National Library of Energy BETA

Sample records for linear energy transfer

  1. System for measuring temporal profiles of scintillation at high and different linear energy transfers by using pulsed ion beams

    SciTech Connect

    Koshimizu, Masanori Asai, Keisuke; Kurashima, Satoshi; Taguchi, Mitsumasa; Kimura, Atsushi; Iwamatsu, Kazuhiro

    2015-01-15

    We have developed a system for measuring the temporal profiles of scintillation at high linear energy transfer (LET) by using pulsed ion beams from a cyclotron. The half width at half maximum time resolution was estimated to be 1.52.2 ns, which we attributed mainly to the duration of the pulsed ion beam and timing jitter between the trigger signal and the arrival of the ion pulse. The temporal profiles of scintillation of BaF{sub 2} at different LETs were successfully observed. These results indicate that the proposed system is a powerful tool for analyzing the LET effects in temporal profiles of scintillation.

  2. Linear Energy Transfer Painting With Proton Therapy: A Means of Reducing Radiation Doses With Equivalent Clinical Effectiveness

    SciTech Connect

    Fager, Marcus; Toma-Dasu, Iuliana; Kirk, Maura; Dolney, Derek; Diffenderfer, Eric S.; Vapiwala, Neha; Carabe, Alejandro

    2015-04-01

    Purpose: The purpose of this study was to propose a proton treatment planning method that trades physical dose (D) for dose-averaged linear energy transfer (LET{sub d}) while keeping the radiobiologically weighted dose (D{sub RBE}) to the target the same. Methods and Materials: The target is painted with LET{sub d} by using 2, 4, and 7 fields aimed at the proximal segment of the target (split target planning [STP]). As the LET{sub d} within the target increases with increasing number of fields, D decreases to maintain the D{sub RBE} the same as the conventional treatment planning method by using beams treating the full target (full target planning [FTP]). Results: The LET{sub d} increased 61% for 2-field STP (2STP) compared to FTP, 72% for 4STP, and 82% for 7STP inside the target. This increase in LET{sub d} led to a decrease of D with 5.3 ± 0.6 Gy for 2STP, 4.4 ± 0.7 Gy for 4STP, and 5.3 ± 1.1 Gy for 7STP, keeping the DRBE at 90% of the volume (DRBE, 90) constant to FTP. Conclusions: LET{sub d} painting offers a method to reduce prescribed dose at no cost to the biological effectiveness of the treatment.

  3. Inverse Energy Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Inverse Energy Transfer by Near-Resonant Interactions with a Damped-Wave Spectrum P.W. Terry Center for Magnetic Self Organization in Laboratory and Astrophysical Plasmas and Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 USA (Received 12 January 2004; published 1 December 2004) The interaction of long-wavelength anisotropic drift waves with the plasma turbulence of electron density advection is shown to produce the inverse energy transfer that condenses onto

  4. Induction and Persistence of Large ?H2AX Foci by High Linear Energy Transfer Radiation in DNA-Dependent protein kinaseDeficient Cells

    SciTech Connect

    Bracalente, Candelaria; Ibaez, Irene L.; Molinari, Beatriz; Palmieri, Mnica; Kreiner, Andrs; Valda, Alejandro; and others

    2013-11-15

    Purpose: To evaluate the cell response to DNA double-strand breaks induced by low and high linear energy transfer (LET) radiations when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), an essential protein of the nonhomologous end-joining repair pathway, lacks kinase activity. Methods and Materials: CHO10B2, a Chinese hamster ovary cell line, and its derived radiosensitive mutant cell line, irs-20, lacking DNA-PKcs activity, were evaluated after 0 to 3 Gy of ?-rays, plateau and Bragg peak protons, and lithium beams by clonogenic assay, and as a measurement of double-strand breaks, phosphorylated H2AX (?H2AX) foci number and size were quantified by immunocytofluorescence. Results: Irs-20 exhibited greater radiosensitivity and a higher amount of ?H2AX foci than CHO10B2 at 6 hours after irradiation for all types of radiations. Remarkably, CHO10B2 and irs-20 maintained their difference in radiosensitivity after high-LET radiation. Six hours after low-LET radiations, irs-20 did not reach basal levels of ?H2AX at high doses, whereas CHO10B2 recovered basal levels for all doses. After high-LET radiation, only CHO10B2 exhibited a reduction in ?H2AX foci, but it never reached basal levels. Persistent foci in irs-20 confirmed a repair deficiency. Interestingly, after 30 minutes of high-LET radiation both cell lines exhibited large foci (size >0.9 ?m{sup 2}) related to the damage nature, whereas at 6 hours irs-20 showed a higher amount of large foci than CHO10B2, with a 7-fold increase at 3 Gy, that could also be associated to radiosensitivity. Conclusions: We demonstrated, for the first time, an association between deficient DNA-PKcs activity and not only high levels of H2AX phosphorylation but also persistence and size increase of ?H2AX foci after high-LET irradiation.

  5. ENERGY-TRANSFER SYSTEMS

    DOEpatents

    Thonemann, P.C.; Cowhig, W.T.; Davenport, P.A.

    1963-04-01

    This patent relates to the transfer of energy in a traveling electromagnetic wave to direct-current electrical energy in a gaseous medium. The traveling wave is generated by means of a radio-frequency oscillator connected across a capacitance-loaded helix wound around a sealed tube enclosing the gaseous medium. The traveling wave causes the electrons within the medium to drift towards one end of the tube. The direct current appearing across electrodes placed at each end of the tube is then used by some electrical means. (AEC)

  6. QER- Comment of Energy Transfer

    Office of Energy Efficiency and Renewable Energy (EERE)

    From: Lee Hanse Executive Vice President Interstate Energy Transfer Mobile - 210 464 2929 Office - 210 403 6455

  7. Linear Fresnel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Concentrating Solar Power » Linear Fresnel Linear Fresnel DOE funds solar research and development (R&D) in linear Fresnel systems as one of four CSP technologies aiming to meet the goals of the SunShot Initiative. Linear Fresnel systems, which are a type of linear concentrator, are active in Germany, Spain, Australia, India, and the United States. The SunShot Initiative funds R&D on linear Fresnel systems and related aspects within the industry, national laboratories and universities

  8. Neutrino mass, dark energy, and the linear growth factor (Journal...

    Office of Scientific and Technical Information (OSTI)

    dark energy, and the linear growth factor Citation Details In-Document Search Title: Neutrino mass, dark energy, and the linear growth factor We study the degeneracies between ...

  9. TLD linearity vs. beam energy and modality

    SciTech Connect

    Troncalli, Andrew J.; Chapman, Jane

    2002-12-31

    Thermoluminescent dosimetry (TLD) is considered to be a valuable dosimetric tool in determining patient dose. Lithium fluoride doped with magnesium and titanium (TLD-100) is widely used, as it does not display widely divergent energy dependence. For many years, we have known that TLD-100 shows supralinearity to dose. In a radiotherapy clinic, there are multiple energies and modality beams. This work investigates whether individual linearity corrections must be used for each beam or whether a single correction can be applied to all beams. The response of TLD as a function of dose was measured from 25 cGy to 1000 cGy on both electrons and photons from 6 to 18 MeV. This work shows that, within our measurement uncertainty, TLD-100 exhibits supralinearity at all megavoltage energies and modalities.

  10. Linear Thermite Charge - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Linear Thermite Charge Battelle Memorial Institute Contact BMI About This Technology Publications: PDF Document Publication Linear Thermite Charge Picture (40 KB) PDF Document Publication Linear Thermite Charge Patent (207 KB) Technology Marketing Summary The Linear Thermite Charge (LTC) is designed to rapidly cut through concrete and steel structural components by using extremely high temperature thermite reactions jetted through a linear nozzle. Description Broadly, the invention provides for

  11. Geo energy research and development: technology transfer

    SciTech Connect

    Traeger, R.K.

    1982-03-01

    Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

  12. Resonance energy transfer: Dye to metal nanoparticles

    SciTech Connect

    Wari, M. N.; Pujar, G. H.; Inamdar, S. R.

    2015-06-24

    In the present study, surface energy transfer (SET) from Coumarin 540A (C540 A) to Gold nanoparticle (Au) is demonstrated. The observed results show pronounced effect on the photoluminescence intensity and shortening of the lifetime of Coumarin 540A upon interaction with the spherical gold nanoparticle, also there are measured effects on radiative rate of the dye. Experimental results are analyzed with fluorescence resonance energy transfer (FRET) and SET theories. The results obtained from distance-dependent quenching provide experimental evidence that the efficiency curve slope and distance of quenching is best modeled by surface energy transfer process.

  13. Technology Transfer Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Transfer Overview Technology Transfer Overview Through strategic investments in science and technology, the U.S. Department of Energy (DOE) helps power and secure America's future. DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the maturation and deployment of DOE discoveries, providing ongoing economic, security and environmental benefits for all Americans.

  14. Energy transfer processes in solar energy conversion

    SciTech Connect

    Fayer, M.D.

    1991-01-01

    During the past year, we have made substantial progress in both theoretical and experimental aspects of the program. The program involves the investigation of excitation transport and electron transfer in complex molecular systems. In the area of electron transfer, we have been studying the influences of solvent relaxation and molecular diffusion in liquids on photoinduced forward and back electron transfer. Studies of excitation transport have focused on clustered chromophore systems including theory and experiments on intercluster transport in systems such as micelles and polymers and on dispersive excitation transport in liquids. 11 refs.

  15. Optimizing minimum free-energy crossing points in solution: Linear...

    Office of Scientific and Technical Information (OSTI)

    Optimizing minimum free-energy crossing points in solution: Linear-response free energyspin-flip density functional theory approach Citation Details In-Document Search Title:...

  16. Linear Concentrator Systems | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    positioned along the focal line of each trough. The hot heat-transfer fluid (shown as red) exiting the receivers flows to a turbine, generating electricity that is fed into the...

  17. Energy Transfer-MDE | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ohio Zip: 4415 Sector: Biofuels, Geothermal energy, Solar, Wind energy Product: Manufacturing Phone Number: 330-627-4122 Website: www.energytransferinc.com Coordinates:...

  18. Wireless energy transfer between anisotropic metamaterials shells

    SciTech Connect

    Daz-Rubio, Ana; Carbonell, Jorge; Snchez-Dehesa, Jos

    2014-06-15

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. Exchange of electromagnetic energy between shells with high efficiency is analyzed. Strong coupling is supported with high wireless transfer efficiency. End-to-end energy transfer efficiencies higher than 83% can be predicted.

  19. Energy transfer upon collision of selectively excited CO{sub...

    Office of Scientific and Technical Information (OSTI)

    Energy transfer upon collision of selectively excited COsub 2 molecules: State-to-state ... Citation Details In-Document Search Title: Energy transfer upon collision of selectively ...

  20. Resonant energy transfer between Eu luminescent sites and their...

    Office of Scientific and Technical Information (OSTI)

    Resonant energy transfer between Eu luminescent sites and their local geometry in GaN Citation Details In-Document Search Title: Resonant energy transfer between Eu luminescent ...

  1. Dabasinksas: EnergyTransfer Lesson

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5B, 5C, non-renewable energy sources. Examples include fossil fuels, natural gas, solar, geothermal, wind, nuclear, hydrologic, etc. Same. Same. 5D, 5G (703) Identify...

  2. Dabasinksas: Thermodynamics and Energy Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    later. G E F F B D A C Internal Energy (Joules) t t t t t t t t First Law of Thermodynamics: UQ+W for a closed system Q h t i t d W k i t +Q heat input and +W ...

  3. Resonant vibrational energy transfer in ice Ih

    SciTech Connect

    Shi, L.; Li, F.; Skinner, J. L.

    2014-06-28

    Fascinating anisotropy decay experiments have recently been performed on H{sub 2}O ice Ih by Timmer and Bakker [R. L. A. Timmer, and H. J. Bakker, J. Phys. Chem. A 114, 4148 (2010)]. The very fast decay (on the order of 100 fs) is indicative of resonant energy transfer between OH stretches on different molecules. Isotope dilution experiments with deuterium show a dramatic dependence on the hydrogen mole fraction, which confirms the energy transfer picture. Timmer and Bakker have interpreted the experiments with a Frster incoherent hopping model, finding that energy transfer within the first solvation shell dominates the relaxation process. We have developed a microscopic theory of vibrational spectroscopy of water and ice, and herein we use this theory to calculate the anisotropy decay in ice as a function of hydrogen mole fraction. We obtain very good agreement with experiment. Interpretation of our results shows that four nearest-neighbor acceptors dominate the energy transfer, and that while the incoherent hopping picture is qualitatively correct, vibrational energy transport is partially coherent on the relevant timescale.

  4. Variable-energy drift-tube linear accelerator

    DOEpatents

    Swenson, Donald A.; Boyd, Jr., Thomas J.; Potter, James M.; Stovall, James E.

    1984-01-01

    A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.

  5. Variable-energy drift-tube linear accelerator

    DOEpatents

    Swenson, D.A.; Boyd, T.J. Jr.; Potter, J.M.; Stovall, J.E.

    A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.

  6. Linear Scaling of the Exciton Binding Energy versus the Band...

    Office of Scientific and Technical Information (OSTI)

    Linear Scaling of the Exciton Binding Energy versus the Band Gap of Two-Dimensional Materials This content will become publicly available on August 6, 2016 Prev Next Title:...

  7. Technology Transfer Reporting Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transfer Reporting Form Technology Transfer Reporting Form PDF icon Technology Transfer Reporting Form More Documents & Publications Technology Partnership Ombudsman - Roles,...

  8. Risk transfer via energy savings insurance

    SciTech Connect

    Mills, Evan

    2001-10-01

    Among the key barriers to investment in energy efficiency improvements are uncertainties about attaining projected energy savings and apprehension about potential disputes over these savings. The fields of energy management and risk management are thus intertwined. While many technical methods have emerged to manage performance risks (e.g. building commissioning), financial risk transfer techniques are less developed in the energy management arena than in other more mature segments of the economy. Energy Savings Insurance (ESI) - formal insurance of predicted energy savings - is one method of transferring financial risks away from the facility owner or energy services contractor. ESI offers a number of significant advantages over other forms of financial risk transfer, e.g. savings guarantees or performance bonds. ESI providers manage risk via pre-construction design review as well as post-construction commissioning and measurement and verification of savings. We found that the two mos t common criticisms of ESI - excessive pricing and onerous exclusions - are not born out in practice. In fact, if properly applied, ESI can potentially reduce the net cost of energy savings projects by reducing the interest rates charged by lenders, and by increasing the level of savings through quality control. Debt service can also be ensured by matching loan payments to projected energy savings while designing the insurance mechanism so that payments are made by the insurer in the event of a savings shortfall. We estimate the U.S. ESI market potential of $875 million/year in premium income. From an energy-policy perspective, ESI offers a number of potential benefits: ESI transfers performance risk from the balance sheet of the entity implementing the energy savings project, thereby freeing up capital otherwise needed to ''self-insure'' the savings. ESI reduces barriers to market entry of smaller energy services firms who do not have sufficiently strong balance sheets to self

  9. Repetitive energy transfers from an inductive energy store

    SciTech Connect

    Honig, E.M.

    1985-03-01

    This dissertation details the theoretical and experimental results of a research program aimed at finding practical ways to transfer energy repetitively from an inductive energy store to various loads. The objectives were to investigate and develop the high power opening switches and transfer circuits needed to enable high-repetition-rate operation of such systems. The requirements of nonlinear, time-varying loads were also addressed. Energy storage capability is needed for proper power conditioning in systems where the duty factor of the output pulse train is low. Inductive energy storage is attractive because it has both a high energy storage density and a fast discharge capability. However, to transfer energy from a coil or inductor to a load, an opening switch must be used to interrupt the current and insert the load into the circuit. The switch must carry the large coil current during the storage time, interrupt the current, and then withstand the high voltage generated by the coil current flowing through the load. The opening switch problem is difficult enough for single-shot operation in many applications, but it becomes formidable when repetitive operation is required. By producing a pulse train with a peak power of 75 MW at a pulse repetition rate of 5 kpps in a one-ohm load system, this research program was the first to demonstrate fully-controlled, high-power, high-repetition-rate operation of an inductive energy storage and transfer system with survivable switches. Success was made possible by using triggered vacuum gap switches as repetitive, current-zero opening switches and developing several new repetitive transfer circuits using the counterpulse technique. A detailed analysis of the switching and transfer process was made and the dependency of the output pulse risetime on specific load conditions was determined. 105 refs.

  10. ENERGY TRANSFER Shelley Corman Executive Vice President, Interstate...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pipelines ENERGY TRANSFER ASSETS * Map is a general depiction of Energy Transfer assets 2 More than 72,000 miles of natural gas, NGL, crude, and refined products pipelines ...

  11. Technology Transfer Working Group (TTWG) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Transfer Working Group (TTWG) Technology Transfer Working Group (TTWG) With the passage of the Energy Policy Act of 2005, Title X, Sec. 1001, the Secretary of Energy was directed to establish a Technology Transfer Working Group (TTWG), to include representatives from DOE National Laboratories and single purpose research facilities. The same section of the Act also directs the Secretary to appoint a Technology Transfer Coordinator. The duties of the Technology Transfer Coordinator

  12. Separated-orbit bisected energy-recovered linear accelerator

    DOEpatents

    Douglas, David R.

    2015-09-01

    A separated-orbit bisected energy-recovered linear accelerator apparatus and method. The accelerator includes a first linac, a second linac, and a plurality of arcs of differing path lengths, including a plurality of up arcs, a plurality of downgoing arcs, and a full energy arc providing a path independent of the up arcs and downgoing arcs. The up arcs have a path length that is substantially a multiple of the RF wavelength and the full energy arc includes a path length that is substantially an odd half-integer multiple of the RF wavelength. Operation of the accelerator includes accelerating the beam utilizing the linacs and up arcs until the beam is at full energy, at full energy executing a full recirculation to the second linac using a path length that is substantially an odd half-integer of the RF wavelength, and then decelerating the beam using the linacs and downgoing arcs.

  13. Anisotropic energy transfers in quasi-static magnetohydrodynamic turbulence

    SciTech Connect

    Reddy, K. Sandeep; Kumar, Raghwendra; Verma, Mahendra K.

    2014-10-15

    We perform direct numerical simulations of quasi-static magnetohydrodynamic turbulence and compute various energy transfers including the ring-to-ring and conical energy transfers, and the energy fluxes of the perpendicular and parallel components of the velocity field. We show that the rings with higher polar angles transfer energy to ones with lower polar angles. For large interaction parameters, the dominant energy transfer takes place near the equator (polar angle ??(?)/2 ). The energy transfers are local both in wavenumbers and angles. The energy flux of the perpendicular component is predominantly from higher to lower wavenumbers (inverse cascade of energy), while that of the parallel component is from lower to higher wavenumbers (forward cascade of energy). Our results are consistent with earlier results, which indicate quasi two-dimensionalization of quasi-static magnetohydrodynamic flows at high interaction parameters.

  14. NETL Inventions Earn 2009 Technology Transfer Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Inventions Earn 2009 Technology Transfer Awards NETL Inventions Earn 2009 Technology Transfer Awards February 13, 2009 - 12:00pm Addthis Washington, DC -- Two technologies developed by researchers at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) have earned 2009 Excellence in Technology Transfer Awards from the Federal Laboratory Consortium for Technology Transfer (FLC). Both technologies enable the cleaner use of coal for electricity production and have been

  15. Renewable Energy Innovations Garner Tech Transfer Awards | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Innovations Garner Tech Transfer Awards Renewable Energy Innovations Garner Tech Transfer Awards May 23, 2012 - 10:11am Addthis Among the Energy Department teams that won awards at the Federal Laboratory Consortium for Technology Transfer was the team above from Pacific Northwest National Lab. They received the Interagency Partnership Award at an awards banquet in Pittsburgh on May 3. The award recognizes employees from at least two different federal agencies or laboratories who have

  16. Property:Power Transfer Method | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    of energy which in turn is transferred through electrical swivels. MHK TechnologiesOTEC + Current facility is land-based (offshore pipelines draw the deep and surface seawater...

  17. Check Heat Transfer Surfaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat Transfer Surfaces Check Heat Transfer Surfaces This tip sheet discusses the importance of checking heat transfer surfaces in process heating systems. PROCESS HEAT TIP SHEET #4 Check Heat Transfer Surfaces (September 2005) (330.85 KB) More Documents & Publications Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition Check Burner Air to Fuel Ratios Process Heating Assessment and Survey Tool (PHAST) Introduction

  18. NREL Technology Transfer: Facilitating Capital Investment in Clean Energy Technology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Transfer Facilitating Capital Investment in Clean Energy Technology Tom A. Williams Director, Technology Transfer Office National Renewable Energy Laboratory We Are Unique * Only national laboratory dedicated to renewable energy and energy efficiency R&D * Research spans fundamental science to technology solutions * Collaboration with industry, university and international partners is a hallmark * Research is market relevant because of a systems focus and global perspective and

  19. Technology Transfer Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the ...

  20. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Novel PlatinumChromium Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary...

  1. MHK Technologies/Ocean Current Linear Turbine | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Current Linear Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Current Linear Turbine.jpg Technology Profile Primary...

  2. Sandia's Automated Transfer Function Generator - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage Energy Storage Electricity Transmission Electricity Transmission Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Sandia's Automated Transfer Function Generator Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (340 KB) Technology Marketing Summary When designing or analyzing electrical systems, it is important to understand the relationship between input and output. Power

  3. LANL Land Transfers 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Land Transfers 2015 LANL Land Transfers 2015 Land transfer activities are planned to occur fiscal year 2016 which will require independent verification of Los Alamos National Laboratory (LANL)'s sampling protocol and analyses. The former Sewage Treatment Plant within land tract A-16-D and the southern portion of A-16-E are on track for MARSSIM final status survey. The remainder of TA-21 will require verification once final D&D of structures is complete. The sampling activities for these

  4. Department of Energy Issues Report on Technology Transfer and Related

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Partnering Activities for Fiscal Year 2014 | Department of Energy Report on Technology Transfer and Related Technology Partnering Activities for Fiscal Year 2014 Department of Energy Issues Report on Technology Transfer and Related Technology Partnering Activities for Fiscal Year 2014 This Class 8 tractor-trailer by heavy-duty manufacturers Cummins and Peterbilt reaches more than 10 miles per gallon under real world driving conditions. The truck was on display at the Energy

  5. Technology Transfer Ombudsman Program | Department of Energy

    Energy Saver

    The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was ... Act of 2005, Title X, (Public Law 109-58), pages 334 through 345 of the PDF version. ...

  6. New model of calculating the energy transfer efficiency for the spherical theta-pinch device

    SciTech Connect

    Xu, G.; Hock, C.; Loisch, G.; Jacoby, J.; Xiao, G.; Zhao, Y.; Weyrich, K.; Li, Y.

    2015-05-15

    Ion-beam-plasma-interaction plays an important role in the field of warm dense matter and inertial confinement fusion. A spherical theta pinch is proposed to act as a plasma target in various applications including a plasma stripper cell. One key parameter for such applications is the free electron density. A linear dependency of this density to the amount of energy transferred into the plasma from an energy storage was found by Teske. Since the amount of stored energy is known, the energy transfer efficiency is a reliable parameter for the design of a spherical theta pinch device. As the main assumption of a constant reflected plasma resistance is contradictory by the measured data, the traditional two models of energy transfer efficiency will lead to wrong results. From measurements, the parasitic resistance is derived as constant. Based on this key parameter, a new model is proposed. Due to no assumption, the new model is considered as exact. Further, a comparison of these three different models is given at a fixed operation voltage for the full range of working gas pressures. Due to the inappropriate assumptions included in the traditional models, one owns a tendency to overestimate the energy transfer efficiency whereas the other leads to an underestimation. Applying our new model to a wide spread set of operation voltages and gas pressures, an overall picture of the energy transfer efficiency results.

  7. Energy level alignment of self-assembled linear chains of benzenediami...

    Office of Scientific and Technical Information (OSTI)

    Energy level alignment of self-assembled linear chains of benzenediamine on Au(111) from ... This content will become publicly available on March 24, 2017 Title: Energy level ...

  8. A planning framework for transferring building energy technologies: Executive Summary

    SciTech Connect

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-08-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report summarizes some of the key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (the full report is published under SERI number TP-260-3729). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes in summary these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some example technology transfer activities; and summarizes the Advisory Group's recommendations.

  9. NREL: Technology Transfer - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Innovation Portal Get the EERE Energy Innovation Portal widget and many other great free widgets at Widgetbox Not seeing a widget? (More info) NREL developed and manages ...

  10. Optimization of Energy Transfer Processes in Photosynthetic Systems |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MIT-Harvard Center for Excitonics Optimization of Energy Transfer Processes in Photosynthetic Systems December 7, 2010 at 3pm/36-428 Jianshu Cao Massachusetts Institute of Technology jianshu abstract: Excitation energy transfer (EET) in photosynthetic systems can be highly efficient and robust. In this talk, I will discuss the optimization of both natural and artificial systems: A simple scaling theory is used to examine the interplay of quantum coherence, dynamic noise, and static disorder

  11. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The unique technology allows operators to optimize the processing to improve material yield, decrease energy use, and improve safety systems. Specialty metals, such as titanium or ...

  12. Energy transfer dynamics in trimers and aggregates of light-harvesting...

    Office of Scientific and Technical Information (OSTI)

    Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy Citation Details In-Document Search Title: Energy transfer ...

  13. Collisionless inter-species energy transfer and turbulent heating in drift wave turbulence

    SciTech Connect

    Zhao, L.; Diamond, P. H.

    2012-08-15

    We reconsider the classic problems of calculating 'turbulent heating' and collisionless inter-species transfer of energy in drift wave turbulence. These issues are of interest for low collisionality, electron heated plasmas, such as ITER, where collisionless energy transfer from electrons to ions is likely to be significant. From the wave Poynting theorem at steady state, a volume integral over an annulus r{sub 1}=-S{sub r}|{sub r{sub 1}{sup r{sub 2}}}{ne}0. Here S{sub r} is the wave energy density flux in the radial direction. Thus, a wave energy flux differential across an annular region indeed gives rise to a net heating, in contrast to previous predictions. This heating is related to the Reynolds work by the zonal flow, since S{sub r} is directly linked to the zonal flow drive. In addition to net heating, there is inter-species heat transfer. For collisionless electron drift waves, the total turbulent energy source for collisionless heat transfer is due to quasilinear electron cooling. Subsequent quasilinear ion heating occurs through linear ion Landau damping. In addition, perpendicular heating via ion polarization currents contributes to ion heating. Since at steady state, Reynolds work of the turbulence on the zonal flow must balance zonal flow frictional damping ({approx}{nu}{sub ii}{sup 2}{approx}|(e{phi}(tilde sign)/T)|{sup 4}), it is no surprise that zonal flow friction appears as an important channel for ion heating. This process of energy transfer via zonal flow has not previously been accounted for in analyses of energy transfer. As an application, we compare the rate of turbulent energy transfer in a low collisionality plasma with the rate of the energy transfer by collisions. The result shows that the collisionless turbulent energy transfer is a significant energy coupling process for ITER plasma.

  14. Department of Energy Announces Technology Transfer Coordinator...

    Energy.gov [DOE] (indexed site)

    a part of the Startup America initiative, makes it easier for start-ups to use inventions and technologies developed at the U.S. Department of Energy's 17 National ...

  15. Tech Transfer Webinar: Energy Absorbing Materials

    SciTech Connect

    Duoss, Eric

    2014-06-17

    A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  16. Tech Transfer Webinar: Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2014-07-15

    A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  17. Producing Linear Alpha Olefins From Biomass - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Producing Linear Alpha Olefins From Biomass Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Linear alpha olefins (LAOs) are valuable commodity chemicals traditionally derived from petroleum. They are versatile building blocks for making a range of chemical products like polyethylene, synthetic oils, plasticizers, detergents and oilfield fluids. Relying on fossil fuel to manufacture LAOs is problematic. Not only are the standard methods

  18. Photoexcited energy transfer in a weakly coupled dimer

    SciTech Connect

    Hernandez, Laura Alfonso; Nelson, Tammie; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2015-01-08

    Nonadiabatic excited-state molecular dynamics (NA-ESMD) simulations have been performed in order to study the time-dependent exciton localization during energy transfer between two chromophore units of the weakly coupled anthracene dimer dithia-anthracenophane (DTA). Simulations are done at both low temperature (10 K) and room temperature (300 K). The initial photoexcitation creates an exciton which is primarily localized on a single monomer unit. Subsequently, the exciton experiences an ultrafast energy transfer becoming localized on either one monomer unit or the other, whereas delocalization between both monomers never occurs. In half of the trajectories, the electronic transition density becomes completely localized on the same monomer as the initial excitation, while in the other half, it becomes completely localized on the opposite monomer. In this article, we present an analysis of the energy transfer dynamics and the effect of thermally induced geometry distortions on the exciton localization. Finally, simulated fluorescence anisotropy decay curves for both DTA and the monomer unit dimethyl anthracene (DMA) are compared. As a result, our analysis reveals that changes in the transition density localization caused by energy transfer between two monomers in DTA is not the only source of depolarization and exciton relaxation within a single DTA monomer unit can also cause reorientation of the transition dipole.

  19. Photoexcited energy transfer in a weakly coupled dimer

    DOE PAGES [OSTI]

    Hernandez, Laura Alfonso; Nelson, Tammie; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2015-01-08

    Nonadiabatic excited-state molecular dynamics (NA-ESMD) simulations have been performed in order to study the time-dependent exciton localization during energy transfer between two chromophore units of the weakly coupled anthracene dimer dithia-anthracenophane (DTA). Simulations are done at both low temperature (10 K) and room temperature (300 K). The initial photoexcitation creates an exciton which is primarily localized on a single monomer unit. Subsequently, the exciton experiences an ultrafast energy transfer becoming localized on either one monomer unit or the other, whereas delocalization between both monomers never occurs. In half of the trajectories, the electronic transition density becomes completely localized on themore » same monomer as the initial excitation, while in the other half, it becomes completely localized on the opposite monomer. In this article, we present an analysis of the energy transfer dynamics and the effect of thermally induced geometry distortions on the exciton localization. Finally, simulated fluorescence anisotropy decay curves for both DTA and the monomer unit dimethyl anthracene (DMA) are compared. As a result, our analysis reveals that changes in the transition density localization caused by energy transfer between two monomers in DTA is not the only source of depolarization and exciton relaxation within a single DTA monomer unit can also cause reorientation of the transition dipole.« less

  20. 2013 MOLECULAR ENERGY TRANSFER GORDON RESEARCH CONFERENCE (JANUARY 13-18, 2013 - VENTURA BEACH MARRIOTT, VENTURA CA

    SciTech Connect

    Reid, Scott A.

    2012-10-18

    Sessions covered all areas of molecular energy transfer, with 10 sessions of talks and poster sessions covering the areas of :  Energy Transfer in Inelastic and Reactive Scattering  Energy Transfer in Photoinitiated and Unimolecular Reactions  Non-adiabatic Effects in Energy TransferEnergy Transfer at Surfaces and Interfaces  Energy Transfer in Clusters, Droplets, and Aerosols  Energy Transfer in Solution and Solid  Energy Transfer in Complex Systems  Energy Transfer: New vistas and horizons  Molecular Energy Transfer: Where Have We Been and Where are We Going?

  1. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  2. Regulation control and energy management scheme for wireless power transfer

    SciTech Connect

    Miller, John M.

    2015-12-29

    Power transfer rate at a charging facility can be maximized by employing a feedback scheme. The state of charge (SOC) and temperature of the regenerative energy storage system (RESS) pack of a vehicle is monitored to determine the load due to the RESS pack. An optimal frequency that cancels the imaginary component of the input impedance for the output signal from a grid converter is calculated from the load of the RESS pack, and a frequency offset f* is made to the nominal frequency f.sub.0 of the grid converter output based on the resonance frequency of a magnetically coupled circuit. The optimal frequency can maximize the efficiency of the power transfer. Further, an optimal grid converter duty ratio d* can be derived from the charge rate of the RESS pack. The grid converter duty ratio d* regulates wireless power transfer (WPT) power level.

  3. Transient and chaotic low-energy transfers in a system with bistable nonlinearity

    SciTech Connect

    Romeo, F.; Manevitch, L. I.; Bergman, L. A.; Vakakis, A.

    2015-05-15

    The low-energy dynamics of a two-dof system composed of a grounded linear oscillator coupled to a lightweight mass by means of a spring with both cubic nonlinear and negative linear components is investigated. The mechanisms leading to intense energy exchanges between the linear oscillator, excited by a low-energy impulse, and the nonlinear attachment are addressed. For lightly damped systems, it is shown that two main mechanisms arise: Aperiodic alternating in-well and cross-well oscillations of the nonlinear attachment, and secondary nonlinear beats occurring once the dynamics evolves solely in-well. The description of the former dissipative phenomenon is provided in a two-dimensional projection of the phase space, where transitions between in-well and cross-well oscillations are associated with sequences of crossings across a pseudo-separatrix. Whereas the second mechanism is described in terms of secondary limiting phase trajectories of the nonlinear attachment under certain resonance conditions. The analytical treatment of the two aformentioned low-energy transfer mechanisms relies on the reduction of the nonlinear dynamics and consequent analysis of the reduced dynamics by asymptotic techniques. Direct numerical simulations fully validate our analytical predictions.

  4. Light-induced electron transfer vs. energy transfer in molecular thin-film systems

    SciTech Connect

    Renschler, C. L.; Faulkner, L. R.

    1980-01-01

    Quenching of fluoranthene (FA) singlets by tetrabromo-o-benzoquinone (TBBQ) and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was studied both in xylene solutions and in spin-cast polystyrene (PS) films. Emphasis was placed on time-resolved fluorescence transients resulting from pulsed excitation. Linear Stern-Volmer plots were obtained for quenching in solution and gave diffusion-controlled rate constants, of 1.45 x 10/sup 10/ M/sup -1/ sec/sup -1/ and 1.53 x 10/sup 10/ M/sup -1/ sec/sup -1/ for TBBQ and TMPD, respectively. TBBQ was found to quench FA singlets in PS over the studied concentration range 12 mM < (TBBQ) < 48 mM, but in its presence FA singlets decayed nonexponentially. The results were interpreted quantitatively in terms of pure Foerster's transfer from FA to TBBQ without diffusion of excitons. The critical transfer radius R/sub 0/ was experimentally determined to be 24.3 A, which is in good agreement with the theoretical value of 23 A calculated from spectral data. Quenching of FA singlets in PS films was found to be independent of FA concentration over a 300 mM to 1200 mM FA concentration range for a constant TBBQ concentration of 24.0 mM. TMPD was only slightly effective as a quencher of FA singlets in PS because it apparently behaves strictly as a contact quencher based on reversible charge transfer. The implications of these results for the design of systems intended to exploit light-induced electron transfer are discussed.

  5. Modelling excitonic-energy transfer in light-harvesting complexes

    SciTech Connect

    Kramer, Tobias; Kreisbeck, Christoph

    2014-01-08

    The theoretical and experimental study of energy transfer in photosynthesis has revealed an interesting transport regime, which lies at the borderline between classical transport dynamics and quantum-mechanical interference effects. Dissipation is caused by the coupling of electronic degrees of freedom to vibrational modes and leads to a directional energy transfer from the antenna complex to the target reaction-center. The dissipative driving is robust and does not rely on fine-tuning of specific vibrational modes. For the parameter regime encountered in the biological systems new theoretical tools are required to directly compare theoretical results with experimental spectroscopy data. The calculations require to utilize massively parallel graphics processor units (GPUs) for efficient and exact computations.

  6. LED Linear Lamps and Troffer Lighting | Department of Energy

    Energy Saver

    LED Lights for All Occasions LED Lights for All Occasions November 15, 2012 - 1:15pm Addthis With such a variety of lights available, LEDs are a perfect choice for holiday lighting. | Photo courtesy of ©iStockphoto.com/Birzio With such a variety of lights available, LEDs are a perfect choice for holiday lighting. | Photo courtesy of ©iStockphoto.com/Birzio Elizabeth Spencer Communicator, National Renewable Energy Laboratory What does this mean for me? Energy-efficient LED lights can be used

  7. A stochastic reorganizational bath model for electronic energy transfer

    SciTech Connect

    Fujita, Takatoshi E-mail: aspuru@chemistry.harvard.edu; Huh, Joonsuk; Aspuru-Guzik, Aln E-mail: aspuru@chemistry.harvard.edu

    2014-06-28

    Environmentally induced fluctuations of the optical gap play a crucial role in electronic energy transfer dynamics. One of the simplest approaches to incorporate such fluctuations in energy transfer dynamics is the well known Haken-Strobl-Reineker (HSR) model, in which the energy-gap fluctuation is approximated as white noise. Recently, several groups have employed molecular dynamics simulations and excited-state calculations in conjunction to account for excitation energies thermal fluctuations. On the other hand, since the original work of HSR, many groups have employed stochastic models to simulate the same transfer dynamics. Here, we discuss a rigorous connection between the stochastic and the atomistic bath models. If the phonon bath is treated classically, time evolution of the exciton-phonon system can be described by Ehrenfest dynamics. To establish the relationship between the stochastic and atomistic bath models, we employ a projection operator technique to derive the generalized Langevin equations for the energy-gap fluctuations. The stochastic bath model can be obtained as an approximation of the atomistic Ehrenfest equations via the generalized Langevin approach. Based on this connection, we propose a novel scheme to take account of reorganization effects within the framework of stochastic models. The proposed scheme provides a better description of the population dynamics especially in the regime of strong exciton-phonon coupling. Finally, we discuss the effect of the bath reorganization in the absorption and fluorescence spectra of ideal J-aggregates in terms of the Stokes shifts. We find a simple expression that relates the reorganization contribution to the Stokes shifts the reorganization shift to the ideal or non-ideal exciton delocalization in a J-aggregate. The reorganization shift can be described by three parameters: the monomer reorganization energy, the relaxation time of the optical gap, and the exciton delocalization length. This

  8. Homopolar machine for reversible energy storage and transfer systems

    DOEpatents

    Stillwagon, Roy E.

    1981-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine.

  9. Homopolar machine for reversible energy storage and transfer systems

    DOEpatents

    Stillwagon, Roy E.

    1978-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine.

  10. State-to-state dynamics of molecular energy transfer

    SciTech Connect

    Gentry, W.R.; Giese, C.F.

    1993-12-01

    The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.

  11. Micro-beam friction liner and method of transferring energy

    DOEpatents

    Mentesana, Charles

    2007-07-17

    A micro-beam friction liner adapted to increase performance and efficiency and reduce wear in a piezoelectric motor or actuator or other device using a traveling or standing wave to transfer energy in the form of torque and momentum. The micro-beam friction liner comprises a dense array of micro-beam projections having first ends fixed relative to a rotor and second ends projecting substantially toward a plurality of teeth of a stator, wherein the micro-beam projections are compressed and bent during piezoelectric movement of the stator teeth, thereby storing the energy, and then react against the stator teeth to convert the stored energy stored to rotational energy in the rotor.

  12. Policy_Statement_on_Technology_Transfer.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PolicyStatementonTechnologyTransfer.pdf PolicyStatementonTechnologyTransfer.pdf PDF icon PolicyStatementonTechnologyTransfer.pdf More Documents & Publications...

  13. Single and pair neutron transfers at sub-barrier energies

    SciTech Connect

    Corradi, L.; Fioretto, E.; Michelagnoli, C.; Stefanini, A. M.; Valiente-Dobon, J. J.; Szilner, S.; Pollarolo, G.; Colo, G.; Mason, P.; Farnea, E.; Montagnoli, G.; Montanari, D.; Scarlassara, F.; Ur, C. A.; Gadea, A.; Haas, F.; Jelavic-Malenica, D.; Soic, N.; Marginean, N.

    2011-09-15

    Multinucleon transfer cross sections in the {sup 96}Zr+{sup 40}Ca system have been measured, in inverse kinematics, at bombarding energies ranging from the Coulomb barrier to {approx}25% below. Targetlike recoils have been identified in A, Z and velocity with the large solid angle magnetic spectrometer PRISMA. The experimental data for one- and two-neutron transfer channels have been compared with semiclassical microscopic calculations. For the two-neutron transfer channels the relevance of the transitions to the ground state and to the 0{sup +} excited states of {sup 42}Ca are discussed by employing, for the reaction mechanism, the successive approximation. It is found that the transition to the 0{sup +} state at {approx}6 MeV, whose wave function is dominated by the two neutrons in the 2p{sub 3/2} shell, is much larger than the ground state one. The comparison with the inclusive data reveals that transitions to states with high multipolarity and non-natural parity are important. This suggests that more complex two-particle correlations have to be incorporated in the treatment of the transfer process.

  14. The Effects of Neutron Transfer on Nuclear Fusion at Low Energies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Neutron Transfer on Nuclear Fusion at Low Energies Nuclear fusion produces heavier nuclei in stars and in laboratories. At energies so low that a classical particle could not ...

  15. Energy Transfer in Collisions of Peptide Ions with Surfaces

    SciTech Connect

    Laskin, Julia; Futrell, Jean H.

    2003-08-08

    Time- and energy-resolved surface induced (SID) dissociation of a singly protonated octapeptide des-Arg1-bradykinin (PPGFSPFR) was used to study the effect of physical properties of the SID target on the efficiency of translational to vibrational energy transfer (T > V) in collisions of peptide ions with surfaces. Four SID targets of varying chemical composition and stiffness were examined in this work: self-assembled monolayers of 1-dodecane thiol (HSAM) and its fluorinated analog (CF3(CF2)9C2H4SH - FSAM) on gold, a 300 nm thick layer of lithium fluoride (LiF) on a polished titanium surface, and a 2 m carbon vapor deposited diamond layer on a titanium surface. An RRKM-based modeling approach was utilized to extract internal energy distributions deposited into the precursor ion upon collisions with different surfaces. We found that the percent of T -> V transfer increases in the order: HSAM (10.1%), LiF (12.0%), diamond (19.2%), FSAM (20.5%). Furthermore, the width of the energy deposition function (EDF) is affected by the properties of the SID target. Collisions of peptide ions with the HSAM surface results in deposition of relatively narrow internal energy distributions with the width of the EDF increasing in the order: HSAM < FSAM < LiF < Diamond. The results demonstrate that surface stiffness has a major effect on the width of the EDF, while the average energy deposited into the ion is mainly affected by the mass of the chemical moiety representing an immediate collision partner for the ion impacting the surface.

  16. Geometric phase effects in low-energy dynamics near conical intersections: A study of the multidimensional linear vibronic coupling model

    SciTech Connect

    Joubert-Doriol, Loc; Ryabinkin, Ilya G.; Izmaylov, Artur F.; Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6

    2013-12-21

    In molecular systems containing conical intersections (CIs), a nontrivial geometric phase (GP) appears in the nuclear and electronic wave functions in the adiabatic representation. We study GP effects in nuclear dynamics of an N-dimensional linear vibronic coupling (LVC) model. The main impact of GP on low-energy nuclear dynamics is reduction of population transfer between the local minima of the LVC lower energy surface. For the LVC model, we proposed an isometric coordinate transformation that confines non-adiabatic effects within a two-dimensional subsystem interacting with an N ? 2 dimensional environment. Since environmental modes do not couple electronic states, all GP effects originate from nuclear dynamics within the subsystem. We explored when the GP affects nuclear dynamics of the isolated subsystem, and how the subsystem-environment interaction can interfere with GP effects. Comparing quantum dynamics with and without GP allowed us to devise simple rules to determine significance of the GP for nuclear dynamics in this model.

  17. Nanoparticles for heat transfer and thermal energy storage

    DOEpatents

    Singh, Dileep; Cingarapu, Sreeram; Timofeeva, Elena V.; Moravek, Michael

    2015-07-14

    An article of manufacture and method of preparation thereof. The article of manufacture and method of making the article includes an eutectic salt solution suspensions and a plurality of nanocrystalline phase change material particles having a coating disposed thereon and the particles capable of undergoing the phase change which provides increase in thermal energy storage. In addition, other articles of manufacture can include a nanofluid additive comprised of nanometer-sized particles consisting of copper decorated graphene particles that provide advanced thermal conductivity to heat transfer fluids.

  18. Heat transfer research for ocean thermal energy conversion

    SciTech Connect

    Kreith, F.; Bharathan, D.

    1988-02-01

    In this lecture an overview of the heat and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems, are briefly discussed.

  19. Heat transfer research for ocean thermal energy conversion

    SciTech Connect

    Kreith, F.; Bharathan, D.

    1987-03-01

    In this lecture an overview of the heat- and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open- and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems are briefly discussed.

  20. An ultra-efficient energy transfer beyond plasmonic light scattering

    SciTech Connect

    Fu, Sze-Ming; Zhong, Yan-Kai; Lin, Albert

    2014-11-14

    The energy transfer between nano-particles is of great importance for, solar cells, light-emitting diodes, nano-particle waveguides, and other photonic devices. This study shows through novel design and algorithm optimization, the energy transfer efficiency between plasmonic and dielectric nano-particles can be greatly improved. Using versatile designs including core-shell wrapping, supercells and dielectric mediated plasmonic scattering, 0.05 dB/μm attenuation can be achieved, which is 20-fold reduction over the baseline plasmonic nano-particle chain, and 8-fold reduction over the baseline dielectric nano-particle chain. In addition, it is also found that the dielectric nano-particle chains can actually be more efficient than the plasmonic ones, at their respective optimized geometry. The underlying physics is that although plasmonic nano-particles provide stronger coupling and field emission, the effect of plasmonic absorption loss is actually more dominant resulting in high attenuation. Finally, the group velocity for all design schemes proposed in this work is shown to be maintained above 0.4c, and it is found that the geometry optimization for transmission also boosts the group velocity.

  1. Technology_Transfer_Memo.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology_Transfer_Memo.pdf Technology_Transfer_Memo.pdf (91.42 KB) More Documents & Publications Policy_Statement_on_Technology_Transfer.pdf Policy_Statement_on_TT.pdf livermorecmp.pdf

  2. File Transfer Protocol (FTP) Site Instructions | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Transfer Protocol (FTP) Site Instructions Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: File Transfer Protocol...

  3. Computing intramolecular charge and energy transfer rates using optimal modes

    SciTech Connect

    Yang, Xunmo; Bittner, Eric R.

    2015-06-28

    In our recent work [X. Yang and E. R. Bittner, J. Phys. Chem. A 118, 5196 (2014)], we showed how to construct a reduced set of nuclear motions that capture the coupling between electronic and nuclear degrees of freedom over the course of an electronic transition. We construct these modes, referred to as “Lanczos modes,” by applying a search algorithm to find linear combinations of vibrational normal modes that optimize the electronic/nuclear coupling operator. Here, we analyze the irreducible representations of the dominant contributions of these modes and find that for the cases considered here, these belong to totally symmetric irreducible representations of the donor and acceptor moieties. Upon investigating the molecular geometry changes following the transition, we propose that the electronic transition process can be broken into two steps, in the agreement of Born-Oppenheimer approximation: a fast excitation transfer occurs, facilitated by the “primary Lanczos mode,” followed by slow nuclear relaxation on the final electronic diabatic surface.

  4. Secretarial Policy Statement on Technology Transfer at Department of Energy Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Secretarial Policy Statement on Technology Transfer at Department of Energy Facilities Introduction This Policy Statement is designed to help guide and strengthen the Department of Energy's technology transfer efforts and to heighten awareness of the importance of technology transfer activities throughout DOE. For purposes of this document, the term "technology transfer" refers to the process by which knowledge, intellectual property or capabilities developed at the Department of

  5. Calibration of fluorescence resonance energy transfer in microscopy

    DOEpatents

    Youvan, Dougalas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2003-12-09

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  6. Calibration of fluorescence resonance energy transfer in microscopy

    DOEpatents

    Youvan, Douglas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2002-09-24

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  7. The initial and final states of electron and energy transfer processes: Diabatization as motivated by system-solvent interactions

    SciTech Connect

    Subotnik, Joseph E.; Cave, Robert J.; Steele, Ryan P.; Shenvi, Neil

    2009-06-21

    For a system which undergoes electron or energy transfer in a polar solvent, we define the diabatic states to be the initial and final states of the system, before and after the nonequilibrium transfer process. We consider two models for the system-solvent interactions: A solvent which is linearly polarized in space and a solvent which responds linearly to the system. From these models, we derive two new schemes for obtaining diabatic states from ab initio calculations of the isolated system in the absence of solvent. These algorithms resemble standard approaches for orbital localization, namely, the Boys and Edmiston-Ruedenberg (ER) formalisms. We show that Boys localization is appropriate for describing electron transfer [Subotnik et al., J. Chem. Phys. 129, 244101 (2008)] while ER describes both electron and energy transfer. Neither the Boys nor the ER methods require definitions of donor or acceptor fragments and both are computationally inexpensive. We investigate one chemical example, the case of oligomethylphenyl-3, and we provide attachment/detachment plots whereby the ER diabatic states are seen to have localized electron-hole pairs.

  8. DOE Transfers Property at ETTP | Department of Energy

    Energy.gov [DOE] (indexed site)

    event that transfers 25 acres for private development at ETTP. (L to R) U.S. ... event that transfers 25 acres for private development at ETTP. OAK RIDGE, Tenn.- On ...

  9. Idaho Transferring a Water Right Webpage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Transferring a Water Right Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho Transferring a Water Right Webpage Abstract This webpage...

  10. Molten Salt Heat Transfer Fluid (HTF) - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Find More Like This Return to Search Molten Salt Heat Transfer Fluid (HTF) Sandia National ... Sandia has developed a heat transfer fluid (HTF) for use at elevated temperatures that has ...

  11. Heat Transfer Fluids Containing Nanoparticles (08-066) - Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Return to Search Heat Transfer Fluids Containing Nanoparticles (08-066) Argonne National Laboratory Contact ANL About This Technology

     

    Caption: Heat transfer ...

  12. Industrial Steam System Heat-Transfer Solutions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat-Transfer Solutions Industrial Steam System Heat-Transfer Solutions This brief provides an overview of considerations for selecting the best heat-transfer equipment for various steam systems and applications. Industrial Steam System Heat-Transfer Solutions (June 2003) (442.68 KB) More Documents & Publications Industrial Steam System Process-Control Schemes Considerations When Selecting a Condensing Economizer Steam Pressure Reduction: Opportunities and Issues

  13. Clean Boiler Waterside Heat Transfer Surfaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Boiler Waterside Heat Transfer Surfaces Clean Boiler Waterside Heat Transfer Surfaces This tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #7 Clean Boiler Waterside Heat Transfer Surfaces (April 2012) (395.4 KB) More Documents & Publications Consider Installing Turbulators on Two- and Three-Pass Firetube Boilers Improving Steam System

  14. The transfer between electron bulk kinetic energy and thermal energy in collisionless magnetic reconnection

    SciTech Connect

    Lu, San; Lu, Quanming; Huang, Can; Wang, Shui

    2013-06-15

    By performing two-dimensional particle-in-cell simulations, we investigate the transfer between electron bulk kinetic and electron thermal energy in collisionless magnetic reconnection. In the vicinity of the X line, the electron bulk kinetic energy density is much larger than the electron thermal energy density. The evolution of the electron bulk kinetic energy is mainly determined by the work done by the electric field force and electron pressure gradient force. The work done by the electron gradient pressure force in the vicinity of the X line is changed to the electron enthalpy flux. In the magnetic island, the electron enthalpy flux is transferred to the electron thermal energy due to the compressibility of the plasma in the magnetic island. The compression of the plasma in the magnetic island is the consequence of the electromagnetic force acting on the plasma as the magnetic field lines release their tension after being reconnected. Therefore, we can observe that in the magnetic island the electron thermal energy density is much larger than the electron bulk kinetic energy density.

  15. Physics with linear colliders in the TeV CM energy region

    SciTech Connect

    Bulos, F.; Cook, V.; Hinchliffe, I.; Lane, K.; Pellet, D.; Perl, M.; Seiden, A.; Wiedemann, H.

    1982-07-01

    From a technical point of view a linear collider of high energy and luminosity cannot be operated economically at the present date. A series of R and D efforts in different areas are required to produce the necessary technology for an economically feasible linear collider. No fundamental limits, however, have been found as yet that would prevent us from reaching the goals outlined in this report. Most of the critical component will be tested in a real like situation once the SLC comes into operation. Beyond that much R and D is required in rf-power sources to reduce the power consumption and in high gradient accelerating structures to minimize the required real estate and linear construction costs.

  16. Efficient near-field wireless energy transfer using adiabatic system variations

    DOEpatents

    Hamam, Rafif E.; Karalis, Aristeidis; Joannopoulos, John D.; Soljacic, Marin

    2013-01-29

    Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is .kappa..sub.1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is .kappa..sub.B2, and during the wireless energy transfers, adjusting at least one of the coupling rates .kappa..sub.1B and .kappa..sub.B2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from the first resonator structure to the second resonator structure through the intermediate resonator structure.

  17. Efficient near-field wireless energy transfer using adiabatic system variations

    DOEpatents

    Hamam, Rafif E; Karalis, Aristeidis; Joannopoulos, John D; Soljacic, Marin

    2014-09-16

    Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is .kappa..sub.1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is .kappa..sub.B2, and during the wireless energy transfers, adjusting at least one of the coupling rates .kappa..sub.1B and .kappa..sub.B2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from the first resonator structure to the second resonator structure through the intermediate resonator structure.

  18. Transfers

    Energy.gov [DOE]

    Transfer means a change of an employee, from one Federal government branch (executive, legislative, judicial) to another or from one agency to another without a break in service of 1 full work day. 

  19. New Tool for Searching DOE Tech Transfer Info | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Tool for Searching DOE Tech Transfer Info Back to the OSTI News Listing for 2012 The Department of Energy (DOE) Technology Transfer website has a new search feature that for the first time allows searching of technology transfer information across the DOE national laboratories. The new tool enables users to search all of DOE's technology transfer information, including inventions, patents and other applied research, available from DOE's national

  20. Single-collision studies of energy transfer and chemical reaction

    SciTech Connect

    Valentini, J.J.

    1993-12-01

    The research focus in this group is state-to-state dynamics of reaction and energy transfer in collisions of free radicals such as H, OH, and CH{sub 3} with H{sub 2}, alkanes, alcohols and other hydrogen-containing molecules. The motivation for the work is the desire to provide a detailed understanding of the chemical dynamics of prototype reactions that are important in the production and utilization of energy sources, most importantly in combustion. The work is primarily experimental, but with an important and growing theoretical/computational component. The focus of this research program is now on reactions in which at least one of the reactants and one of the products is polyatomic. The objective is to determine how the high dimensionality of the reactants and products differentiates such reactions from atom + diatom reactions of the same kinematics and energetics. The experiments use highly time-resolved laser spectroscopic methods to prepare reactant states and analyze the states of the products on a single-collision time scale. The primary spectroscopic tool for product state analysis is coherent anti-Stokes Raman scattering (CARS) spectroscopy. CARS is used because of its generality and because the extraction of quantum state populations from CARS spectra is straightforward. The combination of the generality and easy analysis of CARS makes possible absolute cross section measurements (both state-to-state and total), a particularly valuable capability for characterizing reactive and inelastic collisions. Reactant free radicals are produced by laser photolysis of appropriate precursors. For reactant vibrational excitation stimulated Raman techniques are being developed and implemented.

  1. Modeling the transfer function for the Dark Energy Survey

    SciTech Connect

    Chang, C.; Busha, M. T.; Wechsler, R. H.; Refregier, A.; Amara, A.; Rykoff, E.; Becker, M. R.; Bruderer, C.; Gamper, L.; Leistedt, B.; Peiris, H.; Abbott, T.; Abdalla, F. B.; Balbinot, E.; Banerji, M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Carnero, A.; Desai, S.; da Costa, L. N.; Cunha, C. E.; Eifler, T.; Evrard, A. E.; Fausti Neto, A.; Gerdes, D.; Gruen, D.; James, D.; Kuehn, K.; Maia, M. A. G.; Makler, M.; Ogando, R.; Plazas, A.; Sanchez, E.; Santiago, B.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Zuntz, J.

    2015-03-04

    We present a forward-modelling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function a mapping from cosmological and astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator, Berge et al. 2013) and catalogs representative of the DES data. In this work we simulate the 244 deg2 coadd images and catalogs in 5 bands for the DES Science Verification (SV) data. The simulation output is compared with the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples, star/galaxy classification and proximity effects on object detection, are then used to demonstrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modelling approach is generally applicable for other upcoming and future surveys. As a result, it provides a powerful tool for systematics studies which is sufficiently realistic and highly controllable.

  2. Modeling the Transfer Function for the Dark Energy Survey

    DOE PAGES [OSTI]

    Chang, C.

    2015-03-04

    We present a forward-modeling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function—a mapping from cosmological/astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator) and catalogs representative of the DES data. In this work we demonstrate the framework by simulating the 244 deg2 coadd images and catalogs in five bands for the DES Science Verification data. The simulation output is compared with themore » corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples—star-galaxy classification and proximity effects on object detection—are then used to illustrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modeling approach is generally applicable for other upcoming and future surveys. It provides a powerful tool for systematics studies that is sufficiently realistic and highly controllable.« less

  3. Modeling the transfer function for the Dark Energy Survey

    DOE PAGES [OSTI]

    Chang, C.; Busha, M. T.; Wechsler, R. H.; Refregier, A.; Amara, A.; Rykoff, E.; Becker, M. R.; Bruderer, C.; Gamper, L.; Leistedt, B.; et al

    2015-03-04

    We present a forward-modelling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function a mapping from cosmological and astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator, Berge et al. 2013) and catalogs representative of the DES data. In this work we simulate the 244 deg2 coadd images and catalogs in 5 bands for the DES Science Verification (SV) data. The simulationmoreoutput is compared with the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples, star/galaxy classification and proximity effects on object detection, are then used to demonstrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modelling approach is generally applicable for other upcoming and future surveys. As a result, it provides a powerful tool for systematics studies which is sufficiently realistic and highly controllable.less

  4. Φ-Meson Photoproduction with Linearly Polarized Photons at Threshold Energies

    SciTech Connect

    Salamanca, Julian; Cole, Philip L

    2007-10-01

    The observables provided by linearly-polarized photons are of interest in delineating the contributions of the various hadronic processes giving rise to vector meson photoproduction. In particular, we describe how Φ-meson production affords an incisive tool for exploring the nature of the parity exchange at threshold energies, the strangeness content of proton, as well as extracting signatures for the violation of Okubo-Zweig-Iizuka observation (OZI rule). Our goal is to study the γp → Φp reaction, with Φ → K+K-, in the photon energy range of 1.7 to 2.1 GeV by using the Coherent Linear Bremsstrahlung Facility in Hall B of Jefferson Laboratory, Newport News, VA. The data were collected during the g8b run in the summer of 2005.

  5. {phi}-Meson Photoproduction with Linearly Polarized Photons at Threshold Energies

    SciTech Connect

    Salamanca, Julian; Cole, Philip L.

    2007-10-26

    The observables provided by linearly-polarized photons are of interest in delineating the contributions of the various hadronic processes giving rise to vector meson photoproduction. In particular, we describe how {phi}-meson production affords an incisive tool for exploring the nature of the parity exchange at threshold energies, the strangeness content of proton, as well as extracting signatures for the violation of Okubo-Zweig-Iizuka observation (OZI rule). Our goal is to study the {gamma}-vectorp{yields}{phi}p reaction, with {phi}{yields}K{sup +}K{sup -}, in the photon energy range of 1.7 to 2.1 GeV by using the Coherent Linear Bremsstrahlung Facility in Hall B of Jefferson Laboratory, Newport News, VA. The data were collected during the g8b run in the summer of 2005.

  6. Modeling of dissociation and energy transfer in shock-heated nitrogen flows

    SciTech Connect

    Munafò, A.; Liu, Y.; Panesi, M.

    2015-12-15

    This work addresses the modeling of dissociation and energy transfer processes in shock heated nitrogen flows by means of the maximum entropy linear model and a newly proposed hybrid bin vibrational collisional model. Both models aim at overcoming two of the main limitations of the state of the art non-equilibrium models: (i) the assumption of equilibrium between rotational and translational energy modes of the molecules and (ii) the reliance on the quasi-steady-state distribution for the description of the population of the internal levels. The formulation of the coarse-grained models is based on grouping the energy levels into bins, where the population is assumed to follow a Maxwell-Boltzmann distribution at its own temperature. Different grouping strategies are investigated. Following the maximum entropy principle, the governing equations are obtained by taking the zeroth and first-order moments of the rovibrational master equations. The accuracy of the proposed models is tested against the rovibrational master equation solution for both flow quantities and population distributions. Calculations performed for free-stream velocities ranging from 5 km/s to 10 km/s demonstrate that dissociation can be accurately predicted by using only 2-3 bins. It is also shown that a multi-temperature approach leads to an under-prediction of dissociation, due to the inability of the former to account for the faster excitation of high-lying vibrational states.

  7. Cyanine dyes with high-absorbance cross section as donor chromophores in energy transfer labels

    DOEpatents

    Glazer, A.N.; Mathies, R.A.; Hung, S.C.; Ju, J.

    1998-12-29

    Cyanine dyes are used as the donor fluorophore in energy transfer labels in which light energy is absorbed by a donor fluorophore and transferred to an acceptor fluorophore which responds to the transfer by emitting fluorescent light for detection. The cyanine dyes impart an unusually high sensitivity to the labels thereby improving their usefulness in a wide variety of biochemical procedures, particularly nucleic acid sequencing, nucleic acid fragment sizing, and related procedures. 22 figs.

  8. Methods of sequencing and detection using energy transfer labels with cyanine dyes as donor chromophores

    DOEpatents

    Glazer, Alexander N.; Mathies, Richard A.; Hung, Su-Chun; Ju, Jingyue

    2000-01-01

    Cyanine dyes are used as the donor fluorophore in energy transfer labels in which light energy is absorbed by a donor fluorophore and transferred to an acceptor fluorophore which responds to the transfer by emitting fluorescent light for detection. The cyanine dyes impart an unusually high sensitivity to the labels thereby improving their usefulness in a wide variety of biochemical procedures, particularly nucleic acid sequencing, nucleic acid fragment sizing, and related procedures.

  9. Cyanine dyes with high-absorbance cross section as donor chromophores in energy transfer labels

    DOEpatents

    Glazer, Alexander N.; Mathies, Richard A.; Hung, Su-Chun; Ju, Jingyue

    1998-01-01

    Cyanine dyes are used as the donor fluorophore in energy transfer labels in which light energy is absorbed by a donor fluorophore and transferred to an acceptor fluorophore which responds to the transfer by emitting fluorescent light for detection. The cyanine dyes impart an unusually high sensitivity to the labels thereby improving their usefulness in a wide variety of biochemical procedures, particularly nucleic acid sequencing, nucleic acid fragment sizing, and related procedures.

  10. HQ Voluntary Leave Transfer Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HQ Voluntary Leave Transfer Program HQ Voluntary Leave Transfer Program Under the Voluntary Leave Transfer Program you can apply, based on a medical emergency, to receive annual leave donated by other employees. A medical emergency is generally defined as a medical condition of the employee or family member that is likely to keep you (the employee) away from work and cause a lost of pay of at least 24 hours. VOLUNTARY-LEAVE-TRANSFER-PROGRAM LISTING-11-7-2016.pdf (31.79 KB) Responsible Contacts

  11. UNIDO ICS Portal for Technology Transfer | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    ex.php?titleUNIDOICSPortalforTechnologyTransfer&oldid329335" Feedback Contact needs updating Image needs updating Reference needed Missing content Broken link Other...

  12. NREL: Technology Transfer - New Energy License Encourages Investment...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New Energy License Encourages Investment in Green Technologies August 5, 2015 The Energy Department's National Renewable Energy Laboratory (NREL) has developed a new technology ...

  13. Policy_Statement_on_Technology_Transfer.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Policy_Statement_on_Technology_Transfer.pdf Policy_Statement_on_Technology_Transfer.pdf (210.86 KB) More Documents & Publications Technology_Transfer_Memo.pdf Policy_Statement_on_TT.pdf Argonne National Lab scientists Jeff Elam (left) and Anil Mane's work in nanocomposite charge drain coatings represents a significant breakthrough in the efforts to develop microelectromechanical systems, or MEMS. This new technology earned one of the 36 R&D 100 awards from R&D Magazine that the

  14. EM Transfers Coal to Fuel Economic Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transfers Coal to Fuel Economic Development EM Transfers Coal to Fuel Economic Development May 16, 2016 - 12:15pm Addthis A front loader dumps a bucket of coal into the first of more than 700 trucks that will be used to transport coal from EM's Paducah Site to buyers. A front loader dumps a bucket of coal into the first of more than 700 trucks that will be used to transport coal from EM's Paducah Site to buyers. PADUCAH, Ky. - EM recently completed transferring ownership of nearly 15,000 tons of

  15. The Effects of Neutron Transfer on Nuclear Fusion at Low Energies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Neutron Transfer on Nuclear Fusion at Low Energies Nuclear fusion produces heavier nuclei in stars and in laboratories. At energies so low that a classical particle could not penetrate the Coulomb repulsion of the nucleus, the Coulomb barrier, fusion takes place by quantum tunneling. At these energies, fusion rates can be sensitive to the interplay between nuclear structure and nuclear reactions. This talk presents experimental studies of the influence of neutron transfer on sub-barrier fusion.

  16. The Department of Energy's Small Business Innovation Research and Small Business Technology Transfer Programs, IG-0876

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Small Business Innovation Research and Small Business Technology Transfer Programs DOE/IG-0876 November 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 November 6, 2012 MEMORANDUM FOR SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Small Business Innovation Research and Small Business Technology Transfer Programs" INTRODUCTION AND

  17. NREL: Technology Transfer - Energy Department Announces New Tools...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Department Announces New Tools for Hydrogen Fueling Infrastructure Deployment April 21, 2015 The Energy Department has announced two new tools and the release of two reports...

  18. NREL: Technology Transfer - 2014 Energy Systems Integration Facility...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2014 Energy Systems Integration Facility Annual Report Available for Download February 13, 2015 The 2014 Energy Systems Integration Facility (ESIF) Annual Report is now available...

  19. Energy Transfer of Excitons Between Quantum Wells Separated by a Wide Barrier

    SciTech Connect

    LYO,SUNGKWUN K.

    1999-12-06

    We present a microscopic theory of the excitonic Stokes and anti-Stokes energy transfer mechanisms between two widely separated unequal quantum wells with a large energy mismatch ({Delta}) at low temperatures (T). Exciton transfer through dipolar coupling, photon-exchange coupling and over-barrier ionization of the excitons through exciton-exciton Auger processes are examined. The energy transfer rate is calculated as a function of T and the center-to-center distance d between the two wells. The rates depend sensitively on T for plane-wave excitons. For located excitons, the rates depend on T only through the T-dependence of the localization radius.

  20. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, Victor; Goodman, Claude A.

    1996-01-01

    Apparatus for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels.

  1. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, V.; Goodman, C.A.

    1996-08-20

    Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.

  2. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer (Poster), NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer A. Meintz, T. Markel, E. Burton, L. Wang, J. Gonder, A. Brooker, and A. Konan Work sponsored by United States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicles Technologies Office, Vehicle Systems Program The information contained in this poster is subject to a government license. 2015 IEEE PELS Workshop on

  3. Molecular Modeling of Hot Electron Transfer for Solar Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar cell technology is one such technology and takes energy irradiated from the sun and converts it into usable electrical energy. At the heart of solar cell technology is ...

  4. The energy transfer in the TEMP-4M pulsed ion beam accelerator

    SciTech Connect

    Isakova, Y. I.; Pushkarev, A. I.; Khaylov, I. P.

    2013-07-15

    The results of a study of the energy transfer in the TEMP-4M pulsed ion beam accelerator are presented. The energy transfer efficiency in the Blumlein and a self-magnetically insulated ion diode was analyzed. Optimization of the design of the accelerator allows for 85% of energy transferred from Blumlein to the diode (including after-pulses), which indicates that the energy loss in Blumlein and spark gaps is insignificant and not exceeds 10%12%. Most losses occur in the diode. The efficiency of energy supplied to the diode to the energy of accelerated ions is 8%9% for a planar strip self-magnetic MID, 12%15% for focusing diode and 20% for a spiral self-magnetic MID.

  5. Department of Energy Issues 2016-2018 DOE Technology Transfer Execution

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plan | Department of Energy 2016-2018 DOE Technology Transfer Execution Plan Department of Energy Issues 2016-2018 DOE Technology Transfer Execution Plan Argonne National Lab scientists Jeff Elam (left) and Anil Mane's work in nanocomposite charge drain coatings represents a significant breakthrough in the efforts to develop microelectromechanical systems, or MEMS. This new technology earned one of the 36 R&D 100 awards from R&D Magazine that the National Labs took home in 2013. |

  6. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel Platinum/Chromium

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Novel Platinum/Chromium Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary stent is a small, self-expanding metal mesh tube that saves thousands of lives every year by opening blocked arteries and allowing blood to flow freely again. Jointly developed by NETL and Boston Scientific Corporation, Inc., (BSCI) this novel alloy is the first austenitic stainless steel formulation to be produced for

  7. Global Energy Transfer - Feed-in Tariffs for Developing Countries...

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Topics: Finance Resource Type: Publications Website: www.dbcca.comdbccaENinvestment-researchinvestmentresearch2347.js References: Get FiT Program1 This report...

  8. Non-contact pumping of light emitters via non-radiative energy transfer

    DOEpatents

    Klimov, Victor I.; Achermann, Marc

    2010-01-05

    A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

  9. Linear Free Energy Correlations for Fission Product Release from the Fukushima-Daiichi Nuclear Accident

    SciTech Connect

    Abrecht, David G.; Schwantes, Jon M.

    2015-03-03

    This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes, et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the source of the radionuclides to be from active reactors rather than the spent fuel pool. Linear correlations of the form ln⁡Χ=-α (ΔG_rxn^° (T_C ))/(RT_C )+β were obtained between the deposited concentration and the reduction potential of the fission product oxide species using multiple reduction schemes to calculate ΔG_rxn^° (T_C ). These models allowed an estimate of the upper bound for the reactor temperatures of T_C between 2130 K and 2220 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, 151Sm through atmospheric venting and releases during the first month following the accident were performed, and indicate large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.

  10. Off-resonance energy absorption in a linear Paul trap due to mass selective resonant quenching

    SciTech Connect

    Sivarajah, I.; Goodman, D. S.; Wells, J. E.; Smith, W. W.; Narducci, F. A.

    2013-11-15

    Linear Paul traps (LPT) are used in many experimental studies such as mass spectrometry, atom-ion collisions, and ion-molecule reactions. Mass selective resonant quenching (MSRQ) is implemented in LPT either to identify a charged particle's mass or to remove unwanted ions from a controlled experimental environment. In the latter case, MSRQ can introduce undesired heating to co-trapped ions of different mass, whose secular motion is off resonance with the quenching ac field, which we call off-resonance energy absorption (OREA). We present simulations and experimental evidence that show that the OREA increases exponentially with the number of ions loaded into the trap and with the amplitude of the off-resonance external ac field.

  11. Ion-ion interaction and energy transfer of 4+ transuranium ions in cerium tetrafluoride

    SciTech Connect

    Liu, G.K.; Beitz, J.V.

    1990-01-01

    Dynamics of excited 5f electron states of the transuranium ions Cm{sup 4+} and Bk{sup 4+} in CeF{sub 4} are compared. Based on time- and wavelength-resolved laser-induced fluorescence, excitation energy transfer processes have been probed. Depending on concentration and electronic energy level structure of the studied 4+ transuranium ion, the dominant energy transfer mechanisms were identified as cross relaxation, exciton-exciton annihilation, and trapping. Energy transfer rates derived from the fitting of the observed fluorescence decays to theoretical models, based on electric multipolar ion-ion interactions, are contrasted with prior studies of 4f states of 3+ lanthanide and 3d states of transition metal ions. 16 refs., 1 tab.

  12. Calculation of excitation energies from the CC2 linear response theory using Cholesky decomposition

    SciTech Connect

    Baudin, Pablo; qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C ; Marn, Jos Snchez; Cuesta, Inmaculada Garca; Snchez de Mers, Alfredo M. J.

    2014-03-14

    A new implementation of the approximate coupled cluster singles and doubles CC2 linear response model is reported. It employs a Cholesky decomposition of the two-electron integrals that significantly reduces the computational cost and the storage requirements of the method compared to standard implementations. Our algorithm also exploits a partitioning form of the CC2 equations which reduces the dimension of the problem and avoids the storage of doubles amplitudes. We present calculation of excitation energies of benzene using a hierarchy of basis sets and compare the results with conventional CC2 calculations. The reduction of the scaling is evaluated as well as the effect of the Cholesky decomposition parameter on the quality of the results. The new algorithm is used to perform an extrapolation to complete basis set investigation on the spectroscopically interesting benzylallene conformers. A set of calculations on medium-sized molecules is carried out to check the dependence of the accuracy of the results on the decomposition thresholds. Moreover, CC2 singlet excitation energies of the free base porphin are also presented.

  13. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer NETL Technology for Safer,

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology for Safer, Cleaner Corrosion-Protecting Metal Coatings Licensed by Pittsburgh Start-Up Success Story Corrosion-related issues cost the U.S. economy $276 billion a year. The Energy Department's National Energy Technology Laboratory (NETL) teamed up with Carnegie Mellon University (CMU) to create a revolutionary, cost-effective technology to reduce that impact-work that resulted in the creation of a new CMU/NETL spin-off that signed a licensing agreement with the laboratory in June. The

  14. Shandiin/DOE intertribal energy programs: technology transfer series

    SciTech Connect

    Not Available

    1984-01-01

    This project entailed the continuation of solar design and construction workshops for the Navajo, Hopi, and Apache Tribes, including tribal planners, tribal staff, engineers, architects, and installers of energy systems. The project also entailed the continuation of support for the development of an energy self-sufficient community school system for the many rural Navajo communities. Great emphasis was placed in completing the second phase of development of the intertribal computer network. The development of this network will greatly benefit our nation in increased efficiency and coordination of tribal energy programs. A series of workshops was held in energy programs training for planners from the Navajo, Hopi, and Apache Tribes. The initial assessment of this program concludes that the greatest impact and return came from the Navajo Tribe's Division of Economic Development, with lesser impact upon the Community Development branches of the Hopi and Apache Tribes. The impact of microcomputer technologies upon the tribes has been shown to be profound, and the development of the intertribal computer network can be seen as a true asset to both the tribes and to the nation.

  15. A semianalytic model to extract differential linear scattering coefficients of breast tissue from energy dispersive x-ray diffraction measurements

    SciTech Connect

    LeClair, Robert J.; Boileau, Michel M.; Wang Yinkun [Department of Physics and Astronomy, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6 (Canada) and Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6 (Canada); Department of Physics and Astronomy, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6 (Canada); Department of Physics and Astronomy, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6 (Canada)

    2006-04-15

    The goal of this work is to develop a technique to measure the x-ray diffraction signals of breast biopsy specimens. A biomedical x-ray diffraction technology capable of measuring such signals may prove to be of diagnostic use to the medical field. Energy dispersive x-ray diffraction measurements coupled with a semianalytical model were used to extract the differential linear scattering coefficients [{mu}{sub s}(x)] of breast tissues on absolute scales. The coefficients describe the probabilities of scatter events occurring per unit length of tissue per unit solid angle of detection. They are a function of the momentum transfer argument, x=sin({theta}/2)/{lambda}, where {theta}=scatter angle and {lambda}=incident wavelength. The technique was validated by using a 3 mm diameter 50 kV polychromatic x-ray beam incident on a 5 mm diameter 5 mm thick sample of water. Water was used because good x-ray diffraction data are available in the literature. The scatter profiles from 6 deg. to 15 deg. in increments of 1 deg. were measured with a 3 mmx3 mmx2 mm thick cadmium zinc telluride detector. A 2 mm diameter Pb aperture was placed on top of the detector. The target to detector distance was 29 cm and the duration of each measurement was 10 min. Ensemble averages of the results compare well with the gold standard data of A. H. Narten [''X-ray diffraction data on liquid water in the temperature range 4 deg. C-200 deg. C, ORNL Report No. 4578 (1970)]. An average 7.68% difference for which most of the discrepancies can be attributed to the background noise at low angles was obtained. The preliminary measurements of breast tissue are also encouraging.

  16. Effects of excluded volume and correlated molecular orientations on Frster resonance energy transfer in liquid water

    SciTech Connect

    Yang, Mino

    2014-04-14

    Frster theory for the survival probability of excited chromophores is generalized to include the effects of excluded volume and orientation correlation in the molecular distribution. An analytical expression for survival probability was derived and written in terms of a few simple elementary functions. Because of the excluded volume, the survival probability exhibits exponential decay at early times and stretched exponential decay at later times. Experimental schemes to determine the size of the molecular excluded volume are suggested. With the present generalization of theory, we analyzed vibrational resonance energy transfer kinetics in neat water. Excluded volume effects prove to be important and slow down the kinetics at early times. The majority of intermolecular resonance energy transfer was found to occur with exponential kinetics, as opposed to the stretched exponential behavior predicted by Frster theory. Quantum yields of intra-molecular vibrational relaxation, intra-, and intermolecular energy transfer were calculated to be 0.413, 0.167, and 0.420, respectively.

  17. Resonant energy transfer between Eu luminescent sites and their local geometry in GaN

    SciTech Connect

    Timmerman, Dolf; Wakamatsu, Ryuta; Tanaka, Kazuteru; Lee, Dong-gun; Koizumi, Atsushi; Fujiwara, Yasufumi

    2015-10-12

    Eu-doped GaN is a solid state material with promising features for quantum manipulation. In this study, we investigate the population dynamics of Eu in ions in this system by resonant excitation. From differences in the emission related to transitions between the {sup 5}D{sub 0} and {sup 7}F{sub 2} manifold in the Eu ions, we can distinguish different luminescence sites and observe that a resonant energy transfer takes place between two of these sites which are in proximity of each other. The time constants related to this energy transfer are on the order of 100 μs. By using different substrates, the energy transfer efficiency could be strongly altered, and it is demonstrated that the coupling between ions has an out-of-plane character. Based on these results, a microscopic model of this combined center is presented.

  18. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    SciTech Connect

    Satoshi Matsuzaki

    2002-08-01

    This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application of NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Qy-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophyll a (BChl a) molecules are provided. General conclusions are given in Chapter 5.

  19. Computation studies into architecture and energy transfer properties of photosynthetic units from filamentous anoxygenic phototrophs

    SciTech Connect

    Linnanto, Juha Matti; Freiberg, Arvi

    2014-10-06

    We have used different computational methods to study structural architecture, and light-harvesting and energy transfer properties of the photosynthetic unit of filamentous anoxygenic phototrophs. Due to the huge number of atoms in the photosynthetic unit, a combination of atomistic and coarse methods was used for electronic structure calculations. The calculations reveal that the light energy absorbed by the peripheral chlorosome antenna complex transfers efficiently via the baseplate and the core B808866 antenna complexes to the reaction center complex, in general agreement with the present understanding of this complex system.

  20. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene

    SciTech Connect

    Ajayi, O. A. E-mail: cww2104@columbia.edu; Wong, C. W. E-mail: cww2104@columbia.edu; Anderson, N. C.; Wolcott, A.; Owen, J. S.; Cotlet, M.; Petrone, N.; Hone, J.; Gu, T.; Gesuele, F.

    2014-04-28

    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4 reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices.

  1. Inhibition of plasmonically enhanced interdot energy transfer in quantum dot solids via photo-oxidation

    SciTech Connect

    Sadeghi, S. M.; Nejat, A.; West, R. G.

    2012-11-15

    We studied the impact of photophysical and photochemical processes on the interdot Forster energy transfer in monodisperse CdSe/ZnS quantum dot solids. For this, we investigated emission spectra of CdSe/ZnS quantum dot solids in the vicinity of gold metallic nanoparticles coated with chromium oxide. The metallic nanoparticles were used to enhance the rate of the energy transfer between the quantum dots, while the chromium oxide coating led to significant increase of their photo-oxidation rates. Our results showed that irradiation of such solids with a laser beam can lead to unique spectral changes, including narrowing and blue shift. We investigate these effects in terms of inhibition of the plasmonically enhanced interdot energy transfer between quantum dots via the chromium-oxide accelerated photo-oxidation process. We demonstrate this considering energy-dependent rate of the interdot energy transfer process, plasmonic effects, and the way photo-oxidation enhances non-radiative decay rates of quantum dots with different sizes.

  2. Electromagnetic momentum and the energymomentum tensor in a linear medium with magnetic and dielectric properties

    SciTech Connect

    Crenshaw, Michael E.

    2014-04-15

    In a continuum setting, the energymomentum tensor embodies the relations between conservation of energy, conservation of linear momentum, and conservation of angular momentum. The well-defined total energy and the well-defined total momentum in a thermodynamically closed system with complete equations of motion are used to construct the total energymomentum tensor for a stationary simple linear material with both magnetic and dielectric properties illuminated by a quasimonochromatic pulse of light through a gradient-index antireflection coating. The perplexing issues surrounding the Abraham and Minkowski momentums are bypassed by working entirely with conservation principles, the total energy, and the total momentum. We derive electromagnetic continuity equations and equations of motion for the macroscopic fields based on the material four-divergence of the traceless, symmetric total energymomentum tensor. We identify contradictions between the macroscopic Maxwell equations and the continuum form of the conservation principles. We resolve the contradictions, which are the actual fundamental issues underlying the AbrahamMinkowski controversy, by constructing a unified version of continuum electrodynamics that is based on establishing consistency between the three-dimensional Maxwell equations for macroscopic fields, the electromagnetic continuity equations, the four-divergence of the total energymomentum tensor, and a four-dimensional tensor formulation of electrodynamics for macroscopic fields in a simple linear medium.

  3. Energy level alignment of self-assembled linear chains of benzenediamine on Au(111) from first principles

    DOE PAGES [OSTI]

    Li, Guo; Rangel, Tonatiuh; Liu, Zhen -Fei; Cooper, Valentino R.; Neaton, Jeffrey B.

    2016-03-24

    Using density functional theory (DFT) with van der Waals functionals, we calculate the adsorption energetics and geometry of benzenediamine (BDA) molecules on Au(111) surfaces. Our results demonstrate that the reported self-assembled linear chain structure of BDA, stabilized via hydrogen bonds between amine groups, is energetically favored over previously-studied monomeric phases. Moreover, using a model based on many-body perturbation theory within the GW approximation, we obtain approximate self-energy corrections to the DFT highest occupied molecular orbital (HOMO) energy associated with BDA adsorbate phases. As a result, we find that, independent of coverage, the HOMO energy of the linear chain phase ismore » lower relative to the Fermi energy than that of the monomer phase, and in good agreement with values measured with ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy.« less

  4. Study of energy transfer between molecules placed in the vicinity of a bimetal composite nanoparticle

    SciTech Connect

    Daneshfar, Nader E-mail: ndaneshfar@razi.ac.ir

    2015-10-15

    In this study, the problem of energy transfer between two molecules near a bimetallic composite nanoparticle is investigated. The influence of the interaction between metal particles on the intermolecular energy is studied, because when two metal nanoparticles are placed close to each other, their plasmons coupling giving rise to new features. On the other hand, we discuss the transfer of resonance energy between donor and acceptor molecules (a single donor and a single acceptor) in the presence of a nanocomposite containing gold and silver nanoparticles based on the Maxwell-Garnett effective medium theory and within the quasistatic limit. We show that the interaction energy strongly depends on the particle size, the filling factor of metal particles, the intermolecular distance (the distance between the donor and acceptor molecules), and the dielectric constant of host matrix.

  5. Energy Department Completes Salt Coolant Material Transfer to Czech Republic for Advanced Reactor Research

    Energy.gov [DOE]

    The U.S. Department of Energy recently joined with the U.S. Embassy in Prague and the Czech Republic’s Ministry of Industry and Trade to complete the transfer of 75 kilograms of fluoride salt from the Department’s Oak Ridge National Laboratory to the Czech Nuclear Research Institute Řež.

  6. SU-E-T-543: Measurement of Neutron Activation From Different High Energy Varian Linear Accelerators

    SciTech Connect

    Thatcher, T; Madsen, S; Sudowe, R; Meigooni, A Soleimani

    2015-06-15

    Purpose: Linear accelerators producing photons above 10 MeV may induce photonuclear reactions in high Z components of the accelerator. These liberated neutrons can then activate the structural components of the accelerator and other materials in the beam path through neutron capture reactions. The induced activity within the accelerator may contribute to additional dose to both patients and personnel. This project seeks to determine the total activity and activity per activated isotope following irradiation in different Varian accelerators at energies above 10 MeV. Methods: A Varian 21IX accelerator was used to irradiate a 30 cm × 30 cm × 20 cm solid water phantom with 15 MV x-rays. The phantom was placed at an SSD of 100 cm and at the center of a 20 cm × 20 cm field. Activation induced gamma spectra were acquired over a 5 minute interval after 1 and 15 minutes from completion of the irradiation. All measurements were made using a CANBERRA Falcon 5000 Portable HPGe detector. The majority of measurements were made in scattering geometry with the detector situated at 90° to the incident beam, 30 cm from the side of the phantom and approximately 10 cm from the top. A 5 minute background count was acquired and automatically subtracted from all subsequent measurements. Photon spectra were acquired for both open and MLC fields. Results: Based on spectral signatures, nuclides have been identified and their activities calculated for both open and MLC fields. Preliminary analyses suggest that activities from the activation products in the microcurie range. Conclusion: Activation isotopes have been identified and their relative activities determined. These activities are only gross estimates since efficiencies have not been determined for this source-detector geometry. Current efforts are focused on accurate determination of detector efficiencies using Monte Carlo calculations.

  7. DOE Releases EPRI Report on Benefits of Regional Coordination in Wind Energy Transfers

    Energy.gov [DOE]

    The Department of Energy (DOE) recently released a report finding that inter-regional cooperation can help lower the cost of transporting wind energy from windy areas in the Midwest and South-Central United States to areas with less wind generation capability in the Southeastern United States, improving the ability to meet our nation's electricity demand using clean resources. DOE awarded the Electric Power Research Institute (EPRI) and LCG Consulting an American Recovery and Reinvestment Act (ARRA) grant to evaluate the benefits of coordinating inter-regional transfers of wind energy.

  8. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    SciTech Connect

    Satoshi Matsuzaki

    2002-06-27

    This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application of NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Q{sub y}-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophyll{sub a} (BChl{sub a}) molecules are provided. General conclusions are given in Chapter 5. A version of the hole spectrum simulation program written by the candidate for the FMO complex study (Chapter 3) is included as an appendix. The references for each chapter are given at the end of each chapter.

  9. Energy Transfer

    Education - Teach & Learn

    1. Identify a closed system with consevative forces. 2. Identify relationships between the following variables:

  10. Experimental study on condensation heat transfer of steam on vertical titanium plates with different surface energies

    SciTech Connect

    Baojin, Qi; Li, Zhang; Hong, Xu; Yan, Sun

    2011-01-15

    Visual experiments were employed to investigate heat transfer characteristics of steam on vertical titanium plates with/without surface modifications for different surface energies. Stable dropwise condensation and filmwise condensation were achieved on two surface modification titanium plates, respectively. Dropwise and rivulet filmwise co-existing condensation form of steam was observed on unmodified titanium surfaces. With increase in the surface subcooling, the ratio of area ({eta}) covered by drops decreased and departure diameter of droplets increased, resulting in a decrease in condensation heat transfer coefficient. Condensation heat transfer coefficient decreased sharply with the values of {eta} decreasing when the fraction of the surface area covered by drops was greater than that covered by rivulets. Otherwise, the value of {eta} had little effect on the heat transfer performance. Based on the experimental phenomena observed, the heat flux through the surface was proposed to express as the sum of the heat flux through the dropwise region and rivulet filmwise region. The heat flux through the whole surface was the weighted mean value of the two regions mentioned above. The model presented explains the gradual change of heat transfer coefficient for transition condensation with the ratio of area covered by drops. The simulation results agreed well with the present experimental data when the subcooling temperature is lower than 10 C. (author)

  11. Project Profile: Degradation Mechanisms for Thermal Energy Storage and Heat Transfer Fluid Containment Materials

    Energy.gov [DOE]

    -- This project is inactive -- The National Renewable Energy Laboratory (NREL), with support from the University of Wisconsin and Sandia National Laboratories, under the National Laboratory R&D competitive funding opportunity, is investigating the effects of high-temperature salt and supercritical carbon dioxide (s-CO2) on various alloys and developing protective methods and coatings for thermal energy storage (TES) and heat transfer fluid (HTF) containment materials. By reducing both the cost of materials used in concentrating solar power (CSP) systems and the risk of using the materials under investigation in CSP plants, this research will significantly reduce the cost and the investment risk of CSP plants.

  12. US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer

    SciTech Connect

    Hsieh, S.T.; Qiu Daxiong; Zhang Guocheng

    1997-12-31

    Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, and the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.

  13. Excitonic enhancement of nonradiative energy transfer to bulk silicon with the hybridization of cascaded quantum dots

    SciTech Connect

    Yeltik, Aydan; Guzelturk, Burak; Akhavan, Shahab; Ludwig Hernandez-Martinez, Pedro; Volkan Demir, Hilmi

    2013-12-23

    We report enhanced sensitization of silicon through nonradiative energy transfer (NRET) of the excitons in an energy-gradient structure composed of a cascaded bilayer of green- and red-emitting CdTe quantum dots (QDs) on bulk silicon. Here NRET dynamics were systematically investigated comparatively for the cascaded energy-gradient and mono-dispersed QD structures at room temperature. We show experimentally that NRET from the QD layer into silicon is enhanced by 40% in the case of an energy-gradient cascaded structure as compared to the mono-dispersed structures, which is in agreement with the theoretical analysis based on the excited state population-depopulation dynamics of the QDs.

  14. A technology transfer plan for the US Department of Energy's Electric Energy Systems Program

    SciTech Connect

    Harrer, B.J.; Hurwitch, J.W.; Davis, L.J.

    1986-11-01

    The major objective of this study was to develop a technology transfer plan that would be both practical and effective in promoting the transfer of the products of DOE/EES research to appropriate target audiences. The study drew upon several major components of the marketing process in developing this plan: definition/charcterization of the products being produced by the DOE/EES program, identification/characterization of possible users of the products being produced by the program, and documentation/analysis of the methods currently being used to promote the adoption of DOE/EES products. Fields covered include HVDC, new materials, superconductors, electric field effects, EMP impacts, battery storage/load leveling, automation/processing concepts, normal/emergency operating concepts, Hawaii deep water cable, and failure mechanisms.

  15. Acoustic emission linear pulse holography

    DOEpatents

    Collins, H. Dale; Busse, Lawrence J.; Lemon, Douglas K.

    1985-01-01

    Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.

  16. The dynamics of energy and charge transfer in lead sulfide quantum dot solids

    SciTech Connect

    Lingley, Zachary; Lu, Siyuan; Madhukar, Anupam

    2014-02-28

    We report on a systematic time-resolved photoluminescence study of the competing energy and charge transfer rates in PbS QDs of differing sizes in the same QD solid as a function of both temperature and ligand-controlled different inter-QD average separations. This complements previous studies that typically varied only one parameter and reveals new aspects while also confirming some known features. For the smallest PbS QDs, the dominant decay process is nonradiative resonant energy transfer (NRET) to adjacent larger dots for all separations but at a rate that increases with decreasing temperature. For the largest QDs, NRET being forbidden, the decay is found to be exponential in the inter-QD separation consistent with carrier tunneling but, for each fixed tunneling distance, exhibiting a thermally activated tunneling carrier population with the activation energy dependent upon the ligand length controlling the inter-QD separation. A consistent understanding of this expanded and rich decay rate behavior of both large and small QDs, we show, can be obtained by accounting for the ligand length dependent (a) dielectric environment of the QD solid modeled using an effective medium description, (b) the energy cost of dissociating the exciton into electron and hole in neighboring QDs, and (c) the potential participation of midgap states. Implications of the findings for NRET based photovoltaics are discussed.

  17. Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, thermal energy transfer assemblies, and methods for transferring thermal energy

    DOEpatents

    McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.

    2014-08-05

    Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.

  18. Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, thermal energy transfer assemblies, and methods for transferring thermal energy

    DOEpatents

    McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.

    2016-08-02

    Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.

  19. DOETechTransfer320.png | OSTI, US Dept of Energy Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    Technical Information DOETechTransfer320.png

  20. EA-1338: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership, Grand Junction, Colorado

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts for the proposed transfer of real and personal property at the U.S. Department of Energy's Grand Junction Office to non-DOE ownership.

  1. Fundamental studies of energy-and hole/electron- transfer in hydroporphyrin architectures

    SciTech Connect

    Bocian, David F.

    2014-08-20

    The long-term objective of the Bocian/Holten/Lindsey research program is to design, synthesize, and characterize tetrapyrrole-based molecular architectures that absorb sunlight, funnel energy, and separate charge with high efficiency and in a manner compatible with current and future solar-energy conversion schemes. The synthetic tetrapyrroles include porphyrins and hydroporphyrins; the latter classes of molecules encompass analogues of the naturally occurring chlorophylls and bacteriochlorophylls (e.g., chlorins, bacteriochlorins, and their derivatives). The attainment of the goals of the research program requires the close interplay of molecular design and synthesis (Lindsey group), static and time-resolved optical spectroscopic measurements (Holten group), and electrochemical, electron paramagnetic resonance, and resonance Raman studies, as well as density functional theory calculations (Bocian Group). The proposed research encompasses four interrelated themes: (1) Determination of the rates of ground-state hole/electron transfer between (hydro)porphyrins in multipigment arrays as a function of array size, distance between components, linker type, site of linker connection, and frontier molecular orbital composition. (2) Examination of excited-state energy transfer among hydroporphyrins in multipigment arrrays, including both pairwise and non-adjacent transfer, with a chief aim to identify the relative contributions of through-space (Förster) and through-bond (Dexter) mechanisms of energy transfer, including the roles of site of linker connection and frontier molecular orbital composition. (3) Elucidation of the role of substituents in tuning the spectral and electronic properties of bacteriochlorins, with a primary aim of learning how to shift the long-wavelength absorption band deeper into the near-infrared region. (4) Continued development of the software package PhotochemCAD for spectral manipulations and calculations through the compilation of a database

  2. Methods and kits for nucleic acid analysis using fluorescence resonance energy transfer

    DOEpatents

    Kwok, Pui-Yan; Chen, Xiangning

    1999-01-01

    A method for detecting the presence of a target nucleotide or sequence of nucleotides in a nucleic acid is disclosed. The method is comprised of forming an oligonucleotide labeled with two fluorophores on the nucleic acid target site. The doubly labeled oligonucleotide is formed by addition of a singly labeled dideoxynucleoside triphosphate to a singly labeled polynucleotide or by ligation of two singly labeled polynucleotides. Detection of fluorescence resonance energy transfer upon denaturation indicates the presence of the target. Kits are also provided. The method is particularly applicable to genotyping.

  3. Noncommutative QED corrections to e{sup +}e{sup -}{yields}{gamma}{gamma}{gamma} at linear collider energies

    SciTech Connect

    Devoto, Alberto; Di Chiara, Stefano; Repko, Wayne W.

    2005-09-01

    We compute the total cross section as well as angular and energy distributions for process e{sup +}e{sup -}{yields}{gamma}{gamma}{gamma} with both unpolarized and polarized beams in the framework of noncommutative quantum electrodynamics (NCQED). The calculation is performed in the center of mass of colliding electron and positron and is evaluated for energies and integrated luminosities appropriate to future linear colliders. We find that by using unpolarized beams it is possible to probe the Lorentz symmetry violating azimuthal dependence of the cross section. Furthermore, with polarized beams the left-right asymmetry of the CP violating NCQED amplitudes can be used to obtain bounds on the noncommutative scale {lambda}{sub NC} which exceed 1.0 TeV.

  4. Fragment transition density method to calculate electronic coupling for excitation energy transfer

    SciTech Connect

    Voityuk, Alexander A.

    2014-06-28

    A general approach, the Fragment Transition Density (FTD) scheme, is introduced to estimate electronic coupling for excitation energy transfer in a molecular system. Within this method, the excitation energies and transition densities of the system are used to derive the coupling matrix element. The scheme allows one to treat systems where exciton donor and acceptor are close together and their exchange interaction and orbital overlap are significant. The FTD method can be applied in combination with any quantum mechanical approach to treat excited states of general nature including single-, double-, and higher excitations. Using FTD approach, we derive excitonic couplings for several systems computed with the CIS, TD DFT and MS-CASPT2 methods. In particular, it is shown that the estimated coupling values in DNA ?-stacks are strongly affected by the short-range electronic interaction of adjacent nucleobases.

  5. Electronic-excitation energy transfer in heterogeneous dye solutions under laser excitation

    SciTech Connect

    Levshin, L.V.; Mukushev, B.T.; Saletskii, A.M.

    1995-10-01

    An experimental study has been made of electronic-excitation energy transfer (EEET) among dye molecules of different types for different exciting-fight wavelengths and temperatures. Upon selective laser excitation of the donor, the inhomogeneous broadening of molecular levels increases the probability of EEET from the donor to acceptor molecules. The efficiency of this process is directly proportional to the acceptor molecule concentration and is temperature dependent. The EEET is accompanied by the spectral migration of energy among donor molecules, which reduces the fluorescence quantum efficiency of the donor. Increasing the frequency of the exciting light decreases in the donor fluorescence quantum efficiency. An increase in the acceptor molecule concentration results in a decrease of the spectral migration of excitation in the donor molecule system. 5 refs., 5 figs.

  6. A path to practical Solar Pumped Lasers via Radiative Energy Transfer

    SciTech Connect

    Reusswig, Philip D.; Nechayev, Sergey; Scherer, Jennifer M.; Hwang, Gyu Weon; Bawendi, Moungi G.; Baldo, Marc. A.; Rotschild, Carmel

    2015-10-05

    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd 3+ -doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CW solar lasing threshold of 23 W-cm-2, or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns.

  7. A path to practical Solar Pumped Lasers via Radiative Energy Transfer

    DOE PAGES [OSTI]

    Reusswig, Philip D.; Nechayev, Sergey; Scherer, Jennifer M.; Hwang, Gyu Weon; Bawendi, Moungi G.; Baldo, Marc. A.; Rotschild, Carmel

    2015-10-05

    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd 3+ -doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CWmore » solar lasing threshold of 23 W-cm-2, or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns.« less

  8. Examining Forster Energy Transfer for Semiconductor Nanocrystaline Quantum Dot Donors and Acceptors

    SciTech Connect

    Curutchet, C.; Franceschetti, A.; Zunger, A.; Scholes, G. D.

    2008-01-01

    Excitation energy transfer involving semiconductor quantum dots (QDs) has received increased attention in recent years because their properties, such as high photostability and size-tunable optical properties, have made QDs attractive as Forster resonant energy transfer (FRET) probes or sensors. An intriguing question in FRET studies involving QDs has been whether the dipole approximation, commonly used to predict the electronic coupling, is sufficiently accurate. Accurate estimates of electronic couplings between two 3.9 nm CdSe QDs and between a QD and a chlorophyll molecule are reported. These calculations are based on transition densities obtained from atomistic semiempirical calculations and time-dependent density functional theory for the QD and the chlorophyll, respectively. In contrast to the case of donor-acceptor molecules, where the dipole approximation breaks down at length scales comparable to the molecular dimensions, we find that the dipole approximation works surprisingly well when donor and/or acceptor is a spherical QD, even at contact donor-acceptor separations. Our conclusions provide support for the use of QDs as FRET probes for accurate distance measurements.

  9. Suppressing Thermal Energy Drift In The LLNL Flash X-Ray Accelerator Using Linear Disk Resistor Stacks

    SciTech Connect

    Kreitzer, B R; Houck, T L; Luchterhand, O C

    2011-07-19

    This paper addresses thermal drift in sodium thiosulfate liquid resistors and their replacement with linear disk resistors from HVR Advanced Power Components. Sodium thiosulfate resistors in the FXR induction linear accelerator application have a temperature coefficient of {approx}1.8%/C. The FXR Marx banks send an 8kJ pulse through eight 524 cm{sup 3} liquid resistors at a repetition rate of up to 1 every 45 seconds. Every pulse increases the temperature of the solution by {approx}0.4 C which produces a 0.7% change in resistance. The typical cooling rate is {approx}0.4 C per minute which results in {approx}0.1% energy drop per pulse during continuous pulsed operations. A radiographic accelerator is extraordinarily sensitive to energy variations. Changes in beam energy produce movement in beam transport, changes in spot size, and large dose variations. If self-heating were the only problem, we could predict the increase in input voltage required to compensate for the energy loss. However, there are other variables that influence the temperature of the resistors such as focus magnet heating, changes in room temperature, changes in cooling water, where the cell is located, etc. Additionally not all of the resistors have equivalent cooling rates and as many as 32 resistors are driven from a single power source. The FXR accelerator group elected to replace the sodium thiosulfate resistors with HVR Linear Disk Resistors in a stack type configuration. With data limited for these resistors when used in oil and at low resistance values, a full characterization needed to be performed. High currents (up to 15kA), high voltages (up to 400kV), and Fast Rise times (<10ns) made a resistor choice difficult. Other solid resistors have been tried and had problems at the connection points and with the fact that the resistivity changed as they absorbed oil. The selected HVR resistors have the advantage of being manufactured with the oil impregnated in to them so this characteristic

  10. Visible light stimulating dual-wavelength emission and O vacancy involved energy transfer behavior in luminescence for coaxial nanocable arrays

    SciTech Connect

    Yang, Lei, E-mail: nanoyang@qq.com [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082 (China); Dong, Jiazhang; Jiang, Zhongcheng [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Pan, Anlian; Zhuang, Xiujuan [Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082 (China)

    2014-06-14

    We report a strategy to investigate O vacancy (V{sub O}) involved energy transfer and dual-wavelength yellow emission in coaxial nanocable. By electric field deposition and subsequent sol-gel template approach, ZnO:Tb/Y{sub 2}O{sub 3}:Eu coaxial nanocable arrays are synthesized. After visible light excitation, system is promoted to O vacancy charge transfer state of V{sub O}(0/+). In the following cross relaxation, energy transfer from V{sub O} to the excitation energy level of Tb{sup 3+} in ZnO:Tb core area. While in Y{sub 2}O{sub 3}:Eu shell area, energy transfer to the excitation energy level of Eu{sup 3+}. Subsequently, dual-wavelength emission is observed. By constructing nanocable with dual-wavelength emission, yellow luminescence is obtained. Adjust doping concentration of Eu{sup 3+} or Tb{sup 3+} in the range of 0.010.05, chromaticity coordinates of ZnO:Tb/Y{sub 2}O{sub 3}:Eu nanocable stably stays at yellow region in color space except ZnO:Tb{sub 0.01}/Y{sub 2}O{sub 3}:Eu{sub 0.01}. As Vo states act as media in energy transfer process in nanocablers, visible light can stimulate dual-wavelength emissions. Yellow luminescent nanocable arrays will have great applications in light-emitting diode luminescence.

  11. Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7 Clean Firetube Boiler Waterside Heat Transfer Surfaces The prevention of scale formation in fretube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel.

  12. Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)

    SciTech Connect

    Not Available

    2012-04-01

    A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

  13. An efficient implementation of the localized operator partitioning method for electronic energy transfer

    SciTech Connect

    Nagesh, Jayashree; Brumer, Paul; Izmaylov, Artur F.

    2015-02-28

    The localized operator partitioning method [Y. Khan and P. Brumer, J. Chem. Phys. 137, 194112 (2012)] rigorously defines the electronic energy on any subsystem within a molecule and gives a precise meaning to the subsystem ground and excited electronic energies, which is crucial for investigating electronic energy transfer from first principles. However, an efficient implementation of this approach has been hindered by complicated one- and two-electron integrals arising in its formulation. Using a resolution of the identity in the definition of partitioning, we reformulate the method in a computationally efficient manner that involves standard one- and two-electron integrals. We apply the developed algorithm to the 9 − ((1 − naphthyl) − methyl) − anthracene (A1N) molecule by partitioning A1N into anthracenyl and CH{sub 2} − naphthyl groups as subsystems and examine their electronic energies and populations for several excited states using configuration interaction singles method. The implemented approach shows a wide variety of different behaviors amongst the excited electronic states.

  14. Utility-industry restructuring and the future of state energy research and technology transfer institutions

    SciTech Connect

    Pye, M.; Nadel, S.

    1998-07-01

    State energy research and technology transfer institutions (SERTTI) are state and regional organizations that have historically filled in gaps when a state need was not met. SERTTI build on research of the federal government and universities and focus on technologies with potential for timely commercialization. They have made valuable contributions to the energy balance, economic development, and environment of their states and the nation. SERTTI prospects are uncertain given their dependency on funding from oil-overcharges and utilities in an era of utility restructuring, oil-overcharge fund depletion, and general declines in energy research and development (R and D). SERTTI are likely to continue following restructuring, with funding from traditional sources or systems benefits charges, however, the R{ampersand}D mix and SERTTI activities will probably change. Unless provisions are made, utility investments in public-benefit R and D are likely to fall precipitously, reducing benefits and diminishing state-level R and D efforts because there will be less utility funding for SERTTI to leverage. Many R and D issues emerge that all states will need to address as they make restructuring decisions: What is public-benefit R and D, how can it be more effective, how much funding should be provided, who should administer funds, how should funds be allocated? Is a dedicated R and D fund needed? Is there a role for SERTTI to be involved in technology transfer? This paper looks at the current situation of state-level R and D in regard to restructuring and suggests answers to these questions.

  15. Optimizing minimum free-energy crossing points in solution: Linear-response free energy/spin-flip density functional theory approach

    SciTech Connect

    Minezawa, Noriyuki

    2014-10-28

    Examining photochemical processes in solution requires understanding the solvent effects on the potential energy profiles near conical intersections (CIs). For that purpose, the CI point in solution is determined as the crossing between nonequilibrium free energy surfaces. In this work, the nonequilibrium free energy is described using the combined method of linear-response free energy and collinear spin-flip time-dependent density functional theory. The proposed approach reveals the solvent effects on the CI geometries of stilbene in an acetonitrile solution and those of thymine in water. Polar acetonitrile decreases the energy difference between the twisted minimum and twisted-pyramidalized CI of stilbene. For thymine in water, the hydrogen bond formation stabilizes significantly the CI puckered at the carbonyl carbon atom. The result is consistent with the recent simulation showing that the reaction path via this geometry is open in water. Therefore, the present method is a promising way of identifying the free-energy crossing points that play an essential role in photochemistry of solvated molecules.

  16. SU-E-T-555: A Protontherapy Inverse Treatment Planning System Prototype with Linear Energy Transfer (LET) Optimization

    SciTech Connect

    Sanchez-Parcerisa, D; Carabe-Fernandez, A

    2014-06-01

    Purpose: Develop and benchmark an inverse treatment planning system (TPS) for proton radiotherapy integrating fast analytical dose and LET calculations in patient geometries and a dual objective function with both dose and LET components, enabling us to apply optimization techniques to improve the predicted outcome of treatments based on radiobiological models. Methods: The software package was developed in MATLAB and implements a fluence-dose calculation technique based on a pencil beam model for dose calculations and a 3D LET model based on the extension of the LET in the radial direction as a function of the predicted radiological pathway. Both models were benchmarked against commissioning data from our institution, dose calculations performed with a commercial treatment planning system and Monte Carlo simulations. The optimization is based on the adaptive simulated annealing approach . Results: The dose and LET calculations were tested in a water phantom and several real patient treatments. The pass rate for the gamma index analysis (3%/3mm) test was above 90% for all test cases analyzed, and the calculation time was of the order of seconds. The inverse planning module produced plans with a significantly higher mean LET in the target compared to traditional plans, without any loss of target coverage. The clinical relevance of this improvement is under consideration . Conclusion: The developed treatment planning system is a valuable clinical and research tool that enables us to incorporate LET effects into proton radiotherapy planning in a streamlined fashion.

  17. Gene conversion in yeast as a function of linear energy transfer (LET) for low-LET radiation

    SciTech Connect

    Unrau, P.; Morrison, D.P. ); Johnson, J.R. . Chalk River Nuclear Labs.)

    1992-05-01

    The relative biological effectiveness (RBE) for low-LET radiation is known to depend on such factors as LET and dose rate. Microdosimetric calculations indicate that the biological target size could also be an important parameter, and calculations predict that the RBE for effects produced by hits in target sizes below about 100 nm should be unity for all low LET radiation. We have measured that RBE for gene conversion in yeast (a small target) for five different low LET photon sources, and the results were consistent with an RBE of unity, which agrees with microdosimetric predictions. 4 refs.

  18. Oxidative Stress and Skeletal Health with Low-Dose, Low-LET (Linear Energy Transfer) Ionizing Radiation

    SciTech Connect

    Globus, Ruth K.

    2014-11-03

    We performed in vivo and in vitro experiments to accomplish the following specific aims of this project: 1) determine if low dose, low LET radiation affects skeletal remodeling at structural, cellular and molecular levels and 2) determine if low dose, low LET radiation modulates skeletal health during aging via oxidative mechanisms. A third aim is supported by NASA supplement to this DOE grant focusing on the influence of high LET radiation on bone. A series of experiments were conducted at the NASA Space Radiation Laboratory at Brookhaven, NSRL-BNL, using iron (56Fe) or a sequential exposure to protons / iron / protons, and separate experiments at NASA Ames Research Center (ARC) using 137Cs. The following provides a summary of key findings. (1) Exposure of nine-week old female mice to priming doses of gamma radiation (10cGy x 5) did not significantly affect bone volume/total volume (BV/TV) or microarchitecture as analyzed by 3D microcomputed tomography. As expected, exposure to the challenge dose of 2 Gy gamma irradiation resulted in significant decreases in BV/TV. The priming dose combined with the 2Gy challenge dose had no further effect on BV/TV compared to challenge dose alone, with the sole exception of the Structural Model Index (SMI). SMI reflects the ratio of rods-to-plates in cancellous bone tissue, such that higher SMI values indicate a tendency toward a weaker structure compared to lower SMI values. Mice treated with both priming and challenge dose had 25% higher SMI values compared to sham-irradiated controls and 7% higher values compared to mice treated with the challenge dose alone. Thus, although this priming regimen had relatively modest effects on cancellous tissue, the difference in SMI suggests this fractionated priming doses have adverse, rather than beneficial, effects on bone structure. (2) In 10-week old male mice, a single exposure to 100cGy of 137Cs reduces trabecular bone number and connectivity density by 20% and 36% respectively one month after irradiation (IR). At four months post-IR, these animals were comparable to sham-treated controls with regards to the abovementioned structural parameters. Irradation at 1 or 10 cGy did not result in any significant changes in bone structural parameters. (3) Irradiation of 16-wk old male mice with high doses of 56Fe or proton (50 or 200cGy), but not at low doses (5 or 10cGy), showed a similar loss of cancellous BV/TV and trabecular number at five weeks post-IR. (4) Age-related bone loss overtook acute radiation-induced decrements in bone structure within four months post-IR with 100 cGy gamma and 12 months post-IR with 200 cGy iron. Transgenic mice globally overexpressing human catalase gene in mitochondria did not exhibit cancellous bone loss as assessed at four month post-IR with 10 cGy proton, 50 cGy iron, or in combination. (5) The cellular and molecular mechanisms responsible for loss of bone with radiation are mediated primarily through increased osteoclastogenesis. Our data provide evidence that there are increases in gene expression of TNF alpha and MCP1 in the bone marrow cells 24 hours post-IR and of osteoclastogenic differentiation factor RANKL by day 3. These cytokines in the marrow may stimulate mature osteoclasts or drive osteoclastogenesis from precursors. (6) Osteoblastogenesis from marrow progenitors evaluated ex vivo decreased following whole body 56Fe irradiation at a dose threshold between 20 and 50 cGy whereas osteoclastogenesis ex vivo increased with doses as low as 10cGy two days post-IR of mice. However, the latter finding was not observed in more than a single experiment. (7) Gamma irradiation of cells in vitro requires relatively high doses (200cGy) to disturb normal osteoblastogenesis and osteoclastogenesis as evidenced by decrements in mineralized nodule formation, osteoclast counts, and expression of osteoblast related genes such as runx2, col1a1. (8) We also investigated the effect of antioxidants on osteoblastogenesis following low dose in vitro gamma irradiation (15cGy) on day four bone marrow stromal cell cultures. Superoxide dismutase (SOD) was added to the cell culture medium for 2 or 3 days post-irradiation and cell colonies were counted on days 7 and 10. SOD treatment increased cell growth as measured by DNA content and colony forming units (CFU) in both irradiated cells and 0 cGy control groups. However, low dose radiation of 15cGy abolished SOD stimulatory effects on cell growth and CFU number. These results suggest that exogenous SOD increases osteoblast cell growth and colony formation and that low-dose radiation (15cGy) can interfere with the antioxidant effects. In summary, our findings indicate that acute, whole body irradiation at high doses (50-200 cGy) results in prompt tissue degradation and bone loss. Lower doses (<50 cGy) do not cause bone structural deterioration but may deplete stem/progenitor cell pools in the bone marrow.

  19. Vibrational coherence and energy transfer in two-dimensional spectra with the optimized mean-trajectory approximation

    SciTech Connect

    Alemi, Mallory; Loring, Roger F.

    2015-06-07

    The optimized mean-trajectory (OMT) approximation is a semiclassical method for computing vibrational response functions from action-quantized classical trajectories connected by discrete transitions that represent radiation-matter interactions. Here, we extend the OMT to include additional vibrational coherence and energy transfer processes. This generalized approximation is applied to a pair of anharmonic chromophores coupled to a bath. The resulting 2D spectra are shown to reflect coherence transfer between normal modes.

  20. Reaction coordinates for electron transfer reactions

    SciTech Connect

    Rasaiah, Jayendran C.; Zhu Jianjun

    2008-12-07

    The polarization fluctuation and energy gap formulations of the reaction coordinate for outer sphere electron transfer are linearly related to the constant energy constraint Lagrangian multiplier m in Marcus' theory of electron transfer. The quadratic dependence of the free energies of the reactant and product intermediates on m and m+1, respectively, leads to similar dependence of the free energies on the reaction coordinates and to the same dependence of the activation energy on the reorganization energy and the standard reaction free energy. Within the approximations of a continuum model of the solvent and linear response of the longitudinal polarization to the electric field in Marcus' theory, both formulations of the reaction coordinate are expected to lead to the same results.

  1. Energy transfer through a multi-layer liner for shaped charges

    DOEpatents

    Skolnick, Saul; Goodman, Albert

    1985-01-01

    This invention relates to the determination of parameters for selecting materials for use as liners in shaped charges to transfer the greatest amount of energy to the explosive jet. Multi-layer liners constructed of metal in shaped charges for oil well perforators or other applications are selected in accordance with the invention to maximize the penetrating effect of the explosive jet by reference to four parameters: (1) Adjusting the explosive charge to liner mass ratio to achieve a balance between the amount of explosive used in a shaped charge and the areal density of the liner material; (2) Adjusting the ductility of each layer of a multi-layer liner to enhance the formation of a longer energy jet; (3) Buffering the intermediate layers of a multi-layer liner by varying the properties of each layer, e.g., composition, thickness, ductility, acoustic impedance and areal density, to protect the final inside layer of high density material from shattering upon impact of the explosive force and, instead, flow smoothly into a jet; and (4) Adjusting the impedance of the layers in a liner to enhance the transmission and reduce the reflection of explosive energy across the interface between layers.

  2. (Solar energy technology transfer, Guatemala City, Guatemala and Tegucigalpa, Honduras, August 20--August 30, 1989)

    SciTech Connect

    Waddle, D.B.

    1989-09-05

    I travelled to Guatemala City, Guatemala and to Tegucigalpa, Honduras to gather information regarding the possibility of transferring photovoltaic technology for rural household uses in each respective country. Meetings were held with US government officials in each country mission (USAID and the commercial attaches); with utility officials; cooperative managers; and PVO's. The overall response was very positive; two of the electric utilities interviewed would like to begin program design immediately. A coffee cooperative with 38,000 members also expressed a keen interest in putting into place a program similar to the photovoltaic household energy program established in the Dominican Republic. The purpose of the trip was to establish lines of communication with perspective project cooperators; that objective was accomplished.

  3. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    SciTech Connect

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.

  4. Dimeric fluorescent energy transfer dyes comprising asymmetric cyanine azole-indolenine chromophores

    DOEpatents

    Glazer, Alexander N.; Benson, Scott C.

    1998-01-01

    Novel fluorescent heterodimeric DNA-staining energy transfer dyes are provided combining asymmetric cyanine azole-indolenine dyes, which provide for strong DNA affinity, large Stokes shifts and emission in the red region of the spectrum. The dyes find particular application in gel electrophoresis and for labels which may be bound to a variety of compositions in a variety of contexts. Kits and individual compounds are provided, where the kits find use for simultaneous detection of a variety of moieties, particularly using a single narrow wavelength irradiation source. The individual compounds are characterized by high donor quenching and high affinity to dsDNA as a result of optimizing the length of the linking group separating the two chromophores.

  5. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    DOE PAGES [OSTI]

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increasedmore » hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.« less

  6. Excitonic splitting and coherent electronic energy transfer in the gas-phase benzoic acid dimer

    SciTech Connect

    Ottiger, Philipp; Leutwyler, Samuel

    2012-11-28

    The benzoic acid dimer, (BZA){sub 2}, is a paradigmatic symmetric hydrogen bonded dimer with two strong antiparallel hydrogen bonds. The excitonic S{sub 1}/S{sub 2} state splitting and coherent electronic energy transfer within supersonically cooled (BZA){sub 2} and its {sup 13}C-, d{sub 1}-, d{sub 2}-, and {sup 13}C/d{sub 1}- isotopomers have been investigated by mass-resolved two-color resonant two-photon ionization spectroscopy. The (BZA){sub 2}-(h-h) and (BZA){sub 2}-(d-d) dimers are C{sub 2h} symmetric, hence only the S{sub 2} Leftwards-Arrow S{sub 0} transition can be observed, the S{sub 1} Leftwards-Arrow S{sub 0} transition being strictly electric-dipole forbidden. A single {sup 12}C/{sup 13}C or H/D isotopic substitution reduces the symmetry of the dimer to C{sub s}, so that the isotopic heterodimers (BZA){sub 2}-{sup 13}C, (BZA){sub 2}-(h-d), (BZA){sub 2}-(h{sup 13}C-d), and (BZA){sub 2}-(h-d{sup 13}C) show both S{sub 1} Leftwards-Arrow S{sub 0} and S{sub 2} Leftwards-Arrow S{sub 0} bands. The S{sub 1}/S{sub 2} exciton splitting inferred is {Delta}{sub exc}= 0.94 {+-} 0.1 cm{sup -1}. This is the smallest splitting observed so far for any H-bonded gas-phase dimer. Additional isotope-dependent contributions to the splittings, {Delta}{sub iso}, arise from the change of the zero-point vibrational energy upon electronic excitation and range from {Delta}{sub iso}= 3.3 cm{sup -1} upon {sup 12}C/{sup 13}C substitution to 14.8 cm{sup -1} for carboxy H/D substitution. The degree of excitonic localization/delocalization can be sensitively measured via the relative intensities of the S{sub 1} Leftwards-Arrow S{sub 0} and S{sub 2} Leftwards-Arrow S{sub 0} origin bands; near-complete localization is observed even for a single {sup 12}C/{sup 13}C substitution. The S{sub 1}/ S{sub 2} energy gap of (BZA){sub 2} is {Delta}{sub calc}{sup exc}=11 cm{sup -1} when calculated by the approximate second-order perturbation theory (CC2) method. Upon correction for vibronic

  7. TH-C-17A-02: New Radioluminescence Strategies Based On CRET (Cerenkov Radiation Energy Transfer) for Imaging and Therapy

    SciTech Connect

    Volotskova, O; Sun, C; Pratx, G; Xing, L

    2014-06-15

    Purpose: Cerenkov photons are produced when charged particles, emitted from radionuclides, travel through a media with a speed greater than that of the light in the media. Cerenkov radiation is mostly in the UV/Blue region and, thus, readily absorbed by biological tissue. Cerenkov Radiation Energy Transfer (CRET) is a wavelength-shifting phenomenon from blue Cerenkov light to more penetrating red wavelengths. We demonstrate the feasibility of in-depth imaging of CRET light originating from radionuclides realized by down conversion of gold nanoclusters (AuNCs, a novel particle composed of few atoms of gold coated with serum proteins) in vivo. Methods: Bovine Serum Albumin, Human Serum Albumin and Transferrin conjugated gold nanoclusters were synthesized, characterized and examined for CRET. Three different clinically used radiotracers: 18F-FDG, 90Y and 99mTc were used. Optical spectrum (440–750 nm) was recorded by sensitive bioluminescence imaging system at physiological temperature. Dose dependence (activity range from 0.5 up to 800uCi) and concentration dependence (0.01 to 1uM) studies were carried out. The compound was also imaged in a xenograft mouse model. Results: Only β+ and β--emitting radionuclides (18F-FDG, 90Y) are capable of CRET; no signal was found in 99mTc (γ-emitter). The emission peak of CRET by AuNCs was found to be ∼700 nm and was ∼3 fold times of background. In vitro studies showed a linear dependency between luminescence intensity and dose and concentration. CRET by gold nanoclusters was observed in xenografted mice injected with 100uCi of 18F-FDG. Conclusion: The unique optical, transport and chemical properties of AuNCs (gold nanoclusters) make them ideal candidates for in-vivo imaging applications. Development of new molecular imaging probes will allow us to achieve substantially improved spatiotemporal resolution, sensitivity and specificity for tumor imaging and detection.

  8. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering

    SciTech Connect

    Braicovich, L. Minola, M.; Dellea, G.; Ghiringhelli, G.; Le Tacon, M.; Moretti Sala, M.; Morawe, C.; Peffen, J.-Ch.; Yakhou, F.; Brookes, N. B.; Supruangnet, R.

    2014-11-15

    Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization. The system, based on a graded W/B{sub 4}C multilayer mirror installed in proximity of the CCD detector, has been installed on the AXES spectrometer at the ESRF (European Synchrotron Radiation Facility); it has been fully characterized and it has been used for a demonstration experiment at the Cu L{sub 3} edge on a high-T{sub c} superconducting cuprate. The loss in efficiency suffered by the spectrometer equipped with this test facility was a factor 17.5. We propose also a more advanced version, suitable for a routine use on the next generation of RIXS spectrometers and with an overall efficiency up to 10%.

  9. Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage

    SciTech Connect

    2012-01-01

    HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

  10. Property Transfer or Turn In Form, HQ F 1400.18 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Property Transfer or Turn In Form, HQ F 1400.18 Property Transfer or Turn In Form, HQ F 1400.18 Property Transfer or Turn In Form, HQ F 1400.18 Property Transfer or Turn In Form, HQ F 1400.18 (63.58 KB) More Documents & Publications DOE HQ F 1400.18 DOE F 1400.8 DOE HQ F 580

  11. Energy Department Announces Secretarial Determination of No Adverse Material Impact for Uranium Transfers

    Office of Energy Efficiency and Renewable Energy (EERE)

    Transfers to Advance U.S. National Security Interests and Fund Cleanup at Portsmouth or Paducah Gaseous Diffusion Plants

  12. Heat Transfer Fluids for Solar Water Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar Water Heaters » Heat Transfer Fluids for Solar Water Heating Systems Heat Transfer Fluids for Solar Water Heating Systems Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks in solar water heating systems. When selecting a heat-transfer fluid, you and your solar heating contractor should consider the following criteria: Coefficient of expansion - the fractional

  13. Nucleon-nucleon correlations in heavy ion transfer reactions: Recent investigations at energies far below the Coulomb barrier

    SciTech Connect

    Corradi, Lorenzo

    2015-10-15

    Excitation functions of one- and two-neutron transfer channels have been measured for the {sup 96}Zr+{sup 40}Ca and {sup 116}Sn+{sup 60}Ni systems at bombarding energies ranging from the Coulomb barrier to ∼25% below. Target-like recoils have been identified in A, Z and velocity with the large solid angle magnetic spectrometer PRISMA. The experimental transfer probabilities have been compared, in absolute values and in slope, with semiclassical microscopic calculations which incorporate nucleon-nucleon pairing correlations. For the first time in a heavy ion collision, one was able to provide a consistent description of one and two neutron transfer reactions by incorporating, in the reaction mechanism, all known structure information of entrance and exit channels nuclei. In particular, there is no need to introduce any enhancement factor for the description of two neutron transfer, of course very important are the correlations induced by the pairing interaction.

  14. Fluorescence energy transfer efficiency in labeled yeast cytochrome c: a rapid screen for ion biocompatibility in aqueous ionic liquids

    SciTech Connect

    Baker, Sheila N; Zhao, Hua; Pandey, Siddharth; Heller, William T; Bright, Frank; Baker, Gary A

    2011-01-01

    A fluorescence energy transfer de-quenching assay was implemented to follow the equilibrium unfolding behaviour of site-specific tetramethylrhodamine-labelled yeast cytochrome c in aqueous ionic liquid solutions; additionally, this approach offers the prospect of naked eye screening for biocompatible ion combinations in hydrated ionic liquids.

  15. Trace species detection: Spectroscopy and molecular energy transfer at high temperature

    SciTech Connect

    Gray, J.A.

    1993-12-01

    Monitoring the concentration of trace species such as atomic and molecular free radicals is essential in forming predictive models of combustion processes. LIF-based techniques have the necessary sensitivity for concentration and temperature measurements but have limited accuracy due to collisional quenching in combustion applications. The goal of this program is to use spectroscopic and kinetic measurements to quantify nonradiative and collisional effects on LIF signals and to develop new background-free alternatives to LIF. The authors have measured the natural linewidth of several OH A-X (3,0) rotational transitions to determine predissociation lifetimes in the upper state, which were presumed to be short compared to quenching lifetimes, and as a result, quantitative predictions about the applicability of predissociation fluorescence methods at high pressures are made. The authors are investigating collisional energy transfer in the A-state of NO. Quenching rates which enable direct corrections to NO LIF quantum yields at high temperature were calculations. These quenching rates are now being used in studies of turbulence/chemistry interactions. The authors have measured the electric dipole moment {mu} of excited-state NO using Stark quantum-beat spectroscopy. {mu} is an essential input to a harpoon model which predicts quenching efficiencies for NO (A) by a variety of combustion-related species. The authors are developing new coherent multiphoton techniques for measurements of atomic hydrogen concentration in laboratory flames to avoid the quenching problems associated with previous multiphoton LIF schemes.

  16. Method for detecting point mutations in DNA utilizing fluorescence energy transfer

    DOEpatents

    Parkhurst, Lawrence J.; Parkhurst, Kay M.; Middendorf, Lyle

    2001-01-01

    A method for detecting point mutations in DNA using a fluorescently labeled oligomeric probe and Forster resonance energy transfer (FRET) is disclosed. The selected probe is initially labeled at each end with a fluorescence dye, which act together as a donor/acceptor pair for FRET. The fluorescence emission from the dyes changes dramatically from the duplex stage, wherein the probe is hybridized to the complementary strand of DNA, to the single strand stage, when the probe is melted to become detached from the DNA. The change in fluorescence is caused by the dyes coming into closer proximity after melting occurs and the probe becomes detached from the DNA strand. The change in fluorescence emission as a function of temperature is used to calculate the melting temperature of the complex or T.sub.m. In the case where there is a base mismatch between the probe and the DNA strand, indicating a point mutation, the T.sub.m has been found to be significantly lower than the T.sub.m for a perfectly match probelstand duplex. The present invention allows for the detection of the existence and magnitude of T.sub.m, which allows for the quick and accurate detection of a point mutation in the DNA strand and, in some applications, the determination of the approximate location of the mutation within the sequence.

  17. WSDE Change or Transfer a Water Right Forms | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    or Transfer a Water Right FormsLegal Abstract The Washington State Department of Ecology provides various forms and publications related to the processes for changing or...

  18. Diblock Copolymer Micelles and Supported Films with Noncovalently Incorporated Chromophores: A Modular Platform for Efficient Energy Transfer

    DOE PAGES [OSTI]

    Adams, Peter G.; Collins, Aaron M.; Sahin, Tuba; Subramanian, Vijaya; Urban, Volker S.; Vairaprakash, Pothiappan; Tian, Yongming; Evans, Deborah G.; Shreve, Andrew P.; Montaño, Gabriel A.

    2015-04-08

    Here we report generation of modular, artificial light-harvesting assemblies where an amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(butadiene), serves as the framework for noncovalent organization of BODIPY-based energy donor and bacteriochlorin-based energy acceptor chromophores. The assemblies are adaptive and form well-defined micelles in aqueous solution and high-quality monolayer and bilayer films on solid supports, with the latter showing greater than 90% energy transfer efficiency. Ultimately, this study lays the groundwork for further development of modular, polymer-based materials for light harvesting and other photonic applications.

  19. Infrared fluorescence studies of electronic-to-vibrational energy transfer in a Br2:NO system. Master's thesis

    SciTech Connect

    Hawks, M.R.

    1993-12-01

    Steady-state photolysis techniques were used to study electronic-to-vibrational energy transfer mechanisms from atomic bromine to nitric oxide. Molecular bromine was photodissociated by 488nm radiation to produce equal parts Br(2p(sub 1/2)) and Br(2p (sub 3/2)). Side fluorescence intensity from Br(2p (sub 1/2)) at 2.7 microns and from NO (v =1) and 2 around 5.3 microns measured as a function of bromine pressure and nitric oxide pressure. The branching ratio collisional transfer into the first and second states of NO was determined, and previously reported rates for quenching of NO by molecular bromine were verified. Nitric oxide, Bromine, E-V transfer, Infrared fluorescence, Photolysis.

  20. Ultrafast dynamics of liquid water: Energy relaxation and transfer processes of the OH stretch and the HOH bend

    SciTech Connect

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2015-08-27

    The vibrational energy relaxation and transfer processes of the OH stretching and the HOH bending vibrations in liquid water are investigated via the theoretical calculation of the pump-probe spectra obtained from non-equilibrium molecular dynamics simulations with the TTM3-F interaction potential. The excitation of the OH stretch induces an instantaneous response of the high frequency librational motions in the 600-1000 cm-1 range. In addition, the excess energy of the OH stretch of a water molecule quickly transfers to the OH stretches of molecules in its first hydration shell with a time constant of ~50 fs, followed by relaxation to the HOH bends of the surrounding molecules with a time constant of 230 fs. The excitation of the HOH bend also results in the ultrafast excitation of the high frequency librational motions. The energy of the excited HOH bend of a water molecule decays, with a time constant of 200 fs, mainly to the relaxation of the HOH bends of its surrounding molecules. The energies of the HOH bends were found to transfer quickly to the intermolecular motions via the coupling with the high frequency librational motions. The excess energy of the OH stretch or the HOH bend relaxes to the high frequency intermolecular librational motions and eventually to the hot ground state with a time scale of ~1 ps via the coupling with the librational and translational motions. The energy relaxation and transfer processes were found to depend on the local hydrogen bonding network; the relaxations of the excess energy of the OH stretch and the HOH bend of four- and five-coordinated molecules are faster than those of a three-coordinated molecule due to the delocalization of the vibrational motions of the former (four- and five-coordinated molecules) compared to those of the later (three-coordinated molecules). The present results highlight the importance of the high frequency intermolecular librational modes in facilitating the ultrafast energy relaxation process in

  1. Wireless adiabatic power transfer

    SciTech Connect

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-03-15

    Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  2. Origins of low energy-transfer efficiency between patterned GaN quantum well and CdSe quantum dots

    SciTech Connect

    Xu, Xingsheng

    2015-03-02

    For hybrid light emitting devices (LEDs) consisting of GaN quantum wells and colloidal quantum dots, it is necessary to explore the physical mechanisms causing decreases in the quantum efficiencies and the energy transfer efficiency between a GaN quantum well and CdSe quantum dots. This study investigated the electro-luminescence for a hybrid LED consisting of colloidal quantum dots and a GaN quantum well patterned with photonic crystals. It was found that both the quantum efficiency of colloidal quantum dots on a GaN quantum well and the energy transfer efficiency between the patterned GaN quantum well and the colloidal quantum dots decreased with increases in the driving voltage or the driving time. Under high driving voltages, the decreases in the quantum efficiency of the colloidal quantum dots and the energy transfer efficiency can be attributed to Auger recombination, while those decreases under long driving time are due to photo-bleaching and Auger recombination.

  3. Beam generation and planar imaging at energies below 2.40 MeV with carbon and aluminum linear accelerator targets

    SciTech Connect

    Parsons, David; Robar, James L.

    2012-07-15

    Purpose: Recent work has demonstrated improvement of image quality with low-Z linear accelerator targets and energies as low as 3.5 MV. In this paper, the authors lower the incident electron beam energy between 1.90 and 2.35 MeV and assess the improvement of megavoltage planar image quality with the use of carbon and aluminum linear accelerator targets. Methods: The bending magnet shunt current was adjusted in a Varian linear accelerator to allow selection of mean electron energy between 1.90 and 2.35 MeV. Linac set points were altered to increase beam current to allow experimental imaging in a practical time frame. Electron energy was determined through comparison of measured and Monte Carlo modeled depth dose curves. Planar image CNR and spatial resolution measurements were performed to quantify the improvement of image quality. Magnitudes of improvement are explained with reference to Monte Carlo generated energy spectra. Results: After modifications to the linac, beam current was increased by a factor greater than four and incident electron energy was determined to have an adjustable range from 1.90 MeV to 2.35 MeV. CNR of cortical bone was increased by a factor ranging from 6.2 to 7.4 and 3.7 to 4.3 for thin and thick phantoms, respectively, compared to a 6 MV therapeutic beam for both aluminum and carbon targets. Spatial resolution was degraded slightly, with a relative change of 3% and 10% at 0.20 lp/mm and 0.40 lp/mm, respectively, when reducing energy from 2.35 to 1.90 MV. The percentage of diagnostic x-rays for the beams examined here, ranges from 46% to 54%.Conclusion: It is possible to produce a large fraction of diagnostic energy x-rays by lowering the beam energy below 2.35 MV. By lowering the beam energy to 1.90 MV or 2.35 MV, CNR improves by factors ranging from 3.7 to 7.4 compared to a 6 MV therapy beam, with only a slight degradation of spatial resolution when lowering the energy from 2.35 MV to 1.90 MV.

  4. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  5. Calculating the free energy of transfer of small solutes into a model lipid membrane: Comparison between metadynamics and umbrella sampling

    SciTech Connect

    Bochicchio, Davide; Panizon, Emanuele; Ferrando, Riccardo; Rossi, Giulia; Monticelli, Luca

    2015-10-14

    We compare the performance of two well-established computational algorithms for the calculation of free-energy landscapes of biomolecular systems, umbrella sampling and metadynamics. We look at benchmark systems composed of polyethylene and polypropylene oligomers interacting with lipid (phosphatidylcholine) membranes, aiming at the calculation of the oligomer water-membrane free energy of transfer. We model our test systems at two different levels of description, united-atom and coarse-grained. We provide optimized parameters for the two methods at both resolutions. We devote special attention to the analysis of statistical errors in the two different methods and propose a general procedure for the error estimation in metadynamics simulations. Metadynamics and umbrella sampling yield the same estimates for the water-membrane free energy profile, but metadynamics can be more efficient, providing lower statistical uncertainties within the same simulation time.

  6. Final Technical Report for the Energy Frontier Research Center Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST)

    SciTech Connect

    Vanden Bout, David A.

    2015-09-14

    Our EFRC was founded with the vision of creating a broadly collaborative and synergistic program that would lead to major breakthroughs in the molecular-level understanding of the critical interfacial charge separation and charge transfer (CST) processes that underpin the function of candidate materials for organic photovoltaic (OPV) and electrical-energy-storage (EES) applications. Research in these energy contexts shares an imposing challenge: How can we understand charge separation and transfer mechanisms in the presence of immense materials complexity that spans multiple length scales? To address this challenge, our 50-member Center undertook a total of 28 coordinated research projects aimed at unraveling the CST mechanisms that occur at interfaces in these nanostructured materials. This rigorous multi-year study of CST interfaces has greatly illuminated our understanding of early-timescale processes (e.g., exciton generation and dissociation dynamics at OPV heterojunctions; control of Li+-ion charging kinetics by surface chemistry) occurring in the immediate vicinity of interfaces. Program outcomes included: training of 72 graduate student and postdoctoral energy researchers at 5 institutions and spanning 7 academic disciplines in science and engineering; publication of 94 peer-reviewed journal articles; and dissemination of research outcomes via 340 conference, poster and other presentations. Major scientific outcomes included: implementation of a hierarchical strategy for understanding the electronic communication mechanisms and ultimate fate of charge carriers in bulk heterojunction OPV materials; systematic investigation of ion-coupled electron transfer processes in model Li-ion battery electrode/electrolyte systems; and the development and implementation of 14 unique technologies and instrumentation capabilities to aid in probing sub-ensemble charge separation and transfer mechanisms.

  7. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage

    SciTech Connect

    Drost, Kevin; Jovanovic, Goran; Paul, Brian

    2015-09-30

    The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).

  8. Linear Accelerator

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Linear Accelerator (LINAC) The core of the LANSCE facility is one of the nation's most powerful proton linear accelerators or LINAC. The LINAC at LANSCE has served the nation since 1972, providing the beam current required by all the experimental areas that support NNSA-DP and other DOE missions. The LINAC's capability to reliably deliver beam current is the key to the LANSCE's ability to do research-and thus the key to meeting NNSA and DOE mission deliverables. The LANSCE Accelerator The LANSCE

  9. Identifying and Resolving Issues in EnergyPlus and DOE-2 Window Heat Transfer Calculations

    SciTech Connect

    Booten, C.; Kruis, N.; Christensen, C.

    2012-08-01

    Issues in building energy software accuracy are often identified by comparative, analytical, and empirical testing as delineated in the BESTEST methodology. As described in this report, window-related discrepancies in heating energy predictions were identified through comparative testing of EnergyPlus and DOE-2. Multiple causes for discrepancies were identified, and software fixes are recommended to better align the models with the intended algorithms and underlying test data.

  10. Ampulse Corporation: A Case Study on Technology Transfer in U.S. Department of Energy Laboratories

    SciTech Connect

    Perry, T. D., IV

    2010-03-01

    An overview of NREL's partnership with Ampulse, a startup company, providing insight about how industry can successfully work with a U.S. Department of Energy lab.

  11. Steering the Self-Assembly of Octadecylamine Monolayers on Mica by Controlled Mechanical Energy Transfer from the AFM Tip

    SciTech Connect

    Benitez, J.J.; Heredia-Guerrero, J.A.; Salmeron, M.

    2010-06-24

    We have studied the effect of mechanical energy transfer from the tip of an Atomic Force Microscope on the dynamics of self-assembly of monolayer films of octadecylamine on mica. The formation of the self-assembled film proceeds in two successive stages, the first being a fast adsorption from solution that follows a Langmuir isotherm. The second is a slower process of island growth by aggregation of the molecules dispersed on the surface. We found that the dynamics of aggregation can be altered substantially by the addition of mechanical energy into the system through controlled tip-surface interactions. This leads to either the creation of pinholes in existing islands as a consequence of vacancy concentration, and to the assembly of residual molecules into more compact islands.

  12. Luminescence enhancement by energy transfer in melamine-Y{sub 2}O{sub 3}:Tb{sup 3+} nanohybrids

    SciTech Connect

    Stagi, Luigi Chiriu, Daniele; Carbonaro, Carlo M.; Ricci, Pier Carlo; Ardu, Andrea; Cannas, Carla

    2015-09-28

    The phenomenon of luminescence enhancement was studied in melamine-Y{sub 2}O{sub 3}:Tb hybrids. Terbium doped Y{sub 2}O{sub 3} mesoporous nanowires were synthesized by hydrothermal method. X-ray diffraction patterns and Raman scattering spectra testified the realization of a cubic crystal phase. Organic-inorganic melamine-Y{sub 2}O{sub 3}:Tb{sup 3+} hybrid system was successfully obtained by vapour deposition method. Vibration Raman active modes of the organic counterpart were investigated in order to verify the achievement of hybrid system. Photoluminescence excitation and photoluminescence spectra, preformed in the region between 250 and 350 nm, suggest a strong interaction among melamine and Terbium ions. In particular, a remarkable improvement of {sup 5}D{sub 4}→ F{sub J} Rare Earth emission (at about 542 nm) of about 10{sup 2} fold was observed and attributed to an efficient organic-Tb energy transfer. The energy transfer mechanism was studied by the use of time resolved photoluminescence measurements. The melamine lifetime undergoes to a significant decrease when adsorbed to oxide surfaces and it was connected to a sensitization mechanism. The detailed analysis of time decay profile of Terbium radiative recombination shows a variation of double exponential law toward a single exponential one. Its correlation with surface defects and non-radiative recombination was thus discussed.

  13. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Meintz, A.; Markel, T.; Burton, E.; Wang, L.; Gonder, J.; Brooker, A.

    2015-06-05

    Analysis has been performed on the Transportation Secure Data Center (TSDC) warehouse of collected GPS second-by-second driving profile data of vehicles in the Atlanta, Chicago, Fresno, Kansas City, Los Angeles, Sacramento, and San Francisco Consolidated Statistical Areas (CSAs) to understand in-motion wireless power transfer introduction scenarios. In this work it has been shown that electrification of 1% of road miles could reduce fuel use by 25% for Hybrid Electric Vehicles (HEVs) in these CSAs. This analysis of strategically located infrastructure offers a promising approach to reduced fuel consumption; however, even the most promising 1% of road miles determined by these seven analysis scenarios still represent an impressive 2,700 miles of roadway to electrify. Therefore to mitigate the infrastructure capital costs, integration of the grid-tied power electronics in the Wireless Power Transfer (WPT) system at the DC-link to photovoltaic and/or battery storage is suggested. The integration of these resources would allow for the hardware to provide additional revenue through grid services at times of low traffic volumes and conversely at time of high traffic volumes these resources could reduce the peak demand that the WPT system would otherwise add to the grid.

  14. The Safe Handling, Transfer, and Receipt of Biological Etiologic Agents at Department of Energy Facilities

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2001-10-17

    To establish requirements and assign responsibilities for the Department of Energy (DOE), including the National Nuclear Security Administration (NNSA), biological etiologic agent program. DOE N 450.14 extends this directive until 06/30/2006.

  15. Biofuels from Solar Energy and Bacteria: Electrofuels Via Direct Electron Transfer from Electrodes to Microbes

    SciTech Connect

    2010-07-01

    Electrofuels Project: UMass is feeding renewable electricity to bacteria to provide the microorganisms with the energy they need to turn carbon dioxide (CO2) directly into liquid fuels. UMass’ energy-to-fuels conversion process is anticipated to be more efficient than current biofuels approaches in part because this process will leverage the high efficiency of photovoltaics to convert solar energy into electricity. UMass is using bacteria already known to produce biofuel from electric current and CO2 and working to increase the amount of electric current those microorganisms will accept and use for biofuels production. In collaboration with scientists at University of California, San Diego, the UMass team is also investigating the use of hydrogen sulfide as a source of energy to power biofuel production.

  16. Nonlinear couplings of R-modes: Energy transfer and saturation amplitudes at realistic timescales

    SciTech Connect

    Brink, Jeandrew; Teukolsky, Saul A; Wasserman, Ira

    2004-12-15

    Nonlinear interactions among the inertial modes of a rotating fluid can be described by a network of coupled oscillators. We use such a description for an incompressible fluid to study the development of the r-mode instability of rotating neutron stars. A previous hydrodynamical simulation of the r-mode reported the catastrophic decay of large amplitude r-modes. We explain the dynamics and timescale of this decay analytically by means of a single three mode coupling. We argue that at realistic driving and damping rates such large amplitudes will never actually be reached. By numerically integrating a network of nearly 5000 coupled modes, we find that the linear growth of the r-mode ceases before it reaches an amplitude of around 10{sup -4}. The lowest parametric instability thresholds for the r-mode are calculated and it is found that the r-mode becomes unstable to modes with 13linear growth rate of the r-mode.

  17. TECHNOLOGY TRANSFER COORDINATORS

    Office of Energy Efficiency and Renewable Energy (EERE)

    Mark Hartney, Director of the Office of Strategic Planning, SLAC, discussed technology transfer at SLAC. Bob Hwang, Director, Transportation Energy Center, Combustion Research Facility, SNL presented on technology transfer at SNL. Elsie Quaite-Randall, Chief Technology Transfer Officer, Innovation and Partnerships Office, LBNL, presented on technology transfer at LBNL. Richard A. Rankin, Director, Industrial Partnerships Office and Economic Development Office (Interim), LLNL, presented on technology transfer at LLNL.

  18. NREL Improves System Efficiency and Increases Energy Transfer with Wind2H2 Project, Enabling Reduced Cost Electrolysis Production (Fact Sheet)

    SciTech Connect

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in improving energy transfer within a wind turbine-based hydrogen production system. Work was performed by the Wind2H2 Project team at the National Wind Technology Center in partnership with Xcel Energy.

  19. Self-assembly of highly ordered conjugated polymer aggregates with long-range energytransfer

    SciTech Connect

    Vogelsang, Jan; Adachi, Takuji; Brazard, Johanna; Vanden Bout, David A.; Barbara, Paul F.

    2011-10-09

    Applications of conjugated polymers (CP) in organic electronic devices such as light-emitting diodes (LED) and solar cells depend on the way of electronic energy conveyance in these materials. Single-molecule spectroscopy has uncovered fundamental properties with molecular detail and current reports propose that energy transport in single CP chains extend over unusually extensive distances up to 75 nm (refs 13,15, 16). An significant question is whether these characteristics occur when CP chains agglomerate into a neat solid. In these experiments, we demonstrate that the electronic energy transport in masses composed of tens of polymer chains takes place on a comparable distance scale as that in single chains. These findings offer a new insight into the ordering of single CP chains and which the progression of their morphological and optoelectronic properties can be observed; this will ultimately enable the design of improved CP-based devices.

  20. Method and apparatus for transferring and injecting rf energy from a generator to a resonant load

    DOEpatents

    Hoffert, William J.

    1987-01-01

    Improved apparatus and method are provided for the coherent amplification and injection of radio-frequency (rf) energy into a load cavity using a plurality of amplifier tubes. A plurality of strip line cavities (30, 32, 34, 36, 40, 42, 44) are laterally joined to define a continuous closed cavity (48), with an amplifier tube (50, 52, 54, 56, 58, 60, 62, 64) mounted within each resonant strip cavity. Rf energy is injected into the continuous cavity (48) from a single input (70) for coherent coupling to all of the amplifier tubes for amplification and injection into the load cavity (76).

  1. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  2. recuperative heat transfer within the Brayton cycle

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    recuperative heat transfer within the Brayton cycle - Sandia Energy Energy Search Icon ... SunShot Grand Challenge: Regional Test Centers recuperative heat transfer within the ...

  3. Energy transfer between a passing vortex ring and a flexible plate in an ideal quiescent fluid

    SciTech Connect

    Hu, JiaCheng; Peterson, Sean D.; Porfiri, Maurizio

    2015-09-21

    Recent advancements in highly deformable smart materials have lead to increasing interest in small-scale energy harvesting research for powering low consumption electronic devices. One such recent experimental study by Goushcha et al. explored energy harvesting from a passing vortex ring by a cantilevered smart material plate oriented parallel to and offset from the path of the ring in an otherwise quiescent fluid. The present study focuses on modeling this experimental study using potential flow to facilitate optimization of the energy extraction from the passing ring to raise the energy harvesting potential of the device. The problem is modeled in two-dimensions with the vortex ring represented as a pair of counter-rotating free vortices. Vortex pair parameters are determined to match the convection speed of the ring in the experiments, as well as the imposed pressure loading on the plate. The plate is approximated as a Kirchhoff-Love plate and represented as a finite length vortex sheet in the fluid domain. The analytical model matches experimental measurements, including the tip displacement, the integrated force along the entire plate length as a function of vortex ring position, and the pressure along the plate. The potential flow solution is employed in a parametric study of the governing dimensionless parameters in an effort to guide the selection of plate properties for optimal energy harvesting performance. Results of the study indicate an optimal set of plate properties for a given vortex ring configuration, in which the time-scale of vortex advection matches that of the plate vibration.

  4. Heat transfer in ocean thermal energy conversion (OTEC) systems. Proceedings of the wanter mnnual Meeting, Chicago, IL, November 16-21, 1980

    SciTech Connect

    Owens, W.L.

    1980-01-01

    Among the topics discussed are: condensation heat transfer on long vertical, axially ridged tubes tests of the Applied Physics Laboratory of Johns Hopkins University (APL/JHU) folded-tube, Ocean Thermal Energy Conversion (OTEC) heat exchanger the design of a 1.0-MW OTEC heat exchanger for ocean testing and convective vaporization and condensation in serrated-fin channels. Also considered are: heat tranfer studies of an improved heat transfer monitor for OTEC an analysis of the mist lift process for mist flow, open-cycle OTEC the heat transfer characteristics of working fluids for OTEC and a comparison of major OTEC power system characteristics.

  5. Technology Transfer Execution Plan

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transfer Execution Plan 2016 - 2018 Report to Congress October 2016 United States Department of Energy Washington, DC 20585 Department of Energy | October 2016 Technology Transfer Execution Plan 2016-2018 | Page ii Message from the Secretary On behalf of the U.S. Department of Energy (DOE), I am pleased to present the Department's Technology Transfer Execution Plan (TTEP). This plan is intended to guide DOE, particularly it's Office of Technology Transitions (OTT), in promoting scientific and

  6. Linear colliders

    SciTech Connect

    Ruth, R.D.

    1991-07-01

    This report discusses the following topics: SLC performance and fundamental limits; obtaining the energy in an NLC; obtaining the luminosity in an NLC; and example designs and future potential.

  7. Check Heat Transfer Services; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #4 (Fact Sheet).

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 * September 2005 Industrial Technologies Program Check Heat Transfer Surfaces Industrial process heating systems use various methods to transfer heat to the load. These include direct heat transfer from the flame or heated gases to the load and indirect heat transfer from radiant tubes, muffles, or heat exchangers. Indirect heating systems that use fuel firing, steam, or hot liquids to supply heat are discussed in this tip sheet. In each case, clean heat transfer surfaces can improve system

  8. Panchromatic polymer-polymer ternary solar cells enhanced by Forster resonance energy transfer and solvent vapor annealing

    SciTech Connect

    Goh, Tenghooi; Sfeir, Matthew Y.; Huang, Jing -Shun; Bartolome, Benjamin; Vaisman, Michelle; Lee, Minjoo L.; Taylor, Andre D.

    2015-08-04

    Thanks to the bulk-heterojunction (BHJ) feature of polymer solar cells (PSC), additional light active components can be added with ease to form ternary solar cells. This strategy has achieved great success largely due to expanded spectral response range and improved power conversion efficiency (PCE) without incurring excessive processing costs. Here, we report ternary blend polymer–polymer solar cells comprised of PTB7, P3HT, and PC71BM with PCE as high as 8.2%. Analyses of femtosecond time resolved photoluminescence and transient absorption spectroscopy data confirm that P3HT is effective in transferring energy non-radiatively by inducing excitons and prolonging their overall lifetime in PTB7. As a result, solvent vapor annealing (SVA) treatment was employed to rectify the overly-coarse morphology, thus enhancing the fill factor, reducing interfacial recombination, and boosting the PCE to 8.7%.

  9. Panchromatic polymer-polymer ternary solar cells enhanced by Forster resonance energy transfer and solvent vapor annealing

    DOE PAGES [OSTI]

    Goh, Tenghooi; Sfeir, Matthew Y.; Huang, Jing -Shun; Bartolome, Benjamin; Vaisman, Michelle; Lee, Minjoo L.; Taylor, Andre D.

    2015-08-04

    Thanks to the bulk-heterojunction (BHJ) feature of polymer solar cells (PSC), additional light active components can be added with ease to form ternary solar cells. This strategy has achieved great success largely due to expanded spectral response range and improved power conversion efficiency (PCE) without incurring excessive processing costs. Here, we report ternary blend polymer–polymer solar cells comprised of PTB7, P3HT, and PC71BM with PCE as high as 8.2%. Analyses of femtosecond time resolved photoluminescence and transient absorption spectroscopy data confirm that P3HT is effective in transferring energy non-radiatively by inducing excitons and prolonging their overall lifetime in PTB7. Asmore » a result, solvent vapor annealing (SVA) treatment was employed to rectify the overly-coarse morphology, thus enhancing the fill factor, reducing interfacial recombination, and boosting the PCE to 8.7%.« less

  10. Panchromatic polymer-polymer ternary solar cells enhanced by Forster resonance energy transfer and solvent vapor annealing

    SciTech Connect

    Goh, Tenghooi; Sfeir, Matthew Y.; Huang, Jing -Shun; Bartolome, Benjamin; Vaisman, Michelle; Lee, Minjoo L.; Taylor, Andre D.

    2015-08-04

    Thanks to the bulk-heterojunction (BHJ) feature of polymer solar cells (PSC), additional light active components can be added with ease to form ternary solar cells. This strategy has achieved great success largely due to expanded spectral response range and improved power conversion efficiency (PCE) without incurring excessive processing costs. Here, we report ternary blend polymerpolymer solar cells comprised of PTB7, P3HT, and PC71BM with PCE as high as 8.2%. Analyses of femtosecond time resolved photoluminescence and transient absorption spectroscopy data confirm that P3HT is effective in transferring energy non-radiatively by inducing excitons and prolonging their overall lifetime in PTB7. As a result, solvent vapor annealing (SVA) treatment was employed to rectify the overly-coarse morphology, thus enhancing the fill factor, reducing interfacial recombination, and boosting the PCE to 8.7%.

  11. Evidence of energy transfer in an aluminosilicate glass codoped with Si nanoaggregates and Er{sup 3+} ions

    SciTech Connect

    Enrichi, F.; Mattei, G.; Sada, C.; Trave, E.; Pacifici, D.; Franzo, G.; Priolo, F.; Iacona, F.; Prassas, M.; Falconieri, M.; Borsella, E.

    2004-10-01

    The enhancement of the Er{sup 3+} ions' photoluminescence (PL) emission at 1.54 {mu}m in a Si and Er coimplanted aluminosilicate glass is investigated in detail. A postimplantation thermal treatment has been performed to recover the damage induced by the implantation process and to promote Si aggregation. It will be shown that 1 h treatment in N{sub 2} atmosphere is not sufficient to induce Si precipitation for temperatures up to 500 deg. C. Nevertheless, the most intense Er{sup 3+} PL emission at 1.54 {mu}m is achieved after a thermal treatment at 400 deg. C. Such emission has been investigated by pumping in and out of resonance, showing a very efficient energy transfer process in the whole excitation wavelength range (360-515 nm). These results suggest that good energy transfer mediators could be small Si aggregates and not only crystalline clusters. For the best performing sample, the effective Er excitation cross section has been measured to be higher than 10{sup -17} cm{sup 2} at 379 and 390 nm and about 2x10{sup -16} cm{sup 2} at 476 nm, that is, several orders of magnitude higher than the Er direct absorption cross section (of the order of 10{sup -21} cm{sup 2} in this glass). Moreover the coefficient of cooperative upconversion has been evaluated to be 2.7x10{sup -18} cm{sup 3} s{sup -1}. The structural and optical properties of this material are discussed and compared to those found for Si and Er codoped silica.

  12. Energy transfer in rare earth ion clusters and fluorescence from rare-earth-doped La sub 1. 85 Sr sub 0. 15 CuO sub 4 superconductors

    SciTech Connect

    Tissue, B.M.

    1988-01-01

    Laser spectroscopy of rare earth ions in solids was used to study mechanisms of non-resonant energy transfer within rare earth clusters, and to detect insulating, impurity phases in rare-earth-doped La{sub 1.85}Sr{sub 0.15}CuO{sub 4} superconductors. The mechanisms of phonon-assisted, non-resonant energy transfer were studied in well-defined dimer sites in Er{sup 3+}:SrF{sub 2} and Pr{sup 3+}:CaF{sub 2}. Application of a magnetic field to Er{sup 3+}:SrF{sub 2} greatly increased the energy-transfer rate. The magnetic field dependence in Er{sup 3+}:SrF{sub 2} indicates that the mechanism of non-resonant energy transfer is a two-phonon, resonant process (Orbach process). Application of a magnetic field to Pr{sup 3+}:CaF{sub 2} had no effect on the energy-transfer rate because no significant Zeeman splittings occurred. The temperature dependence of the energy-transfer rate in Pr{sup 3+}:CaF{sub 2} showed the mechanism to be a one-phonon-assisted process at low temperatures and predominantly an Orbach process above 10 K. In the second part of this thesis, laser spectroscopy of a Eu{sup 3+} probe ion is developed to detect impurity phases in La{sub 1.85}Sr{sub 0.15}CuO{sub 4} superconductors. Two impurity phases were found in polycrystalline La{sub 1.85}Sr{sub 0.15}CuO{sub 4}: unreacted La{sub 2}O{sub 3} starting material, and a La-silicate phase, which formed from contamination during sintering.

  13. Surface plasmon-mediated energy transfer of electrically-pumped excitons

    DOEpatents

    An, Kwang Hyup; Shtein, Max; Pipe, Kevin P.

    2015-08-25

    An electrically pumped light emitting device emits a light when powered by a power source. The light emitting device includes a first electrode, a second electrode including an outer surface, and at least one active organic semiconductor disposed between the first and second electrodes. The device also includes a dye adjacent the outer surface of the second electrode such that the second electrode is disposed between the dye and the active organic semiconductor. A voltage applied by the power source across the first and second electrodes causes energy to couple from decaying dipoles into surface plasmon polariton modes, which then evanescently couple to the dye to cause the light to be emitted.

  14. Method for transferring thermal energy and electrical current in thin-film electrochemical cells

    DOEpatents

    Rouillard, Roger; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Ranger, Michel; Sudano, Anthony; Trice, Jennifer L.; Turgeon, Thomas A.

    2003-05-27

    An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

  15. Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: Energy transfer vs. optical coupling effects

    DOE PAGES [OSTI]

    Hoang, Son; Ashraf, Ahsan; Eisaman, Matthew D.; Nykypanchuk, Dmytro; Nam, Chang -Yong

    2015-12-07

    Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from themore » OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. Lastly, these results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices.« less

  16. Fluorescence resonance energy transfer measured by spatial photon migration in CdSe-ZnS quantum dots colloidal systems as a function of concentration

    SciTech Connect

    Azevedo, G.; Monte, A. F. G.; Reis, A. F.; Messias, D. N.

    2014-11-17

    The study of the spatial photon migration as a function of the concentration brings into attention the problem of the energy transfer in quantum dot embedded systems. By measuring the photon propagation and its spatial dependence, it is possible to understand the whole dynamics in a quantum dot system, and also improve their concentration dependence to maximize energy propagation due to radiative and non-radiative processes. In this work, a confocal microscope was adapted to scan the spatial distribution of photoluminescence from CdSe-ZnS core-shell quantum dots in colloidal solutions. The energy migration between the quantum dots was monitored by the direct measurement of the photon diffusion length, according to the diffusion theory. We observed that the photon migration length decreases by increasing the quantum dot concentration, this kind of behavior has been regarded as a signature of Förster resonance energy transfer in the system.

  17. Gas mass transfer for stratified flows

    SciTech Connect

    Duffey, R.B.; Hughes, E.D.

    1995-06-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrium integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi})Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geo-physical and chemical engineering literature.

  18. Gas mass transfer for stratified flows

    SciTech Connect

    Duffey, R.B.; Hughes, E.D.

    1995-07-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrum integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi}) Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geophysical and chemical engineering literature.

  19. Linear induction accelerator

    DOEpatents

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  20. Development of a Cell-Based Fluorescence Resonance Energy Transfer Reporter for Bacillus anthracis Lethal Factor Protease

    SciTech Connect

    Kimura, R H; Steenblock, E R; Camarero, J A

    2007-03-22

    We report the construction of a cell-based fluorescent reporter for anthrax lethal factor (LF) protease activity using the principle of fluorescence resonance energy transfer (FRET). This was accomplished by engineering an Escherichia coli cell line to express a genetically encoded FRET reporter and LF protease. Both proteins were encoded in two different expression plasmids under the control of different tightly controlled inducible promoters. The FRET-based reporter was designed to contain a LF recognition sequence flanked by the FRET pair formed by CyPet and YPet fluorescent proteins. The length of the linker between both fluorescent proteins was optimized using a flexible peptide linker containing several Gly-Gly-Ser repeats. Our results indicate that this FRET-based LF reporter was readily expressed in E. coli cells showing high levels of FRET in vivo in the absence of LF. The FRET signal, however, decreased 5 times after inducing LF expression in the same cell. These results suggest that this cell-based LF FRET reporter may be used to screen genetically encoded libraries in vivo against LF.

  1. CALiPER Snapshot Linear Lamps (TLEDs)

    Energy Saver

    BUILDING TECHNOLOGIES OFFICE Snapshot Linear Lamps (TLEDs) Linear fluorescent lamps-and the "troffers" in which they are often used-are a staple of ambient lighting in offices, classrooms, and other types of commercial spaces. They are energy-efficient, long-lived, and relatively inexpensive. Linear LED lamps, often called TLEDs, are an alternative to linear fluorescent lamps and are mainly used in retrofit situations. Typically drawing about 60% of the power of linear fluorescent

  2. Independent Oversight Inspection, Stanford Linear Accelerator Center -

    Office of Environmental Management (EM)

    January 2007 | Department of Energy Stanford Linear Accelerator Center - January 2007 Independent Oversight Inspection, Stanford Linear Accelerator Center - January 2007 January 2007 Inspection of Environment, Safety, and Health Programs at the Stanford Linear Accelerator Center This report provides the results of an inspection of the environment, safety, and health programs at the Department of Energy's (DOE) Stanford Linear Accelerator Center. The inspection was conducted during October

  3. Advanced Heat Transfer Technologies Increase Vehicle Performance and Reliability; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect

    Not Available

    2010-06-01

    Fact sheet describes NREL's work with heat transfer technologies to keep hybrid electric and all-electric vehicle power electronic components cool.

  4. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  5. Isolating and quantifying cross-beam energy transfer in direct-drive implosions on OMEGA and the National Ignition Facility

    DOE PAGES [OSTI]

    Davis, A. K.; Cao, D.; Michel, D. T.; Hohenberger, M.; Edgell, D. H.; Epstein, R.; Goncharov, V. N.; Hu, S. X.; Igumenshchev, I. V.; Marozas, J. A.; et al

    2016-04-20

    The angularly-resolved mass ablation rates and ablation front trajectories for Si-coated CH targets were measured in direct-drive inertial confinement fusion experiments to quantify crossbeam energy transfer (CBET) while constraining the hydrodynamic coupling. A polar-direct-drive laser configuration was used, where the equatorial laser beams were dropped from a symmetric direct-drive configuration to suppress CBET at the pole, while allowing it to persist at the equator. The combination of low- and high-CBET conditions in the same implosion allowed the effects of CBET on the ablation rate and ablation pressure to be decoupled from the other physics effects that influence laser-coupling. Hydrodynamic simulationsmore » performed without CBET reproduced the measured ablation rate and ablation front trajectory at the pole of the target, verifying that the other laser-coupling physics effects are well-modeled when CBET effects are negligible. The simulated mass ablation rates and ablation front trajectories were in excellent agreement with the measurements at all angles when a CBET model based on Randall’s equations [C. J. Randall et al., Phys. Fluids 24, 1474 (1981)] was included into the simulations with an optimized multiplier on the CBET gain factor. These measurements were performed on both OMEGA and the National Ignition Facility to access a wide range of plasma conditions, laser intensities, and laser beam geometries. Furthermore, the presence of the CBET gain multiplier required to match the data in all of the configurations tested suggests that additional physics effects, such as intensity variations due to diffraction, shortcomings of extending the 1-D Randall model to 3-D, or polarization effects, should be explored to explain the differences in observed and predicted drive.« less

  6. Heat transfer performance of a phase-change thermal energy storage water heater using cross-linked high density polyethylene pellets

    SciTech Connect

    Jotshi, C.K.; Klausner, J.F.; Goswami, D.Y.; Hsieh, C.K.; Santhosh, M.K.; Colacino, F.

    1996-12-31

    The objective of this investigation was to develop an efficient water heater that stores thermal energy in a mixture of cross-linked high density polyethylene (HDPE) pellets and propylene glycol. Properties of cross-linked HDPE, such as melting and crystallization temperatures, heat of fusion and crystallization, and volume change were measured in the laboratory. The heat transfer coefficient for the mixture was also measured in a laboratory test. A prototype model of a storage water heater using a mixture of cross-linked HDPE pellets and propylene glycol was designed and fabricated. A copper finned heat transfer coil was used to extract the heat from the storage tank by passing water through it. The heat transfer efficiency (heat extracted by water/heat stored) was measured to be about 70%. To increase the efficiency, the storage unit was modified. In the modified unit, the length of the heat transfer coil was increased and coil spacing optimized. With the modification, the heat transfer efficiency was measured to be about 90%. In addition, a variable heat flux heating element, having high heat flux at the bottom and low heat flux at top, was used to reduce thermal stratification of the propylene glycol/HDPE pellet mixture.

  7. Acoustic emission linear pulse holography

    DOEpatents

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  8. Transferring Data

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transferring Data to and from NERSC Yushu Yao 1 Tuesday, March 8, 2011 Overview 2 * Structure of NERSC Systems and Disks * Data Transfer Nodes * Transfer Data fromto NERSC - scp...

  9. Technology Transfer at DOE

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transfer at DOE Karina Edmonds Technology Transfer Coordinator US Department of Energy March 13, 2012 Goals (As presented 11/2010)  Improve contractual vehicles  Update and streamline WFO and CRADA agreements  Create new opportunities to partner with industry  Inreach  Educate tech transfer offices to improve consistency, streamline processes  Improve relationships with inventors to increase IP captured, manage expectations  Outreach  Develop interagency relationships to

  10. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated

    SciTech Connect

    Ivanov, Sergei D. Grant, Ian M.; Marx, Dominik

    2015-09-28

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.

  11. Electron-lattice interactions strongly renormalize the charge-transfer energy in the spin-chain cuprate Li2CuO2

    DOE PAGES [OSTI]

    Johnston, Steve; Monney, Claude; Bisogni, Valentina; Zhou, Ke-Jin; Kraus, Roberto; Behr, Günter; Strocov, Vladimir N.; Málek, Jiři; Drechsler, Stefan-Ludwig; Geck, Jochen; et al

    2016-02-17

    Strongly correlated insulators are broadly divided into two classes: Mott–Hubbard insulators, where the insulating gap is driven by the Coulomb repulsion U on the transition-metal cation, and charge-transfer insulators, where the gap is driven by the charge-transfer energy Δ between the cation and the ligand anions. The relative magnitudes of U and Δ determine which class a material belongs to, and subsequently the nature of its low-energy excitations. These energy scales are typically understood through the local chemistry of the active ions. Here we show that the situation is more complex in the low-dimensional charge-transfer insulator Li2CuO2, where Δ hasmore » a large non-electronic component. Combining resonant inelastic X-ray scattering with detailed modelling, we determine how the elementary lattice, charge, spin and orbital excitations are entangled in this material. This results in a large lattice-driven renormalization of Δ, which significantly reshapes the fundamental electronic properties of Li2CuO2.« less

  12. Electronic-to-vibrational energy transfer from Br* to CO2 and electronic-to-vibrational laser feasibility studies. Master's thesis

    SciTech Connect

    Katapski, S.M.

    1992-11-01

    The energy transfer mechanism from photo-excited bromine atoms (Br(2P sub 1/2)) to C02 is investigated in a pulsed fluorescence experiment. An excimer-pumped pulsed dye laser operating at 480 nm is used to photolyze molecular bromine, resulting in the creation of one excited state bromine atom, Br(2P sub 1/2), and one ground state atom, Br(2P sub 3/2). The electronically-excited bromine atoms (referred to as Br*) collide with and excite vibrational modes in the ground electronic state of CO2. Measurements are made of the Br* lifetimes and associated quenching processes, and the electronic-to-vibrational (E yields V) energy transfer rate from Br* to CO2. The feasibility of subsequent stimulated emission from the CO2 on the (101)-(100)(4.3 micron) transition is studied, and attempts are made to achieve lasing. Limitations of the experimental apparatus prevented achieving stimulated emission on the 4.3 micron transition. Recommendations are made for improvements in the analysis and apparatus for further research.... Bromine, Spin-orbit relaxation, Quenching, E-V energy transfer.

  13. The Stanford Linear Collider

    SciTech Connect

    Emma, P.

    1995-06-01

    The Stanford Linear Collider (SLC) is the first and only high-energy e{sup +}e{sup {minus}} linear collider in the world. Its most remarkable features are high intensity, submicron sized, polarized (e{sup {minus}}) beams at a single interaction point. The main challenges posed by these unique characteristics include machine-wide emittance preservation, consistent high intensity operation, polarized electron production and transport, and the achievement of a high degree of beam stability on all time scales. In addition to serving as an important machine for the study of Z{sup 0} boson production and decay using polarized beams, the SLC is also an indispensable source of hands-on experience for future linear colliders. Each new year of operation has been highlighted with a marked improvement in performance. The most significant improvements for the 1994-95 run include new low impedance vacuum chambers for the damping rings, an upgrade to the optics and diagnostics of the final focus systems, and a higher degree of polarization from the electron source. As a result, the average luminosity has nearly doubled over the previous year with peaks approaching 10{sup 30} cm{sup {minus}2}s{sup {minus}1} and an 80% electron polarization at the interaction point. These developments as well as the remaining identifiable performance limitations will be discussed.

  14. Linear and non-linear forced response of a conical, ducted, laminar premixed flame

    SciTech Connect

    Karimi, Nader; Brear, Michael J.; Jin, Seong-Ho; Monty, Jason P. [Department of Mechanical Engineering, University of Melbourne, Parkville, 3010 Vic. (Australia)

    2009-11-15

    This paper presents an experimental study on the dynamics of a ducted, conical, laminar premixed flame subjected to acoustic excitation of varying amplitudes. The flame transfer function is measured over a range of forcing frequencies and equivalence ratios. In keeping with previous works, the measured flame transfer function is in good agreement with that predicted by linear kinematic theory at low amplitudes of acoustic velocity excitation. However, a systematic departure from linear behaviour is observed as the amplitude of the velocity forcing upstream of the flame increases. This non-linearity is mostly in the phase of the transfer function and manifests itself as a roughly constant phase at high forcing amplitude. Nonetheless, as predicted by non-linear kinematic arguments, the response always remains close to linear at low forcing frequencies, regardless of the forcing amplitude. The origin of this phase behaviour is then sought through optical data post-processing. (author)

  15. NREL Improves Window Heat Transfer Calculations (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Analysis of algorithm discrepancies helps to promote market confidence in EnergyPlus and DOE-2. Heat loss through windows represents a significant amount of the overall energy use in homes. To address discrepancies in building simulation software-and market barriers impeding building energy use analysis-researchers at the National Renewable Energy Laboratory (NREL) identified and resolved window-related energy predictions of EnergyPlus and DOE-2, thereby improving the accuracy of both simulation

  16. FROM PROPERTY LEASE TO PROPERTY TRANSFER - TAKING THE STEPS TO FACILITATE SITE CLOSURE USING THE DEPARTMENT OF ENERGY'S 10 CFR 770 PROCESS

    SciTech Connect

    Cusick, Lesley T.; Hart, Patricia W.

    2003-02-27

    While implementing a successful leasing program for land and facilities at the Department of Energy's Oak Ridge Operations Office in Oak Ridge, TN, the Department is now transitioning from a leasing program to one of title transfer. The program, called ''Reindustrialization'', is the result of a visionary idea to enable the use of excess resources to meet a community's needs in the wake of continued DOE downsizing. An established process included within the Comprehensive Environmental Response Compensation and Liability Act, tailored to meet DOE-ORO's objectives, was used to lease. Title transfer, using DOE's new 10 CFR 770 process, is being undertaken to meet a DOE-HQs directive to close the ORO facility where Reindustrialization is taking place. Title transfer is a key component of the closure effort. However, the process for title transfer is new, it is a DOE process, and it has not yet been completed for any facilities in the DOE complex. Making the transition from a known to an unknown has created opportunities in program design, as well as implementation, coordination and acceptance challenges in a variety of areas, and a host of lessons learned and learning.

  17. Recyclable transmission line (RTL) and linear transformer driver (LTD) development for Z-pinch inertial fusion energy (Z-IFE) and high yield.

    SciTech Connect

    Sharpe, Robin Arthur; Kingsep, Alexander S. (Kurchatov Institute, Moscow, Russia); Smith, David Lewis; Olson, Craig Lee; Ottinger, Paul F. (Naval Research Laboratory, Washington, DC); Schumer, Joseph Wade (Naval Research Laboratory, Washington, DC); Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Kim, Alexander (High Currents Institute, Tomsk, Russia); Kulcinski, Gerald L. (University of Wisconsin, Madison, WI); Kammer, Daniel C. (University of Wisconsin, Madison, WI); Rose, David Vincent (Voss Scientific, Albuquerque, NM); Nedoseev, Sergei L. (Kurchatov Institute, Moscow, Russia); Pointon, Timothy David; Smirnov, Valentin P.; Turgeon, Matthew C.; Kalinin, Yuri G. (Kurchatov Institute, Moscow, Russia); Bruner, Nichelle "Nicki" (Voss Scientific, Albuquerque, NM); Barkey, Mark E. (University of Alabama, Tuscaloosa, AL); Guthrie, Michael (University of Wisconsin, Madison, WI); Thoma, Carsten (Voss Scientific, Albuquerque, NM); Genoni, Tom C. (Voss Scientific, Albuquerque, NM); Langston, William L.; Fowler, William E.; Mazarakis, Michael Gerrassimos

    2007-01-01

    Z-Pinch Inertial Fusion Energy (Z-IFE) complements and extends the single-shot z-pinch fusion program on Z to a repetitive, high-yield, power plant scenario that can be used for the production of electricity, transmutation of nuclear waste, and hydrogen production, all with no CO{sub 2} production and no long-lived radioactive nuclear waste. The Z-IFE concept uses a Linear Transformer Driver (LTD) accelerator, and a Recyclable Transmission Line (RTL) to connect the LTD driver to a high-yield fusion target inside a thick-liquid-wall power plant chamber. Results of RTL and LTD research are reported here, that include: (1) The key physics issues for RTLs involve the power flow at the high linear current densities that occur near the target (up to 5 MA/cm). These issues include surface heating, melting, ablation, plasma formation, electron flow, magnetic insulation, conductivity changes, magnetic field diffusion changes, possible ion flow, and RTL mass motion. These issues are studied theoretically, computationally (with the ALEGRA and LSP codes), and will work at 5 MA/cm or higher, with anode-cathode gaps as small as 2 mm. (2) An RTL misalignment sensitivity study has been performed using a 3D circuit model. Results show very small load current variations for significant RTL misalignments. (3) The key structural issues for RTLs involve optimizing the RTL strength (varying shape, ribs, etc.) while minimizing the RTL mass. Optimization studies show RTL mass reductions by factors of three or more. (4) Fabrication and pressure testing of Z-PoP (Proof-of-Principle) size RTLs are successfully reported here. (5) Modeling of the effect of initial RTL imperfections on the buckling pressure has been performed. Results show that the curved RTL offers a much greater buckling pressure as well as less sensitivity to imperfections than three other RTL designs. (6) Repetitive operation of a 0.5 MA, 100 kV, 100 ns, LTD cavity with gas purging between shots and automated operation is

  18. DRAFT - Design of Radiological Survey and Sampling to Support Title Transfer or Lease of Property on the Department of Energy Oak Ridge Reservation

    SciTech Connect

    Cusick L.T.

    2002-09-25

    The U.S. Department of Energy (DOE) owns, operates, and manages the buildings and land areas on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. As land and buildings are declared excess or underutilized, it is the intent of DOE to either transfer the title of or lease suitable property to the Community Reuse Organization of East Tennessee (CROET) or other entities for public use. It is DOE's responsibility, in coordination with the U.S. Environmental Protection Agency (EPA), Region 4, and the Tennessee Department of Environment and Conservation (TDEC), to ensure that the land, facilities, and personal property that are to have the title transferred or are to be leased are suitable for public use. Release of personal property must also meet site requirements and be approved by the DOE contractor responsible for site radiological control. The terms title transfer and lease in this document have unique meanings. Title transfer will result in release of ownership without any restriction or further control by DOE. Under lease conditions, the government retains ownership of the property along with the responsibility to oversee property utilization. This includes involvement in the lessee's health, safety, and radiological control plans and conduct of site inspections. It may also entail lease restrictions, such as limiting access to certain areas or prohibiting digging, drilling, or disturbing material under surface coatings. Survey and sampling requirements are generally more rigorous for title transfer than for lease. Because of the accelerated clean up process, there is an increasing emphasis on title transfers of facilities and land. The purpose of this document is to describe the radiological survey and sampling protocols that are being used for assessing the radiological conditions and characteristics of building and land areas on the Oak Ridge Reservation that contain space potentially available for title transfer or lease. After necessary surveys and

  19. Linear Fresnel Power Plant Illustration

    Energy.gov [DOE]

    With this concentrating solar power (CSP) graphic, flat or slightly curved mirrors mounted on trackers on the ground are configured to reflect sunlight onto a receiver tube fixed in space above these mirrors. A small parabolic mirror is sometimes added atop the receiver to further focus the sunlight. Linear CSP collectors capture the sun's energy with large mirrors that reflect and focus the sunlight onto a linear receiver tube. The receiver contains a fluid that is heated by the sunlight and then used to create superheated steam that spins a turbine that drives a generator to produce electricity.

  20. Berkeley Proton Linear Accelerator

    DOE R&D Accomplishments

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  1. Determining the exact number of dye molecules attached to colloidal CdSe/ZnS quantum dots in Förster resonant energy transfer assemblies

    SciTech Connect

    Kaiser, Uwe; Jimenez de Aberasturi, Dorleta; Vázquez-González, Margarita; Carrillo-Carrion, Carolina; Niebling, Tobias; Parak, Wofgang J.; Heimbrodt, Wolfram

    2015-01-14

    Semiconductor quantum dots functionalized with organic dye molecules are important tools for biological sensor applications. Energy transfer between the quantum dot and the attached dyes can be utilized for sensing. Though important, the determination of the real number of dye molecules attached per quantum dot is rather difficult. In this work, a method will be presented to determine the number of ATTO-590 dye molecules attached to CdSe/ZnS quantum dots based on time resolved spectral analysis. The energy transfer from the excited quantum dot to the attached ATTO-590 dye leads to a reduced lifetime of the quantum dot's excitons. The higher the concentration of dye molecules, the shorter the excitonic lifetime becomes. However, the number of dye molecules attached per quantum dot will vary. Therefore, for correctly explaining the decay of the luminescence upon photoexcitation of the quantum dot, it is necessary to take into account the distribution of the number of dyes attached per quantum dot. A Poisson distribution of the ATTO-590 dye molecules not only leads to excellent agreement between experimental and theoretical decay curves but also additionally yields the average number of dye molecules attached per quantum dot. In this way, the number of dyes per quantum dot can be conveniently determined.

  2. Distinguishing triplet energy transfer and trap-assisted recombination in multi-color organic light-emitting diode with an ultrathin phosphorescent emissive layer

    SciTech Connect

    Xue, Qin, E-mail: xueqin19851202@163.com; Liu, Shouyin [Department of Physical Science and Technology, Central China Normal University, Wuhan 430079 (China); Xie, Guohua; Chen, Ping; Zhao, Yi; Liu, Shiyong [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2014-03-21

    An ultrathin layer of deep-red phosphorescent emitter tris(1-phenylisoquinoline) iridium (III) (Ir(piq){sub 3}) is inserted within different positions of the electron blocking layer fac-tris (1-phenylpyrazolato-N,C{sup 2?})-iridium(III) (Ir(ppz){sub 3}) to distinguish the contribution of the emission from the triplet exciton energy transfer/diffusion from the adjacent blue phosphorescent emitter and the trap-assisted recombination from the narrow band-gap emitter itself. The charge trapping effect of the narrow band-gap deep-red emitter which forms a quantum-well-like structure also plays a role in shaping the electroluminescent characteristics of multi-color organic light-emitting diodes. By accurately controlling the position of the ultrathin sensing layer, it is considerably easy to balance the white emission which is quite challenging for full-color devices with multiple emission zones. There is nearly no energy transfer detectable if 7 nm thick Ir(ppz){sub 3} is inserted between the blue phosphorescent emitter and the ultrathin red emitter.

  3. Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer progress report for DOE (Department of Energy) Office of Buildings Energy Research

    SciTech Connect

    Burn, G.

    1990-08-01

    The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

  4. Technology Transfer | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Transfer Through partnerships and licensing of its intellectual property rights, NREL seeks to reduce private sector risk in early stage technologies, enable investment in the adoption of renewable energy and energy efficiency technologies, reduce U.S. reliance on foreign energy sources, reduce carbon emissions, and increase U.S. industrial competitiveness. Text Version View a summary of our Fiscal Year 2015 technology partnership agreements. Learn more about our partnership

  5. Technology Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    technology transfer Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government and research centers for their "uncommon creativity and initiative in conveying innovations from their facilities to industry and local government." Scientists and engineers from more than 650 federal government laboratories and research centers compete for the 30 awards presented each year.

  6. Transferring Data

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Data Transferring Data Advice and Overview NERSC provides many facilities for storing data and performing analysis. However, transferring data - whether over the wide area network or with NERSC - can be expensive and time consuming. This page explains the mechanisms NERSC provides to move your data from one place to another. A good strategy, once your data is resident at NERSC, is to perform your analysis in situ, rather than transferring the data elsewhere for analysis. The NERSC consultant can

  7. Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT); NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Burton, E.; Wang, L.; Gonder, J.; Brooker, A.; Konan, A.

    2015-02-10

    This presentation discusses the fuel savings potential from future in-motion wireless power transfer. There is an extensive overlap in road usage apparent across regional vehicle population, which occurs primarily on high-capacity roads--1% of roads are used for 25% of the vehicle miles traveled. Interstates and highways make up between 2.5% and 4% of the total roads within the Consolidated Statistical Areas (CSAs), which represent groupings of metropolitan and/or micropolitan statistical areas. Mileage traveled on the interstates and highways ranges from 54% in California to 24% in Chicago. Road electrification could remove range restrictions of electric vehicles and increase the fuel savings of PHEVs or HEVs if implemented on a large scale. If 1% of the road miles within a geographic area are electrified, 25% of the fuel used by a 'fleet' of vehicles enabled with the technology could be displaced.

  8. Method and apparatus of highly linear optical modulation

    DOEpatents

    DeRose, Christopher; Watts, Michael R.

    2016-05-03

    In a new optical intensity modulator, a nonlinear change in refractive index is used to balance the nonlinearities in the optical transfer function in a way that leads to highly linear optical intensity modulation.

  9. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  10. Linear phase compressive filter

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.

  11. Linear phase compressive filter

    DOEpatents

    McEwan, T.E.

    1995-06-06

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line. 2 figs.

  12. Snapshot: Linear Lamps (TLEDs)

    Energy.gov [DOE]

    A report using LED Lighting Facts data to examine the current state of the market for linear fluorescent lamps. (8 pages, July 2016)

  13. Focusing in Linear Accelerators

    DOE R&D Accomplishments

    McMillan, E. M.

    1950-08-24

    Review of the theory of focusing in linear accelerators with comments on the incompatibility of phase stability and first-order focusing in a simple accelerator.

  14. Heat Transfer in Complex Fluids

    SciTech Connect

    Mehrdad Massoudi

    2012-01-01

    (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an

  15. Half-harmonic Kelvin probe force microscopy with transfer function...

    Office of Scientific and Technical Information (OSTI)

    Using linear and half-harmonic BE enables quantitative correction of the cantilever transfer function. Half-harmonic band excitation Kelvin probe force microscopy (HBE KPFM) thus ...

  16. Project Profile: Dual-Purpose Heat Transfer Fluids for CSP

    Energy.gov [DOE]

    Argonne National Laboratory, under an ARRA CSP Award, is developing advanced heat transfer fluids (HTFs) by incorporating multifunctional engineered nanoparticles in heat transfer applications and thermal energy storage.

  17. Linearly polarized fiber amplifier

    DOEpatents

    Kliner, Dahv A.; Koplow, Jeffery P.

    2004-11-30

    Optically pumped rare-earth-doped polarizing fibers exhibit significantly higher gain for one linear polarization state than for the orthogonal state. Such a fiber can be used to construct a single-polarization fiber laser, amplifier, or amplified-spontaneous-emission (ASE) source without the need for additional optical components to obtain stable, linearly polarized operation.

  18. Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: Energy transfer vs. optical coupling effects

    SciTech Connect

    Hoang, Son; Ashraf, Ahsan; Eisaman, Matthew D.; Nykypanchuk, Dmytro; Nam, Chang -Yong

    2015-12-07

    Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from the OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. Lastly, these results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices.

  19. Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer

    SciTech Connect

    2011-12-05

    HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the sun is not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USFs PCMs remain stable at temperatures from 600 to 1,000C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

  20. Free energy balance in gyrokinetic turbulence

    SciTech Connect

    Banon Navarro, A.; Morel, P.; Albrecht-Marc, M.; Carati, D.; Merz, F.; Goerler, T.; Jenko, F.

    2011-09-15

    Free energy plays an important role in gyrokinetic theory, since it is known to be a nonlinear invariant. Its evolution equations are derived and analyzed for the case of ion temperature gradient driven turbulence, using the formalism adopted in the Gene code. In particular, the ion temperature gradient drive, the collisional dissipation as well as entropy/electrostatic energy transfer channels represented by linear curvature and parallel terms are analyzed in detail.

  1. Manipulator mounted transfer platform

    DOEpatents

    Dobbins, James C.; Hoover, Mark A.; May, Kay W.; Ross, Maurice J.

    1990-01-01

    A transfer platform for the conveyance of objects by a manipulator includes a bed frame and saddle clamp secured along an edge of the bed frame and adapted so as to secure the bed frame to a horizontal crosspiece of the manipulator. The platform may thus move with the manipulator in a reciprocal linear path defined by a guide rail. A bed insert may be provided for the support of conveyed objects and a lifting bail may be provided to permit the manipulator arm to install the bed frame upon the crosspiece under remote control.

  2. Beamstrahlung spectra in next generation linear colliders

    SciTech Connect

    Barklow, T.; Chen, P. ); Kozanecki, W. )

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  3. DOE - Office of Legacy Management -- Stanford Linear Accelerator...

    Office of Legacy Management (LM)

    The Stanford Linear Accelerator Center was established in 1962 as a research facility for high energy particle physics. The Environmental Management mission at this site is to ...

  4. DOE Science Showcase - Startup Stars | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Portal Technology Transfer Energy Department Answering President's Call on Commercialization Energy Department Technology Transfer Programs Visit the Science Showcase homepage.

  5. Host absorption sensitizing and energy transfer to Eu³⁺ by Gd³⁺ in Ba₆Gd{sub 2–x}Na₂Eu{sub x}(PO₄)₆F₂

    SciTech Connect

    Xie, Mubiao; Liang, Hongbin; Huang, Yan; Gao, Zhenhua; Tao, Ye

    2013-05-01

    Eu³⁺ activated fluoro-apatite phosphors Ba₆Gd{sub 2–x}Na₂Eu{sub x}(PO₄)₆F₂ were synthesized using the traditional high temperature solid state reaction method, and their VUV–vis spectroscopic properties of Eu³⁺ were studied. The results show that phosphor Ba₆Gd₁.₉₀Na₂Eu₀.₁₀(PO₄)₆F₂ has intense absorption in the VUV range because of Gd³⁺ ions as sensitizers. The energy transfer process from Gd³⁺ to Eu³⁺ in Ba₆Gd{sub 2-x}Na₂Eu{sub x}(PO₄)₆F₂ were investigated and discussed in terms of luminescence spectra and decay curves, showing that the energy transfer of Gd³⁺→Eu³⁺ is efficient. - Graphical abstract: The Gd³⁺ ions can enhance the host-related absorption in VUV range. The energy transfer from Gd³⁺ to Eu³⁺ ions is efficient. Highlights: • The Gd³⁺ ions play an important role in enhancing the host-related absorption in VUV range. • The charge-transfer energy of Eu³⁺ decreases from Ca²⁺ to Sr²⁺ and Ba²⁺ in M₆Gd₁.₉₀Na₂Eu₀.₁₀(PO₄)₆F₂ (M=Ca, Sr, Ba). • There is efficient energy transfer from Gd³⁺ to Eu³⁺ in Ba₆Gd{sub 2–x}Na₂Eu{sub x}(PO₄)₆F₂.

  6. Convergence of Distributed Optimal Controls on the Internal Energy in Mixed Elliptic Problems when the Heat Transfer Coefficient Goes to Infinity

    SciTech Connect

    Gariboldi, C.; E-mail: cgariboldi@exa.unrc.edu.ar; Tarzia, D.

    2003-05-21

    We consider a steady-state heat conduction problem P{sub {alpha}} with mixed boundary conditions for the Poisson equation depending on a positive parameter {alpha} , which represents the heat transfer coefficient on a portion {gamma} {sub 1} of the boundary of a given bounded domain in R{sup n} . We formulate distributed optimal control problems over the internal energy g for each {alpha}. We prove that the optimal control g{sub o}p{sub {alpha}} and its corresponding system u{sub go}p{sub {alpha}}{sub {alpha}} and adjoint p{sub go}p{sub {alpha}}{sub {alpha}} states for each {alpha} are strongly convergent to g{sub op},u{sub gop} and p{sub gop} , respectively, in adequate functional spaces. We also prove that these limit functions are respectively the optimal control, and the system and adjoint states corresponding to another distributed optimal control problem for the same Poisson equation with a different boundary condition on the portion {gamma}{sub 1} . We use the fixed point and elliptic variational inequality theories.

  7. Anomalous momentum and energy transfer rates for electrostatic ion-cyclotron turbulence in downward auroral-current regions of the Earth's magnetosphere. III

    SciTech Connect

    Jasperse, John R.; Basu, Bamandas; Lund, Eric J.; Grossbard, Neil

    2010-06-15

    Recently, a new multimoment fluid theory was developed for inhomogeneous, nonuniformly magnetized plasma in the guiding-center and gyrotropic approximation that includes the effect of electrostatic, turbulent, wave-particle interactions (see Jasperse et al. [Phys. Plasmas 13, 072903 (2006); ibid.13, 112902 (2006)]). In the present paper, which is intended as a sequel, it is concluded from FAST satellite data that the electrostatic ion-cyclotron turbulence that appears is due to the operation of an electron, bump-on-tail-driven ion-cyclotron instability for downward currents in the long-range potential region of the Earth's magnetosphere. Approximate closed-form expressions for the anomalous momentum and energy transfer rates for the ion-cyclotron turbulence are obtained. The turbulent, inhomogeneous, nonuniformly magnetized, multimoment fluid theory given above, in the limit of a turbulent, homogeneous, uniformly magnetized, quasisteady plasma, yields the well-known formula for the anomalous resistivity given by Gary and Paul [Phys. Rev. Lett. 26, 1097 (1971)] and Tange and Ichimaru [J. Phys. Soc. Jpn. 36, 1437 (1974)].

  8. Estimating kinetic mass transfer by resting-period measurements in flow-interruption tracer tests

    SciTech Connect

    Gong, R; Lu, C; Wu, Wei-min; Cheng, H.; Gu, Baohua; Watson, David B; Criddle, Craig; Kitanidis, Peter K.; Brooks, Scott C; Jardine, Philip M; Luo, Jian

    2010-06-01

    Flow-interruption tracer test is an effective approach to identify kinetic mass transfer processes for solute transport in subsurface media. By switching well pumping and resting, one may alter the dominant transport mechanism and generate special concentration patterns for identifying kinetic mass transfer processes. In the present research, we conducted three-phase (i.e., pumping, resting, and pumping) field-scale flow-interruption tracer tests using a conservative tracer bromide in a multiple-well system installed at the US Department of Energy Site, Oak Ridge, TN. A novel modeling approach based on the resting-period measurements was developed to estimate the mass transfer parameters. This approach completely relied on the measured breakthrough curves without requiring detailed aquifer characterization and solving transport equations in nonuniform, transient flow fields. Additional measurements, including hydraulic heads and tracer concentrations in large pumping wells, were taken to justify the assumption that mass transfer processes dominated concentration change during resting periods. The developed approach can be conveniently applied to any linear mass transfer model. Both first-order and multirate mass transfer models were applied to analyze the breakthrough curves at various monitoring wells. The multirate mass transfer model was capable of jointly fitting breakthrough curve behavior, showing the effectiveness and flexibility for incorporating aquifer heterogeneity and scale effects in upscaling effective mass transfer models.

  9. Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency ...

  10. Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  11. Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  12. heat transfer | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer...

  13. Secretary Bodman Announces DOE Technology Transfer Coordinator...

    Energy Saver

    to the global marketplace by naming Under Secretary for Science, Dr. Raymond Orbach, as Technology Transfer Coordinator, in accordance with the Energy Policy Act of 2005 (EPAct). ...

  14. Kelkar, S. 15 GEOTHERMAL ENERGY; 99 GENERAL AND MISCELLANEOUS...

    Office of Scientific and Technical Information (OSTI)

    SYSTEMS; FINITE ELEMENT METHOD; HEAT TRANSFER; MASS TRANSFER; MULTIPHASE FLOW; POROUS MATERIALS; COMPUTER CODES; ENERGY SYSTEMS; ENERGY TRANSFER; FLUID FLOW; GEOTHERMAL...

  15. Electron Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3 Pierre Kennepohl1,2 and Edward Solomon1* 1Department of Chemistry, Stanford University, Stanford, CA 94305 Electron transfer, or the act of moving an electron from one place to another, is amongst the simplest of chemical processes, yet certainly one of the most critical. The process of efficiently and controllably moving electrons around is one of the primary regulation mechanisms in biology. Without stringent control of electrons in living organisms, life could simply not exist. For example,

  16. Transfer reactions at ATLAS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Services » Transactions, Technology and Contractor Human Relations Transactions, Technology and Contractor Human Relations Transactions, Technology and Contractor Human Relations Offices of the Deputy General Counsel for Transactions, Technology and Contractor Human Resources Office of the Assistant General Counsel for Procurement and Financial Assistance (GC-61) Office of the Assistant General Counsel for Technology Transfer and Intellectual Property (GC-62) Office of the Assistant

  17. 2006 Technology Transfer Awards

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Transfer Awards Carrying on the tradition of world-changing innovation Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its

  18. 2009 Technology Transfer Awards

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    9 Technology Transfer Awards Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S.Department of Energy under contract DE-AC52-06NA25396. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Los

  19. Text-Alternative Version: LED Replacements for Linear Fluorescent Lamps |

    Energy Saver

    Department of Energy Replacements for Linear Fluorescent Lamps Text-Alternative Version: LED Replacements for Linear Fluorescent Lamps Below is the text-alternative version of the "LED Replacements for Linear Fluorescent Lamps" webcast, held June 20, 2011. Theresa Shoemaker: Welcome, ladies and gentlemen. I'm Terry Shoemaker with the Pacific Northwest National Laboratory, and I'd like to welcome you to today's webcast, "LED Replacements for Linear Fluorescent Lamps,"

  20. DOE Technology Transfer Website Features New Tool to Search Tech Transfer

    Office of Scientific and Technical Information (OSTI)

    Information from DOE National Laboratories | OSTI, US Dept of Energy Office of Scientific and Technical Information December 3, 2012 DOE Technology Transfer Website Features New Tool to Search Tech Transfer Information from DOE National Laboratories The Department of Energy (DOE) Technology Transfer website has a new search feature that for the first time allows searching of technology transfer information across the DOE national laboratories. The new tool enables users to search all of

  1. Small Business Innovation Research and Small Business Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Programs | Department of Energy Small Business Innovation Research and Small Business Technology Transfer Programs Small Business Innovation Research and Small Business Technology Transfer Programs Small Business Innovation Research and Small Business Technology Transfer Programs The Office of Energy Efficiency and Renewable Energy's (EERE's) combined Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program is among many U.S. Department of Energy (DOE)

  2. NETL Technologies Recognized for Technology Development, Transfer |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of

  3. Creating New Incentives for Risk Identification and Insurance Process for the Electric Utility Industry (initial award through Award Modification 2); Energy & Risk Transfer Assessment (Award Modifications 3 - 6)

    SciTech Connect

    Michael Ebert

    2008-02-28

    This is the final report for the DOE-NETL grant entitled 'Creating New Incentives for Risk Identification & Insurance Processes for the Electric Utility Industry' and later, 'Energy & Risk Transfer Assessment'. It reflects work done on projects from 15 August 2004 to 29 February 2008. Projects were on a variety of topics, including commercial insurance for electrical utilities, the Electrical Reliability Organization, cost recovery by Gulf State electrical utilities after major hurricanes, and review of state energy emergency plans. This Final Technical Report documents and summarizes all work performed during the award period, which in this case is from 15 August 2004 (date of notification of original award) through 29 February 2008. This report presents this information in a comprehensive, integrated fashion that clearly shows a logical and synergistic research trajectory, and is augmented with findings and conclusions drawn from the research as a whole. Four major research projects were undertaken and completed during the 42 month period of activities conducted and funded by the award; these are: (1) Creating New Incentives for Risk Identification and Insurance Process for the Electric Utility Industry (also referred to as the 'commercial insurance' research). Three major deliverables were produced: a pre-conference white paper, a two-day facilitated stakeholders workshop conducted at George Mason University, and a post-workshop report with findings and recommendations. All deliverables from this work are published on the CIP website at http://cipp.gmu.edu/projects/DoE-NETL-2005.php. (2) The New Electric Reliability Organization (ERO): an examination of critical issues associated with governance, standards development and implementation, and jurisdiction (also referred to as the 'ERO study'). Four major deliverables were produced: a series of preliminary memoranda for the staff of the Office of Electricity Delivery and Energy Reliability ('OE'), an ERO interview

  4. TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT

  5. Data Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Globus GridFTP Data Transfer Nodes Workflow Tools Science Gateways Data Visualization Job Logs & Statistics Training & Tutorials Software Policies User Surveys NERSC Users Group Help Staff Blogs Request Repository Mailing List Need Help? Out-of-hours Status and Password help Call operations: 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting and questions http://help.nersc.gov

  6. Combustion powered linear actuator

    DOEpatents

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  7. Linear induction accelerator

    SciTech Connect

    Bosamykin, V.S.; Pavlovskiy, A.I.

    1984-03-01

    A linear induction accelerator of charged particles, containing inductors and an acceleration circuit, characterized by the fact that, for the purpose of increasing the power of the accelerator, each inductor is made in the form of a toroidal line with distributed parameters, from one end of which in the gap of the line a ring commutator is included, and from the other end of the ine a resistor is hooked up, is described.

  8. DOE Report on Technology Transfer and Related Technology Partnering...

    Office of Environmental Management (EM)

    ... Vehicle New Power Inverter New Refrigerant Boosts Energy Efficiency of Supermarket ... Transfer Activities | Page 71 New Refrigerant Boosts Energy Efficiency of Supermarket ...

  9. Accelerating the transfer in Technology Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Accelerating the transfer in Technology Transfer Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2015-Jan. 2016...

  10. Non-linear system identification in flow-induced vibration

    SciTech Connect

    Spanos, P.D.; Zeldin, B.A.; Lu, R.

    1996-12-31

    The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.

  11. Linear transformer driver for pulse generation

    DOEpatents

    Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A

    2015-04-07

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.

  12. Tubing for augmented heat transfer

    SciTech Connect

    Yampolsky, J.S.; Pavlics, P.

    1983-08-01

    The objectives of the program reported were: to determine the heat transfer and friction characteristics on the outside of spiral fluted tubing in single phase flow of water, and to assess the relative cost of a heat exchanger constructed with spiral fluted tubing with one using conventional smooth tubing. An application is examined where an isolation water/water heat exchanger was used to transfer the heat from a gaseous diffusion plant to an external system for energy recovery. (LEW)

  13. Notes on beam dynamics in linear accelerators

    SciTech Connect

    Gluckstern, R.L.

    1980-09-01

    A collection of notes, on various aspects of beam dynamics in linear accelerators, which were produced by the author during five years (1975 to 1980) of consultation for the LASL Accelerator Technology (AT) Division and Medium-Energy Physics (MP) Division is presented.

  14. Linear induction accelerator parameter options

    SciTech Connect

    Birx, D.L.; Caporaso, G.J.; Reginato, L.L.

    1986-04-21

    The principal undertaking of the Beam Research Program over the past decade has been the investigation of propagating intense self-focused beams. Recently, the major activity of the program has shifted toward the investigation of converting high quality electron beams directly to laser radiation. During the early years of the program, accelerator development was directed toward the generation of very high current (>10 kA), high energy beams (>50 MeV). In its new mission, the program has shifted the emphasis toward the production of lower current beams (>3 kA) with high brightness (>10/sup 6/ A/(rad-cm)/sup 2/) at very high average power levels. In efforts to produce these intense beams, the state of the art of linear induction accelerators (LIA) has been advanced to the point of satisfying not only the current requirements but also future national needs.

  15. Wireless power transfer system

    DOEpatents

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2016-02-23

    A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.

  16. Linear Concentrator Solar Power Plant Illustration

    Energy.gov [DOE]

    This graphic illustrates linear concentrating solar power (CSP) collectors that capture the sun's energy with large mirrors that reflect and focus the sunlight onto a linear receiver tube. The receiver contains a fluid that is heated by the sunlight and then used to create superheated steam that spins a turbine that drives a generator to produce electricity. Alternatively, steam can be generated directly in the solar field, eliminating the need for costly heat exchangers. In a parabolic trough system, the receiver tube is positioned along the focal line of each parabola-shaped reflector.

  17. The Next Linear Collider: NLC2001

    SciTech Connect

    D. Burke et al.

    2002-01-14

    Recent studies in elementary particle physics have made the need for an e{sup +}e{sup -} linear collider able to reach energies of 500 GeV and above with high luminosity more compelling than ever [1]. Observations and measurements completed in the last five years at the SLC (SLAC), LEP (CERN), and the Tevatron (FNAL) can be explained only by the existence of at least one particle or interaction that has not yet been directly observed in experiment. The Higgs boson of the Standard Model could be that particle. The data point strongly to a mass for the Higgs boson that is just beyond the reach of existing colliders. This brings great urgency and excitement to the potential for discovery at the upgraded Tevatron early in this decade, and almost assures that later experiments at the LHC will find new physics. But the next generation of experiments to be mounted by the world-wide particle physics community must not only find this new physics, they must find out what it is. These experiments must also define the next important threshold in energy. The need is to understand physics at the TeV energy scale as well as the physics at the 100-GeV energy scale is now understood. This will require both the LHC and a companion linear electron-positron collider. A first Zeroth-Order Design Report (ZDR) [2] for a second-generation electron-positron linear collider, the Next Linear Collider (NLC), was published five years ago. The NLC design is based on a high-frequency room-temperature rf accelerator. Its goal is exploration of elementary particle physics at the TeV center-of-mass energy, while learning how to design and build colliders at still higher energies. Many advances in accelerator technologies and improvements in the design of the NLC have been made since 1996. This Report is a brief update of the ZDR.

  18. Data Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    (EIA) Developer Announcing EIA's Application Programming Interface (API) The US Energy Information Administration is committed to making its data available through an Application Programming Interface (API) to better serve our customers. APIs allows computers to more easily access our public data. By making EIA data available is this machine readable format, the creativity in the private, the non-profit, and the public sectors can be harnessed to find new ways to analyze and create

  19. Non Linear Conjugate Gradient

    Energy Science and Technology Software Center

    2006-11-17

    Software that simulates and inverts electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a time harmonic source field excitation arising from the following antenna geometery: loops and grounded bipoles, as well as point electric and magnetic dioples. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria.more » The software is an upgrade from the code NLCGCS_MP ver 1.0. The upgrade includes the following components: Incorporation of new 1 D field sourcing routines to more accurately simulate the 3D electromagnetic field for arbitrary geologic& media, treatment for generalized finite length transmitting antenna geometry (antennas with vertical and horizontal component directions). In addition, the software has been upgraded to treat transverse anisotropy in electrical conductivity.« less

  20. Positrons for linear colliders

    SciTech Connect

    Ecklund, S.

    1987-11-01

    The requirements of a positron source for a linear collider are briefly reviewed, followed by methods of positron production and production of photons by electromagnetic cascade showers. Cross sections for the electromagnetic cascade shower processes of positron-electron pair production and Compton scattering are compared. A program used for Monte Carlo analysis of electromagnetic cascades is briefly discussed, and positron distributions obtained from several runs of the program are discussed. Photons from synchrotron radiation and from channeling are also mentioned briefly, as well as positron collection, transverse focusing techniques, and longitudinal capture. Computer ray tracing is then briefly discussed, followed by space-charge effects and thermal heating and stress due to showers. (LEW)

  1. Numerical Verification of the Power Transfer and Wakefield Coupling in the Clic Two-Beam Accelerator

    SciTech Connect

    Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; Syratchev, I.; Grudiev, A.; Wuensch, W.; /CERN

    2011-08-19

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its two-beam accelerator (TBA) concept envisions complex 3D structures, which must be modeled to high accuracy so that simulation results can be directly used to prepare CAD drawings for machining. The required simulations include not only the fundamental mode properties of the accelerating structures but also the Power Extraction and Transfer Structure (PETS), as well as the coupling between the two systems. Time-domain simulations will be performed to understand pulse formation, wakefield damping, fundamental power transfer and wakefield coupling in these structures. Applying SLAC's parallel finite element code suite, these large-scale problems will be solved on some of the largest supercomputers available. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel two-beam accelerator scheme.

  2. Alliance For Sustainable Energy

    Energy.gov [DOE]

    Response from National Renewable Energy Laboratory on the Technology Transfer Questions in Federal Register dated November 26, 2008

  3. Winding for linear pump

    DOEpatents

    Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.

    1989-08-22

    A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.

  4. Winding for linear pump

    DOEpatents

    Kliman, Gerald B.; Brynsvold, Glen V.; Jahns, Thomas M.

    1989-01-01

    A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

  5. Linear induction pump

    DOEpatents

    Meisner, John W.; Moore, Robert M.; Bienvenue, Louis L.

    1985-03-19

    Electromagnetic linear induction pump for liquid metal which includes a unitary pump duct. The duct comprises two substantially flat parallel spaced-apart wall members, one being located above the other and two parallel opposing side members interconnecting the wall members. Located within the duct are a plurality of web members interconnecting the wall members and extending parallel to the side members whereby the wall members, side members and web members define a plurality of fluid passageways, each of the fluid passageways having substantially the same cross-sectional flow area. Attached to an outer surface of each side member is an electrically conductive end bar for the passage of an induced current therethrough. A multi-phase, electrical stator is located adjacent each of the wall members. The duct, stators, and end bars are enclosed in a housing which is provided with an inlet and outlet in fluid communication with opposite ends of the fluid passageways in the pump duct. In accordance with a preferred embodiment, the inlet and outlet includes a transition means which provides for a transition from a round cross-sectional flow path to a substantially rectangular cross-sectional flow path defined by the pump duct.

  6. Cooperative heat transfer and ground coupled storage system

    DOEpatents

    Metz, P.D.

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  7. Cooperative heat transfer and ground coupled storage system

    DOEpatents

    Metz, Philip D.

    1982-01-01

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  8. The Development of an INL Capability for High Temperature Flow, Heat Transfer, and Thermal Energy Storage with Applications in Advanced Small Modular Reactors, High Temperature Heat Exchangers, Hybrid Energy Systems, and Dynamic Grid Energy Storage C

    SciTech Connect

    Sun, Xiaodong; Zhang, Xiaoqin; Kim, Inhun; O'Brien, James; Sabharwall, Piyush

    2014-10-01

    The overall goal of this project is to support Idaho National Laboratory in developing a new advanced high temperature multi fluid multi loop test facility that is aimed at investigating fluid flow and heat transfer, material corrosion, heat exchanger characteristics and instrumentation performance, among others, for nuclear applications. Specifically, preliminary research has been performed at The Ohio State University in the following areas: 1. A review of fluoride molten salts’ characteristics in thermal, corrosive, and compatibility performances. A recommendation for a salt selection is provided. Material candidates for both molten salt and helium flow loop have been identified. 2. A conceptual facility design that satisfies the multi loop (two coolant loops [i.e., fluoride molten salts and helium]) multi purpose (two operation modes [i.e., forced and natural circulation]) requirements. Schematic models are presented. The thermal hydraulic performances in a preliminary printed circuit heat exchanger (PCHE) design have been estimated. 3. An introduction of computational methods and models for pipe heat loss analysis and cases studies. Recommendations on insulation material selection have been provided. 4. An analysis of pipe pressure rating and sizing. Preliminary recommendations on pipe size selection have been provided. 5. A review of molten fluoride salt preparation and chemistry control. An introduction to the experience from the Molten Salt Reactor Experiment at Oak Ridge National Laboratory has been provided. 6. A review of some instruments and components to be used in the facility. Flowmeters and Grayloc connectors have been included. This report primarily presents the conclusions drawn from the extensive review of literatures in material selections and the facility design progress at the current stage. It provides some useful guidelines in insulation material and pipe size selection, as well as an introductory review of facility process and components.

  9. Linear Concentrator System Basics for Concentrating Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    Linear concentrating solar power (CSP) collectors capture the sun's energy with large mirrors that reflect and focus the sunlight onto a linear receiver tube. The receiver contains a fluid that is heated by the sunlight and then used to heat a traditional power cycle that spins a turbine that drives a generator to produce electricity.

  10. Class Is Now in Session: Energy 101 | Department of Energy

    Energy.gov [DOE] (indexed site)

    Energy Principle 4, which states that various sources of energy can be used to power human activities, and often this energy must be transferred from source to...

  11. International Energy Agency Building Energy Simulation Test and Diagnostic Method (IEA BESTEST): In-Depth Diagnostic Cases for Ground Coupled Heat Transfer Related to Slab-on-Grade Construction

    SciTech Connect

    Neymark, J.; Judkoff, R.; Beausoleil-Morrison, I.; Ben-Nakhi, A.; Crowley, M.; Deru, M.; Henninger, R.; Ribberink, H.; Thornton, J.; Wijsman, A.; Witte, M.

    2008-09-01

    This report documents a set of idealized in-depth diagnostic test cases for use in validating ground-coupled floor slab heat transfer models. These test cases represent an extension to IEA BESTEST.

  12. ENERGY

    Energy.gov [DOE] (indexed site)

    U.S. Department of ENERGY Department of Energy Quadrennial Technology Review-2015 Framing Document http:energy.govqtr 2015-01-13 Page 2 The United States faces serious ...

  13. Energy

    Office of Legacy Management (LM)

    Energy Washington; DC 20585 : . ' , - o" ' ' ,' DEC ?; ;y4,,, ' . The Honorable ... Dear,Mayor 'Kalwitz: " . " Secretary of Energy Hazel' O'Leary has announceha new,approach ...

  14. A Surprising Path for Proton Transfer Without Hydrogen Bonds

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... of the wave-function along the proton transfer pathway. Right: A two-dimensional potential-energy-surface scan shows the proton transfer path in the dimer ion involving a ...

  15. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

  16. Energy Literacy Essential Principle #4

    SciTech Connect

    2014-12-02

    Energy Literacy Essential Principle #4: Various sources of energy can be used to power human activities, and often this energy must be transferred from source to destination.

  17. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    energy-management Download Energy Transfer 1. Identify a closed system with consevative forces. 2. Identify relationships between the following variables: http:energy.goveere...

  18. Bandwidth and Transfer Activity

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    average. Graphs for the last 8 days. Historical yearly peak days. Daily Storage Concurrency Transfer Activity This graph shows the number of transfers to the storage systems...

  19. Data Transfer Examples

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Data Transfer Examples Data Transfer Examples Moving data to Projectb Projectb is where data should be written from jobs running on the cluster or Gpints. There are intermediate ...

  20. NREL: Technology Transfer - Ombuds

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership,...

  1. Secretarial Determination for the Sale or Transfer of Uranium | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Secretarial Determination for the Sale or Transfer of Uranium Secretarial Determination for the Sale or Transfer of Uranium Secretarial Determination for the Sale or Transfer of Uranium, May 15, 2012 Secretarial Determination for the Sale or Transfer of Uranium.pdf (291.48 KB) More Documents & Publications Secretarial Determination Pursuant to USEC Privatization Act for the Sale or Transfer of Low-Enriched Uranium Before the House Committee on Oversight and Government Reform

  2. GEOTHERMAL ENERGY; 20 FOSSIL-FUELED POWER PLANTS; MECHANICAL...

    Office of Scientific and Technical Information (OSTI)

    DRAFT COOLING TOWERS; PERFORMANCE; SIMULATION; COST; DESIGN; HEAT TRANSFER; OPERATION; WATER REQUIREMENTS; COOLING TOWERS; ENERGY TRANSFER; MECHANICAL STRUCTURES; TOWERS...

  3. Polarisation Transfer in Proton Compton Scattering at High Momentum Transfer

    SciTech Connect

    Hamilton, David

    2004-12-31

    The Jefferson Lab Hall A experiment E99-114 comprised a series of measurements to explore proton Compton scattering at high momentum transfer. For the first time, the polarisation transfer observables in the p (~ 0 ~ p) reaction were measured in the GeV energy range, where it is believed that quark-gluon degrees of freedom begin to dominate. The experiment utilised a circularly polarised photon beam incident on a liquid hydrogen target, with the scattered photon and recoil proton detected in a lead-glass calorimeter and a magnetic spectrometer, respectively.

  4. FLC Recognizes Laboratory's Technology Transfer Activities - News Releases

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    | NREL FLC Recognizes Laboratory's Technology Transfer Activities August 19, 2004 Golden, Colo. - The Federal Laboratory Consortium for Technology Transfer (FLC) has recognized the Department of Energy's National Renewable Energy Laboratory with three regional awards for technology transfer activities. "These awards acknowledge our success in moving NREL technologies to the private sector," said Tom Williams, director of NREL's Technology Transfer Office. NREL was honored with two

  5. Solar energy collector

    DOEpatents

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  6. Technology transfer: The winds of change

    SciTech Connect

    Choudhury, A.

    1994-12-31

    This talk will present a historical perspective of the legislation that facilitated technology transfer from the federal laboratory system, especially with reference to CRADAs. Some of the recently proposed legislation that could potentially impact these intellectual property provisions of GATT and NAFTA will be discussed. An overview of Martin Marietta Energy Systems, Inc.`s technology transfer activities will also be presented.

  7. Summary Report for Concentrating Solar Power Thermal Storage Workshop: New Concepts and Materials for Thermal Energy Storage and Heat-Transfer Fluids, May 20, 2011

    SciTech Connect

    Glatzmaier, G.

    2011-08-01

    This document summarizes a workshop on thermal energy storage for concentrating solar power (CSP) that was held in Golden, Colorado, on May 20, 2011. The event was hosted by the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory, and Sandia National Laboratories. The objective was to engage the university and laboratory research communities to identify and define research directions for developing new high-temperature materials and systems that advance thermal energy storage for CSP technologies. This workshop was motivated, in part, by the DOE SunShot Initiative, which sets a very aggressive cost goal for CSP technologies -- a levelized cost of energy of 6 cents per kilowatt-hour by 2020 with no incentives or credits.

  8. Wireless Power Transfer

    ScienceCinema

    None

    2016-07-12

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the

  9. Wireless Power Transfer

    SciTech Connect

    2013-07-22

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the

  10. Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Energy National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Energy Overview Charlie McMillan, Director of Los Alamos National Laboratory 0:50 Director McMillan on energy security With energy use increasing across the nation and the world, Los Alamos National Laboratory is using its world-class scientific capabilities to enhance

  11. The TESLA superconducting linear collider

    SciTech Connect

    the TESLA Collaboration

    1997-03-01

    This paper summarizes the present status of the studies for a superconducting Linear Collider (TESLA). {copyright} {ital 1997 American Institute of Physics.}

  12. Nonlinear vs. linear biasing in Trp-cage folding simulations

    SciTech Connect

    Spiwok, Vojt?ch Oborsk, Pavel; Krlov, Blanka; Pazrikov, Jana

    2015-03-21

    Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200?ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.

  13. Linear Fixed-Field Multi-Pass Arcs for Recirculating Linear Accelerators

    SciTech Connect

    V.S. Morozov, S.A. Bogacz, Y.R. Roblin, K.B. Beard

    2012-06-01

    Recirculating Linear Accelerators (RLA's) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting the dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dog-bone RLA capable of transporting two beam passes with momenta different by a factor of two. We present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dog-bone RLA.

  14. Data Transfer Nodes

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Data Transfer Nodes Data Transfer Nodes PDSF has dedicated nodes for grid services and data transfers named pdsfdtn1.nersc.gov and pdsfdtn2.nersc.gov. Both nodes have 10 Gb/s network connections to the NERSC network. Please avoid using the interactive nodes for bulk data transfer. Not only can it be disruptive to other users but the network connection is only 1 Gb/s so it will take longer. For transfers using /project and/or HPSS use the NERSC data transfer nodes - see the NERSC data transfer

  15. FACILITY SURVEY & TRANSFER Facility Survey & Transfer Overview

    Office of Environmental Management (EM)

    all structures, outbuildings, tanks, etc. that should be in the scope of the transfer. ... cleanup considerations related to contamination not contained within buildings or tanks. ...

  16. Technology transfer 1995

    SciTech Connect

    Not Available

    1995-01-01

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

  17. Whistler waves produced by a modulated spiraling electron beam: Linear approach

    SciTech Connect

    Krafft, C.; Volokitin, A.; Matthieussent, G.

    1996-03-01

    The theory of whistler wave interaction with a modulated electron beam injected obliquely to the magnetic field in an unbounded space plasma is considered. The study of the energy transfer between the spiraling beam and the whistler wave is done in the case of sheared whistlers, when the parallel wave number is very small compared to the perpendicular one. In the linear regime, structures of potentials and electromagnetic fields in the beam vicinity and in the wave zone are obtained analytically: Simple expressions for field components are provided for {hacek C}erenkov and Doppler resonances, in double and single pole cases. Emitted power is calculated as a function of beam parameters. {copyright} {ital 1996 American Institute of Physics.}

  18. Atmospheric sciences transfer between research advances and energy-policy assessments (ASTRAEA). Final report, 1 April 1996--31 December 1997

    SciTech Connect

    Slinn, W.G.N.

    1997-12-10

    Consistent with the prime goal of the ASTRAEA project, as given in its peer-reviewed proposal, this final report is an informal report to DOE managers about a perceived DOE management problem, specifically, lack of vision in DOE`s Atmospheric Chemistry Program (ACP). After presenting a review of relevant, current literature, the author suggests a framework for conceiving new visions for ACP, namely, multidisciplinary research for energy policy, tackling tough (e.g., nonlinear) problems as a team, ahead of political curves. Two example visions for ACP are then described, called herein the CITIES Project (the Comprehensive Inventory of Trace Inhalants from Energy Sources Project) and the OCEAN Project (the Ocean-Circulation Energy-Aerosol Nonlinearities Project). Finally, the author suggests methods for DOE to provide ACP with needed vision.

  19. Aqueous proton transfer across single-layer graphene (Journal...

    Office of Scientific and Technical Information (OSTI)

    Proton transfer across single-layer graphene proceeds with large computed energy barriers and is thought to be unfavourable at room temperature unless nanoscale holes or dopants ...

  20. Secretarial Policy Statement on Technology Transfer at Department...

    Energy.gov [DOE] (indexed site)

    Secretarial Policy Statement on Technology Transfer at Department of Energy Facilities Introduction This Policy Statement is designed to help guide and strengthen the Department of ...

  1. Building America Case Study: Evaluating Through-Wall Air Transfer...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... NEW HOMES Lessons Learned Pros: * Using transfer fans to allow heating and cooling energy to reach the bedrooms in ... calculations need to properly account for solar loading. ...

  2. Klystron switching power supplies for the Internation Linear Collider

    SciTech Connect

    Fraioli, Andrea; /Cassino U. /INFN, Pisa

    2009-12-01

    The International Linear Collider is a majestic High Energy Physics particle accelerator that will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. ILC will complement the Large Hadron Collider (LHC), a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, by producing electron-positron collisions at center of mass energy of about 500 GeV. In particular, the subject of this dissertation is the R&D for a solid state Marx Modulator and relative switching power supply for the International Linear Collider Main LINAC Radio Frequency stations.

  3. Beamstrahlung spectra in next generation linear colliders. Revision

    SciTech Connect

    Barklow, T.; Chen, P.; Kozanecki, W.

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  4. Linear Accelerator | Advanced Photon Source

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Linear Accelerator Producing brilliant x-ray beams at the APS begins with electrons emitted from a cathode heated to 1100 C. The electrons are accelerated by high-voltage...

  5. Influence of vertex coulomb effects on peripheral partial amplitudes for the consecutive transfer of two protons in A(X,Y)B peripheral nuclear reactions induced by light loosely bound (exotic) nuclei at low energies

    SciTech Connect

    Blokhintsev, L. D. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation); Mukhamedzhanov, A. M. [Texas A and M University, MS 3366, Cyclotron Institute (United States); Tadzhibaeva, D. Kh.; Yarmukhamedov, R., E-mail: rakhim@inp.u [Uzbek Academy of Sciences, Institute of Nuclear Physics (Uzbekistan)

    2010-07-15

    The amplitude for the consecutive transfer of two protons in A(X, Y)B peripheral nuclear reactions induced by loosely bound light (exotic) nuclei and described by a nonrelativistic square Feynman diagram in which the first transferred proton is loosely bound while the second one in tightly bound is considered. It is shown that the inclusion of three-ray Coulomb vertex effects in the square diagram leads to the appearance of an additional 'Coulomb' singularity in the variable cos {theta} (here, {theta} is the c.m. scattering angle), this singularity being closer to the physical domain, -1 {<=} cos {theta} {<=} 1, than the well-known 'triangle' singularities corresponding to the amplitude of the square diagram in which the internal line is contracted. The asymptotic behavior of the partial-wave amplitudes for l >> 1 that are generated by the aforementioned singularities is found explicitly. A comparative analysis of the resulting partial-wave amplitudes for l >> 1 is performed for specific peripheral nuclear reactions induced by {sup 8}B and {sup 12}N ions at various energies.

  6. ASTRONOMY AND ASTROPHYSICS Dark Energy, Type Ia supernovae, radiative

    Office of Scientific and Technical Information (OSTI)

    of Oklahoma Univ. of Oklahoma 79 ASTRONOMY AND ASTROPHYSICS Dark Energy, Type Ia supernovae, radiative transfer, Dark Energy, Type Ia supernovae, radiative transfer, The...

  7. Working with SRNL - Technology Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    19/2016 SEARCH SRNL GO Tech Briefs Contacts Ombudsman Tech Home SRNL Home Working with SRNL Technology Transfer 2016 SRNL Research and Technology Recognition Reception Click to view the 2016 SRNL Research and Technology Recognition Reception Savannah River National Laboratory scientists and engineers develop technologies designed to improve environmental quality, support international nonproliferation, dispose of legacy wastes, and provide clean energy sources. SRNL is responsible for

  8. Measurement of the charge-transfer rate of Fe{sup 3+}-ion coefficients with H{sub 2} and N{sub 2} at electron-volt energy

    SciTech Connect

    Gao Kelin; Nie Zongxiu; Li Jiaomei; Jiang Yurong

    2003-02-01

    The charge-transfer rate coefficients of Fe{sup 3+} with H{sub 2} and N{sub 2} are measured by using a laser-ablation ion source and a quadrupole radio-frequency ion trap with the mean collision energy of about 5.1 eV. The rate coefficients for Fe{sup 3+} with H{sub 2} at the equivalent temperature 1.7x10{sup 3} K and Fe{sup 3+} with N{sub 2} at 1.3x10{sup 4} K are 1.64(0.22)x10{sup -10} cm{sup 3} s{sup -1} and 4.36(0.46)x10{sup -9} cm{sup 3} s{sup -1}, respectively. The measured values are of the same order as the Langevin rate coefficient.

  9. Linear Collider Physics Resource Book Snowmass 2001

    SciTech Connect

    Ronan , M.T.

    2001-06-01

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide. This last point merits further emphasis. If a new accelerator could be designed and

  10. Jefferson Lab - Technology Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Welcome to Technology Transfer What is Technology Transfer at Jefferson Lab? Technology transfer and technology partnering are significant mechanisms for DOE laboratories and facilities to engage non-Federal entities to advance technology development and commercialization. Fundamental and applied research at the DOE laboratories have been conduits for technology transfer, collaborating with university and industry colleagues to develop and commercialize products and processes for commercial use.

  11. NETL: Tech Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Licensing & Technology Transfer Technology transfer is the process of transferring new technologies from the laboratory to the marketplace, transforming research into new products and companies so inventions benefit the greatest number of people as quickly and efficiently as possible. At NETL, researchers work every day to develop technology solutions to difficult problems. NETL Technology Transfer works with entrepreneurs, companies, universities and the public sector to move federally

  12. Technology Transfer Partnership Ombuds

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Tech Transfer Ombuds Technology Transfer Partnership Ombuds The mission of the Ombuds Office is to enhance communication and mitigate conflict at the Laboratory. Contact (505) 665-2837 Email Anonymous Helpline (505) 667-9370 Technology transfer dispute resolution The Ombuds Program offers dispute resolution assistance to the Laboratory's external stakeholders in areas of technology transfer and other community-based affairs that is consistent with Ombuds Standards of practice. Scope To serve as

  13. Energy transfer models in nitrogen plasmas: Analysis of N{sub 2}(X{sup 1}Σ{sup +}{sub g})–N({sup 4}S{sub u})–e{sup −} interaction

    SciTech Connect

    Heritier, K. L.; Panesi, M.; Jaffe, R. L.; Laporta, V.

    2014-11-14

    The relaxation of N{sub 2}(X{sup 1}Σ{sup +}{sub g}) molecules in a background gas composed of N({sup 4}S{sub u}) atoms and free electrons is studied by using an ideal isochoric and isothermic chemical reactor. A rovibrational state-to-state model is developed to study energy transfer process induced by free electron and atomic collisions. The required cross sections and the corresponding rate coefficients are taken from two well-known kinetic databases: NASA Ames kinetic mechanism for the description of the N{sub 2}(X{sup 1}Σ{sup +}{sub g})–N({sup 4}S{sub u}) processes and the Phys4Entry database for the electron driven processes, N{sub 2}(X{sup 1}Σ{sup +}{sub g})–e{sup −}. The evolution of the population densities of each individual rovibrational level is explicitly determined via the numerical solution of the master equation for temperatures ranging from 10000 to 30 000 K. It was found that the distribution of the rovibrational energy levels of N{sub 2}(X{sup 1}Σ{sup +}{sub g}) is strongly influenced by the electron driven collisional processes, which promote the excitation of the low lying vibrational levels. The macroscopic vibrational energy relaxation is governed by the molecule-atom collisions, when free electrons, initially cold are relaxing to the final heat-bath temperature. Thus, the main role of the free electrons is to ensure the equilibration of vibrational and free electron excitation, thus validating the existence of the local equilibrium T{sup V}–T{sup e}. However, if electrons and heavy particles are assumed to be in equilibrium at the heat bath temperature, electron driven processes dominate the vibrational relaxation. Finally, we have assessed the validity of the Landau-Teller model for the description of the inelastic energy transfer between molecules and free electrons. In the case of free-electron temperatures lower than 10 000 K, Landau-Teller relaxation model gives an accurate description of the vibrational relaxation

  14. Renewable Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    offers developments in science and technology, and technology transfer on their site. DOE Green Energy Access to publications on thousands of DOE-sponsored R&D projects about...

  15. Application of a three-dimensional model for a study of the energy transfer of a high-pressure mercury horizontal lamp

    SciTech Connect

    Ben Hamida, M. B.; Charrada, K.

    2012-06-15

    This paper is devoted to study the dynamics of a discharge lamp with high intensity in a horizontal position. As an example of application, we chose the high-pressure mercury lamp. For this, we realized a three-dimensional model, a stable and powered DC. After the validation of this model, we used it to reproduce the influence of some parameters that have appeared on major transport phenomena of mass and energy in studying the lamp operating in a horizontal position. Indeed, the mass of mercury and the electric current are modified and the effect of convective transport is studied.

  16. JLab Supports International Linear Collider Cavity Development Work |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jefferson Lab Supports International Linear Collider Cavity Development Work JLab Supports International Linear Collider Cavity Development Work NEWPORT NEWS, Va. Feb. 12, 2008 - It's not often that major-league baseball and nuclear physics get to share the limelight, but that's what's happening at the Department of Energy's Jefferson Lab. The baseball connection involves a nine-cell niobium cavity developed by KEK accelerator scientists in Japan as one of several designs being tested for

  17. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    system with consevative forces. 2. Identify relationships between the following variables: http:energy.goveereeducationdownloadsenergy-transfer Download Summer Camp...

  18. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    system with consevative forces. 2. Identify relationships between the following variables: http:energy.goveereeducationdownloadsenergy-transfer Download Transportation...

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    system with consevative forces. 2. Identify relationships between the following variables: http:energy.goveereeducationdownloadsenergy-transfer Current search Search...

  20. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    system with consevative forces. 2. Identify relationships between the following variables: http:energy.goveereeducationdownloadsenergy-transfer Download Watt Does It...

  1. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    system with consevative forces. 2. Identify relationships between the following variables: http:energy.goveereeducationdownloadsenergy-transfer Download The BEAM...

  2. FLC awards researchers for transfer of engine simulation tech | Argonne

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    National Laboratory FLC awards researchers for transfer of engine simulation tech By Greg Cunningham * February 9, 2015 Tweet EmailPrint The Federal Laboratory Consortium for Technology Transfer has honored a group of researchers at the Department of Energy's Argonne National Laboratory for working with industry to use supercomputers to conduct engine simulations. The Award for Excellence in Technology Transfer singled out a group of researchers who transferred to private industry a two-part

  3. DOE General Counsel for Technology Transfer and Intellectual Property |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy General Counsel for Technology Transfer and Intellectual Property DOE General Counsel for Technology Transfer and Intellectual Property The Office of the Assistant General Counsel for Technology Transfer and Intellectual Property is responsible for providing legal counsel to Departmental elements on all matters relating to intellectual property (including patents, trademarks, copyrights, and technical data) and transfer of those rights from Department laboratories to the

  4. DEVELOPMENT OF A MULTI-LOOP FLOW AND HEAT TRANSFER FACILITY FOR ADVANCED NUCLEAR REACTOR THERMAL HYDRAULIC AND HYBRID ENERGY SYSTEM STUDIES

    SciTech Connect

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-09-01

    A new high-temperature multi-fluid, multi-loop test facility for advanced nuclear applications is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Molten salts have been identified as excellent candidate heat transport fluids for primary or secondary coolant loops, supporting advanced high temperature and small modular reactors (SMRs). Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed. A preliminary design configuration will be presented, with the required characteristics of the various components. The loop will utilize advanced high-temperature compact printed-circuit heat exchangers (PCHEs) operating at prototypic intermediate heat exchanger (IHX) conditions. The initial configuration will include a high-temperature (750°C), high-pressure (7 MPa) helium loop thermally integrated with a molten fluoride salt (KF-ZrF4) flow loop operating at low pressure (0.2 MPa) at a temperature of ~450°C. Experiment design challenges include identification of suitable materials and components that will withstand the required loop operating conditions. Corrosion and high temperature creep behavior are major considerations. The facility will include a thermal energy storage capability designed to support scaled process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will also provide important data for code ve

  5. Heat transfer system

    DOEpatents

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  6. Heat transfer system

    DOEpatents

    McGuire, Joseph C.

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  7. Energy

    Annual Energy Outlook

    M onthly Energy Re< view Ila A a m 0 II 8 IIIW *g U In this issue: New data on nuclear electricity in Eastern Europe (Table 10.4) 9'Ij a - Ordering Information This publication...

  8. Belos Block Linear Solvers Package

    Energy Science and Technology Software Center

    2004-03-01

    Belos is an extensible and interoperable framework for large-scale, iterative methods for solving systems of linear equations with multiple right-hand sides. The motivation for this framework is to provide a generic interface to a collection of algorithms for solving large-scale linear systems. Belos is interoperable because both the matrix and vectors are considered to be opaque objects--only knowledge of the matrix and vectors via elementary operations is necessary. An implementation of Balos is accomplished viamore » the use of interfaces. One of the goals of Belos is to allow the user flexibility in specifying the data representation for the matrix and vectors and so leverage any existing software investment. The algorithms that will be included in package are Krylov-based linear solvers, like Block GMRES (Generalized Minimal RESidual) and Block CG (Conjugate-Gradient).« less

  9. LINEAR COUNT-RATE METER

    DOEpatents

    Henry, J.J.

    1961-09-01

    A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.

  10. An efficient computational scheme for electronic excitation spectra of molecules in solution using the symmetry-adapted cluster–configuration interaction method: The accuracy of excitation energies and intuitive charge-transfer indices

    SciTech Connect

    Fukuda, Ryoichi Ehara, Masahiro

    2014-10-21

    Solvent effects on electronic excitation spectra are considerable in many situations; therefore, we propose an efficient and reliable computational scheme that is based on the symmetry-adapted cluster-configuration interaction (SAC-CI) method and the polarizable continuum model (PCM) for describing electronic excitations in solution. The new scheme combines the recently proposed first-order PCM SAC-CI method with the PTE (perturbation theory at the energy level) PCM SAC scheme. This is essentially equivalent to the usual SAC and SAC-CI computations with using the PCM Hartree-Fock orbital and integrals, except for the additional correction terms that represent solute-solvent interactions. The test calculations demonstrate that the present method is a very good approximation of the more costly iterative PCM SAC-CI method for excitation energies of closed-shell molecules in their equilibrium geometry. This method provides very accurate values of electric dipole moments but is insufficient for describing the charge-transfer (CT) indices in polar solvent. The present method accurately reproduces the absorption spectra and their solvatochromism of push-pull type 2,2{sup ′}-bithiophene molecules. Significant solvent and substituent effects on these molecules are intuitively visualized using the CT indices. The present method is the simplest and theoretically consistent extension of SAC-CI method for including PCM environment, and therefore, it is useful for theoretical and computational spectroscopy.

  11. NREL Solar Cell Wins Federal Technology Transfer Prize - News Releases |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL Solar Cell Wins Federal Technology Transfer Prize May 7, 2009 A new class of ultra-light, high-efficiency solar cells developed by the U.S. Department of Energy's National Renewable Energy Laboratory has been awarded a national prize for the commercialization of federally funded research. The Inverted Metamorphic Multijunction (IMM) Solar Cell was named a winner of the 2009 Award for Excellence in Technology Transfer by the Federal Laboratory Consortium for Technology Transfer. The

  12. Linear Corrugating - Final Technical Report

    SciTech Connect

    Lloyd Chapman

    2000-05-23

    Linear Corrugating is a process for the manufacture of corrugated containers in which the flutes of the corrugated medium are oriented in the Machine Direction (MD) of the several layers of paper used. Conversely, in the conventional corrugating process the flutes are oriented at right angles to the MD in the Cross Machine Direction (CD). Paper is stronger in MD than in CD. Therefore, boxes made using the Linear Corrugating process are significantly stronger-in the prime strength criteria, Box Compression Test (BCT) than boxes made conventionally. This means that using Linear Corrugating boxes can be manufactured to BCT equaling conventional boxes but containing 30% less fiber. The corrugated container industry is a large part of the U.S. economy, producing over 40 million tons annually. For such a large industry, the potential savings of Linear Corrugating are enormous. The grant for this project covered three phases in the development of the Linear Corrugating process: (1) Production and evaluation of corrugated boxes on commercial equipment to verify that boxes so manufactured would have enhanced BCT as proposed in the application; (2) Production and evaluation of corrugated boxes made on laboratory equipment using combined board from (1) above but having dual manufactures joints (glue joints). This box manufacturing method (Dual Joint) is proposed to overcome box perimeter limitations of the Linear Corrugating process; (3) Design, Construction, Operation and Evaluation of an engineering prototype machine to form flutes in corrugating medium in the MD of the paper. This operation is the central requirement of the Linear Corrugating process. Items I and II were successfully completed, showing predicted BCT increases from the Linear Corrugated boxes and significant strength improvement in the Dual Joint boxes. The Former was constructed and operated successfully using kraft linerboard as the forming medium. It was found that tensile strength and stretch

  13. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    points related to Essential Principle 4: "Various sources of energy can be used to power human activities, and often this energy must be transferred from source to...

  14. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    points related to Essential Principle 4: "Various sources of energy can be used to power human activities, and often this energy must be transferred from source to destination."...

  15. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    fuel resources dwindle. http:energy.goveereeducationdownloadsenergy-todays-global-society Download Energy Transfer 1. Identify a closed system with consevative forces. 2....

  16. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    getting-energized Download Energy Transfer 1. Identify a closed system with consevative forces. 2. Identify relationships between the following variables: http:energy.goveere...

  17. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    following variables: http:energy.goveereeducationdownloadsenergy-transfer Download Summer Camp 2050 Students will work in small groups to apply knowledge of renewable energy...

  18. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to their home and school communities. http:energy.goveereeducationdownloadsenergy-management Download Energy Transfer 1. Identify a closed system with consevative forces....

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to their home and school communities. http:energy.goveereeducationdownloadsenergy-management Download Energy Transfer 1. Identify a closed system with consevative...

  20. Working with SRNL - Technology Transfer - Ombudsman

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    5/08/2015 SEARCH SRNL GO Tech Briefs Contacts Ombudsman Tech Home SRNL Home Working with SRNL - Technology Transfer Ombudsman SRS Entry Sign The Department of Energy and its management and operating contractors engaging in technology partnership activities share a mutual objective to ensure complete fairness in the transfer of federally funded technologies into the marketplace for the benefit of the U.S. economy. This includes an interest in open lines of communication and the early

  1. CONDUCTION IN LOW MACH NUMBER FLOWS. I. LINEAR AND WEAKLY NONLINEAR REGIMES

    SciTech Connect

    Lecoanet, Daniel; Brown, Benjamin P.; Zweibel, Ellen G.; Burns, Keaton J.; Oishi, Jeffrey S.; Vasil, Geoffrey M.

    2014-12-20

    Thermal conduction is an important energy transfer and damping mechanism in astrophysical flows. Fourier's law, in which the heat flux is proportional to the negative temperature gradient, leading to temperature diffusion, is a well-known empirical model of thermal conduction. However, entropy diffusion has emerged as an alternative thermal conduction model, despite not ensuring the monotonicity of entropy. This paper investigates the differences between temperature and entropy diffusion for both linear internal gravity waves and weakly nonlinear convection. In addition to simulating the two thermal conduction models with the fully compressible Navier-Stokes equations, we also study their effects in the reduced ''soundproof'' anelastic and pseudoincompressible (PI) equations. We find that in the linear and weakly nonlinear regime, temperature and entropy diffusion give quantitatively similar results, although there are some larger errors in the PI equations with temperature diffusion due to inaccuracies in the equation of state. Extrapolating our weakly nonlinear results, we speculate that differences between temperature and entropy diffusion might become more important for strongly turbulent convection.

  2. Linear electric field mass spectrometry

    DOEpatents

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  3. Linear electric field mass spectrometry

    DOEpatents

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  4. NREL: Technology Transfer - Commercialization Programs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    303-275-3051. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements...

  5. Heat transfer panel and method

    SciTech Connect

    Clark, P.C.

    1984-09-25

    A durable, low-cost, heat transfer panel of the type typically employed as a solar energy collector is disclosed. The panel includes a flow channel defining structure, preferably formed as a corrugated sheet and a superimposed flexible membrane, to which manifolds or headers are secured. The manifolds have mating corrugated surfaces that are interengaged with the corrugations on the panel sheet to provide transverse rigidity to the overall panel structure as well as distribution of heat transfer fluid to and from the panel. Modified forms of the panel are disclosed in which the panel includes a selective absorber and a venting structure. A method for blow-molding the manifold into mating interengagement with the corrugated support sheet of the panel is also disclosed.

  6. Fuel transfer system

    DOEpatents

    Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  7. Fuel transfer system

    DOEpatents

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  8. International Linear Collider Technical Design Report - Volume...

    Office of Scientific and Technical Information (OSTI)

    International Linear Collider Technical Design Report - Volume 2: Physics Citation Details In-Document Search Title: International Linear Collider Technical Design Report - Volume ...

  9. Material Transfer Agreements

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Material Transfer Agreements Material Transfer Agreements Enables the transfer of tangible consumable research materials between two organizations, when the recipient intends to use the material for research purposes Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Overview The ability to exchange materials freely and without delay is an important part of a healthy scientific laboratory. Los Alamos National

  10. Technology Transfer - JCAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PAZ0004_v2.jpg Technology Transfer Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers

  11. Bandwidth and Transfer Activity

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Activity Bandwidth and Transfer Activity Data Rate vs. File Size The graph below shows the bandwidth for individual file transfers for one day. The graph also gives a quick overview of the traffic and maximum bandwidth and file size for a given day. Historical yearly peak days Daily Rate vs. Size Aggregate Transfer Bandwidth This graph shows the aggregate transfer rate to the storage systems as a function of time of day. The red line is the peak bandwidth observed within each one minute

  12. NREL: Technology Transfer - Contacts

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    you may have about NREL's technology transfer opportunities. Partnering with NREL Anne Miller, 303-384-7353 Licensing NREL Technologies Eric Payne, 303-275-3166 Printable Version...

  13. Facility Survey & Transfer

    Energy.gov [DOE]

    As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

  14. International linear collider reference design report

    SciTech Connect

    Aarons, G.

    2007-06-22

    The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.

  15. Proton-Coupled Electron Transfer in Molecular Electrocatalysis: Theoretical Methods and Design Principles

    SciTech Connect

    Solis, Brian H.; Hammes-Schiffer, Sharon

    2014-07-07

    Molecular electrocatalysts play an essential role in a wide range of energy conversion processes. The objective of electrocatalyst design is to maximize the turnover frequency and minimize the overpotential for the overall catalytic cycle. Typically the catalytic cycle is dominated by key proton-coupled electron transfer (PCET) processes comprised of sequential or concerted electron transfer and proton transfer steps. A variety of theoretical methods have been developed to investigate the mechanisms, thermodynamics, and kinetics of PCET processes in electrocatalytic cycles. Electronic structure methods can be used to calculate the reduction potentials and pKa’s and to generate thermodynamic schemes, free energy reaction pathways, and Pourbaix diagrams, which indicate the most stable species at each pH and potential. These types of calculations have assisted in identifying the thermodynamically favorable mechanisms under specified experimental conditions, such as acid strength and overpotential. Such calculations have also revealed linear correlations among the thermodynamic properties, which can be used to predict the impact of modifying the ligand, substituents, or metal center. The role of non-innocent ligands, namely ligand protonation or reduction, has also been examined theoretically. In addition, the rate constants for electron and proton transfer reactions, as well as concerted PCET reactions, have been calculated to investigate the kinetics of molecular electrocatalysts. The concerted PCET mechanism is thought to lower the overpotential required for catalysis by avoiding high-energy intermediates. Rate constant calculations have revealed that the concerted mechanism involving intramolecular proton transfer will be favored by designing more flexible ligands that facilitate the proton donor-acceptor motion while also maintaining a sufficiently short equilibrium proton donor-acceptor distance. Overall, theoretical methods have assisted in the interpretation

  16. The Secretary of Energy

    Office of Legacy Management (LM)

    Assuming that this transfer becomes law, but without prejudging the President' s decision, ... Should this provision become law, the Department of Energy' s lands, property access ...

  17. The Secretary of Energy

    Office of Legacy Management (LM)

    Assuming that this transfer becomes law, but without prejudging the President' s decision, ... Should this provision become law, the Department of Energy' s lands, property ' access ...

  18. The Secretary of Energy'

    Office of Legacy Management (LM)

    Assuming that this transfer becomes law, but without prejudging the President' s decision, ... Should this provision become law, the Department of Energy' s @rids, property access ...

  19. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  20. Segmented rail linear induction motor

    DOEpatents

    Cowan, M. Jr.; Marder, B.M.

    1996-09-03

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

  1. Segmented rail linear induction motor

    DOEpatents

    Cowan, Jr., Maynard; Marder, Barry M.

    1996-01-01

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

  2. Precision linear ramp function generator

    DOEpatents

    Jatko, W. Bruce (Knoxville, TN); McNeilly, David R. (Maryville, TN); Thacker, Louis H. (Knoxville, TN)

    1986-01-01

    A ramp function generator is provided which produces a precise linear ramp unction which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  3. Precision linear ramp function generator

    DOEpatents

    Jatko, W.B.; McNeilly, D.R.; Thacker, L.H.

    1984-08-01

    A ramp function generator is provided which produces a precise linear ramp function which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  4. Linearity Testing of Photovoltaic Cells

    SciTech Connect

    Emery, K.; Winter, S.; Pinegar, S.; Nalley, D.

    2006-01-01

    Photovoltaic devices are rated in terms of their peak power with respect to a specific spectrum, total irradiance, and temperature. To rate photovoltaic devices, a reference detector is required whose response is linear with total irradiance. This paper describes a procedure to determine the linearity of the short-circuit current (I{sub sc}) versus the total irradiance (E{sub tot}) by illuminating a reference cell with two lamps. A device is linear if the current measured with both lamps illuminating the cell is the same as the sum of the currents with each lamp illuminating the cell. The two-lamp method is insensitive to the light spectra or spatial nonuniformity changing with irradiance. The two-lamp method is rapid, easy to implement, and does not require operator intervention to change the irradiances. The presence of room light only limits the lowest irradiance that can be evaluated. Unlike other methods, the two-lamp method does not allow the current to be corrected for nonlinear effects.

  5. Heat transfer assembly for a fluorescent lamp and fixture

    DOEpatents

    Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

    1992-12-29

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

  6. Heat transfer assembly for a fluorescent lamp and fixture

    DOEpatents

    Siminovitch, Michael J.; Rubenstein, Francis M.; Whitman, Richard E.

    1992-01-01

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.

  7. Energy and charge transfers between (Bu{sub 4}N){sub 2}(Ru)(dcbpyH){sub 2}(NCS){sub 2} (N719) and ZnO thin films

    SciTech Connect

    Ni Manman; Cheng Qiang; Zhang, W. F.

    2010-03-15

    ZnO thin films and (Bu{sub 4}N){sub 2}(Ru)(dcbpyH){sub 2}(NCS){sub 2} (called N719) sensitized ZnO thin films are grown on fluorine-doped tin oxide (FTO) conducting glass substrates using laser molecular beam epitaxy. Ultraviolet-visible absorption, photoluminescence (PL), surface photovoltage spectroscopy, and Raman scattering are employed to probe into the transition process of photogenerated charges and the interaction between ZnO and N719. The experimental results indicate that there is a significant electronic interaction between N719 and ZnO through chemiadsorption. The interaction greatly enhances the photogenerated charge separation and thus the photovoltaic response of the ZnO film but remarkedly weakens its radiative recombination, i.e., PL, implying strong energy and charge transfer occurring between N719 and ZnO. In addition, a new PL peak observed at about 720 nm in N719 sensitized ZnO/FTO is attributed to the electron-hole recombination of N719.

  8. Transfer Activity Last 8 Days

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Activity Last 8 Days Transfer Activity Last 8 Days These graphs show the transfer activity statistics for the past eight days with the most recent day shown first. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Transfers started/in progress (Both Systems) Transfers started/in progress (Both Systems) Transfers started/in progress (Both Systems) Transfers started/in progress (Both Systems) Transfers started/in progress (Both Systems)

  9. Linear relationship between water wetting behavior and microscopic interactions of super-hydrophilic surfaces

    SciTech Connect

    Liu, Jian; Guo, Pan; University of Chinese Academy of Sciences, Beijing 100049 ; Wang, Chunlei; Shi, Guosheng Fang, Haiping

    2013-12-21

    Using molecular dynamics simulations, we show a fine linear relationship between surface energies and microscopic Lennard-Jones parameters of super-hydrophilic surfaces. The linear slope of the super-hydrophilic surfaces is consistent with the linear slope of the super-hydrophobic, hydrophobic, and hydrophilic surfaces where stable water droplets can stand, indicating that there is a universal linear behavior of the surface energies with the water-surface van der Waals interaction that extends from the super-hydrophobic to super-hydrophilic surfaces. Moreover, we find that the linear relationship exists for various substrate types, and the linear slopes of these different types of substrates are dependent on the surface atom density, i.e., higher surface atom densities correspond to larger linear slopes. These results enrich our understanding of water behavior on solid surfaces, especially the water wetting behaviors on uncharged super-hydrophilic metal surfaces.

  10. Terahertz-driven linear electron acceleration

    SciTech Connect

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.

  11. Terahertz-driven linear electron acceleration

    DOE PAGES [OSTI]

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton acceleratorsmore » with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  12. Bulk Data Movement for Climate Dataset: Efficient Data Transfer Management with Dynamic Transfer Adjustment

    SciTech Connect

    Sim, Alexander; Balman, Mehmet; Williams, Dean N.; Shoshani, Arie; Natarajan, Vijaya

    2010-07-16

    Many scientific applications and experiments, such as high energy and nuclear physics, astrophysics, climate observation and modeling, combustion, nano-scale material sciences, and computational biology, generate extreme volumes of data with a large number of files. These data sources are distributed among national and international data repositories, and are shared by large numbers of geographically distributed scientists. A large portion of data is frequently accessed, and a large volume of data is moved from one place to another for analysis and storage. One challenging issue in such efforts is the limited network capacity for moving large datasets to explore and manage. The Bulk Data Mover (BDM), a data transfer management tool in the Earth System Grid (ESG) community, has been managing the massive dataset transfers efficiently with the pre-configured transfer properties in the environment where the network bandwidth is limited. Dynamic transfer adjustment was studied to enhance the BDM to handle significant end-to-end performance changes in the dynamic network environment as well as to control the data transfers for the desired transfer performance. We describe the results from the BDM transfer management for the climate datasets. We also describe the transfer estimation model and results from the dynamic transfer adjustment.

  13. SLAC linear collider: the machine, the physics, and the future

    SciTech Connect

    Richter, B.

    1981-11-01

    The SLAC linear collider, in which beams of electrons and positrons are accelerated simultaneously, is described. Specifications of the proposed system are given, with calculated preditions of performance. New areas of research made possible by energies in the TeV range are discussed. (GHT)

  14. Technology transfer 1994

    SciTech Connect

    Not Available

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  15. Nonferromagnetic linear variable differential transformer

    DOEpatents

    Ellis, James F.; Walstrom, Peter L.

    1977-06-14

    A nonferromagnetic linear variable differential transformer for accurately measuring mechanical displacements in the presence of high magnetic fields is provided. The device utilizes a movable primary coil inside a fixed secondary coil that consists of two series-opposed windings. Operation is such that the secondary output voltage is maintained in phase (depending on polarity) with the primary voltage. The transducer is well-suited to long cable runs and is useful for measuring small displacements in the presence of high or alternating magnetic fields.

  16. Probes labelled with energy transfer coupled dyes

    DOEpatents

    Mathies, R.A.; Glazer, A.; Ju, J.

    1997-11-18

    Compositions are provided comprising sets of fluorescent labels carrying pairs of donor and acceptor dye molecules, designed for efficient excitation of the donors at a single wavelength and emission from the acceptor in each of the pairs at different wavelengths. The different molecules having different donor-acceptor pairs can be modified to have substantially the same mobility under separation conditions, by varying the distance between the donor and acceptor in a given pair. Particularly, the fluorescent compositions find use as labels in sequencing nucleic acids. 7 figs.

  17. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer NETL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    as part of its spinout MG Fuels' integrated biomass-to-biofuel conversion process. ... site, leveraging an ultra-high-efficiency ceramic engine being developed by CogniTek. ...

  18. Displacement Transfer Zone | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    H. Hinz,Mark F. Coolbaugh,Patricia H. Cashman,Christopher Kratt,Gregory Dering,Joel Edwards,Brett Mayhew,Holly McLachlan. 2011. Assessment of Favorable Structural Settings of...

  19. Nanofluids for Heat Transfer - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Note that optimal particle size (considering thermal conductivity, flow resistance, corrosiveness and erosiveness, ... Petroleum refineries and power generation Electrical ...

  20. TRIDEC Land TRIDEC Land Transfer REQUEST Transfer REQUEST

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Area TRIDEC Land TRIDEC Land Transfer REQUEST Transfer REQUEST 300 Acres 300 Acres Additional Lands Additional Lands Identified for Identified for EA Analysis EA Analysis 2,772...

  1. Coherent rho 0 photoproduction in bulk matter at high energies

    SciTech Connect

    Couderc, Elsa; Klein, Spencer

    2009-01-09

    The momentum transfer {Delta}k required for a photon to scatter from a target and emerge as a {rho}{sup 0} decreases as the photon energy k rises. For k > 3 x 10{sup 14} eV, {Delta}k is small enough that the interaction cannot be localized to a single nucleus. At still higher energies, photons may coherently scatter elastically from bulk matter and emerge as a {rho}{sup 0}, in a manner akin to kaon regeneration. Constructive interference from the different nuclei coherently raises the cross section and the interaction probability rises linearly with energy. At energies above 10{sup 23} eV, coherent conversion is the dominant process; photons interact predominantly as {rho}{sup 0}. We compute the coherent scattering probabilities in slabs of lead, water and rock, and discuss the implications of the increased hadronic interaction probabilities for photons on ultra-high energy shower development.

  2. NREL: Technology Transfer - Webmaster

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Webmaster To report any problems on or ask a question about the NREL Technology Transfer Web site, you may contact the Webmaster using the online form below. If you have a question...

  3. Technology Transfer Ombudsman Program

    Energy.gov [DOE]

    The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000.  Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national...

  4. Data Transfer Nodes

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to data transfer of some form or fashion. Examples of intended usage would be running python scripts to download data from a remote source, running client software to load data...

  5. Power Saving Optimization for Linear Collider Interaction Region Parameters

    SciTech Connect

    Seryi, Andrei; /SLAC

    2009-10-30

    Optimization of Interaction Region parameters of a TeV energy scale linear collider has to take into account constraints defined by phenomena such as beam-beam focusing forces, beamstrahlung radiation, and hour-glass effect. With those constraints, achieving a desired luminosity of about 2E34 would require use of e{sup +}e{sup -} beams with about 10 MW average power. Application of the 'travelling focus' regime may allow the required beam power to be reduced by at least a factor of two, helping reduce the cost of the collider, while keeping the beamstrahlung energy loss reasonably low. The technique is illustrated for the 500 GeV CM parameters of the International Linear Collider. This technique may also in principle allow recycling the e{sup +}e{sup -} beams and/or recuperation of their energy.

  6. Data Transfer Nodes

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Data Transfer Nodes HPSS Data Archive I/O Resources for Scientific Applications at NERSC Optimizing I/O performance on the Lustre file system I/O Formats Science Databases Sharing Data Transferring Data Unix Groups at NERSC Unix File Permissions Application Performance Data & Analytics Job Logs & Statistics Training & Tutorials Software Policies User Surveys NERSC Users Group Help Staff Blogs Request Repository Mailing List Home » For Users » Storage & File Systems » Data

  7. Proton Transfer in Nucleobases is Mediated by Water

    SciTech Connect

    Khistyaev, Kirill; Golan, Amir; Bravaya, Ksenia B.; Orms, Natalie; Krylov, Anna I.; Ahmed, Musahid

    2013-08-08

    Water plays a central role in chemistry and biology by mediating the interactions between molecules, altering energy levels of solvated species, modifying potential energy proles along reaction coordinates, and facilitating ecient proton transport through ion channels and interfaces. This study investigates proton transfer in a model system comprising dry and microhydrated clusters of nucleobases. With mass spectrometry and tunable vacuum ultraviolet synchrotron radiation, we show that water shuts down ionization-induced proton transfer between nucleobases, which is very ecient in dry clusters. Instead, a new pathway opens up in which protonated nucleo bases are generated by proton transfer from the ionized water molecule and elimination of a hydroxyl radical. Electronic structure calculations reveal that the shape of the potential energy prole along the proton transfer coordinate depends strongly on the character of the molecular orbital from which the electron is removed, i.e., the proton transfer from water to nucleobases is barrierless when an ionized state localized on water is accessed. The computed energetics of proton transfer is in excellent agreement with the experimental appearance energies. Possible adiabatic passage on the ground electronic state of the ionized system, while energetically accessible at lower energies, is not ecient. Thus, proton transfer is controlled electronically, by the character of the ionized state, rather than statistically, by simple energy considerations.

  8. Small Business Innovation Research and Small Business Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Programs: Wind | Department of Energy Small Business Innovation Research and Small Business Technology Transfer Programs: Wind Small Business Innovation Research and Small Business Technology Transfer Programs: Wind Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) are U.S. Government programs in which federal agencies with large research and development (R&D) budgets set aside a small fraction of their funding for competitions among small businesses

  9. Characterization and Development of Advanced Heat Transfer Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Characterization and Development of Advanced Heat Transfer Technologies Characterization and Development of Advanced Heat Transfer Technologies 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape_11_kelly.pdf (1.49 MB) More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies Advanced Power Electronics and Electric Machines Air

  10. DOE Report on Technology Transfer and Related Technology Partnering Activities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2014 Report to Congress June 2016 United States Department of Energy Washington, DC 20585 Message from the Technology Transfer Coordinator and Director, Office of Technology Transitions The Report on Technology Transfer and Related Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2014 ("Report") is prepared in accordance with the

  11. Idaho Workers Complete Last of Transuranic Waste Transfers Funded by

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act | Department of Energy Workers Complete Last of Transuranic Waste Transfers Funded by Recovery Act Idaho Workers Complete Last of Transuranic Waste Transfers Funded by Recovery Act American Recovery and Reinvestment Act workers successfully transferred 130 containers of remote-handled transuranic waste &ndash; each weighing up to 15 tons &ndash; to a facility for repackaging and shipment to a permanent disposal location. As part of a project funded by $90 million from

  12. Contacts for the Assistant General Counsel for Technology Transfer and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Procurement | Department of Energy Technology Transfer and Procurement Contacts for the Assistant General Counsel for Technology Transfer and Procurement Subject Matter/Functional Area Lead Backup Technology Transfer John T. Lucas 202-586-2939 Linda Field 202-586-3440 IP Policy John T. Lucas 202-586-2939 Linda Field 202-586-3440 Litigation Administrative Claims Copyrights/Software Nathaniel Sloan 202-586-4792 Marianne Lynch 202-586-3815 Acquisition/Assistance IP Rights International

  13. Technology Transfer | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Transfer Laboratory Policy (LP) LP Home About Laboratory Appraisal Process Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202) 586-3119 More Information » Technology Transfer Print Text Size:

  14. Investigation of Charge Transfer Mechanisms on Redox Active Polymers Using

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    RDE and SECM - Joint Center for Energy Storage Research November 9, 2015, Research Highlights Investigation of Charge Transfer Mechanisms on Redox Active Polymers Using RDE and SECM Generalized schematic explaining three potential chemical steps that precede electron transfer for a RAP. RDE and SECM experiments were used to elucidate an electrochemical mechanism and the kinetics of electron transfer for RAPs. Scientific Achievement This study is a first step to evaluate rate determining

  15. Quantum tunneling resonant electron transfer process in Lorentzian plasmas

    SciTech Connect

    Hong, Woo-Pyo; Jung, Young-Dae

    2014-08-15

    The quantum tunneling resonant electron transfer process between a positive ion and a neutral atom collision is investigated in nonthermal generalized Lorentzian plasmas. The result shows that the nonthermal effect enhances the resonant electron transfer cross section in Lorentzian plasmas. It is found that the nonthermal effect on the classical resonant electron transfer cross section is more significant than that on the quantum tunneling resonant charge transfer cross section. It is shown that the nonthermal effect on the resonant electron transfer cross section decreases with an increase of the Debye length. In addition, the nonthermal effect on the quantum tunneling resonant electron transfer cross section decreases with increasing collision energy. The variation of nonthermal and plasma shielding effects on the quantum tunneling resonant electron transfer process is also discussed.

  16. Other Federal Agency Small Business Innovation Research and Small Business Technology Transfer Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the U.S. Department of Energy and the Office of Energy Efficiency and Renewable Energy Small Business and Innovation Research/Small Business Technology Transfer programs, other federal agencies also provide funding through their own programs.

  17. Energy Literacy: Essential Principle #4 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Energy Literacy: Essential Principle #4 Addthis Essential Principle #4 - Various sources of energy can be used to power human activities, and often this energy must be transferred from source to destination

  18. August 1, 1946: Atomic Energy Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    August 1, 1946: Atomic Energy Act August 1, 1946 President Truman signs the Atomic Energy Act of 1946. On January 1, 1947, all atomic energy activities are transferred to the newly ...

  19. Reticle stage based linear dosimeter

    DOEpatents

    Berger, Kurt W.

    2007-03-27

    A detector to measure EUV intensity employs a linear array of photodiodes. The detector is particularly suited for photolithography systems that includes: (i) a ringfield camera; (ii) a source of radiation; (iii) a condenser for processing radiation from the source of radiation to produce a ringfield illumination field for illuminating a mask; (iv) a reticle that is positioned at the ringfield camera's object plane and from which a reticle image in the form of an intensity profile is reflected into the entrance pupil of the ringfield camera, wherein the reticle moves in a direction that is transverse to the length of the ringfield illumination field that illuminates the reticle; (v) detector for measuring the entire intensity along the length of the ringfield illumination field that is projected onto the reticle; and (vi) a wafer onto which the reticle imaged is projected from the ringfield camera.

  20. Reticle stage based linear dosimeter

    DOEpatents

    Berger, Kurt W.

    2005-06-14

    A detector to measure EUV intensity employs a linear array of photodiodes. The detector is particularly suited for photolithography systems that includes: (i) a ringfield camera; (ii) a source of radiation; (iii) a condenser for processing radiation from the source of radiation to produce a ringfield illumination field for illuminating a mask; (iv) a reticle that is positioned at the ringfield camera's object plane and from which a reticle image in the form of an intensity profile is reflected into the entrance pupil of the ringfield camera, wherein the reticle moves in a direction that is transverse to the length of the ringfield illumination field that illuminates the reticle; (v) detector for measuring the entire intensity along the length of the ringfield illumination field that is projected onto the reticle; and (vi) a wafer onto which the reticle imaged is projected from the ringfield camera.

  1. PC Basic Linear Algebra Subroutines

    Energy Science and Technology Software Center

    1992-03-09

    PC-BLAS is a highly optimized version of the Basic Linear Algebra Subprograms (BLAS), a standardized set of thirty-eight routines that perform low-level operations on vectors of numbers in single and double-precision real and complex arithmetic. Routines are included to find the index of the largest component of a vector, apply a Givens or modified Givens rotation, multiply a vector by a constant, determine the Euclidean length, perform a dot product, swap and copy vectors, andmore » find the norm of a vector. The BLAS have been carefully written to minimize numerical problems such as loss of precision and underflow and are designed so that the computation is independent of the interface with the calling program. This independence is achieved through judicious use of Assembly language macros. Interfaces are provided for Lahey Fortran 77, Microsoft Fortran 77, and Ryan-McFarland IBM Professional Fortran.« less

  2. Transferring Data from Batch Jobs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transferring Data from Batch Jobs Transferring Data from Batch Jobs Examples Once you are set up for automatic authentication (see HPSS Passwords) you can access HPSS within batch...

  3. Ames Lab 101: Technology Transfer

    ScienceCinema

    Covey, Debra

    2012-08-29

    Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

  4. High Performance Preconditioners and Linear Solvers

    Energy Science and Technology Software Center

    2006-07-27

    Hypre is a software library focused on the solution of large, sparse linear systems of equations on massively parallel computers.

  5. Transfer-type products accompanying cold fusion reactions

    SciTech Connect

    Adamian, G.G.; Antonenko, N.V.

    2005-12-15

    Production of nuclei heavier than the target is treated for projectile-target combinations used in cold fusion reactions leading to superheavy nuclei. These products are related to transfer-type or to asymmetry-exit-channel quasifission reactions. The production of isotopes in the transfer-type reactions emitting of {alpha} particles with large energies is discussed.

  6. Numerical study of oscillatory flow and heat transfer in a loaded thermoacoustic stack

    SciTech Connect

    Worlikar, A.S.; Knio, O.M.

    1999-01-01

    A thermoacoustic refrigerator may be idealized as consisting of a straight resonance tube housing a stack of parallel plates and heat exchangers, and an acoustic source. Among the advantages of thermoacoustic refrigerators are the simplicity of their design and the fact that they naturally avoid the need for harmful refrigerants such as chlorofluorocarbons (CFCs). The operation of these devices is based on exploiting the well-known thermoacoustic effect to induce a temperature difference across the stack and to transport heat from one end of the plate to the other. Heat exchangers are then used to transfer energy from the thermoacoustic refrigerator to hot and cold reservoirs. A two-dimensional, low-Mach-number computational model is used to analyze the unsteady flow and temperature fields in the neighborhood of an idealized stack/heat exchanger configuration. The model relies on a vorticity-based formulation of the mass, momentum, and energy equations in the low-Mach-number, short-stack limit. The stack and heat exchangers are assumed to consist of flat plates of equal thickness. The heat exchanger plates are assumed isothermal and in perfect thermal contact with the stack plates. The simulations are used to study the effect of heat exchanger size and operating conditions on the heat transfer and stack performance. Computed results show that optimum stack performance is achieved when the length of the heat exchanger is nearly equal to the peak-to-peak particle displacement. Numerical estimates of the mean enthalpy flux within the channel are in good agreement with the predictions of linear theory. However, the results reveal that a portion of the heat exchangers is ineffective due to reverse heat transfer. Details of the energy flux density around the heat exchangers are visualized, and implications regarding heat exchanger design and model extension are discussed.

  7. Successful Oil and Gas Technology Transfer Program Extended to 2015

    Energy.gov [DOE]

    The Stripper Well Consortium - a program that has successfully provided and transferred technological advances to small, independent oil and gas operators over the past nine years - has been extended to 2015 by the U.S. Department of Energy.

  8. VOLUNTARY LEAVE TRANSFER PROGRAM

    Energy Saver

    Department of Energy Urban Electric Power Takes Energy Storage from Startup to Grid-Scale Urban Electric Power Takes Energy Storage from Startup to Grid-Scale June 25, 2013 - 12:42pm Addthis Learn how the CUNY Energy Institute is creating safe, low cost, rechargeable, long lifecycle batteries that could be used to store renewable energy. | Video courtesy of the Energy Department. Alexa McClanahan Communications Support Contractor to ARPA-E What are the key facts? The CUNY Energy Institute

  9. Text-Alternative Version: CALiPER Series 21 on LED Linear Lamps and Troffer

    Energy Saver

    Lighting | Department of Energy Information Resources » Videos » Text-Alternative Version: CALiPER Series 21 on LED Linear Lamps and Troffer Lighting Text-Alternative Version: CALiPER Series 21 on LED Linear Lamps and Troffer Lighting Following is a text version of a video about CALiPER Application Report Series 21 on LED Linear Lamps and Troffer Lighting. Tracy Beeson, Lighting Engineer, Pacific Northwest National Laboratory: Fluorescent troffers are widely used in office spaces, meeting

  10. Improving the bulk data transfer experience

    SciTech Connect

    Guok, Chin; Guok, Chin; Lee, Jason R.; Berket, Karlo

    2008-05-07

    Scientific computations and collaborations increasingly rely on the network to provide high-speed data transfer, dissemination of results, access to instruments, support for computational steering, etc. The Energy Sciences Network is establishing a science data network to provide user driven bandwidth allocation. In a shared network environment, some reservations may not be granted due to the lack of available bandwidth on any single path. In many cases, the available bandwidth across multiple paths would be sufficient to grant the reservation. In this paper we investigate how to utilize the available bandwidth across multiple paths in the case of bulk data transfer.

  11. Custody transfer measurements for LNG/LPG

    SciTech Connect

    Williams, R.A.

    1984-04-01

    The buying, selling, and transportation of Liquefied Natural Gas (LNG) and Liquefied Petroleum Gas (LPG) requires the use of sophisticated measurement systems for accurate determination of the total quantity and energy content for custody transfer reporting and safe cargo handling of these cryogenic products. These systems must meet strict safety standards for operation in a hazardous environment and, at the same time, provide accurate, reliable information for the storage, transfer, and data reporting required for both operational and financial accounting purposes. A brief discussion of LNG and LPG characteristics and detailed description of these special measurement techniques are given in this presentation.

  12. Wireless Power Transfer for Electric Vehicles

    SciTech Connect

    Scudiere, Matthew B; McKeever, John W

    2011-01-01

    As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.

  13. Concentrating solar power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    experimenting with molten nitrate salt because of its superior heat-transfer and energy-storage capabilities. The energy-storage capability, or thermal storage, allows the system...

  14. Overview of linear induction accelerators

    SciTech Connect

    Briggs, R.J.

    1988-07-15

    In this paper, we survey the US induction linac technology, emphasizing electron machines. We also give a simplified description of how induction machines couple energy to the electron beam to illustrate many general issues that designers of high-brightness and high-average-power induction linacs must consider. We give an example of the application of induction accelerator technology to the relativistic klystron, a power source for high-gradient accelerators. 8 figs., 1 tab.

  15. NREL Earns Federal Technology Transfer Accolades - News Releases | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Earns Federal Technology Transfer Accolades Technology to help bring low-cost flexible photovoltaics to market May 2, 2011 A technology from the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) for depositing crystalline silicon onto inexpensive substrate materials has been recognized with a 2011 Award for Excellence in Technology Transfer from the Federal Laboratory Consortium. The "Flexible Thin-Film Crystalline-Silicon Photovoltaics on RABiTS" project

  16. VOLUNTARY LEAVE TRANSFER PROGRAM

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    VOLUNTARY LEAVE TRANSFER PROGRAM (Eligible employees are listed at the end of this narrative) Under the Voluntary Leave Transfer Program you can apply, based on a medical emergency, to receive annual leave donated by other employees. A medical emergency is generally defined as a medical condition of the employee or family member that is likely to keep you (the employee) away from work and cause a loss of pay of at least 24 hours. You are required to submit an Office of Personnel Management (OPM)

  17. Transfer Activity Historical Yearly Peak

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Activity Historical Yearly Peak Transfer Activity Historical Yearly Peak The plots below show the yearly peak days from 2000 to the present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for the current year shows the data for the year-to-date peak. Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In

  18. Heat transfer fluids containing nanoparticles

    DOEpatents

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  19. DOE Publishes CALiPER Report on Linear (T8) LED Lamps in Recessed Troffers

    Energy.gov [DOE]

    The U.S. Department of Energy's CALiPER program has released Report 21.2, which is part of a series of investigations on linear LED lamps. Report 21.2 focuses on the performance of three linear (T8...

  20. PROJECT PROFILE: Hyperlight Energy (CSP: COLLECTS) | Department...

    Energy.gov [DOE] (indexed site)

    Hyperlight Energy will demonstrate, at large scale, the performance of its linear Fresnel reflector CSP collector, which captures the sun's energy with large mirrors that reflect ...

  1. Monte Carlo simulation methods in moment-based scale-bridging algorithms for thermal radiative-transfer problems

    SciTech Connect

    Densmore, J.D.; Park, H.; Wollaber, A.B.; Rauenzahn, R.M.; Knoll, D.A.

    2015-03-01

    We present a moment-based acceleration algorithm applied to Monte Carlo simulation of thermal radiative-transfer problems. Our acceleration algorithm employs a continuum system of moments to accelerate convergence of stiff absorption–emission physics. The combination of energy-conserving tallies and the use of an asymptotic approximation in optically thick regions remedy the difficulties of local energy conservation and mitigation of statistical noise in such regions. We demonstrate the efficiency and accuracy of the developed method. We also compare directly to the standard linearization-based method of Fleck and Cummings [1]. A factor of 40 reduction in total computational time is achieved with the new algorithm for an equivalent (or more accurate) solution as compared with the Fleck–Cummings algorithm.

  2. Atomic Energy Commission Takes Over Responsibility for all Atomic Energy

    National Nuclear Security Administration (NNSA)

    Programs | National Nuclear Security Administration | (NNSA) Takes Over Responsibility for all Atomic Energy Programs Atomic Energy Commission Takes Over Responsibility for all Atomic Energy Program Washington, DC In accordance with the Atomic Energy Act of 1946, all atomic energy activities are transferred to the newly created Atomic Energy Commission

  3. Industrial energy management and utilization

    SciTech Connect

    Witte, L.C.; Schmidt, P.S.; Brown, D.

    1986-01-01

    This text covers the principles of industrial energy conservation and energy conservation applications, with emphasis on the energy-intensive industries. Topics covered include energy consumption, alternative energy sources, elements of energy audits, economic investment analysis, management of energy conservation programs, boilers and fired heaters, steam and condensate systems, classification and fouling of heat exchangers, heat transfer augmentation, waste heat sources, heat recovery equipment, properties and characteristics of insulation, energy conservation in industrial buildings, cogeneration, power circuit components and energy conversion devices, electrical energy conservation. A review of the fundamentals of fluid mechanics, heat transfer, and thermodynamics, as well as examples, problems, and case studies from specific industries are included.

  4. Geothermal Energy (5 Activities)

    Education - Teach & Learn

    Geothermal energy is one of the components of the National Energy Policy: “Reliable, Affordable, and Environmentally Sound Energy for America’s Future.” This lesson includes five activities that will give your students information on the principles of heat transfer and the technology of using geothermal energy to generate electricity.

  5. Decal transfer microfabrication

    DOEpatents

    Nuzzo, Ralph G.; Childs, William Robert

    2004-10-19

    A method of making a microstructure includes forming a pattern in a surface of a silicon-containing elastomer, oxidizing the pattern, contacting the pattern with a substrate; and bonding the oxidized pattern and the substrate such that the pattern and the substrate are irreversibly attached. The silicon-containing elastomer may be removably attached to a transfer pad.

  6. Feed tank transfer requirements

    SciTech Connect

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B.

  7. Linear Fresnel Technology added to System Advisor Model's Capabilities -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    News Releases | NREL Linear Fresnel Technology added to System Advisor Model's Capabilities Now utilities can get detailed information on siting, performance and finances February 8, 2012 A promising Concentrating Solar Power (CSP) technology that uses a stationary receiver tube and an array of mirrors mounted near the ground can now be accessed within the System Advisor Model (SAM), which predicts annual energy production, hourly performance and return on investment. The U.S. Department of

  8. Linear induction accelerator and pulse forming networks therefor

    DOEpatents

    Buttram, Malcolm T.; Ginn, Jerry W.

    1989-01-01

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.

  9. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer

  10. Physics at the e⁺e⁻ linear collider

    DOE PAGES [OSTI]

    Moortgat-Picka, G.; Kronfeld, A. S.

    2015-08-14

    A comprehensive review of physics at an e⁺e⁻ linear collider in the energy range of √s = 92 GeV–3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focuses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

  11. Physics at the e?e? linear collider

    SciTech Connect

    Moortgat-Picka, G.; Kronfeld, A. S.

    2015-08-14

    A comprehensive review of physics at an e?e? linear collider in the energy range of ?s = 92 GeV3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focuses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

  12. International Workshop on Linear Colliders 2010

    ScienceCinema

    None

    2011-10-06

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options.Contact Workshop Secretariat  IWLC2010 is hosted by CERN

  13. Energy 101: Geothermal Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal Energy Energy 101: Geothermal Energy

  14. Geothermal Energy (5 Activities) | Department of Energy

    Energy.gov [DOE] (indexed site)

    rock to water? How does energy transferred between fluids in a binary geothermal power plant work? How does salinity affect the boiling point of water? How do the emissions...

  15. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    includes five activities that will give your students information on the principles of heat transfer and the technology of using geothermal energy to generate electricity. http:...

  16. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    forces. 2. Identify relationships between the following variables: http:energy.goveereeducationdownloadsenergy-transfer Download Plants in Your Gas Tank: From Photosynthesis...

  17. Bioenergy News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Energy (EERE) today announced nine topics and 26 new subtopics under its Small Business Innovation Research (SBIR) and Technology Transfer (STTR) programs that will help...

  18. EERE News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Energy (EERE) today announced nine topics and 26 new subtopics under its Small Business Innovation Research (SBIR) and Technology Transfer (STTR) programs that will help...

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    includes five activities that will give your students information on the principles of heat transfer and the technology of using geothermal energy to generate electricity....

  20. Genesys LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Genesys LLC Place: Palo Alto, California Zip: 94306 Sector: Hydro, Hydrogen Product: Focused on RET (Radiant Energy Transfer) technology for the production of...