National Library of Energy BETA

Sample records for landfill site government

  1. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    SciTech Connect

    Not Available

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS).

  2. Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

    2013-04-01

    The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

  3. Manhattan Project truck unearthed at landfill cleanup site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Manhattan project truck Manhattan Project truck unearthed at landfill cleanup site A LANL excavation crew working on a Recovery Act cleanup project has uncovered the remnants of a 1940s military truck buried in a Manhattan Project-era landfill. April 8, 2011 image description Excavator operator Kevin Miller looks at the remnants of a 1940s military truck buried in a Manhattan Project-era landfill. Contact Fred deSousa Communications Office (505) 665-3430 Email Remnants of a 1940s military truck

  4. Limited site investigation of Landfills 1 and 4, Fort Lewis, Washington

    SciTech Connect

    Last, G.V.; Eddy, P.A.; Airhart, S.P.; Olsen, K.R.; Raymond, J.R.; Dahl, D.R.

    1990-08-01

    The information presented in this report was collected during limited site investigation activities conducted in the vicinity of Landfills 1 and 4 at Fort Lewis. The purpose of this work was to provide a means of detecting and evaluating the impacts of these inactive landfills on ground-water quality and adjacent lands. This effort included the design and construction of ground-water monitoring systems for compliance with applicable federal and state regulations governing Resource Conservation and Recovery Act (RCRA)-type landfills. Ground-water samples were collected from both existing (1981 and 1984) wells and the newly installed (1988) wells. The analytical results from the water samples indicate that the ground water in and around Landfill 1 contains limited contamination. Contaminants may include volatile organic compounds and nitrate. The primary concern in the area around Landfill 1 was the determination that ground water from two wells may contain cis-1,2-dichloroethylene and 1,1,1-trichloroethylene above drinking water standards. Nitrate levels in the downgradient wells were greater than those in upgradient wells and exceeded drinking water standards in some of the less-representative samples. Analyses of ground-water samples from wells in and around Landfill 4 indicate several contaminants may be present. These include volatile organic compounds (principally cis-1,2-dichloroethylene and 1,1,1-trichloroethylene), coliform, oil and grease, and perhaps some metals (iron and magnesium). The primary concern in the area around Landfill 4 was the determination that ground water from five wells contained cis-1,2-dichloroethylene and 1,1,1-trichloroethylene above drinking water standards. The source of contaminants beneath either landfill cannot yet be identified. Insufficient data exist to disprove or confirm either landfill as possible contributors. 19 refs., 32 figs., 17 tabs.

  5. Story Road Landfill Solar Site Evaluation: San Jose

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report describes the findings of a solar site evaluation conducted at the Story Road Landfill (Site) in the City of San Jose, California (City). This evaluation was conducted as part of a larger study to assess solar potential at multiple public facilities within the City.

  6. Landfill siting in New York: Case studies confirming the importance of site-specific hydrogeologic investigations

    SciTech Connect

    Cloyd, K.C.; Concannon, P.W. )

    1993-03-01

    Landfill siting is one of the most problematic environmental issues facing society today for a variety of both technical and political reasons. New York State has approached many of these issues by requiring both generalized siting studies and detailed hydrogeologic evaluation of any proposed landfill site. Geographic Information Systems (GIS) have emerged as an appropriate tool for accumulating information for preliminary decision making. Recently, Goodman and others have suggested the use of a terrain suitability map (land use map) as a mechanism for simplifying landfill siting. They propose the use of existing geologic and morphologic information to eliminate large areas of New York from consideration as potential landfill locations. The study concludes that the Appalachian Plateau region (the Southern Tier), and the Erie-Ontario Plain are the most suitable areas for landfill development in the state. An evaluation of the geology at existing landfills and the impacts that relate to the facilities has shown that suitable sites do indeed exist in areas deemed unacceptable by Goodman and others. Conversely, a number of landfills located in suitable terranes have proven to be developed on less than suitable sites. While evaluation of existing information plays an obvious role in preliminary siting studies, it is not a substitute for detailed hydrogeologic investigation. It is local hydrogeological conditions that are most important in determining the suitability of a site for landfill development rather than the regional geologic context of the site.

  7. Risk assessment of landfill disposal sites - State of the art

    SciTech Connect

    Butt, Talib E. Lockley, Elaine; Oduyemi, Kehinde O.K.

    2008-07-01

    A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

  8. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    SciTech Connect

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

  9. Hazardous waste site assessment: Inactive landfill, Site 300, Lawrence Livermore National Laboratory

    SciTech Connect

    Not Available

    1985-01-01

    This report presents the results of an investigation of an inactive landfill (Pit 6) at Lawrence Livermore National Laboratory's (LLNL) Site 300. The primary objectives were to: collect and review background information pertaining to past waste disposal practices and previous environmental characterization studies; conduct a geophysical survey of the landfill area to locate the buried wastes; conduct a hydrogeologic investigation to provide additional data on the rate and direction of groundwater flow, the extent of any groundwater contamination, and to investigate the connection, if any, of the shallow groundwater beneath the landfill with the local drinking water supply; conduct a risk assessment to identify the degree of threat posed by the landfill to the public health and environment; compile a preliminary list of feasible long-term remedial action alternatives for the landfill; and develop a list of recommendations for any interim measures necessary at the landfill should the long-term remedial action plan be needed.

  10. EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington

    Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

  11. Measurements of particulate matter concentrations at a landfill site (Crete, Greece)

    SciTech Connect

    Chalvatzaki, E.; Kopanakis, I.; Kontaksakis, M.; Glytsos, T.; Kalogerakis, N.; Lazaridis, M.

    2010-11-15

    Large amounts of solid waste are disposed in landfills and the potential of particulate matter (PM) emissions into the atmosphere is significant. Particulate matter emissions in landfills are the result of resuspension from the disposed waste and other activities such as mechanical recycling and composting, waste unloading and sorting, the process of coating residues and waste transport by trucks. Measurements of ambient levels of inhalable particulate matter (PM{sub 10}) were performed in a landfill site located at Chania (Crete, Greece). Elevated PM{sub 10} concentrations were measured in the landfill site during several landfill operations. It was observed that the meteorological conditions (mainly wind velocity and temperature) influence considerably the PM{sub 10} concentrations. Comparison between the PM{sub 10} concentrations at the landfill and at a PM{sub 10} background site indicates the influence of the landfill activities on local concentrations at the landfill. No correlation was observed between the measurements at the landfill and the background sites. Finally, specific preventing measures are proposed to control the PM concentrations in landfills.

  12. Geologic report, Middlesex Municipal Landfill site, Middlesex, New Jersey

    SciTech Connect

    Not Available

    1984-03-01

    This is a report on geologic and hydrologic investigations of the former Municipal Landfill, Middlesex, New Jersey, conducted during 1982 and 1983 by Bechtel National, Inc. for the United States Department of Energy, Oak Ridge Operations Office. The investigations were designed to assess the feasibility of stabilizing the radioactive contamination present on site. The investigations were conducted in two phases: Phase 1 consisted of permeability tests; Phase 2 consisted of tests to ascertain the extent of hydraulic interconnection between various stratigraphic units. The investigations revealed that a complete separation of bedrock and overburden did not exist and that the clay present could not be relied upon to confine vertical migration of contaminants over the long term. 6 references, 27 figures, 6 tables.

  13. Savannah River Site - Sanitary Landfill | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Name: Sanitary Landfill Remediation Contractor: Savannah River Nuclear Solutions, LLC PBS Number: 30 Report Last Updated: 2013 Contaminants Halogenated VOCsSVOCs Present?: Yes ...

  14. Superfund Record of Decision (EPA Region 3): Moyer Landfill Site, Collegeville, Pennsylvania, September 1985. Final report

    SciTech Connect

    Not Available

    1985-09-30

    The Moyer Landfill is an inactive privately owned landfill located in Lower Providence Township in Montgomery County, Pennsylvania. The site was operated as a municipal landfill from the 1940's until April 1981, during which time it received municipal refuse and sewage sludges. According to local Federal Bureau of Investigation (FBI) officials, the landfill accepted a variety of solid and liquid hazardous wastes, including polychlorinated biphenyls (PCBs), solvents, paints, low-level radioactive wastes, and incinerated materials in bulk form and/or containerized in drums. In 1972, when the Pennsylvania Dept. of Environmental Resources (PADER) rules and regulations became more restrictive, this landfill was cited, and finally in 1981, it was closed and brought into receivership of the U.S. District Court.

  15. Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill

    SciTech Connect

    Fruland, R.M.

    1986-10-01

    Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

  16. Water quality evaluation and geochemical assessment of iron, manganese, and arsenic in a landfill site

    SciTech Connect

    Pisigan, R.A. Jr.

    1995-12-31

    Several monitoring wells at a landfill site were sampled for water quality parameters to determine the nature of groundwater contamination. The landfill, located beneath a limestone and dolomitic bedrock, has been used for about 20 years for trash and garbage disposal. The monitoring parameters include major cations and anions, as well as iron, manganese, arsenic, and other parameters measured in the field to characterize the subsurface conditions. Groundwater samples collected near the landfill and downgradient locations had higher levels of iron, manganese, arsenic, alkalinity, hardness than those samples from an upgradient well. The downgradient and on-site samples were also more acidic and turbid, The dissolved oxygen data tend to suggest reducing conditions in the leachate environment. The elevated groundwater concentrations of the three metals, especially iron, were most probably caused by the acidity generated by carbon dioxide and organic acids released from microbial degradation of organic compounds dumped into the landfill. The acidic pH led to the dissolution of iron, manganese, and arsenic bearing mineral phases. The buffering reactions of limestone and dolomite to neutralize the acidic degradation products increased the hardness cations, Ca{sup +2} and Mg{sup +2}. Inorganic speciation modeling indicates that iron, manganese, and arsenic predominantly exist as Fe {sup +2}, Mn{sup +2}, and H{sub 3}AsO{sub 3}. The possible presence of organic complexes of iron was discussed, but could be modeled due to lack of appropriate equilibrium constant data.

  17. Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300

    SciTech Connect

    MacDonnell, B.A.; Obenauf, K.S.

    1996-08-01

    The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

  18. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    SciTech Connect

    Feo, Giovanni De; Gisi, Sabino De

    2014-11-15

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.

  19. Comparison of Candidate Sites for installation of Landfill facility at Ignalina NPP Site Using Fuzzy Logic Approach

    SciTech Connect

    Poskas, P.; Kilda, R.; Poskas, G.

    2008-07-01

    There is only one nuclear power plant in Lithuania - Ignalina NPP (Nuclear Power Plant). Two similar units with installed capacity of 1500 MW (each) were commissioned in 1983 and 1987 respectively. But the first Unit of Ignalina NPP was finally shutdown December 31, 2004, and second Unit is planned to be shutdown before 2010. Operational radioactive waste of different activities is generated at Ignalina NPP. After closure of INPP a waste from decommissioning should be managed also. According to Lithuanian regulatory requirements (1) the waste depending on the activity must be managed in different ways. In compliance with this Regulation very low-level radioactive waste (VLLW) could be disposed of in a Landfill facility. In such case very simple engineered barriers are required. A cap on the top of the repository is necessary from long-term safety point of view. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components: the site, the disposal facility and the waste form. The basic objective of the siting process is to select a suitable site for disposal and demonstrate that this site has characteristics which provide adequate isolation of radionuclides from the biosphere for desired periods of time. The methodology and results on evaluation and comparison of two candidate sites intended for construction of Landfill facility at Ignalina NPP site are presented in the paper. Criteria for comparison are based on the IAEA (International Atomic Energy Agency) recommendations (2). Modeling of the radionuclide releases has been performed using ISAM (Improving of Safety Assessment Methodologies for Near Surface Disposal facilities) methodology (3). For generalization of the information and elaboration of the recommendations Fuzzy Logic approach was used (4). (authors)

  20. Siting landfills and incinerators in areas of historic unpopularity: Surveying the views of the next generation

    SciTech Connect

    De Feo, Giovanni; Williams, Ian D.

    2013-12-15

    Highlights: • Opinions and knowledge of young people in Italy about waste were studied. • Historic opposition to construction of waste facilities is difficult to overcome. • Awareness of waste management develops with knowledge of environmental issues. • Many stakeholders’ views are needed when siting a new waste management facility. • Respondents’ opinions were influenced by their level of environmental knowledge. - Abstract: The Campania Region in Southern Italy has suffered many problems with municipal solid waste management since the mid-1990s, leading to significant public disturbances and subsequent media coverage. This paper reports on the current views and knowledge of young people (university students) in this region about waste management operations and facilities, specifically the siting of landfills and incinerators. By means of a structured questionnaire, opinion and knowledge were systematically examined by degree type and course year. The study took place in 2011 at the University of Salerno campus. A sample of 900 students, comprising 100 students for each of the nine considered faculties, and 20 students for every academic course year, was randomly selected. Only about a quarter of respondents were not opposed to the siting of a landfill or an incinerator in their city. This clearly highlights that historic opposition to the construction of waste facilities is difficult to overcome and that distrust for previous poor management or indiscretions is long-lived and transcends generations. Students from technical faculties expressed the most reasonable opinion; opinion and knowledge were statistically related (Chi-square test, p < 0.05) to the attended faculty, and the knowledge grew linearly with progression through the university. This suggests that awareness of waste management practices develops with experience and understanding of environmental issues. There is general acceptance that many stakeholders – technicians, politicians

  1. Methane emissions from MBT landfills

    SciTech Connect

    Heyer, K.-U. Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD

  2. EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    07: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and...

  3. DOE - Office of Legacy Management -- West Lake Landfill - MO...

    Office of Legacy Management (LM)

    Lake Landfill - MO 05 FUSRAP Considered Sites Site: West Lake Landfill (MO.05) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition:...

  4. Superfund Record of Decision (EPA Region 2): Sayreville Landfill site, Borough of Sayreville, Middlesex County, New Jersey (first remedial action), September 28, 1990

    SciTech Connect

    Not Available

    1990-09-28

    The 35-acre Sayreville Landfill site is an inactive municipal and industrial landfill in the Borough of Sayreville, Middlesex County, New Jersey. Beginning in 1971, the landfill was used to dispose of municipal and hazardous wastes, including an estimated 50 to 150 drums containing hazardous wastes. The drums were buried in a 20-acre area of the site. In 1977, landfill operations ceased, but subsequent unauthorized dumping of hazardous waste may have occurred. In 1980, a landfill closure plan was implemented by the borough, but was not properly completed. In 1981, the State excavated 30 drums containing benzene, pesticide-, and acid-contaminated liquids. The Record of Decision (ROD) addresses remediation of onsite drummed wastes. A subsequent ROD will address further source remediation (leachate) and remediation of ground and surface waters. The primary contaminants of concern affecting the soil and debris are VOCs including benzene, toluene, and xylenes; other organics including pesticides and phenols; acids; and metals including arsenic, chromium, and lead.

  5. Passive soil venting at the Chemical Waste Landfill Site at Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect

    Phelan, J.M.; Reavis, B.; Cheng, W.C.

    1995-05-01

    Passive Soil Vapor Extraction was tested at the Chemical Waste Landfill (CWL) site at Sandia National Laboratories, New Mexico (SNLIW). Data collected included ambient pressures, differential pressures between soil gas and ambient air, gas flow rates into and out of the soil and concentrations of volatile organic compounds (VOCS) in vented soil gas. From the differential pressure and flow rate data, estimates of permeability were arrived at and compared with estimates from other studies. Flow, differential pressure, and ambient pressure data were collected for nearly 30 days. VOC data were collected for two six-hour periods during this time. Total VOC emissions were calculated and found to be under the limit set by the Resource Conservation and Recovery Act (RCRA). Although a complete process evaluation is not possible with the data gathered, some of the necessary information for designing a passive venting process was determined and the important parameters for designing the process were indicated. More study is required to evaluate long-term VOC removal using passive venting and to establish total remediation costs when passive venting is used as a polishing process following active soil vapor extraction.

  6. Health assessment for Hyde Park Landfill National Priorities List (NPL) site, Niagara Falls, New York, Region 2. CERCLIS No. NYD000831644. Final report

    SciTech Connect

    Not Available

    1989-02-07

    The Hyde Park Landfill National Priorities List Site was used by Hooker Chemical and Plastic Corporation, now Occidental Chemical Corporation, to dispose of approximately 80,000 tons of waste from 1953 to 1975. Significant amounts of 2,3,7,8-tetrachlorodibenzo-p-dioxin is believed to be in the landfill. Site-related contaminants have been detected in the overburden and bedrock aquifers. Analyses of samples taken from ground water seeps at the Niagara Gorge Face also show site-related contaminants. Leachate from the landfill appears to have entered Bloody Run Creek. Sediment sample analyses from the creek show site-related contaminants. The 1985 U.S. Environmental Protection Agency Enforcement Decision Document outlines remedial activities to be conducted at the site. The site without remediation is of potential public health concern because of the risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse health effects.

  7. State and Tribal Government Working Group Visits the Weldon Spring Site |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy State and Tribal Government Working Group Visits the Weldon Spring Site State and Tribal Government Working Group Visits the Weldon Spring Site June 1, 2011 - 3:18pm Addthis State and Tribal Government Working Group Visits the Weldon Spring Site State and Tribal Government Working Group Visits the Weldon Spring Site State and Tribal Government Working Group Visits the Weldon Spring Site State and Tribal Government Working Group Visits the Weldon Spring Site What does

  8. DOE - Office of Legacy Management -- Shpack Landfill - MA 06

    Office of Legacy Management (LM)

    Shpack Landfill - MA 06 FUSRAP Considered Sites Shpack Landfill, NY Alternate Name(s): Attleboro, MA Metals and Controls Site Norton Landfill area MA.06-2 MA.06-3 Location: 68 ...

  9. Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R

    SciTech Connect

    Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae; Venno, M.; Christensen, James R.

    2011-02-02

    The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.

  10. Environmental monitoring report for the former Middlesex Sampling Plant and Middlesex Municipal Landfill Sites, calendar year 1983

    SciTech Connect

    Not Available

    1984-10-01

    During 1983, an environmental monitoring program was continued at the former Middlesex Sampling Plant (MSP) and former Middlesex Municipal Landfill (MML) sites, located in the Borough of Middlesex, New Jersey. The sites are part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a United States Department of Energy (DOE) program to clean up or otherwise control sites where low-level radioactive contamination remains from the early years of the nation's atomic energy program. The monitoring program at the MSP and MML measures the uranium and radium concentrations in surface and groundwater, the radon concentrations in air, and external gamma exposure levels. Radiation doses to the public are also calculated. All environmental samples collected are analyzed to determine compliance with applicable environmental quality standards. DOE Order 5480.1A, Chapter XI, provides applicable Concentration Guide limits for radionuclides in controlled and uncontrolled areas. During 1983, average annual concentrations of uranium and radium-226 in groundwater and surface water within the controlled areas of both the MSP and MML were below the DOE CG for uncontrolled areas. Annual average radon levels in air at both the MSP and MML were below the CG for uncontrolled areas. External gamma monitoring in 1983 showed all monitoring locations at both sites reporting gamma exposure rates below DOE Radiation Protection Standards. All radiation doses to the public were within DOE standards. Results of the monitoring program during 1983 did not differ significantly from the results obtained during 1982. 8 references, 9 figures, 12 tables.

  11. Environmental monitoring report for the former Middlesex Sampling Plant and Middlesex Municipal Landfill sites, calendar year 1984

    SciTech Connect

    Not Available

    1985-07-01

    During 1984, the environmental monitoring program was continued at the former Middlesex Sampling Plant (MSP) and former Middlesex Municipal Landfill (MML) sites, located in the Borough of Middlesex, New Jersey. The sites are part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a United States Department of Energy (DOE) program to decontaminate or otherwise control sites where low-level radioactive contamination remains from the early years of the nation's atomic energy program. The environmental monitoring program is carried out by Bechtel National, Inc., Program Management Contractor for FUSRAP. The monitoring program at the MSP and MML measures the uranium and radium concentrations in surface and groundwater, the radon gas concentrations in air, and external gamma radiation exposure rates. Potential radiation doses to the public are also calculated. All environmental samples collected are analyzed to determine compliance with applicable environmental quality standards. DOE Order 5480.1A, Chapter XI, provides applicable Concentration Guide (CG) limits for radionuclides in controlled and uncontrolled areas. During 1984, average annual concentrations of uranium and radium-226 in groundwater and surface waters monitored for both the MSP and MML remained below the DOE CG for uncontrolled areas. Annual average radon levels in air at both the MSP and MML were below the CG for uncontrolled areas. External gamma monitoring in 1984 showed all monitoring locations at both sites reporting gamma exposure rates below DOE Radiation Protection Standards. All radiation doses to the public were within DOE standards and consistent with 1983 exposure rates. 13 refs., 10figs., 13 tabs.

  12. LASO Airport Landfill | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LASO Airport Landfill LASO Airport Landfill The Los Alamos Airport Landfill consists of two inactive solid waste disposal sites [the airport landfill, SWMU 73-001(a) and the debris disposal area (DDA), SWMU 73-001(d)] are located at the Los Alamos County Airport. In late 2006 and early 2007, the Final Remedy landfill cover system was installed at the airport landfill. The Final Remedy design and completion activities for the airport landfill and the DDA are provided in the Remedy Completion

  13. Federal government information handbook: formerly utilized sites remedial action program

    SciTech Connect

    Not Available

    1980-12-31

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the Federal Government. It contains a summary of the organization and responsibilities of agencies within the executive branch of the Federal government which may be relevant to FUSRAP activities; a brief summary of relevant Federal statutes and regulations; a description of the structure of the US Congress, identification of the officers, relevant committees and committee chairmen; a description of the Federal legislative process; a summary of legislation enacted and considered in the recently-adjourned 96th Congress; a description of the Federal budgetary process; a summary of the Carter Administration's comprehensive radioactive waste management program; and excerpts from the text of relevant federal statutes and regulations.

  14. Environmental monitoring report, 1980, 1981, 1982 for the former Middlesex Sampling Plant and Middlesex Municipal Landfill Sites

    SciTech Connect

    Not Available

    1984-10-01

    During periods of remedial action activities conducted in 1980 and 1981 at designated sites in the Borough of Middlesex, New Jersey, air, water, and sediments were sampled and analyzed to verify the adequacy of contamination control and compliance with applicable standards. Analytical results show that remedial action activities at the Middlesex Sampling Plant (MSP) and vicinity properties were conducted, with few exceptions, within applicable standards. During 1982, a surveillance monitoring program was initiated at the MSP and at the former Middlesex Municipal Landfill (MML) site. Radioactivity was measured in air and water to allow calculation of radiation doses to the public. The resulting dose from external gamma radiation at the MSP site boundary in 1982 was approximately twice natural background and less than 40% (background included) of the Department of Energy (DOE) standard. The highest continuous occupancy dose to the bronchial epithelium (lungs) from radon exposure at the MML boundary was approximately twice the background value or about 60% (background included) of the DOE standard. 12 references, 15 figures, 28 tables.

  15. Middlesex Sampling Plant and Middlesex Municipal Landfill annual site environmental report, Middlesex, New Jersey: Calendar year 1986

    SciTech Connect

    Not Available

    1987-05-01

    During 1986, the environmental monitoring program was continued at the former Middlesex Sampling Plant (MSP) and former Middlesex Municipal Landfill (MML) sites, located in the Borough of Middlesex, New Jersey. The MSP and MML sites are part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residential radioactive materials remain from either the early years of the nation's atomic energy program or commercial operations causing conditions that Congress has mandated DOE to remedy. The monitoring program at the MSP and MML measures radon gas concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that sites are in compliance with the DOE radiation protection standard (100 mrem/yr) and to assess their potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenarios described in the report, this individual, at the MSP, would receive an annual external exposure approximately equivalent to 10 percent of the DOE radiation protection standard. By comparison, the incremental dose received from living in a brick house versus a wooden house is about the same. At the MML, the annual external exposure to the maximally exposed individual would be less than 1% of the standard. The cumulative dose to the population within an 80-km (50-mi) radius of the sites that would result from radioactive materials present at the MSP and MML would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1986 monitoring show that the MSP and MML are in compliance with the DOE radiation protection standard. 14 refs., 13 figs., 23 tabs.

  16. 7.4 Landfill Methane Utilization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7.4 Landfill Methane Utilization 7.4 Landfill Methane Utilization A chapter on Landfill Methane Utilization from the Clean Energy Strategies for Local Governments publication. 7.4_landfill_methane_utilization.pdf (484.59 KB) More Documents & Publications CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities Powering Microturbines With Landfill Gas, October 2002 Barriers to CHP with Renewable Portfolio Standards, Draft White Paper, September 2007

  17. Energy potential of modern landfills

    SciTech Connect

    Bogner, J.E.

    1990-01-01

    Methane produced by refuse decomposition in a sanitary landfill can be recovered for commercial use. Landfill methane is currently under-utilized, with commercial recovery at only a small percentage of US landfills. New federal regulations mandating control of landfill gas migration and atmospheric emissions are providing impetus to methane recovery schemes as a means of recovering costs for increased environmental control. The benefits of landfill methane recovery include utilization of an inexpensive renewable energy resource, removal of explosive gas mixtures from the subsurface, and mitigation of observed historic increases in atmospheric methane. Increased commercial interest in landfill methane recovery is dependent on the final form of Clean Air Act amendments pertaining to gaseous emissions from landfills; market shifts in natural gas prices; financial incentives for development of renewable energy resources; and support for applied research and development to develop techniques for increased control of the gas generation process in situ. This paper will discuss the controls on methane generation in landfills. In addition, it will address how landfill regulations affect landfill design and site management practices which, in turn, influence decomposition rates. Finally, future trends in landfilling, and their relationship to gas production, will be examined. 19 refs., 2 figs., 3 tabs.

  18. DOE - Office of Legacy Management -- Pfohl Brothers Landfill...

    Office of Legacy Management (LM)

    Landfill (NY.66 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials...

  19. Middlesex Sampling Plant and Middlesex Municipal Landfill, annual site environmental report, Middlesex, New Jersey, calendar year 1987: Formerly Utilized Sites Remedial Action Program (FUSRAP)

    SciTech Connect

    Not Available

    1988-04-01

    The monitoring program at the Middlesex Sampling Plant (MSP) and Middlesex Municipal Landfill (MML) measures radon gas concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the sites are in compliance with the DOE radiation protection standard (100 mrem/yr) and to assess their potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenarios described in the report, this individual, at the MSP, would receive an annual external exposure approximately equivalent to 10 percent of the DOE radiation protection standard. By comparison, the incremental dose received from living in a brick house as opposed to a wooden house is about the same. At the MML, the annual external exposure to the maximally exposed individual would be less than 1 percent of the standard. The cumulative dose to the population within an 80-km (50-mi) radius of the sites that would result from radioactive materials present at the MSP and MML would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1987 monitoring show that the MSP and MML are in compliance with the DOE radiation protection standard. 14 refs., 11 figs., 22 tabs.

  20. Landfill Cover Revegetation at the Rocky Flats Environmental Technology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Site | Department of Energy Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site (507.34 KB) More Documents & Publications Revegetation of the Rocky Flats Site Smooth Brome Monitoring at Rocky Flats-2005 Results EIS-0285-SA-134:

  1. Corrective Action Decision Document for Corrective Action Unit 5: Landfills, Nevada Test Site, Nevada: Revision No. 0 (with Record of Technical Change No. 1)

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-10-24

    This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action (CAU) 5: Landfills, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Areas 5, 6, 12, 20, and 23 of the NTS, CAU 5 is comprised of eight corrective action sites (CASs). The corrective action investigation (CAI) of CAU 5 was conducted from October 7, 2002 through January 30, 2003, with geophysical surveys completed from March 6 through May 8, 2002, and topographic surveys conducted from March 11 through April 29, 2003. Contaminants of concern (COCs) were identified only at CAS 12-15-01. Those COCs included total petroleum hydrocarbons and volatile organic compounds. Based on the evaluation of analytical data from the CAI, review of future and current operations in Areas 5, 6, 12, 20, and 23 of the Nevada Test Site, and the detailed and comparative analysis of the potential CAAs, the following single alternative was developed for consideration. Close in Place with Administrative Controls is the recommended alternative for all of the CASs in CAU 5. This alternative was judged to meet all requirements for the technical components evaluated. Additionally, the alternative meets all applicable state and federal regulations for closure of the sites and will eliminate inadvertent intrusion into landfills at CAU 5.

  2. Using landfill gas for energy: Projects that pay

    SciTech Connect

    1995-02-01

    Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

  3. Monitoring the Performance of an Alternative Landfill Cover at the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Monticello, Utah, Uranium Mill Tailings Disposal Site | Department of Energy the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Monitoring the Performance of an Alternative Landfill Cover at the

  4. Formerly utilized MED/AEC sites remedial action program. Radiological survey of the Middlesex Municipal Landfill, Middlesex, New Jersey. Final report

    SciTech Connect

    Leggett, R W; Cottrell, W D; Goldsmith, W A; Christian, D J; Haywood, F F; Wagner, E B; Crawford, D J; Doane, R W; Shinpaugh, W H

    1980-04-01

    A radiological survey was conducted at the Middlesex Municipal Landfill in Middlesex, New Jersey. In 1948, dirt contaminated with pitchblende ores was brought to this site from a former ore sampling plant in Middlesex. This survey was conducted in order to characterize the present radiological condition of the site and to determine the extent to which contamination is being transported from the site by natural means such as by drainage. The survey included measurement of (1) radionuclide concentrations in surface and subsurface soil on the site; (2) radionuclide concentrations in surface and subsurface water on the site and in Bound Brook; (3) beta-gamma dose rates and external gamma radiation levels on and near the site; and (4) the rate of /sup 222/Rn emanation from the soil on the site. It was found that most of the contamination on the site is in the top 14 ft of soil; however, there is little contamination of surface soil on the site. Average radon emanation rates, average external gamma radiation levels, and average beta-gamma dose rates on the site do not appear to be significantly higher than background levels. Furthermore, radionuclide concentrations in water taken from Bound Brook near the site were far below guide values stated in federal guidelines.

  5. Corrective Action Investigation Plan for Corrective Action Unit 5: Landfills, Nevada Test Site, Nevada (Rev. No.: 0) includes Record of Technical Change No. 1 (dated 9/17/2002)

    SciTech Connect

    IT Corporation, Las Vegas, NV

    2002-05-28

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 5 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 5 consists of eight Corrective Action Sites (CASs): 05-15-01, Sanitary Landfill; 05-16-01, Landfill; 06-08-01, Landfill; 06-15-02, Sanitary Landfill; 06-15-03, Sanitary Landfill; 12-15-01, Sanitary Landfill; 20-15-01, Landfill; 23-15-03, Disposal Site. Located between Areas 5, 6, 12, 20, and 23 of the Nevada Test Site (NTS), CAU 5 consists of unlined landfills used in support of disposal operations between 1952 and 1992. Large volumes of solid waste were produced from the projects which used the CAU 5 landfills. Waste disposed in these landfills may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present at concentrations and locations that could potentially pose a threat to human health and/or the environment. During the 1992 to 1995 time frame, the NTS was used for various research and development projects including nuclear weapons testing. Instead of managing solid waste at one or two disposal sites, the practice on the NTS was to dispose of solid waste in the vicinity of the project. A review of historical documentation, process knowledge, personal interviews, and inferred activities associated with this CAU identified the following as potential contaminants of concern: volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, pesticides, petroleum hydrocarbons (diesel- and gasoline-range organics), Resource Conservation and Recovery Act Metals, plus nickel and zinc. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution criteria

  6. Sour landfill gas problem solved

    SciTech Connect

    Nagl, G.; Cantrall, R.

    1996-05-01

    In Broward County, Fla., near Pompano Beach, Waste Management of North America (WMNA, a subsidiary of WMX Technologies, Oak Brook, IL) operates the Central Sanitary Landfill and Recycling Center, which includes the country`s largest landfill gas-to-energy plant. The landfill consists of three collection sites: one site is closed, one is currently receiving garbage, and one will open in the future. Approximately 9 million standard cubic feet (scf) per day of landfill gas is collected from approximately 300 wells spread over the 250-acre landfill. With a dramatic increase of sulfur-containing waste coming to a South Florida landfill following Hurricane Andrew, odors related to hydrogen sulfide became a serious problem. However, in a matter of weeks, an innovative desulfurization unit helped calm the landfill operator`s fears. These very high H{sub 2}S concentrations caused severe odor problems in the surrounding residential area, corrosion problems in the compressors, and sulfur dioxide (SO{sub 2}) emission problems in the exhaust gas from the turbine generators.

  7. Study of the VOC emissions from a municipal solid waste storage pilot-scale cell: Comparison with biogases from municipal waste landfill site

    SciTech Connect

    Chiriac, R.; De Araujos Morais, J.; Carre, J.; Bayard, R.; Chovelon, J.M.; Gourdon, R.

    2011-11-15

    Highlights: > Follow-up of the emission of VOCs in a municipal waste pilot-scale cell during the acidogenesis and acetogenesis phases. > Study from the very start of waste storage leading to a better understanding of the decomposition/degradation of waste. > Comparison of the results obtained on the pilot-scale cell with those from 3 biogases coming from the same landfill site. > A methodology of characterization for the progression of the stabilization/maturation of waste is finally proposed. - Abstract: The emission of volatile organic compounds (VOCs) from municipal solid waste stored in a pilot-scale cell containing 6.4 tonnes of waste (storage facility which is left open during the first period (40 days) and then closed with recirculation of leachates during a second period (100 days)) was followed by dynamic sampling on activated carbon and analysed by GC-MS after solvent extraction. This was done in order to know the VOC emissions before the installation of a methanogenesis process for the entire waste mass. The results, expressed in reference to toluene, were exploited during the whole study on all the analyzable VOCs: alcohols, ketones and esters, alkanes, benzenic and cyclic compounds, chlorinated compounds, terpene, and organic sulphides. The results of this study on the pilot-scale cell are then compared with those concerning three biogases from a municipal waste landfill: biogas (1) coming from waste cells being filled or recently closed, biogas (2) from all the waste storage cells on site, and biogas (3) which is a residual gas from old storage cells without aspiration of the gas. The analysis of the results obtained revealed: (i) a high emission of VOCs, principally alcohols, ketones and esters during the acidogenesis; (ii) a decrease in the alkane content and an increase in the terpene content were observed in the VOCs emitted during the production of methane; (iii) the production of heavier alkanes and an increase in the average number of carbon

  8. THE COUNCIL OF STATE GOVERNMENTS THE ELECTRIC TRANSMISSION LINE SITING COMPACT

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    COUNCIL OF STATE GOVERNMENTS THE ELECTRIC TRANSMISSION LINE SITING COMPACT LEGISLATIVE BRIEFING Background and Summary Background and Need The siting of interstate transmission lines has long been a problem that has vexed both states and the federal government. With the expected growth in electricity demand, coupled with the need to bring renewable energy to market and the necessity to enhance and secure the nation's energy infrastructure, the need for added transmission capacity has never been

  9. Phytoremediation of landfill leachate

    SciTech Connect

    Jones, D.L. . E-mail: d.jones@bangor.ac.uk; Williamson, K.L.; Owen, A.G.

    2006-07-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250 m{sup 3} ha{sup -1} yr{sup -1}. However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios.

  10. Government-Owned Firearms Inventory at the Nevada National Security Site

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Government-Owned Firearms Inventory at the Nevada National Security Site INS-L-15-01 December 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 December 3, 2014 MEMORANDUM FOR THE MANAGER, NEVADA FIELD OFFICE FROM: Marilyn E. Richardson Acting Assistant Inspector General for the Office of Inspections Office of Inspector General SUBJECT: INFORMATION: Inspection Report on "Government-Owned Firearms Inventory

  11. Energy Department Sends First Energy Saving Team to Federal Government Site

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Jamaica, N.Y. | Department of Energy Sends First Energy Saving Team to Federal Government Site in Jamaica, N.Y. Energy Department Sends First Energy Saving Team to Federal Government Site in Jamaica, N.Y. October 27, 2005 - 12:32pm Addthis WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today announced that the first Federal Energy Saving team has been deployed to a General Services Administration (GSA) facility in Jamaica, N.Y., as part of the comprehensive national energy

  12. POSTCLOSURE GROUNDWATER REMEDIATION AND MONITORING AT THE SANITARY LANDFILL, SAVANNAH RIVER SITE TRANSITIONING TO MONITORED NATURAL ATTENUATION

    SciTech Connect

    Ross, J; Walt Kubilius, W; Thomas Kmetz, T; D Noffsinger, D; Karen M Adams, K

    2006-11-17

    Resource Conservation and Recovery Act (RCRA) requirements for hazardous waste facilities include 30 years of post-closure monitoring. The use of an objective-based monitoring strategy allows for a significant reduction in the amount of groundwater monitoring required, as the groundwater remediation transitions from an active biosparging system to monitored natural attenuation. The lifecycle of groundwater activities at the landfill has progressed from detection monitoring and plume characterization, to active groundwater remediation, and now to monitored natural attenuation and postclosure monitoring. Thus, the objectives of the groundwater monitoring have changed accordingly. Characterization monitoring evaluated what biogeochemical natural attenuation processes were occurring and determined that elevated levels of radium were naturally occurring. Process monitoring of the biosparging system required comprehensive sampling network up- and down-gradient of the horizontal wells to verify its effectiveness. Currently, the scope of monitoring and reporting can be significantly reduced as the objective is to demonstrate that the alternate concentration limits (ACL) are being met at the point of compliance wells and the maximum contaminant level (MCL) is being met at the surface water point of exposure. The proposed reduction is estimated to save about $2M over the course of the remaining 25 years of postclosure monitoring.

  13. Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy ITR Landfill Assessment Project Lessons Learned Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned By: Craig H. Benson, PhD, PE Where: EM SSAB Teleconference: 1 Briefing provides lessons learned from the DOE EM ITR Landfill Assessment Project. EM SSAB ITR Landfill Assessment Project Lessons Learned Presentation - July 2009 (777.4 KB) More Documents & Publications Disposal Practices at the Nevada Test Site 2008 Operational Issues at the Environmental

  14. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Price Landfill Site in Pleasantville, New Jersey. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

    2013-05-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Price Landfill site in Pleasantville, New Jersey, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site. This study did not assess environmental conditions at the site.

  15. Health assessment for Cedartown Municipal Landfill NPL Site, Cedartown, Polk County, Georgia, Region 4. CERCLIS No. GAD980495402. Preliminary report

    SciTech Connect

    Not Available

    1990-08-08

    In compliance with the Comprehensive Environmental Response, Compensation, and Liability Act and the Resource Conservation and Recovery Act, as amended, the Agency for Toxic Substances and Disease Registry (ATSDR) has prepared Health Assessment reports for sites currently on, or proposed for, the National Priorities List. In the report, the presence and nature of health hazards at this site are assessed, and the public health implications specific to this site are evaluated. The Health Assessment is based on such factors as the nature, concentration, toxicity, and extent of contamination at the site; the existence of potential pathways for the human exposure; the size and nature of the community likely to be exposed; and any other information available.

  16. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Crazy Horse Landfill Site in Salinas, California. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Stoltenberg, B.; Konz, C.; Mosey, G.

    2013-03-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Crazy Horse Landfill site in Salinas, California, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) was contacted to provide technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, operation and maintenance requirements, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  17. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Sky Park Landfill Site in Eau Claire, Wisconsin. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Simon, J.; Mosey, G.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Sky Park Landfill site in Eau Claire, Wisconsin, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  18. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Snohomish County Cathcart Landfill Site in Snohomish County, Washington. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Olis, D.; Salasovich, J.; Mosey, G.; Healey, V.

    2013-04-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Snohomish County Cathcart Landfill Site in Snohomish County, Washington, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  19. Venice Park landfill: Working with the community

    SciTech Connect

    McAdams, C.L.

    1993-09-01

    Venice Park landfill was one of the first sites to be permitted under Michigan's proposed Public Act 641. PA 641 essentially changed the rules and regulations for landfills from the simple design of digging a hole and filling it. It also upgraded standards to those that are more sophisticated, including liners, leachate collection systems, and gas extraction systems. In 1992, methane gas from the landfill was collected into wells drilled into the trash varying in depth from 30-50 feet in depth. A vacuum pulls the gas from the trash into the wells, then through a piping system. The landfill uses about 80-100 kilowatts in-house. The remainder of the gas is sold to Consumers Power Co. which uses landfill gas to supply power to homes.

  20. Industrial Waste Landfill IV upgrade package

    SciTech Connect

    Not Available

    1994-03-29

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE`s Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit.

  1. Middlesex Sampling Plant and Middlesex Municipal Landfill. Annual site environmental report, calendar year 1985. Formerly Utilized Sites Remedial Action Program (FUSRAP). [FUSRAP

    SciTech Connect

    Not Available

    1986-08-01

    The monitoring program at the Middlesex Sampling Plant (MSP) and Middlesex Municipal Landfill (MML) measures uranium and radium concentrations in surface water, groundwater, and sediment; radon gas concentrations in air; and external gamma radiation dose rates. Potential radiation doses to the public are also calculated. During 1985, the highest annual average radon levels in air at the MML and MSP were 10% and 17%, respectively, of the Derived Concentration Guides (DCG). The highest annual average gamma dose rate at the MSP was 167 mrem/y; at the MML the highest annual average dose rate was 13 mrem/y. The highest average annual concentrations of uranium in surface water monitored at the MSP and MML were 13% and 1%, respectively, of the DOE DCG. The highest annual average concentrations of /sup 226/Ra in surface water were 3.3 and 0.8%, respectively, of the applicable DOE DCG. The highest annual average uranium concentration in groundwater at the MSP was about 9% of the DCG; the highest /sup 226/Ra concentration was 0.7% of the respective DCG. The corresponding values for the MML were 0.5 and 3.3%. The highest annual average concentrations of uranium and /sup 226/Ra in sediments at the MSP were 7.7 and 3.5 pCi/g, respectively. The highest uranium concentration at the MML was 3.3 pCi/g, while the highest /sup 226/Ra concentration was 0.7 pCi/g. The calculated total radiation dose to the maximally exposed individual at the MSP, considering several pathways, was 10.5 mrem or 11% of the radiation protection standard; at the MML, it was 0.14 mrem or less than 1% of the radiation protection standard.

  2. Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site

    SciTech Connect

    Waugh, W.J.; Kastens, M.K.; Sheader, L.R.L.; Benson, C.H.; Albright, W.H.; Mushovic, P.S.

    2008-07-01

    The U.S. Department of Energy Office of Legacy Management (DOE) and the U.S. Environmental Protection Agency (EPA) collaborated on the design and monitoring of an alternative cover for the Monticello uranium mill tailings disposal cell, a Superfund site in southeastern Utah. Ground-water recharge is naturally limited at sites like Monticello where thick, fine-textured soils store precipitation until evaporation and plant transpiration seasonally return it to the atmosphere. The cover at Monticello uses local soils and a native plant community to mimic the natural soil water balance. The cover is fundamentally an evapotranspiration (ET) design with a capillary barrier. A 3-hectare drainage lysimeter was embedded in the cover during construction of the disposal cell in 2000. The lysimeter consists of a geo-membrane liner below the capillary barrier that directs percolation water to a monitoring system. Soil water storage is determined by integration of point water content measurements. Meteorological parameters are measured nearby. Plant cover, shrub density, and leaf area index (LAI) are monitored annually. The cover performed well over the 7-year monitoring period (2000-2007). The cumulative percolation was 4.2 mm (0.6 mm yr{sup -1}), satisfying an EPA goal of an average percolation of <3.0 mm yr{sup -1}. Almost all percolation can be attributed to the exceptionally wet winter and spring of 2004-2005 when soil water content slightly exceeded the water storage capacity of the cover. The diversity, percent cover, and LAI of vegetation increased over the monitoring period, although the density of native shrubs that extract water from deeper in the cover has remained less than revegetation targets. DOE and EPA are applying the monitoring results to plan for long-term surveillance and maintenance and to evaluate alternative cover designs for other waste disposal sites. (authors)

  3. Westchester Landfill Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Landfill Biomass Facility Jump to: navigation, search Name Westchester Landfill Biomass Facility Facility Westchester Landfill Sector Biomass Facility Type Landfill Gas Location...

  4. Kiefer Landfill Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location...

  5. Photovoltaics on Landfills in Puerto Rico

    SciTech Connect

    Salasovich, J.; Mosey, G.

    2011-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Commonwealth of Puerto Rico for a feasibility study of m0treAlables on several brownfield sites. The EPA defines a brownfield as 'a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.' All of the brownfields in this study are landfill sites. Citizens of Puerto Rico, city planners, and site managers are interested in redevelopment uses for landfills in Puerto Rico, which are particularly well suited for solar photovoltaic (PV) installation. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed-tilt), crystalline silicon (single-axis tracking), and thin film (fixed-tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. All of the landfills in Puerto Rico were screened according to these criteria in order to determine the sites with the greatest potential. Eight landfills were chosen for site visits based on the screening criteria and location. Because of time constraints and the fact that Puerto Rico is a relatively large island, the eight landfills for this visit were all located in the eastern half of the island. The findings from this report can be applied to landfills in the western half of the island. The economics of a potential PV system on landfills in Puerto Rico depend greatly on the

  6. Livingston Parish Landfill Methane Recovery Project (Feasibility Study)

    SciTech Connect

    White, Steven

    2012-11-15

    The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report

  7. Corrective Action Plan for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada

    SciTech Connect

    Bechtel Nevada

    1998-08-31

    This corrective action plan provides the closure implementation methods for the Area 3 Landfill Complex, Corrective Action Unit (CAU) 424, located at the Tonopah Test Range. The Area 3 Landfill Complex consists of 8 landfill sites, each designated as a separate corrective action site.

  8. Instrumentation of dredge spoil for landfill construction

    SciTech Connect

    Byle, M.J.; McCullough, M.L.; Alexander, R.; Vasuki, N.C.; Langer, J.A.

    1999-07-01

    The Delaware Solid Waste Authority's Northern Solid Waste Management Center is located outside of Wilmington Delaware at Cherry Island, a former dredge disposal site. Dredge spoils, of very low permeability, range in depths up to 30 m (100 feet) which form a natural liner and the foundation for the 140 ha (350-acre) municipal solid waste landfill. The soils beneath the landfill have been extensively instrumented to measure pore pressure, settlement and deflections, using inclinometer casings, standpipe piezometers, vibrating wire piezometers, pneumatic piezometers, settlement plates, liquid settlement gages, total pressure cells and thermistors. The nature of the existing waste and anticipated settlements (up to 6 m (19 feet)) have required some unique installation details. The instrumentation data has been integral in planning the landfilling sequence to maintain perimeter slope stability and has provided key geotechnical parameters needed for operation and construction of the landfill. The performance of the instrumentation and monitoring results are discussed.

  9. Operating a fuel cell using landfill gas

    SciTech Connect

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  10. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Vincent Mullins Landfill in Tucson, Arizona. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Steen, M.; Lisell, L.; Mosey, G.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Vincent Mullins Landfill in Tucson, Arizona, for a feasibility study of renewable energy production. Under the RE-Powering America's Land initiative, the EPA provided funding to the National Renewable Energy Laboratory (NREL) to support the study. NREL provided technical assistance for this project but did not assess environmental conditions at the site beyond those related to the performance of a photovoltaic (PV) system. The purpose of this report is to assess the site for a possible PV installation and estimate the cost and performance of different PV configurations, as well as to recommend financing options that could assist in the implementation of a PV system. In addition to the Vincent Mullins site, four similar landfills in Tucson are included as part of this study.

  11. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  12. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  13. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Kolthoff Landfill in Cleveland, Ohio. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

    2013-06-01

    The U.S. Environmental Protection Agency (EPA), Region 5, in accordance with the RE-Powering America's Land initiative, selected the Kolthoff Landfill site in Cleveland, Ohio, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  14. Climate Change Adaptation Technical Fact Sheet: Landfills and Containment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    as an Element of Site Remediation | Department of Energy Landfills and Containment as an Element of Site Remediation Climate Change Adaptation Technical Fact Sheet: Landfills and Containment as an Element of Site Remediation This fact sheet addresses contaminated site remedies involving source containment systems. It is intended to serve as an adaptation planning tool by (1) providing an overview of potential climate change vulnerabilities and (2) presenting possible adaptation measures that

  15. Landfill Gas | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gas Jump to: navigation, search TODO: Add description List of Landfill Gas Incentives Retrieved from "http:en.openei.orgwindex.php?titleLandfillGas&oldid267173...

  16. Financing Solar PV at Government Sites with PPAs and Public Debt

    Energy.gov [DOE]

    Overview of financing solar photovoltaics at government sties with power purchase agreements and public debt. Author: National Renewable Energy Laboratory

  17. Landfill stabilization focus area: Technology summary

    SciTech Connect

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  18. Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon

    SciTech Connect

    1981-01-01

    In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

  19. Ocean County Landfill Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas...

  20. Pearl Hollow Landfil Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hollow Landfil Biomass Facility Jump to: navigation, search Name Pearl Hollow Landfil Biomass Facility Facility Pearl Hollow Landfil Sector Biomass Facility Type Landfill Gas...

  1. The Future Through the Past: The Use of Analog Sites for Design Criteria and Long Term Performance Assessment of Evapotranspiration Landfill Covers

    SciTech Connect

    Shafer, D. S.; Miller, J. J.; Young, M. H.; Edwards, S. C.; Rawlinson, S. E.

    2002-02-26

    There is growing support for using evapotranspiration (ET) covers for closure of low-level waste (LLW) and other types of waste disposal sites, particularly in the lower latitude arid regions of the western United States. At the Nevada Test Site (NTS), monolayer ET covers are the baseline technology for closure of LLW and mixed LLW cells. To better predict the long-term performance of monolayer ET covers, as well as to identify design criteria that will potentially improve their performance, the properties of, and processes occurring on, analog sites for ET covers on the NTS are being studied. The project is funded through the Subsurface Contaminants Focus Area of the U.S. Department of Energy. Four analog sites on the NTS have been selected to predict performance of ET covers over a 1,000-year compliance period. Two sites are relatively recently disturbed (within the last 50 years) and have been selected to evaluate processes and changes on ET covers for the early period after active cover maintenance is discontinued. Two other sites, late to mid-Holocene in age, are intended as analogs for the end of the compliance period (1,000 years or more); both surfaces are abandoned alluvial/colluvial deposits. The history of the early post-institutional control analog sites are being evaluated by an archaeologist to help determine when the sites were last disturbed or modified, and the mode of disturbance to help set baseline conditions. Similar to other ''landforms,'' ET covers will evolve over time because of pedogenic, biotic, and climatic processes. Properties of analog sites that could affect ET water balance performance will be evaluated to help understand ET cover performance over time.

  2. A case study: Environmental benefit plan for Blydenburgh Landfill

    SciTech Connect

    Hansen, J.M.; Druback, G.W.

    1995-12-31

    The Town of Islip, New York, encompasses 285 square kilometers (110 square miles) along the southern shore of Suffolk County, Long Island. The Town relied upon Blydenburgh Landfill for the disposal of its estimated 290 kilotonnes per year (320,000 tons per year) of municipal solid waste (MSW) without having to contract for off-Long Island hauling and disposal. In 1983, the Long Island Landfill Law was enacted and effectively banned landfilling of raw garbage on most of Long Island after December 18, 1990. The act precluded the economic development of new landfill capacity for the Town. Blydenburgh Landfill was projected to reach capacity in early 1987 and close. To conserve landfill capacity for residential use, the Town prohibited commercial haulers from the landfill in the fall of 1986. In response, the Mobro barge departed Long Island City on March 22, 1987 loaded with commercial MSW that was no longer accepted at the Blydenburgh site. Negative publicity surrounded the Mobro barge and the continuing need to provide for waste disposal. In response, the New York State Department of Environmental Conservation (NYSDEC) and the Town`s Resource Recovery Agency entered into an Order on Consent on May 12, 1987. This allowed for continued operations and a vertical MSW {open_quotes}piggyback{close_quotes} expansion on top of a closed and capped portion of the existing 181,000 square meter (44.8 acre) landfill mound. In addition, the Order on Consent permitted construction of a separate 12,000 square meter (3.0 acre) ash residue vertical piggyback expansion adjacent to the MSW piggyback expansion. Both expansions were designed for and constructed on top of existing landfilled MSW.

  3. INVESTIGATION OF HOLOCENE FAULTING PROPOSED C-746-U LANDFILL EXPANSION

    SciTech Connect

    Lettis, William

    2006-07-01

    This report presents the findings of a fault hazard investigation for the C-746-U landfill's proposed expansion located at the Department of Energy's (DOE) Paducah Gaseous Diffusion Plant (PGDP), in Paducah, Kentucky. The planned expansion is located directly north of the present-day C-746-U landfill. Previous geophysical studies within the PGDP site vicinity interpret possible northeast-striking faults beneath the proposed landfill expansion, although prior to this investigation the existence, locations, and ages of these inferred faults have not been confirmed through independent subsurface exploration. The purpose of this investigation is to assess whether or not Holocene-active fault displacement is present beneath the footprint of the proposed landfill expansion.

  4. WC Landfill Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    WC Landfill Energy Place: New Jersey Product: Joint venture between DCO Energy and Marina Energy to develop landfill gas-to-energy plants in New Jersey. References: WC Landfill...

  5. DOE - Office of Legacy Management -- Middlesex North NJ Site...

    Office of Legacy Management (LM)

    North NJ Site - NJ 05 FUSRAP Considered Sites Middlesex North, NJ Alternate Name(s): Middlesex Landfill Middlesex Municipal Landfill NJ.05-2 NJ.05-4 Location: Mountain Avenue to ...

  6. Landfill Energy Systems LES | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Systems LES Jump to: navigation, search Name: Landfill Energy Systems (LES) Place: Michigan Zip: 48393 Product: Landfill gas to energy systems project developer, gas...

  7. Pathway analysis for a contaminated landfill in Middlesex, New Jersey

    SciTech Connect

    Yu, C.; Merry-Libby, P.; Yang, J.Y.

    1985-01-01

    Under the Formerly Utilized Sites Remedial Action Program, the US Department of Energy began excavating contaminated materials from the Middlesex Municipal landfill in 1984. A total of 16,000 mT of landfill materials covering a 0.2-ha area was excavated, of which 11,000 mT was contaminated and has been transported to the nearby sampling plant site for interim storage. Based on the pathway analysis for the onsite and near-site resident scenarios, the radiation dose rates and radionuclide concentrations in groundwater would be below the regulatory requirements for both the short-term and long-term scenarios. Hence, the potential health risks to maximally exposed individuals due to radioactive releases from the Middlesex landfill would be insignificant.

  8. From Chaos to Content: An Integrated Approach to Government Web Sites

    SciTech Connect

    Demuth, Nora H.; Knudson, Christa K.

    2005-01-03

    The web development team of the Environmental Technology Directorate (ETD) at the U.S. Department of Energy’s Pacific Northwest National Laboratory (PNNL) redesigned the ETD website as a database-driven system, powered by the newly designed ETD Common Information System (ETD-CIS). The ETD website was redesigned in response to an analysis that showed the previous ETD websites were inefficient, costly, and lacking in a consistent focus. Redesigned and newly created websites based on a new ETD template provide a consistent image, meet or exceed accessibility standards, and are linked through a common database. The protocols used in developing the ETD website support integration of further organizational sites and facilitate internal use by staff and training on ETD website development and maintenance. Other PNNL organizations have approached the ETD web development team with an interest in applying the methods established by the ETD system. The ETD system protocol could potentially be used by other DOE laboratories to improve their website efficiency and content focus. “The tools by which we share science information must be as extraordinary as the information itself.[ ]” – DOE Science Director Raymond Orbach

  9. Landfilling ash/sludge mixtures

    SciTech Connect

    Benoit, J.; Eighmy, T.T.; Crannell, B.S.

    1999-10-01

    The geotechnical properties of a mixture of municipal solid waste incinerator bottom ash and municipal wastewater treatment plant sludge was investigated for a proposed ash/sludge secure landfill. The components as well as mixtures ranging from 10:1 to 5:1 (ash:sludge, by volume) were evaluated, where appropriate, for a number of geotechnical index and mechanical properties including particle size, water content, specific gravity, density-moisture relationships, shear strength, and compressibility. The results from a compactibility study and stability analysis of the proposed landfill were used to help approve a landfill codisposal concept; a full-scale facility was constructed and is currently operating successfully.

  10. Blackburn Landfill Co-Generation Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Blackburn Landfill Co-Generation Biomass Facility Jump to: navigation, search Name Blackburn Landfill Co-Generation Biomass Facility Facility Blackburn Landfill Co-Generation...

  11. Hartford Landfill Gas Utilization Proj Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Hartford Landfill Gas Utilization Proj Biomass Facility Facility Hartford Landfill Gas Utilization...

  12. Albany Landfill Gas Utilization Project Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Albany Landfill Gas Utilization Project Biomass Facility Facility Albany Landfill Gas Utilization...

  13. Balefill Landfill Gas Utilization Proj Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Balefill Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Balefill Landfill Gas Utilization Proj Biomass Facility Facility Balefill Landfill Gas...

  14. Woodland Landfill Gas Recovery Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass...

  15. Lopez Landfill Gas Utilization Project Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Lopez Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Lopez Landfill Gas Utilization Project Biomass Facility Facility Lopez Landfill Gas...

  16. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant...

  17. Spadra Landfill Gas to Energy Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Spadra Landfill Gas to Energy Biomass Facility Jump to: navigation, search Name Spadra Landfill Gas to Energy Biomass Facility Facility Spadra Landfill Gas to Energy Sector Biomass...

  18. Miramar Landfill Metro Biosolids Center Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Miramar Landfill Metro Biosolids Center Biomass Facility Jump to: navigation, search Name Miramar Landfill Metro Biosolids Center Biomass Facility Facility Miramar Landfill Metro...

  19. EA-1997: Construction Landfill Expansion, Pantex Plant, Amarillo...

    Office of Environmental Management (EM)

    7: Construction Landfill Expansion, Pantex Plant, Amarillo, Texas EA-1997: Construction Landfill Expansion, Pantex Plant, Amarillo, Texas SUMMARY Construction Landfill Expansion,...

  20. Byxbee Park Sanitary Landfill Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Byxbee Park Sanitary Landfill Biomass Facility Jump to: navigation, search Name Byxbee Park Sanitary Landfill Biomass Facility Facility Byxbee Park Sanitary Landfill Sector Biomass...

  1. Powering Microturbines With Landfill Gas, October 2002 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants 7.4 Landfill Methane Utilization CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market ...

  2. Prima Desheha Landfill Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Prima Desheha Landfill Biomass Facility Jump to: navigation, search Name Prima Desheha Landfill Biomass Facility Facility Prima Desheha Landfill Sector Biomass Facility Type...

  3. Delineation of landfill migration boundaries using chemical surrogates

    SciTech Connect

    Thielen, D.R.; Foreman, P.S.; Davis, A.; Wyeth, R.

    1987-02-01

    A purge/trap procedures for the determination of monochlorobenzene and monochlorotoluene at the 10 ng/g level in soil is described. The advantages of a heated and stirred vessel for sample preparation are demonstrated. This method was applied to samples from the Hyde Park landfill site in Niagara Falls, NY, and the results were used to define chemical migration is illustrated with both two- and three-dimensional plotting techniques. This study is a first phase in the development of a remedial plan for the Hyde Park landfill.

  4. Sanitary landfill groundwater monitoring report. Third quarter 1995

    SciTech Connect

    1995-11-01

    This report contains analytical data for samples taken during third quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  5. Sanitary Landfill Groundwater Monitoring Report. Second Quarter 1995

    SciTech Connect

    Chase, J.A.

    1995-08-01

    This report contains analytical data for samples taken during second quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

  6. Comparison of slope stability in two Brazilian municipal landfills

    SciTech Connect

    Gharabaghi, B. Singh, M.K.; Inkratas, C. Fleming, I.R. McBean, E.

    2008-07-01

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use 'generic' published shear strength envelopes for municipal waste. Application of the slope stability

  7. Risk mitigation methodology for solid waste landfills. Doctoral thesis

    SciTech Connect

    Nixon, W.B.

    1995-05-01

    Several recent models have attempted to simulate or assess the probability and consequences of the leakage of aqueous contaminant leakage from solid waste landfills. These models incorporate common factors, including climatological and geological characteristics. Each model, however, employs a unique approach to the problem, assigns different relative weights to factors, and relies upon extrapolated small-scale experimental data and/or subjective judgment in predicting the full-scale landfill failure mechanisms leading to contaminant migration. As a result, no two models are likely to equally assess a given landfill, and no one model has been validated as a predictor of long-term performance. The United States Air Force maintains a database for characterization of potential hazardous waste sites. Records include more than 500 landfills, providing such information as waste, soil, aquifer, monitoring location data, and the results of sample testing. Through analysis of this information, nearly 300 landfills were assessed to have sufficiently, partially, or inadequately contained hazardous constituents of the wastes placed within them.

  8. Estimation of landfill emission lifespan using process oriented modeling

    SciTech Connect

    Ustohalova, Veronika . E-mail: veronika.ustohalova@uni-essen.de; Ricken, Tim; Widmann, Renatus

    2006-07-01

    Depending on the particular pollutants emitted, landfills may require service activities lasting from hundreds to thousands of years. Flexible tools allowing long-term predictions of emissions are of key importance to determine the nature and expected duration of maintenance and post-closure activities. A highly capable option represents predictions based on models and verified by experiments that are fast, flexible and allow for the comparison of various possible operation scenarios in order to find the most appropriate one. The intention of the presented work was to develop a experimentally verified multi-dimensional predictive model capable of quantifying and estimating processes taking place in landfill sites where coupled process description allows precise time and space resolution. This constitutive 2-dimensional model is based on the macromechanical theory of porous media (TPM) for a saturated thermo-elastic porous body. The model was used to simulate simultaneously occurring processes: organic phase transition, gas emissions, heat transport, and settlement behavior on a long time scale for municipal solid waste deposited in a landfill. The relationships between the properties (composition, pore structure) of a landfill and the conversion and multi-phase transport phenomena inside it were experimentally determined. In this paper, we present both the theoretical background of the model and the results of the simulations at one single point as well as in a vertical landfill cross section.

  9. Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism

    SciTech Connect

    El-Fadel, Mutasem; Abi-Esber, Layale; Salhab, Samer

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

  10. Corrective action investigation plan for CAU Number 453: Area 9 Landfill, Tonopah Test Range

    SciTech Connect

    1997-05-14

    This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and criteria for conducting site investigation activities at the Area 9 Landfill, Corrective Action Unit (CAU) 453/Corrective Action (CAS) 09-55-001-0952, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Area 9 Landfill is located northwest of Area 9 on the TTR. The landfill cells associated with CAU 453 were excavated to receive waste generated from the daily operations conducted at Area 9 and from range cleanup which occurred after test activities.

  11. Corrective action investigation plan for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada

    SciTech Connect

    1997-04-01

    This Correction Action Investigation Plan contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Area 3 Landfill Complex, CAU No. 424, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, nevada. The CAU 424 is comprised of eight individual landfill sites that are located around and within the perimeter of the Area 3 Compound. Due to the unregulated disposal activities commonly associated with early landfill operations, an investigation will be conducted at each CAS to complete the following tasks: identify the presence and nature of possible contaminant migration from the landfills; determine the vertical and lateral extent of possible contaminant migration; ascertain the potential impact to human health and the environment; and provide sufficient information and data to develop and evaluate appropriate corrective action strategies for each CAS.

  12. Sanitary landfill groundwater monitoring data

    SciTech Connect

    Thompson, C.Y.

    1992-05-01

    This report for first quarter 1992 contains sanitary landfill groundwater monitoring data for the Savannah River Plant. The data tables presented in this report are copies of draft analytical results and therefore do contain errors. These errors will be corrected when the finalized data is received from the laboratory.

  13. Case studies in alternative landfill design

    SciTech Connect

    Barbagallo, J.C.; Druback, G.W.

    1995-12-31

    In the past, landfills or {open_quotes}dumps{close_quotes} were not highly regulated and typically did not require a detailed engineering design. However, landfills are no longer just holes in the ground, and landfill closures entail more than just spreading some dirt on top of piles of garbage. Today landfill design is a highly regulated, complex design effort that integrates soils and geosynthetics into systems aimed at providing long-term protection for the environment and surrounding communities. Integrating these complex design systems into the available landscape and exising landfill configuration often requires the designer go beyond the {open_quotes}typical{close_quotes} landfill and landfill closure design to satisfy regulations and provide cost-effective solutions.

  14. Data summary of municipal solid waste management alternatives. Volume 8, Appendix F, Landfills

    SciTech Connect

    1992-10-01

    While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community`s solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a ``transition`` document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

  15. Data Summary of Municipal Solid Waste Management Alternatives. Volume VIII: Appendix F - Landfills

    SciTech Connect

    1992-10-01

    While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community's solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a transition'' document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

  16. Fluxes of methane between landfills and the atmosphere: Natural and engineered controls

    SciTech Connect

    Bogner, J.; Meadows, M.; Czepiel, P.

    1997-08-01

    Field measurement of landfill methane emissions indicates natural variability spanning more than 2 seven orders of magnitude, from approximately 0.0004 to more than 4000 g m{sub -2} day{sup -1}. This wide range reflects net emissions resulting from production (methanogenesis), consumption (methanotrophic oxidation), and gaseous transport processes. The determination of an {open_quotes}average{close_quotes} emission rate for a given field site requires sampling designs and statistical techniques which consider spatial and temporal variability. Moreover, particularly at sites with pumped gas recovery systems, it is possible for methanotrophic microorganisms in aerated cover soils to oxidize all of the methane from landfill sources below and, additionally, to oxidize methane diffusing into cover soils from atmospheric sources above. In such cases, a reversed soil gas concentration gradient is observed in shallow cover soils, indicating bidirectional diffusional transport to the depth of optimum methane oxidation. Rates of landfill methane oxidation from field and laboratory incubation studies range up to 166 g m{sup -2} day{sup -1} among the highest for any natural setting, providing an effective natural control on net emissions. Estimates of worldwide landfill methane emissions to the atmosphere have ranged from 9 to 70 Tg yr{sup -1}, differing mainly in assumed methane yields from estimated quantities of landfilled refuse. At highly controlled landfill sites in developed countries, landfill methane is often collected via vertical wells or horizontal collectors. Recovery of landfill methane through engineered systems can provide both environmental and energy benefits by mitigating subsurface migration, reducing surface emissions, and providing an alternative energy resource for industrial boiler use, on-site electrical generation, or upgrading to a substitute natural gas.

  17. Knowledge based ranking algorithm for comparative assessment of post-closure care needs of closed landfills

    SciTech Connect

    Sizirici, Banu; Tansel, Berrin; Kumar, Vivek

    2011-06-15

    Post-closure care (PCC) activities at landfills include cap maintenance; water quality monitoring; maintenance and monitoring of the gas collection/control system, leachate collection system, groundwater monitoring wells, and surface water management system; and general site maintenance. The objective of this study was to develop an integrated data and knowledge based decision making tool for preliminary estimation of PCC needs at closed landfills. To develop the decision making tool, 11 categories of parameters were identified as critical areas which could affect future PCC needs. Each category was further analyzed by detailed questions which could be answered with limited data and knowledge about the site, its history, location, and site specific characteristics. Depending on the existing knowledge base, a score was assigned to each question (on a scale 1-10, as 1 being the best and 10 being the worst). Each category was also assigned a weight based on its relative importance on the site conditions and PCC needs. The overall landfill score was obtained from the total weighted sum attained. Based on the overall score, landfill conditions could be categorized as critical, acceptable, or good. Critical condition indicates that the landfill may be a threat to the human health and the environment and necessary steps should be taken. Acceptable condition indicates that the landfill is currently stable and the monitoring should be continued. Good condition indicates that the landfill is stable and the monitoring activities can be reduced in the future. The knowledge base algorithm was applied to two case study landfills for preliminary assessment of PCC performance.

  18. Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill

    SciTech Connect

    Salasovich, J.; Mosey, G.

    2012-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Johnson County Landfill in Shawnee, Kansas, for a feasibility study of renewable energy production. Citizens of Shawnee, city planners, and site managers are interested in redevelopment uses for landfills in Kansas that are particularly well suited for grid-tied solar photovoltaic (PV) installation. This report assesses the Johnson County Landfill for possible grid-tied PV installations and estimates the cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. The report findings are applicable to other landfills in the surrounding area.

  19. Certification report for final closure of Y-12 Centralized Sanitary Landfill II, Oak Ridge, Tennessee

    SciTech Connect

    1995-12-31

    This report represents the Geotek Engineering Company, Inc., (Geotek) record of activities to support certification of final closure Of the subject Y-12 Centralized Sanitary Landfill II. Ex as noted herein, final closure of the landfill was completed in accordance with the Y-12 Centralized Sanitary Landfill 11 Closure/Post Closure Plan, Revision 2, submitted by the US Department of Energy (DOE) to the Tennessee Department of Environment and Conservation (TDEC) on April 14, 1992, and approved by TDEC on May 27, 1994 (the ``Closure Plan``). minor modification to the Closure Plan allowing partial closure of the Y-12 Centralized Sanitary Landfill II (Phase 1) was approved by TDEC on August 3, 1994. The Phase I portion of the closure for the subject landfill was completed on March 25, 1995. A closure certification report entitled Certification Report for Partial Closure of Y-12 Centralized Sanitary Landfill II was submitted to Lockheed Martin Energy Systems, Inc., (LMES) on March 28, 1995. The final closure represents the completion of the closure activities for the entire Y-12 Centralized Sanitary Landfill II Site. The contents of this report and accompanying certification are based on observations by Geotek engineers and geologists during closure activities and on review of reports, records, laboratory test results, and other information furnished to Geotek by LMES.

  20. Modified biochemical methane potential (BMP) assays to assess biodegradation potential of landfilled refuse

    SciTech Connect

    Bogner, J.E.; Rose, C.; Piorkowski, R.

    1989-01-01

    Modified Biochemical Methane Potential (BMP) assays were used to assess biogas production potential of solid landfill samples. In landfill samples with visible soil content, moisture addition alone was generally as effective at stimulating biogas production as the addition of a comprehensive nutrient media. In a variety of samples from humid and semiarid landfills, addition of an aqueous nutrient media was the most effective stimulant for biogas production; however, moisture addition was almost as effective for most samples, suggesting that water addition would be the most cost-effective field approach. Onset of methanogenesis was slower in fresh refuse samples (even when inoculated with anaerobic digester sludge) than in landfill samples, indicating that the soil into which materials are landfilled is a major source of microorganisms. High volatile solids loading in fresh refuse and landfill assays retarded methanogenesis. A comparison of anaerobic and aerobic sample handling techniques showed no significant differences with regard to onset of methanogenesis and total gas production. The technique shows initial promise with regard to replication and reproducibility of results and could be a meaningful addition to landfill site evaluations where commercial gas recovery is anticipated. The BMP technique could also be adapted to assess anaerobic biodegradability of other solid waste materials for conventional anaerobic digestion applications. 9 refs., 6 figs., 2 tabs.

  1. Public health assessment for JIS Landfill, South Brunswick, Middlesex County, New Jersey, Region 2. Cerclis No. NJD97400998. addendum. Final report

    SciTech Connect

    1995-08-25

    The Jones Industrial Services (JIS) Landfill site is an approximately eleven acre landfill located on a 24 acre site in South Brunswick Town, Middlesex County, New Jersey. The landfill records document that sludges, solvents, pesticides, and industrial wastes, some of which are toxic and/or hazardous substances were accepted at the landfill from the 1960`s through the early 1970`s. On-site and off-site soil and groundwater is contaminated with volatile organic compounds (VOCs), petroleum hydrocarbons, polychlorinated biphenyls, pesticides, and heavy metals. The landfill may have posed a public health hazard in the past, since the site information indicates that human exposure to volatile organic compounds (VOCs) and metals in domestic drinking water wells may have occurred. However, available data do not indicate that humans are presently being exposed to contaminants at levels expected to cause adverse health effects.

  2. Sanitary Landfill Groundwater Monitoring Report (Data Only) - First Quarter 1999

    SciTech Connect

    Chase, J.

    1999-05-26

    This report contains analytical data for samples taken during First Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). This report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the U.S. Environmental Proteciton Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  3. Photo Gallery - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    landfill Page: 1 2 3 4 5

  4. Landfill reduction experience in The Netherlands

    SciTech Connect

    Scharff, Heijo

    2014-11-15

    Highlights: • ‘Zero waste’ initiatives never consider risks, side effects or experience of achieved low levels of landfill. • This paper provides insight into what works and what not. • Where strong gradients in regulations and tax occur between countries, waste will find its way to landfills across borders. • Strong landfill reduction can create a fierce competition over the remaining waste to be landfilled resulting in losses. • At some point a public organisation should take responsibility for the operation of a ‘safety net’ in waste management. - Abstract: Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the

  5. Evaluation of methane emissions from Palermo municipal landfill: Comparison between field measurements and models

    SciTech Connect

    Di Bella, Gaetano; Di Trapani, Daniele; Viviani, Gaspare

    2011-08-15

    Methane (CH{sub 4}) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH{sub 4} is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH{sub 4} emissions from landfill sites and the quantification of CH{sub 4} emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH{sub 4} diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH{sub 4} diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH{sub 4} contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH{sub 4} mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.

  6. Feasibility Study of Solar Photovoltaics on Landfills in Puerto Rico (Second Study)

    SciTech Connect

    Salasovich, J.; Mosey, G.

    2011-08-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a solar photovoltaics (PV) system on landfill sites in Puerto Rico. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). The report outlines financing options that could assist in the implementation of a system. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system. The landfills and sites considered in this report were all determined feasible areas in which to implement solar PV systems.

  7. Remediation of Highland Drive Landfill: Technical Challenges of Segregating Co-Mingled LLRW and Municipal Solid Waste in an Urbanized Area - 13319

    SciTech Connect

    Daniel, Jeff; Lawrence, Dave; Case, Glenn; Fergusson Jones, Andrea

    2013-07-01

    Highland Drive Landfill is an inactive Municipal Solid Waste (MSW) Landfill which received waste from the 1940's until its closure in 1991. During a portion of its active life, the Landfill received low-level radioactive waste (LLRW) which currently exists both in a defined layer and co-mingled with MSW. Remediation of this site to remove the LLRW to meet established cleanup criteria, forms part of the Port Hope Project being undertaken by Atomic Energy Canada Limited (AECL) and Public Works and Government Services Canada (PWGSC) as part of the Port Hope Area Initiative (PHAI). The total volume of LLRW and co-mingled LLRW/MSW estimated to require removal from the Highland Drive Landfill is approximately 51,900 cubic metres (m{sup 3}). The segregation and removal of LLRW at the Highland Drive Landfill presents a number of unique technical challenges due to the co-mingled waste and location of the Landfill in an urbanized area. Key challenges addressed as part of the design process included: delineation of the extent of LLRW, development of cut lines, and estimation of the quantity of co-mingled LLRW in a heterogeneous matrix; protection of adjacent receptors in a manner which would not impact the use of adjacent facilities which include residences, a recreational facility, and a school; coordination and phasing of the work to allow management of six separate material streams including clean soil, MSW, co-mingled LLRW/MSW, LLRW, un-impacted water, and impacted water/leachate within a confined environment; and development of a multi-tiered and adaptive program of monitoring and control measures for odour, dust, and water including assessment of risk of exceedance of monitoring criteria. In addition to ensuring public safety and protection of the environment during remedy implementation, significant effort in the design process was paid to balancing the advantages of increased certainty, including higher production rates, against the costs of attaining increased

  8. I 95 Landfill Phase II Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    I 95 Landfill Phase II Biomass Facility Jump to: navigation, search Name I 95 Landfill Phase II Biomass Facility Facility I 95 Landfill Phase II Sector Biomass Facility Type...

  9. Milliken Landfill Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleMillikenLandfillBiomassFacility&oldid397777" Feedback Contact needs updating Image needs updating...

  10. Acme Landfill Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleAcmeLandfillBiomassFacility&oldid397115" Feedback Contact needs updating Image needs updating...

  11. Colton Landfill Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleColtonLandfillBiomassFacility&oldid397336" Feedback Contact needs updating Image needs updating...

  12. Girvin Landfill Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleGirvinLandfillBiomassFacility&oldid397500" Feedback Contact needs updating Image needs updating...

  13. EM Landfill Workshop Report - November 21, 2008

    Office of Environmental Management (EM)

    ... However, most of the information on transport of contaminants through liners pertains to constituents (organic and inorganic) derived from municipal and hazardous waste landfills. ...

  14. Superfund record of decision (EPA Region 2): Sayreville Landfill, Operable Unit 2, Sayreville, NJ September 23, 1998

    SciTech Connect

    1999-03-01

    This decision document, prepared by the New Jersey Department of Environmental Protection (NJDEP) as lead agency, presents the selected remedy for the Sayreville Landfill, located in the Borough of Sayreville, Middlesex County, New Jersey. The selected remedy is No Further Action with Monitoring for the ground water and No Further Action for the surface water and sediments. The major component of the selected remedy includes: Monitoring of the wells surrounding the landfill to verify the effectiveness of the landfill cap to ensure that the landfill is not contaminating the ground water; Implementation of a Deed Notice to prevent any intrusive activities into the landfill cap; and Implementation of a Classification Exception Area (CEA) for the shallow aquifer in the vicinity of the site.

  15. Converting Limbo Lands to Energy-Generating Stations: Renewable Energy Technologies on Underused, Formerly Contaminated Sites

    SciTech Connect

    Mosey, G.; Heimiller, D.; Dahle, D.; Vimmerstedt, L.; Brady-Sabeff, L.

    2007-10-01

    This report addresses the potential for using 'Limbo Lands' (underused, formerly contaminated sites, landfills, brownfields, abandoned mine lands, etc. ) as sites for renewable energy generating stations.

  16. Modeling Analysis of Biosparging at the Sanitary Landfill (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Modeling Analysis of Biosparging at the Sanitary Landfill Citation Details In-Document Search Title: Modeling Analysis of Biosparging at the Sanitary Landfill ...

  17. US EPA Landfill Methane Outreach Program | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EPA Landfill Methane Outreach Program Jump to: navigation, search Name US EPA Landfill Methane Outreach Program AgencyCompany Organization United States Environmental Protection...

  18. Penrose Landfill Gas Conversion LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Page Edit with form History Penrose Landfill Gas Conversion LLC Jump to: navigation, search Name: Penrose Landfill Gas Conversion LLC Place: Los Angeles, California Product: Owner...

  19. Alternative Fuels Data Center: Renewable Natural Gas From Landfill...

    Alternative Fuels and Advanced Vehicles Data Center

    Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on ...

  20. Alternative Fuels Data Center: Landfills Convert Biogas Into...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Landfills Convert Biogas Into Renewable Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Facebook Tweet ...

  1. Microsoft Word - Final TTR Landfill Extension EA--December 2006...

    National Nuclear Security Administration (NNSA)

    ... Once the landfill reaches capacity, sources of air pollution associated with the landfill would no longer be present. Waste transport vehicles would cause minor increases in car- ...

  2. Changes in Vegetation at the Monticello, Utah, Disposal Site...

    Energy Saver

    the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Monitoring the Performance of an Alternative Cover Using Caisson...

  3. Formerly Utilized Sites Remedial Action Program Fact Sheet

    Energy.gov [DOE] (indexed site)

    Ammunition Plant Seaway Industrial Park Linde Air Products Tonawanda Landfill Niagara Falls Storage Site Guterl Specialty Steel Colonie Shallow Land Disposal Area Shpack...

  4. Cost savings associated with landfilling wastes containing very low levels of uranium

    SciTech Connect

    Boggs, C.J.; Shaddoan, W.T.

    1996-03-01

    The Paducah Gaseous Diffusion Plant (PGDP) has operated captive landfills (both residential and construction/demolition debris) in accordance with the Commonwealth of Kentucky regulations since the early 1980s. Typical waste streams allowed in these landfills include nonhazardous industrial and municipal solid waste (such as paper, plastic, cardboard, cafeteria waste, clothing, wood, asbestos, fly ash, metals, and construction debris). In July 1992, the U.S. Environmental Protection Agency issued new requirements for the disposal of sanitary wastes in a {open_quotes}contained landfill.{close_quotes} These requirements were promulgated in the 401 Kentucky Administrative Record Chapters 47 and 48 that became effective 30 June 1995. The requirements for a new contained landfill include a synthetic liner made of high-density polyethylene in addition to the traditional 1-meter (3-foot) clay liner and a leachate collection system. A new landfill at Paducah would accept waste streams similar to those that have been accepted in the past. The permit for the previously existing landfills did not include radioactivity limits; instead, these levels were administratively controlled. Typically, if radioactivity was detected above background levels, the waste was classified as low-level waste (LLW), which would be sent off-site for disposal.

  5. 488-4D ASH LANDFILL CLOSURE CAP HELP MODELING

    SciTech Connect

    Phifer, M.

    2014-11-17

    At the request of Area Completion Projects (ACP) in support of the 488-4D Landfill closure, the Savannah River National Laboratory (SRNL) has performed Hydrologic Evaluation of Landfill Performance (HELP) modeling of the planned 488-4D Ash Landfill closure cap to ensure that the South Carolina Department of Health and Environmental Control (SCDHEC) limit of no more than 12 inches of head on top of the barrier layer (saturated hydraulic conductivity of no more than 1.0E-05 cm/s) in association with a 25-year, 24-hour storm event is not projected to be exceeded. Based upon Weber 1998 a 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches. The results of the HELP modeling indicate that the greatest peak daily head on top of the barrier layer (i.e. geosynthetic clay liner (GCL) or high density polyethylene (HDPE) geomembrane) for any of the runs made was 0.079 inches associated with a peak daily precipitation of 6.16 inches. This is well below the SCDHEC limit of 12 inches.

  6. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities

    SciTech Connect

    Gutiérrez-Gutiérrez, Silvia C.; Coulon, Frédéric; Jiang, Ying; Wagland, Stuart

    2015-08-15

    Highlights: • Samples from multiple core drills were obtained from 4× landfill sites in the UK. • Each sample analysed for rare earth elements, critical metals and valuable metals. • Two stage microwave digestion method ensuring high yield. • High quantities of copper and aluminium were observed in the soil layers of landfill. • Across 4× landfills aluminium and copper present has a value of around $400 million. - Abstract: Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58 ± 6 mg kg{sup −1} for REEs comprising 44 ± 8 mg kg{sup −1} for light REEs, 11 ± 2 mg kg{sup −1} for heavy REEs and 3 ± 1 mg kg{sup −1} for Scandium (Sc) and 3 ± 1.0 mg kg{sup −1} of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are

  7. Separation of petroleum refinery wastes from a landfill by liquid chromatography

    SciTech Connect

    Mazzocco, D.L.; Willis, W.V.

    1995-12-01

    Large amounts of acidic petroleum refinery wastes (PRW) have been buried in landfills during the period 1930-1950. Many of the compounds IN PRW have not identified. Organosulfur compounds constitute an important fraction of these wastes, and are significant in site closure planning and cleanup operations. Some are difficult analytes because they undergo facile conversions during standard methods of sample preparation and analysis. A mild liquid chromatographic method using cyanopropyl and octadecyl stationary phases and a modified hexane mobile phase was found to separate PRW into five major groups, two of which contain sulfur compounds. GC/MS analysis of collected HPLC fractions identified over 80% of the compounds present. Wastes from three different landfills used in the period 1940-1950 show major similarities, but differ in relative composition. Implications for remediation of PRW in these and similar landfills designated as Superfund sites are discussed.

  8. Inferred performance of surface hydraulic barriers from landfill operational data

    SciTech Connect

    Gross, B.A.; Bonaparte, R.; Othman, M.A.

    1997-12-31

    There are few published data on the field performance of surface hydraulic barriers (SHBs) used in waste containment or remediation applications. In contrast, operational data for liner systems used beneath landfills are widely available. These data are frequently collected and reported as a facility permit condition. This paper uses leachate collection system (LCS) and leak detection system (LDS) liquid flow rate and chemical quality data collected from modem landfill double-liner systems to infer the likely hydraulic performance of SHBs. Operational data for over 200 waste management unit liner systems are currently being collected and evaluated by the authors as part of an ongoing research investigation for the United States Environmental Protection Agency (USEPA). The top liner of the double-liner system for the units is either a geomembrane (GMB) alone, geomembrane overlying a geosynthetic clay liner (GMB/GCL), or geomembrane overlying a compacted clay liner (GMB/CCL). In this paper, select data from the USEPA study are used to: (i) infer the likely efficiencies of SHBs incorporating GMBs and overlain by drainage layers; and (ii) evaluate the effectiveness of SHBs in reducing water infiltration into, and drainage from, the underlying waste (i.e., source control). SHB efficiencies are inferred from calculated landfill liner efficiencies and then used to estimate average water percolation rates through SHBs as a function of site average annual rainfall. The effectiveness of SHBs for source control is investigated by comparing LCS liquid flow rates for open and closed landfill cells. The LCS flow rates for closed cells are also compared to the estimated average water percolation rates through SHBs presented in the paper.

  9. Health assessment for Hooker Chemical (102nd Street Landfill), Niagara Falls, New York, Region 2. CERCLIS No. NYD980506810. Preliminary report

    SciTech Connect

    Not Available

    1989-06-01

    The 102nd Street Landfill is two sites that comprise 22 acres. Occidental Chemical Corporation (OCC) and its predecessor, the Oldbury Electrochemical Company, deposited approximately 23,500 tons of mixed organic solvents, organic and inorganic phosphates, and related chemicals. Included in the site are approximately 300 tons of hexachlorocyclohexane process cake, including lindane. In addition, brine sludge, fly ash, electrochemical cell parts and related equipment in unknown quantities were dumped at the site. On-site contamination of the 102nd Street Landfill includes soils contaminated with non-aqueous phase liquids on both portions of the Landfill. Off-site contamination, based on current studies, results from contaminated ground-water leaching into the Niagara River which causes contamination of the river water, sediments, and aquatic organisms, including fish. The 102nd Street Landfill continues to represent a potential public health threat.

  10. Public health assessment for J and L landfill, Avon Township, Oakland County, Michigan, Region 5. CERCLIS No. MID980609440. Final report

    SciTech Connect

    Not Available

    1993-10-19

    The U.S. Environmental Protection Agency (U.S. EPA) placed the J L Landfill site on the National Priorities List (NPL) on March 31, 1989. Beginning in 1951, steel-making firms, including Jones Laughlin, used the site as a landfill for slag, dust from air cleaners at their plants, and general rubbish. By 1980, the landfill had been filled to capacity, and Jones Laughlin closed and coverd the site. The cover on the landfill is inadequate by current standards. Surface soils contain concentrations of metals that are of health concern. The groundwater contains metals and organic chemicals at concentrations of health concern, some of which may be attributable to other sites in the area. The site poses no apparent public health hazard under present conditions, however, several potential exposure pathways may pose hazards should they be completed in the future.

  11. Agencies plan continued DOE landfill remediation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Agencies plan continued DOE landfill remediation The U.S. Department of Energy (DOE), ... The Phase 1 Remedial DesignRemedial Action Work Plan for Operable Unit 7-1314 document ...

  12. Geophysical exploration and hydrologic impact of the closed Gracelawn landfill in Auburn, ME

    SciTech Connect

    Wisniewski, D. . Geology Dept.)

    1993-03-01

    Several geophysical methods were used over portions of the Gracelawn landfill, in Auburn, Maine to determine the surface boundaries and subsurface structure of this closed landfill, and to determine the landfill's effects on groundwater quality. The landfill was originally a sand and gravel pit excavated in the 1950's and early 1960's, and was used as a landfill from 1964--1977. The site is unlined, has a clay cap, and has been graded and developed as a baseball park. Two seismic refraction lines were performed to obtain a minimum depth to bedrock of 80 m. Seismic velocities of methane gas-saturated trash ranged from 250 to 340 m/s, and sand velocities are approximately 800 m/s. Two electrical resistivity Wenner surveys over the trash yielded the depth to saturated material and thickness of the trash layers. Resistivity values for dry refuse ranged from 1,000-2,000 [Omega]*m. A third electrical resistivity survey yielded the thickness of unsaturated and saturated sands bordering the landfill. Dry sands were found to have a resistivity of 1,000 [Omega]*m, and saturated sands a resistivity of 500 [Omega]*m. Gravity and magnetic survey grids across the site revealed anomalies which were mapped to illustrate the irregular morphology of the buried trash as well as its surface boundaries. Residual magnetic anomalies are on the order of 2,000 nT. Residual gravity anomalies are up to 5 mGal. Groundwater elevations determined by the geophysical survey, combined with a survey of existing water monitoring well logs, indicate that the groundwater flow in the sand and gravel aquifer is to the southeast, away from the public water supply, Lake Auburn, which lies to the north of the site. However, correlations between the bedrock fracture analysis and the geophysical survey illustrate that there is potential for contamination of Lake Auburn via the bedrock aquifer.

  13. Landfill aeration worldwide: Concepts, indications and findings

    SciTech Connect

    Ritzkowski, M.; Stegmann, R.

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Different landfill aeration concepts and accordant application areas are described. Black-Right-Pointing-Pointer Examples of full scale projects are provided for Europe, North-America and Asia. Black-Right-Pointing-Pointer Major project findings are summarised, including prospects and limitations. Black-Right-Pointing-Pointer Inconsistencies between laboratory and full scale results have been elaborated. Black-Right-Pointing-Pointer An explanatory approach in connection with the inconsistencies is provided. - Abstract: The creation of sustainable landfills is a fundamental goal in waste management worldwide. In this connection landfill aeration contributes towards an accelerated, controlled and sustainable conversion of conventional anaerobic landfills into a biological stabilized state associated with a minimised emission potential. The technology has been successfully applied to landfills in Europe, North America and Asia, following different strategies depending on the geographical region, the specific legislation and the available financial resources. Furthermore, methodologies for the incorporation of landfill aeration into the carbon trade mechanisms have been developed in recent years. This manuscript gives an overview on existing concepts for landfill aeration; their application ranges and specifications. For all of the described concepts examples from different countries worldwide are provided, including details regarding their potentials and limitations. Some of the most important findings from these aeration projects are summarised and future research needs have been identified. It becomes apparent that there is a great demand for a systematisation of the available results and implications in order to further develop and optimise this very promising technology. The IWWG (International Waste Working Group) Task Group 'Landfill Aeration' contributes towards the achievement of this goal.

  14. Value engineering: An alternative liner system at the La Paz County Regional Landfill

    SciTech Connect

    Shafer, A.L.; Purdy, S.; Tempelis, D.

    1997-11-01

    The La Paz County Regional Landfill is a 65 hectare (160 acre) municipal waste site located near the western border of Arizona between the cities of Parker and Quartzsite. The site is operated under a public/private partnership between the County of La Paz and Browning-Ferris Industries, Inc. (BFI). The County owns the landfill and infrastructure and BFI is responsible for facility improvements, environmental compliance, and daily operations. Following the initial permitting and construction of the first landfill cell, a value engineering review was conducted on the site design and permit requirements. Based on this review, substantial cost saving opportunities were identified. In order to implement the value engineering ideas, the site permit was modified and a new Solid Waste Facilities Plan was Submitted to the Arizona Department of Environmental Quality. This paper discusses the value engineering modifications that were conducted, the revisions to the permits, and the relative cost savings that were realized. The areas addressed include the liner system design, closure design, disposal capacity, and operations plan. Through the use of alternative liners a cost savings of well over 50 percent (as compared to the original permit) will be realized over the life of the landfill.

  15. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  16. Sanitary Landfill Groundwater Monitoring Report - Fourth Quarter 1998 and 1998 Summary

    SciTech Connect

    Chase, J.

    1999-04-09

    A maximum of fifty-three wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water permit and as part of the SRS Groundwater Monitoring Program.

  17. Open Government | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    About this site » Open Government Open Government Your Government "On his first day in office, President Obama signed the Memorandum on Transparency and Open Government and made clear his commitment to "creating an unprecedented level of openness in government." The President laid out the three core values that would promote efficiency and effectiveness in government: transparency, participation, and collaboration. "With our tradition of science and research, the Department

  18. Assessment of landfill reclamation and the effects of age on the combustion of recovered municipal solid waste

    SciTech Connect

    Forster, G A

    1995-01-01

    This report summarized the Lancaster county Solid Waste Management Authorities`s (LCSWMA)landfill reclamation activities, ongoing since 1991. All aspects have been analyzed from the manpower and equipment requirements at the landfill to the operational impacts felt at the LCSWMA Resource Recovery Facility (RRF) where the material is delivered for processing. Characteristics of the reclaimed refuse and soil recovered from trommeling operations are discussed as are results of air monitoring performed at the landfill excavation site and the RRF. The report also discusses the energy value of the reclaimed material and compares this value with those obtained for significantly older reclaimed waste streams. The effects of waste age on the air emissions and ash residue quality at the RRF are also provided. The report concludes by summarizing the project benefits and provides recommendations for other landfill reclamation operations and areas requiring further research.

  19. Seismic analysis of Industrial Waste Landfill 4 at Y-12 Plant

    SciTech Connect

    1995-04-07

    This calculation was to seismically evaluate Landfill IV at Y-12 as required by Tennessee Rule 1200-1-7-04(2) for seismic impact zones. The calculation verifies that the landfill meets the seismic requirements of the Tennessee Division of Solid Waste, ``Earthquake Evaluation Guidance Document.`` The theoretical displacements of 0.17 in. and 0.13 in. for the design basis earthquake are well below the limiting seimsic slope stability design criteria. There is no potential for liquefaction due to absence of chohesionless soils, or for loss or reduction of shear strength for the clays at this site as result of earthquake vibration. The vegetative cover on slopes will most likely be displaced and move during a large seismic event, but this is not considered a serious deficiency because the cover is not involved in the structural stability of the landfill and there would be no release of waste to the environment.

  20. Steam plant ash disposal facility and industrial landfill at the Y-12 Plant, Anderson County, Tennessee

    SciTech Connect

    Not Available

    1992-02-01

    The US Department of Energy (DOE) is proposing to install a wet ash handling system to dewater bottom ash from the coal-fired steam plant at its Y-12 Plant and to construct a new landfill for disposal of industrial wastes, including the dewatered bottom ash. The DOE operates three major facilities on its Oak Ridge Reservation (ORR). Operation of these facilities results in the production of a variety of nonhazardous, nonradioactive solid wastes (approximately 300 m{sup 3} per day, compacted) including sanitary wastes, common industrial wastes and construction debris. At the current rate of use, this existing landfill will be filled within approximately 18 months, and more space is urgently needed. In an effort to alleviate this problem, DOE and WMD management propose to create additional landfill facilities at a nearby site. The potential environmental impacts associated with this proposed action are the subject of this environmental assessment (EA).

  1. Landfill impacts on aquatic plant communities and tissue metal levels at Indiana Dunes National Lakeshore

    SciTech Connect

    Stewart, P.M. [National Biological Service, Porter, IN (United States). Lake Michigan Ecological Station; Scribailo, R.W. [Purdue Univ.North Central, Westville, IN (United States). Section of Biology and Chemistry

    1995-12-31

    One important environmental issue facing Northwest Indiana and park management at Indiana Dunes National Lakeshore (INOU) is the contamination of water, sediment and biota by persistent toxic substances. Aquatic plant communities were used to evaluate the water/organismal quality of the Grand Calumet Lagoons and two dunal ponds (pannes) at Gary, Indiana, which are partially located in the Miller Woods Unit of INDU. The lagoon is divided into several areas, the USX Lagoon is located between sections of a large industrial landfill (steel slag and other material). The Marquette Lagoon is located further away from the landfill and tends to be upgradient from the landfill. The West Panne (WP) is located next to the landfill, while the East Panne (EP) is separated from the landfill and the WP by a high dune ridge. Plant populations shift toward fewer submergent aquatics, with a higher abundance of tolerant taxa in the western section of the USX Lagoon. These differences are supported by cluster analysis. Heavy metals in root tissue of Scirpus americanus and other plant species from the pannes were significantly higher than those found in shoots. Shoot tissue metal levels in plants collected from the lagoons were higher than root tissue metal levels. The WP site has the most elevated tissue metal levels for most metals assayed, while the EP site shows similar contaminant levels. The plant distributions observed and tissue metal concentrations measured suggest that INDU`s aquatic plant community has been affected by the industrial landfill and that there exists a hydrological connection between the ponds.

  2. Public health assessment for Sayreville Landfill, Sayreville, Middlesex County, New Jersey, Region 2. CERCLIS No. NJD980505754. Final report

    SciTech Connect

    Not Available

    1993-11-16

    The Sayreville Landfill site, located in Middlesex County, New Jersey, was used primarily for the disposal of municipal wastes from 1970 through 1977. Illegal dumping of possibly hazardous materials allegedly occurred during active landfill operations and after landfill closure. Organic and inorganic compounds were found in on-site subsurface soil, ground water, surface water, and sediments at levels above public health assessment comparison values. The community is concerned about the safety of eating fish from the South River. The potential exists for past, present, and future exposure of local residents and workers to contaminated subsurface soil, nearby surface water, and sediments. The New Jersey Department of Health (NJDOH) has concluded that the site is an indeterminate public health hazard since insufficient data exist for all environmental media to which humans may be exposed.

  3. One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to Hydrogen Fuel One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to Hydrogen Fuel August ...

  4. Support EM LA Airport Landfill Cover Project by providing 40000...

    Office of Environmental Management (EM)

    Support EM LA Airport Landfill Cover Project by providing 40000 tons of soil Support EM LA Airport Landfill Cover Project by providing 40000 tons of soil DE-DT0010454-Task-Order-4 ...

  5. CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Opportunities | Department of Energy for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores opportunities for alternative CHP fuels. CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities (November 2007) (342.09 KB) More Documents & Publications CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants Barriers to CHP with

  6. Post-Closure Inspection Report for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada, Calendar Year 2000

    SciTech Connect

    K. B. Campbell

    2001-06-01

    Corrective Action Unit (CAU) 424, the Area 3 Landfill Complex at Tonopah Test Range, consists of eight landfill sites, Corrective Action Sites (CASS), seven of which are landfill cells that were closed previously by capping. (The eighth CAS, A3-7, was not used as a landfill site and was closed without taking any corrective action.) Figure 1 shows the locations of the landfill cells. CAU 424 closure activities included removing small volumes of soil containing petroleum hydrocarbons, repairing cell covers that were cracked or had subsided, and installing above-grade and at-grade monuments marking the comers of the landfill cells. Post-closure monitoring requirements for CAU 424 are detailed in Section 5.0, Post-Closure Inspection Plan contained, in the Closure Report for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range. Nevada, report number DOE/NV--283. The Closure Report (CR) was approved by the Nevada Division of Environmental Protection (NDEP) in July 1999. The CR includes compaction and permeability results of soils that cap the seven landfill cells. Post-closure monitoring consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 20, 2000, and November 20, 2000. The inspections were preformed after the NDEP approval of the CR. This report includes copies of the inspection checklist and photographs, and recommendations and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C.

  7. Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province, western Iran

    SciTech Connect

    Sharifi, Mozafar Hadidi, Mosslem Vessali, Elahe Mosstafakhani, Parasto Taheri, Kamal Shahoie, Saber Khodamoradpour, Mehran

    2009-10-15

    The evaluation of a hazardous waste disposal site is a complicated process because it requires data from diverse social and environmental fields. These data often involve processing of a significant amount of spatial information which can be used by GIS as an important tool for land use suitability analysis. This paper presents a multi-criteria decision analysis alongside with a geospatial analysis for the selection of hazardous waste landfill sites in Kurdistan Province, western Iran. The study employs a two-stage analysis to provide a spatial decision support system for hazardous waste management in a typically under developed region. The purpose of GIS was to perform an initial screening process to eliminate unsuitable land followed by utilization of a multi-criteria decision analysis (MCDA) to identify the most suitable sites using the information provided by the regional experts with reference to new chosen criteria. Using 21 exclusionary criteria, as input layers, masked maps were prepared. Creating various intermediate or analysis map layers a final overlay map was obtained representing areas for hazardous waste landfill sites. In order to evaluate different landfill sites produced by the overlaying a landfill suitability index system was developed representing cumulative effects of relative importance (weights) and suitability values of 14 non-exclusionary criteria including several criteria resulting from field observation. Using this suitability index 15 different sites were visited and based on the numerical evaluation provided by MCDA most suitable sites were determined.

  8. Using GIS to Identify Remediation Areas in Landfills

    SciTech Connect

    Linda A.Tedrow

    2004-08-01

    This paper reports the use of GIS mapping software—ArcMap and ArcInfo Workstation—by the Idaho National Engineering and Environmental Laboratory (INEEL) as a non-intrusive method of locating and characterizing radioactive waste in a 97-acre landfill to aid in planning cleanup efforts. The fine-scale techniques and methods used offer potential application for other burial sites for which hazards indicate a non-intrusive approach. By converting many boxes of paper shipping records in multiple formats into a relational database linked to spatial data, the INEEL has related the paper history to our current GIS technologies and spatial data layers. The wide breadth of GIS techniques and tools quickly display areas in need of remediation as well as evaluate methods of remediation for specific areas as the site characterization is better understood and early assumptions are refined.

  9. Methane Gas Utilization Project from Landfill at Ellery (NY)

    SciTech Connect

    Pantelis K. Panteli

    2012-01-10

    Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

  10. CORRECTIVE ACTION DECISION DOCUMENT FOR THE AREA 3 LANDFILL COMPLEX, TONOPAH TEST RANGE, CAU 424, REVISION 0, MARCH 1998

    SciTech Connect

    DOE /NV

    1998-03-03

    This Corrective Action Decision Document (CADD) has been prepared for the Area 3 Landfill Complex (Corrective Action Unit [CAU] 424) in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Corrective Action Unit 424 is located at the Tonopah Test Range (TTR) and is comprised of the following Corrective Action Sites (CASs), each an individual landfill located around and within the perimeter of the Area 3 Compound (DOE/NV, 1996a): (1) Landfill A3-1 is CAS No. 03-08-001-A301. (2) Landfill A3-2 is CAS No. 03-08-002-A302. (3) Landfill A3-3 is CAS No. 03-08-002-A303. (4) Landfill A3-4 is CAS No. 03-08-002-A304. (5) Landfill A3-5 is CAS No. 03-08-002-A305. (6) Landfill A3-6 is CAS No. 03-08-002-A306. (7) Landfill A3-7 is CAS No. 03-08-002-A307. (8) Landfill A3-8 is CAS No. 03-08-002-A308. The purpose of this CADD is to identify and provide a rationale for the selection of a recommended corrective action alternative for each CAS. The scope of this CADD consists of the following: (1) Develop corrective action objectives. (2) Identify corrective action alternative screening criteria. (3) Develop corrective action alternatives. (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria. (6) Recommend and justify a preferred corrective action alternative for each CAS. In June and July 1997, a corrective action investigation was performed as set forth in the Corrective Action Investigation Plan (CAIP) for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada (DOE/NV, 1997). Details can be found in Appendix A of this document. The results indicated four groupings of site characteristics as shown in Table ES-1. Based on the potential exposure pathways, the following corrective action objectives have been identified for CAU No. 424: (1) Prevent or mitigate human exposure to subsurface soils containing waste. (2) Remediate the site per

  11. Impact of different plants on the gas profile of a landfill cover

    SciTech Connect

    Reichenauer, Thomas G.; Watzinger, Andrea; Riesing, Johann; Gerzabek, Martin H.

    2011-05-15

    Research highlights: > Plants influence gas profile and methane oxidation in landfill covers. > Plants regulate water content and increase the availability of oxygen for methane oxidation. > Plant species with deep roots like alfalfa showed more stimulation of methane oxidation than plants with shallow root systems like grasses. - Abstract: Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.

  12. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    SciTech Connect

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  13. Stability monitoring system for the Fresh Kills Landfill in New York City

    SciTech Connect

    Thomann, T.G.; Khoury, M.A.; Rosenfarb, J.L.; Napolitano, R.A.

    1999-07-01

    The Fresh Kills Landfill, located in Staten Island, New York, serves as the repository of all municipal solid waste from the five boroughs of New York City. Because of the existence of compressible soils under most of the filling areas and the urban environment surrounding the landfill, considerable importance is being placed on the relationship between filling operations and the stability of the landfill. As a result of this concern and to address Order on Consent requirements, a program of geotechnical site characterizations, stability analyses, and design and implementation of a geotechnical instrumentation program was undertaken. Geotechnical instruments have been installed within the refuse fill and foundation soils to monitor both the magnitude and rate of change of pore pressure, lateral and vertical movements, and temperature. This paper presents an overview of the subsurface conditions, the overall instrumentation plan for assessing the landfill stability, a description of the various instruments, the performance of these instruments to date, an overview of the collected measurements, and a description of how these measurements are used to monitor the stability.

  14. Preliminary assessment of numerical data requirements TA-73 landfill Los Alamos, New Mexico

    SciTech Connect

    Not Available

    1993-11-19

    A numerical model, TOUGH2, was selected for describing liquid- and gas-phase flow in the unsaturated tuff underlying the TA-73 landfill. The model was selected primarily for its ability to simulate the significant mechanisms that may affect transport of contaminants through the vadose zone at the TA-73 landfill, including non-isothermal flow through fractured media. TOUGH2 is the best documented, verified, and validated model capable of performing the required simulations. The sensitivity analyses that were performed and describes in this report identified the input parameters that the selected numerical model is most sensitive to. The input parameters analyzed were saturated hydraulic conductivity, van Genuchten {alpha} and n, residual and saturated moisture contents, infiltration rate, fracture spacing and permeability, atmospheric pressure, and temperature. The sensitivity analyses were performed using a model grid that was designed to incorporate the regions in the landfill vicinity where contaminant transport is likely to occur and where the physical processes affecting flow and transport are the most dynamic. The sensitivity analyses performed suggest that the model is quite sensitive to a number of input parameters, including saturated hydraulic conductivity, the van Genuchten parameters {alpha} and n (for both the tuff matrix and fractures), fracture density and aperture, and atmospheric pressure. The results indicate that additional site-specific hydraulic properties and fracture data should be obtained before attempting to perform predictive, numerical simulations of gas- and liquid-phase flow beneath the landfill.

  15. Remediation by in-situ solidification/stabilisation of Ardeer landfill, Scotland

    SciTech Connect

    Wyllie, M.; Esnault, A.; Barker, P.

    1997-12-31

    The Ardeer Landfill site at ICI Explosives factory on the west coast of Scotland had been a repository for waste from the site for 40 years. In order to safeguard the local environment ICI Explosives, with approval of Local Authorities and the Clyde River Purification Board put into action a programme of investigation and planning which culminated in the in-situ treatment of 10,000 m3 of waste within the landfill by a deep mixing method using the {open_quotes}Colmix{close_quotes} system. The paper describes in varying degrees of detail the remediation from investigation to the execution of the in-situ stabilisation and presents the post construction monitoring results.

  16. DOE/EA-1308; Environmental Assessment for the Offsite Transportation of Certain Low-Level and Mixed Radioactive Waste from the Savannah River Site for Treatment and Disposal at Commercial and Government Facilities (February 2001)

    Office of Environmental Management (EM)

    EA-1308 ENVIRONMENTAL ASSESSMENT FOR THE OFFSITE TRANSPORTATION OF CERTAIN LOW-LEVEL AND MIXED RADIOACTIVE WASTE FROM THE SAVANNAH RIVER SITE FOR TREATMENT AND DISPOSAL AT COMMERCIAL AND GOVERNMENT FACILITIES FEBRUARY 2001 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE i ii This page is intentionally left blank iii TABLE OF CONTENTS Page 1.0 INTRODUCTION 1 1.1 Background 1 1.2 Purpose and Need for Action 6 2.0 PROPOSED ACTION AND ALTERNATIVES 6 2.1 Proposed

  17. Superfund record of decision amendment (EPA Region 2): Hooker (102nd Street Landfill), Niagara Falls, NY, June 9, 1995

    SciTech Connect

    1995-08-01

    This decision document presents the selected modification to the original remedial action (PB91-921417) for the 102nd Street Landfill Site (the `Site`), located in Niagara Falls, New York. The modification to the selected remedy addresses the river sediments within the shallow embayment of the Niagara River adjacent to the Site. The major components of the modification to the selected remedy include: dredging the Niagara River sediments to the `clean line` with respect to Site-related contamination. These sediments, after dewatering, will NOT be incinerated, but will be consolidated on the landfill. Any NAPL found within these sediments will be extracted, and will be incinerated at an off-site facility.

  18. Use of jet grouting to create a low permeability horizontal barrier below an incinerator ash landfill

    SciTech Connect

    Furth, A.J.; Burke, G.K.; Deutsch, W.L. Jr.

    1997-12-31

    The City of Philadelphia`s Division of Aviation (DOA) has begun construction of a new commuter runway, designated as Runway 8-26, at the Philadelphia International Airport. A portion of this runway will be constructed over a former Superfund site known as the Enterprise Avenue Landfill, which for many years was used to dispose of solid waste incinerator ash and other hazardous materials. The site was clay capped in the 1980`s, but in order for the DOA to use the site, additional remediation was needed to meet US EPA final closure requirements. One component of the closure plan included installation of a low permeability horizontal barrier above a very thin (approximately 0.61 to 0.91 meters) natural clay stratum which underlies an approximately 1020 m{sup 2} area of the landfill footprint so as to insure that a minimum 1.52 meter thick low permeability barrier exists beneath the entire 150,000 m{sup 2} landfill. The new barrier was constructed using jet grouting techniques to achieve remote excavation and replacement of the bottom 0.91 meters of the waste mass with a low permeability grout. The grout was formulated to meet the low permeability, low elastic modulus and compressive strength requirements of the project design. This paper will discuss the advantages of using jet grouting for the work and details the development of the grout mixture, modeling of the grout zone under load, field construction techniques, performance monitoring and verification testing.

  19. Modeling of leachate generation from MSW landfills by a 2-dimensional 2-domain approach

    SciTech Connect

    Fellner, Johann

    2010-11-15

    The flow of water through Municipal Solid Waste (MSW) landfills is highly non-uniform and dominated by preferential pathways. Thus, concepts to simulate landfill behavior require that a heterogeneous flow regime is considered. Recent models are based on a 2-domain approach, differentiating between channel domain with high hydraulic conductivity, and matrix domain of slow water movement with high water retention capacity. These models focus on the mathematical description of rapid water flow in channel domain. The present paper highlights the importance of water exchange between the two domains, and expands the 1-dimensional, 2-domain flow model by taking into account water flows in two dimensions. A flow field consisting of a vertical path (channel domain) surrounded by the waste mass (matrix domain) is defined using the software HYDRUS-2D. When the new model is calibrated using data sets from a MSW-landfill site the predicted leachate generation corresponds well with the observed leachate discharge. An overall model efficiency in terms of r{sup 2} of 0.76 was determined for a simulation period of almost 4 years. The results confirm that water in landfills follows a preferential path way characterized by high permeability (K{sub s} = 300 m/d) and zero retention capacity, while the bulk of the landfill (matrix domain) is characterized by low permeability (K{sub s} = 0.1 m/d) and high retention capacity. The most sensitive parameters of the model are the hydraulic conductivities of the channel domain and the matrix domain, and the anisotropy of the matrix domain.

  20. Decomposition of forest products buried in landfills

    SciTech Connect

    Wang, Xiaoming; Padgett, Jennifer M.; Powell, John S.; Barlaz, Morton A.

    2013-11-15

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  1. Request for Qualifications for Sacramento Landfill

    Energy.gov [DOE]

    This Request for Qualifications (RFQ) solicits experienced companies to design, permit, finance, build, and operate a solar photovoltaic farm (SPV Farm) on the City of Sacramento’s 28th Street Landfill. Respondents to this RFQ must demonstrate experience and capacity to design, permit, finance, build, and operate a SPV Farm that generates electricity that can be sold for electrical use through a power-purchase agreement. Submittals must be prepared and delivered in accordance with the requirements set forth in this document.

  2. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect

    Rachor, Ingke; Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria

    2011-05-15

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity

  3. Leadership, Governance

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Leadership, Governance Leadership, Governance The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Science, technology, and engineering work at Los Alamos benefits from strong leaders, rigorous governance The people of Los Alamos National Laboratory are held by customers, as well as their own senior managers, to very

  4. Steam plant ash disposal facility and industrial landfill at the Y-12 Plant, Anderson County, Tennessee. Environmental Assessment

    SciTech Connect

    Not Available

    1992-02-01

    The US Department of Energy (DOE) is proposing to install a wet ash handling system to dewater bottom ash from the coal-fired steam plant at its Y-12 Plant and to construct a new landfill for disposal of industrial wastes, including the dewatered bottom ash. The DOE operates three major facilities on its Oak Ridge Reservation (ORR). Operation of these facilities results in the production of a variety of nonhazardous, nonradioactive solid wastes (approximately 300 m{sup 3} per day, compacted) including sanitary wastes, common industrial wastes and construction debris. At the current rate of use, this existing landfill will be filled within approximately 18 months, and more space is urgently needed. In an effort to alleviate this problem, DOE and WMD management propose to create additional landfill facilities at a nearby site. The potential environmental impacts associated with this proposed action are the subject of this environmental assessment (EA).

  5. CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting a CHP technology, such as size, emissions, location of maintenance personnel, and efficiency. This document summarizes the following CHP technologies: Reciprocating Engine, Microturbine, Combustion Turbines, Stirling Engine, and Fuel Cell. CHP and Bioenergy Systems for Landfills and Wastewater

  6. The Struggle between States and the Federal Government on the Siting of LNG Import Terminals: Has a Red Tide Washed Ashore in the Blue States?

    SciTech Connect

    Desautels, Denise; Ray, Peter

    2005-10-01

    The Energy Policy Act of 2005 transfers, in some circumstances, implementation of the public trust doctrine from the state to the federal government. Implicit in the public trust doctrine is the issue of public safety and environmental concerns. Proponents of such facilities are challenged with weighing such factors to make a successful proposal to federal and state agencies.

  7. States Government

    Office of Legacy Management (LM)

    Based' on the above, the Landis Machine Company site is hereby eliminated from further consideration under the Formerly Utilized Sites Remedial Action Program. Attachment W. ...

  8. Landfill Methane Project Development Handbook | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Methane Project Development Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Landfill Methane Project Development Handbook AgencyCompany Organization: United...

  9. Briefing: Summary and Recommendations of EM Landfill Workshop | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Summary and Recommendations of EM Landfill Workshop Briefing: Summary and Recommendations of EM Landfill Workshop The briefing is an independent technical review report from the summary and recommendations of the EM Landfill Workshop help in October 2008. By: Craig H. Bendson, PhD, PE; William H. Albright, PhD; David P. Ray, PE; and John Smegal Sponsored By: The Office of Engineering and Technology (EM-20) EM Landfill Workshop Report - November 21, 2008 (559.11 KB) More Documents

  10. Tapping Landfill Gas to Provide Significant Energy Savings and...

    Energy.gov [DOE] (indexed site)

    BroadRock Renewables LLC, in collaboration with DCO Energy, operates combined cycle electric generating plants at the Central Landfill in Johnston, Rhode Island, and Olinda Alpha ...

  11. UNFCCC-Consolidated baseline and monitoring methodology for landfill...

    OpenEI (Open Energy Information) [EERE & EIA]

    Consolidated baseline and monitoring methodology for landfill gas project activities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC-Consolidated baseline and...

  12. http://ndep.nv.gov/bwm/landfill.htm

    National Nuclear Security Administration (NNSA)

    ... Republic Services, Inc Operating - Class I Permitted Laughlin Nevada Clark County Apex Regional Landfill Republic Services, Inc Operating - Class I Permitted Las Vegas Valley ...

  13. CHP and Bioenergy for Landfills and Wastewater Treatment Plants...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants Barriers to CHP with Renewable Portfolio Standards, Draft White Paper, September 2007 Characterization of ...

  14. CHP and Bioenergy Systems for Landfills and Wastewater Treatment...

    Energy.gov [DOE] (indexed site)

    2007 CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities Barriers to CHP with Renewable Portfolio Standards, Draft White Paper, September

  15. Briefing: DOE EM Landfill Workshop & Path Forward | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Landfill Workshop & Path Forward Briefing: DOE EM Landfill Workshop & Path Forward By: Office of Groundwater and Soil Remediation Where: SSAB Teleconference 2 Subject: DOE EM Landfill Workshop & Path Forward DOE EM Landfill Workshop and Path Forward - July 2009 (316.86 KB) More Documents & Publications Briefing: Summary and Recommendations of EM Landfill Workshop Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned Environmental Management Waste Management Facility

  16. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill

    SciTech Connect

    Yu, L.; Batlle, F.

    2011-12-15

    Highlights: > A quasi-three-dimensional slope stability analysis method was proposed. > The proposed method is a good engineering tool for 3D slope stability analysis. > Factor of safety from 3D analysis is higher than from 2D analysis. > 3D analysis results are more sensitive to cohesion than 2D analysis. - Abstract: Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The 'equivalent' three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that Fo

  17. Post-Closure Inspection Report for Corrective Action Unit 424: Area 3 Landfill Complexes Tonopah Test Range, Nevada Calendar Year 2001

    SciTech Connect

    K. B. Campbell

    2002-02-01

    Corrective Action Unit (CAU) 424, the Area 3 Landfill Complexes at Tonopah Test Range, consists of eight Corrective Action Sites (CASs), seven of which are landfill cells that were closed previously by capping. (The eighth CAS, A3-7, was not used as a landfill site and was closed without taking any corrective action.) Figure 1 shows the general location of the landfill cells. Figure 2 shows in more detail the location of the eight landfill cells. CAU 424 closure activities included removing small volumes of soil containing petroleum hydrocarbons, repairing cell covers that were cracked or had subsided, and installing above-grade and at-grade monuments marking the comers of the landfill cells. Post-closure monitoring requirements for CAU 424 are detailed in Section 5.0, Post-Closure Inspection Plan, contained in the Closure Report for Corrective Action Unit 424: Area 3 Landfill Complexes, Tonopah Test Range, Nevada, report number DOE/NV--283, July 1999. The Closure Report (CR) was approved by the Nevada Division of Environmental Protection (NDEP) in July 1999. The CR includes compaction and permeability results of soils that cap the seven landfill cells. As stated in Section 5.0 of the NDEP-approved CR, post-closure monitoring at CAU 424 consists of the following: (1) Site inspections conducted twice a year to evaluate the condition of the unit. (2) Verification that landfill markers and warning signs are in-place, intact, and readable. (3) Notice of any subsidence, erosion, unauthorized use, or deficiencies that may compromise the integrity of the landfill covers. (4) Remedy of any deficiencies within 90 days of discovery. (5) Preparation and submittal of an annual report. Site inspections were conducted on May 16, 2001, and November 6, 2001. The inspections were preformed after the NDEP approval of the CR. This report includes copies of the inspection checklist, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in

  18. Field investigation of the quality of fresh and aged leachates from selected landfills receiving e-waste in an arid climate

    SciTech Connect

    Kiddee, Peeranart; Naidu, Ravi; Wong, Ming H.; Hearn, Laurence; Muller, Jochen F.

    2014-11-15

    Highlights: • E-waste comprises approximately 6% of the waste mass going to landfill in South Australia. • Significant amounts of metal(loids)s and PBDEs are released from e-waste mixed with municipal solid in landfill leachates. • Significantly elevated concentrations of lead and PBDEs are detected in groundwater wells downgradient of landfills. • Significant temporal variation exists in electrical conductivity and in the concentrations of As, Cd and Pb in leachates. - Abstract: The management of electronic waste (e-waste) is a serious problem worldwide and much of it is landfilled. A survey of four selected landfills in an arid region of South Australia was conducted to determine the proportion of e-waste in municipal waste and the properties of each landfill site. Leachate and groundwater samples were collected upgradient and downgradient of the landfills for analysis of polybrominated diphenyl ethers (PBDEs) and 14 metals and metalloids, including Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Ni, Pb, Sb, V and Zn. Our data demonstrate that the selected landfills in South Australia continue to receive municipal waste containing in excess of 6%, or 25,000 tonnes per year, of e-waste. The leachates and groundwater collected from the landfills contained significantly elevated concentrations of Pb with the highest concentration in groundwater of 38 μg/l, almost four times higher than the Australian drinking water guideline of 10 μg/l. The presence of PBDEs was detected in both leachate and groundwater samples. Total PBDEs values of 2.13–59.75 ng/l in leachate samples were 10 times higher than in groundwater samples, which recorded a range of 0.41–6.53 ng/l at all sites. Moreover, the concentrations of metals and metalloids in sampled groundwater contained elevated levels of Al, As, Fe, Ni and Pb that exceeded Australian drinking water guideline values. For these reasons potential leaching of these contaminants is of concern and while difficult to attribute

  19. Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LNG Update on the world's largest landfill gas to LNG plant Mike McGowan Head of Government Affairs Linde NA, Inc. June 12, 2012 $18.3 billion global sales A leading gases and engineering company Linde North America Profile $2.3 billion in gases sales revenue in North America in 2011 5,000 employees throughout the U.S., Canada and the Caribbean Supplier of compressed and cryogenic gases and technology Atmospheric gases - oxygen, nitrogen, argon Helium LNG and LPG Hydrogen Rare gases Plant

  20. EA-1097: Solid waste Disposal- Nevada Test Site, Nye County, Nevada

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts of the proposal to continue the on-site disposal of solid waste at the Area 9 and Area 23 landfills at the U.S. Department of Energy Nevada Test Site...

  1. Supercritical water oxidation of landfill leachate

    SciTech Connect

    Wang Shuzhong; Guo Yang; Chen Chongming; Zhang Jie; Gong Yanmeng; Wang Yuzhen

    2011-09-15

    Highlights: > Thermal analysis of NH{sub 3} in supercritical water oxidation reaction. > Research on the catalytic reaction of landfill leachate by using response surface method. > Kinetic research of supercritical water oxidation of NH{sub 3} with and without MnO{sub 2} catalyst. - Abstract: In this paper, ammonia as an important ingredient in landfill leachate was mainly studied. Based on Peng-Robinson formulations and Gibbs free energy minimization method, the estimation of equilibrium composition and thermodynamic analysis for supercritical water oxidation of ammonia (SCWO) was made. As equilibrium is reached, ammonia could be totally oxidized in SCW. N{sub 2} is the main product, and the formation of NO{sub 2} and NO could be neglected. The investigation on SCWO of landfill leachate was conducted in a batch reactor at temperature of 380-500 deg. C, reaction time of 50-300 s and pressure of 25 MPa. The effect of reaction parameters such as oxidant equivalent ratio, reaction time and temperature were investigated. The results showed that COD and NH{sub 3} conversion improved as temperature, reaction time and oxygen excess increased. Compared to organics, NH{sub 3} is a refractory compound in supercritical water. The conversion of COD and NH{sub 3} were higher in the presence of MnO{sub 2} than that without catalyst. The interaction between reaction temperature and time was analyzed by using response surface method (RSM) and the results showed that its influence on the NH{sub 3} conversion was relatively insignificant in the case without catalyst. A global power-law rate expression was regressed from experimental data to estimate the reaction rate of NH{sub 3}. The activation energy with and without catalyst for NH{sub 3} oxidation were 107.07 {+-} 8.57 kJ/mol and 83.22 {+-} 15.62 kJ/mol, respectively.

  2. Ultrasound assisted biogas production from landfill leachate

    SciTech Connect

    Oz, Nilgün Ayman Yarimtepe, Canan Can

    2014-07-15

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency

  3. Significance analysis of the leachate level in a solid waste landfill in a coastal zone using total water balance and slope stability alternatives

    SciTech Connect

    Koo, Ja-Kong; Do, Nam-Young

    1996-12-31

    The K site near Seoul began landfilling in 1992. The landfilled wastes include municipal solid waste (66.4%), construction residues (20.4%), water and wastewater sludges (trace levels), and hazardous waste (trace levels). The water content of the municipal solid waste is very high (47.3%); as a result, the leachate level (average E.L.) of the landfill, the design value of which is 7.0 m, was measured at 10.3 m in January 1995 and is increasing. The increase of leachate level in the landfill site causes a problem with slope stability. The leachate level at each disposal stage divided by the intermediate cover layer was calculated with the HELP (Hydrologic Evaluation of Landfill Performance) model and calibrated with the data measured from February 1993 to June 1995. Also, the hydraulic conductivities of the waste layer and the intermediate cover layer in each stage were calibrated continuously with HELP model analysis. To verify these results, the total water balance in the landfill site was calculated using the infiltration rate calculated from HELP modeling. The leachate level was E.L. 10.0 m, which was close to the measured leachate level. To estimate the change of the leachate level in the future, the total water balances with different leachate discharge rates of 3,000, 3,500, and 5,000 m{sup 3}/day were analyzed. When the leachate discharge rate was 5,000 ton/day and the initial water content was decreased below 25%, the average leachate level was 10.8 m. This result satisfies the safety factor requirements (=1.3) for landfill slope stability. 4 refs., 8 figs., 1 tab.

  4. Illinois Turning Landfill Trash into Future Cash

    Office of Energy Efficiency and Renewable Energy (EERE)

    Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the electricity could reach $1 million annually.

  5. Methane recovery from landfill in China

    SciTech Connect

    Gaolai, L.

    1996-12-31

    GEF has approved a special project for a demonstration project for Methane Recovery from the Urban Refuse Land Fill. This paper will introduce the possibility of GHG reduction from the landfill in China, describe the activities of the GEF project, and the priorities for international cooperation in this field. The Global Environment Facility (GEF) approved the project, China Promoting Methane Recovery and Unlization from Mixed Municipal Refuse, at its Council meeting in last April. This project is the first one supported by international organization in this field.

  6. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional

  7. Annual Performance Assessment and Composite Analysis Review for the ICDF Landfill FY 2008

    SciTech Connect

    Karen Koslow Arthur Rood

    2009-08-31

    This report addresses low-level waste disposal operations at the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) landfill from the start of operations in Fiscal Year 2003 through Fiscal Year 2008. The ICDF was authorized in the Operable Unit 3-13 Record of Decision for disposal of waste from the Idaho National Laboratory Site CERCLA environmental restoration activities. The ICDF has been operating since 2003 in compliance with the CERCLA requirements and the waste acceptance criteria developed in the CERCLA process. In developing the Operable Unit 3-13 Record of Decision, U.S. Department of Energy Order (DOE) 435.1, 'Radioactive Waste Management', was identified as a 'to be considered' requirement for the ICDF. The annual review requirement under DOE Order 435.1 was determined to be an administrative requirement and, therefore, annual reviews were not prepared on an annual basis. However, the landfill has been operating for 5 years and, since the waste forms and inventories disposed of have changed from what was originally envisioned for the ICDF landfill, the ICDF project team has decided that this annual review is necessary to document the changes and provide a basis for any updates in analyses that may be necessary to continue to meet the substantive requirements of DOE Order 435.1. For facilities regulated under DOE Order 435.1-1, U.S. DOE Manual 435.1-1, 'Radioactive Waste Management', IV.P.(4)(c) stipulates that annual summaries of low-level waste disposal operations shall be prepared with respect to the conclusions and recommendations of the performance assessment and composite analysis. Important factors considered in this review include facility operations, waste receipts, and results from monitoring and research and development programs. There have been no significant changes in operations at the landfill in respect to the disposal geometry, the verification of waste characteristics, and the

  8. Paleo-channel deposits of natural uranium at a Former Air Force Landfill

    SciTech Connect

    Young, C.; Weismann, PGJ.; Nelson, CHPK. [Cabrera Services, Inc., Baltimore, MD (United States)

    2007-07-01

    The US Air Force has sought to understand the provenance of radionuclides that were detected in monitor wells surrounding a closed solid-waste landfill at the former Lowry Air Force Base in Denver, Colorado. Groundwater concentrations of gross alpha, gross beta, and total uranium were thought to exceed regulatory standards. Down-gradient concentrations of these parameters exceeded up-gradient concentrations, suggesting that the landfill is leaching uranium to groundwater. Alternate hypotheses for the occurrence of the uranium included that either equipment containing refined uranium had been discarded or that uranium ore may have been disposed in the landfill, or that the uranium is naturally-occurring. Our study has concluded that the elevated radionuclide concentrations stem from naturally-occurring uranium in the regional watershed which has been preferentially deposited in paleo-channel sediments beneath the site. This study shows that a simple comparison of up-gradient versus down-gradient groundwater samples can be an inadequate method for determining whether heterogeneous geo-systems have been contaminated. It is important to understand the geologic depositional system, plus local geochemistry and how these factors impact contaminant transport. (authors)

  9. governance | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    governance Supplemental Directives NA-1 SD 226.1-1A Headquarters Biennial Review of Nuclear Safety Performance December 16, 2011 NNSA SD 226.1B NNSA Site Governance August 12, 2016 NNSA SD 243.1 Admin Change 1 Records Management Program March 21, 2016 NA SD 251.1 NNSA Policies, Supplemental Directives, and Business Operating

  10. Governance & Policies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Policies About ESnet Our Mission The Network ESnet History Governance & Policies ESnet Policy Board ESCC Acceptable Use Policy Data Privacy Policy Facility Data Policy Career Opportunities ESnet Staff & Org Chart Contact Us Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Governance & Policies ESnet is operated by the

  11. Intrinsic in situ anaerobic biodegradation of chlorinated solvents at an industrial landfill

    SciTech Connect

    Lee, M.D.; Mazierski, P.F.; Buchanan, R.J. Jr.; Ellis, D.E.; Sehayek, L.S.

    1995-12-31

    The DuPont Necco Park Landfill in Niagara Falls, New York, is contaminated with numerous chlorinated solvents at concentrations of up to hundreds of mg/L in the groundwater. An extensive monitoring program was conducted to determine if intrinsic anaerobic biodegradation was occurring at the site, to determine what might limit this activity, and to characterize this activity with depth and distance away from the landfill. It was determined that anaerobic microbial activity was occurring in all zones, based upon the presence of intermediate products of the breakdown of the chlorinated solvents and the presence of final metabolic end products such as ethene and ethane. Aerobic, iron-reducing, manganese-reducing, sulfate-reducing, and methanogenic redox conditions were identified at the site. High levels of nitrogen and biodegradable organic compounds were present in most areas to support cometabolic anaerobic microbial activity against the chlorinated solvents. Intrinsic biodegradation is clearly evident and is effective in reducing the concentrations of chlorinated organic in the groundwater at the site. Groundwater modeling efforts during development of a site conceptual model indicated that microbial degradation was necessary to account for the downgradient reduction of chlorinated volatile organic compounds as compared to chloride, a conservative indicator parameter.

  12. Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant

    SciTech Connect

    Lee, D.W.; Wang, J.C.; Kocher, D.C.

    1995-06-01

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

  13. Solar Site Screening Decision Tree | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Site Screening Decision Tree Solar Site Screening Decision Tree The solar site screening decision tree guides users through a process for screening sites for their suitability for future redevelopment with solar photovoltaic energy. EPA encourages the development of renewable energy on contaminated lands, landfills and mine sites and this tool explores such sites. The tool is not intended to replace or substitute the need for a detailed site-specific assessment that would follow an initial

  14. Landfill mining: A critical review of two decades of research

    SciTech Connect

    Krook, Joakim; Svensson, Niclas; Eklund, Mats

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We analyze two decades of landfill mining research regarding trends and topics. Black-Right-Pointing-Pointer So far landfill mining has mainly been used to solve waste management issues. Black-Right-Pointing-Pointer A new perspective on landfills as resource reservoirs is emerging. Black-Right-Pointing-Pointer The potential of resource extraction from landfills is significant. Black-Right-Pointing-Pointer We outline several key challenges for realization of resource extraction from landfills. - Abstract: Landfills have historically been seen as the ultimate solution for storing waste at minimum cost. It is now a well-known fact that such deposits have related implications such as long-term methane emissions, local pollution concerns, settling issues and limitations on urban development. Landfill mining has been suggested as a strategy to address such problems, and in principle means the excavation, processing, treatment and/or recycling of deposited materials. This study involves a literature review on landfill mining covering a meta-analysis of the main trends, objectives, topics and findings in 39 research papers published during the period 1988-2008. The results show that, so far, landfill mining has primarily been seen as a way to solve traditional management issues related to landfills such as lack of landfill space and local pollution concerns. Although most initiatives have involved some recovery of deposited resources, mainly cover soil and in some cases waste fuel, recycling efforts have often been largely secondary. Typically, simple soil excavation and screening equipment have therefore been applied, often demonstrating moderate performance in obtaining marketable recyclables. Several worldwide changes and recent research findings indicate the emergence of a new perspective on landfills as reservoirs for resource extraction. Although the potential of this approach appears significant, it is argued that

  15. GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities

    SciTech Connect

    Friedrich, Elena; Trois, Cristina

    2013-04-15

    Highlights: ► An average GHG emission factor for the collection and transport of municipal solid waste in South Africa is calculated. ► A range of GHG emission factors for different types of landfills (including dumps) in South Africa are calculated. ► These factors are compared internationally and their implications for South Africa and developing countries are discussed . ► Areas for new research are highlighted. - Abstract: Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm{sup 3} (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO{sub 2} equivalents (CO{sub 2} e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from −145 to 1016 kg CO{sub 2} e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO{sub 2} e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement

  16. Leachate treatment system using constructed wetlands, Town of Fenton sanitary landfill, Broome County, New York. Final report

    SciTech Connect

    Not Available

    1993-11-01

    Municipal sanitary landfills generate leachate that New York State regulations require to be collected and treated to avoid contaminating surface water and groundwater. One option for treating leachate is to haul it to municipal wastewater treatment facility. This option may be expensive, may require excessive energy for transportation, and may require pretreatment to protect the receiving facility`s processes. An alternative is on-site treatment and discharge. Personnel from the Town of Fenton, New York; Hawk Engineering, P.C.; Cornell University; and Ithaca College designed, built, and operated a pilot constructed wetland for treating leachate at the Town of Fenton`s municipal landfill. The system, consisting of two overland flow beds and two subsurface flow beds has been effective for 18 months in reducing levels of ammonia (averaging 85% removal by volatilization and denitrification) and total iron (averaging 95% removal by precipitation and sedimentation), two key constituents of the Fenton landfill`s leachate. The system effects these reductions with zero chemical and energy inputs and minimal maintenance. A third key constituent of the leachate, manganese, apparently passes through the beds with minimal removal. Details and wetland considerations are described.

  17. Trash processing and recycling using the zero landfill solution

    SciTech Connect

    Thompson, W.J.

    1994-12-31

    Each person in the US produces approximately one ton of trash per year. The environmentally friendly municipal trash processing and recycling complex used for illustrative purposes in this paper is designed and sized to handle trash from typical municipalities ranging from 500,000 to 750,000 populations. This translates into a nominal 2,000 ton per day (TPD) facility. A typical component breakdown of municipal solid waste is shown in appendix A. The layout of the complex is shown in appendix B. Today`s municipal trash processing and recycling center should be designed to serve the needs of the municipality for at least the next 20 to 30 years. It should also be designed in such a way as to allow any new technology advancements to be added easily and in a cost effective manner to extend the useful service life of the facility almost indefinitely. 100% of the trash will be recycled. There will be no need for a dump, landfill, or disposal site at all. No curbside separation is required.

  18. Determination of landfill gas composition and pollutant emission rates at fresh kills landfill. Volume 1. Project report. Final report

    SciTech Connect

    1995-12-07

    Air emissions of landfill gas pollutants at Fresh Kills Landfill, located in Staten Island, NY, were estimated based on three weeks of sampling of flow, concentration, and flux at passive vents, gas extraction wells, gas collection plant headers, and the landfill surface conducted by Radian Corporation in 1995. Emission rates were estimated for 202 pollutants, including hydrogen sulfide, mercury vapor, speciated volatile organic compounds, methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane recovery plant. Emission factors based on the results are presented.

  19. United States Government

    Office of Legacy Management (LM)

    . v-w. ' ;H; (07.901 United States Government 0' ; Td 2, <.<~ Department of Energy ' m e m o randum DATE: REPLY TO Al-TN OF: EM-421 (W. A. W illiams, 903-8149) SUBJECT: Authorization for Remedial Action at Alba Craft Laboratory in Oxford, Ohio L. Price, OR TO: The former Alba Craft Laboratory site at lo-14 West Rose Avenue, Oxford, Ohio, is designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Dr. and M rs. Gilbert Pacey, of Oxford, Ohio, own

  20. United States Government

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    30/02 WED 09:58 FAX 423 241 3897 OIG -.- +-+ HQ ]002 rFG (07-;1) United States Government Department of Energy Memorandum DATE: October 29, 2002 REPLY TO 1G-36 (A02DN028) Audit Report No.: OAS-L-03-01 ATTN OF; SUBJECT: Audit of Procurement at the Rocky Flats Environmental Technology Site TO: Eugene Schmitt, Manager, Rocky Flats Field Office ' INTRODUCTION AND OBJECTIVE The Department of Energy (Department) and its site contractor, Kaiser-Hill Company, LLC (Kaiser-Hill), contracted in January

  1. United States Government Departmen

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7/05 TUE 07:58 FAX 423 241 3897 OIG -** HQ @]002 DOE F 1325.8 (08-93) United States Government Departmen of Energy memorandum DATE: December 20, 2005 Audit Report Number: OAS-L-06-03 REPLY TO A1TN OF; IG-36 (A05SR025) SUBJECT: Audit of "Defense Waste Processing Facility Operations at the Savannah River Site" TO: Jeffrey M. Allison, Manager, Savannah River Operations Office INTRODUCTION AND OBJECTIVE The Department of Energy's (Department) Savannah River Site stores approximately 36

  2. United States Government

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    * (08-93) United States Government Department of Energy Memorandum OFFICE OF INSPECTOR GENERAL DATE: November 9, 2005 REPLY TO ATTN OF: IG-34 (A05TG036) Audit Report No.: OAS-L-06-01 SUBJECT: Report on Audit of "The Department of Energy's Radio Communications Systems" TO: Chief Information Officer, IM-1 INTRODUCTION AND OBJECTIVE The Department of Energy's (Department) complex-wide radio systems infrastructure supports and facilitates activities such as site emergency response,

  3. Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion

    SciTech Connect

    Hrad, Marlies; Gamperling, Oliver; Huber-Humer, Marion

    2013-10-15

    Highlights: ► Current data on in situ aeration effects from the first Austrian full-scale case study. ► Data on lasting waste stabilisation after aeration completion. ► Information on the transferability of results from lab- to full-scale aeration. - Abstract: Sustainable landfilling has become a fundamental objective in many modern waste management concepts. In this context, the in situ aeration of landfills has been recognised for its potential to convert conventional anaerobic landfills into biological stabilised state, whereby both current and potential (long-term) emissions of the landfilled waste are mitigated. In recent years, different in situ aeration concepts have been successfully applied in Europe, North America and Asia, all pursuing different objectives and strategies. In Austria, the first full-scale application of in situ landfill aeration by means of low pressure air injection and simultaneous off-gas collection and treatment was implemented on an old, small municipal solid waste (MSW) landfill (2.6 ha) in autumn 2007. Complementary laboratory investigations were conducted with waste samples taken from the landfill site in order to provide more information on the transferability of the results from lab- to full-scale aeration measures. In addition, long-term emission development of the stabilised waste after aeration completion was assessed in an ongoing laboratory experiment. Although the initial waste material was described as mostly stable in terms of the biological parameters gas generation potential over 21 days (GP{sub 21}) and respiration activity over 4 days (RA{sub 4}), the lab-scale experiments indicated that aeration, which led to a significant improvement of leachate quality, was accompanied by further measurable changes in the solid waste material under optimised conditions. Even 75 weeks after aeration completion the leachate, as well as gaseous emissions from the stabilised waste material, remained low and stayed below the

  4. Groundwater Strategy for the Ou-1 Landfill Area, Miamisburg Closure Project, Ohio

    SciTech Connect

    LOONEY, BRIANB.

    2004-01-01

    The general objective of the study was to assist the Miamisburg Closure Project in their efforts to develop and refine a comprehensive, technically sound strategy for remediation of groundwater contaminated with trichloroethylene and other volatile organic compounds in the vicinity of the landfill in Operable Unit 1. To provide the necessary flexibility to the site, regulators and stakeholders, the resulting evaluation considered a variety of approaches ranging from ''no further action'' to waste removal. The approaches also included continued soil vapor extraction, continued groundwater pump and treat, monitored natural attenuation, biostimulation, partitioning barriers, hydrologic modification, and others.

  5. Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation

    SciTech Connect

    Storey, John Morse; Theiss, Timothy J; Kass, Michael D; FINNEY, Charles E A; Lewis, Samuel; Kaul, Brian C; Besmann, Theodore M; Thomas, John F; Rogers, Hiram; Sepaniak, Michael

    2014-04-01

    This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third task to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.

  6. Renewable Energy Holdings Landfill Gas Wales Ltd REH Wales |...

    OpenEI (Open Energy Information) [EERE & EIA]

    Gas Wales Ltd REH Wales Jump to: navigation, search Name: Renewable Energy Holdings Landfill Gas (Wales) Ltd (REH Wales) Place: United Kingdom Product: A joint venture to own and...

  7. Sandia National Laboratories: No More Green Waste in the Landfill

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    No More Green Waste in the Landfill June 09, 2011 Dump Truck Image On the heels of Sandia National Laboratories' successful food waste composting program, Pollution Prevention (P2)...

  8. Computer Modeling of Saltstone Landfills by Intera Environmental Consultants

    SciTech Connect

    Albenesius, E.L.

    2001-08-09

    This report summaries the computer modeling studies and how the results of these studies were used to estimate contaminant releases to the groundwater. These modeling studies were used to improve saltstone landfill designs and are the basis for the current reference design. With the reference landfill design, EPA Drinking Water Standards can be met for all chemicals and radionuclides contained in Savannah River Plant waste salts.

  9. Sandia National Laboratories: No More Green Waste in the Landfill

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    No More Green Waste in the Landfill June 09, 2011 Dump Truck Image On the heels of Sandia National Laboratories' successful food waste composting program, Pollution Prevention (P2) has teamed with the Facilities' Grounds and Roads team and the Solid Waste Transfer Facility to implement green waste composting. Previously, branches and logs were being diverted and mulched by Kirtland Air Force Base at their Construction & Demolition Landfill that is on base and utilized under contract by

  10. Preliminary engineering evaluation of remedial action alternatives for the Middlesex Municipal Landfill, Middlesex, New Jersey

    SciTech Connect

    Not Available

    1984-08-01

    The objectives of this document are to summarize existing radiological conditions necessitating remedial action at the Middlesex Municipal Landfill (MML) site, and to describe and compare alternative courses of remedial action considered feasible at this time. This document is intended to provide the information needed to support selection of a remedial action to be implemented at the MML site. Four remedial action alternatives for the MML site were identified by Bechtel National, Inc. (BNI) and approved by DOE Oak Ridge Operations Office for evaluation in this document. They are: Alternative 1 - surveillance and monitoring; Alternative 2 - minimal action; Alternative 3 - in-situ stabilization; and Alternative 4 - decontamination and restoration. Chemical characterization of the landfill is underway to establish the presence, if any, of hazardous substances within the excavation area and to determine the safety requirements for excavation associated with Alternatives 3 and 4. For each of the above alternatives, conceptual engineering was performed, occupational health effects evaluated, and a cost estimate prepared. Costs and advantages and disadvantages of each were compared and evaluated. Table 1-1 summarizes these comparisons. 14 references, 6 figures, 9 tables.

  11. Albany Interim Landfill gas extraction and mobile power system: Using landfill gas to produce electricity. Final report

    SciTech Connect

    1997-06-01

    The Albany Interim Landfill Gas Extraction and Mobile Power System project served three research objectives: (1) determination of the general efficiency and radius of influence of horizontally placed landfill gas extraction conduits; (2) determination of cost and effectiveness of a hydrogen sulfide gas scrubber utilizing Enviro-Scrub{trademark} liquid reagent; and (3) construction and evaluation of a dual-fuel (landfill gas/diesel) 100 kW mobile power station. The horizontal gas extraction system was very successful; overall, gas recovery was high and the practical radius of influence of individual extractors was about 50 feet. The hydrogen sulfide scrubber was effective and its use appears feasible at typical hydrogen sulfide concentrations and gas flows. The dual-fuel mobile power station performed dependably and was able to deliver smooth power output under varying load and landfill gas fuel conditions.

  12. Reinventing government: Reinventing Hanford

    SciTech Connect

    Mayeda, J.T.

    1994-05-01

    The Hanford Site was established in 1943 as one of the three original Manhattan Project locations involved in the development of atomic weapons. It continued as a defense production center until 1988, when its mission changed to environmental restoration and remediation. The Hanford Site is changing its business strategy and in doing so, is reinventing government. This new development has been significantly influenced by a number of external sources. These include: the change in mission, reduced security requirements, new found partnerships, fiscal budgets, the Tri-Party agreement and stakeholder involvement. Tight budgets and the high cost of cleanup require that the site develop and implement innovative cost saving approaches to its mission. Costeffective progress is necessary to help assure continued funding by Congress.

  13. Closure Report (CR) for Corrective Action Unit (CAU) 41: Area 27 Landfills with Errata Sheet, Revision 0

    SciTech Connect

    Navarro Nevada Environmental Services

    2010-08-10

    The closure report for CAU 41 is just a one page summary listing the coordinates of the landfill which were given at the time (1996) in Nevada State Plan Coordinates - North American Datum of 1983. The drawing of the use restricted site also listed the coordinates in Nevada State Plan Coordinates - North American Datum of 1983. In the ensuing years the reporting of coordinates has been standardized so that all coordinates are reported in the same manner, which is: NAD 27 UTM Zone 11 N, meters. This Errata Sheet updates the coordinate reporting to the currently accepted method and includes an aerial photo showing the landfill with the coordinates listed showing the use restricted area.

  14. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect

    Don Augenstein

    2001-02-01

    The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  15. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    SciTech Connect

    Kheradmand, S.; Karimi-Jashni, A.; Sartaj, M.

    2010-06-15

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD{sub rem} for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

  16. IL Wted States Government

    Office of Legacy Management (LM)

    Tis&: p/WI-3 . IL Wted States Government ' 1, -1. \ k. 4 4L La. -iF 1 I ' __, 7, Department of Energy memorandum <jj ' 5 - ; +- ,I 12 ~ DATE: OCT 08 1992 REPLY TO AlTN OF: EM-421 (W. A. Williams, 903-8149) rn. I \ SUBJECT: Authorization for Remedial Action at the Former C. H. Schnoor & Company Site, Springdale, Pennsylvania TO: Manager, DOE Oak Ridge Field Office This is to notify you that the former C. H. Schnoor & Company facility in Springdale, Pennsylvania, is designated for

  17. United States Government DATE:

    Office of Legacy Management (LM)

    5oE(E;,8 ' 0 H .2+ L-1 United States Government DATE: MAR 0 8 1994 REPLY TO AlTN OF: EM-421 (W. A. Williams, 903-8149) SUBJECT: Authority Determination -- Former Herring-Hall-Marvin Safe Co., Hamilton, Ohio TO: The File The attached review documents the basis for determining whether the Department of Energy (DOE) has authority for taking remedial action at the former Herring-Hall-Marvin Safe Co. facility in Hamilton, Ohio, under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The

  18. United States Government

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    03/02 TUE 08:59 FAX 423 241 3897 OIG *-* HQ 00o2 DOE F 132,.8 W.I: ((07.9u) United States Government Department of Energy Memorandum DATE: December 2, 2002 REPLY TO REPLY TO -36 (A02SR013) Audit Report No.: OAS-L-03-07 ATTN OF: SUBJECT: Audit of Subcontracting Practices at the Savannah River Site TO: Jeffrey M. Allison, Acting Manager, Savannah River Operations Office INTRODUCTION AND OBJECTIVE The Department of Energy (Department) has contracted with Westinghouse Savannah River Company, LLC

  19. Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions- Case Study, 2013

    Energy.gov [DOE]

    Case study overviewing two large landfill projects in California and Rhode Island funded by the Recovery Act

  20. Remediation of a Classified Waste Landfill at Sandia National Laboratories, NM

    SciTech Connect

    Ward, D.C.

    1998-10-20

    The Sandia National Laboratory es/New Mexico (SNLiNM) Environmental Restoration Project is currently excavating the Classified Waste Landfill in Technical Area II (TA-H), which consists of disposal pits and trenches with discrete disposal cells. TA-11 is a secure, controlled assess, research facility managed by SNIJNM for the US Department of Energy (DOE). The 45-acre facility was established in 1948 for the assembly and maintenance of nuclear weapons. The assembly of weapons was discontinued in 1954. Since that time, TA-11 has been used primarily for explosive research and testing. Beginning is 1984, the DOE Er,vironmental Restoration Program conducted several environmental investigations across TA-11 and SNMNM. These investigations identified sites requiring firther study and possible corrective action. The majority of these sites were grouped into operable units (OUS). The TA-11 OU included 13 sites, one of which is identified as the Classified Waste Landfill (CWLF). The CWLF covers about 2.5 acres and was operated from approximately 1947 through 1987. It was the site for disposal of classified weapon components, s ome of which are potentially explosive, hazardous, ardor radioactively contarninatod. Until about 1958, no records were maintained for material disposed of in the CWLF. Information on the CWLF has been assembled horn interview notes, delivery to reckmation records and other sources. Items disposed of included security containers, hoppers, skids, missiles, wooden boxes, deactivated heat sources, tntium boosters, scintillation cocktails, weapons cases, shells, lasers, radar equipment and accountable mata-ials. Potential contaminants include tritium, thorium, cesium-137, strontium-90, uraniun, plutonium, beryllium, cadmium, lithium, chloroform, toluene, benzene ad other solvents.

  1. Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Shows Success Cleaning Up River Corridor | Department of Energy Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor July 9, 2013 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE, (509) 376-5365 Cameron.Hardy@rl.doe.gov Mark McKenna, WCH, (509) 372-9032 media@wch-rcc.com RICHLAND, Wash. - The U.S. Department of Energy (DOE)

  2. Sanitary landfill groundwater monitoring report. Fourth quarter 1996 and 1996 summary

    SciTech Connect

    1997-02-01

    A maximum of eighty-nine wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane, a common laboratory contaminant, and chloroethene (vinyl chloride) were the most widespread constituents exceeding standards during 1996. Benzene, trichloroethylene, 1,4-dichlorobenzene, 1,1-dichloroethylene, lead (total recoverable), gross alpha, mercury (total recoverable), tetrachloroethylene, fluoride, thallium, radium-226, radium-228, and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 141 ft/year during first quarter 1996 and 132 ft/year during fourth quarter 1996

  3. Prediction of long-term erosion from landfill covers in the southwest

    SciTech Connect

    Anderson, C.E.; Stormont, J.C.

    1997-12-31

    Erosion is a primary stressor of landfill covers, especially for climates with high intensity storms and low native plant density. Rills and gullies formed by discrete events can damage barrier layers and induce failure. Geomorphologic, empirical and physical modeling procedures are available to provide estimates of surface erosion, but numerical modeling requires accurate representation of the severe rainfall events that generate erosion. The National Weather Service precipitation frequency data and estimates of 5, 10, 15, 30 and 60-minute intensity can be statistically combined in a numerical model to obtain long-term erosion estimates. Physically based numerical models using the KINEROS and AHYMO programs have been utilized to predict the erosion from a southwestern landfill or waste containment site with 0.03, 0.05 and 0.08 meter per meter surface slopes. Results of AHYMO modeling were within 15 percent of average annual values computed with the empirical Universal Soil Loss Equation. However, the estimation of rill and gully formation that primarily degrades cover systems requires quantifying single events. For Southwestern conditions, a single 10-year storm can produce erosion quantifies equal to three times the average annual erosion and a 100-year storm can produce five times the average annual erosion.

  4. Determination of operating limits for radionuclides for a proposed landfill at Paducah Gaseous Diffusion Plant

    SciTech Connect

    Wang, J.C.; Lee, D.W.; Ketelle, R.H.; Lee, R.R.; Kocher, D.C.

    1994-05-24

    The operating limits for radionuclides in sanitary and industrial wastes were determined for a proposed landfill at the Paducah Gaseous Diffusion Plant (PGDP), Kentucky. These limits, which may be very small but nonzero, are not mandated by law or regulation but are needed for rational operation. The approach was based on analyses of the potential contamination of groundwater at the plant boundary and the potential exposure to radioactivity of an intruder at the landfill after closure. The groundwater analysis includes (1) a source model describing the disposal of waste and the release of radionuclides from waste to the groundwater, (2) site-specific groundwater flow and contaminant transport calculations, and (3) calculations of operating limits from the dose limit and conversion factors. The intruder analysis includes pathways through ingestion of contaminated vegetables and soil, external exposure to contaminated soil, and inhalation of suspended activity from contaminated soil particles. In both analyses, a limit on annual effective dose equivalent of 4 mrem (0.04 mSv) was adopted. The intended application of the results is to refine the radiological monitoring standards employed by the PGDP Health Physics personnel to determine what constitutes radioactive wastes, with concurrence of the Commonwealth of Kentucky.

  5. Sanitary Landfill Groundwater Monitoring Report, Fourth Quarter 1999 and 1999 Summary

    SciTech Connect

    Chase, J.

    2000-03-13

    A maximum of thirty eight-wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Iron (Total Recoverable), Chloroethene (Vinyl Chloride) and 1,1-Dichloroethane were the most widespread constituents exceeding the Final Primary Drinking Water Standards during 1999. Trichloroethylene, 1,1-Dichloroethylene, 1,2-Dichloroethane, 1,4-Dichlorobenzene, Aluminum (Total Recoverable), Benzene, cis-1,2-Dichloroethylene, Dichlorodifluoromethane, Dichloromethane (Methylene Chloride), Gross Alpha, Mercury (Total Recoverable), Nonvolatile Beta, Tetrachloroethylene, Total Organic Halogens, Trichlorofluoromethane, Tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 144.175 ft/year during first quarter 1999 and 145.27 ft/year during fourth quarter 1999.

  6. Performance of paper mill sludges as landfill capping material

    SciTech Connect

    Moo-Young, H.K. Jr.; Zimmie, T.F.

    1997-12-31

    The high cost of waste containment has sparked interest in low cost and effective strategies of containing wastes. Paper mill sludges have been effectively used as the impermeable barrier in landfill covers. Since paper mill sludges are viewed as a waste material, the sludge is given to the landfill owner at little or no cost. Thus, when a clay soil is not locally available to use as the impermeable barrier in a cover system, paper sludge barriers can save $20,000 to $50,000 per acre in construction costs. This study looks at the utilization and performance of blended and primary paper sludge as landfill capping material. To determine the effectiveness of paper sludge as an impermeable barrier layer, test pads were constructed to simulate a typical landfill cover with paper sludge and clay as the impermeable barrier and were monitored for infiltration rates for five years. Long-term hydraulic conductivity values estimated from the leachate generation rates of the test pads indicate that paper sludge provides an acceptable hydraulic barrier.

  7. Sanitary landfill groundwater monitoring data. First quarter 1992

    SciTech Connect

    Thompson, C.Y.

    1992-05-01

    This report for first quarter 1992 contains sanitary landfill groundwater monitoring data for the Savannah River Plant. The data tables presented in this report are copies of draft analytical results and therefore do contain errors. These errors will be corrected when the finalized data is received from the laboratory.

  8. Organic carbon cycling in landfills: Model for a continuum approach

    SciTech Connect

    Bogner, J.; Lagerkvist, A.

    1997-09-01

    Organic carbon cycling in landfills can be addressed through a continuum model where the end-points are conventional anaerobic digestion of organic waste (short-term analogue) and geologic burial of organic material (long-term analogue). Major variables influencing status include moisture state, temperature, organic carbon loading, nutrient status, and isolation from the surrounding environment. Bioreactor landfills which are engineered for rapid decomposition approach (but cannot fully attain) the anaerobic digester end-point and incur higher unit costs because of their high degree of environmental isolation and control. At the other extreme, uncontrolled land disposal of organic waste materials is similar to geologic burial where organic carbon may be aerobically recycled to atmospheric CO{sub 2}, anaerobically converted to CH{sub 4} and CO{sub 2} during early diagenesis, or maintained as intermediate or recalcitrant forms into geologic time (> 1,000 years) for transformations via kerogen pathways. A family of improved landfill models are needed at several scales (molecular to landscape) which realistically address landfill processes and can be validated with field data.

  9. Fire Protection Related Sites | Department of Energy

    Energy.gov [DOE] (indexed site)

    Web Sites EFCOG - Fire Protection Working Group Headquarter's Office of Science Brookhaven National Laboratory Hanford Fire Department Non-DOE Government-Related Web Sites Consumer ...

  10. Greenhouse gas emissions from landfill leachate treatment plants: A comparison of young and aged landfill

    SciTech Connect

    Wang, Xiaojun; Jia, Mingsheng; Chen, Xiaohai; Xu, Ying; Lin, Xiangyu; Kao, Chih Ming; Chen, Shaohua

    2014-07-15

    Highlights: • Young and aged leachate works accounted for 89.1% and 10.9% of 33.35 Gg CO{sub 2} yr{sup −1}. • Fresh leachate owned extremely low ORP and high organic matter content. • Strong CH{sub 4} emissions occurred in the fresh leachate ponds, but small in the aged. • N{sub 2}O emissions became dominant in the treatment units of both systems. • 8.45–11.9% of nitrogen was removed as the form of N{sub 2}O under steady-state. - Abstract: With limited assessment, leachate treatment of a specified landfill is considered to be a significant source of greenhouse gas (GHG) emissions. In our study, the cumulative GHG emitted from the storage ponds and process configurations that manage fresh or aged landfill leachate were investigated. Our results showed that strong CH{sub 4} emissions were observed from the fresh leachate storage pond, with the fluxes values (2219–26,489 mg C m{sup −2} h{sup −1}) extremely higher than those of N{sub 2}O (0.028–0.41 mg N m{sup −2} h{sup −1}). In contrast, the emission values for both CH{sub 4} and N{sub 2}O were low for the aged leachate tank. N{sub 2}O emissions became dominant once the leachate entered the treatment plants of both systems, accounting for 8–12% of the removal of N-species gases. Per capita, the N{sub 2}O emission based on both leachate treatment systems was estimated to be 7.99 g N{sub 2}O–N capita{sup −1} yr{sup −1}. An increase of 80% in N{sub 2}O emissions was observed when the bioreactor pH decreased by approximately 1 pH unit. The vast majority of carbon was removed in the form of CO{sub 2}, with a small portion as CH{sub 4} (<0.3%) during both treatment processes. The cumulative GHG emissions for fresh leachate storage ponds, fresh leachate treatment system and aged leachate treatment system were 19.10, 10.62 and 3.63 Gg CO{sub 2} eq yr{sup −1}, respectively, for a total that could be transformed to 9.09 kg CO{sub 2} eq capita{sup −1} yr{sup −1}.

  11. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Refuse Hideaway Landfill in Middleton, Wisconsin

    SciTech Connect

    Salasovich, J.; Mosey, G.

    2011-08-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on a brownfield site at the Refuse Hideaway Landfill in Middleton, Wisconsin. The site currently has a PV system in place and was assessed for further PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.1333/kWh and incentives offered by the State of Wisconsin and by the serving utility, Madison Gas and Electric. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system.

  12. Dane County Landfill | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2.22.2 MW 2,200 kW 2,200,000 W 2,200,000,000 mW 0.0022 GW Commercial Online Date 1997 Heat Rate (BTUkWh) 12596.1 References EPA Web Site1 Loading map......

  13. Superfund Record of Decision (EPA Region 2): Hooker-102nd Street Landfill, Niagara Falls, NY. (First remedial action), September 1990. Final report

    SciTech Connect

    Not Available

    1990-09-26

    The 22-acre Hooker-102nd Street site is a former industrial landfill in the city of Niagara Falls, Niagara County, New York. The site is adjacent to, and partially within the Niagara River's 100-year floodplain. These studies and the Remedial Investigation (RI) initiated in 1984, identified contamination in ground water, onsite and offsite soil, rivershore sediment, and within a storm sewer. Additionally, the presence of a leachate plume of non-aqueous phase liquids (NAPLs) was discovered emanating from the landfill area. The Record of Decision (ROD) is the final remedy which addresses all of the contaminated media. The primary contaminants of concern affecting the soil, sediment, and ground water are VOCs including benzene, TCE, and toluene; other organics including PCBs and phenols; and metals including arsenic.

  14. Ecolotree{sup {trademark}} cap at the Barje Landfill, Ljubljana, Slovenia, prototype demonstration

    SciTech Connect

    Licht, L.; Schnoor, J.

    1995-12-01

    The Ecolotree{reg_sign} Buffer uses strategically planted Populus spp. (poplar) trees and forbs to prevent water pollution while growing fiber for biomass fuels, paper pulps, and construction materials. The concept, developed at the University of Iowa, uses root systems that act as a pump to predictable depths greater than 1.5 m (5 ft). The plant uptakes water, nutrients (nitrogen, phosphorus, etc.), and adsorbable organics (such as herbicides) from soil. When the plant survival, growth rate, rooted soil depth, and water uptake are predictable, the site`s hydrology can be managed, and regulatory agencies are more willing to issue operating permits that include this vegetated barrier. Poplars transpire 600 to 1000 kilograms of water for every kilogram of stem dry matter (DM) growth. Measured poplar growth rates for 4-year old trees was 16,600 kg DM/hectare/yr. Conservatively, the water uptake calculated using the 600:1 water/stem growth ratio is 10,000,000 liters/hectare/yr. When transpiration exceeds rainfall, plants remove stored water from rooted soils. This dehydrating action effectively gives the soil a water storage capacity during winter dormancy. This Ecolotree{reg_sign} Buffer technology develops the ability to greatly reduce water leakage without the need for membrane or clay layers in landfill cover soils. This concept is now being used to manage water at American and Slovenian landfills. In contrast with U.S. Environmental Protection Agency-approved clay or geomembrane covers designed with slight regard for plant growth, this cover focuses on reestablishing a vigorous ecosystem. While accomplishing the primary goal of protecting groundwater purity, the Ecolotree{reg_sign} Buffer grows a productive cover that stabilizes soil slopes, produces marketable crops, develops wildlife habitat, and provides a more pleasing ambiance.

  15. Paleo-channel deposition of natural uranium at a US Air Force landfill

    SciTech Connect

    Young, Carl; Weismann, Joseph; Caputo, Daniel [Cabrera Services, Inc., East Hartford, Connecticut (United States)

    2007-07-01

    Available in abstract form only. Full text of publication follows: The US Air Force sought to identify the source of radionuclides that were detected in groundwater surrounding a closed solid waste landfill at the former Lowry Air Force Base in Denver, Colorado, USA. Gross alpha, gross beta, and uranium levels in groundwater were thought to exceed US drinking water standards and down-gradient concentrations exceeded up-gradient concentrations. Our study has concluded that the elevated radionuclide concentrations are due to naturally-occurring uranium in the regional watershed and that the uranium is being released from paleo-channel sediments beneath the site. Groundwater samples were collected from monitor wells, surface water and sediments over four consecutive quarters. A list of 23 radionuclides was developed for analysis based on historical landfill records. Concentrations of major ions and metals and standard geochemical parameters were analyzed. The only radionuclide found to be above regulatory standards was uranium. A search of regional records shows that uranium is abundant in the upstream drainage basin. Analysis of uranium isotopic ratios shows that the uranium has not been processed for enrichment nor is it depleted uranium. There is however slight enrichment in the U-234:U- 238 activity ratio, which is consistent with uranium that has undergone aqueous transport. Comparison of up-gradient versus down-gradient uranium concentrations in groundwater confirms that higher uranium concentrations are found in the down-gradient wells. The US drinking water standard of 30 {mu}g/L for uranium was exceeded in some of the up-gradient wells and in most of the down-gradient wells. Several lines of evidence indicate that natural uranium occurring in streams has been preferentially deposited in paleo-channel sediments beneath the site, and that the paleo-channel deposits are causing the increased uranium concentrations in down-gradient groundwater compared to up

  16. Annual Site Environmental Report

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2014 Annual Site Environmental Report Updated July 24, 2015 NETL's Annual Site Environmental Report for 2014 -ii- 2014 Annual Site Environmental Report September 9, 2015 U.S. Department of Energy National Energy Technology Laboratory Albany, Oregon Anchorage, Alaska Morgantown, West Virginia Pittsburgh, Pennsylvania Sugar Land, Texas NETL's Annual Site Environmental Report for 2014 -iii- Disclaimer This report was prepared as an account of work sponsored by an agency of the U.S. Government.

  17. Y-12 Industrial Landfill V. Permit application modifications

    SciTech Connect

    1995-09-01

    This report contains the modifications in operations and design to meet the Tennessee Department of Environment and Conversation (TDEC) July 10, 1993, amendments to the regulations for Class 2 landfills. These modifications, though extensive in design and construction cost, are considered minor revisions and should not require a processing fee. Area 1 of ILF V, comprising approximately 20% of the ILF V footprint, was designed and submitted to TDEC prior to the implementation of current regulations. This initial area was constructed with a compacted clay liner and leachate collection system, and became operational in April 1994. The current regulations require landfills to have a composite liner with leachate collection system and closure cap. Modifications to upgrade Areas 2 and 3 of ILF V to meet the current TDEC requirements are included.

  18. Sanitary landfill groundwater monitoring report. First Quarter 1995

    SciTech Connect

    1995-06-01

    This report contains analytical data for samples taken during first quarter 1994 from wells of the LFW series located at the Sanitary Landfill Operating permit (DWP-0874A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  19. Landfill Gas and Biogas - Energy Explained, Your Guide To Understanding

    Energy Information Administration (EIA) (indexed site)

    Energy - Energy Information Administration Landfill Gas and Biogas Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come

  20. Lantana landfill: A history of environmental management 1965--96

    SciTech Connect

    Statom, R.A.

    1997-08-01

    The Lantana Sanitary Landfill (LSL) is located in central Palm Beach County, Florida. The history of this landfill is a case study of the changes in environmental law, demography, solid waste management, hydrogeology, and public opinion in south Florida in the last 30 years. In 1983 Palm Beach County transferred ownership of the LSL to the Palm Beach County Solid Waste Authority (SWA). Environmental regulation enacted by Florida in the mid 1980`s resulted in negotiations to close the LSL. Closure was completed in 1988 utilizing a synthetic top liner, a landfill gas extraction/flare system, and a stormwater management system. In 1990 a groundwater mitigation system was installed to remediate the eastern plume. Closure of the LSL, extension of municipal water to local residents, and extensive public education by the SWA all served to answer most of the complaints of the local residents. In 1996 the LSL fell under a new series of air regulations and was required to apply for a Title V permit.

  1. Site A/Plot M Disposal Site, Chicago, Illinois, Fact Sheet

    Office of Legacy Management (LM)

    This site was remediated under the DOE Defense Decontamination and Decommissioning Program. The primary standard governing stewardship activities at Site APlot M is DOE Order ...

  2. Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions Recovery Act Funding Supports Two Large Landfill Projects BroadRock Renewables, LLC built two high efficiency electricity generating facilities that utilize landfill gas in California and Rhode Island. The two projects received a total of $25 million in U.S. Department of Energy funding from the American Recovery and Reinvestment Act (ARRA) of 2009. Private-sector cost share for the projects totaled

  3. Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume I

    SciTech Connect

    Not Available

    1983-07-01

    The environmental impacts associated with remedial actions in connection with residual radioactive materials remaining at the inactive uranium processing site located in Canonsburg, Washington County, Pennsylvania are evaluated. The Canonsburg site is an 18.5-acre property that was formerly owned by the Vitro Rare Metals Company. The expanded Canonsburg site would be 30-acre property that would include the Canonsburg site (the former Vitro Rare Metals plant), seven adjacent private houses, and the former Georges Pottery property. During the period 1942 through 1957 the Vitro Manufacturing Company and its successor, the Vitro Corporation of America, processed onsite residues and ores, and government-owned ores, concentrates, and scraps to extract uranium and other rare metals. The Canonsburg site is now the Canon Industrial Park. In addition to storing the residual radioactive materials of this process at the Canonsburg site, about 12,000 tons of radioactively contaminated materials were transferred to a railroad landfill in Burrell Township, Indiana County, Pennsylvania. This Canonsburg FEIS evaluates five alternatives for removing the potential public health hazard associated with the radioactively contaminated materials. In addition to no action, these alternatives involve various combinations of stabilization of the radioactively contaminated materials in place or decontamination of the Canonsburg and Burrell sites by removing the radioactively contaminated materials to another location. In addition to the two sites mentioned, a third site located in Hanover Township, Washington County, Pennsylvania has been considered as a disposal site to which the radioactively contaminated materials presently located at either of the other two sites might be moved.

  4. Case Studies from the Climate Technology Partnership: Landfill Gas Projects in South Korea and Lessons Learned

    SciTech Connect

    Larney, C.; Heil, M.; Ha, G. A.

    2006-12-01

    This paper examines landfill gas projects in South Korea. Two case studies provide concrete examples of lessons learned and offer practical guidance for future projects.

  5. INDEPENDENT VERIFICATION SURVEY REPORT OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT

    SciTech Connect

    W.C. Adams

    2010-07-21

    INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-03-0

  6. Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version)

    Energy.gov [DOE]

    Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012.

  7. INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT

    SciTech Connect

    W.C. Adams

    2010-05-24

    INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-02-0

  8. Support EM LA Airport Landfill Cover Project by providing 40000 tons of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    soil | Department of Energy Support EM LA Airport Landfill Cover Project by providing 40000 tons of soil Support EM LA Airport Landfill Cover Project by providing 40000 tons of soil DE-DT0010454-Task-Order-4 Airport Landfill Construction Activities The purpose of this task order (TO) is to support the EM-LA Field Office in replacing the cover at the Los Alamos County Airport Landfill. The new cover design is an evapotranspiration (ET) cover. Contractor: TSAY Corporation DOE Contracting

  9. Federal Government Project Performance Benchmarks

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Federal Government Project Performance Benchmarks (All ASHRAE Zones) We define an ESCO as a company that provides energy efficiency-related and other value-added services and that employs performance contracting as a core part of its energy efficiency services business. 1 For projects with electricity savings, we assume site energy conversion (1 kWh = 3,412 Btu). We did not estimate avoided Btus from gallons of water conserved. In general, we followed the analytical approach documented in Hopper

  10. Solid waste landfills under the Resource Conservation and Recovery Act Subtitle D

    SciTech Connect

    1995-11-01

    This document provides guidance for meeting: (1) Guidelines for the Land Disposal of Solid Waste (40 CFR 241); (2) Criteria for Classification of Solid Waste Disposal Facilities and Practices (40 CFR 257); and (3) Criteria for Municipal Solid Waste Landfills (MSWLFs) (40 CFR Part 258). Revisions to 40 CFR 257 and a new Part 258 were published in the Federal Register (56 FR 50978, 10/9/91). The Guidelines for the Land Disposal of Solid Waste set requirements and recommended procedures to ensure that the design, construction, and operation of land disposal sites is done in a manner that will protect human health and the environment. These regulations are applicable to MSWLFs and non-MSWLFs (e.g., landfills used only for the disposal of demolition debris, commercial waste, and/or industrial waste). These guidelines are not applicable to the, land disposal of hazardous, agricultural, and/or mining wastes. These criteria are to be used under the Resource Conservation and Recovery Act (RCRA) in determining which solid waste disposal facilities pose a reasonable possibility of adversely affecting human health or the environment. Facilities failing to satisfy these criteria will be considered to be open dumps which are prohibited under Section 4005 of RCRA. The Criteria for MSWLFs are applicable only to MSWLFs, including those MSWLFs in which sewage sludge is co-disposed with household waste. Based on specific criteria, certain MSWLFs are exempt from some, or all, of the regulations of 40 CFR 258. MSWLFs that fail to satisfy the criteria specified in 40 CFR 258 are also considered open dumps for the purposes of Section 4005 of RCRA. Through the use of a series of interrelated flow diagrams, this guidance document directs the reader to each design, operation, maintenance, and closure activity that must be performed for MSWLFs and non-MSWLFs.

  11. Publication sites productive uses of combustion ash

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Publication Sites Productive Uses of Combustion Ash For more information contact: e:mail: Public Affairs Golden, Colo., Jan. 23, 1997 -- A new technology brief published by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) describes how ash use can reduce the cost of waste management and not harm the environment. Communities in the United States typically dump municipal solid waste combustion ash in landfills. The new technology brief describes recent studies where ash

  12. Hanford Blog Archive - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    July 2013 July 19, 2013 ORP Update on Status of Double Shell Tank AY-102 July 16, 2013 VIDEO: 300 Area Proposed Plan Overview The 300 Area, just north of Richland, Washington, was where fuel for Hanford's nine plutonium production reactors was manufactured. July 15, 2013 NEWS RELEASE: Hanford Site Treating Record Amount of Groundwater Contractor CH2M HILL met annual goal for treating 1.4 billion gallons 3 months early and removed 36 tons of contaminants. July 09, 2013 Hanford Landfill Reaches 15

  13. Determination of landfill gas composition and pollutant emission rates at fresh kills landfill. Volume 2. Appendices to project report. Final report

    SciTech Connect

    1995-12-07

    Air emissions of landfill gas pollutants at Fresh Kills Landfill, located in Staten Island, NY, were estimated based on three weeks of sampling of flow, concentration, and flux at passive vents, gas extraction wells, gas collection plant headers, and the landfill surface conducted by Radian Corporation in 1995. Emission rates were estimated for 202 pollutants, including hydrogen sulfide, mercury vapor, speciated volatile organic compounds, methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane recovery plant. Emission factors based on the results are presented.

  14. Oxnard, California, Site Fact Sheet

    Office of Legacy Management (LM)

    Oxnard, California, Site This fact sheet provides information about the Oxnard, California, Site. The U.S. Department of Energy Office of Legacy Management manages historical records of work performed for the federal government at the Oxnard site. Location of the Oxnard, California, Site Site Description and History The Oxnard site occupies 13.75 acres in an industrial section of Oxnard, California, about 50 miles northwest of Los Angeles. Allis-Chalmers, a farm implement manufacturing company,

  15. Improved methodology to assess modification and completion of landfill gas management in the aftercare period

    SciTech Connect

    Morris, Jeremy W.F.; Crest, Marion; Barlaz, Morton A.; Spokas, Kurt A.; Akerman, Anna; Yuan, Lei

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Performance-based evaluation of landfill gas control system. Black-Right-Pointing-Pointer Analytical framework to evaluate transition from active to passive gas control. Black-Right-Pointing-Pointer Focus on cover oxidation as an alternative means of passive gas control. Black-Right-Pointing-Pointer Integrates research on long-term landfill behavior with practical guidance. - Abstract: Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill aftercare is in society's interest to protect human health and the environment and to prevent the emergence of landfills with exhausted aftercare funding. The Evaluation of Post-Closure Care (EPCC) methodology is a performance-based approach in which landfill performance is assessed in four modules including leachate, gas, groundwater, and final cover. In the methodology, the objective is to evaluate landfill performance to determine when aftercare monitoring and maintenance can be reduced or possibly eliminated. This study presents an improved gas module for the methodology. While the original version of the module focused narrowly on regulatory requirements for control of methane migration, the improved gas module also considers best available control technology for landfill gas in terms of greenhouse gas emissions, air quality, and emissions of odoriferous compounds. The improved module emphasizes the reduction or elimination of fugitive methane by considering the methane oxidation capacity of the cover system. The module also allows for the installation of biologically active covers or other features designed to enhance methane oxidation. A methane emissions model, CALMIM, was used to assist with an assessment of the methane oxidation capacity of

  16. A cost-benefit analysis of landfill mining and material recycling in China

    SciTech Connect

    Zhou, Chuanbin Gong, Zhe; Hu, Junsong; Cao, Aixin; Liang, Hanwen

    2015-01-15

    Highlights: • Assessing the economic feasibility of landfill mining. • We applied a cost-benefit analysis model for landfill mining. • Four material cycling and energy recovery scenarios were designed. • We used net present value to evaluate the cost-benefit efficiency. - Abstract: Landfill mining is an environmentally-friendly technology that combines the concepts of material recycling and sustainable waste management, and it has received a great deal of worldwide attention because of its significant environmental and economic potential in material recycling, energy recovery, land reclamation and pollution prevention. This work applied a cost-benefit analysis model for assessing the economic feasibility, which is important for promoting landfill mining. The model includes eight indicators of costs and nine indicators of benefits. Four landfill mining scenarios were designed and analyzed based on field data. The economic feasibility of landfill mining was then evaluated by the indicator of net present value (NPV). According to our case study of a typical old landfill mining project in China (Yingchun landfill), rental of excavation and hauling equipment, waste processing and material transportation were the top three costs of landfill mining, accounting for 88.2% of the total cost, and the average cost per unit of stored waste was 12.7 USD ton{sup −1}. The top three benefits of landfill mining were electricity generation by incineration, land reclamation and recycling soil-like materials. The NPV analysis of the four different scenarios indicated that the Yingchun landfill mining project could obtain a net positive benefit varying from 1.92 million USD to 16.63 million USD. However, the NPV was sensitive to the mode of land reuse, the availability of energy recovery facilities and the possibility of obtaining financial support by avoiding post-closure care.

  17. Integrating remediation and resource recovery: On the economic conditions of landfill mining

    SciTech Connect

    Frändegård, Per Krook, Joakim; Svensson, Niclas

    2015-08-15

    Highlights: • We compare two remediation scenarios; one with resource recovery and one without. • Economic analysis includes relevant direct costs and revenues for the landfill owner. • High degrees of metal and/or combustible contents are important economic factors. • Landfill tax and the access to a CHP can have a large impact on the result. • Combining landfill mining and remediation may decrease the project cost. - Abstract: This article analyzes the economic potential of integrating material separation and resource recovery into a landfill remediation project, and discusses the result and the largest impact factors. The analysis is done using a direct costs/revenues approach and the stochastic uncertainties are handled using Monte Carlo simulation. Two remediation scenarios are applied to a hypothetical landfill. One scenario includes only remediation, while the second scenario adds resource recovery to the remediation project. Moreover, the second scenario is divided into two cases, case A and B. In case A, the landfill tax needs to be paid for re-deposited material and the landfill holder does not own a combined heat and power plant (CHP), which leads to disposal costs in the form of gate fees. In case B, the landfill tax is waived on the re-deposited material and the landfill holder owns its own CHP. Results show that the remediation project in the first scenario costs about €23/ton. Adding resource recovery as in case A worsens the result to −€36/ton, while for case B the result improves to −€14/ton. This shows the importance of landfill tax and the access to a CHP. Other important factors for the result are the material composition in the landfill, the efficiency of the separation technology used, and the price of the saleable material.

  18. Waste Not, Want Not: Analyzing the Economic and Environmental Viability of Waste-to-Energy (WTE) Technology for Site-Specific Optimization of Renewable Energy Options

    SciTech Connect

    Funk, K.; Milford, J.; Simpkins, T.

    2013-02-01

    Waste-to-energy (WTE) technology burns municipal solid waste (MSW) in an environmentally safe combustion system to generate electricity, provide district heat, and reduce the need for landfill disposal. While this technology has gained acceptance in Europe, it has yet to be commonly recognized as an option in the United States. Section 1 of this report provides an overview of WTE as a renewable energy technology and describes a high-level model developed to assess the feasibility of WTE at a site. Section 2 reviews results from previous life cycle assessment (LCA) studies of WTE, and then uses an LCA inventory tool to perform a screening-level analysis of cost, net energy production, greenhouse gas (GHG) emissions, and conventional air pollution impacts of WTE for residual MSW in Boulder, Colorado. Section 3 of this report describes the federal regulations that govern the permitting, monitoring, and operating practices of MSW combustors and provides emissions limits for WTE projects.

  19. E-Government

    Energy.gov [DOE]

    The E-Government ( E-Gov) and Lines of Business (LoB) initiatives serve citizens, business,Federal and state government employees by delivering high quality services more efficiently at a lower...

  20. Geothermal Government Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Here you'll find links to federal, state, and local government programs promoting geothermal energy development.

  1. Site environmental report for calendar year 2002. DOE operations at the Boeing Company, Rocketdyne Propulsion and Power

    SciTech Connect

    2003-09-30

    This Annual Site Environmental Report (ASER) for 2002 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing' s Santa Susana Field Laboratory (SSFL)). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations at ETEC included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities at ETEC involved the operation of large-scale liquid metal facilities that were used for testing liquid metal fast breeder components. All nuclear work was terminated in 1988, and, subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2002 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property ( land, structures, waste), and recycling. All radioactive w astes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes are released into the environment, and no structural debris from buildings w as transferred to municipal landfills or recycled in 2002.

  2. Site Feeds - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Site Feeds Site Feeds Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New Hanford RSS Feeds Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size RSS Feed Links Site News RSS Did You Know RSS What's New RSS Event Calendar RSS Recent Videos RSS Press Releases RSS What is a feed? A feed is a document that contains summaries of web content with web links to the original versions. It may be viewed with a feed reader or news aggregator. If you

  3. Selection of clc, cba, and fcb chlorobenzoate-catabolic genotypes from groundwater and surface waters adjacent to the Hyde Park, Niagara Falls, chemical landfill

    SciTech Connect

    Peel, M.C.; Wyndham, R.C.

    1999-04-01

    The frequency of isolation of three nonhomologous chlorobenzoate catabolic genotypes (clc, cba, and fbc) was determined for 464 isolates from freshwater sediments and groundwater in the vicinity of the Hyde Park industrial landfill site in the Niagara watershed. Samples were collected from both contaminated and noncontaminated sites during spring, summer, and fall and enriched at 4, 22, or 32 C with micromolar to millimolar concentrations of chlorobenzoates and 3-chlorobiphenyl. Hybridization at moderate stringency to restriction-digested genomic DNA with DNA probes revealed the chlorocatechol 1,2-dioxygenase operon (clcABD), the 3-chlorobenzoate 3,4-(4,5)-dioxygenase operon (cbaABC), and the 4-chlorobenzoate dehalogenase (fcbB) gene in isolates enriched from all contaminated sites in the vicinity of the industrial landfill. Nevertheless, the known genes were found in less than 10% of the isolates from the contaminated sites, indicating a high level of genetic diversity in the microbial community. The known genotypes were not enriched from the noncontaminated control sites nearby. The clc, cba, and fcb isolates were distributed across five phenotypically distinct groups based on Biolog carbon source utilization, with the breadth of the host range decreasing in the order clc > cba > fcb. Restriction fragment length polymorphism (RFLP) patterns showed that the cba genes were conserved in all isolates whereas the clc and fcb genes exhibited variation in RFLP patterns.

  4. TDR calibration for the alternative landfill cover demonstration (ALCD)

    SciTech Connect

    Lopez, J.; Dwyer, S.F.; Swanson, J.N.

    1997-09-01

    The Alternative Landfill Cover Demonstration is a large scale field test that compares the performance of various landfill cover designs in dry environments. An important component of the comparison is the change in the moisture content of the soils throughout the different cover test plots. Time Domain Reflectometry (TDR) is the primary method for the measurement of the volumetric moisture content. Each of the covers is composed of layers of varying types and densities of soils. The probes are therefore calibrated to calculate the volumetric moisture content in each of the different soils in order to gain the optimum performance of the TDR system. The demonstration plots are constructed in two phases; a different probe is used in each phase. The probe that is used in Phase 1 is calibrated for the following soils: compacted native soil, uncompacted native soil, compacted native soil mixed with 6% sodium bentonite by weight, and sand. The probe that is used in Phase 2 is calibrated for the following soils: compacted native soil, uncompacted native soil, and sand. In addition, the probes are calibrated for the varying cable lengths of the TDR probes. The resulting empirically derived equations allow for the calculation of in-situ volumetric moisture content of all of the varying soils throughout the cover test plots in the demonstration.

  5. Health assessment for S-Area Landfill/Hooker, Niagara Falls, New York, Region 2. CERCLIS No. NYD000000001. Preliminary report

    SciTech Connect

    Not Available

    1989-06-01

    The S-Area Landfill is a National Priorities List site located in Niagara Falls, New York, that was operated from 1947 to 1975 by the Occidental Chemical Corporation (OCC). From 1947 to 1975, OCC is reported to have disposed of an estimated 19,000 tons of chlorobenzenes and approximately 17,000 tons of hexachlorocyclopentadiene. Other wastes disposed of at the site include organic phosphates, hexachlorobutadiene, trichlorophenols, and chlorinated toluenes. Environmental contamination from the S-Area exists on-site and off-site in soils and ground water. Further off-site contamination potentially exists in the Niagara River. The S-Area presents a potential public health threat to the consumers of the City of Niagara Falls drinking water and an incremental increase in contamination to fish in the Niagara River.

  6. Estimating water content in an active landfill with the aid of GPR

    SciTech Connect

    Yochim, April, E-mail: ayochim@regionofwaterloo.ca [Region of Waterloo Waste Management Division, 925 Erb Street West, Waterloo, ON N2J 3Z4 (Canada); Zytner, Richard G., E-mail: rzytner@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); McBean, Edward A., E-mail: emcbean@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); Endres, Anthony L., E-mail: alendres@sciborg.uwaterloo.ca [Dept. of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

    2013-10-15

    Highlights: Limited information in the literature on the use of GPR to measure in situ water content in a landfill. Developed GPR method allows measurement of in situ water content in a landfill. Developed GPR method is appealing to waste management professionals operating landfills. - Abstract: Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and the lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content. Due to the large degree of subsurface heterogeneity and the electrically conductive clay cap covering landfills, both of which affect the transmission of the electromagnetic pulses, there is much scepticism concerning the use of GPR to quantify in situ water content within a municipal landfill. Two landfills were studied. The first landfill was used to develop the measurement protocols, while the second landfill provided a means of confirming these protocols. GPR measurements were initially completed using the surface GPR approach, but the lack of success led to the use of borehole (BH) GPR. Both zero offset profiling (ZOP) and multiple offset gathers (MOG) modes were tried, with the results indicating that BH GPR using the ZOP mode is the most simple and efficient method to measure in situ water content. The best results were obtained at a separation distance of 2 m, where higher the water content, smaller the effective separation distance. However, an increase in water content did appear to increase the accuracy of the GPR measurements. For the effective separation distance of 2 m at both landfills, the difference between GPR and lab measured water contents were reasonable at 33

  7. Health assessment for Barceloneta Landfill, Florida Afuefra, Puerto Rico, Region 2. CERCLIS No. PRD98059129. Preliminary report

    SciTech Connect

    Not Available

    1990-01-01

    The Barceloneta Landfill Site (BLS) is located in Florida Afuera, Puerto Rico. BLS is an active municipal/industrial site. Approximately 300 tons of hazardous wastes have been disposed in sink holes, which are approximately 100 feet deep. Preliminary on-site sampling results have identified various volatile organic compounds. They include: chloroform (2 ppm in sludge), toluene (31 ppb in surface water), phenols (3 ppm in sludge), and methylene chloride (52 ppb in sludge). Other contaminants identified on-site in water runoff and sludge include aluminum, cobalt, iron, manganese, zinc, mercury, and lead. The site is considered to be of public health concern because of the risk to human health caused by the likelihood of human exposure to hazardous substances. Direct contact and ingestion of ground water, surface water, soil, and sediment are the most likely exposure routes. Inhalation of volatilized contaminants or contaminants entrained in air by area residents is another exposure route that may pose a public health concern. Ingestion of fish that bioaccumulate site contaminants may pose a potential for public health concern because it was reported that fish is a food staple for the area.

  8. SEAMIST{trademark} in-situ instrumentation and vapor sampling system applications in the Sandia Mixed Waste Landfill Integrated Demonstration program: Final report

    SciTech Connect

    Williams, C.; Lowry, W.; Cremer, D.; Dunn, S.D.

    1995-09-01

    The Mixed Waste Landfill Integrated Demonstration was tasked with demonstrating innovative technologies for the cleanup of chemical and mixed waste landfills that are representive of sites occurring throughout the DOE complex and the nation. The SEAMIST{trademark} inverting membrane deployment system has been used successfully at the Mixed Waste Landfill Integrated Demonstration (MWLID) for multipoint vapor sampling, pressure measurement, permeability measurement, sensor integration demonstrations, and borehole lining. Several instruments were deployed inside the SEAMIST{trademark}-lined boreholes to detect metals, radionuclides, moisture, and geologic variations. The liner protected the instruments from contamination, maintained support of the uncased borehole wall, and sealed the total borehole from air circulation. Recent activities included the installation of three multipoint vapor sampling systems and sensor integration systems in 100-foot-deep vertical boreholes. A long term pressure monitoring program has recorded barometric pressure effects at depth with relatively high spatial resolution. The SEAMIST{trademark} system has been integrated with a variety of hydrologic and chemical sensors for in-situ measurements, demonstrating its versatility as an instrument deployment system that allows easy emplacement and removal. Standard SEAMIST{trademark} vapor sampling systems were also integrated with state-of-the-art volatile organic compound analysis technologies. The results and status of these demonstration tests are presented.

  9. Government Contracting Fundamentals

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Do you own a small business? Are you interested in learning more about government contracting? This fact sheet provides you with essential resources and tips to prepare you for small business contracting with the federal government. Useful Government Contracting Resources for Small Business Resource Website Description Procurement Technical Assistance Centers (PTAC) aptac-us.org/ A national network of 98 PTACs and over 300 local offices offering small businesses with a variety of services

  10. Alternative Landfill Cover and Monitoring Systems for Landfills in Arid Environments

    SciTech Connect

    S. E. Rawlinson

    2002-09-01

    In December 2000, a performance monitoring facility was constructed adjacent to the mixed waste disposal unit U-3ax/bl at the Area 3 Radioactive Waste Management Site at the Nevada Test Site. This facility consists of eight drainage lysimeters measuring 10 feet in diameter, 8 feet deep, and backfilled with native soil. The lysimeters have three different surface treatments: two were left bare, two were revegetated with native species, and two were allowed to revegetate with invader species (two are reserved for future studies). The lysimeters are instrumented with an array of soil water content and soil water potential sensors and have sealed bottoms so that any drainage can be measured. All sensors are working properly and indicate that the bare lysimeters are the wettest, as expected. The vegetated lysimeters, both seeded and those allowed to revegetate with invader species, are significantly drier than the bare cover treatments. No drainage has occurred in any of the lysimeters. The Accelerated Site Technology Deployment program under the U.S. Department of Energy's Office of Science and Technology provided the funding for this project with the objective of reducing the uncertainty associated with the performance of monolayer-evapotranspiration waste covers in arid regions such as the one deployed at U-3ax/bl.

  11. Web Governance Team

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Energy Efficiency and Renewable Energy (EERE) Web Governance Team (WGT) reviews and approves all new EERE Web projects, redesigns, and user-experience projects.

  12. Government Funding Opportunity Announcements

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Government Funding Opportunity Announcements World-class experts and capabilities countering all aspects of explosive threats, and aiming predominantly at enhanced detection ...

  13. Landfill gas cleanup for carbonate fuel cell power generation. Final report

    SciTech Connect

    Steinfield, G.; Sanderson, R.

    1998-02-01

    Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

  14. Jrrited States Government

    Office of Legacy Management (LM)

    consideration under the Formerly Utilized Sites Remedial Action Program. W. Alexander Williams, PhD Designation and Certification Manager Off-Site Branch Division of Eastern Area...

  15. United States Government

    Energy.gov [DOE] (indexed site)

    public Internet web site visitors through the use of unapproved or undisclosed methods. ... Persistent cookies are techrlologies used to collect data from public web site visitors ...

  16. Post-Closure Inspection Report for Corrective Action Unit 453: Area 9 UXO Landfill Tonopah Test Range, Nevada, Calendar Year 2000

    SciTech Connect

    K. B. Campbell

    2001-06-01

    Post-closure monitoring requirements for the Area 9 Unexploded Ordnance Landfill (Corrective Action Unit [CAU] 453) (Figure 1) are described in Closure Report for Corrective Action Unit 453: Area 9 UXO Landfill, Tonopah Test Range, Nevada, report number DOE/NV--284. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 5,1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on September 10,1999. Post-closure monitoring at CAU 453 consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 20, 2000 and November 21, 2000. Both site inspections were conducted after NDEP approval of the CR, and in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of the inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and inspection photographs are found in Attachment C.

  17. Post-Closure Inspection Report for Corrective Action Unit 453: Area 9 UXO Landfill Tonopah Test Range, Nevada, Calendar Year 2001

    SciTech Connect

    K. B. Campbell

    2002-01-01

    Post-closure monitoring requirements for the Area 9 Unexploded Ordinance Landfill (Corrective Action Unit [CAU] 453) (Figure 1) are described in Closure Report for Corrective Action Unit 453: Area 9 UXO Landfill, Tonopah Test Range, Nevada, report number DOE/NV--284, August 1999. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 5 , 1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on September 10,1999. As stated in Section 5.0 of the NDEP-approved CR, post-closure monitoring at CAU 453 consists of the following: (1) Visual site inspections are conducted twice a year to evaluate the condition of the cover. (2) Verification that the site is secure and the condition of the fence and posted warning signs. (3) Notice of any subsidence, erosion, unauthorized excavation, etc., deficiencies that may compromise the integrity of the unit. (4) Remedy of any deficiencies within 90 days of discovery. (5) Preparation and submittal of an annual report. Site inspections were conducted on May 15, 2001 and November 6, 2001. Both site inspections were conducted in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of the inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and inspection photographs are found in Attachment C.

  18. Related Sites | Y-12 National Security Complex

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Related Sites Related Sites Links to the following sources of information are provided as resources. Listings are obtained from government, industry and trade organizations and from other resources. Government System for Award Management The System for Award Management (SAM) (formerly Central Contractor Registration-CCR) is the main database used by the U.S. Government for collection, validation, storage and dissemination of data in support of agency acquisition missions. DOE Small Business Site

  19. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

  20. Comparison of emissions from landfills, municipal waste combustors, and fossil fuel-fired utilities

    SciTech Connect

    1996-11-01

    Landfilling is the most popular disposal method for managing municipal solid waste (MSW). However, air emissions from MSW landfills have generally been unregulated until recently. Instead, EPA has focused on emissions from municipal waste combustors (MWCs), even though they only manage 15% of MSW generated in the United States. In the past, little data have been available comparing landfill and MWC air emissions. Such information is provided by this paper. It also compares emissions from waste-to-energy MWCs and fossil fuel-fired utilities with equivalent electrical generation capacity. 1 refs., 6 tabs.

  1. Industrial landfill leachate characterization and treatment utilizing anaerobic digestion with methane production

    SciTech Connect

    Corbo, P.

    1985-01-01

    Anaerobic digestion of organic compounds found in an industrial landfill leachate originating from a Superfund site was assessed using mixed methanogenic cultures. Leachate was found to contain a dissolved organic content (DOC) of about 16,000 mg/liter, of which 40% was in the form of acetic, propionic and butyric acids. The overall reduction of DOC and the fates of individual volatile fatty acids were studied during batch experiments of 5, 10, and 20% leachate dilutions. Other leachate components were characterized. Two methanogenic cultures were selected. A leachate digesting culture was selected directly with the leachate. A volatile fatty acid digesting culture was selected using acetic, propionic and butyric acids in the ratio found in the leachate. An overall DOC reduction of 64.3% was observed for the leachate digesting culture. A reduction of 69.1% was observed for the volatile fatty acid digesting culture. Specific DOC utilization rates were 0.154 and 0.211 day/sup -1/, for the leachate digesting and volatile fatty acid digesting cultures, respectively. Methane was produced at levels of 0.95-0.99 liters per gram DOC removed. Cell growth could not be observed during batch experiments. Acetate appeared to be the rate-limiting step in the DOC removal. Batch experiments with 20% leachate dilutions did not produce much methane, possibly due to overloading systems with volatile fatty acids. Other leachate components did not appear to effect anaerobic digestion.

  2. Field measurements of frost penetration into a landfill cover that uses a paper sludge barrier

    SciTech Connect

    Moo-Young, H.K.; LaPlante, C.; Zimmie, T.F.; Quiroz, J.

    1999-07-01

    Frost penetration is a major environmental concern in landfill design. Freezing and thawing cycles may deteriorate the permeability of the liner or cap. In this study, the depth of frost penetration into a landfill cover that uses paper sludge as the impermeable barrier (the Hubbardston landfill in Massachusetts) was measured using a frost measurement system. A thermistor probe measured the temperature at various depths. Although temperature measurements are important, soil resistivity measurements are required to accurately predict the freezing level, since soil resistivity increases greatly upon freezing. A conductivity probe measured the half-bridge voltage between conductivity rings and a ground rod. Data were collected in data loggers. The data collected from 1992--1996 showed that the frost level did not penetrate the paper sludge capping layer. Heavy snow cover throughout the winters decreased the depth of frost penetration by insulating the landfill. The high water content in the sludge also contributed to the lack of freezing.

  3. Development of an air emissions inventory for municipal solid waste landfills under title V

    SciTech Connect

    Vogt, W.G.; Peterson, E.R. Peyser, T.R.

    1996-11-01

    In the past, many states were either not concerned with, or unaware that, municipal solid waste (MSW) landfills were potential sources of regulated air pollutants. This philosophy has changed, in part due to U.S. EPA policy documents concerning (and defining) fugitive and non-fugitive emissions from MSWs, the March 1, 1996 signing of the New Source Performance Standards, and a recent law suit which gained national notoriety involving landfill air emissions and air permitting applicability issues. Most states now recognize that MSW landfills are sources of regulated air pollutants and are subject to the permitting requirements (and pollutant emission fees) as other industries; i.e, state-level minor and major source operating permit programs, and the 1990 Clean Air Act Amendments Title V Operating Permits Program (Title V). The purpose of this paper is to discuss required elements of air emissions inventories and provide example calculations for estimating emissions from typical sources located at landfill facilities.

  4. Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant

    Office of Energy Efficiency and Renewable Energy (EERE)

    Success story about LNG from landfill gas. Presented by Mike McGowan, Linde NA, Inc., at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  5. Property:Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas...

    OpenEI (Open Energy Information) [EERE & EIA]

    YrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  6. Property:Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas...

    OpenEI (Open Energy Information) [EERE & EIA]

    YrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  7. Investigation of Integrated Subsurface Processing of Landfill Gas and Carbon Sequestration, Johnson County, Kansas

    SciTech Connect

    K. David Newell; Timothy R. Carr

    2007-03-31

    The Johnson County Landfill in Shawnee, KS is operated by Deffenbaugh Industries and serves much of metropolitan Kansas City. Refuse, which is dumped in large plastic-underlined trash cells covering several acres, is covered over with shale shortly after burial. The landfill waste, once it fills the cell, is then drilled by Kansas City LFG, so that the gas generated by anaerobic decomposition of the refuse can be harvested. Production of raw landfill gas from the Johnson County landfill comes from 150 wells. Daily production is approximately 2.2 to 2.5 mmcf, of which approximately 50% is methane and 50% is carbon dioxide and NMVOCs (non-methane volatile organic compounds). Heating value is approximately 550 BTU/scf. A upgrading plant, utilizing an amine process, rejects the carbon dioxide and NMVOCs, and upgrades the gas to pipeline quality (i.e., nominally a heating value >950 BTU/scf). The gas is sold to a pipeline adjacent to the landfill. With coal-bearing strata underlying the landfill, and carbon dioxide a major effluent gas derived from the upgrading process, the Johnson County Landfill is potentially an ideal setting to study the feasibility of injecting the effluent gas in the coals for both enhanced coalbed methane recovery and carbon sequestration. To these ends, coals below the landfill were cored and then were analyzed for their thickness and sorbed gas content, which ranged up to 79 scf/ton. Assuming 1 1/2 square miles of land (960 acres) at the Johnson County Landfill can be utilized for coalbed and shale gas recovery, the total amount of in-place gas calculates to 946,200 mcf, or 946.2 mmcf, or 0.95 bcf (i.e., 985.6 mcf/acre X 960 acres). Assuming that carbon dioxide can be imbibed by the coals and shales on a 2:1 ratio compared to the gas that was originally present, then 1682 to 1720 days (4.6 to 4.7 years) of landfill carbon dioxide production can be sequestered by the coals and shales immediately under the landfill. Three coal--the Bevier

  8. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion

    SciTech Connect

    Assamoi, Bernadette; Lawryshyn, Yuri

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Residential waste diversion initiatives are more successful with organic waste. Black-Right-Pointing-Pointer Using a incineration to manage part of the waste is better environmentally. Black-Right-Pointing-Pointer Incineration leads to more power plant emission offsets. Black-Right-Pointing-Pointer Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

  9. ITP Industrial Distributed Energy: CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Landfills and Wastewater Treatment Plants: Market Opportunities November 7, 2007 Denver, Colorado Paul Lemar Jr., President pll@rdcnet.com www.rdcnet.com www.distributed-generation.com CHP and Bioenergy for Landfills and Wastewater Treatment Plants November 7, 2007 The Opportunity for Alternative CHP Fuels z High natural gas prices have decreased spark spreads and reduced CHP market potential z Increasing natural gas supply or reducing demand substantially is unlikely z Renewable portfolio

  10. United States Government

    Office of Environmental Management (EM)

    States Government Department of Energy memorandum Carlsbad Field Office Carlsbad, New Mexico 88221 DATE: REPLY TO ATTN OF: SUBJECT: JAN 1 7 2014 CBFO:OESH:GTB:MN:14-1404:UFC...

  11. United States Government

    Office of Legacy Management (LM)

    81278 United States Government Department of Energy memorandum - ?71 S.EP 23 F; i: 54 DATE: SEP 1 8 1991 REPLY TO ATTNOF: EM-421 (P. Blom, 3-8148) SUBJECT: Approved Categorical...

  12. Government Purchase Card Program

    Energy.gov [DOE]

    The General Services Administration (GSA) SmartPay2 program provides charge cards to U.S. Government agencies, including the Department of Energy (DOE). Through GSA, DOE has contracted with JP...

  13. Government Funding Opportunity Announcements

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Government Funding Opportunity Announcements Government Funding Opportunity Announcements World-class experts and capabilities countering all aspects of explosive threats, and aiming predominantly at enhanced detection capabilities. When LACED can Participate LACED is allowed to noncompetitively participate (respond directly, co-respond, provide content, etc.) in FOAs, so long as the FOA meets the following criteria: Each respondent submits its unique Statement of Work in response to the broad

  14. United States Government

    Office of Legacy Management (LM)

    Authorization for Remedial Action at Diamond Magnesium Site in Painesville, Ohio TO: L. Price, OR The former Diamond Magnesium Company site located at 720 Fairport-Nursery Road in...

  15. United States Government

    Office of Legacy Management (LM)

    memorandum pJ .T b Department of Energy DATE: OCT 9 1984 REPLY TO NE-20 All-N OF: ... Louis Airport Storage Site, St. Louis, MO. and the W. R. Grace Site at Curtis Bay, Md. To: ...

  16. Hanford Site Sustainability Program, Richland, Washington - 12464

    SciTech Connect

    Fritz, Lori

    2012-07-01

    In support of implementation of Executive Order (EO) 13514, Federal Leadership in Environmental, Energy and Economic Performance, the Hanford Site Sustainability Plan [1] was developed to implement strategies and activities required to achieve the prescribed goals in the EO as well as demonstrate measurable progress in environmental stewardship at the Hanford Site. The Hanford Site has made significant progress in the area of environmental stewardship through multiple initiatives to reduce energy consumption and GHG emissions, despite increased demands in those areas due to accelerated cleanup work driven by ARRA funding. Future plans, contingent on available funding, include additional enhancements in the areas of fleet management, including installation of additional charging stations and continued acquisition of alternate fueled vehicles, implementation of one or more of the recommendations from the Feasibility Study on reducing GHG emissions from employee commuting, and potential diversion of solid waste from on-site landfills. (author)

  17. Remedial investigation and feasibility study for the Lawrence Livermore National Laboratory Site 300 Pit 7 Complex

    SciTech Connect

    Taffet, M.J. ); Oberdorfer, J.A. ); McIlvride, W.A. )

    1989-10-01

    This report summarizes the results and conclusions of the investigation of tritium and other compounds in ground water in the vicinity of landfills at the Lawrence Livermore National Laboratory (LLNL) Site 300 Pit 7 Complex. 91 refs., 110 figs., 43 tabs.

  18. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste

    SciTech Connect

    Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G.

    2013-10-15

    Highlights: ► The isotopic signature of δ{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ► Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ► In situ aeration of landfills can be monitored by isotope analysis in leachate. ► The isotopic analysis of leachates can be used for assessing the stability of MSW. ► δ{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ{sup 13}C, δ{sup 2}H and δ{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ{sup 13}C-value of the dissolved inorganic carbon (δ{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ{sup 13}C-DIC of −20‰ to −25‰. The production of methane under anaerobic conditions caused an increase in δ{sup 13}C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW

  19. Energy Department Sends First Energy Saving Team to Federal Government...

    Energy Saver

    Energy Department Sends First Energy Saving Team to Federal Government Site in Jamaica, N.Y. October 27, 2005 - 12:32pm Addthis WASHINGTON, DC - Secretary of Energy Samuel W. ...

  20. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  1. United States Government

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7325.8 (08-93) United States Government Department of Energy Memorandum DATE: October 30,2008 Audit Report Nuniber: OAS-L-09-01 REPLY TO AITN OF: IG-30 (A08GT053) SUBJECT: Audit Report on "Review of the Department of Energy's Contract with AHTNA Government Services Corporation Contract No: DE-AC52-04NA25282" TO: Director, Office of Field Financial Management, NNSA INTRODUCTION AND OBJECTIVE The National Nuclear Security Administration (NNSA) awarded a general construction contract to

  2. United States Government

    Office of Legacy Management (LM)

    Alexander W illiams Designation and Certification Manager O ff-Site Branch Division of Eastern Area Programs O ffice of Environmental Restoration Attachment bee: Weston E; :I ...

  3. United States Government

    Office of Legacy Management (LM)

    W. Alexander Williams Designation and Certification Manager Off-Site Branch Division of Eastern Area Programs Office of Environmental Restoration Attachment " ' . bee: Weston Ri ...

  4. UNITED STATES GOVERNMENT DEPARTMENT...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    OF ENERGY memorandum National Nuclear Security Administration Los Alamos Site Ofice Los Alamos, New Mexico UTRQQ ... Summary Mitigation Action Plan (MAP) Tracking National ...

  5. Local government`s pollution prevention program

    SciTech Connect

    Swanson, D.

    1996-12-31

    The pollution prevention program operated by the Health Department of Boulder County is called Business Partners for a Clean Environment (Business Partners). It is a cooperative effort among local businesses, the City of Boulder, Boulder County, and the Boulder Chamber of Commerce. This nonregulatory, incentive-based program provides industry with pollution prevention information and technical assistance necessary to reduce and/or eliminate environmental waste. This paper provides an overview of the program development, creation of partnerships and trust, and some of the results from implementation of the program. Following the first 18 months of the program, 35 businesses were recognized as Business Partners. The Business Partners program has also received an achievement award from the National Association of Counties for promoting {open_quotes}responsible, responsive, and effective government{close_quotes} and two governor`s awards from the State of Colorado. Participating businesses have demonstrated that a pollution prevention program can reduce environmental waste, increase employee safety, and decrease costs. 4 refs., 4 figs., 5 tabs.

  6. The Excavation and Remediation of the Sandia National Laboratories Chemical Waste Landfill

    SciTech Connect

    KWIECINSKI,DANIEL ALBERT; METHVIN,RHONDA KAY; SCHOFIELD,DONALD P.; YOUNG,SHARISSA G.

    1999-11-23

    The Chemical Waste Landfill (CWL) at Sandia National Laboratories/New Mexico (SNL/NM) is a 1.9-acre disposal site that was used for the disposal of chemical wastes generated by many of SNL/NM research laboratories from 1962 until 1985. These laboratories were primarily involved in the design, research and development of non-nuclear components of nuclear weapons and the waste generated by these labs included small quantities of a wide assortment of chemical products. A Resource Conservation and Recovery Act (RCRA) Closure Plan for the Chemical Waste Landfill was approved by the New Mexico Environment Department (NMED) in 1992. Subsequent site characterization activities identified the presence of significant amounts of chromium in the soil as far as 80 feet below ground surface (fbgs) and the delineation of a solvent plume in the vadose zone that extends to groundwater approximately 500 fbgs. Trichloroethylene (TCE) was detected in some groundwater samples at concentrations slightly above the drinking water limit of 5 parts per billion. In 1997 an active vapor extraction system reduced the size of the TCE vapor plume and for the last six quarterly sampling events groundwater samples have not detected TCE above the drinking water standard. A source term removal, being conducted as a Voluntary Corrective Measure (VCM), began in September 1998 and is expected to take up to two years. Four distinct disposal areas were identified from historical data and the contents of disposal pits and trenches in these areas, in addition to much of the highly contaminated soil surrounding the disposal cells, are currently being excavated. Buried waste and debris are expected to extend to a depth of 12 to 15 fbgs. Excavation will focus on the removal of buried debris and contaminated soil in a sequential, area by area manner and will proceed to whatever depth is required in order to remove all pit contents. Up to 50,000 cubic yards of soil and debris will be removed and managed during

  7. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control

  8. Alternative landfill cover technology demonstration at Kaneohe Marine Corps Base Hawaii

    SciTech Connect

    Karr, L.A.; Harre, B.; Hakonson, T.E.

    1997-12-31

    Surface covers to control water infiltration to waste buried in landfills will be the remediation alternative of choice for most hazardous and sanitary landfills operated by the Department of Defense. Although surface covers are the least expensive method of remediation for landfills, they can still be expensive solutions. Conventional wisdom suggests that landfill capping technology is well developed as evidenced by the availability of EPA guidance for designing and constructing what has become known as the {open_quotes}RCRA Cap{close_quotes}. In practice, however, very little testing of the RCRA cap, or any other design, has been done to evaluate how effective these designs are in limiting infiltration of water into waste. This paper describes a low cost alternative to the {open_quotes}RCRA Cap{close_quotes} that is being evaluated at Marine Corps Base Hawaii (MCBH) Kaneohe Bay. This study uses an innovative, simple and inexpensive concept to manipulate the fate of water falling on a landfill. The infiltration of water through the cap will be controlled by combining the evaporative forces of vegetation to remove soil water, with engineered structures that limit infiltration of precipitation into the soil. This approach relies on diverting enough of the annual precipitation to runoff, so that the water that does infiltrate into the soil can easily be removed by evapotranspiration.

  9. Innovative permeable cover system to reduce risks at a chemical munitions burial site

    SciTech Connect

    Powels, C.C.; Bon, I.; Okusu, N.M.

    1997-12-31

    An innovative permeable sand cover with various integrated systems has been designed to contain and treat the Old O-Field chemical munitions landfill at Aberdeen Proving Ground, Maryland. The 18,200 m{sup 2} (4.5 acre) landfill was used from the mid 1930s to the mid 1950s for the disposal of chemical, incendiary, and explosive munitions from domestic and foreign origins, together with contaminated wastes associated with the development and production of chemical warfare agents (CWA). The site is suspected to be contaminated with white phosphorous (WP) (which when dry, spontaneously burns when exposed to air), shock sensitive picric acid fuses and has the potential to contain large quantities of CWA-filled munitions. Historically, one to three explosions or fires occurred per ten-year period at the landfill. Such events have the potential to cause a CWA release to the environment, which could potentially affect densely populated areas. Recovery and decontamination projects conducted at the site in the late 1940s and early 1950s used large amounts of decontamination chemicals (containing solvents) and fuels which further contaminated the area. The groundwater downgradient of the landfill is contaminated with volatile organic compounds, metals, explosives and CWA degradation compounds and is currently being contained by a groundwater extraction and treatment system. This report describes a remedial action program for the site.

  10. Waste management health risk assessment: A case study of a solid waste landfill in South Italy

    SciTech Connect

    Davoli, E.; Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M.; Rossi, A.N.; Il Grande, M.; Fanelli, R.

    2010-08-15

    An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation ( and ).

  11. UNITED STATES GOVERNMENT

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    United states government department of energy ____________________________________________________________________________ ___ CONFERENCE CALL DOE FEDERAL LABOR FORUM PRELIMINARY MEETING AENDA August 9, 2013 @ 11:00 A.M. EDT Agenda: Confirm interest in DOE-wide labor forum Scope of Forum: This federal labor forum will be charged with jointly identifying and crafting recommended solutions to the problems facing us as a Department. The forum will accomplish this by using a constructive and

  12. CT. L-2 United States Government

    Office of Legacy Management (LM)

    DOE F 7325.8 (a-a9J - EFG (OMOJ CT. L-2 United States Government 8 ",> I,: Ti -& d .- " * memorandum (' -. r_l DATE: AUG 10 1993 REPLY TO ATTN OF: EM-421 (W. Williams, 903-8149) SUSJECT: Hazard Assessment for Radioactive Contamination at the Seymour Site, Seymour, Connecticut To' L. Price, OR - We have reviewed the Hazard Assessment for the Radioactive Contamination at the Sevmour Site. Sevmour, Connecticut dated May 1993. This hazard assessment is related to residual

  13. United States Government Department of Energy Memorandum

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9/25/03 THU_13:54 FAX 423 241 3897 OIG *-- HQ @002 DOxR F 1325.8 E -' (07.90) ' United States Government Department of Energy Memorandum DATE: September 25, 2003 REPLY TO IG-36 (A03SR035) Audit Report No.: OAS-L-03-22 ATTN OF: SUBJECT: Audit of Relocation of Administrative Personnel from A-Area to B-Area at the Savannah River Site TO; Jeffrey M. Allison, Manager, Savannah River Operations Office INTRODUCTION AND OBJECTIVE In an effort to reduce operating costs at the Savannah River Site, the

  14. DOE - Office of Legacy Management -- Woburn Landfill - MA 07

    Office of Legacy Management (LM)

    1987 MA.07-6 Site Operations: The National Lead Company, Inc. disposed of approximately ... development and experimental studies of uranium and thorium extraction; Contract No. ...

  15. - United States Government

    Office of Legacy Management (LM)

    illiams, 903-8149) : NY 41 I .' 41 G I? SUBJECT: Elimination of the T itanium Alloy Manufacturing Co., Niagara Falls, New York TO: The F ile I have reviewed the attached site....

  16. State/Local Government Project Performance Benchmarks

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    State/Local Government Project Performance Benchmarks (All ASHRAE Zones) We define an ESCO as a company that provides energy efficiency-related and other value-added services and that employs performance contracting as a core part of its energy efficiency services business. 1 For projects with electricity savings, we assume site energy conversion (1 kWh = 3,412 Btu). We did not estimate avoided Btus from gallons of water conserved. In general, we followed the analytical approach documented in

  17. Systems and methods for measuring a parameter of a landfill including a barrier cap and wireless sensor systems and methods

    DOEpatents

    Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.

    2007-03-06

    A method of measuring a parameter of a landfill including a cap, without passing wires through the cap, includes burying a sensor apparatus in the landfill prior to closing the landfill with the cap; providing a reader capable of communicating with the sensor apparatus via radio frequency (RF); placing an antenna above the barrier, spaced apart from the sensor apparatus; coupling the antenna to the reader either before or after placing the antenna above the barrier; providing power to the sensor apparatus, via the antenna, by generating a field using the reader; accumulating and storing power in the sensor apparatus; sensing a parameter of the landfill using the sensor apparatus while using power; and transmitting the sensed parameter to the reader via a wireless response signal. A system for measuring a parameter of a landfill is also provided.

  18. Manhattan Project: Site Map

    Office of Scientific and Technical Information (OSTI)

    SITE MAP Resources > Site Map THE MANHATTAN PROJECT Events 1890s-1939: Atomic Discoveries A Miniature Solar System, 1890s-1919 Exploring the Atom, 1919-1932 Atomic Bombardment, 1932-1938 The Discovery of Fission, 1938-1939 Fission Comes to America, 1939 1939-1942: Early Government Support Einstein's Letter, 1939 Early Uranium Research, 1939-1941 Piles and Plutonium, 1939-1941 Reorganization and Acceleration, 1940-1941 The MAUD Report, 1941 A Tentative Decision to Build the Bomb, 1941-1942

  19. Deployment of an alternative cover and final closure of the Mixed Waste Landfill, Sandia National Laboratories, Albuquerque, New Mexico.

    SciTech Connect

    Peace, Gerald L.; Goering, Timothy James; McVey, Michael David (GRAM, Inc., Albuquerque, NM); Borns, David James

    2003-06-01

    An alternative cover design consisting of a monolithic layer of native soil is proposed as the closure path for the Mixed Waste Landfill at Sandia National Laboratories, New Mexico. The proposed design would rely upon soil thickness and evapotranspiration to provide long-term performance and stability, and would be inexpensive to build and maintain. The proposed design is a 3-ft-thick, vegetated soil cover. The alternative cover meets the intent of RCRA Subtitle C regulations in that: (a) water migration through the cover is minimized; (b) maintenance is minimized by using a monolithic soil layer; (c) cover erosion is minimized by using erosion control measures; (d) subsidence is accommodated by using a ''soft'' design; and (e) the permeability of the cover is less than or equal to that of natural subsurface soil present. Performance of the proposed cover is integrated with natural site conditions, producing a ''system performance'' that will ensure that the cover is protective of human health and the environment. Natural site conditions that will produce a system performance include: (a) extremely low precipitation and high potential evapotranspiration; (b) negligible recharge to groundwater; (c) an extensive vadose zone; (d) groundwater approximately 500 ft below the surface; and (e) a versatile, native flora that will persist indefinitely as a climax ecological community with little or no maintenance.

  20. Site characterization handbook

    SciTech Connect

    Not Available

    1988-06-01

    This Handbook discusses both management and technical elements that should be considered in developing a comprehensive site characterization program. Management elements typical of any project of a comparable magnitude and complexity are combined with a discussion of strategies specific to site characterization. Information specific to the technical elements involved in site characterization is based on guidance published by the Nuclear Regulatory Commission (NRC) with respect to licensing requirements for LLW disposal facilities. The objective of this Handbook is to provide a reference for both NRC Agreement States and non-Agreement States for use in developing a comprehensive site characterization program that meets the specific objectives of the State and/or site developer/licensee. Each site characterization program will vary depending on the objectives, licensing requirements, schedules/budgets, physical characteristics of the site, proposed facility design, and the specific concerns raised by government agencies and the public. Therefore, the Handbook is not a prescriptive guide to site characterization. 18 refs., 6 figs.

  1. BUNCOMBE COUNTY WASTEWATER PRE-TREATMENT AND LANDFILL GAS TO ENERGY PROJECT

    SciTech Connect

    Jon Creighton

    2012-03-13

    The objective of this project was to construct a landfill gas-to-energy (LFGTE) facility that generates a renewable energy source utilizing landfill gas to power a 1.4MW generator, while at the same time reducing the amount of leachate hauled offsite for treatment. The project included an enhanced gas collection and control system, gas conditioning equipment, and a 1.4 MW generator set. The production of cleaner renewable energy will help offset the carbon footprint of other energy sources that are currently utilized.

  2. Landfill Gas Conversion to LNG and LCO{sub 2}. Final Report

    SciTech Connect

    Brown, W.R.; Cook, W. J.; Siwajek, L.A.

    2000-10-20

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery. Work was done in the following areas: (1) production of natural gas pipeline methane for liquefaction at an existing LNG facility, (2) production of LNG from sewage digester gas, (3) the use of mixed refrigerants for process cooling in the production of LNG, liquid CO{sub 2} and pipeline methane, (4) cost estimates for an LNG production facility at the Arden Landfill in Washington PA.

  3. Garbage In, Power Out: South Carolina BMW Plant Demonstrates Landfill Gas

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to Hydrogen Fuel | Department of Energy Garbage In, Power Out: South Carolina BMW Plant Demonstrates Landfill Gas to Hydrogen Fuel Garbage In, Power Out: South Carolina BMW Plant Demonstrates Landfill Gas to Hydrogen Fuel August 25, 2015 - 2:15pm Addthis The plant BMW plant in Greer, South Carolina is home to the world's largest fleet of fuel cell forklifts. | Photo courtesy of BMW Manufacturing. The plant BMW plant in Greer, South Carolina is home to the world's largest fleet of fuel cell

  4. 2014 Annual Site Environmental Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. ENVIRONMENTAL PERFORMANCE REPORT 2014 Annual Site Environmental Report per the U.S. Department of Energy Order 231.1B This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,

  5. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 390: AREAS 9, 10, AND 12 SPILL SITES, NEVADA TEST SITE, NEVADA

    SciTech Connect

    2005-10-01

    Corrective Action Unit (CAU) 390 consists four Corrective Action Sites (CASs) located in Areas 9, 10, and 12 of the Nevada Test Site. The closure activities performed at the CASs include: (1) CAS 09-99-03, Wax, Paraffin: 2 cubic yards of drilling polymer was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (2) CAS 10-99-01, Epoxy Tar Spill: 2 cubic feet of asphalt waste was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (3) CAS 10-99-03, Tar Spills: 3 cubic yards of deteriorated asphalt waste was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (4) CAS 12-25-03, Oil Stains (2); Container: Approximately 16 ounces of used oil were removed from ventilation equipment on June 28,2005, and recycled. One CAS 10-22-19, Drums, Stains, was originally part of CAU 390 but was transferred out of CAU 390 and into CAU 550, Drums, Batteries, and Lead Materials. The transfer was approved by the Nevada Division of Environmental Protection on August 19,2005, and a copy of the approval letter is included in Appendix D of this report.

  6. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    SciTech Connect

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31

    Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but

  7. United States Government

    Office of Legacy Management (LM)

    UOEF 1325.8 (5831 , - a.. L . . L. . c ,, . . . t ,' <, .* -,. .--1^ a "-2 (J 7 , pe-;L, United States Government memorandum Departmen: of Energy DATEAUG 1 0 1984 REPLY TO Al-fN OF: NE-20 SUBJECT: Action Description Memorandum (ADM) Review: Wayne, New Jersey Proposed 1984 Remedial Actions at TO: File After reviewing all of the pertinent facts including the attached Action Description Memorandum (ADM), I have determined that the remedial action described in the subject ADM is an action

  8. United States Government

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DOEF 1325.8 {Rev 11*12-91) United States Government Department of Energy (DOE) memorandum Savannah River Operations Office (SR) DATE: OEC 19 2013 REPLY TO ATTN OF: AMMS (Hintze, 803-952-8422) suBJECT: Savannah River Remediation (SRR) Award Fee Determination for Evaluation Period October 1, 2012 to September 30, 2013 To: Charlene Smith, Contracting Officer, Contract DE-AC09-09SR22505 SRR has provided safe, timely, and cost-effective managen1ent and execution of the Liquid Waste program* at the

  9. SUnited States Government

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SUnited States Government Department of Energ memorandum DATE: October 11, 2007 , Audit Report Number: OAS-L-08-01 REPLY TO ATTN OF: IG-32 (A06YT025) SUBJECT: Audit Report on "Follow-up on the Depleted Uranium Process at the Y-12 National Security Complex" TO: Director, Policy and Internal Controls Management, NA-66 INTRODUCTION AND OBJECTIVE In September 2002, the Office of Inspector General issued a report on Depleted Uranium Operations at the Y-12 National Security Complex,

  10. United States Government

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7/03 FRI 08:50 FAX 865 576 3213 OAK RIDGE AUDIT -+44 AIGA o001 10/16/03. THU 15:52 FAX 423 241 3897 OIG -- * ELMORE I001 United States Government Department of Eney memorandum DATE: October 1.6, 2003 b REPLY TO ATTNTO: IG-36 (A030R013) Audit Report No.: OAS-L-04-02 SUBJECT: Waste Pits and Silos Remediation at the Femald Closure Project To: Robert Wazther, Manager, Ohio Field Office INTRODUCTION AND OBJECTIVF In November 2000, the Ohio Field Office awarded a contract to Fluor Fernald Inc.,

  11. United States Government

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    .. a . r-z . "*& ., . .. uoi UA o. --.- flI gj UUX DOE F 1325.8 (08.93) United States Government Department of Ene memorandum DATE: August 19, 2004 Audit Report Number: OAS-L-04-18 REPLY TO ATTN OF: IG-36 (A03IF009) SUBJECT: Audit of the "Revised Pit 9 Cleanup Project at the Idaho National Engineering and Environmental Laboratory" TO: Paul Golan, Acting Assistant Secretary, Office of Environmental Management INTRODUCTION AND OBJECTIVE The Idaho National Engineering and

  12. United States Government

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    cr--ceut w.:3 i-Kun: TO:202 586 1660 P.002/006 DOE F 1325. EFG (07.PO) United States Government Department of Energy memorandum DATE: September 24, 2004 Audit Report Number: OAS-L-04-24 REPLY TO ATTN OF: IG-35 (A04AL004) SUBJECT: Audit Report on "The National Nuclear Security Administration's Secure Transportation Asset Program" TO: Deputy Administrator for Defense Programs, National Nuclear Security Administration INTRODUCTION AND OBIECTV E The Secure Transportation Asset (STA)

  13. United States Government

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    En Memorandum OFFICE OF INSPECTOR GENERAL DATE: MAY 0 9 2005 REPLY TO ATTN OF: IG-34 (A05PR040) Audit Report No.: OAS-L-05-06 SUBJECT: Contractor-Provided Meals for Federal Employees TO: Director, Office of Management, Budget and Evaluation/Chief Financial Officer, ME-1 The purpose of this report is to inform you of a condition that came to our attention during recent audits. INTRODUCTION AND OBJECTIVE As a general rule, appropriated funds cannot be used to provide meals to Government employees.

  14. United States Government Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    B.89) EFO (07-90) United States Government Department of Energ Memorandum SEP 24 20t DATE: REPLY TO: IG-34 (A04TG032) Audit Report No.: OAS-L-04-21 SUBJECT: Evaluation of "The Federal Energy Regulatory Commission's Cyber Security Program - 2004" TO: Chairman, Federal Energy Regulatory Commission The purpose of this report is to inform you of the results of our annual evaluation of the Federal Energy Regulatory Commission's unclassified cyber security program. This evaluation was

  15. Closure Report for Corrective Action Unit 537: Waste Sites, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Envirornmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 537 is identified in the ''Federal Facility Agreement and Consent Order'' (FFACO) of 1996 as Waste Sites. CAU 537 is located in Areas 3 and 19 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada, and consists of the following two Corrective Action Sites (CASs): CAS 03-23-06, Bucket; Yellow Tagged Bags; and CAS 19-19-01, Trash Pit. CAU 537 closure activities were conducted in April 2007 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2003). At CAS 03-23-06, closure activities included removal and disposal of a 15-foot (ft) by 15-ft by 8-ft tall wooden shed containing wood and metal debris and a 5-gallon plastic bucket containing deteriorated plastic bags with yellow radioactive contamination tape. The debris was transported to the Area 9 U10c Landfill for disposal after being screened for radiological contamination according to the ''NV/YMP Radiological Control Manual'' (NNSA/NSO, 2004). At CAS 19-19-01, closure activities included segregation, removal, and disposal of non-friable, non-regulated asbestos-containing material (ACM) and construction debris. The ACM was determined to be non-friable by waste characterization samples collected prior to closure activities. The ACM was removed and double-bagged by licensed, trained asbestos workers and transported to the Area 9 U10c Landfill for disposal. Construction debris was transported in end-dump trucks to the Area 9 U10c Landfill for disposal. Closure activities generated sanitary waste/construction debris and ACM. Waste generated during closure activities was appropriately managed and disposed. Waste characterization sample results are included as Appendix A of this report, and waste disposition documentation is included as Appendix B of this report. Copies of the Sectored Housekeeping Site Closure

  16. Next Generation of Government Summit

    Energy.gov [DOE]

    GovLoop and Young Government Leaders will hold its 4th Annual Next Generation of Government Summit from July 25 to July 26, 2013, in Washington, DC. The theme for the conference is 2013 Next...

  17. Site clearance working group

    SciTech Connect

    1997-03-01

    The Gulf of Mexico and Louisiana continue to be areas with a high level of facility removal, and the pace of removal is projected to increase. Regulations were promulgated for the Gulf of Mexico and Louisiana requiring that abandoned sites be cleared of debris that could interfere with fishing and shrimping activities. The site clearance regulations also required verification that the sites were clear. Additionally, government programs were established to compensate fishermen for losses associated with snagging their equipment on oil and gas related objects that remained on the water bottoms in areas other than active producing sites and sites that had been verified as clear of obstructions and snags. The oil and gas industry funds the compensation programs. This paper reviews the regulations and evolving operating practices in the Gulf of Mexico and Louisiana where site clearance and fisherman`s gear compensation regulations have been in place for a number of years. Although regulations and guidelines may be in place elsewhere in the world, this paper focuses on the Gulf of Mexico and Louisiana. Workshop participants are encouraged to bring up international issues during the course of the workshop. Additionally, this paper raises questions and focuses on issues that are of concern to the various Gulf of Mexico and Louisiana water surface and water bottom stakeholders. This paper does not have answers to the questions or issues. During the workshop participants will debate the questions and issues in an attempt to develop consensus opinions and/or make suggestions that can be provided to the appropriate organizations, both private and government, for possible future research or policy adjustments. Site clearance and facility removal are different activities. Facility removal deals with removal of the structures used to produce oil and gas including platforms, wells, casing, piles, pipelines, well protection structures, etc.

  18. Des Plaines Landfill Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    mW 0.0038 GW Commercial Online Date 2004 Heat Rate (BTUkWh) 12916.67 References EPA Web Site1 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN...

  19. RCWMD Badlands Landfill Gas Project Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    mW 1.0e-3 GW Commercial Online Date 2001 Heat Rate (BTUkWh) 12916.67 References EPA Web Site1 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN...

  20. ; United States Government

    Office of Legacy Management (LM)

    The sites are as follows: 0 0 0 0 0 0 0 0 0 0 0 l 0 0 -0 l a a 0 0 0 0 a 0 American Machine and Metals, E. Mel ine, IL , ZAq Aarerican Steel Foundries, Clnclnnatf, OHc35b Bendix ...

  1. Pacific Northwest Government Contracting Conference

    Energy.gov [DOE]

    The Government Contract Assistance Program (GCAP) and Pacific Northwest Defense Coalition (PNDC) cordially invite you to attend our annual Pacific Northwest Government Contracting Conference. The 2015 conference offers a full day of robust and informative training, coupled with networking opportunities. Attendees will learn from seasoned professionals and receive training specifically tailored to companies pursuing the government marketplace.

  2. Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas...

    OpenEI (Open Energy Information) [EERE & EIA]

    M2DigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  3. Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study

    SciTech Connect

    2013-04-30

    BroadRock Renewables, LLC built two high efficiency electricity generating facilities that utilize landfill gas in California and Rhode Island. The two projects received a total of $25 million in U.S. Department of Energy funding from the American Recovery and Reinvestment Act (ARRA) of 2009. Private-sector cost share for the projects totaled approximately $186 million.

  4. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-08-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.

  5. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-05-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and construction of the west-side 6-acre anaerobic cell is nearly complete with only the liquid addition system remaining. The current project status and preliminary monitoring results are summarized in this report.

  6. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-12-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.

  7. A water balance study of four landfill cover designs varying in slope for semiarid regions

    SciTech Connect

    Nyhan, J.W.; Schofield, T.G.; Salazar, J.A.

    1997-02-01

    The goal of disposing of radioactive and hazardous waste in shallow landfills is to reduce risk to human health and to the environment by isolating contaminants until they no longer pose a hazard. In order to achieve this, the performance of a landfill cover design without an engineered barrier (Conventional Design) was compared with three designs containing either a hydraulic barrier (EPA Design) or a capillary barrier (Loam and Clay Loam Capillary Barrier Designs). Water balance parameters were measured since 1991 at six-hour intervals for four different landfill cover designs in 1.0- by 10.0-m plots with downhill slopes of 5, 10, 15, and 25%. Whereas runoff generally accounted for only 2-3% of the precipitation losses on these designs, similar values for evapotranspiration ranged from 86% to 91%, with increased evapotranspiration occurring with increases in slope. Consequently, interflow and seepage usually decreased with increasing slope for each landfill cover design. Seepage consisted of up to 10% of the precipitation on the Conventional Design, whereas the hydraulic barrier in the EPA Design effectively controlled seepage at all slopes, and both of the capillary designs worked effectively to eliminate seepage at the higher slopes.

  8. Washington Closure Hanford Report of Settlement Monitoring of the ERDF Landfill

    SciTech Connect

    J. T. Cameron

    2008-07-30

    This report summarizes the results of the ERDF Settlement Monitoring Program conducted between August 9, 2007, and April 29, 2008, on the 35-foot and 70-foot levels of the ERDF landfill. The purpose of this monitoring program was to verify that the materials already placed under the 35-foot and 70-foot levels satisfy the settlement criteria of the conceptual cap design.

  9. Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control

    SciTech Connect

    Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

    2005-03-30

    The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

  10. Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Did You Know Did You Know Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New Did You Know Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Close Did you know.... Close

  11. An assessment and evaluation for recycle/reuse of contaminated process and metallurgical equipment at the DOE Rocky Flats Plant Site -- Building 865. Final report

    SciTech Connect

    Not Available

    1993-08-01

    An economic analysis of the potential advantages of alternatives for recycling and reusing equipment now stored in Building 865 at the Rocky Flats Plant (RFP) in Colorado has been conducted. The inventory considered in this analysis consists primarily of metallurgical and process equipment used before January 1992, during development and production of nuclear weapons components at the site. The economic analysis consists of a thorough building inventory and cost comparisons for four equipment dispositions alternatives. The first is a baseline option of disposal at a Low Level Waste (LLW) landfill. The three alternatives investigated are metal recycling, reuse with the government sector, and release for unrestricted use. This report provides item-by-item estimates of value, disposal cost, and decontamination cost. The economic evaluation methods documented here, the simple cost comparisons presented, and the data provided as a supplement, should provide a foundation for D&D decisions for Building 865, as well as for similar D&D tasks at RFP and at other sites.

  12. TRACKING SITE

    Energy Science and Technology Software Center

    003235MLTPL00 AASG Geothermal Data submissions tracking application and site. https://github.com/usgin/aasgtrack

  13. Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Site Cleanup Tours Hanford Site Cleanup Tours Tour Registration Required Forms of ID Tour Information Tour Route Find Confirmation Seat Notification Frequently Asked Questions Media Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size This website will not function with Javascript disabled Tour Information Registration for the 2016 Hanford Site Cleanup Tours is now closed Updates for the 2017 season will be posted when available Hanford Site Cleanup Tours The

  14. Jnited States Government

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jnited States Government Department of Energy memorandum OATE Ef:>L Y TO ~TTI\j OF UBJECT May 6, 198o ER-70 ~ Information on a Major N~w Initiativ~: Mapping and s~qu~ncing the Human G~nom~ TO Alvin W. Triv~lpi~r~, Dir~~tor Offir~ of En~rgy RPs~arch BACKGROUND: In thP ~arly 1970's Walt~r Gilb~rt, a form~r Harvard Univ~rsity physics prnf~ssor, and Fr~d Sang~r, a Cambridg~ biochemist, developPd important n~w approarhPs to DNA sequPnring. ThP m~thods, which allow rapid det~rminatinn of th~

  15. United States Government

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    11/07/03 13:UU FAA 301 903 4t00 UAI'I'AL REGION -+ tUK rlvrEA I(JUUZ DOE F 1325.8 (08-93) United States Government Department of Energy Memorandum OFFICE OF INSPECTOR GENERAL DATE: November 7, 2003 REPLY TO ATTN OF: IG-34 (A03SC050) Audit Report Number: OAS-L-04-04 SUBJECT: Audit of the U.S. Large Hadron Collider Program TO: Director, Office of Science, SC-1 The purpose of this report is to inform you of the results of our audit of the U.S. Large Hadron Collider (LHC) Program. The audit was

  16. Reverse logistics system and recycling potential at a landfill: A case study from Kampala City

    SciTech Connect

    Kinobe, J.R.; Gebresenbet, G.; Niwagaba, C.B.; Vinnerås, B.

    2015-08-15

    Highlights: • Quantifies the different waste streams delivered at the landfill. • Evaluates the amount of potential waste products that enters into the reverse cycle. • Drawing out the reverse logistics activities from Kampala City to Kiteezi landfill. • Identify the storage, collection and transportation mechanisms of products to the various destinations; and finally. • The study suggests efficient measures to improve reverse logistics system. - Abstract: The rapid growing population and high urbanisation rates in Sub-Saharan Africa has caused enormous pressure on collection services of the generated waste in the urban areas. This has put a burden on landfilling, which is the major waste disposal method. Waste reduction, re-use and recycling opportunities exist but are not fully utilized. The common items that are re-used and re-cycled are plastics, paper, aluminum, glass, steel, cardboard, and yard waste. This paper develops an overview of reverse logistics at Kiteezi landfill, the only officially recognised waste disposal facility for Kampala City. The paper analyses, in details the collection, re-processing, re-distribution and final markets of these products into a reversed supply chain network. Only 14% of the products at Kiteezi landfill are channeled into the reverse chain while 63% could be included in the distribution chain but are left out and disposed of while the remaining 23% is buried. This is because of the low processing power available, lack of market value, lack of knowledge and limited value addition activities to the products. This paper proposes possible strategies of efficient and effective reverse logistics development, applicable to Kampala City and other similar cities.

  17. Nitrogen management in landfill leachate: Application of SHARON, ANAMMOX and combined SHARON-ANAMMOX process

    SciTech Connect

    Sri Shalini, S.; Joseph, Kurian

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Significant research on ammonia removal from leachate by SHARON and ANAMMOX process. Black-Right-Pointing-Pointer Operational parameters, microbiology, biochemistry and application of the process. Black-Right-Pointing-Pointer SHARON-ANAMMOX process for leachate a new research and this paper gives wide facts. Black-Right-Pointing-Pointer Cost-effective process, alternative to existing technologies for leachate treatment. Black-Right-Pointing-Pointer Address the issues and operational conditions for application in leachate treatment. - Abstract: In today's context of waste management, landfilling of Municipal Solid Waste (MSW) is considered to be one of the standard practices worldwide. Leachate generated from municipal landfills has become a great threat to the surroundings as it contains high concentration of organics, ammonia and other toxic pollutants. Emphasis has to be placed on the removal of ammonia nitrogen in particular, derived from the nitrogen content of the MSW and it is a long term pollution problem in landfills which determines when the landfill can be considered stable. Several biological processes are available for the removal of ammonia but novel processes such as the Single Reactor System for High Activity Ammonia Removal over Nitrite (SHARON) and Anaerobic Ammonium Oxidation (ANAMMOX) process have great potential and several advantages over conventional processes. The combined SHARON-ANAMMOX process for municipal landfill leachate treatment is a new, innovative and significant approach that requires more research to identify and solve critical issues. This review addresses the operational parameters, microbiology, biochemistry and application of both the processes to remove ammonia from leachate.

  18. United States Government

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy memorandum DATE: April 9, 2004 Audit Report Number: OAS-L-04-13 REPLY TO ATTN OF: IG-35 (A04DC009) SUBJECT: Audit Report on "Reimbursable Work for the Department of Homeland Security" TO: Administrator, National Nuclear Security Administration, NA-1 INTRODUCTION AND OBJECTIVE The Homeland Security Act of 2002 authorizes the Department of Homeland Security (Homeland Security) to utilize the capabilities of the Department of Energy's (Department) laboratories and other sites to

  19. High Impact Technology Hub- Resources for Evaluators- Site Evaluation Checklists

    Energy.gov [DOE]

    The HIT Catalyst conducts technology demonstrations in three main phases govern demonstrations: Site Evaluation, Selection and Project Kick-Off, Measurement and Verification Scoping and Plan...

  20. High Impact Technology HQ- Resources for Evaluators- Site Evaluation Checklists

    Office of Energy Efficiency and Renewable Energy (EERE)

    The HIT Catalyst conducts technology demonstrations in three main phases govern demonstrations: Site Evaluation, Selection and Project Kick-Off, Measurement and Verification Scoping and Plan...

  1. Cap and trade schemes on waste management: A case study of the Landfill Allowance Trading Scheme (LATS) in England

    SciTech Connect

    Calaf-Forn, Maria; Roca, Jordi; Puig-Ventosa, Ignasi

    2014-05-01

    Highlights: • LATS has been effective to achieve a reduction of the amount of landfilled waste. • LATS has been one of the few environmental instruments for waste management with a cap and trade methodology. • LATS has achieved to increase recycling of the biodegradable and other waste fractions. - Abstract: The Landfill Allowance Trading Scheme (LATS) is one of the main instruments used in England to enforce the landfill diversion targets established in the Directive 1999/31/EC of the European Parliament and of the Council of 26 April 1999 on the landfill of waste (Landfill Directive). Through the LATS, biodegradable municipal waste (BMW) allowances for landfilling are allocated to each local authority, otherwise known as waste disposal authorities (WDAs). The quantity of landfill allowances received is expected to decrease continuously from 2005/06 to 2019/20 so as to meet the objectives of the Landfill Directive. To achieve their commitments, WDAs can exchange, buy, sell or transfer allowances among each other, or may re-profile their own allocation through banking and/or borrowing. Despite the goals for the first seven years – which included two target years (2005/06 and 2009/10) – being widely achieved (the average allocation of allowances per WDA was 22.9% higher than those finally used), market activity among WDAs was high and prices were not very stable. Results in terms of waste reduction and recycling levels have been satisfactory. The reduction of BMW landfilled (in percentage) was higher during the first seven years of the LATS period (2005/06–2011/12) (around 7% annually) than during the previous period (2001/02–2004/05) (4.2% annually). Since 2008, the significance of the LATS diminished because of an increase in the rate of the UK Landfill Tax. The LATS was suppressed after the 2012/13 target year, before what it was initially scheduled. The purpose of this paper is to describe the particularities of the LATS, analyse its performance as

  2. Correct implementation of the Argonne Expedited Site Characterization (ESC) process for preremedial site investigations.

    SciTech Connect

    Burton, J. C.; Cook, S.; Sedivy, R.; Walker, J. L.

    1997-12-12

    The Argonne Expedited Site Characterization (ANL ESC) methodology, developed by Argonne National Laboratory and popularly known as ESC, is an effective, cost- and time-saving approach for technically successful preremedial site characterizations. The major objective of the ANL ESC is to determine whether a site containing contamination requires remediation. The methodology is equivalent to a CERCLA RI/FS or a RCRA RFI/CMS investigation. The ANL ESC methodology is an interactive, integrated process emphasizing the use of existing data, multiple complementary characterization methods, and on-site decision making to optimize site investigations. The ANL ESC is the basis for the expedited site characterization standard of the ASTM (American Society for Testing and Materials). The methodology has been registered under the service mark QuickSite{trademark} to offer both clients and providers a mechanism for ensuring that they receive the ANL ESC methodology developed by Argonne. The ANL ESC is a flexible process and is neither site nor contaminant dependent. It can be tailored to fit the unique characteristics that distinguish one site from the next, in contrast to the traditional approach of making all sites conform to the same rigid, inflexible investigation regimen. The ANL ESC has been applied successfully to remedial site investigations of landfills with multiple contaminants in the southwestern US for the Department of Interior (DOI), to former grain storage facilities in the Midwest for the Commodity Credit Corporation of the Department of Agriculture (CCC/USDA), to weapons production facilities in Texas for the Department of Energy (DOE), and to closing and active military bases in several locations for the Department of Defense (DOD). The process can be applied both at sites that have seen little investigation and at sites that have undergone numerous previous site characterizations without reaching closure. In the latter case (e.g., at many DOE and DOD sites

  3. Fuel Cell Tax Incentives: How Monetization Lowers the Government Outlay |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Tax Incentives: How Monetization Lowers the Government Outlay Fuel Cell Tax Incentives: How Monetization Lowers the Government Outlay Presentation by Lee J. Peterson, Esq., Reznick Group, P.C. Presented at the HTAC meeting on February 19, 2009. Posted on this Web site with permission from the author. mt_petersen_htac_presentation.pdf (782.9 KB) More Documents & Publications QER - Comment of Energy Innovation 7 QER - Comment of Energy Innovation 6 From Cleanup to

  4. Uranium Processing Facility Site Readiness Subproject Completed...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  5. State and Local Government Partnership

    SciTech Connect

    Barton, Alexander; Rinebold, Joel; Aresta, Paul

    2012-03-30

    The State and Local Government Partnership project has built relationships between the Department of Energy (DOE), regional states, and municipalities. CCAT implemented this project using a structure that included leadership by the DOE. Outreach was undertaken through collaborative meetings, workshops, and briefings; the development of technical models and local energy plans; support for state stakeholder groups; and implementation of strategies to facilitate the deployment of hydrogen and fuel cell technologies. The final guidance documents provided to stakeholders consisted of individual strategic state “Roadmaps” to serve as development plans. These “Roadmaps” confirm economic impacts, identify deployment targets, and compare policies and incentives for facility development in each of the regional states. The partnerships developed through this project have improved the exchange of knowledge between state and local government stakeholders and is expected to increase the deployment of hydrogen and fuel cell technologies in early market applications, consistent with the DOE’s market transformation efforts. Technically accurate and objective information was, and continues to be, provided to improve public and stakeholder perceptions regarding the use of hydrogen and fuel cell technologies. Based on the “Roadmaps” and studies conducted for this project, there is the potential to generate approximately 10.75 million megawatt hours (MWh) of electricity annually from hydrogen and fuel cell technologies at potential host sites in the Northeast regional states, through the development of 1,364 to 1,818 megawatts (MW) of fuel cell electric generation capacity. Currently, the region has approximately 1,180 companies that are part of the growing hydrogen and fuel cell industry supply chain in the region. These companies are estimated to have over $1 billion in annual revenue and investment, contribute more than $51 million in annual state and local tax revenue

  6. Cutting the Federal Governments Energy Bill: An Examination...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    facilitate the Federal Government's implementation of sound, cost-effective, energy management and investment practices to enhance the Nation's energy security and environmental...

  7. Mid Valley Landfill Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2.542.54 MW 2,540 kW 2,540,000 W 2,540,000,000 mW 0.00254 GW Commercial Online Date 2003 Heat Rate (BTUkWh) 12168.0 References EPA Web Site1 Loading map......

  8. Four Hills Nashua Landfill Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    (MW) 0.910.91 MW 910 kW 910,000 W 910,000,000 mW 9.1e-4 GW Commercial Online Date 1996 Heat Rate (BTUkWh) 13151.8 References EPA Web Site1 Loading map......

  9. Winnebago County Landfill Gas Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    2.72.7 MW 2,700 kW 2,700,000 W 2,700,000,000 mW 0.0027 GW Commercial Online Date 2000 Heat Rate (BTUkWh) 9350.0 References EPA Web Site1 Loading map... "minzoom":false,"map...

  10. HMDC Kingsland Landfill Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2.72.7 MW 2,700 kW 2,700,000 W 2,700,000,000 mW 0.0027 GW Commercial Online Date 1999 Heat Rate (BTUkWh) 13405.9 References EPA Web Site1 Loading map......

  11. Rodefeld Landfill Ga Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    3,800,000 W 3,800,000,000 mW 0.0038 GW Commercial Online Date 2005 Heat Rate (BTUkWh) 13648.0 References EPA Web Site1 Loading map... "minzoom":false,"mappingservice":"google...

  12. Cuyahoga Regional Landfill Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    3,600,000 W 3,600,000,000 mW 0.0036 GW Commercial Online Date 1999 Heat Rate (BTUkWh) 10374.2 References EPA Web Site1 Loading map... "minzoom":false,"mappingservice":"googlem...

  13. I 95 Municipal Landfill Phase I Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    3,200,000 W 3,200,000,000 mW 0.0032 GW Commercial Online Date 1992 Heat Rate (BTUkWh) 11031.4 References EPA Web Site1 Loading map... "minzoom":false,"mappingservice":"googlema...

  14. United States Government

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    5, Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program, Revision 5, is effective immediately. This ICN is necessary to address the following editorial revisions to implement the recent CBFO restructuring:  Change "TRU Sites and Transportation Division" to "Office of the National TRU Program" on the title page, and in Sections 1.0 and 2.1;  Change "Division Director" to "Assistant

  15. United States Government

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    6, Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program, Revision 5, is effective immediately. This ICN is necessary to address the following editorial revisions to implement the recent CBFO restructuring:  Change "TRU Sites and Transportation Division" to "Office of the National TRU Program" on the title page, and in Sections 1.0 and 2.1;  Change "Division Director" to "Assistant

  16. Information Management Governance Council | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Management Governance Council Information Management Governance Council Describes the establishment of the Information Management Governance Council and What They Do. PDF icon...

  17. Vallecitos Nuclear Center, California, Site Fact Sheet

    Office of Legacy Management (LM)

    08/03/2015 Page 1 of 1 This fact sheet provides information about the Vallecitos Nuclear Center, California, Site. The U.S. Department of Energy Office of Legacy Management is responsible for maintaining records for the government-sponsored research conducted at this facility. Location of the Vallecitos Nuclear Center, California, Site Site Description and History The Vallecitos Nuclear Center (VNC) is a 1,600 acre nuclear research facility and the site of a former electricity generating nuclear

  18. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    Energy.gov [DOE]

    Landfill gas (LFG), composed largely of methane and carbon dioxide, is used in over 450 operational projects in 43 states. These projects convert a large source of greenhouse gases into a fuel that...

  19. EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct and operate a solid waste landfill within the boundary at the U.S. Department of Energy's Portsmouth Gaseous Diffusion plant...

  20. Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Groundwater Groundwater Groundwater Treatment Record Groundwater Treatment Record Groundwater Treatment Resin Groundwater Treatment Resin HAMMER Site-Wide Safety Standards HAMMER...

  1. 2002 Hyperspectral Analysis of Hazardous Waste Sites on the Savannah River Site

    SciTech Connect

    Gladden, J.B.

    2003-08-28

    Hazardous waste site inspection is a labor intensive, time consuming job, performed primarily on the ground using visual inspection and instrumentation. It is an expensive process to continually monitor hazardous waste and/or landfill sites to determine if they are maintaining their integrity. In certain instances, it may be possible to monitor aspects of the hazardous waste sites and landfills remotely. The utilization of multispectral data was suggested for the mapping of clays and iron oxides associated with contaminated groundwater, vegetation stress, and methane gas emissions (which require longer wavelength detectors). The Savannah River Site (SRS) near Aiken, S.C. is a United States Department of Energy facility operated by the Westinghouse Savannah River Company. For decades the SRS was responsible for developing weapons grade plutonium and other materials for the nation's nuclear defense. Hazardous waste was generated during this process. Waste storage site inspection is a particularly important issue at the SRS because there are over 100 hazardous waste sites scattered throughout the 300 mile complex making it difficult to continually monitor all of the facilities. The goal is to use remote sensing technology to identify surface anomalies on the hazardous waste sites as early as possible so that remedial work can take place rapidly to maintain the integrity of the storage sites. The anomalous areas are then targeted for intensive in situ human examination and measurement. During the 1990s, many of the hazardous waste sites were capped with protective layers of polyethelene sheeting and soil, and planted with bahia grass and/or centipede grass. This research investigated hyperspectral remote sensing technology to determine if it can be used to measure accurately and monitor possible indicators of change on vegetated hazardous waste sites. Specifically, it evaluated the usefulness of hyperspectral remote sensing to assess the condition of vegetation on clay

  2. Capturing the Government Tax Base

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Y , M A D E N V E R , M A Y 5 , 2 0 1 5 CAPTURING THE GOVERNMENT TAX BASE CAPTURING TAX INCENTIVES * Support for tribal government services * Fire protection, roads, environmental, water, security * Property tax, Sales tax, Possessory interest * "Pickle Rule" and tribal governments, ITC * Value of tax incentives to project * ITC/PTC + Accelerated Depreciation can be more than 50% CAPTURING PROPERTY TAX * Definitions * Personal Property, fixed & mobile assets * Possessory Interest *

  3. Mound Site Five-Year Review Appendix A Community Notification...

    Office of Legacy Management (LM)

    ... Federal Government The White House USA.gov Services Sites Mission News About Us Page 1 of ... Between January and June 2016, DOE will review relevant documents and data; conduct site ...

  4. Government Personal Property Asset Management

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1998-05-11

    Establishes procedures for managing Government personal property owned or leased by and in the custody of Department of Energy (DOE) Headquarters employees. Cancels HQ 1400.1.

  5. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations

    SciTech Connect

    Tansel, Berrin Surita, Sharon C.

    2014-11-15

    Highlights: • In the digester gas, D4 and D5 comprised the 62% and 27% if siloxanes, respectively. • In landfill gas, the bulk of siloxanes were TMSOH (58%) followed by D4 (17%). • Methane utilization may be a possible mechanism for TMSOH formation in the landfills. • The geometric configurations of D4 and D5 molecules make them very stable. - Abstract: The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si–O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si–O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups.

  6. QA. J I-3 - Ukited States Government

    Office of Legacy Management (LM)

    lmEFl&25.a . EFG (QWO) * QA. J I-3 - Ukited States Government memorandum Department of Energy p&j ' ;A DATE: OCT 0 8 1992 REPLY TO AlT' N OF: EM-421 (W. A. Williams, 903-8149) r/7.1\ SUBJECT: Authorization for Remedial Action at the Former C. H. Schnoor & Company Site, Springdale, Pennsylvania TO: Manager, DOE Oak Ridge Field Office This is to notify you that the former C. H. Schnoor & Company facility in Springdale, Pennsylvania, is designated for remedial action under the

  7. United States Government Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    : 1325.8 ./ (8-89) iEFG (07-90) United States Government Department of Energy memorandum DATE: October 18, 2006 Audit Report Number: OAS-L-07-02 REPLY TO ATTN OF: IG-32 (A06LL041) SUBJECT: Audit Report on "Emergency Response Training at Lawrence Livermore National Laboratory" TO: Manager, Livermore Site Office, National Nuclear Security Administration INTRODUCTION AND OBJECTIVE The Secretary of Energy (Secretary) identified the safety of employees and the communities surrounding the

  8. United States Government Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DO F 1325.8 (8-89) EFG (07-90) United States Government Department of Energy memorandum DATE: December 18, 2006 Report Number: OAS-L-07-04 REPLY TO ATTN OF: IG-32 (A07LL039) SUBJECT: Report on "Inquiry to the Hotline Complaint on Possible Design Mistakes and Cost Overruns of the Linac Coherent Light Source Project at Stanford Linear Accelerator Center" TO: Manager, Stanford Site Office INTRODUCTION AND OBJECTIVE The purpose of the Stanford Linear Accelerator Center (SLAC) Linac

  9. ESnet Site Coordinators Committee (ESCC) and Site Coordinators

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ESCC About ESnet Our Mission The Network ESnet History Governance & Policies ESnet Policy Board ESCC Acceptable Use Policy Data Privacy Policy Facility Data Policy Career Opportunities ESnet Staff & Org Chart Contact Us Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net ESnet Site Coordinators Committee (ESCC) and Site

  10. Hanford Site ground-water monitoring for January through June 1988

    SciTech Connect

    Evans, J.C.; Bryce, R.W.; Sherwood, D.R.

    1989-05-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between January and June 1988 included monitoring ground-water elevations across the Site, and monitoring hazardous chemicals and radionuclides in ground water. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Solid Waste Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. In addition, several new analytical initiatives were undertaken during this period. These include cyanide speciation in the BY Cribs plume, inductively coupled argon plasma/mass spectrometry (ICP/MS) measurements on a broad selection of samples from the 100, 200, 300, and 600 Areas, and high sensitivity gas chromatography measurements performed at the Solid Waste Landfill-Nonradioactive Dangerous Waste Landfill. 23 figs., 25 tabs.

  11. Hanford Site Tours - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Tours Hanford Site Tours Hanford Tour Restrictions Hanford Tours for Governmental Officials Hanford Tours for Tribal Affairs Hanford Private Tours Hanford Site Tours Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size The Hanford Site is a very unique place offering a number of tours for members of the public, elected officials and their staffs, tribal officials, stakeholders, and others. A list of the kinds of Hanford tours we provide is shown below, along with

  12. Town of Colonie sanitary landfill leachate management system. Final report for 1992 and 1993 spraying season

    SciTech Connect

    Reis, J.R.

    1996-08-01

    The development, construction, and operation of the Colonie Landfill Leachate Management System (LLMS) was first conceived as a two-year project in 1987, but took more than six years to reach the final reporting stage, during which time substantial regulatory hurdles were encountered and overcome. During the summer of 1987, a work plan for the project was developed. It was determined that a pilot leachate-spraying study should be undertaken to provide additional information on the potential environmental impacts due to surface runoff and moisture front penetration through the landfill cap. To achieve this, a {1/4}-acre (100` x 100`) test area was prepared and equipped with a single leachate spray head, a collection point for runoff, a rain gage, and four pan lysimeters (at depths of 6 inch, 12 inch, 18 inch, and 24 inch) to measure moisture advancement through the cap. A similarly equipped control area, minus the spray head, was prepared nearby.

  13. Constructed wetlands for municipal solid waste landfill leachate treatment. Final report

    SciTech Connect

    Peverly, J.; Sanford, W.E.; Steenhuis, T.S.

    1993-11-01

    In 1989, the US Geological Survey and Cornell University, in cooperation with the New York State Energy Research and Development Authority and the Tompkins County Solid Waste Department, began a three-year study at a municipal solid-waste landfill near Ithaca, New York, to test the effectiveness of leachate treatment with constructed wetlands and to examine the associated treatment processes. Specific objectives of the study were to examine: treatment efficiency as function of substrate composition and grain size, degree of plant growth, and seasonal changes in evapotranspiration rates and microbial activity; effects of leachate and plant growth on the hydraulic characteristics of the substrate; and chemical, biological, and physical processes by which nutrients, metals, and organic compounds are removed from leachate as it flows through the substrate. A parallel study at a municipal solid-waste landfill near Fenton, New York was conducted by researchers at Cornell University, Ithaca College, and Hawk Engineering (Trautmann and others, 1989). Results are described.

  14. Nation's first fuel cell power plant powered by processed landfill gas

    SciTech Connect

    Leeper, J.D.; Engels, W.W.

    1986-04-01

    Southern California Edison Company (Edison) and the Los Angeles Department of Water and Power (LADWP) installed, and are operating, a 40 kw phosphoric acid fuel cell utilizing processed landfill gas at a hotel and convention complex in the City of Industry, California. This field test aims to establish important electric utility operating criteria of two separate, promising technologies linked together for the first time. Among the key objectives to be established during this project are: (1) operating a fuel cell to establish electric generation equipment criteria, such as fuel efficiency, reliability, siteability, and emission and electric output characteristics; (2) determining whether under-utilized landfill gas can be used in a fuel cell designed to operate on natural gas; and (3) identifying methods to improve the economic viability of such a system.

  15. Longitudinal data analysis in support of functional stability concepts for leachate management at closed municipal landfills

    SciTech Connect

    Gibbons, Robert D.; Morris, Jeremy W.F.; Prucha, Christopher P.; Caldwell, Michael D.; Staley, Bryan F.

    2014-09-15

    Highlights: • Longitudinal data analysis using a mixed-effects regression model. • Dataset consisted of a total of 1402 samples from 101 closed municipal landfills. • Target analytes and classes generally showed predictable degradation trends. • Validates historical studies focused on macro organic indicators such as BOD. • BOD can serve as “gateway” indicator for planning leachate management. - Abstract: Landfill functional stability provides a target that supports no environmental threat at the relevant point of exposure in the absence of active control systems. With respect to leachate management, this study investigates “gateway” indicators for functional stability in terms of the predictability of leachate characteristics, and thus potential threat to water quality posed by leachate emissions. Historical studies conducted on changes in municipal solid waste (MSW) leachate concentrations over time (longitudinal analysis) have concentrated on indicator compounds, primarily chemical oxygen demand (COD) and biochemical oxygen demand (BOD). However, validation of these studies using an expanded database and larger constituent sets has not been performed. This study evaluated leachate data using a mixed-effects regression model to determine the extent to which leachate constituent degradation can be predicted based on waste age or operational practices. The final dataset analyzed consisted of a total of 1402 samples from 101 MSW landfills. Results from the study indicated that all leachate constituents exhibit a decreasing trend with time in the post-closure period, with 16 of the 25 target analytes and aggregate classes exhibiting a statistically significant trend consistent with well-studied indicators such as BOD. Decreasing trends in BOD concentration after landfill closure can thus be considered representative of trends for many leachate constituents of concern.

  16. Expedited Site Characterization: A rapid, cost-effective process for preremedial site characterization

    SciTech Connect

    Burton, J.C.; Walker, J.L.; Jennings, T.V.; Aggarwal, P.K.; Hastings, B.; Meyer, W.T.; Rose, C.M.; Rosignolo, C.L.

    1993-11-01

    Argonne National Laboratory has developed a unique, cost- and time-effective, technically innovative process for preremedial site characterization, referred to as Expedited Site Characterization (ESC). The cost of the ESC field sampling process ranges from 1/10 to 1/5 of the cost of traditional site characterization. The time required for this ESC field activity is approximately 1/30 of that for current methods. Argonne`s preremedial site investigations based on this approach have been accepted by the appropriate regulatory agencies. The ESC process is flexible and neither site nor contaminant dependent. The process has been successfully tested and applied in site investigations of multiple contaminated landfills in New Mexico (for the US Department of the Interior`s Bureau of Land Management [BLM]) and at former grain storage facilities in Nebraska and Kansas, contaminated with carbon tetrachloride (for the Department of Agriculture`s Commodity Credit Corporation [CCC/USDA]). A working demonstration of this process was sponsored by the US Department of Energy (DOE) Office of Technology Development as a model of the methodology needed to accelerate site characterizations at DOE facilities. This report describes the application of the process in New Mexico, Nebraska and Kansas.

  17. Complete decay of radionuclides: Implications for low-level waste disposal in municipal landfills

    SciTech Connect

    Meck, R.A.

    1996-05-01

    The time required for the complete decay of a radioactive source can be quantified by specifying an acceptable probability and using an original derivation. The physical phenomenon of complete decay may be used as the technical basis to change regulations and permit, with public acceptance, the inexpensive disposal of short half-lived radioactive waste into municipal landfills. Current regulations require isolation of trash form the biosphere for 30 years during the post-closure control period for municipal landfills. Thirty years is sufficient time for complete decay of significant quantities of short-lived radionuclides, and there is a large decay capacity in the nation`s landfills. As the major generators of low-level radioactive waste with relatively short half-lives, the academic, medical, and research communities likely would benefit most from such regulatory relief. Disposal of such waste is prohibited or costly. The waste must be specially packaged, stored, transported, and disposed in designated repositories. Regulatory relief can be initiated by citizens since the Administrative Procedures Act gives citizens the right to petition for regulatory change. 10 refs., 2 tabs.

  18. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors

    SciTech Connect

    Wei Yanjie; Ji Min; Li Ruying; Qin Feifei

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Aerobic granular sludge SBR was used to treat real landfill leachate. Black-Right-Pointing-Pointer COD removal was analyzed kinetically using a modified model. Black-Right-Pointing-Pointer Characteristics of nitrogen removal at different ammonium inputs were explored. Black-Right-Pointing-Pointer DO variations were consistent with the GSBR performances at low ammonium inputs. - Abstract: Granule sequencing batch reactors (GSBR) were established for landfill leachate treatment, and the COD removal was analyzed kinetically using a modified model. Results showed that COD removal rate decreased as influent ammonium concentration increasing. Characteristics of nitrogen removal at different influent ammonium levels were also studied. When the ammonium concentration in the landfill leachate was 366 mg L{sup -1}, the dominant nitrogen removal process in the GSBR was simultaneous nitrification and denitrification (SND). Under the ammonium concentration of 788 mg L{sup -1}, nitrite accumulation occurred and the accumulated nitrite was reduced to nitrogen gas by the shortcut denitrification process. When the influent ammonium increased to a higher level of 1105 mg L{sup -1}, accumulation of nitrite and nitrate lasted in the whole cycle, and the removal efficiencies of total nitrogen and ammonium decreased to only 35.0% and 39.3%, respectively. Results also showed that DO was a useful process controlling parameter for the organics and nitrogen removal at low ammonium input.

  19. Washington Energy Facility Site Evalutation Council - Siting...

    OpenEI (Open Energy Information) [EERE & EIA]

    Reference LibraryAdd to library Web Site: Washington Energy Facility Site Evalutation Council - Siting and Review Process Abstract Overview of the siting and review process for...

  20. Site Map

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Home » Site Map Site Map Home About Overview NERSC Mission Contact us Staff Center Leadership Sudip Dosanjh Sudip Dosanjh: Select Publications Jeff Broughton Katie Antypas Richard Gerber Publications Center Administration James Craw Norma Early Jeff Grounds Ernest Jew Eric Lucas Betsy MacGowan Zaida McCunney Kerri Peyovich Lynn Rippe Seleste Rodriguez Center Communications Jon Bashor Kathy Kincade Linda Vu Margie Wylie Advanced Technologies Nicholas Wright Brian Austin Research Projects

  1. Connected Sites

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Network Facts & Stats Connected Sites Peering Connections ESnet Site Availabiliy OSCARS Fasterdata IPv6 Network Network Performance Tools The ESnet Engineering Team Network R&D Software-Defined Networking (SDN) Experimental Network Testbeds Performance (perfSONAR) Software & Tools Development Data for Researchers Partnerships Publications Workshops Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies News & Publications ESnet News

  2. Waste to Energy Power Production at DOE and DOD Sites

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waste to Energy Power Production at DOE and DOD Sites January 13, 2011 Overview - Federal Agency Innovations DOE: S avannah River S ite * Biomass Heat and Power US AF: Hill Air Force Base * Landfill Gas to Energy Generation Ameresco independent DOES avannah River S ite DOES avannah River S ite (DOE-S R) * Georgia / S outh Carolina border * 300+ sq miles extending into 3 counties * Began operations in 1950s Challenges faced by DOE-S R * Aging Infrastructure Ameresco independent * Coal and fuel

  3. Superfund at work: Hazardous waste cleanup efforts nationwide, Spring 1993 (Powersville site profile, Peach County, Georgia)

    SciTech Connect

    Not Available

    1993-01-01

    The US Environmental Protection Agency (EPA) encountered much more than a municipal landfill at the Powersville site in Peach County, Georgia. Contamination from improperly dumped hazardous wastes and pesticides tainted an old quarry used for household garbage. Chemicals migrating into area ground water threatened local drinking water supplies. To address these issues, EPA's Superfund program designed a cleanup strategy that included: negotiating with the county and chemical companies to contain the hazardous wastes on site underneath a protective cover; investigating reports of drinking water contamination and extending municipal water lines to affected residents; and conducting a tailored community relations program to inform and educate residents about the site.

  4. Superfund Record of Decision (EPA Region 2): Kin-Buc Landfill, Edison Township, Middlesex County, NJ. (Second remedial action), September 1992. Final report

    SciTech Connect

    Not Available

    1992-09-28

    The 200-acre Kin-Buc Landfill consists of several inactive disposal areas and is located in Edison Township, Middlesex County, New Jersey. Land use in the area is predominantly industrial and commercial, with some residences within 2 miles north of the site. No drinking water supply wells are located within a 2-mile radius of the site. As a result of an oil spill in 1976, EPA conducted an investigation of the property. In 1980, clean-up activities were initiated under the Clean Water Act and included removal, treatment, and disposal of leachate and drummed waste. The ROD addresses a final remedy for OU2 consisting of the sediment and groundwater in the Edmonds Creek wetlands area, Mill Brook/Martins Creek, Mound B, and the low-lying area. The primary contaminants of concern affecting the sediment and ground water are VOCs, including benzene and xylenes; other organics, including PAHs, PCBs, and pesticides; and metals, including arsenic and lead. The selected remedy for the site are included.

  5. Site Management Guide (Blue Book)

    SciTech Connect

    2014-03-01

    The U.S. Department of Energy (Department) Office of Legacy Management (LM), established in 2003, manages the Department’s postclosure responsibilities and ensures the future protection of human health and the environment. During World War II and the Cold War, the Federal government developed and operated a vast network of industrial facilities for the research, production, and testing of nuclear weapons, as well as other scientific and engineering research. These processes left a legacy of radioactive and chemical waste, environmental contamination, and hazardous facilities and materials at well over 100 sites. Since 1989, the Department has taken an aggressive accelerated cleanup approach to reduce risks and cut costs. At most Departmental sites undergoing cleanup, some residual hazards will remain at the time cleanup is completed due to financial and technical impracticality. However, the Department still has an obligation to protect human health and the environment after cleanup is completed. LM fulfills DOE’s postclosure obligation by providing long-term management of postcleanup sites which do not have continuing missions. LM is also responsible for sites under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Currently, the U.S. Army Corps of Engineers (USACE) is responsible for site surveys and remediation at FUSRAP sites. Once remediation is completed, LM becomes responsible for long-term management. LM also has responsibility for uranium processing sites addressed by Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA). UMTRCA Title II sites are sites that were commercially owned and are regulated under a U.S. Nuclear Regulatory Commission (NRC) license. For license termination, the owner must conduct an NRC-approved cleanup of any on-site radioactive waste remaining from former uranium ore-processing operations. The site owner must also provide full funding for inspections and, if necessary, ongoing maintenance. Once site

  6. Environmental assessment of remedial action at the Gunnison Uranium Mill Tailings Site near Gunnison, Colorado. Final

    SciTech Connect

    Not Available

    1992-02-01

    The presence of contaminated uranium mill tailings adjacent to the city of Gunnison has been a local concern for many years. The following issues were identified during public meetings that were held by the DOE prior to distribution of an earlier version of this EA. Many of these issues will require mitigation. Groundwater contamination; in December 1989, a herd of 105 antelope were introduced in an area that includes the Landfill disposal site. There is concern that remedial action-related traffic in the area would result in antelope mortality. The proposed Tenderfoot Mountain haul road may restrict antelope access to their water supply; a second wildlife issue concerns the potential reduction in sage grouse use of breeding grounds (leks) and nesting habitat; the proposed Tenderfoot Mountain haul road would cross areas designated as wetlands by US Army Corps of Engineers (COE); the proposed disposal site is currently used for grazing by cattle six weeks a year in the spring. Additional concerns were stated in comments on a previous version of this EA. The proposed action is to consolidate and remove all contaminated materials associated with the Gunnison processing site to the Landfill disposal site six air miles east of Gunnison. All structures on the site (e.g., water tower, office buildings) were demolished in 1991. The debris is being stored on the site until it can be incorporated into the disposal cell at the disposal site. All contaminated materials would be trucked to the Landfill disposal site on a to-be-constructed haul road that crosses BLM-administered land.

  7. Recovery of essential nutrients from municipal solid waste – Impact of waste management infrastructure and governance aspects

    SciTech Connect

    Zabaleta, Imanol; Rodic, Ljiljana

    2015-10-15

    Every year 120–140 million tonnes of bio-waste are generated in Europe, most of which is landfilled, incinerated or stabilized and used as covering material in landfill operation. None of these practices enables the recovery of essential nutrients such as phosphorus (P) and nitrogen (N), which are in great demand for agricultural production. Recovery of these nutrients is a matter of international concern considering the non-renewable nature of P sources and the energy intensive production process required for the synthesis of N fertilizers. The objective of this research is to understand the relation between the municipal solid waste management (MSWM) system, both its the physical components and governance aspects, and the recovery of nutrients in Vitoria-Gasteiz (Basque Country) as a benchmark for European medium-size cities. The analysis shows that the existing physical infrastructure and facilities for bio-waste have high potential for nutrient recovery, 49% for N and 83% for P contained in bio-waste. However, governance aspects of the MSWM system such as legislation and user inclusivity play an important role and decrease the actual nutrient recovery to 3.4% and 7.4% for N and P respectively.

  8. Ground-water monitoring compliance projects for Hanford Site facilities: Progress Report for the Period July 1 to September 30, 1987

    SciTech Connect

    Not Available

    1987-11-01

    This report documents the progress of four Hanford Site ground-water monitoring projects for the period from July 1 to September 310, 1987. The four disposal facilities are the 300 Area Process Trenches, 183-H Solar Evaporation Basins, 200 Area Low-Level Burial Grounds, and Nonradioactive Dangerous Waste (NRDW) Landfill. This report is the fifth in a series of periodic status reports. During this reporting period, field activities consisted of completing repairs on five monitoring wells originally present around the 183-H Basins and completing construction of 25 monitoring wells around the 200 Area Burial Grounds. The 14 wells in the 200 East Area were completed by Kaiser Engineers Hanford (KEH) and the 11 wells in the 200 West Area were compelted by ONWEGO Well Drilling. The NRDW Landfill interim characterization report was submitted to the WDOE and the USEPA in August 1987. Analytical results for the 300 Area, 183-H, and the NRDW Landfill indicate no deviations from previously established trends. Results from the NRDW Land-fill indiate that the facility has no effect on the ground-water quality beneath the facility, except for the detection of coliform bacteria. A possible source of this contamination is the solid-waste lanfill (SWL) adjacent to the NRDW Landfill. Ground-water monitoring data for the NRDW and SWL will be evaluated together in the future. Aquifer testing was completed in the 25 new wells surrounding the 200 Area buiral grounds. 13 refs., 19 refs., 13 tabs.

  9. Federal Government Project Performance Benchmarks

    Energy.gov [DOE]

    Reports five major performance metrics that can be used to benchmark proposed energy service company projects within the federal government, disaggregated and reported by major retrofit strategy. Author: U.S. Department of Energy

  10. Open Government Plan Self Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Government Plan Self Evaluation Page 1 of 3 NAME OF AGENCY: Department of Energy NAME OF ... each of the criteria as follows: Red (R) - plan does not satisfy the requirement Yellow ...

  11. Share Your Open Government Ideas

    Energy.gov [DOE]

    We welcome your input on our Open Government efforts and will take them into account as we continue to expand our level of transparency, participation and collaboration. Make your voice heard by...

  12. LM Sites | Department of Energy

    Office of Environmental Management (EM)

    Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison Sites Hallam Site Hamilton Site ...

  13. HANFORD SITE

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hanford Advisory Board Larry Goldstein November 1, 2012 1 2 Who We Are State of Oregon State of Washington U.S. Department of Energy U.S. Department of Commerce (NOAA) U.S. Department of Interior (Fish and Wildlife Service) Nez Perce Tribe Confederated Tribes and Bands of the Yakama Nation Confederated Tribes of the Umatilla Indian Reservation 3 Trustees are governments, defined by CERCLA, who act to: Protect the public interest and to "make the public whole" for injuries to natural

  14. Developing Government Renewable Energy Projects

    SciTech Connect

    Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

    2012-07-01

    The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INL’s renewable energy experiences date back to the 1980’s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the do’s and don’ts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

  15. E-831 United States Government

    Office of Legacy Management (LM)

    %i7Dm--, I' ) f&,:& Department of Energy DATE: OCT 9 1984 REPLY T O NE-20 ATTN OF: ... Louis Airport Storage Site, St. Louis, M O . and the W . R. Grace Site at Curtis Bay, Md. ...

  16. Probabilistic performance-assessment modeling of the mixed waste landfill at Sandia National Laboratories.

    SciTech Connect

    Peace, Gerald L.; Goering, Timothy James; Miller, Mark Laverne; Ho, Clifford Kuofei

    2005-11-01

    A probabilistic performance assessment has been conducted to evaluate the fate and transport of radionuclides (americium-241, cesium-137, cobalt-60, plutonium-238, plutonium-239, radium-226, radon-222, strontium-90, thorium-232, tritium, uranium-238), heavy metals (lead and cadmium), and volatile organic compounds (VOCs) at the Mixed Waste Landfill (MWL). Probabilistic analyses were performed to quantify uncertainties inherent in the system and models for a 1,000-year period, and sensitivity analyses were performed to identify parameters and processes that were most important to the simulated performance metrics. Comparisons between simulated results and measured values at the MWL were made to gain confidence in the models and perform calibrations when data were available. In addition, long-term monitoring requirements and triggers were recommended based on the results of the quantified uncertainty and sensitivity analyses. At least one-hundred realizations were simulated for each scenario defined in the performance assessment. Conservative values and assumptions were used to define values and distributions of uncertain input parameters when site data were not available. Results showed that exposure to tritium via the air pathway exceeded the regulatory metric of 10 mrem/year in about 2% of the simulated realizations when the receptor was located at the MWL (continuously exposed to the air directly above the MWL). Simulations showed that peak radon gas fluxes exceeded the design standard of 20 pCi/m{sup 2}/s in about 3% of the realizations if up to 1% of the containers of sealed radium-226 sources were assumed to completely degrade in the future. If up to 100% of the containers of radium-226 sources were assumed to completely degrade, 30% of the realizations yielded radon surface fluxes that exceeded the design standard. For the groundwater pathway, simulations showed that none of the radionuclides or heavy metals (lead and cadmium) reached the groundwater during

  17. Field study for disposal of solid wastes from Advanced Coal Processes: Ohio LIMB Site Assessment. Final report, April 1986--November 1994

    SciTech Connect

    Weinberg, A.; Coel, B.J.; Butler, R.D.

    1994-10-01

    New air pollution regulations will require cleaner, more efficient processes for converting coal to electricity, producing solid byproducts or wastes that differ from conventional pulverized-coal combustion ash. Large scale landfill test cells containing byproducts were built at 3 sites and are to be monitored over at least 3 years. This report presents results of a 3-y field test at an ash disposal site in northern Ohio; the field test used ash from a combined lime injection-multistage burner (LIMB) retrofit at the Ohio Edison Edgewater plant. The landfill test cells used LIMB ash wetted only to control dusting in one cell, and LIMB ash wetted to optimize compaction density in the other cell. Both test cells had adequate load-bearing strength for landfill stability but had continuing dimensional instability. Heaving and expansion did not affect the landfill stability but probably contributed to greater permeability to infiltrating water. Leachate migration occurred from the base, but effects on downgradient groundwater were limited to increased chloride concentration in one well. Compressive strength of landfilled ash was adequate to support equipment, although permeability was higher and strength was lower than anticipated. Average moisture content has increased to about 90% (dry weight basis). Significant water infiltration has occurred; the model suggests that as much as 20% of the incident rainfall will pass through and exit as leachate. However, impacts on shallow ground water is minimal. Results of this field study suggest that LIMB ash from combustion of moderate to high sulfur coals will perform acceptably if engineering controls are used to condition and compact the materials, reduce water influx to the landfill, and minimize leachate production. Handling of the ash did not pose serious problems during cell construction; steaming and heat buildup were moderate.

  18. Site selection and licensing issues: Southwest Compact low-level radioactive waste disposal site

    SciTech Connect

    Grant, J.L.

    1989-11-01

    The low-level radioactive waste disposal site in California is being selected through a three-phase program. Phase 1 is a systematic statewide, regional, and local screening study. This program was conducted during 1986 and 1987, and culminated in the selection of three candidate sites fur further study. The candidate sites are identified as the Panamint, Silurian, and Ward Valley sites. Phase 2 comprises site characterization and environmental and socio-economic impact study activities at the three candidate sites. Based upon the site characterization studies, the candidate sites are ranked according to the desirability and conformance with regulatory requirements. Phase 3 comprises preparation of a license application for the selected candidate site. The license application will include a detailed characterization of the site, detailed design and operations plans for the proposed facility, and assessments of potential impacts of the site upon the environment and the local communities. Five types of siting criteria were developed to govern the site selection process. These types are: technical suitability exclusionary criteria, high-avoidance criteria beyond technical suitability requirements, discretionary criteria, public acceptance, and schedule requirements of the LLWR Policy Act Amendments. This paper discusses the application of the hydrological and geotechnical criteria during the siting and licensing studies in California. These criteria address site location and performance, and the degree to which present and future site behavior can be predicted. Primary regulatory requirements governing the suitability of a site are that the site must be hydrologically and geologically simple enough for the confident prediction of future behavior, and that the site must be stable enough that frequent or intensive maintenance of the closed site will not be required. This paper addresses the methods to measure site suitability at each stage of the process, methods to

  19. Annual Site Environmental Report: 2010 (ASER)

    SciTech Connect

    Sabba, D.

    2011-11-11

    This report provides information about environmental programs during the calendar year of 2010 at the SLAC National Accelerator Laboratory (SLAC), Menlo Park, California. Activities that overlap the calendar year - i.e., stormwater monitoring covering the winter season of 2010/2011 (October 2010 through May 2011) are also included. SLAC is a federally-funded research and development center with Stanford University as the M&O contractor. Under Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, EO 13514, Federal Leadership in Environmental, Energy, and Economic Performance, and DOE Order 450.1A, Environmental Protection Program, SLAC effectively implements and integrates the key elements of an Environmental Management System (EMS) to achieve the site's integrated safety and environmental management system goals. For normal daily activities, SLAC managers and supervisors are responsible for ensuring that policies and procedures are understood and followed so that: (1) Worker safety and health are protected; (2) The environment is protected; and (3) Compliance is ensured. Throughout 2010, SLAC continued to improve its management systems. These systems provided a structured framework for SLAC to implement 'greening of the government' initiatives such as EO 13423, EO 13514, and DOE Orders 450.1A and 430.2B. Overall, management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. During 2010, there were no reportable releases to the environment from SLAC operations. In addition, many improvements in waste minimization, recycling, stormwater management, groundwater restoration, and SLAC's chemical management system (CMS) were continued. The following are among SLAC's environmental accomplishments for 2010. To facilitate management and identification of future potential greenhouse gases (GHG) reduction opportunities, SLAC voluntarily completed GHG inventories for

  20. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    SciTech Connect

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-15

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  1. Large-Scale Field Study of Landfill Covers at Sandia National Laboratories

    SciTech Connect

    Dwyer, S.F.

    1998-09-01

    A large-scale field demonstration comparing final landfill cover designs has been constructed and is currently being monitored at Sandia National Laboratories in Albuquerque, New Mexico. Two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side with four alternative cover test plots designed for dry environments. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper presents an overview of the ongoing demonstration.

  2. H.A.R. 13-277 - Rules Governing Requirements for Archaeological...

    OpenEI (Open Energy Information) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: H.A.R. 13-277 - Rules Governing Requirements for Archaeological Site Preservation and...

  3. EA-1707: Revised Draft Environmental Assessment

    Energy.gov [DOE]

    Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington

  4. EA-1707: Draft Environmental Assessment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington

  5. TITLE XVII GOVERNING DOCUMENTS | Department of Energy

    Energy.gov [DOE] (indexed site)

    GOVERNING DOCUMENTS The following lists documents that provide the statutory and legislative framework for the Title XVII loan guarantee program. TITLE XVII GOVERNING DOCUMENTS: * ...

  6. MISUSE OF GOVERNMENT IT AND COMMUNICATION RESOURCES

    Energy Saver

    MISUSE OF GOVERNMENT IT AND COMMUNICATION RESOURCES You have probably all read recent news articles about the use of government provided computers and Internet by a handful of ...

  7. Siemens Government Services ESCO Qualification Sheet | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Siemens Government Services ESCO Qualification Sheet Siemens Government Services ESCO Qualification Sheet Fact sheet outlines the energy service company (ESCO) qualification for ...

  8. Government Performance Result Act (GPRA) / Portfolio Decision...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Government Performance Result Act (GPRA) Portfolio Decision Support (PDS) Government Performance Result Act (GPRA) Portfolio Decision Support (PDS) 2009 DOE Hydrogen Program...

  9. Native Americans and state and local governments

    SciTech Connect

    Rusco, E.R.

    1991-10-01

    Native Americans` concerns arising from the possibility of establishment of a nuclear repository for high level wastes at Yucca Mountain fall principally into two main categories. First, the strongest objection to the repository comes from traditional Western Shoshones. Their objections are based on a claim that the Western Shoshones still own Yucca Mountain and also on the assertion that putting high level nuclear wastes into the ground is a violation of their religious views regarding nature. Second, there are several reservations around the Yucca Mountain site that might be affected in various ways by building of the repository. There is a question about how many such reservations there are, which can only be decided when more information is available. This report discusses two questions: the bearing of the continued vigorous assertion by traditionalist Western Shoshones of their land claim; and the extent to which Nevada state and local governments are able to understand and represent Indian viewpoints about Yucca Mountain.

  10. Characterization Report for the David Witherspoon Screen Art Site

    SciTech Connect

    Phyllis C. Weaver

    2011-01-31

    The U.S. Department of Energy (DOE) Oak Ridge Office (ORO) of Environmental Management (EM) requested the technical assistance of Oak Ridge Institute for Science and Education (ORISE) to characterize a tract of land associated with the David Witherspoon, Incorporated (DWI) Volunteer Equipment and Supply Company (VESC). This tract of land (hereinafter referred to as Screen Arts) is located in the Vestal Community in the 2000-block of Maryville Pike in south Knoxville, Tennessee, as shown in Figure A-1. This tract of land has been used primarily to store salvaged equipment and materials for resale, recycle, or for disposal in the former landfill once operated by DWI. The DWI Site industrial landfill and metal recycling business had been permitted by the Tennessee Division of Radiological Health to accept low-level radiologically contaminated metals. DWI received materials and equipment associated with operations from DOE sites, including those in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. It is likely that items stored at Screen Arts may have contained some residual radiological materials.

  11. Assessment of government tribology programs

    SciTech Connect

    Peterson, M.B.; Levinson, T.M.

    1985-09-01

    An assessment has been made to determine current tribology research and development work sponsored or conducted by the government. Data base surveys and discussions were conducted to isolate current projects sponsored primarily by 21 different government organizations. These projects were classified by subject, objective, energy relevance, type of research, phenomenon being investigated, variables being studied, type of motion, materials and application. An abstract of each project was prepared which included the classification, sponsor, performing organization and a project description. It was found that current work is primarily materials oriented to meet military requirements. Other than the high temperature programs very few of the tribology projects accomplish energy related objectives.

  12. ESnet Named One of Top Government IT Innovators - Again

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ESnet Named One of Top Government IT Innovators - Again News & Publications ESnet News Media & Press Publications and Presentations Galleries ESnet Awards and Honors Contact Us Media Jon Bashor, jbashor@lbl.gov, +1 510 486 5849 or Media@es.net Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net ESnet Named One of Top Government

  13. Hanford.gov Site Maintenance - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hanford.gov Site Maintenance Hanford.gov Site Maintenance Hanford.gov Site Maintenance Hanford.gov Site Maintenance Email Email Page | Print Print Page | Text Increase Font Size ...

  14. Hanford Site ground-water monitoring for April through June 1987

    SciTech Connect

    Evans, J.C.; Mitchell, P.J.; Dennison, D.I.

    1988-01-01

    Pacific Northwest Laboratory (PNL) is conducting ground-water monitoring at the Hanford Site. Results for monitoring by PNL and Westinghouse Hanford Company (WHC) during April-June 1987 show that certain regulated hazardous materials and radionuclides exist in Hanford Site ground waters. The presence of regulated constituents in the ground water derives both from site operations and from natural sources. The major contamination problems defined by recent monitoring activities are carbon tetrachloride in the 200 West Area; cyanide in and north of the 200 East Area; hexavalent chromium contamination in the 100B, 100D, 100K, and 100H areas; chlorinated hydrocarbons in the vicinity of the Central Landfill; uranium at the 216-U-1 and 216-U-2 cribs in the 200 West Area; tritium across the site; and nitrate across the site. The distribution of hazardous materials related to site operations is more limited than the distribution of tritium and nitrate. 8 refs., 22 figs., 5 tabs.

  15. Site Map

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Site Map TUNL pdf's | FAS pdf's | HTML | General Tables | Energy Level Diagrams | Tables of Energy Levels | Thermal Neutron Capture | Ground-State Decays | Excitation Functions | ENSDF | NuDat at BNL | Useful Links | Citation Examples TUNL Homepage I. TUNL and FAS publications of "Energy Levels of Light Nuclei, A = 3 - 20": TUNL publications (PDF documents): A = 3 (2010PU04), Erratum A = 3 (1987TI07), Erratum A = 4 (1992TI02), Erratum A = 5 (2002TI10), Erratum A = 6 (2002TI10), Erratum

  16. Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of 06934566 .l\ ~ ~ ~~9 u.s. Department of Energy Hanford Site OEC 2 8 2004 04-0RP-O78 Mr. Todd Martin, Chair Hanford Advisory Board 1933 Jadwin Avenue, Suite 135 Rich1and, Washington 99352 Dear Mr. Martin: HANFORD ADVISORY BOARD (HAB) CONSENSUS ADVICE #167 -STOP WORK AUTHORITY Reference: HAB letter from T. Martin to P. Golan and J. Shaw, DOE-HQ; K. Klein, RL; R. Schepens, ORP; L. Hoffman, Ecology; and R. Kreizeneeck, EPA, "Stop Work Authority," dated November 5, 2004. This letter

  17. Local Government Community Solar Toolkit

    Energy.gov [DOE]

    Community solar gardens can be an excellent opportunity for cities, counties, and other local governments to get involved in solar energy and engage community members. This toolkit has been created by Clean Energy Resource Teams to help consumers learn more about community solar.

  18. Government Personal Property Asset Management

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2001-09-23

    To establish procedures for managing Government personal owned or leased by the Department of Energy (DOE) and in the custody of DOE Headquarters employees, including those in the National Nuclear Security Administration (NNSA), in accordance with Federal and Departmental regulations. Cancels HQ O 580.1.

  19. Effect of landfill leachate organic acids on trace metal adsorption by kaolinite

    SciTech Connect

    Schroth, B.; Garrison, Sposito

    1997-02-01

    Hexanoic (hex) and fulvic acid (FA), representing early and later stages of landfill leachate evolution, were examined for influence on trace metal adsorption by a poorly crystallized kaolinite (KGa-2). Our experiments represented a model approach to examine possible reaction mechanisms in an environmentally important ternary metal-ligand-mineral surface system. Batch experiments were conducted in 0.01 mol kg(-1) NaClO4 at pH 3-8. Concentrations of metals (Cu, Cd, and Pb) and ligands were representative of those found typically in groundwater immediately downgradient of a landfill. The presence of FA resulted in enhancement of metal adsorption below pH 5, whereas the presence of hex produced no significant net change in metal uptake. Measured surface charge properties of KGa-2 were combined with binary and ternary system data in constructing a quantitative model of the system. The simple combination of binary system results was not effective in predicting the observed ternary system behavior. In both ternary systems, the addition of ternary surface complexes (TSCs) to the models resulted in a satisfactory fit to the data. Our work suggests the strong possibility that TSC involvement in surface reactions of natural adsorbents may be a useful concept.

  20. Characterization of municipal solid waste from the main landfills of Havana city

    SciTech Connect

    Espinosa Llorens, Ma. del C Lopez Torres, Matilde; Alvarez, Haydee Pellon Arrechea, Alexis; Garcia, Jorge Alejandro Diaz Aguirre, Susana; Fernandez, Alejandro

    2008-07-01

    The city of Havana, the political, administrative and cultural centre of Cuba, is also the centre of many of the economic activities of the nation: industries, services, scientific research and tourism. All of these activities contribute to the generation of municipal solid waste (MSW), which also impact other Cuban cities. Inadequate handling of waste and the lack of appropriate and efficient solutions for its final disposal and treatment increase the risk and possibility of contamination. The main difficulty in the development of a system of management of MSW lies in the lack of knowledge of the chemical composition of the waste that is generated in the country as a whole, and especially in Havana, where solid waste management decisions are made. The present study characterizes MSW in Havana city during 2004. The Calle 100, Guanabacoa and Ocho Vias landfills were selected for physical-chemical characterization of MSW, as they are the three biggest landfills in the city. A total of 16 indicators were measured, and weather conditions were recorded. As a result, the necessary information regarding the physical-chemical composition of the MSW became available for the first time in Cuba. The information is essential for making decisions regarding the management of waste and constitutes a valuable contribution to the Study on Integrated Management Plan of MSW in Havana.

  1. EVMS Self Governance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Self Governance EVMS Self Governance EVMS Self Governance (920.48 KB) Key Resources Internal DOE Tools PMCDP EVMS PARS IIe FPD Resource Center PM Newsletter Forms and Templates More Documents & Publications DOE EVMSIH and Pilot DOE EVMS Interpretation Handbook Test Automation EVMS Self Governance Focusing DOE Compliance Efforts

  2. Government Contracting Fundamentals | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Services » Small Business Program » Government Contracting Fundamentals Government Contracting Fundamentals EERE's Government Contracting Fundamentals lists useful government contracting resource links and descriptions for small businesses. Government Contracting Fundamentals (382.97 KB) More Documents & Publications Top 10 Tips for Contracting with the DOE Doing Business with the Office of Energy Efficiency and Renewable Energy: Frequently Asked Questions U.S. Department of Energy Office

  3. Before the House Oversight and Government Reform Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Oversight and Government Reform Subcommittee on Government Management, Organization, and Procurement Before the House Oversight and Government Reform Subcommittee on Government...

  4. A Water Balance Study of Four Landfill Cover Designs at Material Disposal Area B in Los Alamos, New Mexico

    SciTech Connect

    David D. Breshears; Fairley J. Barnes; John W. Nyhan; Johnny A. Salazar

    1998-09-01

    The goal of disposing of low-level radioactive and hazardous waste in shallow landfills is to reduce risk to human health and the environment by isolating contaminants until they no longer pose an unacceptable hazard. In order to achieve this, the Department of Energy Environmental Restoration Program is comparing the performance of several different surface covers at Material Disposal Area (MDA) B in Los Alamos. Two conventional landfill were compared with an improved cover designed to minimize plant and animal intrusion and to minimize water infiltration into the underlying wastes. The conventional covers varied in depth and both conventional and improved designs had different combinations of vegetation (grass verses shrub) and gravel mulch (no mulch verses mulch). These treatments were applied to each of 12 plots and water balance parameters were measured from March1987 through June 1995. Adding a gravel mulch significantly influenced the plant covered field plots receiving no gravel mulch averaged 21.2% shrub cover, while plots with gravel had a 20% larger percent cover of shrubs. However, the influence of gravel mulch on the grass cover was even larger than the influence on shrub cover, average grass cover on the plots with no gravel was 16.3%, compared with a 42% increase in grass cover due to gravel mulch. These cover relationships are important to reduce runoff on the landfill cover, as shown by a regression model that predicts that as ground cover is increased from 30 to 90%,annual runoff is reduced from 8.8 to 0.98 cm-a nine-fold increase. We also found that decreasing the slope of the landfill cover from 6 to 2% reduced runoff from the landfill cover by 2.7-fold. To minimize the risk of hazardous waste from landfills to humans, runoff and seepage need to be minimized and evapotranspiration maximized on the landfill cover. This has to be accomplished for dry and wet years at MDA B. Seepage consisted of 1.9% and 6.2% of the precipitation in the average and

  5. Other United States Government Awards

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    us govt awards Other United States Government Awards As a Department of Energy (DOE) national laboratory, LLNL tracks achievements recognized by awards from the DOE. These awards span a wide range of accomplishments and include recognition of exemplary programmatic achievements. . Name Year Citation Dexter Lenoir, Rochelle Aguilar, Ramon Martinez, Erik Simmons, Chelle Blocker, Camerino Gutierrez, Joseph Chilton, Janet Cortez, Gary Brown, Judith Juarez, Sobhana Singh, Ronald Washington, Lorraine

  6. Working with SRNL - AMC - Government

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Government It is through cooperative efforts that some of the United States' most complex challenges can be addressed. Not only can agencies learn from industry, they can learn from one another. Cooperative arrangements such as the Advanced Manufacturing Collaborative allow the best practices and most advanced technologies to come together. Every partner brings something unique to the table. The Advanced Manufacturing Collaborative streamlines technology applicability, implementation and

  7. Local Government Energy Loan Program

    Energy.gov [DOE]

    The application is available on the program web site. An energy audit must be completed to identify necessary improvements. Following installation, the loan recipient must be benchmarked using the...

  8. Hanford Site Voluntary Protection Program - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hanford Site Voluntary Protection Program Hanford Site Voluntary Protection Program Hanford Site Voluntary Protection Program VPP Home VPP Hanford Site Champions Committee Getting Started Maintaining STAR VPP Communications VPP Conferences Hanford Site Voluntary Protection Program Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size 2013 VPPPA Outreach Award Winners VPP Committee Business Case (PDF)

  9. DOE - Office of Legacy Management -- Kennecott Sweetwater Site...

    Office of Legacy Management (LM)

    Mill Tailings Radiation Control Act was passed in 1978. The majority of the milling conducted at these sites was for private sale, but a portion was sold to the U.S. Government. ...

  10. DOE - Office of Legacy Management -- WNI Split Rock Site - 043

    Office of Legacy Management (LM)

    the Uranium Mill Tailings Control Act was passed in 1978. The majority of the milling conducted at these sites was for private sale, but a portion was sold to the U.S. Government. ...

  11. Oak Ridge, Tenn. Selected as Uranium Enrichment Site | National...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  12. Probabilistic performance-assessment modeling of the mixed waste landfill at Sandia National Laboratories.

    SciTech Connect

    Peace, Gerald L.; Goering, Timothy James; Miller, Mark Laverne; Ho, Clifford Kuofei

    2007-01-01

    A probabilistic performance assessment has been conducted to evaluate the fate and transport of radionuclides (americium-241, cesium-137, cobalt-60, plutonium-238, plutonium-239, radium-226, radon-222, strontium-90, thorium-232, tritium, uranium-238), heavy metals (lead and cadmium), and volatile organic compounds (VOCs) at the Mixed Waste Landfill (MWL). Probabilistic analyses were performed to quantify uncertainties inherent in the system and models for a 1,000-year period, and sensitivity analyses were performed to identify parameters and processes that were most important to the simulated performance metrics. Comparisons between simulated results and measured values at the MWL were made to gain confidence in the models and perform calibrations when data were available. In addition, long-term monitoring requirements and triggers were recommended based on the results of the quantified uncertainty and sensitivity analyses.

  13. Geotechnical properties of paper mill sludges for use in landfill covers

    SciTech Connect

    Moo-Young, H.K.; Zimmie, T.F.

    1996-09-01

    This study investigates the geotechnical properties of seven paper mill sludges. Paper mill sludges have a high water content and a high degree of compressibility and behave like a highly organic soil. Consolidation tests reveal a large reduction in void ratio and high strain values that are expected due to the high compressibility. Triaxial shear-strength tests conducted on remolded and undisturbed samples showed variations in the strength parameters resulting from the differences in sludge composition (i.e., water content and organic content). Laboratory permeability tests conducted on in-situ specimens either met the regulatory requirement for the permeability of a landfill cover or were very close. With time, consolidation and dewatering of the paper sludge improved the permeability of cover. Freezing and thawing cycles increased the sludge permeability about one to two orders of magnitude. Maximum permeability changes occurred within 10 freeze and thaw cycles.

  14. Water balance of two earthen landfill caps in a semi-arid climate

    SciTech Connect

    Khire, M.V.; Benson, C.H.; Bosscher, P.J.

    1997-12-31

    Water balance data are presented that were obtained from two earthen cap test sections located in a semi-arid region. The test sections were constructed on a municipal solid waste landfill in East Wenatchee, Washington, USA. One test section represents a traditional resistive barrier, and is constructed with a compacted silty clay barrier 60 cm thick and a vegetated silty clay surface layer 15 cm thick. The other test section represents a capillary barrier and has a sand layer 75 cm thick overlain by a 15-cm-thick vegetated surface layer of silt. Extensive hydrological and meteorological data have been collected since November 1992. Unsaturated hydraulic properties of soils, hydrologic parameters, and vegetation have been extensively characterized. Results of the study show that capillary barriers can be effective caps in semi-arid and arid regions. They are also cheaper to construct and can perform better than traditional resistive barriers.

  15. Measuring seasonal variations of moisture in a landfill with the partitioning gas tracer test

    SciTech Connect

    Han, Byunghyun; Jafarpour, Behnam; Gallagher, Victoria N.; Imhoff, Paul T. . E-mail: imhoff@udel.edu; Chiu, Pei C.; Fluman, Daniel A.

    2006-07-01

    Seven pilot-scale partitioning gas tracer tests (PGTTs) were conducted to assess the accuracy and reproducibility of this method for measuring water in municipal solid waste landfills. Tests were conducted in the same location over a 12-month period, and measured moisture conditions ranged from possible dry waste to refuse with a moisture content of 24.7%. The final moisture content of 24.7% was in reasonable agreement with gravimetric measurements of excavated refuse, where the moisture content was 26.5 {+-} 6.0CI%. Laboratory tests were used to assess the utility of the PGTT for measuring water in small pores, water sorbed to solid surfaces, and the influence of dry waste on PGTTs. These experiments indicated that when refuse surfaces are not completely solvated with water, PGTTs may produce misleading results (negative estimates) of water saturation and moisture content.

  16. Renewing the compact between science and government

    SciTech Connect

    Stokes, D.E.

    1995-12-31

    The historical relationship between science and government was profoundly changed by World War II and the vast nature of government sponsored research which continued in the post-war era but is now by threatened government budget deficits. The concepts advanced by the scientific community to justify continued government support are examined and compared to specific research and development program funding decisions. The use-inspired basic research justification is addressed in detail as an approach to strengthen the bridge between science and government. Some methodology to institutionalizing a new compact for government funded research is presented in detail. 8 refs., 4 figs.

  17. Partial oxidation of landfill leachate in supercritical water: Optimization by response surface methodology

    SciTech Connect

    Gong, Yanmeng; Wang, Shuzhong; Xu, Haidong; Guo, Yang; Tang, Xingying

    2015-09-15

    Highlights: • Partial oxidation of landfill leachate in supercritical water was investigated. • The process was optimized by Box–Behnken design and response surface methodology. • GY{sub H2}, TRE and CR could exhibit up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56%. • Small amounts of oxidant can decrease the generation of tar and char. - Abstract: To achieve the maximum H{sub 2} yield (GY{sub H2}), TOC removal rate (TRE) and carbon recovery rate (CR), response surface methodology was applied to optimize the process parameters for supercritical water partial oxidation (SWPO) of landfill leachate in a batch reactor. Quadratic polynomial models for GY{sub H2}, CR and TRE were established with Box–Behnken design. GY{sub H2}, CR and TRE reached up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56% under optimum conditions, respectively. TRE was invariably above 91.87%. In contrast, TC removal rate (TR) only changed from 8.76% to 32.98%. Furthermore, carbonate and bicarbonate were the most abundant carbonaceous substances in product, whereas CO{sub 2} and H{sub 2} were the most abundant gaseous products. As a product of nitrogen-containing organics, NH{sub 3} has an important effect on gas composition. The carbon balance cannot be reached duo to the formation of tar and char. CR increased with the increase of temperature and oxidation coefficient.

  18. Hanford Site Wide Programs - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Page | Print Print Page |Text Increase Font Size Decrease Font Size Hanford Site-Wide Programs Hanford Safety and Health Hanford Site Wide Programs Hanford Fire Department...

  19. Site Map | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Site Map Site Map Home Basic Search Advanced Search Geothermal FAQ About Geothermal Site Map Geothermal Feedback Website PoliciesImportant Links

  20. Site Map | DOE Patents

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Site Map Site Map Home Basic Search Advanced Search DOEpatents FAQ About DOEpatents Site Map Contact Us Website Policies/Important Links

  1. Site Map | Data Explorer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Data Explorer Site Map Site Map Home Basic Search Advanced Search Data Explorer FAQ About Data Explorer Site Map Contact Us Website Policies/Important Links

  2. Environmental - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Documents Environmental Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford Site ...

  3. Site Map | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Site Map Site Map Home Basic Search Advanced Search DOE PAGES FAQ About DOE PAGES Site Map Contact Us Website Policies/Important Links

  4. Site Map | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Site Map Site Map Home Basic Search Advanced Search Data Explorer FAQ About Data Explorer Site Map Contact Us Website Policies/Important Links

  5. Ohio Web Sites

    Gasoline and Diesel Fuel Update

    Restructuring > Ohio Web Sites Ohio Web Sites Other Links Ohio Electricity Profile Ohio Energy Profile Ohio Restructuring Last Updated: April 2007 Sites Links Public Utilities ...

  6. Site Map | DOE Patents

    Office of Scientific and Technical Information (OSTI)

    Site Map Site Map Home Basic Search Advanced Search DOEpatents FAQ About DOEpatents Site Map Contact Us Website Policies/Important Links

  7. Site Map | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Site Map Site Map Home Basic Search Advanced Search Geothermal FAQ About Geothermal Site Map Contact Us Website Policies/Important Links

  8. Managing government funded scientific consortia

    SciTech Connect

    Banerjee, Bakul; /Fermilab

    2007-06-01

    In recent years, it is becoming apparent that good science not only requires the talents of individual scientists, but also state-of-the-art laboratory facilities. These faculties, often costing millions to billions of dollars, allow scientists unprecedented opportunities to advance their knowledge and improve the quality of human life. To make optimum use of these experimental facilities, a significant amount of computational simulations is required. These mega-projects require large-scale computational facilities and complementary infrastructures of network and software. For physical sciences in US, most of these research and development efforts are funded by the US Department of Energy (DOE) and National Science Foundation (NSF). Universities, US National Laboratories, and occasionally industrial partners work together on projects awarded with different flavors of government funds managed under different rules. At Fermilab, we manage multiple such collaborative computing projects for university and laboratory consortia. In this paper, I explore important lessons learned from my experience with these projects. Using examples of projects delivering computing infrastructure for the Lattice QCD Collaboration, I explain how the use of federal enterprise architecture may be deployed to run projects effectively. I also describe the lessons learned in the process. Lessons learned from the execution of the above projects are also applicable to other consortia receiving federal government funds.

  9. ATVM GOVERNING DOCUMENTS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    GOVERNING DOCUMENTS ATVM GOVERNING DOCUMENTS ATVM GOVERNING DOCUMENTS The following lists documents that provide the statutory and legislative framework for the ATVM direct loan program. ATVM GOVERNING DOCUMENTS: * FOUNDATIONAL LEGISLATION, RULES, AND DOCUMENTS * APPROPRIATIONS * ADDITIONAL LEGAL REQUIREMENTS * ATVM RELATED LINKS FOUNDATIONAL LEGISLATION, RULES, AND DOCUMENTS ENERGY INDEPENDENCE AND SECURITY ACT OF 2007 Section 136 of the Energy Independence and Security Act of 2007, as amended,

  10. All Office Administrative/ Professional Government All Other

    Energy Information Administration (EIA) (indexed site)

    Buildings Energy Consumption Survey All Office Administrative Professional Government All Other Office All Buildings... 4,645 824 442 84...

  11. All Office Administrative/ Professional Government All Other

    Energy Information Administration (EIA) (indexed site)

    Buildings Energy Consumption Survey All Office Administrative Professional Government All Other Office All Buildings... 64,783 12,208...

  12. The Energy Department Open Government Plan

    Energy.gov [DOE] (indexed site)

    010 The Energy Department Open Government Plan Page 2 of 30 Table of Contents Invitation from Energy Secretary Steven Chu ......

  13. Government Printing Office Requirements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Government Printing Office Requirements Government Printing Office Requirements This section describes the Government Printing Office (GPO) requirements for all print materials, whether printed electronically or on paper. This includes requirements for printing and copying for all EERE publications. Approved Printers Executive Order 12873, signed by President Clinton, requires that all government offices and their contractors are required to use GPO-approved printers to print and copy all

  14. Landfill Gas Conversion to LNG and LCO{sub 2}. Phase II Final Report for January 25, 1999 - April 30, 2000

    SciTech Connect

    Brown, W. R.; Cook, W. J.; Siwajek, L. A.

    2000-10-20

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery.

  15. RCRA Summary Document for the David Witherspoon 1630 Site, Knoxville, Tennessee

    SciTech Connect

    Pfeffer, J.

    2008-06-10

    The 48-acre David Witherspoon, Inc. (DWI) 1630 Site operated as an unregulated industrial landfill and scrap yard. The Tennessee Division of Superfund (TDSF) closed the landfill in 1974. During the period of operation, the site received solid and liquid wastes from salvage and industrial operations. The site consists of five separate tracts of land including a small portion located across the Norfolk Southern Railroad track. The landfill occupies approximately 5 acres of the site, and roughly 20 acres of the 48 acres contains surface and buried debris associated with the DWI dismantling business operation. Beginning in 1968, the state of Tennessee licensed DWI to receive scrap metal at the DWI 1630 Site, contaminated with natural uranium and enriched uranium (235U) not exceeding 0.1 percent by weight (TDSF 1990). The U.S. Department of Energy (DOE) has agreed to undertake remedial actions at the DWI 1630 Site as specified under a Consent Order with the Tennessee Department of Environment and Conservation (TDEC) (Consent Order No. 90-3443, April 4, 1991), and as further delineated by a Memorandum of Understanding (MOU) between DOE and the State of Tennessee (MOU Regarding Implementation of Consent Orders, October 6, 1994). The soil and debris removal at the DWI 1630 Site is being performed by Bechtel Jacobs Company LLC (BJC) on behalf of the DOE. Remediation consists of removing contaminated soil and debris from the DWI 1630 site except for the landfill area and repairing the landfill cap. The DWI 1630 remediation waste that is being disposed at the Environmental Management Waste Management Facility (EMWMF) as defined as waste lot (WL) 146.1 and consists primarily of soils and soil like material, incidental debris and secondary waste generated from the excavation of debris and soil from the DWI 1630 site. The WL 146.1 includes soil, soil like material (e.g., shredded or chipped vegetation, ash), discrete debris items (e.g., equipment, drums, large scrap metal

  16. Hanford Site Cleanup Completion Framework - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Documents Hanford Site Cleanup Completion Framework Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford Site Safety Standards DOE - ORP Contracts/Procurements DOE - RL Contracts/Procurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RI/FS 100-D/H Operable Units RI/FS Sitewide Probabilistic Seismic Hazard Analysis Environmental Hanford Site Cleanup

  17. Hanford Site Safety Standards - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hanford Site Safety Standards Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford Site Safety Standards Hanford Hoisting and Rigging Manual DOE - ORP Contracts/Procurements DOE - RL Contracts/Procurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RI/FS 100-D/H Operable Units RI/FS Sitewide Probabilistic Seismic Hazard Analysis Environmental Hanford Site

  18. VPP Hanford Site Champions Committee - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hanford Site Champions Committee Hanford Site Voluntary Protection Program VPP Home VPP Hanford Site Champions Committee Who We Are Annual Reports Assessments Getting Started Maintaining STAR VPP Communications VPP Conferences VPP Hanford Site Champions Committee Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size VPP Hanford Site Champions Committee VPP Committee VPP Champions Committee Charter (PDF) Business Case (PDF) VPP Champions Committee Roster (PDF) Share on

  19. MIDC: Web Site Search

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MIDC Web Site Search Enter words or phrases: Search Clear Also see the site directory. [NREL] [MIDC]

  20. LANDFILL GAS CONVERSION TO LNG AND LCO{sub 2}. PHASE 1, FINAL REPORT FOR THE PERIOD MARCH 1998-FEBRUARY 1999

    SciTech Connect

    COOK,W.J.; NEYMAN,M.; SIWAJEK,L.A.; BROWN,W.R.; VAN HAUWAERT,P.M.; CURREN,E.D.

    1998-02-25

    Process designs and economics were developed to produce LNG and liquid carbon dioxide (CO{sub 2}) from landfill gas (LFG) using the Acrion CO{sub 2} wash process. The patented Acrion CO{sub 2} wash process uses liquid CO{sub 2} to absorb contaminants from the LFG. The process steps are compression, drying, CO{sub 2} wash contaminant removal and CO{sub 2} recovery, residual CO{sub 2} removal and methane liquefaction. Three flowsheets were developed using different residual CO{sub 2} removal schemes. These included physical solvent absorption (methanol), membranes and molecular sieves. The capital and operating costs of the flowsheets were very similar. The LNG production cost was around ten cents per gallon. In parallel with process flowsheet development, the business aspects of an eventual commercial project have been explored. The process was found to have significant potential commercial application. The business plan effort investigated the economics of LNG transportation, fueling, vehicle conversion, and markets. The commercial value of liquid CO{sub 2} was also investigated. This Phase 1 work, March 1998 through February 1999, was funded under Brookhaven National laboratory contract 725089 under the research program entitled ``Liquefied Natural Gas as a Heavy Vehicle Fuel.'' The Phase 2 effort will develop flowsheets for the following: (1) CO{sub 2} and pipeline gas production, with the pipeline methane being liquefied at a peak shaving site, (2) sewage digester gas as an alternate feedstock to LFG and (3) the use of mixed refrigerants for process cooling. Phase 2 will also study the modification of Acrion's process demonstration unit for the production of LNG and a market site for LNG production.