of Liquid-Water Droplets from Gas-Diffusion Layers

    SciTech Connect

    Das, Prodip K.; Grippin, Adam; Weber, Adam Z.

    2011-07-01

    A critical issue for optimal water management in proton-exchange-membrane fuel cells at lower temperatures is the removal of liquid water from the cell. This pathway is intimately linked with the phenomena of liquid-water droplet removal from surface of the gas-diffusion layer and into the flow channel. Thus, a good understanding of liquid-water transport and droplet growth and detachment from the gas-diffusion layer is critical. In this study, liquid-water droplet growth and detachment on the gas-diffusion layer surfaces are investigated experimentally to improve the understating of water transport through and removal from gas-diffusion layers. An experiment using a sliding-angle measurement is designed and used to quantify and directly measure the adhesion force for liquid-water droplets, and to understand the droplets? growth and detachment from the gas-diffusion layers.

  13. Network analysis of proton transfer in liquid water

    SciTech Connect

    Shevchuk, Roman; Rao, Francesco; Agmon, Noam

    2014-06-28

    Proton transfer in macromolecular systems is a fascinating yet elusive process. In the last ten years, molecular simulations have shown to be a useful tool to unveil the atomistic mechanism. Notwithstanding, the large number of degrees of freedom involved make the accurate description of the process very hard even for the case of proton diffusion in bulk water. Here, multi-state empirical valence bond molecular dynamics simulations in conjunction with complex network analysis are applied to study proton transfer in liquid water. Making use of a transition network formalism, this approach takes into account the time evolution of several coordinates simultaneously. Our results provide evidence for a strong dependence of proton transfer on the length of the hydrogen bond solvating the Zundel complex, with proton transfer enhancement as shorter bonds are formed at the acceptor site. We identify six major states (nodes) on the network leading from the special pair to a more symmetric Zundel complex required for transferring the proton. Moreover, the second solvation shell specifically rearranges to promote the transfer, reiterating the idea that solvation beyond the first shell of the Zundel complex plays a crucial role in the process.

  14. Elucidating through-plane liquid water profile in a polymer electrolyte membrane fuel cell.

    SciTech Connect

    Wang, Yun; Chen, Ken Shuang

    2010-10-01

    In this paper, a numerical model incorporating micro-porous layers (MPLs) is presented for simulating water transport within the gas diffusion layers (GDLs) and MPLs as well as across their interfaces in a polymer electrolyte membrane (PEM) fuel cell. One-dimensional analysis is conducted to investigate the impacts of MPL and GDL properties on the liquid-water profile across the anode GDL-MPL and cathode MPL-GDL regions. Furthermore, two-dimensional numerical simulations that take MPLs into account are also carried out to elucidate liquid water transport, particularly through-plane liquid-water profile in a PEM fuel cell. Results from case studies are presented.

  15. Water-saving liquid-gas conditioning system

    DOEpatents

    Martin, Christopher; Zhuang, Ye

    2014-01-14

    A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

  16. Printing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Printing Printing The Printing Team is the liaison between the U.S. Government Printing Office and the Department of Energy. It consists of an expert group of printing specialists who offer a full range of services from assistance in developing your printing requirements to the final printing, distribution and mailing of products. The printed products range from black and white to full color items. These Services are available through the Working Capital Fund or CID (Direct Charge

  17. Process for hydrogen isotope concentration between liquid water and hydrogen gas

    DOEpatents

    Stevens, William H.

    1976-09-21

    A process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas, wherein liquid water and hydrogen gas are contacted, in an exchange section, with one another and with at least one catalyst body comprising at least one metal selected from Group VIII of the Periodic Table and preferably a support therefor, the catalyst body has a liquid-water-repellent, gas permeable polymer or organic resin coating, preferably a fluorinated olefin polymer or silicone coating, so that the isotope concentration takes place by two simultaneously occurring steps, namely, ##EQU1## WHILE THE HYDROGEN GAS FED TO THE EXCHANGE SECTION IS DERIVED IN A REACTOR VESSEL FROM LIQUID WATER THAT HAS PASSED THROUGH THE EXCHANGE SECTION.

  18. Ab initio calculation of the electronic absorption spectrum of liquid water

    SciTech Connect

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  19. Equations Governing Space-Time Variability of Liquid Water Path in Stratus Clouds

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Equations Governing Space-Time Variability of Liquid Water Path in Stratus Clouds K. Ivanova Pennsylvania State University University Park, Pennsylvania T. P. Ackerman Pacific Northwest National Laboratory Richland, Washington M. Ausloos University of Liège B-4000 Liège, Belgium Abstract We present a method on how to derive an underlying mathematical (statistical or model free) equation for a liquid water path (LWP) signal directly from empirical data. The evolution of the probability density

  20. Pressure Effect on the Boson Peak in Deeply Cooled Confined Water: Evidence of a Liquid-Liquid Transition

    DOE PAGES [OSTI]

    Wang, Zhe; Kolesnikov, Alexander I.; Ito, Kanae; Podlesnyak, Andrey; Chen, Sow-Hsin

    2015-12-03

    We studied the boson peak in deeply cooled water confined in nanopores in order to examine the liquid-liquid transition (LLT). Below ~180 K, the boson peaks at pressures P higher than ~3.5 kbar are evidently distinct from those at low pressures by higher mean frequencies and lower heights. Moreover, the higher-P boson peaks can be rescaled to a master curve while the lower-P boson peaks can be rescaled to a different one. Moreover, these phenomena agree with the existence of two liquid phases with different densities and local structures and the associated LLT in the measured (P, T) region. Additionally,more » the P dependence of the librational band also agrees with the above conclusion.« less

  1. Polymer formulation for removing hydrogen and liquid water from an enclosed space

    DOEpatents

    Shepodd, Timothy J.

    2006-02-21

    This invention describes a solution to the particular problem of liquid water formation in hydrogen getters exposed to quantities of oxygen. Water formation is usually desired because the recombination reaction removes hydrogen without affecting gettering capacity and the oxygen removal reduces the chances for a hydrogen explosion once free oxygen is essentially removed. The present invention describes a getter incorporating a polyacrylate compound that can absorb up to 500% of its own weight in liquid water without significantly affecting its hydrogen gettering/recombination properties, but that also is insensitive to water vapor.

  2. Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water

    SciTech Connect

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  3. Liquid Water the Key to Arctic Cloud Radiative Closure

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water the Key to Arctic Cloud Radiative Closure For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research Highlight...

  4. Anomalous Density Properties and Ion Solvation in Liquid Water...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to a number of fields, ranging from biologybiochemistry to energy storage and electrochemistry. Several key properties of water, are crucial for understanding and predicting...

  5. Interactions between liquid-water and gas-diffusion layers in polymer-electrolyte fuel cells

    SciTech Connect

    Das, Prodip K.; Santamaria, Anthony D.; Weber, Adam Z.

    2015-06-11

    Over the past few decades, a significant amount of research on polymer-electrolyte fuel cells (PEFCs) has been conducted to improve performance and durability while reducing the cost of fuel cell systems. However, the cost associated with the platinum (Pt) catalyst remains a barrier to their commercialization and PEFC durability standards have yet to be established. An effective path toward reducing PEFC cost is making the catalyst layers (CLs) thinner thus reducing expensive Pt content. The limit of thin CLs is high gas-transport resistance and the performance of these CLs is sensitive to the operating temperature due to their inherent low water uptake capacity, which results in higher sensitivity to liquid-water flooding and reduced durability. Therefore, reducing PEFC's cost by decreasing Pt content and improving PEFC's performance and durability by managing liquid-water are still challenging and open topics of research. An overlooked aspect nowadays of PEFC water management is the gas-diffusion layer (GDL). While it is known that GDL's properties can impact performance, typically it is not seen as a critical component. In this work, we present data showing the importance of GDLs in terms of water removal and management while also exploring the interactions between liquid-water and GDL surfaces. The critical interface of GDL and gas-flow-channel in the presence of liquid-water was examined through systematic studies of adhesion forces as a function of water-injection rate for various GDLs of varying thickness. GDL properties (breakthrough pressure and adhesion force) were measured experimentally under a host of test conditions. Specifically, the effects of GDL hydrophobic (PTFE) content, thickness, and water-injection rate were examined to identify trends that may be beneficial to the design of liquid-water management strategies and next-generation GDL materials for PEFCs.

  6. Interactions between liquid-water and gas-diffusion layers in polymer-electrolyte fuel cells

    DOE PAGES [OSTI]

    Das, Prodip K.; Santamaria, Anthony D.; Weber, Adam Z.

    2015-06-11

    Over the past few decades, a significant amount of research on polymer-electrolyte fuel cells (PEFCs) has been conducted to improve performance and durability while reducing the cost of fuel cell systems. However, the cost associated with the platinum (Pt) catalyst remains a barrier to their commercialization and PEFC durability standards have yet to be established. An effective path toward reducing PEFC cost is making the catalyst layers (CLs) thinner thus reducing expensive Pt content. The limit of thin CLs is high gas-transport resistance and the performance of these CLs is sensitive to the operating temperature due to their inherent lowmore » water uptake capacity, which results in higher sensitivity to liquid-water flooding and reduced durability. Therefore, reducing PEFC's cost by decreasing Pt content and improving PEFC's performance and durability by managing liquid-water are still challenging and open topics of research. An overlooked aspect nowadays of PEFC water management is the gas-diffusion layer (GDL). While it is known that GDL's properties can impact performance, typically it is not seen as a critical component. In this work, we present data showing the importance of GDLs in terms of water removal and management while also exploring the interactions between liquid-water and GDL surfaces. The critical interface of GDL and gas-flow-channel in the presence of liquid-water was examined through systematic studies of adhesion forces as a function of water-injection rate for various GDLs of varying thickness. GDL properties (breakthrough pressure and adhesion force) were measured experimentally under a host of test conditions. Specifically, the effects of GDL hydrophobic (PTFE) content, thickness, and water-injection rate were examined to identify trends that may be beneficial to the design of liquid-water management strategies and next-generation GDL materials for PEFCs.« less

  7. World's First Printed Car

    SciTech Connect

    Rogers, Jay

    2015-06-03

    Local Motors partnered with ORNL to print the world’s first 3D-printed car (Strati) at the 2014 International Manufacturing Technology Show.

  8. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    SciTech Connect

    Chiu, Janet; Giovambattista, Nicolas; Starr, Francis W.

    2014-03-21

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T “phase diagram” for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related

  9. Radiative Importance of ThinŽ Liquid Water Clouds

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Program Accomplishments of the Instantaneous Radiative Flux (IRF) Working Group August 2006 AERI Observations at Southern Great Plains Improve Infrared Radiative Transfer Models Turner et al., JAS, 2004 * AERI observations used to evaluate clear sky IR radiative transfer models * Long-term comparisons have improved - Spectral line database parameters - Water vapor continuum absorption models * Reduced errors in computation of downwelling radiative IR flux by approx 4; current uncertainty is on

  10. Observed and simulated temperature dependence of the liquid water path of low clouds

    SciTech Connect

    Del Genio, A.D.; Wolf, A.B.

    1996-04-01

    Data being acquired at the Atmospheric Radiation Measurement (ARM) Southern great Plains (SGP) Cloud and Radiation Testbed (CART) site can be used to examine the factors determining the temperature dependence of cloud optical thickness. We focus on cloud liquid water and physical thickness variations which can be derived from existing ARM measurements.

  11. New Mexico cloud super cooled liquid water survey final report 2009.

    SciTech Connect

    Beavis, Nick; Roskovensky, John K.; Ivey, Mark D.

    2010-02-01

    Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

  12. Dataset used to improve liquid water absorption models in the microwave

    DOE Data Explorer

    Turner, David

    2015-12-14

    Two datasets, one a compilation of laboratory data and one a compilation from three field sites, are provided here. These datasets provide measurements of the real and imaginary refractive indices and absorption as a function of cloud temperature. These datasets were used in the development of the new liquid water absorption model that was published in Turner et al. 2015.

  13. Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy

    SciTech Connect

    Wen, Haidan; Huse, Nils; Schoenlein, Robert W.; Lindenberg, Aaron M.

    2010-05-01

    We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecular OH stretching vibration, characteristic x-ray absorption changes monitor the conversion of strongly hydrogen-bonded water structures to more disordered structures with weaker hydrogen-bonding described by a single subpicosecond time constant. The latter describes the thermalization time of vibrational excitations and defines the characteristic maximum rate with which nonequilibrium populations of more strongly hydrogen-bonded water structures convert to less-bonded ones. On short time scales, the relaxation of vibrational excitations leads to a transient high-pressure state and a transient absorption spectrum different from that of statically heated water.

  14. Formation of H-type liquid crystal dimer at air-water interface

    SciTech Connect

    Karthik, C. Gupta, Adbhut Joshi, Aditya Manjuladevi, V. Gupta, Raj Kumar; Varia, Mahesh C.; Kumar, Sandeep

    2014-04-24

    We have formed the Langmuir monolayer of H-shaped Azo linked liquid crystal dimer molecule at the air-water interface. Isocycles of the molecule showed hysteresis suggesting the ir-reversible nature of the monolayer formed. The thin film deposited on the silicon wafer was characterized using Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). The images showed uniform domains of the dimer molecule. We propose that these molecules tend to take book shelf configuration in the liquid phase.

  15. Liquid-Water Uptake and Removal in PEM Fuel-Cell Components

    SciTech Connect

    Das, Prodip K.; Gunterman, Haluna P.; Kwong, Anthony; Weber, Adam Z.

    2011-09-23

    Management of liquid water is critical for optimal fuel-cell operation, especially at low temperatures. It is therefore important to understand the wetting properties and water holdup of the various fuel-cell layers. While the gas-diffusion layer is relatively hydrophobic and exhibits a strong intermediate wettability, the catalyst layer is predominantly hydrophilic. In addition, the water content of the ionomer in the catalyst layer is lower than that of the bulk membrane, and is affected by platinum surfaces. Liquid-water removal occurs through droplets on the surface of the gas-diffusion layer. In order to predict droplet instability and detachment, a force balance is used. While the pressure or drag force on the droplet can be derived, the adhesion or surface-tension force requires measurement using a sliding-angle approach. It is shown that droplets produced by forcing water through the gas-diffusion layer rather than placing them on top of it show much stronger adhesion forces owing to the contact to the subsurface water.

  16. The effects of charge transfer on the properties of liquid water

    SciTech Connect

    Lee, Alexis J.; Rick, Steven W.

    2011-05-14

    A method for treating charge transfer interactions in classical potential models is developed and applied to water. In this method, a discrete amount of charge is transferred for each hydrogen bond formed. It is designed to be simple to implement, to be applicable to a variety of potential models, and to satisfy various physical requirements. The method does not transfer charge at large intramolecular distances, it does not result in a conductive liquid, and it can be easily parameterized to give the correct amount of charge transfer. Two charge transfer models are developed for a polarizable and a non-polarizable potential. The models reproduce many of the properties of liquid water, including the structure, the diffusion constant, and thermodynamic properties over a range of temperatures.

  17. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    SciTech Connect

    Zen, Andrea; Luo, Ye Mazzola, Guglielmo Sorella, Sandro; Guidoni, Leonardo

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  18. Generic component failure data base for light water and liquid sodium reactor PRAs (probabilistic risk assessments)

    SciTech Connect

    Eide, S.A.; Chmielewski, S.V.; Swantz, T.D.

    1990-02-01

    A comprehensive generic component failure data base has been developed for light water and liquid sodium reactor probabilistic risk assessments (PRAs). The Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) and the Centralized Reliability Data Organization (CREDO) data bases were used to generate component failure rates. Using this approach, most of the failure rates are based on actual plant data rather than existing estimates. 21 refs., 9 tabs.

  19. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively

    SciTech Connect

    Ni, Yicun; Skinner, J. L.

    2015-07-07

    Vibrational spectroscopy of the water bending mode has been investigated experimentally to study the structure of water in condensed phases. In the present work, we calculate the theoretical infrared (IR) and sum-frequency generation (SFG) spectra of the HOH bend in liquid water and at the water liquid/vapor interface using a mixed quantum/classical approach. Classical molecular dynamics simulation is performed by using a recently developed water model that explicitly includes three-body interactions and yields a better description of the water surface. Ab-initio-based transition frequency, dipole, polarizability, and intermolecular coupling maps are developed for the spectral calculations. The calculated IR and SFG spectra show good agreement with the experimental measurements. In the theoretical imaginary part of the SFG susceptibility for the water liquid/vapor interface, we find two features: a negative band centered at 1615 cm{sup −1} and a positive band centered at 1670 cm{sup −1}. We analyze this spectrum in terms of the contributions from molecules in different hydrogen-bond classes to the SFG spectral density and also compare to SFG results for the OH stretch. SFG of the water bending mode provides a complementary picture of the heterogeneous hydrogen-bond configurations at the water surface.

  20. Ultrafast dynamics of liquid water: Frequency fluctuations of the OH stretch and the HOH bend

    SciTech Connect

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2013-07-28

    Frequency fluctuations of the OH stretch and the HOH bend in liquid water are reported from the third-order response function evaluated using the TTM3-F potential for water. The simulated two-dimensional infrared (IR) spectra of the OH stretch are similar to previously reported theoretical results. The present study suggests that the frequency fluctuation of the HOH bend is faster than that of the OH stretch. The ultrafast loss of the frequency correlation of the HOH bend is due to the strong couplings with the OH stretch as well as the intermolecular hydrogen bond bend.

  1. Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process

    SciTech Connect

    Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

    2011-10-16

    Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

  2. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    SciTech Connect

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S.

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  3. Compact organic vapor jet printing print head

    DOEpatents

    Forrest, Stephen R; McGraw, Gregory

    2013-12-24

    A first device is provided. The first device includes a print head, and a first gas source hermetically sealed to the print head. The print header further includes a first layer comprising a plurality of apertures, each aperture having a smallest dimension of 0.5 to 500 microns. A second layer is bonded to the first layer. The second layer includes a first via in fluid communication with the first gas source and at least one of the apertures. The second layer is made of an insulating material.

  4. Compact organic vapor jet printing print head

    DOEpatents

    Forrest, Stepehen R; McGraw, Gregory

    2015-01-27

    A first device is provided. The first device includes a print head, and a first gas source hermetically sealed to the print head. The print head further includes a first layer further comprising a plurality of apertures, each aperture having a smallest dimension of 0.5 to 500 microns. A second layer is bonded to the first layer. The second layer includes a first via in fluid communication with the first gas source and at least one of the apertures. The second layer is made of an insulating material.

  5. Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets

    DOEpatents

    Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

    2013-02-12

    A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

  6. Molecular origin of the difference in the HOH bend of the IR spectra between liquid water and ice

    SciTech Connect

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2013-02-07

    The intensity of the HOH bend in the IR spectrum of ice is significantly smaller than the corresponding one in liquid water. This difference in the IR intensities of the HOH bend in the two systems is investigated using MD simulations with the flexible, polarizable, ab-initio based TTM3-F model for water, a potential that correctly reproduces the experimentally observed increase of the HOH bend in liquid water and ice from the water monomer value. We have identified two factors that are responsible for the difference in the intensity of the HOH bend in liquid water and ice: (i) the decrease of the intensity of the HOH bend in ice caused by the strong anti-correlation between the permanent dipole moment of a molecule and the induced dipole moment of a neighboring hydrogen bond acceptor molecule and (ii) the weakening of this anti-correlation by the disordered hydrogen bond network in liquid water. The presence of the anti-correlation in ice is further confirmed by ab initio electronic structure calculations of water pentamer clusters extracted from the trajectories of the MD simulations for ice and liquid water.

  7. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    SciTech Connect

    Bahri, Che Nor Aniza Che Zainul Majid, Amran Ab.; Al-Areqi, Wadeeah M.

    2015-04-29

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.

  8. A cobalt(II) bis(salicylate)-based ionic liquid that shows thermoresponsive and selective water coordination

    SciTech Connect

    Kohno, Y; Cowan, MG; Masuda, M; Bhowmick, I; Shores, MP; Gin, DL; Noble, RD

    2014-01-01

    A metal-containing ionic liquid (MCIL) has been prepared in which the [CoII(salicylate)(2)](2-) anion is able to selectively coordinate two water molecules with a visible colour change, even in the presence of alcohols. Upon moderate heating or placement in vacuo, the hydrated MCIL undergoes reversible thermochromism by releasing the bound water molecules.

  9. Determination of formate in natural waters by a coupled enzymatic/high-performance liquid chromatographic technique

    SciTech Connect

    Kieber, D.J.; Vaughan, G.M.; Mopper, K.

    1988-09-01

    An enzymatic method was developed to quantify formic acid in natural water samples at submicromolar concentrations. The method is based on the oxidation of formate by formate dehydrogenase with corresponding reduction of ..beta..-nicotinamide adenine dinucleotide (..beta..-NAD/sup +/) to reduced ..beta..-NAD/sup +/ (..beta..-NADH); ..beta..-NADH is quantified by reversed-phase high-performance liquid chromatography with fluorometric detection. An important feature of this method is that the enzymatic reaction occurs directly in aqueous media, even sea water, and does not require sample pretreatment other than sample filtration. The reaction proceeds at room temperature at a slightly alkaline pH (7.5 - 8.5) and is specific for formate with a detection limit of 0.5 ..mu..M (S/N = 4) for a 200-..mu..L injection. The precision of the method was 4.6% relative standard deviation (n = 6) for a 0.6 ..mu..M standard addition of formate to Sargasso sea water. Average recoveries of 2 ..mu..M additions of formate to sea water, pore water, or rain were 103, 103, and 87%, respectively. Intercalibration with a Dionex ion chromatographic system showed an excellent agreement of 98%. Concentrations of formate present in natural samples ranged from 0.2 to 0.8 ..mu..M for Biscayne Bay sea water, 0.4 to 10.0 ..mu..M for Miami rain, and 0.9 to 8.4 ..mu..M for Biscayne Bay sediment pore water.

  10. The individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water

    SciTech Connect

    DiStasio, Robert A.; Santra, Biswajit; Li, Zhaofeng; Wu, Xifan; Car, Roberto

    2014-08-28

    In this work, we report the results of a series of density functional theory (DFT) based ab initio molecular dynamics (AIMD) simulations of ambient liquid water using a hierarchy of exchange-correlation (XC) functionals to investigate the individual and collective effects of exact exchange (Exx), via the PBE0 hybrid functional, non-local van der Waals/dispersion (vdW) interactions, via a fully self-consistent density-dependent dispersion correction, and an approximate treatment of nuclear quantum effects, via a 30 K increase in the simulation temperature, on the microscopic structure of liquid water. Based on these AIMD simulations, we found that the collective inclusion of Exx and vdW as resulting from a large-scale AIMD simulation of (H{sub 2}O){sub 128} significantly softens the structure of ambient liquid water and yields an oxygen-oxygen structure factor, S{sub OO}(Q), and corresponding oxygen-oxygen radial distribution function, g{sub OO}(r), that are now in quantitative agreement with the best available experimental data. This level of agreement between simulation and experiment demonstrated herein originates from an increase in the relative population of water molecules in the interstitial region between the first and second coordination shells, a collective reorganization in the liquid phase which is facilitated by a weakening of the hydrogen bond strength by the use of a hybrid XC functional, coupled with a relative stabilization of the resultant disordered liquid water configurations by the inclusion of non-local vdW/dispersion interactions. This increasingly more accurate description of the underlying hydrogen bond network in liquid water also yields higher-order correlation functions, such as the oxygen-oxygen-oxygen triplet angular distribution, P{sub OOO}(θ), and therefore the degree of local tetrahedrality, as well as electrostatic properties, such as the effective molecular dipole moment, that are in much better agreement with experiment.

  11. Method of extracting iodine from liquid mixtures of iodine, water and hydrogen iodide

    DOEpatents

    Mysels, Karol J.

    1979-01-01

    The components of a liquid mixture consisting essentially of HI, water and at least about 50 w/o iodine are separated in a countercurrent extraction zone by treating with phosphoric acid containing at least about 90 w/o H.sub.3 PO.sub.4. The bottom stream from the extraction zone is substantially completely molten iodine, and the overhead stream contains water, HI, H.sub.3 PO.sub.4 and a small fraction of the amount of original iodine. When the water and HI are present in near-azeotropic proportions, there is particular advantage in feeding the overhead stream to an extractive distillation zone wherein it is treated with additional concentrated phosphoric acid to create an anhydrous HI vapor stream and bottoms which contain at least about 85 w/o H.sub.3 PO.sub.4. Concentration of these bottoms provides phosphoric acid infeed for both the countercurrent extraction zone and for the extractive distillation zone.

  12. Dynamics of soft Nanomaterials captured by transmission electron microscopy in liquid water

    SciTech Connect

    Proetto, Maria T.; Rush, Anthony M.; Chien, Miao-Ping; Abellan Baeza, Patricia; Patterson, Joseph P.; Thompson, Matthew P.; Olson, Norman H.; Moore, Curtis E.; Rheingold, Arnold L.; Andolina, Christopher; Millstone, Jill; Howell, Stephen B.; Browning, Nigel D.; Evans, James E.; Gianneschi, Nathan C.

    2014-01-14

    In this paper we present in situ transmission electron microscopy (TEM) of soft, synthetic nanoparticles with a comparative analysis using conventional TEM methods. This comparison is made with the simple aim of describing what is an unprecedented example of in situ imaging by TEM. However, we contend the technique will quickly become essential in the characterization of analogous systems, especially where dynamics are of interest in the solvated state. In this case, particles were studied which were obtained from the direct polymerization of an oxaliplatin analog, designed for an ongoing program in novel chemotherapeutic delivery systems. The resulting nanoparticles provided sufficient contrast for facile imaging in situ, and point toward key design parameters that enable this new characterization approach for organic nanomaterials. We describe the preparation of the synthetic micellar nanoparticles to- gether with their characterization in liquid water.

  13. The Influence of Chain Dynamics on the Far Infrared Spectrum of Liquid Methanol-Water Mixtures

    SciTech Connect

    Woods, K.N.; Wiedemann, H.; /SLAC, SSRL

    2005-07-12

    Far-infrared absorption spectroscopy has been used to study the low frequency ({center_dot} 100 cm{sup -1}) intermolecular modes of methanol in mixtures with water. With the aid of a first principles molecular dynamics simulation on an equivalent system, a detailed understanding about the origin of the low frequency IR modes has been established. The total dipole spectrum from the simulation suggests that the bands appearing in the experimental spectra at approximately 55 cm{sup -1} and 70 cm{sup -1} in methanol and methanol-rich mixtures arise from both fluctuations and torsional motions occurring within the methanol hydrogen-bonded chains. The influence of these modes on both the solvation dynamics and the relaxation mechanisms in the liquid are discussed within the context of recent experimental and theoretical results that have emerged from studies focusing on the short time dynamics in the methanol hydrogen bond network.

  14. Charge transfer effects of ions at the liquid water/vapor interface

    SciTech Connect

    Soniat, Marielle; Rick, Steven W.

    2014-05-14

    Charge transfer (CT), the movement of small amounts of electron density between non-bonded pairs, has been suggested as a driving force for a variety of physical processes. Herein, we examine the effect of CT on ion adsorption to the water liquid-vapor interface. Using a CT force field for molecular dynamics, we construct a potential of mean force (PMF) for Na{sup +}, K{sup +}, Cl{sup ?}, and I{sup ?}. The PMFs were produced with respect to an average interface and an instantaneous interface. An analysis of the PMF relative to the instantaneous surface reveals that the area in which the anions experience a free energy minimum is quite narrow, and the cations feel a steeply repulsive free energy near the interface. CT is seen to have only minor effects on the overall free energy profiles. However, the long-ranged effects of ions are highlighted by the CT model. Due to CT, the water molecules at the surface become charged, even when the ion is over 15 away from the surface.

  15. The melting temperature of liquid water with the effective fragment potential

    SciTech Connect

    Brorsen, Kurt R.; Willow, Soohaeng Y.; Xantheas, Sotiris S.; Gordon, Mark S.

    2015-09-17

    Direct simulation of the solid-liquid water interface with the effective fragment potential (EFP) via the constant enthalpy and pressure (NPH) ensemble was used to estimate the melting temperature (Tm) of ice-Ih. Initial configurations and velocities, taken from equilibrated constant pressure and temperature (NPT) simulations at T = 300 K, 350 K and 400 K, respectively, yielded corresponding Tm values of 378±16 K, 382±14 K and 384±15 K. These estimates are consistently higher than experiment, albeit to the same degree with previously reported estimates using density functional theory (DFT)-based Born-Oppenheimer simulations with the Becke-Lee-Yang-Parr functional plus dispersion corrections (BLYP-D). KRB was supported by a Computational Science Graduate Fellowship from the Department of Energy. MSG was supported by a U.S. National Science Foundation Software Infrastructure (SI2) grant (ACI – 1047772). SSX acknowledges support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  16. Characterization of liquid-water percolation in tuffs in the unsaturated zone, Yucca Mountain, Nye County, Nevada

    SciTech Connect

    Kume, J.; Rousseau, J.P.

    1989-12-31

    A surface-based borehole investigation currently (1989) is being done to characterize liquid-water percolation in tuffs of Miocene age in the unsaturated zone beneath Yucca Mountain, Nye County, Nevada Active in-situ testing and passive in-situ monitoring will be used in this investigation to estimate the present-day liquid-water percolation (flux). The unsaturated zone consists of a gently dipping sequence of fine-grained, densely fractured, and mostly welded ash-flow tuffs that are interbedded with fine-grained, slightly fractured, non-welded ash-flow and ash-fall tuffs that are partly vitric and zeolitized near the water table. Primary study objectives are to define the water potential field within the unsaturated zone and to determine the in-situ bulk permeability and bulk hydrologic properties of the unsaturated tuffs. Borehole testing will be done to determine the magnitude and spatial distribution of physical and hydrologic properties of the geohydrologic units, and of their water potential fields. The study area of this investigation is restricted to that part of Yucca Mountain that immediately overlies and is within the boundaries of the perimeter drift of a US Department of Energy proposed mined, geologic, high-level radioactive-waste repository. Vertically, the study area extends from near the surface of Yucca Mountain to the underlying water table, about 500 to 750 meters below the ground surface. The average distance between the proposed repository and the underlying water table is about 205 meters.

  17. Organic vapor jet printing system

    DOEpatents

    Forrest, Stephen R.

    2016-05-03

    An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

  18. Organic vapor jet printing system

    DOEpatents

    Forrest, Stephen R

    2012-10-23

    An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

  19. Distribution of radionuclides and water in Bandelier Tuff beneath a former Los Alamos liquid waste disposal site after 33 years

    SciTech Connect

    Nyhan, J.W.; Drennon, B.J.; Abeele, W.V.; Trujillo, G.; Herrera, W.J.; Wheeler, M.L.; Booth, J.W.; Purtymun, W.D.

    1984-07-01

    The distribution of radionuclides and water in Bandelier Tuff beneath a former liquid waste disposal site at Los Alamos was investigated. The waste use history of the site was described, as well as several pertinent laboratory and field studies of water and radionuclide migration in Bandelier Tuff. The distribution of plutonium, /sup 241/Am, and water was determined in a set of about 800 tuff samples collected to sampling depths of 30 m beneath two absorption beds. These data were then related to site geohydrologic data. Water and radionuclide concentrations found after 33 years were compared with the results of similar studies previously performed at this site, and the implications of these comparisons are discussed relative to nuclear waste management. 19 references, 6 figures, 4 tables.

  20. Government Printing Office Requirements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Government Printing Office Requirements Government Printing Office Requirements This section describes the Government Printing Office (GPO) requirements for all print materials, whether printed electronically or on paper. This includes requirements for printing and copying for all EERE publications. Approved Printers Executive Order 12873, signed by President Clinton, requires that all government offices and their contractors are required to use GPO-approved printers to print and copy all

  1. Apparatus and method for pumping hot, erosive slurry of coal solids in coal derived, water immiscible liquid

    DOEpatents

    Ackerman, Carl D.

    1983-03-29

    An apparatus for and method of pumping hot, erosive slurry of coal solids in a coal derived, water immiscible liquid to higher pressure involves the use of a motive fluid which is miscible with the liquid of the slurry. The apparatus includes a pump 12, a remote check valve 14 and a chamber 16 between and in fluid communication with the pump 12 and check valve 14 through conduits 18,20. Pump 12 exerts pressure on the motive fluid and thereby on the slurry through a concentration gradient of coal solids within chamber 16 to alternately discharge slurry under pressure from the outlet port of check valve 14 and draw slurry in through the inlet port of check valve 14.

  2. Solar paint: From synthesis to printing

    DOE PAGES [OSTI]

    Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul

    2014-11-13

    Water-based polymer nanoparticle dispersions (solar paint) offer the prospect of addressing two of the main challenges associated with printing large area organic photovoltaic devices; namely, how to control the nanoscale architecture of the active layer and eliminate the need for hazardous organic solvents during device fabrication. We review progress in the field of nanoparticulate organic photovoltaic (NPOPV) devices and future prospects for large-scale manufacturing of solar cells based on this technology.

  3. Sintering Kinetics of Inkjet Printed...

    Office of Scientific and Technical Information (OSTI)

    circuits for functional applications envisioned by automotive and aerospace industries. ... Figure 1 illustrates the types of printed line instabilities generally encountered when ...

  4. Template:PrintPDFButton | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PrintPDFButton Jump to: navigation, search This is the PrintPDFButton template. It is intended for inclusion on any page where printing the page contents to a PDF is desirable....

  5. Decontamination of Nuclear Liquid Wastes Status of CEA and AREVA R and D: Application to Fukushima Waste Waters - 12312

    SciTech Connect

    Fournel, B.; Barre, Y.; Lepeytre, C.; Peycelon, H.; Grandjean, A.; Prevost, T.; Valery, J.F.; Shilova, E.; Viel, P.

    2012-07-01

    Liquid wastes decontamination processes are mainly based on two techniques: Bulk processes and the so called Cartridges processes. The first technique has been developed for the French nuclear fuel reprocessing industry since the 60's in Marcoule and La Hague. It is a proven and mature technology which has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The second technique, involving cartridges processes, offers new opportunities for the use of innovative adsorbents. The AREVA process developed for Fukushima and some results obtained on site will be presented as well as laboratory scale results obtained in CEA laboratories. Examples of new adsorbents development for liquid wastes decontamination are also given. A chemical process unit based on co-precipitation technique has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The asset of this technique is its ability to process large volumes in a continuous mode. Several chemical products can be used to address specific radioelements such as: Cs, Sr, Ru. Its drawback is the production of sludge (about 1% in volume of initial liquid volume). CEA developed strategies to model the co-precipitation phenomena in order to firstly minimize the quantity of added chemical reactants and secondly, minimize the size of co-precipitation units. We are on the way to design compact units that could be mobilized very quickly and efficiently in case of an accidental situation. Addressing the problem of sludge conditioning, cementation appears to be a very attractive solution. Fukushima accident has focused attention on optimizations that should be taken into account in future studies: - To better take account for non-typical aqueous matrixes like seawater; - To enlarge the spectrum of radioelements that can be efficiently processed and especially short lives radioelements that are usually less present in

  6. Low-Pressure Solubility of Gases in Liquid Water | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Abstract Abstract unavailable. Authors Emmerich Wilhelm, Rubin Battino and Robert J. Wilcock Published Journal Chemical reviews, 1977 DOI Not Provided Check for DOI...

  7. Widget:PrintPDFButton | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Dependencies Template:PrintPDFButton Usage This Widget assumes the existence of HTML elements created by the PrintPDFButton template, and is called via that template....

  8. Pennsylvania Company Develops Solar Cell Printing Technology

    Energy.gov [DOE]

    The technology uses Plextronics’ conductive inks that can be printed by manufacturers worldwide to make solar cells, potentially as easily as they might print a newspaper.

  9. SolarPrint | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: SolarPrint Place: Dublin, Ireland Sector: Solar Product: Irish solar cell manufacturer. The company developed DSSC technology. References: SolarPrint1 This...

  10. SciTech Connect: "3d printing"

    Office of Scientific and Technical Information (OSTI)

    3d printing" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "3d printing" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  11. printed-circuit heat exchanger PCHE

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    printed-circuit heat exchanger PCHE - Sandia Energy Energy Search Icon Sandia Home ... SunShot Grand Challenge: Regional Test Centers printed-circuit heat exchanger PCHE Home...

  12. Seeing Gold Nanoparticles Self-Assemble with in situ Liquid Transmissi...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Seeing Gold Nanoparticles Self-Assemble with in situ Liquid Transmission Electron Microscopy December 15, 2014 Tweet EmailPrint Scientific Achievement The self-assembly of gold...

  13. Liquid-phase and vapor-phase dehydration of organic/water solutions

    DOEpatents

    Huang, Yu; Ly, Jennifer; Aldajani, Tiem; Baker, Richard W.

    2011-08-23

    Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

  14. Public Law 102-392 for Printing | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2-392 for Printing Public Law 102-392 for Printing Public Law 102-392 for Printing Public Law 102-392 for Printing (118.61 KB) More Documents & Publications Minutes from the Print ...

  15. Printed Module Interconnects

    SciTech Connect

    Stockert, Talysa R.; Fields, Jeremy D.; Pach, Gregory F.; Mauger, Scott A.; van Hest, Maikel F. A. M.

    2015-06-14

    Monolithic interconnects in photovoltaic modules connect adjacent cells in series, and are typically formed sequentially involving multiple deposition and scribing steps. Interconnect widths of 500 um every 10 mm result in 5% dead area, which does not contribute to power generation in an interconnected solar panel. This work expands on previous work that introduced an alternative interconnection method capable of producing interconnect widths less than 100 um. The interconnect is added to the module in a single step after deposition of the photovoltaic stack, eliminating the need for scribe alignment. This alternative method can be used for all types of thin film photovoltaic modules. Voltage addition with copper-indium-gallium-diselenide (CIGS) solar cells using a 2-scribe printed interconnect approach is demonstrated. Additionally, interconnect widths of 250 um are shown.

  16. Monolithically integrated Helmholtz coils by 3-dimensional printing

    SciTech Connect

    Li, Longguang [Department of Electrical Engineering, University of MichiganShanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Abedini-Nassab, Roozbeh; Yellen, Benjamin B., E-mail: yellen@duke.edu [Department of Electrical Engineering, University of MichiganShanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)

    2014-06-23

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6?A of electrical current and produce magnetic field up to 70?G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  17. Interactions between drops of molten Al-Li alloys and liquid water

    SciTech Connect

    Hyder, M.L.; Nelson, L.S.; Duda, P.M.; Hyndman, D.A.

    1993-08-01

    Sandia National Laboratories, at the request of the Savannah River Technology Center (SRTC), studied the interactions between single drops of molten aluminum-lithium alloys and water. Most experiments were performed with ``B`` alloy (3.1 w/o Li, balance A1). Objectives were to develop experimental procedures for preparing and delivering the melt drops and diagnostics for characterizing the interactions, measure hydrogen generated by the reaction between melt and water, examine debris recovered after the interaction, determine changes in the aqueous phase produced by the melt-water chemical reactions, and determine whether steam explosions occur spontaneously under the conditions studied. Although many H{sub 2} bubbles were generated after the drops entered the water, spontaneous steam explosions never occurred when globules of the ``B`` alloy at temperatures between 700 and 1000C fell freely through water at room temperature, or upon or during subsequent contact with submerged aluminum or stainless steel surfaces. Total amounts of H{sub 2} (STP) increased from about 2 to 9 cm{sup 3}/per gram of melt as initial melt temperature increased over this range of temperatures.

  18. Detection of latent prints by Raman imaging

    DOEpatents

    Lewis, Linda Anne; Connatser, Raynella Magdalene; Lewis, Sr., Samuel Arthur

    2011-01-11

    The present invention relates to a method for detecting a print on a surface, the method comprising: (a) contacting the print with a Raman surface-enhancing agent to produce a Raman-enhanced print; and (b) detecting the Raman-enhanced print using a Raman spectroscopic method. The invention is particularly directed to the imaging of latent fingerprints.

  19. Ultrafast dynamics of liquid water: Energy relaxation and transfer processes of the OH stretch and the HOH bend

    SciTech Connect

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2015-08-27

    The vibrational energy relaxation and transfer processes of the OH stretching and the HOH bending vibrations in liquid water are investigated via the theoretical calculation of the pump-probe spectra obtained from non-equilibrium molecular dynamics simulations with the TTM3-F interaction potential. The excitation of the OH stretch induces an instantaneous response of the high frequency librational motions in the 600-1000 cm-1 range. In addition, the excess energy of the OH stretch of a water molecule quickly transfers to the OH stretches of molecules in its first hydration shell with a time constant of ~50 fs, followed by relaxation to the HOH bends of the surrounding molecules with a time constant of 230 fs. The excitation of the HOH bend also results in the ultrafast excitation of the high frequency librational motions. The energy of the excited HOH bend of a water molecule decays, with a time constant of 200 fs, mainly to the relaxation of the HOH bends of its surrounding molecules. The energies of the HOH bends were found to transfer quickly to the intermolecular motions via the coupling with the high frequency librational motions. The excess energy of the OH stretch or the HOH bend relaxes to the high frequency intermolecular librational motions and eventually to the hot ground state with a time scale of ~1 ps via the coupling with the librational and translational motions. The energy relaxation and transfer processes were found to depend on the local hydrogen bonding network; the relaxations of the excess energy of the OH stretch and the HOH bend of four- and five-coordinated molecules are faster than those of a three-coordinated molecule due to the delocalization of the vibrational motions of the former (four- and five-coordinated molecules) compared to those of the later (three-coordinated molecules). The present results highlight the importance of the high frequency intermolecular librational modes in facilitating the ultrafast energy relaxation process in

  20. SU-E-T-455: Characterization of 3D Printed Materials for Proton Beam Therapy

    SciTech Connect

    Zou, W; Siderits, R; McKenna, M; Khan, A; Yue, N [Rutgers University, New Brunswick, NJ (United States); McDonough, J; Yin, L; Teo, B [University of Pennsylvania, Philadelphia, PA (United States); Fisher, T [Memorial Medical Center, Modesto, CA (United States)

    2014-06-01

    Purpose: The widespread availability of low cost 3D printing technologies provides an alternative fabrication method for customized proton range modifying accessories such as compensators and boluses. However the material properties of the printed object are dependent on the printing technology used. In order to facilitate the application of 3D printing in proton therapy, this study investigated the stopping power of several printed materials using both proton pencil beam measurements and Monte Carlo simulations. Methods: Five 34 cm cubes fabricated using three 3D printing technologies (selective laser sintering, fused-deposition modeling and stereolithography) from five printers were investigated. The cubes were scanned on a CT scanner and the depth dose curves for a mono-energetic pencil beam passing through the material were measured using a large parallel plate ion chamber in a water tank. Each cube was measured from two directions (perpendicular and parallel to printing plane) to evaluate the effects of the anisotropic material layout. The results were compared with GEANT4 Monte Carlo simulation using the manufacturer specified material density and chemical composition data. Results: Compared with water, the differences from the range pull back by the printed blocks varied and corresponded well with the material CT Hounsfield unit. The measurement results were in agreement with Monte Carlo simulation. However, depending on the technology, inhomogeneity existed in the printed cubes evidenced from CT images. The effect of such inhomogeneity on the proton beam is to be investigated. Conclusion: Printed blocks by three different 3D printing technologies were characterized for proton beam with measurements and Monte Carlo simulation. The effects of the printing technologies in proton range and stopping power were studied. The derived results can be applied when specific devices are used in proton radiotherapy.

  1. High-brightness water-window electron-impact liquid-jet microfocus source

    SciTech Connect

    Skoglund, P.; Lundstroem, U.; Vogt, U.; Hertz, H. M.

    2010-02-22

    We demonstrate stable high-brightness operation of an electron-impact water-jet-anode soft x-ray source. A 30 kV, 7.8 W electron beam is focused onto a 20 mum diameter jet resulting in water-window oxygen line emission at 525 eV/2.36 nm with a brightness of 3.0x10{sup 9} ph/(sxmum{sup 2}xsrxline). Monte Carlo-based modeling shows good quantitative agreement with the experiments. The source has potential to increase the x-ray power and brightness by another 1-2 orders of magnitude and fluid-dynamical jet instabilities is determined to be the most important limiting factor. The source properties make it an attractive alternative for table-top x-ray microscopy.

  2. Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting

    DOE PAGES [OSTI]

    Mo, Jingke; Retterer, Scott T.; Cullen, David A.; Toops, Todd J.; Green, Jr, Johney Boyd; Zhang, Feng-Yuan

    2016-06-13

    Liquid/gas diffusion layers (LGDLs) play a crucial role in electrochemical energy technology and hydrogen production, and are expected to simultaneously transport electrons, heat, and reactants/products with minimum voltage, current, thermal, interfacial, and fluidic losses. In addition, carbon materials, which are typically used in proton exchange membrane fuel cells (PEMFCs), are unsuitable for PEM electrolyzer cells (PEMECs). In this study, a novel titanium thin LGDL with well-tunable pore morphologies was developed by employing nano-manufacturing and was applied in a standard PEMEC. The LGDL tests show significant performance improvements. The operating voltages required at a current density of 2.0 A/cm2 were asmore » low as 1.69 V, and its efficiency reached a report high of up to 88%. The new thin and flat LGDL with well-tunable straight pores has been demonstrated to remarkably reduce the ohmic, interfacial and transport losses. In addition, well-tunable features, including pore size, pore shape, pore distribution, and thus porosity and permeability, will be very valuable for developing PEMEC models and for validation of its simulations with optimal and repeatable performance. The LGDL thickness reduction from greater than 350 μm of conventional LGDLs to 25 μm will greatly decrease the weight and volume of PEMEC stacks, and represents a new direction for future developments of low-cost PEMECs with high performance.« less

  3. Monitoring of Precipitable Water Vapor and Cloud Liquid Path from Scanning Microwave Radiometers During the 2003 Cloudiness Inter-Comparison Experiment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Monitoring of Precipitable Water Vapor and Cloud Liquid Path from Scanning Microwave Radiometers During the 2003 Cloudiness Inter-Comparison Experiment V. Mattioli Department of Electronic and Information Engineering University of Perugia Perugia, Italy E. R. Westwater Cooperative Institute for Research in Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado V. Morris Pacific Northwest National

  4. Add your e-prints to the E-print Network -- Energy, science,...

    Office of Scientific and Technical Information (OSTI)

    Add E-prints: eprintshelp@osti.gov We invite you to submit your e-prints to the network. Having your e-prints in the network increases awareness of them and promotes the ...

  5. Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model

    SciTech Connect

    Liu, Haihu; Valocchi, Albert J.; Werth, Charles J.; Kang, Oinjun; Oostrom, Martinus

    2014-11-01

    A lattice Boltzmann color-fluid model, which was recently proposed by Liu et al. [H. Liu, A.J. Valocchi, and Q. Kang. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations. Phys. Rev. E, 85:046309, 2012.] based on a concept of continuum surface force, is improved to simulate immiscible two-phase flows in porous media. The new improvements allow the model to account for different kinematic viscosities of both fluids and to model fluid-solid interactions. The capability and accuracy of this model is first validated by two benchmark tests: a layered two-phase flow with a viscosity ratio, and a dynamic capillary intrusion. This model is then used to simulate liquid CO2 (LCO2) displacing water in a dual-permeability pore network. The extent and behavior of LCO2 preferential flow (i.e., fingering) is found to depend on the capillary number (Ca), and three different displacement patterns observed in previous micromodel experiments are reproduced. The predicted variation of LCO2 saturation with Ca, as well as variation of specific interfacial length with LCO2 saturation, are both in good agreement with the experimental observations. To understand the effect of heterogeneity on pore-scale displacement, we also simulate LCO2 displacing water in a randomly heterogeneous pore network, which has the same size and porosity as the dual-permeability pore network. In comparison to the dual-permeability case, the transition from capillary fingering to viscous fingering occurs at a higher Ca, and LCO2 saturation is higher at low Ca but lower at high Ca. In either pore network, the LCO2-water specific interfacial length is found to obey a power-law dependence on LCO2 saturation.

  6. Effects of excluded volume and correlated molecular orientations on Frster resonance energy transfer in liquid water

    SciTech Connect

    Yang, Mino

    2014-04-14

    Frster theory for the survival probability of excited chromophores is generalized to include the effects of excluded volume and orientation correlation in the molecular distribution. An analytical expression for survival probability was derived and written in terms of a few simple elementary functions. Because of the excluded volume, the survival probability exhibits exponential decay at early times and stretched exponential decay at later times. Experimental schemes to determine the size of the molecular excluded volume are suggested. With the present generalization of theory, we analyzed vibrational resonance energy transfer kinetics in neat water. Excluded volume effects prove to be important and slow down the kinetics at early times. The majority of intermolecular resonance energy transfer was found to occur with exponential kinetics, as opposed to the stretched exponential behavior predicted by Frster theory. Quantum yields of intra-molecular vibrational relaxation, intra-, and intermolecular energy transfer were calculated to be 0.413, 0.167, and 0.420, respectively.

  7. ARM: Microwave Radiometer Retrievals (MWRRET) of Cloud Liquid...

    Office of Scientific and Technical Information (OSTI)

    Microwave Radiometer Retrievals (MWRRET) of Cloud Liquid Water and Precipitable Water Vapor Title: ARM: Microwave Radiometer Retrievals (MWRRET) of Cloud Liquid Water and ...

  8. Minutes from the Print and Mail Managers Exchange Forum Teleconference...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Minutes from the Print and Mail Managers Exchange Forum Teleconferences Minutes from the Print and Mail Managers Exchange Forum Teleconferences Minutes from the Print and Mail...

  9. The United States Code - Printing, Title 44 Excerpts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The United States Code - Printing, Title 44 Excerpts The United States Code - Printing, Title 44 Excerpts The United States Code - Printing, Title 44 Excerpts PDF icon The United ...

  10. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging LIDAR.

    SciTech Connect

    Love, Steven P.; Davis, A. B.; Rohde, C. A.; Tellier, L. L.; Ho, Cheng,

    2002-01-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data oti various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  11. High resolution printing of charge

    DOEpatents

    Rogers, John; Park, Jang-Ung

    2015-06-16

    Provided are methods of printing a pattern of charge on a substrate surface, such as by electrohydrodynamic (e-jet) printing. The methods relate to providing a nozzle containing a printable fluid, providing a substrate having a substrate surface and generating from the nozzle an ejected printable fluid containing net charge. The ejected printable fluid containing net charge is directed to the substrate surface, wherein the net charge does not substantially degrade and the net charge retained on the substrate surface. Also provided are functional devices made by any of the disclosed methods.

  12. Time-Resolved Study of Bonding in Liquid Carbon

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Time-Resolved Study of Bonding in Liquid Carbon Print We are accustomed to observing carbon in its elemental form as a solid, ranging from the soft "lead" in pencils to the...

  13. Ionic Liquid Pretreatment Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ionic Liquid Pretreatment EERE Webinar June 24, 2013 Blake Simmons, Ph.D. Vice-President, Deconstruction Division, Joint BioEnergy Institute Senior Manager, Biomass Program Lead, Sandia National Laboratories INTRODUCTION - IONIC LIQUIDS * Salts that are liquid at ambient temperatures. * Have stable liquid range of over 300 K. * Very low vapour pressure at room temperature. * Selective solubility of water and organics. * Potential to replace volatile organic solvents used in processes * Often

  14. Heat sinking for printed circuitry

    DOEpatents

    Wilson, S.K.; Richardson, G.; Pinkerton, A.L.

    1984-09-11

    A flat pak or other solid-state device mounted on a printed circuit board directly over a hole extends therethrough so that the bottom of the pak or device extends beyond the bottom of the circuit board. A heat sink disposed beneath the circuit board contacts the bottom of the pak or device and provides direct heat sinking thereto. Pressure may be applied to the top of the pak or device to assure good mechanical and thermal contact with the heat sink.

  15. Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger

    SciTech Connect

    Su-Jong Yoon; Piyush Sabharwall; Eung-Soo Kim

    2013-09-01

    The analytical methodologies for the thermal design, mechanical design and cost estimation of printed circuit heat exchanger are presented in this study. In this study, three flow arrangements of parallel flow, countercurrent flow and crossflow are taken into account. For each flow arrangement, the analytical solution of temperature profile of heat exchanger is introduced. The size and cost of printed circuit heat exchangers for advanced small modular reactors, which employ various coolants such as sodium, molten salts, helium, and water, are also presented.

  16. Advantages of liquid fluoride thorium reactor in comparison with...

    Office of Scientific and Technical Information (OSTI)

    comparison with light water reactor Citation Details In-Document Search Title: Advantages of liquid fluoride thorium reactor in comparison with light water reactor Liquid Fluoride ...

  17. Vapor–Liquid Equilibrium and Polarization Behavior of the GCP Water Model: Gaussian Charge-on-Spring versus Dipole Self-Consistent Field Approaches to Induced Polarization

    SciTech Connect

    Chialvo, Ariel A.; Moucka, Filip; Vlcek, Lukas; Nezbeda, Ivo

    2015-03-24

    Here we implemented the Gaussian charge-on-spring (GCOS) version of the original self-consistent field implementation of the Gaussian Charge Polarizable water model and test its accuracy to represent the polarization behavior of the original model involving smeared charges and induced dipole moments. Moreover, for that purpose we adapted the recently developed multiple-particle-move (MPM) within the Gibbs and isochoric-isothermal ensembles Monte Carlo methods for the efficient simulation of polarizable fluids. We also assessed the accuracy of the GCOS representation by a direct comparison of the resulting vapor-liquid phase envelope, microstructure, and relevant microscopic descriptors of water polarization along the orthobaric curve against the corresponding quantities from the actual GCP water model.

  18. Vapor–Liquid Equilibrium and Polarization Behavior of the GCP Water Model: Gaussian Charge-on-Spring versus Dipole Self-Consistent Field Approaches to Induced Polarization

    DOE PAGES [OSTI]

    Chialvo, Ariel A.; Moucka, Filip; Vlcek, Lukas; Nezbeda, Ivo

    2015-03-24

    Here we implemented the Gaussian charge-on-spring (GCOS) version of the original self-consistent field implementation of the Gaussian Charge Polarizable water model and test its accuracy to represent the polarization behavior of the original model involving smeared charges and induced dipole moments. Moreover, for that purpose we adapted the recently developed multiple-particle-move (MPM) within the Gibbs and isochoric-isothermal ensembles Monte Carlo methods for the efficient simulation of polarizable fluids. We also assessed the accuracy of the GCOS representation by a direct comparison of the resulting vapor-liquid phase envelope, microstructure, and relevant microscopic descriptors of water polarization along the orthobaric curve againstmore » the corresponding quantities from the actual GCP water model.« less

  19. Vapor-liquid Equilibria and Polarization Behavior of the GCP Water Model: Gaussian Charge-on-spring versus Dipole Self-consistent Field approaches to induced polarization

    DOE PAGES [OSTI]

    Chialvo, Ariel A; Moucka, Filip; Vlcek, Lukas; Nezbeda, Ivo

    2015-01-01

    We implemented the Gaussian charge-on-spring (GCOS) version of the original self-consistent field implementation of the Gaussian Charge Polarizable water model and test its accuracy to represent the polarization behavior of the original model involving smeared charges and induced dipole moments. For that purpose we adapted the recently developed multiple-particle-move (MPM) within the Gibbs and isochoric-isothermal ensembles Monte Carlo methods for the efficient simulation of polarizable fluids. We assessed the accuracy of the GCOS representation by a direct comparison of the resulting vapor-liquid phase envelope, microstructure, and relevant microscopic descriptors of water polarization along the orthobaric curve against the corresponding quantitiesmore » from the actual GCP water model.« less

  20. Two Electron Holes in Hematite Facilitate Water Splitting

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Two Electron Holes in Hematite Facilitate Water Splitting Print Hydrogen is an attractive form of fuel because its only by-product is nonpolluting water vapor. The problem,...

  1. Two Electron Holes in Hematite Facilitate Water Splitting

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Two Electron Holes in Hematite Facilitate Water Splitting Two Electron Holes in Hematite Facilitate Water Splitting Print Wednesday, 26 September 2012 00:00 Hydrogen is an...

  2. Processing a printed wiring board by single bath electrodeposition

    DOEpatents

    Meltzer, Michael P.; Steffani, Christopher P.; Gonfiotti, Ray A.

    2010-12-07

    A method of processing a printed wiring board. Initial processing steps are implemented on the printed wiring board. Copper is plated on the printed wiring board from a bath containing nickel and copper. Nickel is plated on the printed wiring board from a bath containing nickel and copper and final processing steps are implemented on the printed wiring board.

  3. Processing A Printed Wiring Board By Single Bath Electrodeposition

    DOEpatents

    Meltzer, Michael P. (Oakland, CA); Steffani, Christopher P. (Livermore, CA); Gonfiotti, Ray A. (Livermore, CA)

    2003-04-15

    A method of processing a printed wiring board by single bath electrodeposition. Initial processing steps are implemented on the printed wiring board. Copper is plated on the printed wiring board from a bath containing nickel and copper. Nickel is plated on the printed wiring board from the bath containing nickel and copper and final processing steps are implemented on the printed wiring board.

  4. A dual-reservoir remote loading water target system for {sup 18}F and {sup 13}N production with direct in-target liquid level sensing

    SciTech Connect

    Ferrieri, R.A.; Alexoff, D.L.; Schlyer, D.J.; Wolf, A.P.

    1991-12-31

    This report describes our universal water target loading system that serves both [{sup 18}F] and [{sup 13}N] production targets, and a radionuclide delivery system that is specific for [{sup 18}F] fluoride. The system was designed and fabricated around the operation of a single pneumatic syringe dispenser that accesses one of two reservoirs filled with [{sup 18}O] enriched water for [{sup 18}F] fluoride production from the {sup 18}O(p,n){sup 18}F reaction and natural abundance water for [{sup 13}N] nitrate/nitrite production from the {sup 16}O(p,{alpha}){sup 13}N reaction and loads one of two targets depending on the radionuclide desired. The system offers several novel features for reliable radionuclide production. First, there exists an in-target probe for direct liquid level sensing using the conductivity response of water. In addition, transfer of [{sup 18}F] fluoride to the Hot Lab is completely decoupled from the irradiated water through the actions of a resin/recovery system which is located in the cyclotron vault, thus maintaining transfer line integrity. This feature also provides a mechanism for vault-containment of long-lived contaminants generated through target activation and leaching into the water.

  5. A dual-reservoir remote loading water target system for sup 18 F and sup 13 N production with direct in-target liquid level sensing

    SciTech Connect

    Ferrieri, R.A.; Alexoff, D.L.; Schlyer, D.J.; Wolf, A.P.

    1991-01-01

    This report describes our universal water target loading system that serves both ({sup 18}F) and ({sup 13}N) production targets, and a radionuclide delivery system that is specific for ({sup 18}F) fluoride. The system was designed and fabricated around the operation of a single pneumatic syringe dispenser that accesses one of two reservoirs filled with ({sup 18}O) enriched water for ({sup 18}F) fluoride production from the {sup 18}O(p,n){sup 18}F reaction and natural abundance water for ({sup 13}N) nitrate/nitrite production from the {sup 16}O(p,{alpha}){sup 13}N reaction and loads one of two targets depending on the radionuclide desired. The system offers several novel features for reliable radionuclide production. First, there exists an in-target probe for direct liquid level sensing using the conductivity response of water. In addition, transfer of ({sup 18}F) fluoride to the Hot Lab is completely decoupled from the irradiated water through the actions of a resin/recovery system which is located in the cyclotron vault, thus maintaining transfer line integrity. This feature also provides a mechanism for vault-containment of long-lived contaminants generated through target activation and leaching into the water.

  6. Sintering Kinetics of Inkjet Printed Conductive Silver Lines on Insulating Plastic Substrate

    DOE PAGES [OSTI]

    Zhou, Wenchao; List, III, Frederick Alyious; Duty, Chad E; Babu, Sudarsanam Suresh

    2015-01-24

    This paper focuses on sintering kinetics of inkjet printed lines containing silver nanoparticles deposited on a plastic substrate. Upon heat treatment, the change of resistance in the printed lines was measured as a function of time and sintering temperatures from 150 to 200 C. A critical temperature was observed for the sintering process, beyond which there was no further reduction in resistance. Analysis shows the critical temperature correlates to the boiling point of the solvent, which is attributed to a liquid-mediated sintering mechanism. It is demonstrated that the sintering process shuts down after the solvent has completely evaporated.

  7. Toppan Printing Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Co Ltd Jump to: navigation, search Name: Toppan Printing Co Ltd Place: Tokyo, Tokyo, Japan Zip: 101-0024 Product: Japanese manufacturer of PV module backsheets. Coordinates:...

  8. Mac OS X Printing with LPD

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Mac OS X Printing with LPD Last Modified by Jerry Camuso, 02/12/2015. 1 . From the "System Preferences", click on "Print & Fax" 2 . Click on "+" sign to add a new printer 3. Use "IP Printer" and select or type the following: Protocol: Line Printer Daemon - LPD Address: printserv.slac.stanford.edu Queue: Your print queue name from SLAC printserv. PLEASE NOTE: this information can be found at the bottom of this document Under "SSRL beamline print

  9. Printing and Mail Managers Exchange Forum Teleconference

    Office of Environmental Management (EM)

    ... Streamlining the acquisition process; e. Developing best practices in print management; f. Assisting in behavioral changes through improved data collection and analysis; g. Driving ...

  10. Technical Note: Improvements in GEANT4 energy-loss model and the effect on low-energy electron transport in liquid water

    SciTech Connect

    Kyriakou, I.; Incerti, S.

    2015-07-15

    Purpose: The GEANT4-DNA physics models are upgraded by a more accurate set of electron cross sections for ionization and excitation in liquid water. The impact of the new developments on low-energy electron transport simulations by the GEANT4 Monte Carlo toolkit is examined for improving its performance in dosimetry applications at the subcellular and nanometer level. Methods: The authors provide an algorithm for an improved implementation of the Emfietzoglou model dielectric response function of liquid water used in the GEANT4-DNA existing model. The algorithm redistributes the imaginary part of the dielectric function to ensure a physically motivated behavior at the binding energies, while retaining all the advantages of the original formulation, e.g., the analytic properties and the fulfillment of the f-sum-rule. In addition, refinements in the exchange and perturbation corrections to the Born approximation used in the GEANT4-DNA existing model are also made. Results: The new ionization and excitation cross sections are significantly different from those of the GEANT4-DNA existing model. In particular, excitations are strongly enhanced relative to ionizations, resulting in higher W-values and less diffusive dose-point-kernels at sub-keV electron energies. Conclusions: An improved energy-loss model for the excitation and ionization of liquid water by low-energy electrons has been implemented in GEANT4-DNA. The suspiciously low W-values and the unphysical long tail in the dose-point-kernel have been corrected owing to a different partitioning of the dielectric function.

  11. Comparison of Cloud Fraction and Liquid Water Path between ECMWF simulations and ARM long-term Observations at the NSA Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    poster, seasonal and annual variations of cloudiness and liquid water path (LWP) from European Center for Medium-Range Weather Forecasts (ECMWF) model were compared with surface measurement from the ARM Climate Research Facility (ARCF) North Slope of Alaska ( N S A ) s i t e b e t we e n J a n u a r y 1 9 9 9 and December 2004. ● Model simulated large scale features match well with observations. ● There are significant differences in cloud vertical and temporal distributions and in the

  12. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    SciTech Connect

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  13. Printed circuit dispersive transmission line

    DOEpatents

    Ikezi, H.; Lin-Liu, Y.R.; DeGrassie, J.S.

    1991-08-27

    A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other. 5 figures.

  14. Printed circuit dispersive transmission line

    DOEpatents

    Ikezi, Hiroyuki; Lin-Liu, Yuh-Ren; DeGrassie, John S.

    1991-01-01

    A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other.

  15. Print

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    maneras fciles de usar energa en forma inteligente Apaga las luces. Marca la caja. Apaga tu computadora. Usa bombillas de alta eficiencia energtica. Desenchufa los cargadores...

  16. Print

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Apaga las luces. Marca la caja. Apaga tu computadora. Usa bombillas de alta eficiencia energtica. Desenchufa los cargadores cuando no estn en uso. Usa luz natural, calor del ...

  17. Print

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    GFDL GCM Model Output with ARM CMBE Dataset: A First Look Jean-Christophe Golaz, UCAR VSP, GFDL Leo J. Donner and V. Ramaswamy, Geophysical Fluid Dynamics Laboratory, Princeton, NJ U . S . D E P A R T M E NT O F C O M M E R C E N A TION A L O C E A N I C A N D A T MO S P H E R I C A D M I N I S T R ATIO N What is CMBE? - CMBE (Climate Modeling Best Estimate) is a new ARM dataset specifically designed to evaluate climate models against ARM observations. - CMBE contains best estimates of selected

  18. Print

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    5k 0 < 50k < 100k < 250k < 500k < 1M > 1M > 5M > 10M DE MD DC MA RI NJ AZ UT WY ID OR WA CA TX OK KS CO NE SD ND MN WI IL IA MO AR LA MS AL FL GA TN KY IN OH MI ME NH CT VT NY PA WV VA NC SC MT AK HI NV NM Princeton Plasma Physics Laboratory Procured Materials and Services 2015 (> $35M) Small business procurements in US: $14.73M

  19. Printing a Car: A Team Effort in Innovation (Text Version) |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Printing a Car: A Team Effort in Innovation (Text Version) Printing a Car: A Team Effort in Innovation (Text Version) Below is the text version of the video Printing a Car: A Team ...

  20. E-print Network : Main View : Deep Federated Search

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    javascript. Home About Contact Us Help E-print Network Search Powered By Deep Web Technologies New Search Preferences E-print Network E-print Network Skip to main content FAQ *...

  1. Template:PrintFullVersionButton | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PrintFullVersionButton Jump to: navigation, search This is the PrintFullVersionButton template. It is intended for inclusion on any page where the printing of a superset of pages...

  2. Over 5 million scientific e-prints at E-print network | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information 5 million scientific e-prints at E-print network Back to the OSTI News Listing for 2008 Now you can access more than 5 million e-prints at OSTI's E-print Network. The rapidly growing gateway to over 27,850 scientific Web sites and databases worldwide allows free one-stop searching of scientific and technical information created by scientists and research engineers active in their respective fields. E-prints are available in basic and

  3. Search 1.1 million scientific e-prints at OSTI's E-print Network | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information 1.1 million scientific e-prints at OSTI's E-print Network Back to the OSTI News Listing for 2007 The network created by scientists for scientists continues to grow. E-print Network provides electronic access to more than 27,000 Web sites and databases worldwide containing 1.1 million e-prints in basic and applied sciences. E-prints are scientific or technical documents circulated electronically to facilitate peer exchange and

  4. Minutes from the March 17, 2010 Printing and Mail Teleconference

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    March 17, 2010 Printing and Mail Managers Exchange Forum Teleconference Twenty-eight individuals participated in the Printing and Mail Managers Exchange Forum, which included Printing and Mail Managers and Contractors. Comments/Additions to last Months Minutes Dallas Woodruff, Headquarters opened the meeting by thanking everyone for participating in the today's teleconference. Printing Agenda Items... Upcoming Congressional Joint Committee on Printing Commercial Printing Report "JCP Form

  5. Minutes from the May 26, 2010 Printing and Mail Teleconference

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    26, 2010 Printing and Mail Managers Exchange Forum Teleconference Seventeen individuals participated in the Printing and Mail Managers Exchange Forum, which included Printing and Mail Managers and Contractors. Comments/Additions to last Months Minutes Dallas Woodruff, Headquarters opened the meeting by thanking everyone for participating in the today's teleconference. Printing Agenda Items... Update on the FY 2010, Congressional Joint Committee on Printing Commercial Printing Report "JCP

  6. The use of liquid chromatography for the analysis of metal ions in aqueous solutions and for the determination of water in organic matrices

    SciTech Connect

    Fortier, N.E.

    1988-07-01

    The value of a p-phenylenediammonium eluent in single-column ion chromatography is demonstrated. It is shown to be particularly useful for separating trivalent aluminum from common divalent metal ion interferences. The aluminum is detected with a conductivity detector. Postcolumn reaction in liquid chromatography is reviewed. The application of disodium 1-(2-thiazolylazo)-2-naphthol-3,6-disulfonate (TAN-3,6-S) to the detection of metal ions in single-column ion chromatography with a visible absorbance detector is explored. Temperature is shown to affect the retention times of divalent and trivalent metal ions in ion chromatography. Several chromatographic separations are improved by operating the system at elevated temperature. Two methods for the determination of water in organic matrices using liquid chromatography and a spectrophotometric detector are presented. Both employ a chromatographic separation by ion-exclusion. The first detection method makes use of solvatochromism, the shift in an organic spectrum which occurs as solvent polarity is changed. The second detection method uses a solid-phase postcolumn reactor containing a cation-exchange resin in the H/sup +/ form. This reactor acts as catalyst for a reaction occurring between water and two components of the mobile phase, methanol and trans-cinnamaldehyde. 122 refs., 40 figs., 16 tabs.

  7. Print-based Manufacturing of Integrated, Low Cost, High Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Print-based Manufacturing of Integrated, Low Cost, High Performance SSL Luminaires Print-based Manufacturing of Integrated, Low Cost, High Performance SSL Luminaires Lead ...

  8. Department of Energy Strategic Plan, May 2011, Print Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Strategic Plan, May 2011, Print Quality Department of Energy Strategic Plan, May 2011, Print Quality Posted here are publication materials related to the ...

  9. Transfer Printed Microcells with Micro-Optic Concentrators for...

    Office of Scientific and Technical Information (OSTI)

    Transfer Printed Microcells with Micro-Optic Concentrators for Low Cost, High Performance Photovoltaic Modules Citation Details In-Document Search Title: Transfer Printed...

  10. Unitech Printed Circuit Board Corp UPCB | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector: Solar Product: Taiwan-based printed-circuit board maker with intent to enter into solar cell manufacturing industry. References: Unitech Printed Circuit Board Corp....

  11. Numerical Study on Crossflow Printed Circuit Heat Exchanger for Advanced Small Modular Reactors

    SciTech Connect

    Yoon, Su-Jong; Sabharwall, Piyush; Kim, Eung-Soo

    2014-03-01

    Various fluids such as water, gases (helium), molten salts (FLiNaK, FLiBe) and liquid metal (sodium) are used as a coolant of advanced small modular reactors (SMRs). The printed circuit heat exchanger (PCHE) has been adopted as the intermediate and/or secondary heat exchanger of SMR systems because this heat exchanger is compact and effective. The size and cost of PCHE can be changed by the coolant type of each SMR. In this study, the crossflow PCHE analysis code for advanced small modular reactor has been developed for the thermal design and cost estimation of the heat exchanger. The analytical solution of single pass, both unmixed fluids crossflow heat exchanger model was employed to calculate a two dimensional temperature profile of a crossflow PCHE. The analytical solution of crossflow heat exchanger was simply implemented by using built in function of the MATLAB program. The effect of fluid property uncertainty on the calculation results was evaluated. In addition, the effect of heat transfer correlations on the calculated temperature profile was analyzed by taking into account possible combinations of primary and secondary coolants in the SMR systems. Size and cost of heat exchanger were evaluated for the given temperature requirement of each SMR.

  12. Technology available for license: Charging of liquid energy storage media

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    through radiolysis (ANL-IN-14-036) | Argonne National Laboratory Technology available for license: Charging of liquid energy storage media through radiolysis (ANL-IN-14-036) January 23, 2015 Tweet EmailPrint This technology utilizes radiolysis to charge liquid energy storage media including nanoelectrofuels. Charged liquid can be used in flow batteries for transportation and stationary energy-storage applications. Radiolysis charging can be conducted on aqueous and non-aqueous battery

  13. How We 3D-Print Aerogel

    SciTech Connect

    2015-04-23

    A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics, catalysis and separations. Lawrence Livermore National Laboratory researchers have made graphene aerogel microlattices with an engineered architecture via a 3D printing technique known as direct ink writing. The research appears in the April 22 edition of the journal, Nature Communications. The 3D printed graphene aerogels have high surface area, excellent electrical conductivity, are lightweight, have mechanical stiffness and exhibit supercompressibility (up to 90 percent compressive strain). In addition, the 3D printed graphene aerogel microlattices show an order of magnitude improvement over bulk graphene materials and much better mass transport.

  14. Aluminum plasmonic metamaterials for structural color printing

    DOE PAGES [OSTI]

    Cheng, Fei; Gao, Jie; Stan, Liliana; Rosenmann, Daniel; Czaplewski, David; Yang, Xiaodong

    2015-05-26

    We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer for ambient use with further improved color performance. The demonstrated structural color printing with aluminum plasmonic metamaterials offers great potential for relevant applications such as security marking and information storage.

  15. Molecular Mechanism of the Adsorption Process of an Iodide Anion into Liquid-Vapor Interfaces of Water-Methanol Mixtures

    SciTech Connect

    Annapureddy, Harsha V.; Dang, Liem X.

    2012-12-07

    To enhance our understanding of the molecular mechanism of ion adsorption to the interface of mixtures, we systematically carried out a free energy calculations study involving the transport of an iodide anion across the interface of a water-methanol mixture. Many body affects are taken into account to describe the interactions among the species. The surface propensities of I- at interfaces of pure water and methanol are well understood. In contrast, detailed knowledge of the molecular level adsorption process of I- at aqueous mixture interfaces has not been reported. In this paper, we explore how this phenomenon will be affected for mixed solvents with varying compositions of water and methanol. Our potential of mean force study as function of varying compositions indicated that I- adsorption free energies decrease from pure water to pure methanol but not linearly with the concentration of methanol. We analyze the computed density profiles and hydration numbers as a function of concentrations and ion positions with respect to the interface to further explain the observed phenomenon. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for DOE by Battelle. The calculations were carried out using computer resources provided by BES.

  16. E-print Network Alert Service

    Office of Scientific and Technical Information (OSTI)

    Website Policies and Important Links E-print Web Log alert image About Search Browse by ... and engineering databases and Web sites, based on a search profile you submit to us. ...

  17. E-print Network : User Account

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New Search | My Selections (0) | | | | Alerts | E-print Network Create User Account User Name: Email Address: I want to: Always receive emails Receive emails if there are new...

  18. Field Facilities Contacts for Printing and Mail | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Field Facilities Contacts for Printing and Mail Field Facilities Contacts for Printing and Mail This is the list of DOE field facilities contacts for Printing and Mail as of April 27, 2011. Go to Mail Services Go to Printing Services Field_Facilities_Contacts_Print-Mail.pdf (74.45 KB) More Documents & Publications Director's Perspective by George Miller Tenant Education and Training Fire Safety Committee Membership List

  19. Minutes from the Print and Mail Managers Exchange Forum Teleconferences |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Minutes from the Print and Mail Managers Exchange Forum Teleconferences Minutes from the Print and Mail Managers Exchange Forum Teleconferences Minutes from the Print and Mail Managers Exchange Forum Teleconferences. Contact the Office of Administrative Management and Support at (202) 586-4318 with any questions. Last updated 01/30/14 Minutes from the November 21, 2013 Printing and Mail Teleconference (8.88 KB) Minutes from the September 19, 2013 Printing and Mail

  20. Minutes from the January 19, 2011 Printing and Mail Teleconference

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    January 2010 Printing and Mail Managers Exchange Forum Teleconference Twenty-one individuals participated in the Printing and Mail Managers Exchange Forum, which included Printing and Mail Managers and Contractors Comments/Additions to last Months Minutes No comments. Printing Agenda Items......... Update on the Department-wide FY-2010 Three-Year Plan Dallas Woodruff, Headquarters in formed the group that the Department-wide Printing and Publishing Activities is currently in the concurrence

  1. Minutes from the January 20, 2010 Printing and Mail Teleconference

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    , 2010 Printing and Mail Managers Exchange Forum Teleconference Twenty-one individuals participated in the Printing and Mail Managers Exchange Forum, which included Printing and Mail Managers and Contractors. Comments/Additions to last Months Minutes Dallas Woodruff, Headquarters opened the meeting by thanking everyone for participating in the today's teleconference. Printing Agenda Items... Update on the Department-wide Printing and Publishing Activities Report Three-Year Plan. Dallas Woodruff,

  2. Minutes from the July 21, 2010 Printing and Mail Teleconference

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    July 21, 2010 Printing and Mail Managers Exchange Forum Teleconference Twenty-one individuals participated in the Printing and Mail Managers Exchange Forum, which included Printing and Mail Managers and Contractors. Comments/Additions to last Months Minutes Dallas Woodruff, Headquarters opened the meeting by thanking everyone for participating in the today's teleconference. Printing Agenda Items... Update on the Government Printing Office revisions to the Standard Form one (SF!), Twenty-five

  3. Impact of zeolite aging in hot liquid water on activity for acid-catalyzed dehydration of alcohols

    SciTech Connect

    Vjunov, Aleksei; Derewinski, Miroslaw A.; Fulton, John L.; Camaioni, Donald M.; Lercher, Johannes A.

    2015-08-19

    The catalytic performance of zeolite in aqueous medium depends on a multitude of factors, such as the concentration and distribution of active sites and framework integrity. Al K–edge extended X–ray absorption fine structure and 27Al MAS NMR spectroscopies in combination with DFT calculations are used to determine the distribution of tetrahedral Al sites both qualitatively and quantitatively for both parent and 48 h 160 ºC water treated HBEA catalysts. There is no evidence of Al coordination modification after aging in water. The distribution and concentration of Al T–sites, active centers for the dehydration of cyclohexanol, do not markedly impact the catalytic performance in water, because the Brønsted acidic protons are present in the form of hydrated hydronium ions and thus have very similar acid properties. The results suggest that all Brønsted acid sites are equally active in aqueous medium. The decrease of zeolite catalytic performance after water treatment is attributed to the reduced concentration of Brønsted acid sites. Increasing the stability of pore walls and decreasing the rate of Si–O–Si group hydrolysis may result in improved apparent zeolite catalytic performance in aqueous medium. Authors thank B. W. Arey (PNNL) for HIM measurements, T. Huthwelker for support during Al XAFS measurements at the Swiss Light Source (PSI, Switzerland), J. Z. Hu and S. D. Burton (PNNL) for support during NMR experiments. This work was supported by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MD acknowledges support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under Laboratory Directed Research & Development Program at PNNL. HIM imaging and NMR experiments were performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE Office of Science, Office of Biological

  4. Sodium-Water Reaction and Thermal Hydraulics at Gas-Liquid Interface: Numerical Interpretation of Experimental Observations

    SciTech Connect

    Yamaguchi, Akira; Takata, Takashi; Ohshima, Hiroyuki; Suda, Kazunori

    2006-07-01

    In a sodium-cooled fast reactor development, coupled phenomena of thermal-hydraulics and chemical reaction of sodium and water vapor are of importance from the safety viewpoint. However, the sodium-water reaction (SWR) phenomena are generally complex and the experimental measurement technology is not well matured. Therefore, a numerical simulation is used for the investigation of the SWR. In this paper, a new computer program has been developed and the SWR in a counter-flow diffusion flame is studied by a numerical simulations and an experiment as well. In the computer program, Navier-Stokes equations and chemical reaction equations are solved interactively. In addition, a dynamic equation of airborne particulates is coupled with the governing equations of thermal hydraulics. A source of the particulates is the chemical reaction products, i.e. sodium hydroxide and sodium oxide. The SWR experiment is decided based on the numerical simulation. To obtain a stable reaction flame and to measure the temperature and reaction product distributions, the flow field in the experimental cell needs to be optimized. The numerical simulation is useful for designing experiments of complex phenomena and for obtaining the data. The computations are compared with experimental data. It has been demonstrated that the computational fluid dynamics code coupled with chemical reaction well predict the SWR. (authors)

  5. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour

    SciTech Connect

    Hou, X; Hu, YH; Grinthal, A; Khan, M; Aizenberg, J

    2015-03-04

    Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. The ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems(1-10). But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries(6,11-17), a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and fouling is nearly inevitable(11,12). Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state. Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold-the pressure needed to open the pores-can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping. These capabilities allow us to dynamically modulate gas-liquid sorting in a microfluidic flow and to separate a three-phase air-water-oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.

  6. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour

    SciTech Connect

    Hou, Xu; Hu, Yuhang; Grinthal, Alison; Khan, Mughees; Aizenberg, Joanna

    2015-03-04

    Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. In addition, the ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems1-10.But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries6,1117, a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and fouling is nearly inevitable.Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state.Theoretical modelling and experiments demonstrate that for each transport substance, the gating thresholdthe pressure needed to open the porescan be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping.These capabilities allow us to dynamically modulate gasliquid sorting in a microfluidic flow and to separate a three-phase air wateroil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.

  7. 3D Visualization of Water Transport in Ferns

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3D Visualization of Water Transport in Ferns 3D Visualization of Water Transport in Ferns Print Monday, 08 April 2013 00:00 Plants transport water through elongated cells called...

  8. Nozzle geometry for organic vapor jet printing

    DOEpatents

    Forrest, Stephen R; McGraw, Gregory

    2015-01-13

    A first device is provided. The device includes a print head. The print head further includes a first nozzle hermetically sealed to a first source of gas. The first nozzle has an aperture having a smallest dimension of 0.5 to 500 microns in a direction perpendicular to a flow direction of the first nozzle. At a distance from the aperture into the first nozzle that is 5 times the smallest dimension of the aperture of the first nozzle, the smallest dimension perpendicular to the flow direction is at least twice the smallest dimension of the aperture of the first nozzle.

  9. E-print Network Alerts -- Energy, science, and technology for...

    Office of Scientific and Technical Information (OSTI)

    Home About Advanced Search Browse by Discipline Scientific Societies E-print Alerts Add E-prints FAQ * HELP * SITE MAP * CONTACT US Enter Search Terms Search Advanced Search

  10. Dai Nippon Printing Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Dai Nippon Printing Co Ltd Place: Shinjuku-ku, Tokyo, Japan Zip: 162-8001 Sector: Solar Product: Print conglomerate which is involved with...

  11. Novel 3-D Printed Inverters for Electric Vehicles Can Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency April...

  12. Gas cushion control of OVJP print head position

    DOEpatents

    Forrest, Stephen R

    2014-10-07

    An OVJP apparatus and method for applying organic vapor or other flowable material to a substrate using a printing head mechanism in which the print head spacing from the substrate is controllable using a cushion of air or other gas applied between the print head and substrate. The print head is mounted for translational movement towards and away from the substrate and is biased toward the substrate by springs or other means. A gas cushion feed assembly supplies a gas under pressure between the print head and substrate which opposes the biasing of the print head toward the substrate so as to form a space between the print head and substrate. By controlling the pressure of gas supplied, the print head separation from the substrate can be precisely controlled.

  13. The World's Largest 3D Printed Object | Department of Energy

    Energy Saver

    It took 30 hours to print using carbon fiber and composite plastic materials. Using 3D-printing makes the final product cheaper and quicker to manufacture, and it works just as ...

  14. Wind Turbine Manufacturing Transforms with Three-Dimensional Printing |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Turbine Manufacturing Transforms with Three-Dimensional Printing Wind Turbine Manufacturing Transforms with Three-Dimensional Printing May 19, 2016 - 12:57pm Addthis From medical devices to airplane components, three-dimensional (3-D) printing (also called additive manufacturing) is transforming the manufacturing industry. Now, research that supports the Energy Department's Atmosphere to Electrons (A2e) initiative is applying 3-D-printing processes to create wind turbine

  15. Minutes from the March 14, 2013 Printing and Mail Teleconference

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    March 14, 2013 Mail discussion Al Majors is on leave today. Ellsworth Howell Jr. and Tony Nellums are sitting for Al. There are no agenda items for the Mail portion. A discussion period for questions, comments, or suggestions was opened without response Printing discussion Discussed suggestions for reducing printing expenses Presidential Executive Order 13589 and reducing hard copy printing in favor of electronic publishing Sec. 5. Printing. Agencies are encouraged to limit the publication and

  16. Minutes from the September 15, 2010 Printing and Mail Teleconference

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    September 15, 2010 Printing and Mail Managers Exchange Forum Teleconference Twenty-four individuals participated in the Printing and Mail Managers Exchange Forum, which included Printing and Mail Managers and Contractors. Comments/Additions to last Months Minutes Dallas Woodruff, Headquarters opened the meeting by thanking everyone for participating in the today's teleconference. Printing Agenda Items... Upcoming FY 2010 Department-wide Three-Year Plan Dallas Woodruff, Headquarters informed the

  17. Fabrication of contacts for silicon solar cells including printing burn through layers

    SciTech Connect

    Ginley, David S; Kaydanova, Tatiana; Miedaner, Alexander; Curtis, Calvin J; Van Hest, Marinus Franciscus Antonius Maria

    2014-06-24

    A method for fabricating a contact (240) for a solar cell (200). The method includes providing a solar cell substrate (210) with a surface that is covered or includes an antireflective coating (220). For example, the substrate (210) may be positioned adjacent or proximate to an outlet of an inkjet printer (712) or other deposition device. The method continues with forming a burn through layer (230) on the coating (220) by depositing a metal oxide precursor (e.g., using an inkjet or other non-contact printing method to print or apply a volume of liquid or solution containing the precursor). The method includes forming a contact layer (240) comprising silver over or on the burn through layer (230), and then annealing is performed to electrically connect the contact layer (240) to the surface of the solar cell substrate (210) through a portion of the burn through layer (230) and the coating (220).

  18. The World's Largest 3D Printed Object | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The World's Largest 3D Printed Object The World's Largest 3D Printed Object Addthis The Guinness Book of World Records just certified that the Department of Energy's Oak Ridge National Laboratory produced the world's largest solid 3D-printed object

  19. LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  20. Search over 660,000 E-prints at OSTI's E-print Network | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information over 660,000 E-prints at OSTI's E-print Network Back to the OSTI News Listing for 2005 With our latest update, users can now search against a universe of 664,745 e-prints. These e-prints are created within the research laboratories of 18,200 active investigators whose aim is to make sure that their work is readily accessible to interested colleagues and students

  1. Formation of iron complexs from trifluoroacetic acid based liquid...

    Office of Scientific and Technical Information (OSTI)

    spectrometric analysis of liquid chromatography ... Accurate mass measurement and tandem mass spectrometry ... WATER Electrospray; System; Contaminants; Cell; ...

  2. ARM - Measurement - Liquid water content

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sensing Laboratory RLPROF : Raman LIDAR Vertical Profiles MET : Surface Meteorological Instrumentation TDLAS : Tunable Diode Laser Absorption Spectroscopy (TDLAS) CITATION : ...

  3. 2014 Federal Energy and Water Management Award Winners | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 4 Federal Energy and Water Management Award Winners 2014 Federal Energy and Water Management Award Winners Read the success stories behind the 2014 Federal Energy and Water Management Award winners. You can print out and display posters to inspire energy efficiency in your agency. Read the success stories behind the 2014 Federal Energy and Water Management Award winners. You can print out and display posters to inspire energy efficiency in your agency. The Federal Energy and Water

  4. LIQUID TARGET

    DOEpatents

    Martin, M.D.; Salsig, W.W. Jr.

    1959-01-13

    A liquid handling apparatus is presented for a liquid material which is to be irradiated. The apparatus consists essentially of a reservoir for the liquid, a target element, a drain tank and a drain lock chamber. The target is in the form of a looped tube, the upper end of which is adapted to be disposed in a beam of atomic particles. The lower end of the target tube is in communication with the liquid in the reservoir and a means is provided to continuously circulate the liquid material to be irradiated through the target tube. Means to heat the reservoir tank is provided in the event that a metal is to be used as the target material. The apparatus is provided with suitable valves and shielding to provide maximum safety in operation.

  5. A Docking Casette For Printed Circuit Boards

    DOEpatents

    Barringer, Dennis R. (Wallkill, NY); Seminaro, Edward J. (Milton, NY); Toffler, Harold M. (Newburgh, NY)

    2003-08-19

    A docking apparatus for printed circuit boards including a cassette housing, having a housing base, a housing cover and a housing wall, wherein the housing base and the housing wall are disposed relative to each other so as to define a housing cavity for containing a printed circuit board and wherein the housing wall includes a cable opening disposed so as to be communicated with the housing cavity, a linkage mechanism, wherein the linkage mechanism includes an engagement configuration and a disengagement configuration and wherein the linkage mechanism is disposed so as to be associated with the cassette housing and a housing bezel, wherein the housing bezel is disposed relative to the cassette housing so as to be associated with the cable opening.

  6. Rework of parylene coated printed wiring assemblies

    SciTech Connect

    Williams, J.O.

    1991-04-01

    This document describes the recommended method for reworking parylene coated Printed Wiring Assemblies (PWAs). Special training is required to successfully rework PWAs that are parylene coated. Parylene coating rework should not be attempted on production units unless successful parylene coating removal has been completed on non-production assemblies. The rework procedures described in this document are recommended for normal parylene rework. Special situations may dictate slight deviation from the methods described herein. 4 figs.

  7. International Energy Outlook 2016-Petroleum and other liquid fuels - Energy

    Gasoline and Diesel Fuel Update

    Information Administration 2. Petroleum and other liquid fuels print version Overview In the International Energy Outlook 2016 (IEO2016) Reference case, worldwide consumption of petroleum and other liquid fuels increases from 90 million barrels per day (b/d) in 2012 to 100 million b/d in 2020 and 121 million b/d in 2040. Much of the growth in world liquid fuels consumption is projected for the emerging, non-Organization for Economic Cooperation and Development (non-OECD) economies of Asia,

  8. Building America Top Innovations 2012: EEBA Water Management Guide

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes the DOE-sponsored Water Management Guide, which identifies durability issues and solutions for high-performance homes. The Water Management Guide has sold 15,000 copies since its first printing.

  9. Temperature, Water Vapor, and Clouds"

    Office of Scientific and Technical Information (OSTI)

    Radiometric Studies of Temperature, Water Vapor, and Clouds" Project ID: 0011106 ... measurements of column amounts of water vapor and cloud liquid has been well ...

  10. 3D Printed Car at the International Manufacturing Technology Show |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 3D Printed Car at the International Manufacturing Technology Show 3D Printed Car at the International Manufacturing Technology Show Addthis WORLD&#039;S FIRST 1 of 6 WORLD'S FIRST The world's first 3D-printed car on display at the International Manufacturing Technology Show in Chicago last week. Arizona-based Local Motors, and Cincinnati Incorporated teamed with Oak Ridge National Laboratory's Manufacturing Demonstration Facility-with funding support from the Energy

  11. Minutes from the October 26, 2011 Printing and Mail Teleconference

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    October 26, 2011 Printing and Mail Managers Exchange Forum Teleconference Comments/Additions to last Months Minutes No comments. Please note the teleconference minutes were not electronically recorded as in the past. The minutes only consist of information provided to the group by Alvan Majors and Dallas Woodruff of Headquarters on topics listed in the agenda and not any follow-up questions. Printing Agenda Items......... Printing and Publishing Activities Report "Three-Year Plan: Dallas

  12. E-print Network home page -- Energy, science, and technology...

    Office of Scientific and Technical Information (OSTI)

    Energy, science, and technology for the research community Enter Search Terms Search Advanced Search The E-print Network is . . . . . . a vast, integrated network of electronic ...

  13. DOE fundamentals handbook: Engineering symbology, prints, and drawings. Volume 1

    SciTech Connect

    Not Available

    1993-01-01

    The Engineering Symbology, Prints, and Drawings Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and technical staff with the necessary fundamentals training to ensure a basic understanding of engineering prints, their use, and their function. The handbook includes information on engineering fluid drawings and prints; piping and instrument drawings; major symbols and conventions; electronic diagrams and schematics; logic circuits and diagrams; and fabrication, construction, and architectural drawings. This information will provide personnel with a foundation for reading, interpreting, and using the engineering prints and drawings that are associated with various DOE nuclear facility operations and maintenance.

  14. DOE fundamentals handbook: Engineering symbology, prints, and drawings

    SciTech Connect

    Not Available

    1993-01-01

    The Engineering Symbology, Prints, and Drawings Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and technical staff with the necessary fundamentals training to ensure a basic understanding of engineering prints, their use, and their function. The handbook includes information on engineering fluid drawings and prints; piping and instrument drawings; major symbols and conventions; electronic diagrams and schematics; logic circuits and diagrams; and fabrication, construction, and architectural drawings. This information will provide personnel with a foundation for reading, interpreting, and using the engineering prints and drawings that are associated with various DOE nuclear facility operations and maintenance.

  15. DOE fundamentals handbook: Engineering symbology, prints, and drawings. Volume 2

    SciTech Connect

    Not Available

    1993-01-01

    The Engineering Symbology, Prints, and Drawings Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and technical staff with the necessary fundamentals training to ensure a basic understanding of engineering prints, their use, and their function. The handbook includes information on engineering fluid drawings and prints; piping and instrument drawings; major symbols and conventions; electronic diagrams and schematics; logic circuits and diagrams; and fabrication, construction, and architectural drawings. This information will provide personnel with a foundation for reading, interpreting, and using the engineering prints and drawings that are associated with various DOE nuclear facility operations and maintenance.

  16. 3D Printing a Classic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3D Printing a Classic 3D Printing a Classic January 15, 2015 - 4:02pm Addthis The team from the Oak Ridge Manufacturing Demonstration Facility is at the Detroit Auto Show this week to display their latest accomplishment: a 3D-printed, electric-motor driven, Shelby Cobra. In just six weeks, the team went from designing the car in digital models, to 3D printing the frame and other parts with fiber-reinforced composite material, to assembling, finishing, and painting the final product. President

  17. DISCLAIMER : UNCONTROLLED WHEN PRINTED - PLEASE CHECK THE STATUS...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    29 Oct 2015 DISCLAIMER : UNCONTROLLED WHEN PRINTED - PLEASE CHECK THE STATUS OF THE DOCUMENT IN IDM Technical Specifications (In-Cash Procurement) Tech Specs for Boundary and first...

  18. Energy Department Unveils 3D-Printed Building; New Initiatives...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Energy Department Unveils 3D-Printed Building; New Initiatives During Industry Day DOE Announces JUMP Initiative Winners, Launches New Crowdsourcing Calls at Bay Area Maker Faire

  19. Making 3D Printed Christmas Ornaments | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Check out the video featuring Juan Pablo Cilia, a Rapid Prototyping Specialist in the ... Santa's sleigh becomes "Intelligent Machine" this Christmas Using 3D Printing to Redesign ...

  20. Silver Ink for Conductor Printing - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    flake suspended in a suitable solvent amenable to printing. These silver metal suspension formulations require high processing temperatures to sinter the particles (180 C)....

  1. Structural color printing based on plasmonic metasurfaces of...

    Office of Scientific and Technical Information (OSTI)

    Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform ...

  2. W7 printing from VISITOR network

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    W4, Federal Withholding Tax Form W4, Federal Withholding Tax Form W4, Federal Withholding Tax Form (104.8 KB) More Documents & Publications Employee In-Processing Forms DOE F 1500.7 PSH-16-0069 - In the Matter of Personnel Security Hearing

    W7 printing from VISITOR network Last Modified by Jerry Camuso, 02/12/2015. 1 . From the "start menu", click on "Devices and Printers" 2. Click on "Add a printer" and choose "Add a local printer". 3 . Choose

  3. Study concerning the utilization of the ocean spreading center environment for the conversion of biomass to a liquid fuel. (Includes Appendix A: hydrothermal petroleum genesis). [Supercritical water

    SciTech Connect

    Steverson, M.; Stormberg, G.

    1985-01-01

    This document contains a report on the feasibility of utilizing energy obtained from ocean spreading centers as process heat for the conversion of municipal solid wastes to liquid fuels. The appendix contains a paper describing hydrothermal petroleum genesis. Both have been indexed separately for inclusion in the Energy Data Base. (DMC)

  4. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Wednesday, 25 February 2015 00:00 Plastic solar cells...

  5. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Plastic solar cells that can be printed on flexible sheets with an ink-like solution show a lot of potential as a...

  6. Infiltration of Nanoparticles into Porous Binder Jet Printed Parts

    DOE PAGES [OSTI]

    Elliott, Amelia; AlSalihi, Sarah; Merriman, Abbey L.; Basti, Mufeed M.

    2016-01-01

    The densification of parts that are produced by binder jetting Additive Manufacturing (AM; a.k.a. “3D Printing”) is an essential step in making them mechanically useful. By increasing the packing factor of the powder bed by incorporating nanoparticles into the binder has potential to alleviate the amount of shrinkage needed for full densification of binder jet parts. We present preliminary data on the use of 316L Stainless Steel Nanoparticles (SSN) to densify 316L stainless steel binder jet parts. Aqueous solutions of Diethylene Glycol (DEG) or Ethylene Glycol (EG) were prepared at different DEG/water and EG/water molar ratios; pH of the solutionsmore » was adjusted by the use of 0.10 M sodium hydroxide. Nanoparticles were suspended in a resulted solution at a volume percentage of SSN/solution at 0.5%. The suspension was then sonicated for thirty minutes. One milliliter of the suspension was added stepwise to a sintered, printed disk with the dimensions: (d = 10 mm, h = 3 mm) in the presence of a small magnet. The 3D part was then sintered again. Moreover, the increase in the mass of the 3D part was used as indication of the amount of nanoparticles that diffused in the 3D part. This mass percent increase was studied as a function of pH of the suspension and as function DEG/water molar ratio. Unlike EG, data show that change in pH affects the mass percent when the suspension was made with DEG. Finally, optical analysis of the discs’ cross sections revealed trends metallic densities similar to trends in the data for mass increase with changing pH and water molar ratio.« less

  7. Infiltration of Nanoparticles into Porous Binder Jet Printed Parts

    SciTech Connect

    Elliott, Amelia; AlSalihi, Sarah; Merriman, Abbey L.; Basti, Mufeed M.

    2016-01-01

    The densification of parts that are produced by binder jetting Additive Manufacturing (AM; a.k.a. “3D Printing”) is an essential step in making them mechanically useful. By increasing the packing factor of the powder bed by incorporating nanoparticles into the binder has potential to alleviate the amount of shrinkage needed for full densification of binder jet parts. We present preliminary data on the use of 316L Stainless Steel Nanoparticles (SSN) to densify 316L stainless steel binder jet parts. Aqueous solutions of Diethylene Glycol (DEG) or Ethylene Glycol (EG) were prepared at different DEG/water and EG/water molar ratios; pH of the solutions was adjusted by the use of 0.10 M sodium hydroxide. Nanoparticles were suspended in a resulted solution at a volume percentage of SSN/solution at 0.5%. The suspension was then sonicated for thirty minutes. One milliliter of the suspension was added stepwise to a sintered, printed disk with the dimensions: (d = 10 mm, h = 3 mm) in the presence of a small magnet. The 3D part was then sintered again. Moreover, the increase in the mass of the 3D part was used as indication of the amount of nanoparticles that diffused in the 3D part. This mass percent increase was studied as a function of pH of the suspension and as function DEG/water molar ratio. Unlike EG, data show that change in pH affects the mass percent when the suspension was made with DEG. Finally, optical analysis of the discs’ cross sections revealed trends metallic densities similar to trends in the data for mass increase with changing pH and water molar ratio.

  8. Fact #804: November 18, 2013 Tool Available to Print Used Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Available to Print Used Vehicle Fuel Economy Window Stickers Fact 804: November 18, 2013 Tool Available to Print Used Vehicle Fuel Economy Window Stickers Because used vehicle ...

  9. Hybrid Rotor Compression for Multiphase and Liquids-Rich Wellhead

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    but also allows for compression of wet gas, or gas that contains liquid content. At many natural gas wellheads, liquids-typically heavier hydrocarbons and water-are present in the...

  10. Liquid electrode

    DOEpatents

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  11. Screening tests of conformally-coated printed wiring boards

    SciTech Connect

    Skibo, M.D.; Even, W.R.

    1982-03-01

    Identical printed wiring boards (PWB) were fabricated using glass-triazene as substrates and were conformally coated with either conothane or parylene. The boards were then placed in sealed canisters along with TATB and other organic materials found in recent weapon systems. While subjected to electrical potentials of 120V and 250V, these PWBs were either aged at 60/sup 0/, 70/sup 0/, or 80/sup 0/ or temperature cycled for as long as 16 months. The resistivities of the boards were precisely measured before and after aging to determine the effect of time, temperature, and environment on the electrical characteristics of board materials. In all cases board resistivity increased with temperature and duration of test. This increase was believed to be related to either a reduction in water content in the board substrate or a completion of cure of the conformal coating with time elevated temperature. Both mechanisms would result in a reduction in conductive species. In spite of high humidity levels, no evidence of current - activated filament formation between adjacent active circuit paths on aged PWBs was seen. Similarly, soldered contacts were free of thermally-induced fatigue damage after as many as 500 cycles between -54 and 70/sup 0/C at 1 cycle/day.

  12. Suitability for 3D Printed Parts for Laboratory Use

    SciTech Connect

    Zwicker, Andrew P.; Bloom, Josh; Albertson, Robert; Gershman, Sophia

    2014-08-01

    3D printing has become popular for a variety of users, from industrial to the home hobbyist, to scientists and engineers interested in producing their own laboratory equipment. In order to determine the suitability of 3D printed parts for our plasma physics laboratory, we measured the accuracy, strength, vacuum compatibility, and electrical properties of pieces printed in plastic. The flexibility of rapidly creating custom parts has led to the 3D printer becoming an invaluable resource in our laboratory and is equally suitable for producing equipment for advanced undergraduate laboratories.

  13. Liquid electrode

    DOEpatents

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  14. Instructions to Print Monthly P-card Statement

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to Print Monthly P-card Statement 1. Go to Website https:gov1.paymentnet.com and login with your Organization ID, User ID and Pass Phrase. Organization ID is doe0001. User ID and...

  15. A Unix Print Filter for Controlling an HP Laserjet Printer

    SciTech Connect

    Hoffman, F.M.

    1992-01-01

    This report describes a Unix print filter designed to control an Hewlett Packard Laserjet or other printer that uses Hewlett Packard's Printer Control Language (HP-PCL). The filter gives users the ability to control print pitch, orientation, and indentation by using standard flags to the Unix lpr command or multiple entries in the /etc/printcap file and allows both ascii and binary (i.e., graphics and down-loadable fonts) files to be printed. Additionally, the filter provides some accounting capability. The supported print pitch and orientation options are described, as are the different configuration options. The code for the filter is included in Appendix A and sample entries for the /etc/printcap file are included in Appendix B and C.

  16. Printing 3D Catalytic Devices | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Printing 3D Catalytic Devices An error occurred. Try watching this video on www.youtube.com, or enable JavaScript if it is disabled in your browser. Ames Laboratory scientist Igor...

  17. Printed decorative solar panels could become part of our homes...

    OpenEI (Open Energy Information) [EERE & EIA]

    content Printed decorative solar panels could become part of our homes and offices Hello, I provide user supp... The top one on this page: htt... Can you send the specific...

  18. 3D Printing Enables New Generation of Heat Exchangers

    Energy.gov [DOE]

    Three-dimensional printing is revolutionizing how we manufacture objects in almost every industry—from vehicles to medical devices to biotech. Now, the University of Maryland, through a partnership...

  19. Printing a Car: A Team Effort in Innovation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oak Ridge National Lab's work with Local Motors to build a 3D-printed car was highlighted at the International Manufacturing Technology Show (IMTS) in September 2014 with a live demonstration.

  20. Future of 3D Printing | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    In 2016, GE will enter a new jet engine into service called the CFM LEAP-the first in GE's line to incorporate 3D-printed parts. Specifically, it will be a combustion component ...

  1. Browse by Discipline -- E-print Network Subject Pathways: Fission...

    Office of Scientific and Technical Information (OSTI)

    K L M N O P Q R S T U V W X Y Z Optimization Online, An E-Print Site for the Optimization Community Oregon State University, Department of Mathematics, Vector Calculus Gap Project

  2. Analysis of methyl neodecanamide in lake water by reversed-phase high performance liquid chromatography and gas chromatography-mass spectrometry

    SciTech Connect

    Rasmussen, H.T.; Friedman, S.K.; Mustilli, A.J.; McDonough, R.; McPherson, B.P. )

    1994-01-01

    Methyl Neodecanamide (MNDA) has been quantified in lake water at levels of 0.1 to 1,000 ppm. Total recoveries from spiked placebos were 99.8 [+-] 2.3% at the 1,000 ppm level and 98.3 [+-] 4.3% at the 0.1 ppm level (based on 54 determinations at each level). Plots of actual concentrations vs. determined concentrations were linear from 0.07--0.13 and 700--1,300 ppm (r > 0.999). Stability of MNDA in lake water was verified by determining the composition by GC/MS immediately after dissolution and after 3 days.

  3. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing A screenshot of the cover of the 3D blade manufacturing brochure. Innovation in the design and manufacturing of wind power generation components continues to be critical to achieving our national goals. As a result of this challenge, the U.S. Department of Energy's Wind Program and Advanced Manufacturing Office are partnering with public

  4. Researchers 3D print ultralight supercapacitors | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) 3D print ultralight supercapacitors Monday, February 22, 2016 - 12:00am NNSA Blog The micro-architectured, ultra-lightweight supercapacitor material is able to retain energy on par with those made with electrodes 10 to 100 times thinner. For the first time ever, scientists at Lawrence Livermore National Laboratory and UC Santa Cruz have successfully 3D-printed supercapacitors using an ultra-lightweight graphene aerogel, opening the door to novel, unconstrained designs

  5. Drop-by-Drop: water helps assembly of biofibers that could capture...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Drop-by-Drop: water helps assembly of biofibers that could capture sunlight October 4, 2016 Tweet EmailPrint Understanding the role of water in governing the kinetics of the ...

  6. Transforum Volume 12 Issue 2, Print Version

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Quality Assessment of Pesticide Usage for Biofuel Production," David Lampert, 2012 ARPA-E Energy Innovation Summit, February 26-27, 2012. "Implications of Biofuel Water Footprint...

  7. Membrane separation of ionic liquid solutions

    SciTech Connect

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  8. Hybrid Quantum Mechanics/Molecular Mechanics-Based Molecular Dynamics Simulation of Acid-Catalyzed Dehydration of Polyols in Liquid Water

    SciTech Connect

    Caratzoulas, Stavros; Courtney, Timothy; Vlachos, Dionisios G.

    2011-01-01

    We use the conversion of protonated glycerol to acrolein for a case study of the mechanism of acid-catalyzed dehydration of polyols in aqueous environments. We employ hybrid Quamtum Mechanics/Molecular Mechanics Molecular Dynamics (QM/MM MD) simulations with biased sampling and perform free energy calculations for the elementary steps of the reaction. We investigate the effects of solvent dynamics and in particular the role of quantum mechanical water in the dehydration mechanism. We present results supporting a mechanism that proceeds via water-mediated proton transfers and thus through an enol intermediate. We find that the first dehydration may take place by two, low-energy pathways requiring, respectively, 20.9 and 18.8 kcal/mol of activation free energy. The second dehydration requires 19.9 kcal/mol of activation free energy while for the overall reaction we compute a free energy change of -8 kcal/mol.

  9. Sewage sludge dewatering using flowing liquid metals

    DOEpatents

    Carlson, Larry W.

    1986-01-01

    A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.

  10. REDISTRIBUTOR FOR LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Bradley, J.G.

    1957-10-29

    An improved baffle plate construction to intimately mix immiscible liquid solvents for solvent extraction processes in a liquid-liquid pulse column is described. To prevent the light and heavy liquids from forming separate continuous homogeneous vertical channels through sections of the column, a baffle having radially placed rectangular louvers with deflection plates opening upon alternate sides of the baffle is placed in the column, normal to the axis. This improvement substantially completely reduces strippiig losses due to poor mixing.

  11. Development of a promising filtration method for liquid clarification in nuclear facilities. [For TMI-2 water, reprocessing dissolver solutions, ZnBr/sub 2/ shielding solutions

    SciTech Connect

    Collins, E.D.; Knauer, J.B.; Byrd, L.A.; Ross, R.G.; Savage, H.C.

    1982-01-01

    Conclusions reached are that deep beds of diatomaceous earths are especially attractive for clarification of radioactive solutions, or slurries containing insoluble radioactive material, because the diatomaceous material provides a noncompressible medium that is retentive for a wide variety of particle sizes. Also, the diatomaceous material, because of its inorganic composition, is resistant to degradation by radiation from the retained particulate matter. Its silicious character is especially appropriate for conversion to vitrified or cement-type waste forms. This paper studied the use of diatomaceous earth to filter synthetic TMI-2 water, reprocessing dissolver solutions, and zinc bromide solutions (hot-cell shielding).

  12. Synchrotrons Explore Water's Molecular Mysteries

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Laboratory's Advanced Light Source, scientists observed a surprisingly dense form of water that remained liquid well beyond its typical freezing point. Researchers applied a...

  13. Rapid microwave hydrothermal synthesis of ZnGa{sub 2}O{sub 4} with high photocatalytic activity toward aromatic compounds in air and dyes in liquid water

    SciTech Connect

    Sun Meng; Li Danzhen; Zhang Wenjuan; Chen Zhixin; Huang Hanjie; Li Wenjuan; He Yunhui; Fu Xianzhi

    2012-06-15

    ZnGa{sub 2}O{sub 4} was synthesized from Ga(NO{sub 3}){sub 3} and ZnCl{sub 2} via a rapid and facile microwave-assisted hydrothermal method. The photocatalytic properties of the as-prepared ZnGa{sub 2}O{sub 4} were evaluated by the degradation of pollutants in air and aqueous solution under ultraviolet (UV) light illumination. The results demonstrated that ZnGa{sub 2}O{sub 4} had exhibited efficient photocatalytic activities higher than that of commercial P25 (Degussa Co.) in the degradation of benzene, toluene, and ethylbenzene, respectively. In the liquid phase degradation of dyes (methyl orange, Rhodamine B, and methylene blue), ZnGa{sub 2}O{sub 4} has also exhibited remarkable activities higher than that of P25. After 32 min of UV light irradiation, the decomposition ratio of methyl orange (10 ppm, 150 mL) over ZnGa{sub 2}O{sub 4} (0.06 g) was up to 99%. The TOC tests revealed that the mineralization ratio of MO (10 ppm, 150 mL) was 88.1% after 90 min of reaction. A possible mechanism of the photocatalysis over ZnGa{sub 2}O{sub 4} was also proposed. - Graphical abstract: In the degradation of RhB under UV light irradiation, ZnGa{sub 2}O{sub 4} had exhibited efficient photo-activity, and after only 24 min of irradiation the decomposition ratio was up to 99.8%. Highlights: Black-Right-Pointing-Pointer A rapid and facile M-H method to synthesize ZnGa{sub 2}O{sub 4} photocatalyst. Black-Right-Pointing-Pointer The photocatalyst exhibits high activity toward benzene and dyes. Black-Right-Pointing-Pointer The catalyst possesses more surface hydroxyl sites than TiO{sub 2} (P25). Black-Right-Pointing-Pointer Deep oxidation of different aromatic compounds and dyes over catalyst.

  14. Sensor for detection of liquid spills on surfaces

    DOEpatents

    Davis, Brent C.; Gayle, Tom M.

    1989-07-04

    A surface liquid detector is disclosed for detecting liquids spilled on surfaces such as floors. A temperature-sensitive thermistor probe is used in a bridge circuit to detect the change in resistance in the thermistor due to the change in thermal conductivity that occurs when a liquid contacts the probe. The device is characterized by the ability to detect either conductive or nonconductive liquids, such as water or oil spills.

  15. Sensor for detection of liquid spills on surfaces

    DOEpatents

    Davis, Brent C.; Gayle, Tom M.

    1989-01-01

    A surface liquid detector is disclosed for detecting liquids spilled on surfaces such as floors. A temperature-sensitive thermistor probe is used in a bridge circuit to detect the change in resistance in the thermistor due to the change in thermal conductivity that occurs when a liquid contacts the probe. The device is characterized by the ability to detect either conductive or nonconductive liquids, such as water or oil spills.

  16. Vertical tube liquid pollutant separators

    SciTech Connect

    Lynch, W.M.

    1982-06-08

    A plurality of elongated hollow, circular, foraminous substantially vertical tubes contiguously stacked transversely to the direction flowing liquid such as waste water containing foreign matter, I.E., settable solids and free oil, in a coalescer-separator apparatus provide a filter body providing for significant surface area contact by the liquid on both inside and outside surfaces of the tubes to entrap the foreign matter but defining substantially vertical passages permitting the entrapped foreign matter to be gravity separated with the lighter matter coalescing and floating upwardly and the heavier matter settling downwardly so that substantially clarified effluent flows from the apparatus. The stacked tube filter body is contained within an insulated closed container of a sufficient capacity, and the arrays of holes in the tube walls are coordinated with respect to the intended volumetric capacity of the apparatus, so that turbulence in the liquid flowing through the filter body is minimized.

  17. USGS Annual Water Data Reports

    SciTech Connect

    2012-04-01

    Water resources data are published annually for use by engineers, scientists, managers, educators, and the general public. These archival products supplement direct access to current and historical water data provided by the National Water Information System (NWIS). Beginning with Water Year 2006, annual water data reports are available as individual electronic Site Data Sheets for the entire Nation for retrieval, download, and localized printing on demand. National distribution includes tabular and map interfaces for search, query, display and download of data. Data provided include extreme and mean discharge rates.

  18. WE-F-16A-01: Commissioning and Clinical Use of PC-ISO for Customized, 3D Printed, Gynecological Brachytherapy Applicators

    SciTech Connect

    Cunha, J; Sethi, R; Mellis, K; Siauw, T; Sudhyadhom, A; Hsu, I; Pouliot, J

    2014-06-15

    Purpose: (1) Evaluate the safety and radiation attenuation properties of PCISO, a bio-compatible, sterilizable 3D printing material by Stratasys, (2) establish a method for commissioning customized multi- and single-use 3D printed applicators, (3) report on use of customized vaginal cylinders used to treat a series of serous endometrial cancer patient. Methods: A custom film dosimetry apparatus was designed to hold a Gafchromic radio film segment between two blocks of PC-ISO and 3D-printed using a Fortus 400mc (StrataSys). A dose plan was computed using 13 dwell positions at 2.5 mm spacing and normalized to 1500 cGy at 1 cm. Film exposure was compared to control tests in only air and only water. The average Hounsfield Unit (HU) was computed and used to verify water equivalency. For the clinical use cases, the physician specifies the dimensions and geometry of a custom applicator from which a CAD model is designed and printed. Results: The doses measured from the PC-ISO Gafchromic film test were within 1% of the dose measured in only water between 1cm and 6cm from the channel. Doses increased 74% measured in only air. HU range was 1143. The applicators were sterilized using the Sterrad system multiple times without damage. As of submission 3 unique cylinders have been designed, printed, and used in the clinic. A standardizable workflow for commissioning custom 3D printed applicators was codified and will be reported. Conclusions: Quality assurance (QA) evaluation of the PC-ISO 3D-printing material showed that PC-ISO is a suitable material for a gynecological brachytherapy vaginal cylinder in a clinical setting. With the material commissioning completed, if the physician determines that a better treatment would Result, a customized design is fabricated with limited additional QA necessary. Although this study was specific to PC-ISO, the same setup can be used to evaluate other 3D-printing materials.

  19. Optical systems fabricated by printing-based assembly

    DOEpatents

    Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred J.; Motala, Michael; Ahn, Jong-Hyun; Park, Sang-II; Yu; Chang-Jae; Ko, Heung-Cho; Stoykovich; Mark; Yoon, Jongseung

    2011-07-05

    Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.

  20. Optical systems fabricated by printing-based assembly

    DOEpatents

    Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred; Motala, Michael; Ahn, Jong -Hyun; Park, Sang -Il; Yu, Chang -Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung

    2015-08-25

    Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.

  1. Optical systems fabricated by printing-based assembly

    DOEpatents

    Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred J; Motala, Michael; Ahn, Jong-Hyun; Park, Sang-Il; Yu, Chang-Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung

    2014-05-13

    Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.

  2. Safetygram #9- Liquid Hydrogen

    Energy.gov [DOE]

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  3. High density printed electrical circuit board card connection system

    DOEpatents

    Baumbaugh, Alan E.

    1997-01-01

    A zero insertion/extraction force printed circuit board card connection system comprises a cam-operated locking mechanism disposed along an edge portion of the printed circuit board. The extrusions along the circuit board mate with an extrusion fixed to the card cage having a plurality of electrical connectors. The card connection system allows the connectors to be held away from the circuit board during insertion/extraction and provides a constant mating force once the circuit board is positioned. The card connection system provides a simple solution to the need for a greater number of electrical signal connections.

  4. 3D Printing Comes of Age | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    D Printing Comes of Age 3D Printing Comes of Age September 19, 2014 - 5:25pm Addthis The highlight of this year's International Manufacturing Technology Show (IMTS), held earlier in September at the McCormick Place Convention Center in Chicago, IL, was the electric car produced live during the Show. More than 110,000 people witnessed the representatives from Cincinnati Incorporated-a 115-year-old industrial machine manufacturer from Ohio, Local Motors-a new creative manufacturing Arizona

  5. High density printed electrical circuit board card connection system

    DOEpatents

    Baumbaugh, A.E.

    1997-05-06

    A zero insertion/extraction force printed circuit board card connection system comprises a cam-operated locking mechanism disposed along an edge portion of the printed circuit board. The extrusions along the circuit board mate with an extrusion fixed to the card cage having a plurality of electrical connectors. The card connection system allows the connectors to be held away from the circuit board during insertion/extraction and provides a constant mating force once the circuit board is positioned. The card connection system provides a simple solution to the need for a greater number of electrical signal connections. 12 figs.

  6. Toward integrated PV panels and power electronics using printing technologies

    SciTech Connect

    Ababei, Cristinel; Yuvarajan, Subbaraya; Schulz, Douglas L.

    2010-07-15

    In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

  7. Install the E-print Network toolbar -- Energy, science, and technology...

    Office of Scientific and Technical Information (OSTI)

    Home About Advanced Search Browse by Discipline Scientific Societies E-print Alerts Add E-prints FAQ * HELP * SITE MAP * CONTACT US Enter Search Terms Search Advanced Search

  8. EATON PURSUES PRINT-BASED MANUFACTURING OF INTEGRATED, LOW-COST...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    INTEGRATED, LOW-COST, HIGH-PERFORMANCE SSL LUMINAIRES EATON PURSUES PRINT-BASED MANUFACTURING OF INTEGRATED, LOW-COST, HIGH-PERFORMANCE SSL LUMINAIRES Print-based Manufacturing of ...

  9. Local Motors Begins Their Six Day Quest to 3D Print the 'Strati...

    Energy.gov [DOE] (indexed site)

    to 3D print a car at the September 2014 International Manufacturing Technology Show. Local Motors Begins Their Six Day Quest to 3D Print the 'Strati' Car Live at IMTS (470.83 ...

  10. E-print Network Web Log News: Research Communications for Scientists...

    Office of Scientific and Technical Information (OSTI)

    Weve had a number of inquiries about how to best search our E-prints on Web-sites feature for individual authors. Heres what you do. First be sure that the E-prints on Web ...

  11. ENG-Canada-USA Government Procurement (clean 11 Feb 2010 printed...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ENG-Canada-USA Government Procurement (clean 11 Feb 2010 printed) ENG-Canada-USA Government Procurement (clean 11 Feb 2010 printed) ENG-Canada-USA Government Procurement (clean 11 ...

  12. EERE Success Story-Novel 3-D Printed Inverters for Electric Vehicles...

    Energy Saver

    April 28, 2015 - 2:02pm Addthis 3-D Printed Inverter 3-D Printed Inverter Plug-in electric vehicle technologies are on their way to being even lighter, more powerful and more ...

  13. Intense X-rays expose tiny flaws in 3-D printed titanium that...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    For 3-D printing, metals are usually atomized into powders first. Ti-6Al-4V powders are printed by using either selective laser melting or electron-beam melting (EBM), which is the ...

  14. OSTI's E-print Network content tops 900,000 documents | OSTI...

    Office of Scientific and Technical Information (OSTI)

    than 22,000 scientific e-print Web sites. In addition, the E-print Network provides links to more than 2,900 relevant scientific societies. This Web portal, established as the ...

  15. Liquid Silane Routes to Electronic Materials

    SciTech Connect

    Douglas L. Schulz; Xuliang Dai; Kendric J. Nelson; Konstantin Pokhodnya; Justin M. Hoey; Iskander S. Akhatov; Orven F. Swenson; Jeremiah Smith; John Lovaasen; Matt Robinson; Scott Payne; Philip R. Boudjouk

    2008-12-04

    New chemistries based upon liquid cyclohexasilane (Si{sub 6}H{sub 12} or CHS) have been used as precursors to silicon-containing electronic materials. Spin-coating of CHS-based inks with subsequent UV light and/or thermal treatment yielded amorphous silicon (a-Si:H) films. While initial ink chemistries gave a-Si:H with high resistivity (i.e., > 10{sup 6} {Omega}.cm), several doping strategies are under development to address this limitation. In this contribution, the current status of solution processed rectifying diodes and field effect transistors fabricated from CHS-based inks will be presented. Additionally, a new printing approach termed collimated aerosol beam direct write (CAB-DW{sup TM}) was developed that allows the deposition of printed Ag lines 5 {mu}m in width. A status update will be given where CHS-based inks have been used to CAB-DW silicon-based features with linewidths <10 {mu}m. Assuming silicon thin film materials with good electrical properties will be developed, there may be significant cost advantages associated with the ability to controllably deposit the semiconductor in a metered fashion.

  16. Picture of the Week: An explosion of 3D printing technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    An explosion of 3D printing technology Scientists in Los Alamos National Laboratory's Chemistry and Explosive Science and Shock Physics divisions are exploring new methods for 3D printing that allow for the function of materials to be controlled by their internal structure. May 24, 2015 An explosion of 3D printing technology x View image on Flickr » Additive Manufacturing, known also as 3D printing, allows for the rapid production of parts with complex shapes that would be impossible to

  17. Printing Tiny Batteries | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    "Printing" Tiny Batteries? Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 06.26.13 Stories of Discovery & Innovation: "Printing" Tiny Batteries? Print Text Size: A A A Subscribe FeedbackShare Page Researchers use sophisticated 3D printing techniques to create batteries the size of a grain of sand. This work, featured in the Office of

  18. EERE Success Story-Just Plain Cool, the 3D Printed Shelby Cobra |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Just Plain Cool, the 3D Printed Shelby Cobra EERE Success Story-Just Plain Cool, the 3D Printed Shelby Cobra February 4, 2015 - 4:32pm Addthis Indistinguishable from conventional production vehicles on display, the 3D printed Shelby Cobra celebrated its 50th anniversary at the Detroit Auto Show in early January. Printed at the Department of Energy's Manufacturing Demonstration Facility at Oak Ridge National Laboratory, the Shelby Cobra electric vehicle replica is

  19. Liquid and gas distribution in trickle-bed reactors

    SciTech Connect

    Moeller, L.B.; Halken, C.; Hansen, J.A.; Bartholdy, J.

    1996-03-01

    In the refining industry, the flow distribution in hydroprocessing trickle-bed reactors is often not ideal. Liquid and gas distribution in trickle-bed reactors was investigated in a column packed with commercial catalyst particles. Distilled water and air were used as liquid and gas phases, respectively. Surface tension effects were tested by adding detergent to the water. The influence of both liquid load and gas load on the distribution was studied. Flow rates corresponded to those used in industrial hydroprocessing units. It was found that the liquid distribution at a given liquid load can be improved considerably by either increasing the liquid load or flooding the column in advance. The gas distribution is shown to be correlated inversely with the liquid distribution. Use of a large-particle top layer results in an improved distribution.

  20. Printing a Car: A Team Effort in Innovation

    ScienceCinema

    Rogers, Jay; Love, Lonnie; Johnson, Mark; Ivester, Rob; Neff, Rick; Blue, Craig

    2016-07-12

    The story behind the realization of a unique project: the building of a 3D printed electric car, as told by team members. Strati materialized out of 15% carbon-reinforced ABS thermoplastic in a record 44 hours, under the very eyes of attendees at this year's International Manufacturing Technology Show (IMTS).

  1. Gas microstrip detectors based on flexible printed circuit technology

    SciTech Connect

    Salomon, M.; Crowe, K.; Faszer, W.; Lindsay, P.; Maier, J.M.C.

    1996-06-01

    The authors have studied the properties of a new type of Gas Microstrip Counter built using flexible printed circuit technology. They describe the manufacturing procedures, the assembly of the device, as well as its operation under a variety of conditions, gases and types of radiation. They also describe two new passivation materials, tantalum and niobium, which produce effective surfaces.

  2. Printing a Car: A Team Effort in Innovation

    SciTech Connect

    Rogers, Jay; Love, Lonnie; Johnson, Mark; Ivester, Rob; Neff, Rick; Blue, Craig

    2014-09-17

    The story behind the realization of a unique project: the building of a 3D printed electric car, as told by team members. Strati materialized out of 15% carbon-reinforced ABS thermoplastic in a record 44 hours, under the very eyes of attendees at this year's International Manufacturing Technology Show (IMTS).

  3. Liquid level detector

    DOEpatents

    Grasso, Albert P.

    1986-01-01

    A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  4. Liquid level detector

    DOEpatents

    Grasso, A.P.

    1984-02-21

    A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  5. OSTI's E-print Network content tops 900,000 documents | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information E-print Network content tops 900,000 documents Back to the OSTI News Listing for 2006 OSTI's E-print Network: Research Communications for Scientists and Engineers now provides access to over 900,000 documents on more than 22,000 scientific e-print Web sites. In addition, the E-print Network provides links to more than 2,900 relevant scientific societies. This Web portal, established as the PrePRINT Network in 2000, is a vast, integrated

  6. 3D Printed Tool for Building Aircraft Achieves Guinness World Records Title

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy 3D Printed Tool for Building Aircraft Achieves Guinness World Records Title 3D Printed Tool for Building Aircraft Achieves Guinness World Records Title August 30, 2016 - 2:07pm Addthis Official measurement of the 3D printed trim tool co-developed by Oak Ridge National Laboratory and The Boeing Company exceeded the required minimum size to achieve the Guinness World Records title of largest solid 3D printed item. Official measurement of the 3D printed trim tool

  7. 3D Printed and Semiconductor Technology 'Mash-up' | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3D Printed and Semiconductor Technology 'Mash-up' 3D Printed and Semiconductor Technology 'Mash-up' May 7, 2015 - 4:11pm Addthis 3D Printed and Semiconductor Technology 'Mash-up' What will you get if you put a 3D-printed inverter package with wide bandgap materials, together with the 3D-printed EV version of the Shelby Cobra "plug and play" laboratory-on-wheels? You'll get innovation - innovation that will define even lighter, more powerful, and more efficient vehicles. Oak Ridge

  8. EERE Success Story-Novel 3-D Printed Inverters for Electric Vehicles Can

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Improve EV Power and Efficiency | Department of Energy Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency EERE Success Story-Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency April 28, 2015 - 2:02pm Addthis 3-D Printed Inverter 3-D Printed Inverter Plug-in electric vehicle technologies are on their way to being even lighter, more powerful and more efficient with the advent of power inverters created by 3-D printing and

  9. Liquid metal cooling of synchrotron optics

    SciTech Connect

    Smither, R.K.

    1992-09-01

    The installation of insertion devices at existing synchrotron facilities around the world has stimulated the development of new ways to cool the optical elements in the associated x-ray beamlines. Argonne has been a leader in the development of liquid metal cooling for high heat load x-ray optics for the next generation of synchrotron facilities. The high thermal conductivity, high volume specific heat, low kinematic viscosity, and large working temperature range make liquid metals a very efficient heat transfer fluid. A wide range of liquid metals were considered in the initial phase of this work. The most promising liquid metal cooling fluid identified to date is liquid gallium, which appears to have all the desired properties and the fewest number of undesired features of the liquid metals examined. Besides the special features of liquid metals that make them good heat transfer fluids, the very low vapor pressure over a large working temperature range make liquid gallium an ideal cooling fluid for use in a high vacuum environment. A leak of the liquid gallium into the high vacuum and even into very high vacuum areas will not result in any detectable vapor pressure and may even improve the vacuum environment as the liquid gallium combines with any water vapor or oxygen present in the system. The practical use of a liquid metal for cooling silicon crystals and other high heat load applications depends on having a convenient and efficient delivery system. The requirements for a typical cooling system for a silicon crystal used in a monochromator are pumping speeds of 2 to 5 gpm (120 cc per sec to 600 cc per sec) at pressures up to 100 psi.

  10. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  11. Selective evaporation of focusing fluid in two-fluid hydrodynamic print head.

    SciTech Connect

    Keicher, David M.; Cook, Adam W.

    2014-09-01

    The work performed in this project has demonstrated the feasibility to use hydrodynamic focusing of two fluid steams to create a novel micro printing technology for electronics and other high performance applications. Initial efforts focused solely on selective evaporation of the sheath fluid from print stream provided insight in developing a unique print head geometry allowing excess sheath fluid to be separated from the print flow stream for recycling/reuse. Fluid flow models suggest that more than 81 percent of the sheath fluid can be removed without affecting the print stream. Further development and optimization is required to demonstrate this capability in operation. Print results using two-fluid hydrodynamic focusing yielded a 30 micrometers wide by 0.5 micrometers tall line that suggests that the cross-section of the printed feature from the print head was approximately 2 micrometers in diameter. Printing results also demonstrated that complete removal of the sheath fluid is not necessary for all material systems. The two-fluid printing technology could enable printing of insulated conductors and clad optical interconnects. Further development of this concept should be pursued.

  12. Novel Method of Ethanol/Water Separation with Nanoporous Polymer...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    have recently been explored not only in separating water from dissolved solutes in fermentation systems such as this, but also in liquid water purification and desalination. ...

  13. Renewable liquid reflection grating

    DOEpatents

    Ryutov, Dmitri D.; Toor, Arthur

    2003-10-07

    A renewable liquid reflection grating. Electrodes are operatively connected to a conducting liquid in an arrangement that produces a reflection grating and driven by a current with a resonance frequency. In another embodiment, the electrodes create the grating by a resonant electrostatic force acting on a dielectric liquid.

  14. Liquid detection circuit

    DOEpatents

    Regan, Thomas O.

    1987-01-01

    Herein is a circuit which is capable of detecting the presence of liquids, especially cryogenic liquids, and whose sensor will not overheat in a vacuum. The circuit parameters, however, can be adjusted to work with any liquid over a wide range of temperatures.

  15. Radiation monitor for liquids

    DOEpatents

    Koster, James E.; Bolton, Richard D.

    1999-01-01

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  16. Radiation monitor for liquids

    DOEpatents

    Koster, J.E.; Bolton, R.D.

    1999-03-02

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  17. Direct printing and reduction of graphite oxide for flexible supercapacitors

    SciTech Connect

    Jung, Hanyung; Ve Cheah, Chang; Jeong, Namjo; Lee, Junghoon

    2014-08-04

    We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm{sup 3} in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart power applications.

  18. Coaxial connector for use with printed circuit board edge connector

    DOEpatents

    Howard, Donald R.; MacGill, Robert A.

    1989-01-01

    A coaxial cable connector for interfacing with an edge connector for a printed circuit board whereby a coaxial cable can be interconnected with a printed circuit board through the edge connector. The coaxial connector includes a body having two leg portions extending from one side for receiving the edge connector therebetween, and a tubular portion extending from an opposing side for receiving a coaxial cable. A cavity within the body receives a lug of the edge connector and the center conductor of the coaxial cable. Adjacent lugs of the edge connector can be bend around the edge connector housing to function as spring-loaded contacts for receiving the coaxial connector. The lugs also function to facilitate shielding of the center conductor where fastened to the edge connector lug.

  19. Method for removing organic liquids from aqueous solutions and mixtures

    DOEpatents

    Hrubesh, Lawrence W.; Coronado, Paul R.; Dow, Jerome P.

    2004-03-23

    A method for removing organic liquids from aqueous solutions and mixtures. The method employs any porous material preferably in granular form and having small pores and a large specific surface area, that is hydrophobic so that liquid water does not readily wet its surface. In this method, organics, especially organic solvents that mix with and are more volatile than water, are separated from aqueous solution by preferentially evaporating across the liquid/solid boundary formed at the surfaces of the hydrophobic porous materials. Also, organic solvents that are immiscible with water, preferentially wet the surfaces of the hydrophobic material and are drawn within the porous materials by capillary action.

  20. Federal Sustainable Print Management - DOE Directives, Delegations, and

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Requirements G 436.1-1, Federal Sustainable Print Management by Jake Wooley The Guide provides acceptable approaches for implementing the IT sustainability requirements and criteria required by DOE Order 436.1, Departmental Sustainability, dated 5-2-11, and related to the sustainability requirements contained in Executive Order 13693, "Planning for Federal Sustainability in the Next Decade." Does not cancel/supersede other directives. g4361-1.pdf -- PDF Document, 450 KB Writer:

  1. Gas microstrip detectors based on flexible printed circuit

    SciTech Connect

    Salomon, M.; Crowe, K.; Faszer, W.; Lindsay, P.; Curran Maier, J.M.

    1995-09-01

    Microstrip Gas Detectors (MSGC`s) were introduced some years ago as position sensitive detectors capable of operating at very high rates. The authors have studied the properties of a new type of Gas Microstrip Counter built using flexible printed circuit technology. They describe the manufacturing procedures, the assembly of the device, as well as its operation under a variety of conditions, gases and types of radiation. They also describe two new passivation materials, tantalum and niobium, which produce effective surfaces.

  2. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (ORNL) Big Area Additive Manufacturing (BAAM) system. BAAM is 500 to 1,000 times faster and capable of printing polymer components over 10 times larger than today's industrial additive machines. With research blades measuring 13 meters (42 feet) in length, BAAM provides the necessary scale and foundation for this ground-breaking advancement in blade research and manufacturing. The U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE) plays a strategic role

  3. Minutes from the February 23, 2012 Printing and Mail Teleconference

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Minutes Printing and Mail Managers Exchange Forum Teleconference February 23, 2012 Participants: Headquarters (5) National Energy Technology Laboratory, PA National Security Complex Y-12 (2) Oak Ridge National Laboratory Y-12 Site Office (2) Hanford Site Office Oak Ridge Association University Oak Ridge Operations Office BWXT Pantex Site Office JanTec Corporation, Richland, Washington Los Alamos National Laboratory Chicago Office Bettis Atomic Power Laboratory National Security Technology C1,

  4. Minutes from the May 3, 2012 Printing and Mail Teleconference

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3, 2012 Printing and Mail Managers Exchange Forum Teleconference Al Majors opened the meeting by introducing Derrick Milner, Program Manager from the General Services Administration, Office of Governmentwide Policy. Mr. Milner discussed changes and updates to the Annual Mail Management Report, and new requirements as set by GSA. Changes to the FY- 2012 Mail Management Report and use of the SMART Tool System. The Annual Mail Management Reports are required at GSA by Oct 31 annually; DOE field

  5. Instabilities during liquid migration into superheated hydrothermal systems

    SciTech Connect

    Fitzgerald, Shaun D.; Woods, Andrew W.

    1995-01-26

    Hydrothermal systems typically consist of hot permeable rock which contains either liquid or liquid and saturated steam within the voids. These systems vent fluids at the surface through hot springs, fumaroles, mud pools, steaming ground and geysers. They are simultaneously recharged as meteoric water percolates through the surrounding rock or through the active injection of water at various geothermal reservoirs. In a number of geothermal reservoirs from which significant amounts of hot fluid have been extracted and passed through turbines, superheated regions of vapor have developed. As liquid migrates through a superheated region of a hydrothermal system, some of the liquid vaporizes at a migrating liquid-vapor interface. Using simple physical arguments, and analogue laboratory experiments we show that, under the influence of gravity, the liquid-vapor interface may become unstable and break up into fingers.

  6. Printing and papermaking: Energy consumption and conservation. (Latest citations from the Paper and Board, Printing, and Packaging Industries Research Associations database). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning energy consumption and energy efficient design innovations for papermaking and printing equipment and operations. Economic analysis of energy utilization, computer controlled operations, energy efficient driers for papermaking and printing processes, ventilation systems, and heat recovery technology are included. (Contains a minimum of 181 citations and includes a subject term index and title list.)

  7. MO-A-9A-01: Innovation in Medical Physics Practice: 3D Printing Applications

    SciTech Connect

    Ehler, E; Perks, J; Rasmussen, K; Bakic, P

    2014-06-15

    3D printing, also called additive manufacturing, has great potential to advance the field of medicine. Many medical uses have been exhibited from facial reconstruction to the repair of pulmonary obstructions. The strength of 3D printing is to quickly convert a 3D computer model into a physical object. Medical use of 3D models is already ubiquitous with technologies such as computed tomography and magnetic resonance imaging. Thus tailoring 3D printing technology to medical functions has the potential to impact patient care. This session will discuss applications to the field of Medical Physics. Topics discussed will include introduction to 3D printing methods as well as examples of real-world uses of 3D printing spanning clinical and research practice in diagnostic imaging and radiation therapy. The session will also compare 3D printing to other manufacturing processes and discuss a variety of uses of 3D printing technology outside the field of Medical Physics. Learning Objectives: Understand the technologies available for 3D Printing Understand methods to generate 3D models Identify the benefits and drawbacks to rapid prototyping / 3D Printing Understand the potential issues related to clinical use of 3D Printing.

  8. Electrical Detector for Liquid Lithium Leaks Around Demountable Pipe Joints

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    | Princeton Plasma Physics Lab Electrical Detector for Liquid Lithium Leaks Around Demountable Pipe Joints This system is designed to detect leaks of liquid lithium from around demountable pipe joints. Demountable pipe joints such as vacuum fittings are likely spots for a leak in any system transporting fluids. Since liquid lithium reacts with air, water, concrete and other common materials, it is important to quickly detect a leak. The system will partially contain the leak and is designed

  9. ARM - Measurement - Precipitable water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    govMeasurementsPrecipitable water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Precipitable water Total amount of water vapor in a vertical column of air, often expressed as the depth of the layer of water that would be formed if all the water vapor were condensed to liquid water. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following

  10. Non-Contact Printed Aluminum Metallization of Si Photovoltaic Devices: Preprint

    SciTech Connect

    Platt, H. A. S.; van Hest, M. F. A. M.; Li, Y.; Novak, J. P.

    2012-06-01

    Alternative solution-based techniques such as aerosol jet printing offer the dual benefits of contactless pattern deposition and high material utilization. We have used aerosol jet printing to investigate non-contact printed Al metal ink as a replacement for screen printed Al back contacts on wafer Si solar cells. This particle-based ink can be prepared at high loadings of 60 weight % metal, which enables rapid deposition of 1 - 10 um thick lines. Al lines printed on Si wafers and heated between 550 and 800 degrees C form low resistance contacts suitable for current extraction. The effectiveness of these printed Al back contacts has further been demonstrated by incorporating them into a series of 21 cm2 crystalline Si solar cells that produced a champion power conversion efficiency of 13%.

  11. Liquid level detector

    DOEpatents

    Tshishiku, Eugene M.

    2011-08-09

    A liquid level detector for conductive liquids for vertical installation in a tank, the detector having a probe positioned within a sheath and insulated therefrom by a seal so that the tip of the probe extends proximate to but not below the lower end of the sheath, the lower end terminating in a rim that is provided with notches, said lower end being tapered, the taper and notches preventing debris collection and bubble formation, said lower end when contacting liquid as it rises will form an airtight cavity defined by the liquid, the interior sheath wall, and the seal, the compression of air in the cavity preventing liquid from further entry into the sheath and contact with the seal. As a result, the liquid cannot deposit a film to form an electrical bridge across the seal.

  12. LIQUID CYCLONE CONTACTOR

    DOEpatents

    Whatley, M.E.; Woods, W.M.

    1962-09-01

    This invention relates to liquid-liquid extraction systems. The invention, an improved hydroclone system, comprises a series of serially connected, axially aligned hydroclones, each of which is provided with an axially aligned overflow chamber. The chambers are so arranged that rotational motion of a fluid being passed through the system is not lost in passing from chamber to chamber; consequently, this system is highly efficient in contacting and separating two immiscible liquids. (AEC)

  13. Energy Department Unveils 3D-Printed Building; New Initiatives During

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industry Day | Department of Energy Unveils 3D-Printed Building; New Initiatives During Industry Day Energy Department Unveils 3D-Printed Building; New Initiatives During Industry Day October 1, 2015 - 12:25pm Addthis The Energy Department announced several new and exciting innovations and programs during Industry Day held at Oak Ridge National Laboratory (ORNL) in Tennessee Sept. 23-24. This included unveiling a 3-D printed building with integrated energy storage via bidirectional wireless

  14. Researchers find 3-D printed parts to provide low-cost, custom alternatives

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for laboratory equipment | Princeton Plasma Physics Lab Researchers find 3-D printed parts to provide low-cost, custom alternatives for laboratory equipment By Raphael Rosen February 26, 2015 Tweet Widget Google Plus One Share on Facebook 3-D printed parts provide the stands for the aluminum globes in PPPL's Planeterrella, a device that simulates Northern Lights. (Photo by Elle Starkman/PPPL Office of Communications) 3-D printed parts provide the stands for the aluminum globes in PPPL's

  15. Researchers find 3-D printed parts to provide low-cost, custom alternatives

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for laboratory equipment | Princeton Plasma Physics Lab Researchers find 3-D printed parts to provide low-cost, custom alternatives for laboratory equipment By Raphael Rosen February 26, 2015 Tweet Widget Google Plus One Share on Facebook 3-D printed parts provide the stands for the aluminum globes in PPPL's Planeterrella, a device that simulates Northern Lights. (Photo by Elle Starkman/PPPL Office of Communications) 3-D printed parts provide the stands for the aluminum globes in PPPL's

  16. Next Generation Lunch: Revealing the World's First 3D Printed Car (text

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    version) | Department of Energy Next Generation Lunch: Revealing the World's First 3D Printed Car (text version) Next Generation Lunch: Revealing the World's First 3D Printed Car (text version) Below is the text version for the Next Generation Lunch: Revealing the World's First 3D Printed Car Video. FILE NAME: AEMC_09172014_luncheonaddress_nextgeneration SPEAKER: Ladies and gentleman, welcome and good afternoon. Please give a warm welcome to Dr. Mark Johnson, U.S. Department of Energy.

  17. 3D-Printed Foam Outperforms Standard Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3D-Printed Foam Outperforms Standard Materials 3D-Printed Foam Outperforms Standard Materials April 27, 2016 - 5:58pm Addthis News release from Lawrence Livermore Laboratory, April 27, 2016. Lawrence Livermore National Laboratory (LLNL) material scientists have found that 3D-printed foam works better than standard cellular materials in terms of durability and long-term mechanical performance. Foams, also known as cellular solids, are an important class of materials with applications ranging from

  18. E-print Network provides access to science, scientists | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information E-print Network provides access to science, scientists Back to the OSTI News Listing for 2006 You can search more than 900,000 scientific documents at OSTI's E-print Network. This vast, integrated network of scientific and technical information contains e-prints in basic and applied sciences, primarily in physics but also including subject areas such as chemistry, biology and life sciences, materials science, nuclear sciences and

  19. HV in Noble Liquids

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    in Noble Liquids 8 Nov 2013 High Voltage Tests for MicroBooNE Byron Lundberg Fermilab presenting for the Collaboration & Task Force 4 1 Friday, November 8, 13 HV in Noble Liquids MicroBooNE Experiment  A liquid argon time projection chamber (LAr TPC) containing 170 tons of liquid argon, and located on the Booster Neutrino Beamline.  MiniBooNE  MicroBooNE 8,#256#wires;#U,V,Y#planes;#3#mm#spacing# 32#PMTs#for#fast#light#collec?ons# @ L A r T F 2 Friday, November 8, 13 HV in Noble

  20. Gas scrubbing liquids

    DOEpatents

    Lackey, Walter J.; Lowrie, Robert S.; Sease, John D.

    1981-01-01

    Fully chlorinated and/or fluorinated hydrocarbons are used as gas scrubbing liquids for preventing noxious gas emissions to the atmosphere.

  1. Liquid Propane Injection Applications

    Energy.gov [DOE]

    Liquid propane injection technology meets manufacturing/assembly guidelines, maintenance/repair strategy, and regulations, with same functionality, horsepower, and torque as gasoline counterpart.

  2. RENEWABLE LIQUID GETTERING PUMP

    DOEpatents

    Batzer, T.H.

    1962-08-21

    A method and structure were developed for pumping gases by simple absorption into a liquid gettering material. The invention comprises means ror continuously pumping a liquid getterrng material from a reservoir to the top of a generally vertical surface disposed in a vacuum pumping chamber to receive gaseous and other particles in the liquid gettering material which continuously flows downward over the vertical suiface. Means are provided for continuous removal, degassing, and return of a portion of the liquid gettering material from the reservoir connected with collectrng means at the base of the generally vertical plate. (AEC)

  3. Liquid Crystal Optofluidics

    SciTech Connect

    Vasdekis, Andreas E.; Cuennet, J. G.; Psaltis, D.

    2012-10-11

    By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

  4. Ultrasonic liquid level detector

    DOEpatents

    Kotz, Dennis M.; Hinz, William R.

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  5. SU-C-213-05: Evaluation of a Composite Copper-Plastic Material for a 3D Printed Radiation Therapy Bolus

    SciTech Connect

    Vitzthum, L; Ehler, E; Sterling, D; Reynolds, T; Higgins, P; Dusenbery, K

    2015-06-15

    Purpose: To evaluate a novel 3D printed bolus fabricated from a copper-plastic composite as a thin flexible, custom fitting device that can replicate doses achieved with conventional bolus techniques. Methods: Two models of bolus were created on a 3D printer using a composite copper-PLA/PHA. Firstly, boluses were constructed at thicknesses of 0.4, 0.6 and 0.8 mm. Relative dose measurements were performed under the bolus with an Attix Chamber as well as with radiochromic film. Results were compared to superficial Attix Chamber measurements in a water equivalent material to determine the dosimetric water equivalence of the copper-PLA/PHA plastic. Secondly, CT images of a RANDO phantom were used to create a custom fitting bolus across the anterolateral scalp. Surface dose with the bolus placed on the RANDO phantom was measured with radiochromic film at tangential angles with 6, 10, 10 flattening filter free (FFF) and 18 MV photon beams. Results: Mean surface doses for 6, 10, 10FFF and 18 MV were measured as a percent of Dmax for the flat bolus devices of each thickness. The 0.4 mm thickness bolus was determined to be near equivalent to 2.5 mm depth in water for all four energies. Surface doses ranged from 59–63% without bolus and 85–90% with the custom 0.4 mm copper-plastic bolus relative to the prescribed dose for an oblique tangential beam arrangement on the RANDO phantom. Conclusion: Sub-millimeter thickness, 3D printed composite copper-PLA/PHA bolus can provide a build-up effect equivalent to conventional bolus. At this thickness, the 3D printed bolus allows a level of flexure that may provide more patient comfort than current 3D printing materials used in bolus fabrication while still retaining the CT based custom patient shape. Funding provided by an intra-department grant of the University of Minnesota Department of Radiation Oncology.

  6. Will It Be a Solid or a Liquid? The Molecular Structure Has the...

    Office of Science (SC)

    The liquid forms of these complexes have useful characteristics such as very low and tunable interfacial tension with water, which makes them easy to spread on solid surfaces. ...

  7. 2015 Gasification Systems and Coal and Coal-Biomass to Liquids...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... University Carbondale Poison Resistant Water-Gas-Shift Catalyst for Coal and Biomass Co-Gasification Gokhan Alptekin, TDA Research, Inc. Unconventional, Novel Coal-to-Liquids ...

  8. Secretary Moniz Tours the 3D-Printed Shelby Cobra | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Secretary Moniz Tours the 3D-Printed Shelby Cobra Secretary Moniz Tours the 3D-Printed Shelby Cobra April 23, 2015 - 1:45pm Addthis This Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at Oak Ridge National Laboratory (ORNL) using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels where sustainable components can be tested and enhanced in real time. This Shelby was printed at the

  9. ORNL Unveils 3D-Printed Home and Vehicle with the Unique Ability...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    efforts of the the lab's Additive Manufacturing Integrated Energy (AMIE) demonstration. ... by natural gas, were both printed using additive manufacturing via a large-scale 3D ...

  10. V-148: Novell iPrint Client Unspecified Buffer Overflow Vulnerability

    Energy.gov [DOE]

    A vulnerability has been reported in Novell iPrint Client, which can be exploited by malicious people to compromise a user's system

  11. Secretary Moniz Tours the 3D-Printed Shelby Cobra | Department...

    Energy Saver

    in Knoxville, Tennessee, developed a finishing process that bonds the clear coat and paint layers to the printed car parts' resulting in the highest quality finish possible in...

  12. EERE Success Story-3D Printing Enables New Generation of Heat Exchangers

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy 3D Printing Enables New Generation of Heat Exchangers EERE Success Story-3D Printing Enables New Generation of Heat Exchangers March 17, 2016 - 10:32am Addthis The University of Maryland used direct metal printing—a 3D printing technology—to manufacture a unique miniaturized air-to-refrigerant heat exchanger as a single, continuous piece. Image: University of Maryland, Center for Environmental Energy Engineering. The University of Maryland used direct metal

  13. The 3D-Printed Shelby Cobra: Defining Rapid Innovation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy The 3D-Printed Shelby Cobra: Defining Rapid Innovation The 3D-Printed Shelby Cobra: Defining Rapid Innovation April 24, 2015 - 9:00am Addthis The 3D-Printed Shelby Cobra: Defining Rapid Innovation img-1294_crop.jpg It's been hard to miss in the media and on its almost non-stop road tour, but AMO wanted you to know that our 3D-printed EV version of the 50th anniversary Shelby Cobra just left the Forrestal building lobby after visiting for two weeks. Secretary Moniz dropped in for a

  14. OSTIblog Articles in the e-prints Topic | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information e-prints Topic Get scientific e-prints by Dennis Traylor 31 Aug, 2012 in Products and Content 4267 EPN_slide2.jpg Get scientific e-prints Read more about 4267 The E-print Network provides a vast, integrated network of electronic scientific and technical information created by scientists and research engineers active in their respective fields, all full-text searchable. Documents such as these are the means by which today's scientists and researchers

  15. Argonne workshop to explore innovative ways to encourage water conservation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    | Argonne National Laboratory workshop to explore innovative ways to encourage water conservation By Greg Cunningham * April 15, 2015 Tweet EmailPrint In a world of increasing population and decreasing water supplies, conservation of water will be critical to ensure the continued health and prosperity of nations. Experts in water conservation, efficiency and behavioral sciences will be gathering later this month at the Department of Energy's Argonne National Laboratory to address how

  16. Eddy current gauge for monitoring displacement using printed circuit coil

    DOEpatents

    Visioli, Jr., Armando J.

    1977-01-01

    A proximity detection system for non-contact displacement and proximity measurement of static or dynamic metallic or conductive surfaces is provided wherein the measurement is obtained by monitoring the change in impedance of a flat, generally spiral-wound, printed circuit coil which is excited by a constant current, constant frequency source. The change in impedance, which is detected as a corresponding change in voltage across the coil, is related to the eddy current losses in the distant conductive material target. The arrangement provides for considerable linear displacement range with increased accuracies, stability, and sensitivity over the entire range.

  17. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    SciTech Connect

    See, Gloria G.; Xu, Lu; Nuzzo, Ralph G.; Sutanto, Erick; Alleyne, Andrew G.; Cunningham, Brian T.

    2015-08-03

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure.

  18. System and method for 3D printing of aerogels

    DOEpatents

    Worsley, Marcus A.; Duoss, Eric; Kuntz, Joshua; Spadaccini, Christopher; Zhu, Cheng

    2016-03-08

    A method of forming an aerogel. The method may involve providing a graphene oxide powder and mixing the graphene oxide powder with a solution to form an ink. A 3D printing technique may be used to write the ink into a catalytic solution that is contained in a fluid containment member to form a wet part. The wet part may then be cured in a sealed container for a predetermined period of time at a predetermined temperature. The cured wet part may then be dried to form a finished aerogel part.

  19. Protective tubes for sodium heated water tubes

    DOEpatents

    Essebaggers, Jan

    1979-01-01

    A heat exchanger in which water tubes are heated by liquid sodium which minimizes the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes. A cylindrical protective tube envelopes each water tube and the sodium flows axially in the annular spaces between the protective tubes and the water tubes.

  20. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    1985-01-29

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.

  1. Precision liquid level sensor

    DOEpatents

    Field, Michael E.; Sullivan, William H.

    1985-01-01

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  2. Liquid heat capacity lasers

    DOEpatents

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  3. Synthesis of ionic liquids

    DOEpatents

    Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

    2008-09-09

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  4. Synthesis of ionic liquids

    DOEpatents

    Dai, Sheng (Knoxville, TN); Luo, Huimin (Knoxville, TN)

    2011-11-01

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic ligand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  5. Kinetics of complex plasma with liquid droplets

    SciTech Connect

    Misra, Shikha; Sodha, M. S. [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)] [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India); Mishra, S. K. [Institute for Plasma Research (IPR), Gandhinagar 382428 (India)] [Institute for Plasma Research (IPR), Gandhinagar 382428 (India)

    2013-12-15

    This paper provides a theoretical basis for the reduction of electron density by spray of water (or other liquids) in hot plasma. This phenomenon has been observed in a hypersonic flight experiment for relief of radio black out, caused by high ionization in the plasma sheath of a hypersonic vehicle, re-entering the atmosphere. The analysis incorporates a rather little known phenomenon for de-charging of the droplets, viz., evaporation of ions from the surface and includes the charge balance on the droplets and number cum energy balance of electrons, ions, and neutral molecules; the energy balance of the evaporating droplets has also been taken into account. The analysis has been applied to a realistic situation and the transient variations of the charge and radius of water droplets, and other plasma parameters have been obtained and discussed. The analysis through made in the context of water droplets is applicable to all liquids.

  6. Renewable liquid reflecting zone plate

    DOEpatents

    Toor, Arthur; Ryutov, Dmitri D.

    2003-12-09

    A renewable liquid reflecting zone plate. Electrodes are operatively connected to a dielectric liquid in a circular or other arrangement to produce a reflecting zone plate. A system for renewing the liquid uses a penetrable substrate.

  7. Development and Optimization of Viable Human Platforms through 3D Printing

    SciTech Connect

    Parker, Paul R.; Moya, Monica L.; Wheeler, Elizabeth K.

    2015-08-21

    3D printing technology offers a unique method for creating cell cultures in a manner far more conducive to accurate representation of human tissues and systems. Here we print cellular structures capable of forming vascular networks and exhibiting qualities of natural tissues and human systems. This allows for cheaper and readily available sources for further study of biological and pharmaceutical agents.

  8. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook

    - - - - - 14 - - - Natural Gas Liquids and LRGs 298 105 110 47 - -5 118 14 433 Pentanes Plus 33 - 1 25 - 0 48 4 7 Liquefied Petroleum Gases 265 105 109 22 - -4 70 9 426 Ethane...

  9. Liquid sampling system

    DOEpatents

    Larson, L.L.

    1984-09-17

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

  10. Liquid sampling system

    DOEpatents

    Larson, Loren L.

    1987-01-01

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed.

  11. Universally oriented renewable liquid mirror

    DOEpatents

    Ryutov, Dmitri D.; Toor, Arthur

    2004-07-20

    A universally oriented liquid mirror. A liquid and a penetrable unit are operatively connected to provide a mirror that can be universally oriented.

  12. Dynamics and diffusion mechanism of low-density liquid silicon

    SciTech Connect

    Shen, B.; Wang, Z. Y.; Dong, F.; Guo, Y. R.; Zhang, R. J.; Zheng, Y. X.; Wang, S. Y.; Wang, C. Z.; Ho, K. M.; Chen, L. Y.

    2015-11-05

    A first-order phase transition from a high-density liquid to a low-density liquid has been proposed to explain the various thermodynamic anomies of water. It also has been proposed that such liquid–liquid phase transition would exist in supercooled silicon. Computer simulation studies show that, across the transition, the diffusivity drops roughly 2 orders of magnitude, and the structures exhibit considerable tetrahedral ordering. The resulting phase is a highly viscous, low-density liquid silicon. Investigations on the atomic diffusion of such a novel form of liquid silicon are of high interest. Here we report such diffusion results from molecular dynamics simulations using the classical Stillinger–Weber (SW) potential of silicon. We show that the atomic diffusion of the low-density liquid is highly correlated with local tetrahedral geometries. We also show that atoms diffuse through hopping processes within short ranges, which gradually accumulate to an overall random motion for long ranges as in normal liquids. There is a close relationship between dynamical heterogeneity and hopping process. We point out that the above diffusion mechanism is closely related to the strong directional bonding nature of the distorted tetrahedral network. Here, our work offers new insights into the complex behavior of the highly viscous low density liquid silicon, suggesting similar diffusion behaviors in other tetrahedral coordinated liquids that exhibit liquid–liquid phase transition such as carbon and germanium.

  13. Dynamics and diffusion mechanism of low-density liquid silicon

    DOE PAGES [OSTI]

    Shen, B.; Wang, Z. Y.; Dong, F.; Guo, Y. R.; Zhang, R. J.; Zheng, Y. X.; Wang, S. Y.; Wang, C. Z.; Ho, K. M.; Chen, L. Y.

    2015-11-05

    A first-order phase transition from a high-density liquid to a low-density liquid has been proposed to explain the various thermodynamic anomies of water. It also has been proposed that such liquid–liquid phase transition would exist in supercooled silicon. Computer simulation studies show that, across the transition, the diffusivity drops roughly 2 orders of magnitude, and the structures exhibit considerable tetrahedral ordering. The resulting phase is a highly viscous, low-density liquid silicon. Investigations on the atomic diffusion of such a novel form of liquid silicon are of high interest. Here we report such diffusion results from molecular dynamics simulations using themore » classical Stillinger–Weber (SW) potential of silicon. We show that the atomic diffusion of the low-density liquid is highly correlated with local tetrahedral geometries. We also show that atoms diffuse through hopping processes within short ranges, which gradually accumulate to an overall random motion for long ranges as in normal liquids. There is a close relationship between dynamical heterogeneity and hopping process. We point out that the above diffusion mechanism is closely related to the strong directional bonding nature of the distorted tetrahedral network. Here, our work offers new insights into the complex behavior of the highly viscous low density liquid silicon, suggesting similar diffusion behaviors in other tetrahedral coordinated liquids that exhibit liquid–liquid phase transition such as carbon and germanium.« less

  14. Liquid metal electric pump

    DOEpatents

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  15. Liquid-level detector

    DOEpatents

    Not Available

    1981-01-29

    Aliquid level sensor is described which has a pair of upright conductors spaced by an insulator defining a first high resistance path between the conductors. An electrically conductive path is interposed between the upright conductors at a discrete location at which liquid level is to be measured. It includes a liquid accessible gap of a dimension such that the electrical resistance across the conductor when the gap is filled with the liquid is detectably less than when the gap is emptied. The conductor might also be physically altered by temperature changes to serve also as an indicator of elevated temperature.

  16. Liquid metal electric pump

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1992-01-01

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  17. Multi-Layer Inkjet Printed Contacts for Silicon Solar Cells: Preprint

    SciTech Connect

    Curtis, C. J.; van hest, M.; Miedaner, A.; Kaydanova, T.; Smith, L.; Ginley, D. S.

    2006-05-01

    Ag, Cu, and Ni metallizations were inkjet printed with near vacuum deposition quality. The approach developed can be easily extended to other conductors such as Pt, Pd, Au, etc. Thick highly conducting lines of Ag and Cu demonstrating good adhesion to glass, Si, and printed circuit board (PCB) have been printed at 100-200 C in air and N2 respectively. Ag grids were inkjet-printed on Si solar cells and fired through the silicon nitride AR layer at 850 C, resulting in 8% cells. Next generation inks, including an ink that etches silicon nitride, have now been developed. Multi-layer inkjet printing of the etching ink followed by Ag ink produced contacts under milder conditions and gave solar cells with efficiencies as high as 12%.

  18. An RFC 1179 Compatible Remote Print Server for Windows 3.1

    Energy Science and Technology Software Center

    1993-11-09

    Internet RFC 1179 describes the protocol to be used for printing files on a remote printer in a TCP/IP network. The protocol is client/server, meaning that the client initiates the print request, and the server receives the request and performs the actual printing locally. This protocol has been in long use on Unix systems derived from the Berkeley Software Distribution, such as DEC''s Ultrix and Sun''s SunOS. LPD Services implements the server portion of thismore » protocol. It handles both the network communication and conformance with the protocol, and printing using the Microsoft Windows device independent printing interface.« less

  19. Browse by Discipline -- E-print Network Subject Pathways: Plasma...

    Office of Scientific and Technical Information (OSTI)

    Commonwealth University Gross, Amit (Amit Gross) - Zuckerberg Institute for Water Research, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert ...

  20. Browse by Discipline -- E-print Network Subject Pathways: Plasma...

    Office of Scientific and Technical Information (OSTI)

    Ecole des Mines de Nantes Kasher, Roni (Roni Kasher) - Zuckerberg Institute for Water Research, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert ...

  1. Pioneering Inkjet Printing Technology Produces Thin-Film Photovoltaics; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect

    Not Available

    2010-06-01

    Fact sheet describing NREL's development of inkjet printing technology that can be used to produce thin-film solar modules.

  2. 3D%20printed%20perforated%20metal%20box.jpg | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information 3D%20printed%20perforated%20metal%20box

  3. Direct liquid injection of liquid petroleum gas

    SciTech Connect

    Lewis, D.J.; Phipps, J.R.

    1984-02-14

    A fuel injector and injection system for injecting liquified petroleum gas (LPG) into at least one air/fuel mixing chamber from a storage means that stores pressurized LPG in its liquid state. The fuel injector (including a body), adapted to receive pressurized LPG from the storage means and for selectively delivering the LPG to the air/fuel mixing chamber in its liquified state. The system including means for correcting the injector activation signal for pressure and density variations in the fuel.

  4. POWER GENERATION FROM LIQUID METAL NUCLEAR FUEL

    DOEpatents

    Dwyer, O.E.

    1958-12-23

    A nuclear reactor system is described wherein the reactor is the type using a liquid metal fuel, such as a dispersion of fissile material in bismuth. The reactor is designed ln the form of a closed loop having a core sectlon and heat exchanger sections. The liquid fuel is clrculated through the loop undergoing flssion in the core section to produce heat energy and transferrlng this heat energy to secondary fluids in the heat exchanger sections. The fission in the core may be produced by a separate neutron source or by a selfsustained chain reaction of the liquid fuel present in the core section. Additional auxiliary heat exchangers are used in the system to convert water into steam which drives a turbine.

  5. Apparatus for detecting leakage of liquid sodium

    DOEpatents

    Himeno, Yoshiaki

    1978-01-01

    An apparatus for detecting the leakage of liquid sodium includes a cable-like sensor adapted to be secured to a wall of piping or other equipment having sodium on the opposite side of the wall, and the sensor includes a core wire electrically connected to the wall through a leak current detector and a power source. An accidental leakage of the liquid sodium causes the corrosion of a metallic layer and an insulative layer of the sensor by products resulted from a reaction of sodium with water or oxygen in the atmospheric air so as to decrease the resistance between the core wire and the wall. Thus, the leakage is detected as an increase in the leaking electrical current. The apparatus is especially adapted for use in detecting the leakage of liquid sodium from sodium-conveying pipes or equipment in a fast breeder reactor.

  6. Liquid level controller

    DOEpatents

    Mangus, J.D.; Redding, A.H.

    1975-07-15

    A system for maintaining two distinct sodium levels within the shell of a heat exchanger having a plurality of J-shaped modular tube bundles each enclosed in a separate shell which extends from a common base portion. A lower liquid level is maintained in the base portion and an upper liquid level is maintained in the shell enwrapping the long stem of the J-shaped tube bundles by utilizing standpipes with a notch at the lower end which decreases in open area the distance from the end of the stand pipe increases and a supply of inert gas fed at a constant rate to produce liquid levels, which will remain generally constant as the flow of liquid through the vessel varies. (auth)

  7. Liquid blocking check valve

    DOEpatents

    Merrill, John T.

    1984-01-01

    A liquid blocking check valve useful particularly in a pneumatic system utilizing a pressurized liquid fill chamber. The valve includes a floatable ball disposed within a housing defining a chamber. The housing is provided with an inlet aperture disposed in the top of said chamber, and an outlet aperture disposed in the bottom of said chamber in an offset relation to said inlet aperture and in communication with a cutaway side wall section of said housing.

  8. Liquid-phase-deposited siloxane-based capping layers for silicon solar cells

    SciTech Connect

    Veith-Wolf, Boris; Wang, Jianhui; Hannu-Kuure, Milja; Chen, Ning; Hadzic, Admir; Williams, Paul; Leivo, Jarkko; Karkkainen, Ari; Schmidt, Jan

    2015-02-02

    We apply non-vacuum processing to deposit dielectric capping layers on top of ultrathin atomic-layer-deposited aluminum oxide (AlO{sub x}) films, used for the rear surface passivation of high-efficiency crystalline silicon solar cells. We examine various siloxane-based liquid-phase-deposited (LPD) materials. Our optimized AlO{sub x}/LPD stacks show an excellent thermal and chemical stability against aluminum metal paste, as demonstrated by measured surface recombination velocities below 10 cm/s on 1.3 Ωcm p-type silicon wafers after firing in a belt-line furnace with screen-printed aluminum paste on top. Implementation of the optimized LPD layers into an industrial-type screen-printing solar cell process results in energy conversion efficiencies of up to 19.8% on p-type Czochralski silicon.

  9. Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive

    DOEpatents

    Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

    2014-08-19

    An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

  10. Liquid level, void fraction, and superheated steam sensor for nuclear-reactor cores. [PWR; BWR

    DOEpatents

    Tokarz, R.D.

    1981-10-27

    This disclosure relates to an apparatus for monitoring the presence of coolant in liquid or mixed liquid and vapor, and superheated gaseous phases at one or more locations within an operating nuclear reactor core, such as pressurized water reactor or a boiling water reactor.

  11. The influence of printed electronics on the recyclability of paper: A case study for smart envelopes in courier and postal services

    SciTech Connect

    Aliaga, C.

    2015-04-15

    Highlights: • Study of the influence of components of printed electronics in paper recycling. • Comparison between paper recycled with and without resistors, batteries and layouts. • Mechanical and optical properties are evaluated in paper handsheets obtained. • Tensile strength of recycled paper is slighted reduced by layouts. • Optical properties of recycled paper slightly varies with layouts and batteries. - Abstract: The aim of this paper is to analyse the effects of the presence of printed electronics on the paper waste streams and specifically on paper recyclability. The analysis is based on a case study focussed on envelopes for postal and courier services provided with these intelligent systems. The smart printed envelope of the study includes a combination of both conventional (thin flexible batteries and resistors) and printed electronic components (conductive track layout based on nanosilver ink). For this purpose, a comparison between envelopes with and without these components (batteries, resistors and conductive track layouts) was carried out through pilot scale paper recycling tests. The generation of rejects during the recycling process as well as the final quality of the recycled paper (mechanical and optical properties) were tested and quantitatively evaluated. The results show that resistors are retained during the screening process in the sieves and consequently they cannot end up in the final screened pulp. Therefore, mechanical and optical properties of the recycled paper are not affected. Nevertheless, inks from the conductive track layouts and batteries were partially dissolved in the process water. These substances were not totally retained in the sieving systems resulting in slight changes in the optical properties of the final recycled paper (variations are 7.2–7.5% in brightness, 8.5–10.7% in whiteness, 1.2–2.2% in L{sup ∗} values, 3.3–3.5% in opacity and 16.1–27% in yellowness). These variations are not in ranges

  12. VDA provides accurate liquid fallout data

    SciTech Connect

    Clark, D.K.

    1996-03-01

    This article describes how a video droplet analyzer helped engineers determine that a liquid collection system would be necessary for conversion to wet stack operation. Engineers from the Los Angeles Department of Water and Power (LADWP) determined that the Intermountain Generating Station (IGS) in Delta, Utah, could save $26.8 million in fuel and maintenance costs by converting the plant from stack gas reheat (SGR) to wet stack operation. The SGR system was absorbing approximately 1% of the plant`s output, and excessive SGR-bundle corrosion led to frequent bundle replacements, reliability concerns and iron carryover into the boiler feed water. In addition to concerns about modifications to the operating permit and corrosion of downstream equipment, LADWP engineers realized that converting to wet stack operation would increase the potential for liquid fallout in the stack/duct system. This could have meant an additional $1 million in conversion costs depending on the amount of stack modification necessary to control liquid fallout. Before moving ahead with the project, LADWP engineers used a video droplet analyzer to quantify liquid fallout.

  13. Liquid crystalline composites containing phyllosilicates

    DOEpatents

    Chaiko, David J.

    2004-07-13

    The present invention provides phyllosilicate-polymer compositions which are useful as liquid crystalline composites. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while at the same time be transparent. Because of the ordering of the particles liquid crystalline composite, liquid crystalline composites are particularly useful as barriers to gas transport.

  14. ARM - Measurement - Total cloud water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  15. Impact of pulse thermal processing on the properties of inkjet printed metal and flexible sensors

    DOE PAGES [OSTI]

    Joshi, Pooran C.; Kuruganti, Teja; Killough, Stephen M.

    2015-03-11

    In this paper, we report on the low temperature processing of environmental sensors employing pulse thermal processing (PTP) technique to define a path toward flexible sensor technology on plastic, paper, and fabric substrates. Inkjet printing and pulse thermal processing technique were used to realize mask-less, additive integration of low-cost sensors on polymeric substrates with specific focus on temperature, humidity, and strain sensors. The printed metal line performance was evaluated in terms of the electrical conductivity characteristics as a function of post-deposition thermal processing conditions. The PTP processed Ag metal lines exhibited high conductivity with metal sheet resistance values below 100more » mΩ/{whitesquare} using a pulse width as short as 250 μs. The flexible temperature and relative humidity sensors were defined on flexible polyimide substrates by direct printing of Ag metal structures. The printed resistive temperature sensor and capacitive humidity sensor were characterized for their sensitivity with focus on future smart-building applications. Strain gauges were printed on polyimide substrate to determine the mechanical properties of the silver nanoparticle films. Finally, the observed electrical properties of the printed metal lines and the sensitivity of the flexible sensors show promise for the realization of a high performance print-on-demand technology exploiting low thermal-budget PTP technique.« less

  16. Apparatus And Method Of Using Flexible Printed Circuit Board In Optical Transceiver Device

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Bryan, Robert P.; Carson, Richard F.; Duckett, III, Edwin B.; McCormick, Frederick B.; Peterson, David W.; Peterson, Gary D.; Reysen, Bill H.

    2005-03-15

    This invention relates to a flexible printed circuit board that is used in connection with an optical transmitter, receiver or transceiver module. In one embodiment, the flexible printed circuit board has flexible metal layers in between flexible insulating layers, and the circuit board comprises: (1) a main body region orientated in a first direction having at least one electrical or optoelectronic device; (2) a plurality of electrical contact pads integrated into the main body region, where the electrical contact pads function to connect the flexible printed circuit board to an external environment; (3) a buckle region extending from one end of the main body region; and (4) a head region extending from one end of the buckle region, and where the head region is orientated so that it is at an angle relative to the direction of the main body region. The electrical contact pads may be ball grid arrays, solder balls or land-grid arrays, and they function to connect the circuit board to an external environment. A driver or amplifier chip may be adapted to the head region of the flexible printed circuit board. In another embodiment, a heat spreader passes along a surface of the head region of the flexible printed circuit board, and a window is formed in the head region of the flexible printed circuit board. Optoelectronic devices are adapted to the head spreader in such a manner that they are accessible through the window in the flexible printed circuit board.

  17. Water mist injection in oil shale retorting

    DOEpatents

    Galloway, T.R.; Lyczkowski, R.W.; Burnham, A.K.

    1980-07-30

    Water mist is utilized to control the maximum temperature in an oil shale retort during processing. A mist of water droplets is generated and entrained in the combustion supporting gas flowing into the retort in order to distribute the liquid water droplets throughout the retort. The water droplets are vaporized in the retort in order to provide an efficient coolant for temperature control.

  18. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    SciTech Connect

    Kushner, Mark Jay

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  19. Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor

    SciTech Connect

    Boutopoulos, Christos; Zergioti, Ioanna; Touloupakis, Eleftherios; Pezzotti, Ittalo; Giardi, Maria Teresa

    2011-02-28

    This letter demonstrates the direct laser printing of photosynthetic material onto low cost nonfunctionalized screen printed electrodes for the fabrication of photosynthesis-based amperometric biosensors. The high kinetic energy of the transferred material induces direct immobilization of the thylakoids onto the electrodes without the use of linkers. This type of immobilization is able to establish efficient electrochemical contact between proteins and electrode, stabilizing the photosynthetic biomolecule and transporting electrons to the solid state device with high efficiency. The functionality of the laser printed biosensors was evaluated by the detection of a common herbicide such as Linuron.

  20. EERE Success Story-ORNL Unveils 3D-Printed Home and Vehicle with the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Unique Ability to Power One Another | Department of Energy ORNL Unveils 3D-Printed Home and Vehicle with the Unique Ability to Power One Another EERE Success Story-ORNL Unveils 3D-Printed Home and Vehicle with the Unique Ability to Power One Another November 17, 2015 - 10:42am Addthis EERE Success Story—ORNL Unveils 3D-Printed Home and Vehicle with the Unique Ability to Power One Another In September, the Department of Energy's Oak Ridge National Laboratory (ORNL) announced successful

  1. The Future of Manufacturing Takes Shape: 3D Printed Car on Display at

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Summit | Department of Energy The Future of Manufacturing Takes Shape: 3D Printed Car on Display at Manufacturing Summit The Future of Manufacturing Takes Shape: 3D Printed Car on Display at Manufacturing Summit September 17, 2014 - 9:50am Addthis WORLD&#039;S FIRST 1 of 6 WORLD'S FIRST The world's first 3D-printed car on display at the International Manufacturing Technology Show in Chicago last week. Arizona-based Local Motors, and Cincinnati Incorporated teamed with Oak

  2. Get science-Access E-print Network for current research documents,

    Office of Scientific and Technical Information (OSTI)

    researchers' Web sites, and scientific societies | OSTI, US Dept of Energy Office of Scientific and Technical Information science-Access E-print Network for current research documents, researchers' Web sites, and scientific societies Back to the OSTI News Listing for 2007 Gain access to more than 1 million e-print science documents, over 25,000 Web sites, and links to more than 2,900 scientific societies at OSTI's E-print Network, a fast-growing searchable scientific communications network.

  3. The 3D-Printed Shelby Cobra: Defining Rapid Innovation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy The 3D-Printed Shelby Cobra: Defining Rapid Innovation The 3D-Printed Shelby Cobra: Defining Rapid Innovation "He said he’d get in if he could drive." "He said he'd get in if he could drive." It's been hard to miss in the media and on its almost non-stop road tour, but AMO wanted you to know that our 3D-printed EV version of the 50th anniversary Shelby Cobra just left the Forrestal building lobby after visiting for two weeks. Secretary Moniz dropped in for a

  4. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms

    SciTech Connect

    Bieniosek, Matthew F.; Lee, Brian J.; Levin, Craig S.

    2015-10-15

    Purpose: Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial “Micro Deluxe” phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. Methods: CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results: Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. Conclusions: This work shows that 3D printed

  5. Bob Ellis designs a PPPL first: A 3D printed mirror for microwave launchers

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    | Princeton Plasma Physics Lab Bob Ellis designs a PPPL first: A 3D printed mirror for microwave launchers By John Greenwald October 28, 2014 Tweet Widget Google Plus One Share on Facebook Bob Ellis with a 3D-printed plastic prototype for a non-mirror part of the launcher. (Photo by Elle Starkman/PPPL Office of Communications) Bob Ellis with a 3D-printed plastic prototype for a non-mirror part of the launcher. Gallery: Completed stainless steel and copper mirror system. (Photo by Elle

  6. Bob Ellis designs a PPPL first: A 3D printed mirror for microwave launchers

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    | Princeton Plasma Physics Lab Bob Ellis designs a PPPL first: A 3D printed mirror for microwave launchers By John Greenwald October 28, 2014 Tweet Widget Google Plus One Share on Facebook Bob Ellis with a 3D-printed plastic prototype for a non-mirror part of the launcher. (Photo by Elle Starkman/PPPL Office of Communications) Bob Ellis with a 3D-printed plastic prototype for a non-mirror part of the launcher. Gallery: Completed stainless steel and copper mirror system. (Photo by Elle

  7. Liquid-liquid extraction of short-chain organic acids from anaerobic digesters

    SciTech Connect

    Wene, E.G.; Antonopoulos, A.A.

    1989-01-01

    Anaerobic digesters with glucose or municipal solid waste (MSW) feed were operated to maximize production of short-chain organic acids. Digester effluent was extracted by liquid-liquid extraction with trioctylphosphine oxide (TOPO) or trioctylamine (TOA) in heptane or 2-heptanone as the water immiscible phase. Digester effluent was recycled to digesters after extraction. Both TOPO and TOA in organic solvents effectively extract organic acids from anaerobic digester fluid. Longer chain acids have a higher distribution coefficient than shorter-chain acids. Long term extraction of digester fluid with recycle was not toxic to the anaerobic production of short-chain acids.

  8. Browse by Discipline -- E-print Network Subject Pathways: Physics...

    Office of Scientific and Technical Information (OSTI)

    ... Harsh Deep (Harsh Deep Chopra) - Department of Mechanical and Aerospace Engineering, State University of New ... Engineering, Compaq Water Resources Simulations ...

  9. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook

    0 1,605 9 0 1 1,627 9 0 Natural Gas Liquids and LRGs 17 41 64 101 - -4 5 3 220 Pentanes Plus 3 - 0 0 - 0 0 0 3 Liquefied Petroleum Gases 14 41 64 101 - -4 5 3 217 EthaneEthylene...

  10. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook

    2005 (Thousand Barrels) East Coast Appalachian No. 1 Total IN, IL, KY MN, WI, ND, SD OK, KS, MO Total Natural Gas Liquids 359 5,914 6,273 26,874 4,786 77,174 108,834 Pentanes...

  11. Liquid metal pump

    DOEpatents

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  12. Liquid effluent Sampling and Analysis Plan (SAP) implementation summary report

    SciTech Connect

    Lueck, K.J.

    1995-04-26

    This report summarizes liquid effluent analytical data collected during the Sampling and Analysis Plan (SAP) Implementation Program, evaluates whether or not the sampling performed meets the requirements of the individual SAPs, compares the results to the WAC 173-200 Ground Water Quality Standards. Presented in the report are results from liquid effluent samples collected (1992-1994) from 18 of the 22 streams identified in the Consent Order (No. DE 91NM-177) requiring SAPs.

  13. X-rays at Solid-Liquid Surfaces

    SciTech Connect

    Dosch, Helmut (Max Planck Institute for Metals Research) [Max Planck Institute for Metals Research

    2007-05-02

    Solid-liquid interfaces play an important role in many areas of current and future technologies, and in our biosphere. They play a key role in the development of nanofluidics and nanotribology, which sensitively depend on our knowledge of the microscopic structures and phenomena at the solid-liquid interface. The detailed understanding of how a fluid meets a wall is also a theoretical challenge. In particular, the phenomena at repulsive walls are of interest, since they affect many different phenomena, such as water-repellent surfaces or the role of the hydrophobic interaction in protein folding. Recent x-ray reflectivity studies of various solid-liquid interfaces have disclosed rather intriguiing phenomena, which will be discussed in this lecture: premelting of ice in contact with silica; liquid Pb in contact with Si; water in contact with hydrophobic surfaces. These experiments, carried out with high-energy x-ray microbeams, reveal detailed insight into the liquid density profile closest to the wall. A detailed insight into atomistic phenomena at solid-liquid interfaces is also a prerequisite in the microscopic control of electrochemical reactions at interfaces. Recent x-ray studies show the enormous future potential of such non-destructive analytical tools for the in situ observation of (electro-)chemical surface reactions. This lecture will review recent x-ray experiments on solid-liquid interfaces.

  14. Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency

    Energy.gov [DOE]

    Plug-in electric vehicle technologies are on their way to being even lighter, more powerful and more efficient with the advent of power inverters created by 3-D printing and novel semiconductors.

  15. "Printing" Tiny Batteries | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    ... Lewis' group has greatly expanded the capabilities of 3D printing. They have designed a broad range of functional inks-inks with useful chemical and electrical properties. And they ...

  16. Global Wind Day 2016 - AMO's Role in Applying 3D Printing to...

    Energy.gov [DOE] (indexed site)

    Global Wind Day 2016 AMOs Role in Applying 3D Printing to Wind Blade Mold Manufacturing Global Wind Day is a worldwide event that occurs annually on June 15 and is ...

  17. The 3D-Printed Shelby Cobra: Defining Rapid Innovation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    It's been hard to miss in the media and on its almost non-stop road tour, but AMO wanted you to know that our 3D-printed EV version of the 50th anniversary Shelby Cobra just left ...

  18. E-print Network Web Log News: Research Communications for Scientists...

    Office of Scientific and Technical Information (OSTI)

    Description This Web Log provides the latest information about changes to E-print Network ... questions, concerns and other input by using the Contact Us page. Web Log Archive

  19. Frequently Asked Questions (FAQ) for the E-print Network -- Energy...

    Office of Scientific and Technical Information (OSTI)

    ... The E-print Network pulls these vast and widely dispersed data together through a Deep Web ... available on the Web through a browse capability across more than ten thousand sites. ...

  20. Printing a Car: A Team Effort in Innovation | Department of Energy

    Energy Saver

    The story behind the realization of a unique project: the building of a 3D printed electric car, as told by team members. text version Media Coverage of the IMTS Event ...

  1. EERE Success Story-Just Plain Cool, the 3D Printed Shelby Cobra...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This innovative 3D printing process took just six weeks, and the final result was a glistening roadster fitted with a 100-kilowatt electric motor that can still go zero to 60 mph ...

  2. Researchers find 3-D printed parts to provide low-cost, custom...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Researchers find 3-D printed parts to provide low-cost, custom alternatives for laboratory equipment By Raphael Rosen February 26, 2015 Tweet Widget Google Plus One Share on ...

  3. Notice of Intent to Develop DOE G 436.1-1, Sustainable Print...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    promote energy security, protect the interests of taxpayers, and safeguard the health of the environment. Notice of Intent to Develop DOE G 436.1-1, Sustainable Print Management...

  4. Using liquid desiccant as a regenerable filter for capturing and deactivating contaminants

    DOEpatents

    Slayzak, Steven J.; Anderson, Ren S.; Judkoff, Ronald D.; Blake, Daniel M.; Vinzant, Todd B.; Ryan, Joseph P.

    2007-12-11

    A method, and systems for implementing such method, for purifying and conditioning air of weaponized contaminants. The method includes wetting a filter packing media with a salt-based liquid desiccant, such as water with a high concentration of lithium chloride. Air is passed through the wetted filter packing media and the contaminants in are captured with the liquid desiccant while the liquid desiccant dehumidifies the air. The captured contaminants are then deactivated in the liquid desiccant, which may include heating the liquid desiccant. The liquid desiccant is regenerated by applying heat to the liquid desiccant and then removing moisture. The method includes repeating the wetting with the regenerated liquid desiccant which provides a regenerable filtering process that captures and deactivates contaminants on an ongoing basis while also conditioning the air. The method may include filtration effectiveness enhancement by electrostatic or inertial means.

  5. OSTI's E-print Network continues rapid growth | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Office of Scientific & Technical Information NEWS MEDIA CONTACT: Cathey Daniels, (865) 576-9539 FOR IMMEDIATE RELEASE January 17, 2006 OSTI's E-print Network continues rapid growth Created by scientists for scientists, expanded 39 percent in past year Oak Ridge, TN - The E-print Network (www.osti.gov/eprints), a communications hub created by scientists for scientists worldwide, currently provides full-text searching of more than 730,000

  6. Intense X-rays expose tiny flaws in 3-D printed titanium that can lead to

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    breakage over time | Argonne National Laboratory Intense X-rays expose tiny flaws in 3-D printed titanium that can lead to breakage over time By Katie Elyce Jones * March 4, 2016 Tweet EmailPrint Titanium is strong but light - a desirable property among metals. In the twentieth century, titanium was used in military aircraft and equipment and commercial jets. Today, we find this tough and flexible metal all around us - in sports gear, tools, surgical and dental implants, prosthetics,

  7. Properties of Liquid Plutonium

    SciTech Connect

    Freibert, Franz J.; Mitchell, Jeremy N.; Schwartz, Daniel S.; Saleh, Tarik A.; Migliori, Albert

    2012-08-02

    Unalloyed polycrystalline Pu displays extreme thermal expansion behavior, i.e., {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} increases by 25% in volume and {delta} {yields} {var_epsilon} {yields} liquid decreases by 4.5% in volume. Thus, making it difficult to measure density into the liquid state. Dilatometer outfitted with CaF molten metal cell offers a proven capability to measure thermal expansion in molten metals, but has yet to be proven for Pu. Historic data from the liquid nuclear fuels program will prove extremely useful as a guide to future measurements. 3.3at% Ga changes Pu molten metal properties: 50% increase in viscosity and {approx}3% decrease in density. Fe may decrease the density by a small amount assuming an averaging of densities for Pu-Ga and Pu-Fe liquids. More recent Boivineau (2009) work needs some interpretation, but technique is being employed in (U,Pu)O{sub 2} nuclear fuels program (Pu Futures, 2012).

  8. Inkjet Printed Metallizations for Cu(In1-xGax)Se2 Photovoltaic Cells

    SciTech Connect

    Hersh, P. A.; Curtis, C. J.; van Hest, M. F. A. M.; Kreuder, J. J.; Pasquarelli, R.; Miednaer, A.; Ginley, D. S.

    2011-12-01

    This study reports the inkjet printing of Ag front contacts on Aluminum doped Zinc Oxide (AZO)/intrinsic Zinc Oxide (i-ZnO)/CdS/Cu(In{sub 1-x}Ga{sub x})Se{sub 2} (CIGS)/Mo thin film photovoltaic cells. The printed Ag contacts are being developed to replace the currently employed evaporated Ni/Al bi-layer contacts. Inkjet deposition conditions were optimized to reduce line resistivity and reduce contact resistance to the Al:ZnO layer. Ag lines printed at a substrate temperature of 200 C showed a line resistivity of 2.06 {mu}{Omega} {center_dot} cm and a contact resistance to Al:ZnO of 8.2 {+-} 0.2 m{Omega} {center_dot} cm{sup 2} compared to 6.93 {+-} 0.3 m{Omega} {center_dot} cm{sup 2} for thermally evaporated contacts. These deposition conditions were used to deposit front contacts onto high quality CIGS thin film photovoltaic cells. The heating required to print the Ag contacts caused the performance to degrade compared to similar devices with evaporated Ni/Al contacts that were not heated. Devices with inkjet printed contacts showed 11.4% conversion efficiency compared to 14.8% with evaporated contacts. Strategies to minimize heating, which is detrimental for efficiency, during inkjet printing are proposed.

  9. Liquid metal thermoacoustic engine

    SciTech Connect

    Swift, G.W.; Migliori, A.; Wheatley, J.C.

    1986-01-01

    We are studying a liquid metal thermoacoustic engine both theoretically and experimentally. This type of engine promises to produce large quantities of electrical energy from heat at modest efficiency with no moving parts. A sound wave is usually thought of as consisting of pressure oscillations, but always attendant to the pressure oscillation are temperature oscillations. The combination produces a rich variety of ''thermoacoustic'' effects. These effects are usually so small that they are never noticed in everyday life; nevertheless under the right circumstances they can be harnessed to produce powerful heat engines, heat pumps, and refrigerators. In our liquid metal thermoacoustic engine, heat flow from a high temperature source to a low temperature sink generates a high-amplitude standing acoustic wave in liquid sodium. This acoustic power is converted to electric power by a simple magnetohydrodynamic effect at the acoustic oscillation frequency. We have developed a detailed thermoacoustic theory applicable to this engine, and find that a reasonably designed liquid sodium engine operating between 700/sup 0/C and 100/sup 0/C should generate about 60 W/cm/sup 2/ of acoustic power at about 1/3 of Carnot's efficiency. Construction of a 3000 W-thermal laboratory model engine has just been completed, and we have exciting preliminary experimental results as of the time of preparation of this manuscript showing, basically, that the engine works. We have also designed and built a 1 kHz liquid sodium magnetohydrodynamic generator and have extensive measurements on it. It is now very well characterized both experimentally and theoretically. The first generator of its kind, it already converts acoustic power to electric power with 40% efficiency. 16 refs., 5 figs.

  10. ECO2M: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, Including Super- and Sub-Critical Conditions, and Phase Change Between Liquid and Gaseous CO2

    SciTech Connect

    Pruess, K.

    2011-04-01

    ECO2M is a fluid property module for the TOUGH2 simulator (Version 2.0) that was designed for applications to geologic storage of CO{sub 2} in saline aquifers. It includes a comprehensive description of the thermodynamics and thermophysical properties of H{sub 2}O - NaCl - CO{sub 2} mixtures, that reproduces fluid properties largely within experimental error for temperature, pressure and salinity conditions in the range of 10 C {le} T {le} 110 C, P {le} 600 bar, and salinity from zero up to full halite saturation. The fluid property correlations used in ECO2M are identical to the earlier ECO2N fluid property package, but whereas ECO2N could represent only a single CO{sub 2}-rich phase, ECO2M can describe all possible phase conditions for brine-CO{sub 2} mixtures, including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO{sub 2}. This allows for seamless modeling of CO{sub 2} storage and leakage. Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO{sub 2}-rich) phase, as well as two-and three-phase mixtures of aqueous, liquid CO{sub 2} and gaseous CO{sub 2} phases. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. TOUGH2/ECO2M is upwardly compatible with ECO2N and accepts ECO2N-style inputs. This report gives technical specifications of ECO2M and includes instructions for preparing input data. Code applications are illustrated by means of several sample problems, including problems that had been previously solved with TOUGH2/ECO2N.

  11. VOC and HAP recovery using ionic liquids

    SciTech Connect

    Michael R. Milota : Kaichang Li

    2007-05-29

    During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200°C (almost 400°F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120°C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy

  12. Imaging Liquids Using Microfluidic Cells

    SciTech Connect

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li

    2013-05-10

    Chemistry occurring in the liquid and liquid surface is important in many applications. Chemical imaging of liquids using vacuum based analytical techniques is challenging due to the difficulty in working with liquids with high volatility. Recent development in microfluidics enabled and increased our capabilities to study liquid in situ using surface sensitive techniques such as electron microscopy and spectroscopy. Due to its small size, low cost, and flexibility in design, liquid cells based on microfluidics have been increasingly used in studying and imaging complex phenomena involving liquids. This paper presents a review of microfluidic cells that were developed to adapt to electron microscopes and various spectrometers for in situ chemical analysis and imaging of liquids. The following topics will be covered including cell designs, fabrication techniques, unique technical features for vacuum compatible cells, and imaging with electron microscopy and spectroscopy. Challenges are summarized and recommendations for future development priority are proposed.

  13. Conversion of cellulosic wastes to liquid fuels

    SciTech Connect

    Kuester, J.L.

    1980-09-01

    The current status and future plans for a project to convert waste cellulosic (biomass) materials to quality liquid hydrocarbon fuels is described. The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, diesel fuel and/or high octane gasoline. A fluidized bed pyrolysis system is used for gasification. The pyrolyzer can be fluidized with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. The following tasks were specified in the statement of work for the contract period: (1) feedstock studies; (2) gasification system optimization; (3) waste stream characterization; and (4) liquid fuels synthesis. In addition, several equipment improvements were implemented.

  14. Liquid metal thermal electric converter

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  15. Liquid crystalline composites containing phyllosilicates

    DOEpatents

    Chaiko; David J.

    2007-05-08

    The present invention provides barrier films having reduced gas permeability for use in packaging and coating applications. The barrier films comprise an anisotropic liquid crystalline composite layer formed from phyllosilicate-polymer compositions. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while remaining transparent. Because of the ordering of the particles in the liquid crystalline composite, barrier films comprising liquid crystalline composites are particularly useful as barriers to gas transport.

  16. Historical Liquid Discharges and Outfalls

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Historical Liquid Discharges and Outfalls Historical Liquid Discharges and Outfalls During the 1940s and 1950s, untreated radioactive liquids were discharged to Pueblo and Los Alamos Canyons. August 1, 2013 Contamination from the Acid Canyon outfall has been clean up to below residential levels Contamination from the Acid Canyon outfall has been clean up to below residential levels During the 1940s and 1950s, untreated radioactive liquids were discharged to Pueblo and Los Alamos Canyons.

  17. Browse by Discipline -- E-print Network Subject Pathways: Biotechnolog...

    Office of Scientific and Technical Information (OSTI)

    Yang) - Department of Geological Sciences, University of Texas at Austin Yeh, T.-C. Jim (T.-C. Jim Yeh) - Department of Hydrology and Water Resources, University ...

  18. Browse by Discipline -- E-print Network Subject Pathways: Environmenta...

    Office of Scientific and Technical Information (OSTI)

    University of Texas at Austin Barfuss, Steven L. (Steven L. Barfuss) - Utah Water Research Laboratory, Utah State University Blumsack, Seth (Seth Blumsack) - Department of ...

  19. Browse by Discipline -- E-print Network Subject Pathways: Environmenta...

    Office of Scientific and Technical Information (OSTI)

    A. (Morton A. Barlaz) - Department of Civil, Construction, and Environmental ... Water Research Laboratory & Department of Civil and Environmental Engineering, Utah State ...

  20. Browse by Discipline -- E-print Network Subject Pathways: Biotechnolog...

    Office of Scientific and Technical Information (OSTI)

    ... (Rafael Hernndez-Walls) - Facultad de Ciencias Marinas, Universidad Autonoma de Baja California Hernes, Peter J. (Peter J. Hernes) - Department of Land, Air and Water ...

  1. High temperature liquid level sensor

    DOEpatents

    Tokarz, Richard D. (West Richland, WA)

    1983-01-01

    A length of metal sheathed metal oxide cable is perforated to permit liquid access to the insulation about a pair of conductors spaced close to one another. Changes in resistance across the conductors will be a function of liquid level, since the wetted insulation will have greater electrical conductivity than that of the dry insulation above the liquid elevation.

  2. Non-Aqueous Phase Liquid Calculator

    Energy Science and Technology Software Center

    2004-02-19

    Non-Aqueous Phase Liquid or "NPAL" is a term that most environmental professionals are familiar with because NAPL has been recognized in the literature as a significant source of groundwater contamination. There are two types of NAPL: DNAPL and LNAPL. DNAPL is a ‘dense’ non-aqueous phase liquid. In this context, dense means having a density greater than water (1.0 kg/L). Trichloroethylene (TCE) and tetrachioroethylene (PCE) are examples of DNAPL compounds. A compound that is heaver thanmore » water means this type of NAPL will sink in an aquifer. Conversely, LNAPL is a ‘light’ non-aqueous phase liquid with a density less than water, and will float on top of the aquifer. Examples of LNAPL’s are benzene and toluene. LNAPL or DNAPL often manifest as a complex, multi-component mixture of organic compounds that can occur in environmental media. Complex multi-component mixtures distributed in soil pore-air, pore-water, soil particles and in free phase complicate residual saturation of single and multi component NAPL compounds in soil samples. The model output also includes estimates of the NAPL mass and volume and other physical and chemical properties that may be useful for characterization, modeling, and remedial system design and operation. The discovery of NAPL in the aquifer usually leads to a focused characterization for possible sources of NAPL in the vadose zone using a variety of innovative technologies and characterization methods. Often, the analytical data will indicated the presence of NAPL, yet, the NAPL will go unrecognized. Failure to recognize the NAPL can be attributed to the complicated processes of inter-media transfer or a general lack of knowledge about the physical characteristics of complex organic mixtures in environmental samples.« less

  3. RHIC The Perfect Liquid

    ScienceCinema

    BNL

    2009-09-01

    Evidence to date suggests that gold-gold collisions the Relativistic Heavy Ion Collider at Brookhaven are indeed creating a new state of hot, dense matter, but one quite different and even more remarkable than had been predicted. Instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a "perfect" liquid.

  4. Liquid film target impingement scrubber

    DOEpatents

    McDowell, William J.; Coleman, Charles F.

    1977-03-15

    An improved liquid film impingement scrubber is provided wherein particulates suspended in a gas are removed by jetting the particle-containing gas onto a relatively small thin liquid layer impingement target surface. The impingement target is in the form of a porous material which allows a suitable contacting liquid from a pressurized chamber to exude therethrough to form a thin liquid film target surface. The gas-supported particles collected by impingement of the gas on the target are continuously removed and flushed from the system by the liquid flow through each of a number of pores in the target.

  5. The Structure of the First Coordination Shell in Water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the first hydration shell of a water molecule in bulk liquid water by probing its electronic structure using X-ray Absorption Spectroscopy (XAS) and X-ray Raman Scattering (XRS). ...

  6. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOEpatents

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  7. Water freezing and ice melting

    DOE PAGES [OSTI]

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubic ice↔liquid,more » with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.« less

  8. BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Pressure Steam Reforming of Bio-Derived Liquids S. Ahmed, S. Lee, D. Papadias, and R. Kumar November 6, 2007 Laurel, MD Research sponsored by the Hydrogen, Fuel Cells, and Infrastructure Technologies Program of DOE's Office of Energy Efficiency and Renewable Energy Rationale and objective Rationale „ Steam reforming of liquid fuels at high pressures can reduce hydrogen compression costs - Much less energy is needed to pressurize liquids (fuel and water) than compressing gases (reformate or

  9. Yosemite Waters Vehicle Evaluation Report: Final Results

    SciTech Connect

    Eudy, L.; Barnitt, R.; Alleman, T. L.

    2005-08-01

    Document details the evaluation of Fischer-Tropsch diesel, a gas-to-liquid fuel, in medium-duty delivery vehicles at Yosemite Waters. The study was conducted by NREL at the company's Fullerton, California, bottling headquarters.

  10. Browse by Discipline -- E-print Network Subject Pathways: Plasma...

    Office of Scientific and Technical Information (OSTI)

    G H I J K L M N O P Q R S T U V W X Y Z Fitzpatrick, Rob (Rob Fitzpatrick) - Land and Water Division, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Flaxman, ...

  11. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1989-01-01

    This invention relates to a method for improving the performance of liquid embrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selected for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  12. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1988-01-01

    This invention relates to a method for improving the performance of liquid membrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selective for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  13. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    DOE PAGES [OSTI]

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-06-05

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfectmore » light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.« less

  14. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    SciTech Connect

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-06-05

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfect light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.

  15. Liquid methanol under a static electric field

    SciTech Connect

    Cassone, Giuseppe; Giaquinta, Paolo V.; Saija, Franz; Saitta, A. Marco

    2015-02-07

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (?0.31 V/) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/, as is also the case of water, but the resulting ionic conductivity (?0.40 S cm{sup ?1}) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  16. Liquid class predictor for liquid handling of complex mixtures

    DOEpatents

    Seglke, Brent W.; Lekin, Timothy P.

    2008-12-09

    A method of establishing liquid classes of complex mixtures for liquid handling equipment. The mixtures are composed of components and the equipment has equipment parameters. The first step comprises preparing a response curve for the components. The next step comprises using the response curve to prepare a response indicator for the mixtures. The next step comprises deriving a model that relates the components and the mixtures to establish the liquid classes.

  17. Decommissioning and Dismantling of Liquid Waste Storage and Liquid Waste Treatment Facility from Paldiski Nuclear Site, Estonia

    SciTech Connect

    Varvas, M.; Putnik, H.; Johnsson, B.

    2006-07-01

    The Paldiski Nuclear Facility in Estonia, with two nuclear reactors was owned by the Soviet Navy and was used for training the navy personnel to operate submarine nuclear reactors. After collapse of Soviet Union the Facility was shut down and handed over to the Estonian government in 1995. In co-operation with the Paldiski International Expert Reference Group (PIERG) decommission strategy was worked out and started to implement. Conditioning of solid and liquid operational waste and dismantling of contaminated installations and buildings were among the key issues of the Strategy. Most of the liquid waste volume, remained at the Facility, was processed in the frames of an Estonian-Finnish co-operation project using a mobile wastewater purification unit NURES (IVO International OY) and water was discharged prior to the site take-over. In 1999-2002 ca 120 m{sup 3} of semi-liquid tank sediments (a mixture of ion exchange resins, sand filters, evaporator and flocculation slurry), remained after treatment of liquid waste were solidified in steel containers and stored into interim storage. The project was carried out under the Swedish - Estonian co-operation program on radiation protection and nuclear safety. Contaminated installations in buildings, used for treatment and storage of liquid waste (Liquid Waste Treatment Facility and Liquid Waste Storage) were then dismantled and the buildings demolished in 2001-2004. (authors)

  18. Flow-enhanced solution printing of all-polymer solar cells

    SciTech Connect

    Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; Shaw, Leo; Wang, Cheng; Park, Steve; Guo, Yikun; Reinspach, Julia A.; Gu, Kevin; Gu, Xiaodan; Tee, Benjamin C. K.; Pang, Changhyun; Yan, Hongping; Zhao, Dahui; Toney, Michael F.; Mannsfeld, Stefan C. B.; Bao, Zhenan

    2015-08-12

    Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a similar to 90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. However, we expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.

  19. Evaluation of a recycling process for printed circuit board by physical separation and heat treatment

    SciTech Connect

    Fujita, Toyohisa; Ono, Hiroyuki; Dodbiba, Gjergj; Yamaguchi, Kunihiko

    2014-07-15

    Highlights: • The parts mounted on printed circuit board (PCB) were liberated by underwater explosion and mechanical crushing. • The crushed PCB without surface-mounted parts was carbonized under inert atmosphere at 873 K to recover copper. • The multi-layered ceramic capacitors including nickel was carbonized at 873 K to recover nickel by the magnetic separation. • The tantalum powders were recovered from the molded resins by heat treatment at 723 and 823 K in air atmosphere and screening. • Energy and treatment cost of new process increased, however, the environmental burden decreased comparing conventional one. - Abstract: Printed circuit boards (PCBs) from discarded personal computer (PC) and hard disk drive were crushed by explosion in water or mechanical comminution in order to disintegrate the attached parts. More parts were stripped from PCB of PC, composed of epoxy resin; than from PCB of household appliance, composed of phenol resin. In an attempt to raise the copper grade of PCB by removing other components, a carbonization treatment was investigated. The crushed PCB without surface-mounted parts was carbonized under a nitrogen atmosphere at 873–1073 K. After screening, the char was classified by size into oversized pieces, undersized pieces and powder. The copper foil and glass fiber pieces were liberated and collected in undersized fraction. The copper foil was liberated easily from glass fiber by stamping treatment. As one of the mounted parts, the multi-layered ceramic capacitors (MLCCs), which contain nickel, were carbonized at 873 K. The magnetic separation is carried out at a lower magnetic field strength of 0.1 T and then at 0.8 T. In the +0.5 mm size fraction the nickel grade in magnetic product was increased from 0.16% to 6.7% and the nickel recovery is 74%. The other useful mounted parts are tantalum capacitors. The tantalum capacitors were collected from mounted parts. The tantalum-sintered bodies were separated from molded resins

  20. Portable liquid collection electrostatic precipitator

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Halverson, Justin E.

    2005-10-18

    A portable liquid collection electrostatic collection precipitator for analyzing air is provided which is a relatively small, self-contained device. The device has a tubular collection electrode, a reservoir for a liquid, and a pump. The pump pumps the liquid into the collection electrode such that the liquid flows down the exterior of the collection electrode and is recirculated to the reservoir. An air intake is provided such that air to be analyzed flows through an ionization section to ionize analytes in the air, and then flows near the collection electrode where ionized analytes are collected. A portable power source is connected to the air intake and the collection electrode. Ionizable constituents in the air are ionized, attracted to the collection electrode, and precipitated in the liquid. The precipitator may also have an analyzer for the liquid and may have a transceiver allowing remote operation and data collection.

  1. Integrated photoelectrochemical cell and system having a liquid electrolyte

    DOEpatents

    Deng, Xunming; Xu, Liwei

    2010-07-06

    An integrated photoelectrochemical (PEC) cell generates hydrogen and oxygen from water while being illuminated with radiation. The PEC cell employs a liquid electrolyte, a multi-junction photovoltaic electrode, and a thin ion-exchange membrane. A PEC system and a method of making such PEC cell and PEC system are also disclosed.

  2. Supported liquid membrane electrochemical separators

    DOEpatents

    Pemsler, J. Paul; Dempsey, Michael D.

    1986-01-01

    Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

  3. LIQUID METAL COMPOSITIONS CONTAINING URANIUM

    DOEpatents

    Teitel, R.J.

    1959-04-21

    Liquid metal compositions containing a solid uranium compound dispersed therein is described. Uranium combines with tin to form the intermetallic compound USn/sub 3/. It has been found that this compound may be incorporated into a liquid bath containing bismuth and lead-bismuth components, if a relatively small percentage of tin is also included in the bath. The composition has a low thermal neutron cross section which makes it suitable for use in a liquid metal fueled nuclear reactor.

  4. Liquid monobenzoxazine based resin system

    DOEpatents

    Tietze, Roger; Nguyen, Yen-Loan; Bryant, Mark

    2014-10-07

    The present invention provides a liquid resin system including a liquid monobenzoxazine monomer and a non-glycidyl epoxy compound, wherein the weight ratio of the monobenzoxazine monomer to the non-glycidyl epoxy compound is in a range of about 25:75 to about 60:40. The liquid resin system exhibits a low viscosity and exceptional stability over an extended period of time making its use in a variety of composite manufacturing methods highly advantageous.

  5. Electron Bubbles in Liquid Helium

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electron Bubbles in Liquid Helium and Quantum Mechanics Humphrey J. Maris Brown University September 16, 2015 4:00 p.m. An electron entering liquid helium forces open a cavity referred to as an electron bubble. These objects have been studied in many past experiments and appear to be well understood. However, experiments have revealed that in addition to these normal electron bubbles there are other negatively charged objects in liquid helium. Despite much effort the structure of these so-called

  6. SU-E-J-49: Design and Fabrication of Custom 3D Printed Phantoms for Radiation Therapy Research and Quality Assurance

    SciTech Connect

    Jenkins, C; Xing, L

    2015-06-15

    Purpose The rapid proliferation of affordable 3D printing techniques has enabled the custom fabrication of items ranging from paper weights to medical implants. This study investigates the feasibility of utilizing the technology for developing novel phantoms for use in radiation therapy quality assurance (QA) procedures. Methods A phantom for measuring the geometric parameters of linear accelerator (LINAC) on-board imaging (OBI) systems was designed using SolidWorks. The design was transferred to a 3D printer and fabricated using a fused deposition modeling (FDM) technique. Fiducials were embedded in the phantom by placing 1.6 mm diameter steel balls in predefined holes and securing them with silicone. Several MV and kV images of the phantom were collected and the visibility and geometric accuracy were evaluated. A second phantom, for use in the experimental evaluation of a high dose rate (HDR) brachytherapy dosimeter, was designed to secure several applicator needles in water. The applicator was fabricated in the same 3D printer and used for experiments. Results The general accuracy of printed parts was determined to be 0.1 mm. The cost of materials for the imaging and QA phantoms were $22 and $5 respectively. Both the plastic structure and fiducial markers of the imaging phantom were visible in MV and kV images. Fiducial marker locations were determined to be within 1mm of desired locations, with the discrepancy being attributed to the fiducial attachment process. The HDR phantom secured the applicators within 0.5 mm of the desired locations. Conclusion 3D printing offers an inexpensive method for fabricating custom phantoms for use in radiation therapy quality assurance. While the geometric accuracy of such parts is limited compared to more expensive methods, the phantoms are still highly functional and provide a unique opportunity for rapid fabrication of custom phantoms for use in radiation therapy QA and research.

  7. Estimating the aqueous solubility of aromatic hydrocarbons by high performance liquid chromatography

    SciTech Connect

    Whitehouse, B.G.; Cooke, R.C.

    1982-01-01

    Empirical equations which correlate high performance liquid chromatography capacity factor (k') to aromatic hydrocarbon aqueous solubility are developed. The correlations of k' to octanol-water partition coefficients, and k' to hydrocarbon surface area are also shown.

  8. Process for preparing liquid wastes

    DOEpatents

    Oden, Laurance L.; Turner, Paul C.; O'Connor, William K.; Hansen, Jeffrey S.

    1997-01-01

    A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

  9. Natural Gas Plant Liquids Production

    Gasoline and Diesel Fuel Update

    Liquids Production (Million Barrels) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012 ...

  10. Historical Liquid Discharges and Outfalls

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    liquids were discharged to Pueblo and Los Alamos Canyons. August 1, 2013 Contamination from the Acid Canyon outfall has been clean up to below residential levels...

  11. EXPERIMENTAL LIQUID METAL FUEL REACTOR

    DOEpatents

    Happell, J.J.; Thomas, G.R.; Denise, R.P.; Bunts, J.L. Jr.

    1962-01-23

    A liquid metal fuel nuclear fission reactor is designed in which the fissionable material is dissolved or suspended in a liquid metal moderator and coolant. The liquid suspension flows into a chamber in which a critical amount of fissionable material is obtained. The fluid leaves the chamber and the heat of fission is extracted for power or other utilization. The improvement is in the support arrangement for a segrnented graphite core to permit dif ferential thermal expansion, effective sealing between main and blanket liquid metal flows, and avoidance of excessive stress development in the graphite segments. (AEC)

  12. Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays

    DOEpatents

    Rogers, John A; Nuzzo, Ralph; Kim, Hoon-sik; Brueckner, Eric; Park, Sang Il; Kim, Rak Hwan

    2014-10-21

    Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.

  13. Using 3D Printing to Redesign Santa's Sleigh | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Using 3D Printing to Redesign Santa's Sleigh Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Using 3D Printing to Redesign Santa's Sleigh Thomas The Elf 2013.12.03 Hello Everyone! I am so excited to be back this year to share another way GE researchers are taking part in the holiday cheer. In the past, we've utilized GE

  14. Connect to researchers around the world at OSTI's E-Print Network | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information Connect to researchers around the world at OSTI's E-Print Network Back to the OSTI News Listing for 2008 You can browse more than 28,500 Web sites of researchers from around the world, read their abstracts, download their papers, and explore their research institutions, all at OSTI's E-print Network. This rapidly growing service is free and open to the public. Simply go to the browse by disciplines page, and select from an

  15. Labs in NNSA lead the way in 3D printing - the next industrial revolution

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration | (NNSA) Labs in NNSA lead the way in 3D printing - the next industrial revolution Monday, June 13, 2016 - 10:29am The power to create useful items from raw materials recently entered regular homes via small-scale 3D-printers, but the concept of additive manufacturing isn't so new. From defense, aerospace, automotive, medicine, and metals manufacturing, the capabilities enabled by 3D printing have wide-reaching effects. Additive manufacturing builds

  16. Total internal reflection fluorescence spectrometer to study dynamic adsorption phenomena at liquid/liquid interfaces

    SciTech Connect

    Tupy, M.J.; Blanch, H.W.; Radke, C.J.

    1998-08-01

    Adsorption at oil/water interfaces affects the performance of many industrial systems including oil recovery, extraction processes, cosmetic products, and food technology. However, no technique currently available can monitor adsorption dynamics using molecularly sensitive methods. The authors have constructed a novel total internal reflection fluorescence spectrometer (TIRFS) to follow dynamic adsorption events at the oil/water interface. The TIRFS monitors changes in fluorescence intensity and fluorescence spectra over time by maintaining an optical focus on the fluid interface during adsorption and desorption processes. Kinetic adsorption phenomena are examined by altering the composition of the aqueous phase and recording surface fluorescence response without mechanically disturbing the fluid/fluid interface. The spectrometer captures changes in the fluorescence intensity over tenths of seconds and maintains optical focus for periods of days. Mass transport of fluorescing surface-active material to and from the oil/water interface is accurately modeled using the simple one-dimensional diffusion equation. The geometry designed for this apparatus can be applied to other light-based techniques studying adsorption at liquid/liquid interfaces. Here, the authors apply the TIRFS apparatus to the study of {beta}-casein adsorption and desorption at an aliphatic oil/water interface. The observed increase in interfacial fluorescence due to {beta}-casein adsorption is slower than the diffusive flux, and desorption is found to be very slow if not irreversible. The TIRF spectrum indicates interaction of sorbed {beta}-casein with the oil phase and subsequent rearrangement of the native structure.

  17. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour

    DOE PAGES [OSTI]

    Hou, Xu; Hu, Yuhang; Grinthal, Alison; Khan, Mughees; Aizenberg, Joanna

    2015-03-04

    Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. In addition, the ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems1-10.But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries6,11–17, a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and foulingmore » is nearly inevitable.Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state.Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold—the pressure needed to open the pores—can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping.These capabilities allow us to dynamically modulate gas–liquid sorting in a microfluidic flow and to separate a three-phase air water–oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.« less

  18. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour

    SciTech Connect

    Hou, Xu; Hu, Yuhang; Grinthal, Alison; Khan, Mughees; Aizenberg, Joanna

    2015-03-04

    Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. In addition, the ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems1-10.But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries6,11–17, a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and fouling is nearly inevitable.Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state.Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold—the pressure needed to open the pores—can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping.These capabilities allow us to dynamically modulate gas–liquid sorting in a microfluidic flow and to separate a three-phase air water–oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.

  19. Liquid crystal polyester thermosets

    DOEpatents

    Benicewicz, Brian C.; Hoyt, Andrea E.

    1992-01-01

    The present invention provides (1) curable liquid crystalline polyester monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 where R.sup.1 and R.sup.2 are radicals selected from the group consisting of maleimide, substituted maleimide, nadimide, substituted naimide, ethynyl, and (C(R.sup.3).sub.2).sub.2 where R.sup.3 is hydrogen with the proviso that the two carbon atoms of (C(R.sup.3).sub.2).sub.2 are bound on the aromatic ring of A.sup.1 or A.sup.3 to adjacent carbon atoms, A.sup.1 and A.sup.3 are 1,4-phenylene and the same where said group contains one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro lower alkyl, e.g., methyl, ethyl, or propyl, alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl, e.g., trifluoromethyl, pentafluoroethyl and the like, A.sup.2 is selected from the group consisting of 1,4-phenylene, 4,4'-biphenyl, 2,6-naphthylene and the same where said groups contain one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro, lower alkyl, e.g., methyl, ethyl, and propyl, lower alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl or fluoroalkoxy, e.g., trifluoromethyl, pentafluoroethyl and the like, and B.sup.1 and B.sup.2 are selected from the group consisting of --C(O)--O-- and --O--C(O)--, (2) thermoset liquid crystalline polyester compositions comprised of heat-cured segments derived from monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 as described above, (3) curable blends of at least two of the polyester monomers and (4) processes of preparing the curable liquid crystalline polyester monomers.

  20. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    SciTech Connect

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  1. Browse by Discipline -- E-print Network Subject Pathways: Plasma...

    Office of Scientific and Technical Information (OSTI)

    V W X Y Z Go back to Individual Researchers Collections: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z U.S. Geological Survey, National Water-Quality Assessment Program, ...

  2. Proceedings of the international water conference

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the papers given at a conference on water treatment methods for power plants. Topics considered at the conference included the counter-current regeneration system at the Avon Lake Station, dissolved hydrogen monitors for pressurized water reactors, vanadium removal from oil-fired powered plant waste waters, EPRI guidelines of fossil plant water chemistry, ash transport systems, a waste water treatment system for a coal-fired generation station, an inorganic cation exchange for the purification of nuclear waste streams, water chemistry studies using an online ion chromatographic analyzer, dissolved oxygen control, a liquid waste treatment system, and water treatment facilities for cogeneration plants.

  3. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer

  4. Liquid-permeable electrode

    DOEpatents

    Folser, George R.

    1980-01-01

    Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

  5. A fresh look at coal-derived liquid fuels

    SciTech Connect

    Paul, A.D.

    2009-01-15

    35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

  6. Physicochemical properties and toxicities of hydrophobicpiperidinium and pyrrolidinium ionic liquids

    SciTech Connect

    Salminen, Justin; Papaiconomou, Nicolas; Kumar, R. Anand; Lee,Jong-Min; Kerr, John; Newman, John; Prausnitz, John M.

    2007-06-25

    Some properties are reported for hydrophobic ionic liquids (IL) containing 1-methyl-1-propyl pyrrolidinium [MPPyrro]{sup +}, 1-methyl-1-butyl pyrrolidinium [MBPyrro]{sup +}, 1-methyl-1-propyl piperidinium [MPPip]{sup +}, 1-methyl-1-butyl piperidinium [MBPip]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPyrro]{sup +} and 1-methyl-1-octylpiperidinium [MOPip]{sup +} cations. These liquids provide new alternatives to pyridinium and imidazolium ILs. High thermal stability of an ionic liquid increases safety in applications like rechargeable lithium-ion batteries and other electrochemical devices. Thermal properties, ionic conductivities, viscosities, and mutual solubilities with water are reported. In addition, toxicities of selected ionic liquids have been measured using a human cancer cell-line. The ILs studied here are sparingly soluble in water but hygroscopic. We show some structure-property relationships that may help to design green solvents for specific applications. While ionic liquids are claimed to be environmentally-benign solvents, as yet few data have been published to support these claims.

  7. Method of foaming a liquid metal

    DOEpatents

    Fischer, Albert K.; Johnson, Carl E.

    1980-01-01

    The addition of a small quantity of barium to liquid metal NaK or sodium has been found to promote foam formation and improve bubble retention in the liquid metal. A stable liquid metal foam will provide a more homogeneous liquid metal flow through the channel of a two-phase liquid metal MHD power generator to improve operating efficiency.

  8. Heavy liquid metals: Research programs at PSI

    SciTech Connect

    Takeda, Y.

    1996-06-01

    The author describes work at PSI on thermohydraulics, thermal shock, and material tests for mechnical properties. In the presentation, the focus is on two main programs. (1) SINQ LBE target: The phase II study program for SINQ is planned. A new LBE loop is being constructed. The study has the following three objectives: (a) Pump study - design work on an electromagnetic pump to be integrated into the target. (b) Heat pipe performance test - the use of heat pipes as an additional component of the target cooling system is being considered, and it may be a way to futher decouple the liquid metal and water coolant loops. (c) Mixed convection experiment - in order to find an optimal configuration of the additional flow guide for window cooling, mixed convection around the window is to be studied. The experiment will be started using water and then with LBE. (2) ESS Mercury target: For ESS target study, the following experimental studies are planned, some of which are exampled by trial experiments. (a) Flow around the window: Flow mapping around the hemi-cylindrical window will be made for optimising the flow channels and structures, (b) Geometry optimisation for minimizing a recirculation zone behind the edge of the flow separator, (c) Flow induced vibration and buckling problem for a optimised structure of the flow separator and (d) Gas-liquid two-phase flow will be studied by starting to establish the new experimental method of measuring various kinds of two-phase flow characteristics.

  9. Lithium-loaded liquid scintillators

    DOEpatents

    Dai, Sheng; Kesanli, Banu; Neal, John S.

    2012-05-15

    The invention is directed to a liquid scintillating composition containing (i) one or more non-polar organic solvents; (ii) (lithium-6)-containing nanoparticles having a size of up to 10 nm and surface-capped by hydrophobic molecules; and (iii) one or more fluorophores. The invention is also directed to a liquid scintillator containing the above composition.

  10. Taylor Instability of Incompressible Liquids

    DOE R&D Accomplishments

    Fermi, E.; von Neumann, J.

    1955-11-01

    A discussion is presented in simplified form of the problem of the growth of an initial ripple on the surface of an incompressible liquid in the presence of an acceleration, g, directed from the outside into the liquid. The model is that of a heavy liquid occupying at t = 0 the half space above the plane z = 0, and a rectangular wave profile is assumed. The theory is found to represent correctly one feature of experimental results, namely the fact that the half wave of the heavy liquid into the vacuum becomes rapidly narrower while the half wave pushing into the heavy liquid becomes more and more blunt. The theory fails to account for the experimental results according to which the front of the wave pushing into the heavy liquid moves with constant velocity. The case of instability at the boundary of 2 fluids of different densities is also explored. Similar results are obtained except that the acceleration of the heavy liquid into the light liquid is reduced.

  11. Magnetically focused liquid drop radiator

    DOEpatents

    Botts, Thomas E. (Fairfax, VA); Powell, James R. (Shoreham, NY); Lenard, Roger (Redondo Beach, CA)

    1986-01-01

    A magnetically focused liquid drop radiator for application in rejecting rgy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  12. Magnetically focused liquid drop radiator

    DOEpatents

    Botts, T.E.; Powell, J.R.; Lenard, R.

    1984-12-10

    A magnetically focused liquid drop radiator for application in rejecting energy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  13. The Liquid Argon Purity Demonstrator

    SciTech Connect

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  14. Method for treating liquid wastes

    DOEpatents

    Katti, K.V.; Volkert, W.A.; Singh, P.; Ketring, A.R.

    1995-12-26

    The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering {sup 99}Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of {sup 99}TcO{sub 4}{sup {minus}} from aqueous solutions into organic solvents or mixed organic/polar media, extraction of {sup 99}Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester {sup 99}Tc from those liquids. 6 figs.

  15. Method for treating liquid wastes

    DOEpatents

    Katti, Kattesh V.; Volkert, Wynn A.; Singh, Prahlad; Ketring, Alan R.

    1995-01-01

    The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering .sup.99 Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of .sup.99 TcO.sub.4.sup.- from aqueous solutions into organic solvents or mixed organic/polar media, extraction of .sup.99 Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester .sup.99 Tc from those liquids.

  16. World's First 3-D Printed Car | Department of Energy

    Energy Saver

    Workshop on Condensing Heating and Water Heating Equipment Thursday, October 9, 2014 List of Attendees Organization/Attendees DOE - John Cymbalsky - Ashley Armstrong - Johanna Hariharan AGA - Kathryn Clay - Rick Murphy - Lisa Dundon APGA - Dave Schryver - Bud Miller Gas Technology Institute - Neil Leslie Washington Gas Light - Melissa Adams - Kevin Dunn ACEEE - Harvey Sachs ASAP - Andrew deLaski ASE - Rodney Sobin NRDC - Elizabeth Noll AHRI - Frank Stanonik ACCA - Charlie McCrudden - Glenn

  17. Guidelines for waste reduction and recycling: Metal finishing, electroplating, printed circuit board manufacturing

    SciTech Connect

    Not Available

    1989-07-01

    The guidance manual describes waste reduction techniques for metal finishing, metal fabricating, electroplating, and printed circuitboard manufacturing operations. Techniques which can be applied to a wide range of industrial processes and those which are process-specific are discussed. Evaporation, reverse osmosis, ion exchange, electrodialysis, ultrafiltration, and electrolytic recovery are described. The manual also describes waste reduction assessment procedures.

  18. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    DOE PAGES [OSTI]

    Maiti, A.; Small, W.; Lewicki, J.; Weisgraber, T. H.; Duoss, E. B.; Chinn, S. C.; Pearson, M. A.; Spadaccini, C. M.; Maxwell, R. S.; Wilson, T. S.

    2016-04-27

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curvesmore » predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. As a result, this indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.« less

  19. Screen printed silver top electrode for efficient inverted organic solar cells

    SciTech Connect

    Kim, Junwoo; Duraisamy, Navaneethan; Lee, Taik-Min; Kim, Inyoung; Choi, Kyung-Hyun

    2015-10-15

    Highlights: • Screen printing of silver pattern. • X-ray diffraction pattern confirmed the face centered cubic structure of silver. • Uniform surface morphology of silver pattern with sheet resistance of 0.06 Ω/sq. • The power conversion efficiency of fabricated solar cell is found to be 2.58%. - Abstract: The present work is mainly focused on replacement of the vacuum process for top electrode fabrication in organic solar cells. Silver top electrode deposited through solution based screen printing on pre-deposited polymeric thin film. The solution based printing technology provides uniform top electrode without damaging the underlying organic layers. The surface crystallinity and surface morphology of silver top electrode are examined through X-ray diffraction, field-emission scanning electron microscope and atomic force microscope. The purity of silver is examined through X-ray energy dispersive spectroscopy. The top electrode exhibits face centered cubic structure with homogeneous morphology. The sheet resistance of top electrode is found to be 0.06 Ω/sq and an average pattern thickness of ∼15 μm. The power conversion efficiency is 2.58%. Our work demonstrates that the solution based screen printing is a significant role in the replacement of vacuum process for the fabrication of top electrode in organic solar cells.

  20. Assessing the operational life of flexible printed boards intended for continuous flexing applications : a case study.

    SciTech Connect

    Beck, David Franklin

    2011-01-01

    Through the vehicle of a case study, this paper describes in detail how the guidance found in the suite of IPC (Association Connecting Electronics Industries) publications can be applied to develop a high level of design assurance that flexible printed boards intended for continuous flexing applications will satisfy specified lifetime requirements.

  1. Preparation and purification of ionic liquids and precursors

    DOEpatents

    Burrell, Anthony K.; Warner, Benjamin P.; McCleskey, T. Mark; Agrawal, Anoop

    2010-07-27

    Substantially pure ionic liquids and ionic liquid precursors were prepared. The substantially pure ionic liquid precursors were used to prepare substantially pure ionic liquids.

  2. Water Quality

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

  3. Process for removing sulfate anions from waste water

    DOEpatents

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  4. Hydrotreating of coal-derived liquids

    SciTech Connect

    Lott, S.E.; Stohl, F.V.; Diegert, K.V.

    1995-12-31

    To develop a database relating hydrotreating parameters to feed and product quality by experimentally evaluating options for hydrotreating whole coal liquids, distillate cuts of coal liquids, petroleum, and blends of coal liquids with petroleum.

  5. Influence of the surface liquid film on cylinder icing under marine conditions

    SciTech Connect

    Lozowski, E.P.; Kobos, A.M.; Kachurin, L.G.

    1996-05-01

    A new steady-state icing model is presented which explicitly takes into account the dynamics and thermodynamics of a liquid film on the ice accretion surface under high liquid fluxes. The film is generated by excess unfrozen impinging liquid, is set in motion by the aerodynamic shear stress, and is eventually shed. In order to keep the model simple, it is formulated for a rotating cylinder subjected to a continuous supercooled freshwater spray. The model is used to explore the physics of the liquid film, and confirms that the film is thin and laminar except possibly under extreme liquid fluxes. It predicts supercooling of several degrees at the film surface, in agreement with recent observations. Further, the model is used to investigate the dependence of the icing rate on the following parameters: liquid water content, air temperature, wind speed, spray temperature, cylinder diameter, and heat transfer coefficient.

  6. Emerging Technologies in the Built Environment: Geographic Information Science (GIS), 3D Printing, and Additive Manufacturing

    SciTech Connect

    New, Joshua Ryan

    2014-01-01

    Abstract 1: Geographic information systems emerged as a computer application in the late 1960s, led in part by projects at ORNL. The concept of a GIS has shifted through time in response to new applications and new technologies, and is now part of a much larger world of geospatial technology. This presentation discusses the relationship of GIS and estimating hourly and seasonal energy consumption profiles in the building sector at spatial scales down to the individual parcel. The method combines annual building energy simulations for city-specific prototypical buildings and commonly available geospatial data in a GIS framework. Abstract 2: This presentation focuses on 3D printing technologies and how they have rapidly evolved over the past couple of years. At a basic level, 3D printing produces physical models quickly and easily from 3D CAD, BIM (Building Information Models), and other digital data. Many AEC firms have adopted 3D printing as part of commercial building design development and project delivery. This presentation includes an overview of 3D printing, discusses its current use in building design, and talks about its future in relation to the HVAC industry. Abstract 3: This presentation discusses additive manufacturing and how it is revolutionizing the design of commercial and residential facilities. Additive manufacturing utilizes a broad range of direct manufacturing technologies, including electron beam melting, ultrasonic, extrusion, and laser metal deposition for rapid prototyping. While there is some overlap with the 3D printing talk, this presentation focuses on the materials aspect of additive manufacturing and also some of the more advanced technologies involved with rapid prototyping. These technologies include design of carbon fiber composites, lightweight metals processing, transient field processing, and more.

  7. Liquid sodium dip seal maintenance system

    DOEpatents

    Briggs, Richard L.; Meacham, Sterling A.

    1980-01-01

    A system for spraying liquid sodium onto impurities associated with liquid dip seals of nuclear reactors. The liquid sodium mixing with the impurities dissolves the impurities in the liquid sodium. The liquid sodium having dissolved and diluted the impurities carries the impurities away from the site thereby cleaning the liquid dip seal and surrounding area. The system also allows wetting of the metallic surfaces of the dip seal thereby reducing migration of radioactive particles across the wetted boundary.

  8. Method of measuring a liquid pool volume

    DOEpatents

    Garcia, Gabe V.; Carlson, Nancy M.; Donaldson, Alan D.

    1991-01-01

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid.

  9. Dielectric liquid pulsed-power switch

    DOEpatents

    Christophorou, Loucas G.; Faidas, Homer

    1990-01-01

    This disclosure identifies dielectric liquids for use as opening and closing switching media in pulsed power technology, and describes a dielectric-liquid-pulsed-power switch empolying flashlamps.

  10. LiquidMaize LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: LiquidMaize, LLC Place: Denver, Colorado Zip: 80237 Product: LiquidMaize is an ethanol development and management company that builds, owns, and operates ethanol plants...

  11. "Radiative Liquid Lithium (metal) Divertor" Inventor..-- Masayuki...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    "Radiative Liquid Lithium (metal) Divertor" Inventor..-- Masayuki Ono The invention utilizes liquid lithium as a radiative material. The radiative process greatly reduces the ...

  12. Watching a Liquid-Crystal Helix Unwind

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    science. Introducing molecular chirality into a liquid crystal may lead to a twisting force that can modify the equilibrium state usually observed in liquid crystals, resulting...

  13. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. ... organic base catalysts for arene hydrogenation and the hydrotreating of the coal liquids. ...

  14. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. ... organic base catalysts for arene hydrogenation and the hydrotreating of the coal liquids. ...

  15. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. ... Task 2, organic base-catalyzed arene hydrogenation and hydrotreating of the coal liquids. ...

  16. Air Liquide Hydrogen Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hydrogen Energy Jump to: navigation, search Logo: Air Liquide Hydrogen Energy Name: Air Liquide Hydrogen Energy Address: 6, Rue Cognacq-Jay Place: Paris, France Zip: 75321 Sector:...

  17. Liquid chromatographic extraction medium

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1994-09-13

    A method and apparatus are disclosed for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water. 1 fig.

  18. Liquid chromatographic extraction medium

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1994-01-01

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  19. Hydrophobic ionic liquids

    DOEpatents

    Koch, Victor R.; Nanjundiah, Chenniah; Carlin, Richard T.

    1998-01-01

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, and R.sub.6 are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F--, Cl--, CF.sub.3 --, SF.sub.5 --, CF.sub.3 S--, (CF.sub.3).sub.2 CHS-- or (CF.sub.3).sub.3 CS--; and X.sup.- is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 .ANG..sup.3.

  20. Hydrophobic ionic liquids

    DOEpatents

    Koch, V.R.; Nanjundiah, C.; Carlin, R.T.

    1998-10-27

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas shown in a diagram wherein R{sub 1}, R{sub 2}, R{sub 3}, R{sub 4}, R{sub 5}, and R{sub 6} are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F-, Cl-, CF{sub 3}-, SF{sub 5}-, CF{sub 3}S-, (CF{sub 3}){sub 2}CHS- or (CF{sub 3}){sub 3}CS-; and X{sup {minus}} is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 {angstrom}{sup 3}. 4 figs.

  1. Controlled release liquid dosage formulation

    DOEpatents

    Benton, Ben F.; Gardner, David L.

    1989-01-01

    A liquid dual coated dosage formulation sustained release pharmaceutic having substantial shelf life prior to ingestion is disclosed. A dual coating is applied over controlled release cores to form dosage forms and the coatings comprise fats melting at less than approximately 101.degree. F. overcoated with cellulose acetate phthalate or zein. The dual coated dosage forms are dispersed in a sugar based acidic liquid carrier such as high fructose corn syrup and display a shelf life of up to approximately at least 45 days while still retaining their release profiles following ingestion. Cellulose acetate phthalate coated dosage form cores can in addition be dispersed in aqueous liquids of pH <5.

  2. WATER-TRAPPED WORLDS

    SciTech Connect

    Menou, Kristen [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2013-09-01

    Although tidally locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO{sub 2} as dayside ocean basins dry up. Water-trapped worlds with dry daysides may offer similar advantages as land planets for habitability, by contrast with worlds where more abundant water freely flows around the globe.

  3. Strings of liquid beads for gas-liquid contact operations

    SciTech Connect

    Hattori, Kenji; Ishikawa, Mitsukuni; Mori, Y.H. . Dept. of Mechanical Engineering)

    1994-12-01

    Energy recovery from hot gases exhausted from power plants, garbage incineration facilities, and many industrial processes has been growing due to demands for saving the primary-energy consumption. A novel device for gas-liquid contact operations is proposed to feed a liquid onto wires (or threads) hanging down in a gas stream is proposed. The liquid disintegrates into beads strung on each wire at regular intervals; if the wire is moderately wettable, a thin film forms to sheathe the wire, thereby interconnecting the beads. Since the beads fall down slowly, which possibly renews the film flowing down even more slowly, a sufficient gas-liquid contact time is available even in a contactor with considerably limited height. An approximate calculation method is developed for predicting the variation in the temperature effectiveness for the liquid (the fractional approach of the liquid exit temperature to the gas inlet temperature) with the falling distance, assuming an applicability of strings-of-beads contactors to thermal energy recovery from hot gas streams.

  4. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    SciTech Connect

    Jordan, I.; Huppert, M.; Wörner, H. J.; Brown, M. A.; Bokhoven, J. A. van

    2015-12-15

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  5. Monitoring system for a liquid-cooled nuclear fission reactor

    DOEpatents

    DeVolpi, Alexander

    1987-01-01

    A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.

  6. Method of treating waste water

    DOEpatents

    Deininger, James P.; Chatfield, Linda K.

    1995-01-01

    A process of treating water to remove metal ion contaminants contained therein, said metal ion contaminants selected from the group consisting of metals in Groups 8, 1b, 2b, 4a, 5a, or 6a of the periodic table, lanthanide metals, and actinide metals including transuranic element metals, by adjusting the pH of a metal ion contaminant-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with a mixture of an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, in an amount sufficient to form a precipitate within the water source, the amount the mixture of ferrate and water soluble salt effective to reduce the metal ion contaminant concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced metal ion contaminant concentration, and separating the supernatant liquid having the reduced metal ion contaminant concentration from the admixture is provided. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

  7. Adaptive Liquid Crystal Windows

    SciTech Connect

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft 1ft prototype panels for the worlds first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicrons patented e-Tint technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of power

  8. Shock compression of liquid hydrazine

    SciTech Connect

    Garcia, B.O.; Chavez, D.J.

    1995-01-01

    Liquid hydrazine (N{sub 2}H{sub 4}) is a propellant used by the Air Force and NASA for aerospace propulsion and power systems. Because the propellant modules that contain the hydrazine can be subject to debris impacts during their use, the shock states that can occur in the hydrazine need to be characterized to safely predict its response. Several shock compression experiments have been conducted in an attempt to investigate the detonability of liquid hydrazine; however, the experiments results disagree. Therefore, in this study, we reproduced each experiment numerically to evaluate in detail the shock wave profiles generated in the liquid hydrazine. This paper presents the results of each numerical simulation and compares the results to those obtained in experiment. We also present the methodology of our approach, which includes chemical kinetic experiments, chemical equilibrium calculations, and characterization of the equation of state of liquid hydrazine.

  9. Liquid Hydrogen Absorber for MICE

    SciTech Connect

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  10. Fluorescent optical liquid level sensor

    DOEpatents

    Weiss, Jonathan D. (Albuquerque, NM)

    2001-01-01

    A liquid level sensor comprising a transparent waveguide containing fluorescent material that is excited by light of a first wavelength and emits at a second, longer wavelength. The upper end of the waveguide is connected to a light source at the first wavelength through a beveled portion of the waveguide such that the input light is totally internally reflected within the waveguide above an air/liquid interface in a tank but is transmitted into the liquid below this interface. Light is emitted from the fluorescent material only in those portions of the waveguide that are above the air/liquid interface, to be collected at the upper end of the waveguide by a detector that is sensitive only to the second wavelength. As the interface moves down in the tank, the signal strength from the detector will increase.

  11. Liquid-blocking check valve

    DOEpatents

    Merrill, J.T.

    1982-09-27

    A liquid blocking check valve useful particularly in a pneumatic system utilizing a pressurized liquid fill chamber. The valve includes a floatable ball disposed within a housing defining a chamber. The housing is provided with an inlet aperture disposed in the top of said chamber, and an outlet aperture disposed in the bottom of said chamber in an offset relation to said inlet aperture and in communication with a cutaway side wall section of said housing.

  12. Kelvin Probe Force Microscopy in liquid using Electrochemical Force Microscopy

    SciTech Connect

    Collins, Liam; Jesse, Stephen; Kilpatrick, J.; Tselev, Alexander; Okatan, Mahmut Baris; Kalinin, Sergei V.; Rodriguez, Brian

    2015-01-01

    Conventional closed loop-Kelvin probe force microscopy (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid-gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe-sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present). Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q water and aqueous NaCl) and ionically-inactive (non-polar decane) liquids by electrochemical force microscopy (EcFM), a multidimensional (i.e., bias- and time-resolved) spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids), KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD) values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions). EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.

  13. Process for photosynthetically splitting water

    DOEpatents

    Greenbaum, Elias

    1984-01-01

    The invention is an improved process for producing gaseous hydrogen and oxygen from water. The process is conducted in a photolytic reactor which contains a water-suspension of a photoactive material containing a hydrogen-liberating catalyst. The reactor also includes a volume for receiving gaseous hydrogen and oxygen evolved from the liquid phase. To avoid oxygen-inactivation of the catalyst, the reactor is evacuated continuously by an external pump which circulates the evolved gases through means for selectively recovering hydrogen therefrom. The pump also cools the reactor by evaporating water from the liquid phase. Preferably, product recovery is effected by selectively diffusing the hydrogen through a heated semipermeable membrane, while maintaining across the membrane a magnetic field gradient which biases the oxygen away from the heated membrane. This promotes separation, minimizes the back-reaction of hydrogen and oxygen, and protects the membrane.

  14. Tandem dissolution of UO 3 in amide-based acidic ionic liquid and in situ electrodeposition of UO 2 with regeneration of the ionic liquid: a closed cycle

    DOE PAGES [OSTI]

    Wanigasekara, Eranda; Freiderich, John W.; Sun, Xiao-Guang; Meisner, Roberta A.; Luo, Huimin; Delmau, Lætitia H.; Dai, Sheng; Moyer, Bruce A.

    2016-05-19

    A closed cycle is demonstrated for the tandem dissolution and electroreduction of UO3 to UO2 with regeneration of the acidic ionic liquid. The dissolution is achieved by use of the acidic ionic liquid N,N-dimethylacetimidium bis(trifluoromethanesulfonimide) in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonimide) serving as the diluent. Bulk electrolysis performed at 1.0 V vs. Ag reference yields a dark brown-black uranium deposit (UO2) on the cathode. Anodic oxidation of water in the presence of dimethylacetamide regenerates the acidic ionic liquid. We have demonstrated the individual steps in the cycle together with a sequential dissolution, electroreduction, and regeneration cycle.

  15. Atomizer with liquid spray quenching

    DOEpatents

    Anderson, I.E.; Osborne, M.G.; Terpstra, R.L.

    1998-04-14

    Method and apparatus are disclosed for making metallic powder particles wherein a metallic melt is atomized by a rotating disk or other atomizer at an atomizing location in a manner to form molten droplets moving in a direction away from said atomizing location. The atomized droplets pass through a series of thin liquid quenching sheets disposed in succession about the atomizing location with each successive quenching sheet being at an increasing distance from the atomizing location. The atomized droplets are incrementally cooled and optionally passivated as they pass through the series of liquid quenching sheets without distorting the atomized droplets from their generally spherical shape. The atomized, cooled droplets can be received in a chamber having a collection wall disposed outwardly of the series of liquid quenching sheets. A liquid quenchant can be flowed proximate the chamber wall to carry the cooled atomized droplets to a collection chamber where atomized powder particles and the liquid quenchant are separated such that the liquid quenchant can be recycled. 6 figs.

  16. Atomizer with liquid spray quenching

    DOEpatents

    Anderson, Iver E.; Osborne, Matthew G.; Terpstra, Robert L.

    1998-04-14

    Method and apparatus for making metallic powder particles wherein a metallic melt is atomized by a rotating disk or other atomizer at an atomizing location in a manner to form molten droplets moving in a direction away from said atomizing location. The atomized droplets pass through a series of thin liquid quenching sheets disposed in succession about the atomizing location with each successive quenching sheet being at an increasing distance from the atomizing location. The atomized droplets are incrementally cooled and optionally passivated as they pass through the series of liquid quenching sheets without distorting the atomized droplets from their generally spherical shape. The atomized, cooled droplets can be received in a chamber having a collection wall disposed outwardly of the series of liquid quenching sheets. A liquid quenchant can be flowed proximate the chamber wall to carry the cooled atomized droplets to a collection chamber where atomized powder particles and the liquid quenchant are separated such that the liquid quenchant can be recycled.

  17. Water and Gold: A Promising Mix for Future Batteries

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water and Gold: A Promising Mix for Future Batteries Water and Gold: A Promising Mix for Future Batteries Berkeley Lab Study Reveals Molecular Structure of Water at Gold Electrodes October 23, 2014 Contact: Rachel Berkowitz, 510-486-7254, rberkowitz@lbl.gov When a solid material is immersed in a liquid, the liquid immediately next to its surface differs from that of the bulk liquid at the molecular level. This interfacial layer is critical to our understanding of a diverse set of phenomena from

  18. Vibrational spectroscopy of water interfaces

    SciTech Connect

    Du, Q.

    1994-12-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful and versatile tools for studying all kinds of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the second order nonlinear susceptibility. The technique of infrared-visible sum frequency generation (SFG) is particularly attractive because it offers a viable way to do vibrational spectroscopy on any surfaces accessible to light with submonolayer sensitivity. In this thesis, the author applies SFG to study a number of important water interfaces. At the air/water interface, hydrophobic solid/water and liquid/water interfaces, it was found that approximately 25% of surface water molecules have one of their hydrogen pointing away from the liquid water. The large number of unsatisfied hydrogen bonds contributes significantly to the large interfacial energy of the hydrophobic surfaces. At the hydrophilic fused quartz/water interface and a fatty acid monolayer covered water surface, the structure and orientation of surface water molecules are controlled by the hydrogen bonding of water molecules with the surface OH groups and the electrostatic interaction with the surface field from the ionization of surface groups. A change of pH value in the bulk water can significantly change the relative importance of the two interactions and cause a drastic change in orientation of the surface water molecules. SFG has also been applied to study the tribological response of some model lubricant films. Monolayers of Langmuir-Blodgett films were found to disorder orientationaly under mildly high pressure and recover promptly upon removal of the applied pressure.

  19. Watts nickel and rinse water recovery via an advanced reverse osmosis system

    SciTech Connect

    Schmidt, C.; White, I.E.; Ludwig, R.

    1993-08-01

    The report summarizes the results of an eight month test program conducted at the Hewlett Packard Printed Circuit Board Production Plant, Sunnyvale, CA (H.P.) to assess the effectiveness of an advanced reverse osmosis system (AROS). The AROS unit, manufactured by Water Technologies, Inc. (WTI) of Minneapolis, MN, incorporates membrane materials and system components designed to treat metal plating rinse water and produce two product streams; (1) a concentrated metal solution suitable for the plating bath, and (2) rinse water suitable for reuse as final rinse. Waste water discharge can be virtually eliminated and significant reductions realized in the need for new plating bath solution and rinse water.

  20. Electrical detection of liquid lithium leaks from pipe joints

    SciTech Connect

    Schwartz, J. A. Jaworski, M. A.; Mehl, J.; Kaita, R.; Mozulay, R.

    2014-11-15

    A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 kΩ trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.