National Library of Energy BETA

Sample records for land surface temperature

  1. Bacteria increase arid-land soil surface temperature through...

    Office of Scientific and Technical Information (OSTI)

    Bacteria increase arid-land soil surface temperature through the production of sunscreens Prev Next Title: Bacteria increase arid-land soil surface temperature through the ...

  2. Bacteria increase arid-land soil surface temperature through the production of sunscreens

    DOE PAGES [OSTI]

    Couradeau, Estelle; Karaoz, Ulas; Lim, Hsiao Chien; Nunes da Rocha, Ulisses; Northen, Trent; Brodie, Eoin; Garcia-Pichel, Ferran

    2016-01-20

    Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can be colonized by photosynthetic microbes that build biocrust communities. Here we use concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria. Scytonemin accumulation decreases soil albedo significantly. Such localized warming has apparentmore » and immediate consequences for the soil microbiome, inducing the replacement of thermosensitive bacterial species with more thermotolerant forms. In conclusion, these results reveal that not only vegetation but also microorganisms are a factor in modifying terrestrial albedo, potentially impacting biosphere feedbacks on past and future climate, and call for a direct assessment of such effects at larger scales.« less

  3. What are hot and what are not in an urban landscape: quantifying and explaining the land surface temperature pattern in Beijing, China

    DOE PAGES [OSTI]

    Kuang, Wenhui; Liu, Yue; Dou, Yinyin; Chi, Wenfeng; Chen, Guangsheng; Gao, Chengfeng; Yang, Tianrong; Liu, Jiyuan; Zhang, Renhua

    2014-12-06

    Understanding how landscape components affect the urban heat islands is crucial for urban ecological planning and sustainable development. The purpose of this research was to quantify the spatial pattern of land surface temperatures (LSTs) and associated heat fluxes in relation to land-cover types in Beijing, China, using portable infrared thermometers, thermal infrared imagers, and the moderate resolution imaging spectroradiometer. The spatial differences and the relationships between LSTs and the hierarchical landscape structure were analyzed with in situ observations of surface radiation and heat fluxes. Large LST differences were found among various land-use/land-cover types, urban structures, and building materials. Within themore » urban area, the mean LST of urban impervious surfaces was about 6–12°C higher than that of the urban green space. LSTs of built-up areas were on average 3–6°C higher than LSTs of rural areas. The observations for surface radiation and heat fluxes indicated that the differences were caused by different fractions of sensible heat or latent heat flux in net radiation. LSTs decreased with increasing elevation and normalized difference vegetation index. Variations in building materials and urban structure significantly influenced the spatial pattern of LSTs in urban areas. By contrast, elevation and vegetation cover are the major determinants of the LST pattern in rural areas. In summary, to alleviate urban heat island intensity, urban planners and policy makers should pay special attention to the selection of appropriate building materials, the reasonable arrangement of urban structures, and the rational design of landscape components.« less

  4. What are hot and what are not in an urban landscape: quantifying and explaining the land surface temperature pattern in Beijing, China

    SciTech Connect

    Kuang, Wenhui; Liu, Yue; Dou, Yinyin; Chi, Wenfeng; Chen, Guangsheng; Gao, Chengfeng; Yang, Tianrong; Liu, Jiyuan; Zhang, Renhua

    2014-12-06

    Understanding how landscape components affect the urban heat islands is crucial for urban ecological planning and sustainable development. The purpose of this research was to quantify the spatial pattern of land surface temperatures (LSTs) and associated heat fluxes in relation to land-cover types in Beijing, China, using portable infrared thermometers, thermal infrared imagers, and the moderate resolution imaging spectroradiometer. The spatial differences and the relationships between LSTs and the hierarchical landscape structure were analyzed with in situ observations of surface radiation and heat fluxes. Large LST differences were found among various land-use/land-cover types, urban structures, and building materials. Within the urban area, the mean LST of urban impervious surfaces was about 6–12°C higher than that of the urban green space. LSTs of built-up areas were on average 3–6°C higher than LSTs of rural areas. The observations for surface radiation and heat fluxes indicated that the differences were caused by different fractions of sensible heat or latent heat flux in net radiation. LSTs decreased with increasing elevation and normalized difference vegetation index. Variations in building materials and urban structure significantly influenced the spatial pattern of LSTs in urban areas. By contrast, elevation and vegetation cover are the major determinants of the LST pattern in rural areas. In summary, to alleviate urban heat island intensity, urban planners and policy makers should pay special attention to the selection of appropriate building materials, the reasonable arrangement of urban structures, and the rational design of landscape components.

  5. ARM - Measurement - Sea surface temperature

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sea surface temperature The temperature of sea water near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the...

  6. ARM - Measurement - Surface skin temperature

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    skin temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface skin temperature The radiative surface skin temperature, from an IR thermometer measuring the narrowband radiating temperature of the ground surface in its field of view. Categories Surface Properties, Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the

  7. ARM - Measurement - Soil surface temperature

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    surface temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil surface temperature The temperature of the soil measured near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  8. Economic consequences of land surface subsidence

    SciTech Connect

    Fowler, L.C.

    1981-06-01

    Overdraft in the Santa Clara Valley, Calif., groundwater basin caused land surface subsidence over an area of 63,000 ha with a maximum depression of 3.6 m from 1912-67. Since cessation of overdraft and replenishment of groundwater levels in 1969, there has been no significant land surface subsidence. During the period of active subsidence, water well casings buckled, sewers lost capacity as a result of changes in slope, and roads and railroads had to be raised. These damages are estimated at over $130 million. (1 graph, 1 map, 6 photos, 2 references, 1 table)

  9. TNRC 51 - Land, Timber and Surface Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    51 - Land, Timber and Surface Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: TNRC 51 - Land, Timber and Surface...

  10. Surface and groundwater management in surface mined-land reclamation

    SciTech Connect

    Evoy, B.; Holland, M.

    1990-06-01

    This report provides information on surface water and groundwater management for use in the mined-land reclamation planning process in California. Mined-land reclamation, as defined by the California Surface Mining and Reclamation Act, is the combination of land treatments which prevent or minimize water degradation, air pollution, damage to aquatic or wildlife habitat, and erosion resulting from a surface mining operation. Surface water and groundwater management play an integral role in nearly every reclamation plan. Groundwater and surface water runoff (both onto and off of the site) must often be evaluated (1) to design flooding and erosion protection measures such as drainage channels, levees, culverts, or riprap; (2) to prepare and carry out a successful revegetation program; (3) to design stable final slopes; (4) to maximize potential available water for the operation and reclamation stages; (5) to prevent the discharge of contaminants from mine processes or from mined areas; and (6) to limit long-term leachate formation and movement from tailings, pit, or waste rock disposal areas. This report is a guide for mine operators, local government, planners, and plan reviewers.

  11. Method for measuring surface temperature

    DOEpatents

    Baker, Gary A.; Baker, Sheila N.; McCleskey, T. Mark

    2009-07-28

    The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  12. Assessment of Land Surface Model Performance in WRF for Simulating...

    Office of Scientific and Technical Information (OSTI)

    Assessment of Land Surface Model Performance in WRF for Simulating Wind at Heights Relevant to the Wind Energy Community Citation Details In-Document Search Title: Assessment of ...

  13. Assessment of Land Surface Model Performance in WRF for Simulating...

    Office of Scientific and Technical Information (OSTI)

    Wind Energy Community Citation Details In-Document Search Title: Assessment of Land Surface Model Performance in WRF for Simulating Wind at Heights Relevant to the Wind Energy ...

  14. Atmosphere-Land-Surface Interaction over the Southern Great Plains...

    Office of Scientific and Technical Information (OSTI)

    Plains: Diagnosis of Mechanisms from SGP ARM Data Citation Details In-Document Search Title: Atmosphere-Land-Surface Interaction over the Southern Great Plains: Diagnosis of ...

  15. Carbon Sequestration on Surface Mine Lands

    SciTech Connect

    Donald Graves; Christopher Barton; Richard Sweigard; Richard Warner; Carmen Agouridis

    2006-03-31

    Since the implementation of the federal Surface Mining Control and Reclamation Act of 1977 (SMCRA) in May of 1978, many opportunities have been lost for the reforestation of surface mines in the eastern United States. Research has shown that excessive compaction of spoil material in the backfilling and grading process is the biggest impediment to the establishment of productive forests as a post-mining land use (Ashby, 1998, Burger et al., 1994, Graves et al., 2000). Stability of mine sites was a prominent concern among regulators and mine operators in the years immediately following the implementation of SMCRA. These concerns resulted in the highly compacted, flatly graded, and consequently unproductive spoils of the early post-SMCRA era. However, there is nothing in the regulations that requires mine sites to be overly compacted as long as stability is achieved. It has been cultural barriers and not regulatory barriers that have contributed to the failure of reforestation efforts under the federal law over the past 27 years. Efforts to change the perception that the federal law and regulations impede effective reforestation techniques and interfere with bond release must be implemented. Demonstration of techniques that lead to the successful reforestation of surface mines is one such method that can be used to change perceptions and protect the forest ecosystems that were indigenous to these areas prior to mining. The University of Kentucky initiated a large-scale reforestation effort to address regulatory and cultural impediments to forest reclamation in 2003. During the three years of this project 383,000 trees were planted on over 556 acres in different physiographic areas of Kentucky (Table 1, Figure 1). Species used for the project were similar to those that existed on the sites before mining was initiated (Table 2). A monitoring program was undertaken to evaluate growth and survival of the planted species as a function of spoil characteristics and

  16. Consideration of land use change-induced surface albedo effects...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    effects in life-cycle analysis of biofuels Title Consideration of land use change-induced surface albedo effects in life-cycle analysis of biofuels Publication Type Journal Article ...

  17. CARBON SEQUESTRATION ON SURFACE MINE LANDS

    SciTech Connect

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2005-06-22

    An area planted in 2004 on Bent Mountain in Pike County was shifted to the Department of Energy project to centralize an area to become a demonstration site. An additional 98.3 acres were planted on Peabody lands in western Kentucky and Bent Mountain to bring the total area under study by this project to 556.5 acres as indicated in Table 2. Major efforts this quarter include the implementation of new plots that will examine the influence of differing geologic material on tree growth and survival, water quality and quantity and carbon sequestration. Normal monitoring and maintenance was conducted and additional instrumentation was installed to monitor the new areas planted.

  18. Global surface temperature changes since the 1850s

    SciTech Connect

    Jones, P.D.

    1996-12-31

    Temperature data from land and marine areas form the basis for many studies of climatic variations on local, regional and hemispheric scales, and the global mean temperature is a fundamental measure of the state of the climate system. In this paper it is shown that the surface temperature of the globe has warmed by about 0.5{degrees}C since the mid-nineteenth century. This is an important part of the evidence in the {open_quote}global warming{close_quote} debate. How certain are we about the magnitude of the warming? Where has it been greatest? In this paper, these and related issues will be addressed.

  19. Ion/Surface Reactions and Ion Soft-Landing

    SciTech Connect

    Gologan, Bogdan; Green, Jason R.; Alvarez, Jormarie; Laskin, Julia; Cooks, Robert G.

    2005-02-08

    Ion/surface collision phenomena in the hyperthermal collision energy regime (1-100 eV) are reviewed, with emphasis on chemical processes associated with the impact of small organic and biological ions at functionalized self-assembled monolayer surfaces. Inelastic collisions can lead to excitation the projectile ion and can result in fragmentation, a process known as surface-induced dissociation which is useful in chemical analysis using tandem mass spectrometry.. Changes in charge can accompany ion/surface collisions and those associated with a change in polarity (positive to negative ions or vice-versa) are an attractive method for ion structural characterization and isomer differentiation. The energetics, thermochemistry and dynamics of surface-induced charge inversion of nitrobenzene and other substituted aromatics is discussed. Reactive collisions also occur between gaseous ions and surfaces and the reactions depend on the chemical nature of the collision partners. These reactions can be used for selected chemical modifications of surfaces as well as for surface analysis. Particular emphasis is given here to one ion/surface interaction, ion soft-landing, a process in which the projectile ion is landed intact at the surface, either as the corresponding neutral molecule or, interestingly but less commonly, in the form of the ion itself. The ion soft-landing experiment allows preparative mass spectrometry, for example the preparation of pure biological compounds by using the mass spectrometer as a separation device. After separation, the mass-selected ions are collected by soft-landing, at different spatial points in an array. If the experiment is done using a suitable liquid medium, at least some proteins retain their biological activity.

  20. Surface modification of high temperature iron alloys

    DOEpatents

    Park, J.H.

    1995-06-06

    A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.

  1. SGP Cloud and Land Surface Interaction Campaign (CLASIC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3 SGP Cloud and Land Surface Interaction Campaign (CLASIC): Science and Implementation Plan June 2007 Mark A. Miller, Principal Investigator and The CLASIC Steering Committee: Roni Avissar, Larry Berg, Sylvia Edgerton, Marc Fischer, Tom Jackson, Bill Kustas, Pete Lamb, Greg McFarquhar, Qilong Min, Beat Schmid, Margaret Torn, and Dave Turner Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research M.R. Miller et al., DOE/SC-ARM-0703

  2. Fundamental to the Cloud Land Surface Interaction Campaign (CLASIC...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    in agriculture ranging from more accurate weather forecasting to improved water management decisions and crop yield estimation. CLASIC CLASIC - - LAND LAND Cloud and Land...

  3. High temperature low friction surface coating

    DOEpatents

    Bhushan, Bharat

    1980-01-01

    A high temperature, low friction, flexible coating for metal surfaces which are subject to rubbing contact includes a mixture of three parts graphite and one part cadmium oxide, ball milled in water for four hours, then mixed with thirty percent by weight of sodium silicate in water solution and a few drops of wetting agent. The mixture is sprayed 12-15 microns thick onto an electro-etched metal surface and air dried for thirty minutes, then baked for two hours at 65.degree. C. to remove the water and wetting agent, and baked for an additional eight hours at about 150.degree. C. to produce the optimum bond with the metal surface. The coating is afterwards burnished to a thickness of about 7-10 microns.

  4. Cylinder surface, temperature may affect LPG odorization

    SciTech Connect

    McWilliams, H.

    1988-01-01

    A study of possible odorant fade in propane by the Arthur D. Little Co. (Boston) has indicated that oxidation of interior surfaces of LPG containers may cause the odorant, ethyl mercaptan, to fade. The oxidation, ferous oxide, is a black, easily oxidizable powder that is the monoxide of iron. The study, contracted for by the Consumer Product Safety Commission (CPSC), is part of that agency's study of residential LP-gas systems. Another study is currently underway by an NLPGA task force headed by Bob Reid of Petrolane (Long Beach, Calif.). It may not be finished until the end of next year. Recently, the Propane Gas Association of Canada completed a study of odorant fade with the conclusion that much more study is needed on the subject. In addition to the cylinder surface problem, the CPSC study indicated that ambient temperatures might also affect the presence of odorant in product. This article reviews some of the results.

  5. Low Temperature Surface Carburization of Stainless Steels

    SciTech Connect

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  6. Validation of Noah-simulated Soil Temperature in the North American Land Data Assimilation System Phase 2

    SciTech Connect

    Xia, Youlong; Ek, Michael; Sheffield, Justin; Livneh, Ben; Huang, Maoyi; Wei, Helin; Song, Feng; Luo, Lifeng; Meng, Jesse; Wood, Eric

    2013-02-25

    Soil temperature can exhibit considerable memory from weather and climate signals and is among the most important initial conditions in numerical weather and climate models. Consequently, a more accurate long-term land surface soil temperature dataset is needed to improve weather and climate simulation and prediction, and is also important for the simulation of agricultural crop yield and ecological processes. The North-American Land Data Assimilation (NLDAS) Phase 2 (NLDAS-2) has generated 31-years (1979-2009) of simulated hourly soil temperature data with a spatial resolution of 1/8o. This dataset has not been comprehensively evaluated to date. Thus, the ultimate purpose of the present work is to assess Noah-simulated soil temperature for different soil depths and timescales. We used long-term (1979-2001) observed monthly mean soil temperatures from 137 cooperative stations over the United States to evaluate simulated soil temperature for three soil layers (0-10 cm, 10-40 cm, 40-100 cm) for annual and monthly timescales. We used short-term (1997-1999) observed soil temperature from 72 Oklahoma Mesonet stations to validate simulated soil temperatures for three soil layers and for daily and hourly timescales. The results showed that the Noah land surface model (Noah LSM) generally matches observed soil temperature well for different soil layers and timescales. At greater depths, the simulation skill (anomaly correlation) decreased for all time scales. The monthly mean diurnal cycle difference between simulated and observed soil temperature revealed large midnight biases in the cold season due to small downward longwave radiation and issues related to model parameters.

  7. ARM - Cloud and Land Surface Interaction Campaign (CLASIC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Questions Science and Implementation Plan (pdf) Measurement Platforms (pdf) CLASIC-Land Experiment Plan (pdf) Sponsors Science Team News Fact Sheets News & Press Mission...

  8. On the connection between continental-scale land surface processes and the tropical climate in a coupled ocean-atmosphere-land system

    SciTech Connect

    Ma, Hsi-Yen; Mechoso, C. R.; Xue, Yongkang; Xiao, Heng; Neelin, David; Ji, Xuan

    2013-11-15

    The impact of global tropical climate to perturbations in land surface processes (LSP) are evaluated using perturbations given by different LSP representations of continental-scale in a global climate model that includes atmosphere-ocean interactions. One representation is a simple land scheme, which specifies climatological albedos and soil moisture availability. The other representation is the more comprehensive Simplified Simple Biosphere Model, which allows for interactive soil moisture and vegetation biophysical processes. The results demonstrate that LSP processes such as interactive soil moisture and vegetation biophysical processes have strong impacts on the seasonal mean states and seasonal cycles of global precipitation, clouds, and surface air temperature. The impact is especially significant over the tropical Pacific. To explore the mechanisms for such impact, different LSP representations are confined to selected continental-scale regions where strong interactions of climate-vegetation biophysical processes are present. We find that the largest impact is mainly from LSP perturbations over the tropical African continent. The impact is through anomalous convective heating in tropical Africa due to changes in the surface heat fluxes, which in turn affect basinwide teleconnections in the Pacific through equatorial wave dynamics. The modifications in the equatorial Pacific climate are further enhanced by strong air-sea coupling between surface wind stress and upwelling, as well as effect of ocean memory. Our results further suggest that correct representations of land surface processes, land use change and the associated changes in the deep convection over tropical Africa are crucial to reducing the uncertainty when performing future climate projections under different climate change scenarios.

  9. Bacteria increase arid-land soil surface temperature through...

    Office of Scientific and Technical Information (OSTI)

    ... During the process, overall microbial biomass increases steadily, and eventually the ... a as a proxy of photosynthetic biomass), which increased across the gradient ...

  10. Technique for the estimation of surface temperatures from embedded temperature sensing for rapid, high energy surface deposition.

    SciTech Connect

    Watkins, Tyson R.; Schunk, Peter Randall; Roberts, Scott Alan

    2014-07-01

    Temperature histories on the surface of a body that has been subjected to a rapid, highenergy surface deposition process can be di cult to determine, especially if it is impossible to directly observe the surface or attach a temperature sensor to it. In this report, we explore two methods for estimating the temperature history of the surface through the use of a sensor embedded within the body very near to the surface. First, the maximum sensor temperature is directly correlated with the peak surface temperature. However, it is observed that the sensor data is both delayed in time and greatly attenuated in magnitude, making this approach unfeasible. Secondly, we propose an algorithm that involves tting the solution to a one-dimensional instantaneous energy solution problem to both the sensor data and to the results of a one-dimensional CVFEM code. This algorithm is shown to be able to estimate the surface temperature 20 C.

  11. Consideration of land use change-induced surface albedo effects in

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    life-cycle analysis of biofuels | Argonne National Laboratory Consideration of land use change-induced surface albedo effects in life-cycle analysis of biofuels Title Consideration of land use change-induced surface albedo effects in life-cycle analysis of biofuels Publication Type Journal Article Year of Publication 2016 Authors Cai, H, Wang, J, Wang, MQ, Qin, Z, Dunn, JB Journal Energy and Environmental Science Date Published 08/2016 Abstract Land use change (LUC)-induced surface albedo

  12. Detection of Surface Temperature Anomalies in the Coso Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Field Using Thermal Infrared Remote Sensing Abstract We use thermal infrared (TIR) data from the spaceborne ASTER instrument to detect surface temperature anomalies in...

  13. Temperature dependent droplet impact dynamics on flat and textured surfaces

    SciTech Connect

    Azar Alizadeh; Vaibhav Bahadur; Sheng Zhong; Wen Shang; Ri Li; James Ruud; Masako Yamada; Liehi Ge; Ali Dhinojwala; Manohar S Sohal

    2012-03-01

    Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially for hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures can explain the decreased retraction. The present findings serve to guide further studies of dynamic fluid-structure interaction at various temperatures.

  14. Temperature sensitive surfaces and methods of making same

    DOEpatents

    Liang, Liang [Richland, WA; Rieke, Peter C [Pasco, WA; Alford, Kentin L [Pasco, WA

    2002-09-10

    Poly-n-isopropylacrylamide surface coatings demonstrate the useful property of being able to switch charateristics depending upon temperature. More specifically, these coatings switch from being hydrophilic at low temperature to hydrophobic at high temperature. Research has been conducted for many years to better characterize and control the properties of temperature sensitive coatings. The present invention provides novel temperature sensitive coatings on articles and novel methods of making temperature sensitive coatings that are disposed on the surfaces of various articles. These novel coatings contain the reaction products of n-isopropylacrylamide and are characterized by their properties such as advancing contact angles. Numerous other characteristics such as coating thickness, surface roughness, and hydrophilic-to-hydrophobic transition temperatures are also described. The present invention includes articles having temperature-sensitve coatings with improved properties as well as improved methods for forming temperature sensitive coatings.

  15. Infrared Land Surface Emissivity in the Vicinity of the ARM SGP Central Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Infrared Land Surface Emissivity in the Vicinity of the ARM SGP Central Facility R. O. Knuteson, R. G. Dedecker, W. F. Feltz, B. J. Osbourne, H. E. Revercomb, and D. C. Tobin Space Science and Engineering Center University of Wisconsin-Madison Madison, Wisconsin Introduction The University of Wisconsin Space Science and Engineering Center (UW-SSEC) has developed, under National Aeronautics and Space Administration (NASA) funding, a model for the infrared land surface emissivity (LSE) in the

  16. Restoration of surface-mined lands with rainfall harvesting

    SciTech Connect

    Sauer, R.H.; Rickard, W.H.

    1982-12-01

    Strip mining for coal in the arid western US will remove grazing land as energy demands are met. Conventional resotration usually includes leveling the spoil banks and covering them with top soil, fertilizing, seeding and irrigation with well or river water. An overview of research on an alternate method of restoring this land is reported. From 1976 through 1981 studies were conducted on the use of water harvesting, the collection and use of rainfall runoff, to restore the vegetative productivity of strip mined lands in arid regions. These studies tested the technical and economic feasibility of using partially leveled spoil banks at strip mines as catchment areas to collect and direct runoff to the topsoiled valley floor where crops were cultivated. Information was collected on the efficiency of seven treatments to increase runoff from the catchment areas and on the productivity of seven crops. The experiments were conducted in arid areas of Washington, Arizona, and Colorado. It was concluded that water harvesting can replace or augment expensive and inadequate supplies of well and river water in arid regions with a suitable climate. These studies showed that some treatments provided adequate runoff to produce a useful crop in the valleys, thus making this alternative approach to restoration technically feasible. This approach was also potentially economically feasible where the treatment costs of the catchment areas were low, the treatment was effective, the crop was productive and valuable, and earthmoving costs were lower than with conventional restoration involving complete leveling of spoil banks. It was also concluded that water harvesting can be made more effective with further information on catchment area treatments, which crops are most adaptable to water harvesting, the optimum incline of the catchment areas and climatic influences on water harvesting.

  17. SGP Cloud and Land Surface Interaction Campaign (CLASIC): Science and Implementation Plan

    SciTech Connect

    MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; T Jackson; B.Kustas; PJ Lamb; GM McFarquhar; Q Min; B Schmid; MS Torn; DD Turner

    2007-06-30

    The Cloud and Land Surface Interaction Campaign is a field experiment designed to collect a comprehensive data set that can be used to quantify the interactions that occur between the atmosphere, biosphere, land surface, and subsurface. A particular focus will be on how these interactions modulate the abundance and characteristics of small and medium size cumuliform clouds that are generated by local convection. These interactions are not well understood and are responsible for large uncertainties in global climate models, which are used to forecast future climate states. The campaign will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energys Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of Cloud and Land Surface Interaction Campaign includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations.

  18. Charge Retention by Peptide Ions Soft-Landed onto Self-Assembled Monolayer Surfaces

    SciTech Connect

    Laskin, Julia; Wang, Peng; Hadjar, Omar; Futrell, Jean H.; Alvarez, Jormarie; Cooks, Robert G.

    2007-08-01

    Soft-landing of singly and doubly protonated peptide ions onto three self-assembled monolayer surfaces (SAMs) was performed using a novel ion deposition instrument constructed in our laboratory and a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially designed for studying collisions of large ions with surfaces.. Modified surfaces were analyzed using in situ 2 keV Cs+ secondary ion mass spectrometry or ex situ 15 keV Ga+ time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results demonstrate that a fraction of multiply protonated peptide ions retain more than one proton following soft-landing on the FSAM surface. [M+2H]2+ ions observed in FT-ICR SIMS spectra are produced by desorption of multiply charged ions from the surface, while re-ionization of singly protonated ions or neutral peptides is a source of [M+2H]2+ ions in Tof-SIMS spectra. Differences in neutralization efficiency of soft-landed ions following exposure of surfaces to laboratory air has a measurable effect on the results of ex situ ToF-SIMS analysis of soft-landed ions on SAM surfaces.

  19. MEMS sensor measurement of surface temperature response during subcooled

    Office of Scientific and Technical Information (OSTI)

    flow boiling in a rectangular flow channel (Journal Article) | DOE PAGES MEMS sensor measurement of surface temperature response during subcooled flow boiling in a rectangular flow channel Title: MEMS sensor measurement of surface temperature response during subcooled flow boiling in a rectangular flow channel Authors: Yabuki, Tomohide Search DOE PAGES for author "Yabuki, Tomohide" Search DOE PAGES for ORCID "0000000163741912" Search orcid.org for ORCID

  20. Fingerprints of anthropogenic and natural variability in global-mean surface temperature

    SciTech Connect

    Wallace, J.M.; Zhang, Yuan

    1997-11-01

    This paper presents an analysis designed to detect greenhouse warming by distinguishing between temperature rises induced by increasing atmospheric concentrations of greenhouse gases and those induced by background variability that are present without changes in atmospheric composition. The strategy is based on the surface temperature field. At each observation time, the projection of the anomalous temperature field on the presumed anthropogenic fingerprint is removed in order to obtain a temperature deviation field; i.e., the temperature anomalies in the phase space orthogonal to the anthropogenic fingerprint, which are presumed to be entirely natural. The time series of the expansion coefficients of the fingerprint a(t) is then regressed on this temperature deviation field to identify the axis in the orthogonal phase space along which the variations are most strongly correlated, and an index n(t) of the temporal variations along that axis is generated. The index a(t) is then regressed upon n(t) and the resulting least squares fit is regarded as the component of a(t) that can be ascribed to natural causes. The analysis was performed for monthly global surface temperature anomaly fields for the period 1900-95. Results indicate that two well defined patterns of natural variability contribute to variations in global mean temperature: the synthetic cold ocean-warm land (COWL) pattern and the El Nino-Southern Oscillation (ENSO). In domains that include surface air temperature over Eurasia and North America, the COWL pattern tends to be dominant. The ENSO signature emerges as the pattern most strongly linearly correlated with global sea surface temperature and with tropospheric layer-averaged temperatures. 24 refs., 3 figs.

  1. Surface mining: State management of abandoned mine land funds

    SciTech Connect

    Not Available

    1987-01-01

    The Surface Mining Control and Reclamation Act of 1977 promotes the reclamation of areas severely damaged in the past by coal mining operations. GAO reviewed the reclamation programs in Colorado, Kentucky, Pennsylvania, West Virginia, and Wyoming and found that they implemented financial control procedures and practices to ensure that the expenditures of reclamation funds are proper. Only one state, however, is complying with all related grant payment, audit, and inventory requirements. The states are generally reclaiming eligible, high priority projects as required under the act and are managing their reclamation projects in compliance with federal requirements.

  2. Surface plasmon enhanced photoluminescence from copper nanoparticles: Influence of temperature

    SciTech Connect

    Yeshchenko, Oleg A. Bondarchuk, Illya S.; Losytskyy, Mykhaylo Yu.

    2014-08-07

    Anomalous temperature dependence of surface plasmon enhanced photoluminescence from copper nanoparticles embedded in a silica host matrix has been observed. The quantum yield of photoluminescence increases as the temperature increases. The key role of such an effect is the interplay between the surface plasmon resonance and the interband transitions in the copper nanoparticles occurring at change of the temperature. Namely, the increase of temperature leads to the red shift of the resonance. The shift leads to increase of the spectral overlap of the resonance with photoluminescence band of copper as well as to the decrease of plasmon damping caused by interband transitions. Such mechanisms lead to the increase of surface plasmon enhancement factor and, consequently, to increase of the quantum yield of the photoluminescence.

  3. Stable water isotope simulation by current land-surface schemes:Results of IPILPS phase 1

    SciTech Connect

    Henderson-Sellers, A.; Fischer, M.; Aleinov, I.; McGuffie, K.; Riley, W.J.; Schmidt, G.A.; Sturm, K.; Yoshimura, K.; Irannejad, P.

    2005-10-31

    Phase 1 of isotopes in the Project for Intercomparison of Land-surface Parameterization Schemes (iPILPS) compares the simulation of two stable water isotopologues ({sup 1}H{sub 2} {sup 18}O and {sup 1}H{sup 2}H{sup 16}O) at the land-atmosphere interface. The simulations are off-line, with forcing from an isotopically enabled regional model for three locations selected to offer contrasting climates and ecotypes: an evergreen tropical forest, a sclerophyll eucalypt forest and a mixed deciduous wood. Here we report on the experimental framework, the quality control undertaken on the simulation results and the method of intercomparisons employed. The small number of available isotopically-enabled land-surface schemes (ILSSs) limits the drawing of strong conclusions but, despite this, there is shown to be benefit in undertaking this type of isotopic intercomparison. Although validation of isotopic simulations at the land surface must await more, and much more complete, observational campaigns, we find that the empirically-based Craig-Gordon parameterization (of isotopic fractionation during evaporation) gives adequately realistic isotopic simulations when incorporated in a wide range of land-surface codes. By introducing two new tools for understanding isotopic variability from the land surface, the Isotope Transfer Function and the iPILPS plot, we show that different hydrological parameterizations cause very different isotopic responses. We show that ILSS-simulated isotopic equilibrium is independent of the total water and energy budget (with respect to both equilibration time and state), but interestingly the partitioning of available energy and water is a function of the models' complexity.

  4. A Subbasin-based framework to represent land surface processes in an Earth System Model

    SciTech Connect

    Tesfa, Teklu K.; Li, Hongyi; Leung, Lai-Yung R.; Huang, Maoyi; Ke, Yinghai; Sun, Yu; Liu, Ying

    2014-05-20

    Realistically representing spatial heterogeneity and lateral land surface processes within and between modeling units in earth system models is important because of their implications to surface energy and water exchange. The traditional approach of using regular grids as computational units in land surface models and earth system models may lead to inadequate representation of lateral movements of water, energy and carbon fluxes, especially when the grid resolution increases. Here a new subbasin-based framework is introduced in the Community Land Model (CLM), which is the land component of the Community Earth System Model (CESM). Local processes are represented assuming each subbasin as a grid cell on a pseudo grid matrix with no significant modifications to the existing CLM modeling structure. Lateral routing of water within and between subbasins is simulated with the subbasin version of a recently-developed physically based routing model, Model for Scale Adaptive River Routing (MOSART). As an illustration, this new framework is implemented in the topographically diverse region of the U.S. Pacific Northwest. The modeling units (subbasins) are delineated from high-resolution Digital Elevation Model while atmospheric forcing and surface parameters are remapped from the corresponding high resolution datasets. The impacts of this representation on simulating hydrologic processes are explored by comparing it with the default (grid-based) CLM representation. In addition, the effects of DEM resolution on parameterizing topography and the subsequent effects on runoff processes are investigated. Limited model evaluation and comparison showed that small difference between the averaged forcing can lead to more significant difference in the simulated runoff and streamflow because of nonlinear horizontal processes. Topographic indices derived from high resolution DEM may not improve the overall water balance, but affect the partitioning between surface and subsurface runoff

  5. Charge Retention by Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions

    SciTech Connect

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2012-01-24

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Ligand-stabilized gold clusters were prepared in methanol solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine complex in the presence of 1,3-bis(diphenylphosphino)propane. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species (Au11L53+, L = 1,3-bis(diphenylphosphino)propane) which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (TOF-SIMS) it is demonstrated that the Au11L53+ cluster retains its 3+ charge state when soft landed onto the surface of a 1H,1H,2H,2H-

  6. An updated global grid point surface air temperature anomaly data set: 1851--1990

    SciTech Connect

    Sepanski, R.J.; Boden, T.A.; Daniels, R.C.

    1991-10-01

    This document presents land-based monthly surface air temperature anomalies (departures from a 1951--1970 reference period mean) on a 5{degree} latitude by 10{degree} longitude global grid. Monthly surface air temperature anomalies (departures from a 1957--1975 reference period mean) for the Antarctic (grid points from 65{degree}S to 85{degree}S) are presented in a similar way as a separate data set. The data were derived primarily from the World Weather Records and the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed in generating regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. This document also presents the monthly mean temperature records for the individual stations that were used to generate the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere station data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form. 14 refs., 11 figs., 10 tabs.

  7. In Situ SIMS and IR Spectroscopy of Well-Defined Surfaces Prepared by Soft Landing of Mass-Selected Ions

    SciTech Connect

    Johnson, Grant E.; Gunaratne, Kalupathirannehelage Don D.; Laskin, Julia

    2014-06-16

    Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+, onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.

  8. High-Temperature Oxide Regrowth on Mechanically-Damaged Surfaces

    SciTech Connect

    Blau, Peter Julian; Lowe, Tracie M

    2008-01-01

    Here we report the effects of mechanical damage from a sharp stylus on the regrowth of oxide layers on a Ni-based superalloy known as Pyromet 80A . It was found that the oxide that reformed on the damaged portion of a pre-oxidized surface differed from that which formed on undamaged areas after the equal exposures to elevated temperature in air. These findings have broad implications for modeling the processes of material degradation in applications such as exhaust valves in internal combustion engines because they imply that static oxidation data for candidate materials may not adequately reflect their reaction to operating environments that involve both mechanical contact and oxidation.

  9. Evaluation of land ownership, lease status, and surface features in five geopressured geothermal prospects

    SciTech Connect

    Hackenbracht, W.N.

    1981-05-01

    This study was accomplished for the purpose of gathering information pertaining to land and lease ownership, surface features and use and relevant environmental factors in the Lake Theriot (West and East), Kaplan, Bayou Hebert and Freshwater Bayou geopressured geothermal prospects in Louisiana, and the Blessing geopressured geothermal prospect in Texas. This information and recommendations predicated upon it will then be used to augment engineering and geological data utilized to select geopressured geothermal test well sites within the prospects. The five geopressured geothermal prospects are briefly described and recommendations given.

  10. A Physically Based Runoff Routing Model for Land Surface and Earth System Models

    SciTech Connect

    Li, Hongyi; Wigmosta, Mark S.; Wu, Huan; Huang, Maoyi; Ke, Yinghai; Coleman, Andre M.; Leung, Lai-Yung R.

    2013-06-13

    A new physically based runoff routing model, called the Model for Scale Adaptive River Transport (MOSART), has been developed to be applicable across local, regional, and global scales. Within each spatial unit, surface runoff is first routed across hillslopes and then discharged along with subsurface runoff into a tributary subnetwork before entering the main channel. The spatial units are thus linked via routing through the main channel network, which is constructed in a scale-consistent way across different spatial resolutions. All model parameters are physically based, and only a small subset requires calibration.MOSART has been applied to the Columbia River basin at 1/ 168, 1/ 88, 1/ 48, and 1/ 28 spatial resolutions and was evaluated using naturalized or observed streamflow at a number of gauge stations. MOSART is compared to two other routing models widely used with land surface models, the River Transport Model (RTM) in the Community Land Model (CLM) and the Lohmann routing model, included as a postprocessor in the Variable Infiltration Capacity (VIC) model package, yielding consistent performance at multiple resolutions. MOSART is further evaluated using the channel velocities derived from field measurements or a hydraulic model at various locations and is shown to be capable of producing the seasonal variation and magnitude of channel velocities reasonably well at different resolutions. Moreover, the impacts of spatial resolution on model simulations are systematically examined at local and regional scales. Finally, the limitations ofMOSART and future directions for improvements are discussed.

  11. Modelling evapotranspiration during precipitation deficits: Identifying critical processes in a land surface model

    DOE PAGES [OSTI]

    Ukkola, Anna M.; Pitman, Andy J.; Decker, Mark; De Kauwe, Martin G.; Abramowitz, Gab; Kala, Jatin; Wang, Ying -Ping

    2016-06-21

    Surface fluxes from land surface models (LSMs) have traditionally been evaluated against monthly, seasonal or annual mean states. The limited ability of LSMs to reproduce observed evaporative fluxes under water-stressed conditions has been previously noted, but very few studies have systematically evaluated these models during rainfall deficits. We evaluated latent heat fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLE) LSM across 20 flux tower sites at sub-annual to inter-annual timescales, in particular focusing on model performance during seasonal-scale rainfall deficits. The importance of key model processes in capturing the latent heat flux was explored by employing alternative representations of hydrology, leafmore » area index, soil properties and stomatal conductance. We found that the representation of hydrological processes was critical for capturing observed declines in latent heat during rainfall deficits. By contrast, the effects of soil properties, LAI and stomatal conductance were highly site-specific. Whilst the standard model performs reasonably well at annual scales as measured by common metrics, it grossly underestimates latent heat during rainfall deficits. A new version of CABLE, with a more physically consistent representation of hydrology, captures the variation in the latent heat flux during seasonal-scale rainfall deficits better than earlier versions, but remaining biases point to future research needs. Lastly, our results highlight the importance of evaluating LSMs under water-stressed conditions and across multiple plant functional types and climate regimes.« less

  12. Quantifying the impacts of land surface schemes and dynamic vegetation on the model dependency of projected changes in surface energy and water budgets

    DOE PAGES [OSTI]

    Yu, Miao; Wang, Guiling; Chen, Haishan

    2016-03-01

    Assessing and quantifying the uncertainties in projected future changes of energy and water budgets over land surface are important steps toward improving our confidence in climate change projections. In our study, the contribution of land surface models to the inter-GCM variation of projected future changes in land surface energy and water fluxes are assessed based on output from 19 global climate models (GCMs) and offline Community Land Model version 4 (CLM4) simulations driven by meteorological forcing from the 19 GCMs. Similar offline simulations using CLM4 with its dynamic vegetation submodel are also conducted to investigate how dynamic vegetation feedback, amore » process that is being added to more earth system models, may amplify or moderate the intermodel variations of projected future changes. Projected changes are quantified as the difference between the 2081–2100 period from the Representative Concentration Pathway 8.5 (RCP8.5) future experiment and the 1981–2000 period from the historical simulation. Under RCP8.5, projected changes in surface water and heat fluxes show a high degree of model dependency across the globe. Although precipitation is very likely to increase in the high latitudes of the Northern Hemisphere, a high degree of model-related uncertainty exists for evapotranspiration, soil water content, and surface runoff, suggesting discrepancy among land surface models (LSMs) in simulating the surface hydrological processes and snow-related processes. Large model-related uncertainties for the surface water budget also exist in the Tropics including southeastern South America and Central Africa. Moreover, these uncertainties would be reduced in the hypothetical scenario of a single near-perfect land surface model being used across all GCMs, suggesting the potential to reduce uncertainties through the use of more consistent approaches toward land surface model development. Under such a scenario, the most significant reduction is likely to

  13. Water balance in the Amazon basin from a land surface model ensemble

    SciTech Connect

    Getirana, Augusto; Dutra, Emanuel; Guimberteau, Matthieu; Kam, Jonghun; Li, Hongyi; Decharme, Bertrand; Zhang, Zhengqiu J.; Ducharne, Agnes; Boone, Aaron; Balsamo, Gianpaolo; Rodell, Matthew; Mounirou Toure, Ally; Xue, Yongkang; Peters-Lidard, Christa D.; Kumar, Sujay V.; Arsenault, Kristi Rae; Drapeau, Guillaume; Leung, Lai-Yung R.; Ronchail, Josyane; Sheffield, Justin

    2014-12-06

    Despite recent advances in modeling and remote sensing of land surfaces, estimates of the global water budget are still fairly uncertain. The objective of this study is to evaluate the water budget of the Amazon basin based on several state-of-the-art land surface model (LSM) outputs. Water budget variables [total water storage (TWS), evapotranspiration (ET), surface runoff (R) and baseflow (B)] are evaluated at the basin scale using both remote sensing and in situ data. Fourteen LSMs were run using meteorological forcings at a 3-hourly time step and 1-degree spatial resolution. Three experiments are performed using precipitation which has been rescaled to match monthly global GPCP and GPCC datasets and the daily HYBAM dataset for the Amazon basin. R and B are used to force the Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration, and GRACE TWS estimates in different catchments. At the basin scale, simulated ET ranges from 2.39mm.d-1 to 3.26mm.d-1 and a low spatial correlation between ET and P indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget variables vary significantly as a function of both the LSM and precipitation used, but simulated TWS generally agree at the basin scale. The best water budget simulations resulted from experiments using the HYBAM dataset, mostly explained by a denser rainfall gauge network the daily rescaling.

  14. Diagnosis of Solar Water Heaters Using Solar Storage Tank Surface Temperature Data: Preprint

    SciTech Connect

    Burch, J.; Magnuson, L.; Barker, G.; Bullwinkel, M.

    2009-04-01

    Study of solar water heaters by using surface temperature data of solar storage tanks to diagnose proper operations.

  15. Ecosystem feedbacks to climate change in California: Development, testing, and analysis using a coupled regional atmosphere and land-surface model (WRF3-CLM3.5)

    SciTech Connect

    Subin, Z.M.; Riley, W.J.; Kueppers, L.M.; Jin, J.; Christianson, D.S.; Torn, M.S.

    2010-11-01

    A regional atmosphere model [Weather Research and Forecasting model version 3 (WRF3)] and a land surface model [Community Land Model, version 3.5 (CLM3.5)] were coupled to study the interactions between the atmosphere and possible future California land-cover changes. The impact was evaluated on California's climate of changes in natural vegetation under climate change and of intentional afforestation. The ability of WRF3 to simulate California's climate was assessed by comparing simulations by WRF3-CLM3.5 and WRF3-Noah to observations from 1982 to 1991. Using WRF3-CLM3.5, the authors performed six 13-yr experiments using historical and future large-scale climate boundary conditions from the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL CM2.1). The land-cover scenarios included historical and future natural vegetation from the Mapped Atmosphere-Plant-Soil System-Century 1 (MC1) dynamic vegetation model, in addition to a future 8-million-ha California afforestation scenario. Natural vegetation changes alone caused summer daily-mean 2-m air temperature changes of -0.7 to +1 C in regions without persistent snow cover, depending on the location and the type of vegetation change. Vegetation temperature changes were much larger than the 2-m air temperature changes because of the finescale spatial heterogeneity of the imposed vegetation change. Up to 30% of the magnitude of the summer daily-mean 2-m air temperature increase and 70% of the magnitude of the 1600 local time (LT) vegetation temperature increase projected under future climate change were attributable to the climate-driven shift in land cover. The authors projected that afforestation could cause local 0.2-1.2 C reductions in summer daily-mean 2-m air temperature and 2.0-3.7 C reductions in 1600 LT vegetation temperature for snow-free regions, primarily because of increased evapotranspiration. Because some of these temperature changes are of comparable magnitude to those projected under

  16. Toward A National Early Warning System for Forest Disturbances Using Remotely Sensed Land Surface Phenology

    SciTech Connect

    HargroveJr., William Walter; Spruce, Joe; Gasser, Gerry; Hoffman, Forrest M

    2009-12-01

    We are using a statistical clustering method for delineating homogeneous ecoregions as a basis for identifying disturbances in forests through time over large areas, up to national and global extents. Such changes can be shown relative to past conditions, or can be predicted relative to present conditions, as with forecasts of future climatic change. This quantitative ecoregion approach can be used to predict destinations for populations whose local environments are forecast to become unsuitable and are forced to migrate as their habitat shifts, and is also useful for predicting the susceptibility of new locations to invasive species like Sudden Oak Death. EFETAC and our sister western center WWETAC, along with our NASA and ORNL collaborators, are designing a new national-scale early warning system for forest threats, called FIRST. Envisioned as a change-detection system, FIRST will identify all land surface cover changes at the MODIS observational scale, and then try to discriminate normal, expected seasonal changes from locations having unusual activity that may represent potential forest threats. As a start, we have developed new national data sets every 16 days from 2002 through 2008, based on land surface phenology, or timing of leaf-out in the spring and brown-down in the fall. Changes in such phenological maps will be shown to contain important information about vegetation health status across the United States. The standard deviation of the duration of fall can be mapped, showing places where length of fall is relatively constant or is variable in length from year to year.

  17. Improved global sea surface temperature analyses using optimum interpolation

    SciTech Connect

    Reynolds, R.W.; Smith, T.M. )

    1994-06-01

    The new NOAA operational global sea surface temperature (SST) analysis is described. The analyses use 7 days of in situ (ship and buoy) and satellite SST. These analyses are produced weekly and daily using optimum interpolation (OI) on a 1[degrees] grid. The OI technique requires the specification of data and analysis error statistics. These statistics are derived and show that the SST rms data errors from ships are almost twice as large as the data errors from buoys or satellites. In addition, the average e-folding spatial error scales have been found to be 850 km in the zonal direction and 615 km in the meridional direction. The analysis also includes a preliminary step that corrects any satellite biases relative to the in situ data using Poisson's equation. The importance of this correction is demonstrated using recent data following the 1991 eruptions of Mt. Pinatubo. The OI analysis has been computed using the in situ and bias-corrected satellite data for the period 1985 to present. 20 refs., 19 figs., 3 tabs.

  18. A spatially distributed model for the assessment of land use impacts on stream temperature in small urban watersheds

    SciTech Connect

    Sun, Ning; Yearsley, John; Voisin, Nathalie; Lettenmaier, D. P.

    2015-05-15

    Stream temperatures in urban watersheds are influenced to a high degree by anthropogenic impacts related to changes in landscape, stream channel morphology, and climate. These impacts can occur at small time and length scales, hence require analytical tools that consider the influence of the hydrologic regime, energy fluxes, topography, channel morphology, and near-stream vegetation distribution. Here we describe a modeling system that integrates the Distributed Hydrologic Soil Vegetation Model, DHSVM, with the semi-Lagrangian stream temperature model RBM, which has the capability to simulate the hydrology and water temperature of urban streams at high time and space resolutions, as well as a representation of the effects of riparian shading on stream energetics. We demonstrate the modeling system through application to the Mercer Creek watershed, a small urban catchment near Bellevue, Washington. The results suggest that the model is able both to produce realistic streamflow predictions at fine temporal and spatial scales, and to provide spatially distributed water temperature predictions that are consistent with observations throughout a complex stream network. We use the modeling construct to characterize impacts of land use change and near-stream vegetation change on stream temperature throughout the Mercer Creek system. We then explore the sensitivity of stream temperature to land use changes and modifications in vegetation along the riparian corridor.

  19. Preparation and in situ Characterization of Surfaces Using Soft-Landing in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    SciTech Connect

    Alvarez, Jormarie; Cooks, Robert G.; Barlow, Stephan E.; Gaspar, Dan J.; Futrell, Jean H.; Laskin, Julia

    2005-06-01

    Mass-selected peptide ions produced by electrospray ionization were deposited onto fluorinated self-assembled monolayer surfaces (FSAM) surfaces by soft-landing using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially designed for studying interactions of large ions with surfaces. Analysis of the modified surface was performed in situ by combining 2 keV Cs+ secondary ion mass spectrometry with FT-ICR detection of the sputtered ions (FT-ICR-SIMS). Regardless of the initial charge state of the precursor ion, the SIMS mass spectra included singly-protonated peptide fragment ions and peaks characteristic of the surfaces in all cases. In some experiments multiply-protonated peptide ions and [M+Au]+ ions were also observed upon SIMS analysis of modified surfaces. For comparison with the in situ analysis of the modified surfaces, ex situ analysis of some of the modified surfaces was performed by 25 kV Ga+ time of flight ? secondary ion mass spectrometry (ToF-SIMS). The ex situ analysis demonstrated that a significant number of soft-landed peptide ions remain charged on the surface even when exposed to air for several hours after deposition. Charge retention of soft-landed ions dramatically increases the ion yields obtained during SIMS analysis very sensitive detection of deposited material at less than 1% of monolayer coverage. Accumulation of charged species on the surface undergoes saturation due to Coulomb repulsion between charges at close to 30% coverage. We estimated that close to 1 ng of peptide could be deposited on the spot area of 4 mm2 of the FSAM surface without reaching saturation.

  20. Implementation of basic studies in the ecological restoration of surface-mined land

    SciTech Connect

    Tischew, S.; Kirmer, A.

    2007-06-15

    This paper focuses on attempts to encourage a new state of the art in the ecological restoration of surface-mined land in Germany. On most of these sites, the application of traditional recultivation methods often destroys valuable ecological potential by leveling of the surface, ameliorating of nutrient-poor substrates, and seeding or planting of species not suited to the present habitat conditions. Many studies have shown that even highly disturbed ecosystems, such as large mining areas, can regenerate spontaneously over long-term periods. Colonization processes were influenced by the availability of diaspore sources as well as the suitability of sites for establishment. The predictability of succession could be improved by the identification of switch points in successional pathways depending on age and conditions of the sites. Based on the developmental potential, orientation by nature and biodiversity are selected as main targets for priority areas for nature conservation in mining sites. On priority areas restoration measures must be restricted to the use of near-natural methods (e.g., application of fresh, diaspore-rich plant clipping material, dumping of overburden with seed bank and vegetative propagules, seeding of site-specific, local seed mixtures) that are very successful in preventing erosion and accelerating vegetation development. Despite the success of these methods, the transfer of knowledge between scientists, practitioners, and administrative organizations has proved to be insufficient. Therefore, one of the main tasks in ecological restoration must be the inclusion of all stakeholders involved in decision-making processes and the establishment of a network of excellence to enhance the exchange of knowledge.

  1. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  2. Free surface of superfluid {sup 4}He at zero temperature

    SciTech Connect

    Marin, J.M.; Boronat, J.; Casulleras, J.

    2005-04-01

    The structure and energetics of the free surface of superfluid {sup 4}He are studied using the diffusion Monte Carlo method. Extending a previous calculation by Valles and Schmidt, which used the Green's function Monte Carlo method, we study the surface of liquid {sup 4}He within a slab geometry using a larger number of particles in the slab and an updated interatomic potential. The surface tension is accurately estimated from the energy of slabs of increasing surface density and its value is close to one of the two existing experimental values. Results for the density profiles allow for the calculation of the surface width which shows an overall agreement with recent experimental data. The dependence on the transverse direction to the surface of other properties such as the two-body radial distribution function, structure factor, and one-body density matrix is also studied. The condensate fraction, extracted from the asymptotic behavior of the one-body density matrix, shows an unambiguous enhancement when approaching the surface.

  3. Interannual variation of the surface temperature of tropical forests from satellite observations

    SciTech Connect

    Gao, Huilin; Zhang, Shuai; Fu, Rong; Li, Wenhong; Dickinson, Robert E.

    2016-01-01

    Land surface temperatures (LSTs) within tropical forests contribute to climate variations. However, observational data are very limited in such regions. This study used passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS), providing observations under all weather conditions, to investigate the LST over the Amazon and Congo rainforests. The SSM/I and SSMIS data were collected from 1996 to 2012. The morning and afternoon observations from passive microwave remote sensing facilitate the investigation of the interannual changes of LST anomalies on a diurnal basis. As a result of the variability of cloud cover and the corresponding reduction of solar radiation, the afternoon LST anomalies tend to vary more than the morning LST anomalies. The dominant spatial and temporal patterns for interseasonal variations of the LST anomalies over the tropical rainforest were analyzed. The impacts of droughts and El Niños on this LST were also investigated. Lastly, the differences between early morning and late afternoon LST anomalies were identified by the remote sensing product, with the morning LST anomalies controlled by humidity (according to comparisons with the National Centers for Environmental Prediction (NCEP) reanalysis data).

  4. Interannual variation of the surface temperature of tropical forests from satellite observations

    DOE PAGES [OSTI]

    Gao, Huilin; Zhang, Shuai; Fu, Rong; Li, Wenhong; Dickinson, Robert E.

    2016-01-01

    Land surface temperatures (LSTs) within tropical forests contribute to climate variations. However, observational data are very limited in such regions. This study used passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS), providing observations under all weather conditions, to investigate the LST over the Amazon and Congo rainforests. The SSM/I and SSMIS data were collected from 1996 to 2012. The morning and afternoon observations from passive microwave remote sensing facilitate the investigation of the interannual changes of LST anomalies on a diurnal basis. As a result of the variability ofmore » cloud cover and the corresponding reduction of solar radiation, the afternoon LST anomalies tend to vary more than the morning LST anomalies. The dominant spatial and temporal patterns for interseasonal variations of the LST anomalies over the tropical rainforest were analyzed. The impacts of droughts and El Niños on this LST were also investigated. Lastly, the differences between early morning and late afternoon LST anomalies were identified by the remote sensing product, with the morning LST anomalies controlled by humidity (according to comparisons with the National Centers for Environmental Prediction (NCEP) reanalysis data).« less

  5. Utilizing CLASIC observations and multiscale models to study the impact of improved Land surface representation on modeling cloud- convection

    SciTech Connect

    Niyogi, Devdutta S.

    2013-06-07

    The CLASIC experiment was conducted over the US southern great plains (SGP) in June 2007 with an objective to lead an enhanced understanding of the cumulus convection particularly as it relates to land surface conditions. This project was design to help assist with understanding the overall improvement of land atmosphere convection initiation representation of which is important for global and regional models. The study helped address one of the critical documented deficiency in the models central to the ARM objectives for cumulus convection initiation and particularly under summer time conditions. This project was guided by the scientific question building on the CLASIC theme questions: What is the effect of improved land surface representation on the ability of coupled models to simulate cumulus and convection initiation? The focus was on the US Southern Great Plains region. Since the CLASIC period was anomalously wet the strategy has been to use other periods and domains to develop the comparative assessment for the CLASIC data period, and to understand the mechanisms of the anomalous wet conditions on the tropical systems and convection over land. The data periods include the IHOP 2002 field experiment that was over roughly same domain as the CLASIC in the SGP, and some of the DOE funded Ameriflux datasets.

  6. Effects of surface diffusion on high temperature selective emitters

    DOE PAGES [OSTI]

    Peykov, Daniel; Yeng, Yi Xiang; Celanovic, Ivan; Joannopoulos, John D.; Schuh, Christopher A.

    2015-01-01

    Using morphological and optical simulations of 1D tantalum photonic crystals at 1200K, surface diffusion was determined to gradually reduce the efficiency of selective emitters. This was attributed to shifting resonance peaks and declining emissivity caused by changes to the cavity dimensions and the aperture width. Decreasing the structures curvature through larger periods and smaller cavity widths, as well as generating smoother transitions in curvature through the introduction of rounded cavities, was found to alleviate this degradation. An optimized structure, that shows both high efficiency selective emissivity and resistance to surface diffusion, was presented.

  7. Effects of high temperature surface oxides on room temperature aqueous corrosion and environmental embrittlement of iron aluminides

    SciTech Connect

    Buchanan, R.A.; Perrin, R.L.

    1996-09-01

    Studies were conducted to determine the effects of high-temperature surface oxides, produced during thermomechanical processing, heat treatment (750 {degrees}C in air, one hour) or simulated in-service-type oxidation (1000{degrees}C in air, 24 hours) on the room-temperature aqueous-corrosion and environmental-embrittlement characteristics of iron aluminides. Materials evaluated included the Fe{sub 3}Al-based iron aluminides, FA-84, FA-129, FAL and FAL-Mo, a FeAl-based iron aluminide, FA-385, and a disordered low-aluminum Fe-Al alloy, FAPY. Tests were performed in a mild acid-chloride solution to simulate aggressive atmospheric corrosion. Cyclic-anodic-polarization tests were employed to evaluate resistances to localized aqueous corrosion. The high-temperature oxide surfaces consistently produced detrimental results relative to mechanically or chemically cleaned surfaces. Specifically, the pitting corrosion resistances were much lower for the as-processed and 750{degrees} C surfaces, relative to the cleaned surfaces, for FA-84, FA-129, FAL-Mo, FA-385 and FAPY. Furthermore, the pitting corrosion resistances were much lower for the 1000{degrees}C surfaces, relative to cleaned surfaces, for FA-129, FAL and FAL-Mo.

  8. Sensitivity of Surface Flux Simulations to Hydrologic Parameters Based on an Uncertainty Quantification Framework Applied to the Community Land Model

    SciTech Connect

    Hou, Zhangshuan; Huang, Maoyi; Leung, Lai-Yung R.; Lin, Guang; Ricciuto, Daniel M.

    2012-08-10

    Uncertainties in hydrologic parameters could have significant impacts on the simulated water and energy fluxes and land surface states, which will in turn affect atmospheric processes and the carbon cycle. Quantifying such uncertainties is an important step toward better understanding and quantification of uncertainty of integrated earth system models. In this paper, we introduce an uncertainty quantification (UQ) framework to analyze sensitivity of simulated surface fluxes to selected hydrologic parameters in the Community Land Model (CLM4) through forward modeling. Thirteen flux tower footprints spanning a wide range of climate and site conditions were selected to perform sensitivity analyses by perturbing the parameters identified. In the UQ framework, prior information about the parameters was used to quantify the input uncertainty using the Minimum-Relative-Entropy approach. The quasi-Monte Carlo approach was applied to generate samples of parameters on the basis of the prior pdfs. Simulations corresponding to sampled parameter sets were used to generate response curves and response surfaces and statistical tests were used to rank the significance of the parameters for output responses including latent (LH) and sensible heat (SH) fluxes. Overall, the CLM4 simulated LH and SH show the largest sensitivity to subsurface runoff generation parameters. However, study sites with deep root vegetation are also affected by surface runoff parameters, while sites with shallow root zones are also sensitive to the vadose zone soil water parameters. Generally, sites with finer soil texture and shallower rooting systems tend to have larger sensitivity of outputs to the parameters. Our results suggest the necessity of and possible ways for parameter inversion/calibration using available measurements of latent/sensible heat fluxes to obtain the optimal parameter set for CLM4. This study also provided guidance on reduction of parameter set dimensionality and parameter

  9. Systems and Methods for Integrated Emissivity and Temperature Measurement of a Surface

    DOEpatents

    Poulsen, Peter

    2005-11-08

    A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

  10. Parameterizing atmosphere-land surface exchange for climate models with satellite data: A case study for the Southern Great Plains CART site

    SciTech Connect

    Gao, W.

    1994-01-01

    High-resolution satellite data provide detailed, quantitative descriptions of land surface characteristics over large areas so that objective scale linkage becomes feasible. With the aid of satellite data, Sellers et al. and Wood and Lakshmi examined the linearity of processes scaled up from 30 m to 15 km. If the phenomenon is scale invariant, then the aggregated value of a function or flux is equivalent to the function computed from aggregated values of controlling variables. The linear relation may be realistic for limited land areas having no large surface contrasts to cause significant horizontal exchange. However, for areas with sharp surface contrasts, horizontal exchange and different dynamics in the atmospheric boundary may induce nonlinear interactions, such as at interfaces of land-water, forest-farm land, and irrigated crops-desert steppe. The linear approach, however, represents the simplest scenario, and is useful for developing an effective scheme for incorporating subgrid land surface processes into large-scale models. Our studies focus on coupling satellite data and ground measurements with a satellite-data-driven land surface model to parameterize surface fluxes for large-scale climate models. In this case study, we used surface spectral reflectance data from satellite remote sensing to characterize spatial and temporal changes in vegetation and associated surface parameters in an area of about 350 {times} 400 km covering the southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site of the US Department of Energy`s Atmospheric Radiation Measurement (ARM) Program.

  11. Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures

    SciTech Connect

    Daniel, Daniel; Max, Mankin N.; Belisle, Rebecca A.; Wong, Tak-Sing; Aizenberg, Joanna

    2013-06-12

    Omniphobic surfaces that can repel fluids at temperatures higher than 100 #2;°C are rare. Most stateof- the-art liquid-repellent materials are based on the lotus effect, where a thin air layer is maintained throughout micro/nanotextures leading to high mobility of liquids. However, such behavior eventually fails at elevated temperatures when the surface tension of test liquids decreases significantly. Here, we demonstrate a class of lubricant-infused structured surfaces that can maintain a robust omniphobic state even for low-surface-tension liquids at temperatures up to at least 200 °#2;C. We also demonstrate how liquid mobility on such surfaces can be tuned by a factor of 1000.

  12. Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures

    SciTech Connect

    Daniel, D; Mankin, MN; Belisle, RA; Wong, TS; Aizenberg, J

    2013-06-10

    Omniphobic surfaces that can repel fluids at temperatures higher than 100 degrees C are rare. Most state-of-the-art liquid-repellent materials are based on the lotus effect, where a thin air layer is maintained throughout micro/nanotextures leading to high mobility of liquids. However, such behavior eventually fails at elevated temperatures when the surface tension of test liquids decreases significantly. Here, we demonstrate a class of lubricant-infused structured surfaces that can maintain a robust omniphobic state even for low-surface-tension liquids at temperatures up to at least 200 degrees C. We also demonstrate how liquid mobility on such surfaces can be tuned by a factor of 1000. (C) 2013 Author(s).

  13. What is the importance of climate model bias when projecting the impacts of climate change on land surface processes?

    SciTech Connect

    Liu, M. L.; Rajagopalan, K.; Chung, S. H.; Jiang, X.; Harrison, J. H.; Nergui, T.; Guenther, Alex B.; Miller, C.; Reyes, J.; Tague, C. L.; Choate, J. S.; Salathe, E.; Stockle, Claudio O.; Adam, J. C.

    2014-05-16

    Regional climate change impact (CCI) studies have widely involved downscaling and bias-correcting (BC) Global Climate Model (GCM)-projected climate for driving land surface models. However, BC may cause uncertainties in projecting hydrologic and biogeochemical responses to future climate due to the impaired spatiotemporal covariance of climate variables and a breakdown of physical conservation principles. Here we quantify the impact of BC on simulated climate-driven changes in water variables(evapotranspiration, ET; runoff; snow water equivalent, SWE; and water demand for irrigation), crop yield, biogenic volatile organic compounds (BVOC), nitric oxide (NO) emissions, and dissolved inorganic nitrogen (DIN) export over the Pacific Northwest (PNW) Region. We also quantify the impacts on net primary production (NPP) over a small watershed in the region (HJ Andrews). Simulation results from the coupled ECHAM5/MPI-OM model with A1B emission scenario were firstly dynamically downscaled to 12 km resolutions with WRF model. Then a quantile mapping based statistical downscaling model was used to downscale them into 1/16th degree resolution daily climate data over historical and future periods. Two series climate data were generated according to the option of bias-correction (i.e. with bias-correction (BC) and without bias-correction, NBC). Impact models were then applied to estimate hydrologic and biogeochemical responses to both BC and NBC meteorological datasets. These im20 pact models include a macro-scale hydrologic model (VIC), a coupled cropping system model (VIC-CropSyst), an ecohydrologic model (RHESSys), a biogenic emissions model (MEGAN), and a nutrient export model (Global-NEWS). Results demonstrate that the BC and NBC climate data provide consistent estimates of the climate-driven changes in water fluxes (ET, runoff, and water demand), VOCs (isoprene and monoterpenes) and NO emissions, mean crop yield, and river DIN export over the PNW domain. However

  14. Coverage Dependent Charge Reduction of Cationic Gold Clusters on Surfaces Prepared Using Soft Landing of Mass-selected Ions

    SciTech Connect

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2012-11-29

    The ionic charge state of monodisperse cationic gold clusters on surfaces may be controlled by selecting the coverage of mass-selected ions soft landed onto a substrate. Polydisperse diphosphine-capped gold clusters were synthesized in solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine in the presence of 1,3-bis(diphenylphosphino)propane. The polydisperse gold clusters were introduced into the gas phase by electrospray ionization and mass selection was employed to select a multiply charged cationic cluster species (Au11L53+, m/z = 1409, L = 1,3-bis(diphenylphosphino)propane) which was delivered to the surfaces of four different self-assembled monolayers on gold (SAMs) at coverages of 1011 and 1012 clusters/mm2. Employing the spatial profiling capabilities of in-situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) it is shown that, in addition to the chemical functionality of the monolayer (as demonstrated previously: ACS Nano, 2012, 6, 573) the coverage of cationic gold clusters on the surface may be used to control the distribution of ionic charge states of the soft-landed multiply charged clusters. In the case of a 1H,1H,2H,2H-perfluorodecanethiol SAM (FSAM) almost complete retention of charge by the deposited Au11L53+ clusters was observed at a lower coverage of 1011 clusters/mm2. In contrast, at a higher coverage of 1012 clusters/mm2, pronounced reduction of charge to Au11L52+ and Au11L5+ was observed on the FSAM. When soft landed onto 16- and 11-mercaptohexadecanoic acid surfaces on gold (16,11-COOH-SAMs), the mass-selected Au11L53+ clusters exhibited partial reduction of charge to Au11L52+ at lower coverage and additional reduction of charge to both Au11L52+ and Au11L5+ at higher coverage. The reduction of charge was found to be more pronounced on the surface of the shorter (thinner) C11 than the longer (thicker) C16-COOH-SAM. On the surface of the 1-dodecanethiol (HSAM) monolayer, the most abundant charge state

  15. Investigation about the effects of exterior surface paint color on temperature development in aboveground pipeline

    SciTech Connect

    Farzaneh-Gord, Mahmood; Rasekh, Alireza; Nabati, Amin; Saadat, Morteza

    2010-12-15

    A practical analytical model for predicting temperature development of incompressible flow inside an aboveground pipeline has been constructed and presented in this research work. The outer surface of the pipeline is exposed to solar radiation and wind stream. The radiation heat exchange with ambient is also taken into account. The effects of exterior surface paint color represented by emissivity and absorptivity, have been studied. The model has been developed to study crude oil flow temperature development through a specific pipeline. The results obtained by the model show that the bulk temperature inclined to a limiting value in some distance which affected mainly by Reynolds numbers. It is found that emissivity and absorptivity of surface are predominant parameters in temperature development in an aboveground pipeline flow which can increase or decrease pipe surface and fluid temperature especially for low Reynolds number flow. Based on the results which indicated significantly of exterior surface paint color, one should choose the paint color by considering its effects on temperature development. (author)

  16. Surface temperature distribution of GTA weld pools on thin-plate 304 stainless steel

    SciTech Connect

    Zacharia, T.; David, S.A.; Vitek, J.M.; Kraus, H.G.

    1995-11-01

    A transient multidimensional computational model was utilized to study gas tungsten arc (GTA) welding of thin-plate 304 stainless steel (SS). The model eliminates several of the earlier restrictive assumptions including temperature-independent thermal-physical properties. Consequently, all important thermal-physical properties were considered as temperature dependent throughout the range of temperatures experienced by the weld metal. The computational model was used to predict surface temperature distribution of the GTA weld pools in 1.5-mm-thick AISI 304 SS. The welding parameters were chosen so as to correspond with an earlier experimental study that produced high-resolution surface temperature maps. One of the motivations of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate excellent agreement, thereby verifying the model.

  17. Characterization of Superhydrophobic Surfaces for Anti-icing in a Low-Temperature Wind Tunnel

    SciTech Connect

    Swarctz, Christopher; Alijallis, Elias; Hunter, Scott Robert; Simpson, John T; Choi, Chang-Hwan

    2010-01-01

    In this study, a closed loop low-temperature wind tunnel was custom-built and uniquely used to investigate the anti-icing mechanism of superhydrophobic surfaces in regulated flow velocities, temperatures, humidity, and water moisture particle sizes. Silica nanoparticle-based hydrophobic coatings were tested as superhydrophobic surface models. During tests, images of ice formation were captured by a camera and used for analysis of ice morphology. Prior to and after wind tunnel testing, apparent contact angles of water sessile droplets on samples were measured by a contact angle meter to check degradation of surface superhydrophobicity. A simple peel test was also performed to estimate adhesion of ice on the surfaces. When compared to an untreated sample, superhydrophobic surfaces inhibited initial ice formation. After a period of time, random droplet strikes attached to the superhydrophobic surfaces and started to coalesce with previously deposited ice droplets. These sites appear as mounds of accreted ice across the surface. The appearance of the ice formations on the superhydrophobic samples is white rather than transparent, and is due to trapped air. These ice formations resemble soft rime ice rather than the transparent glaze ice seen on the untreated sample. Compared to untreated surfaces, the icing film formed on superhydrophobic surfaces was easy to peel off by shear flows.

  18. Cu-Cu direct bonding achieved by surface method at room temperature

    SciTech Connect

    Utsumi, Jun [Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd., 1-8-1 Sachiura, Kanazawa-ku, Yokohama 236-8515 (Japan); Ichiyanagi, Yuko, E-mail: yuko@ynu.ac.jp [Department of Physics, Graduate School of Engineering, Yokohama National University, Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan)

    2014-02-20

    The metal bonding is a key technology in the processes for the microelectromechanical systems (MEMS) devices and the semiconductor devices to improve functionality and higher density integration. Strong adhesion between surfaces at the atomic level is crucial; however, it is difficult to achieve close bonding in such a system. Cu films were deposited on Si substrates by vacuum deposition, and then, two Cu films were bonded directly by means of surface activated bonding (SAB) at room temperature. The two Cu films, with the surface roughness Ra about 1.3nm, were bonded by using SAB at room temperature, however, the bonding strength was very weak in this method. In order to improve the bonding strength between the Cu films, samples were annealed at low temperatures, between 323 and 473 K, in air. As the result, the Cu-Cu bonding strength was 10 times higher than that of the original samples without annealing.

  19. Operational and theoretical temperature considerations in a Penning surface plasma source

    SciTech Connect

    Faircloth, D. C. Lawrie, S. R.; Pereira Da Costa, H.; Dudnikov, V.

    2015-04-08

    A fully detailed 3D thermal model of the ISIS Penning surface plasma source is developed in ANSYS. The proportion of discharge power applied to the anode and cathode is varied until the simulation matches the operational temperature observations. The range of possible thermal contact resistances are modelled, which gives an estimation that between 67% and 85% of the discharge power goes to the cathode. Transient models show the electrode surface temperature rise during the discharge pulse for a range of duty cycles. The implications of these measurements are discussed and a mechanism for governing cesium coverage proposed. The requirements for the design of a high current long pulse source are stated.

  20. Method and apparatus for measuring surface contour on parts with elevated temperatures

    DOEpatents

    Horvath, Mark S.; Nance, Roy A.; Cohen, George H.; Fodor, George

    1991-01-01

    The invention is directed to a method and apparatus for measuring the surface contour of a test piece, such as the bow of a radioactive fuel rod, which is completely immersed in water. The invention utilizes ultrasonic technology and is capable of measuring surface contours of test pieces which are at a higher temperature than the surrounding water. The presence of a test piece at a higher temperature adversely affects the distance measurements by causing thermal variations in the water near the surface of the test piece. The contour measurements depend upon a constant temperature of the water in the path of the ultrasonic wave to provide a constant acoustical velocity (the measurement is made by the time of flight measurement for an ultrasonic wave). Therefore, any variations of water temperature near the surface will introduce errors degrading the measurement. The present invention overcomes these problems by assuring that the supply of water through which the ultrasonic waves travel is at a predetermined and constant temperature.

  1. High-Temperature Galling Characteristics of Ti-6Al-4V with and without Surface Treatments

    SciTech Connect

    Blau, Peter Julian; ERDMAN III, DONALD L; Ohriner, Evan Keith; Jolly, Brian C

    2011-01-01

    Galling is a severe form of surface damage in metals and alloys that typically arises under relatively high normal force, low-sliding speed, and in the absence of effective lubrication. It can lead to macroscopic surface roughening and seizure. The occurrence of galling can be especially problematic in high-temperature applications like diesel engine exhaust gas recirculation system components and adjustable turbocharger vanes, because suitable lubricants may not be available, moisture desorption promotes increased adhesion, and the yield strength of metals decreases with temperature. Oxidation can counteract these effects to some extent by forming lubricative oxide films. Two methods to improve the galling resistance of titanium alloy Ti-6Al-4V were investigated: (a) applying an oxygen diffusion treatment, and (b) creating a metal-matrix composite with TiB2 using a high-intensity infrared heating source. A new, oscillating three-pin-on-flat, high-temperature test method was developed and used to characterize galling behavior relative to a cobalt-based alloy (Stellite 6B ). The magnitude of the oscillating torque, the surface roughness, and observations of surface damage were used as measures of galling resistance. Owing to the formation of lubricative oxide films, the galling resistance of the Ti-alloy at 485o C, even non-treated, was considerably better than it was at room temperature. The IR-formed composite displayed reduced surface damage and lower torque than the substrate titanium alloy.

  2. Consistency check for trends in surface temperature and upper-level circulation: 1950-1992

    SciTech Connect

    Van Den Dool, H.M.; O'Lenic, E.A. ); Klein, W.H. )

    1993-12-01

    A time series of 43 years of observed monthly mean air temperature at 109 sites in the 48 contiguous US is compared to monthly mean air temperature specified from hemispheric gridded 700-mb heights. Because both upper-air and surface data have problems that may limit their use in climate change studies, this comparison could be considered a mutual consistency check. Cooling (by about 0.5[degrees]C) from 1951 to about 1970 and subsequent warming (also by 0.5[degrees]C) that continues through the present are found in both datasets, indicating that these interdecadal changes are probably real. In the last several years the specified temperatures were often colder than those observed. This prompted an investigation of whether the [open quotes]residual[close quotes] (specified minus observed) has recently been large (and negative) compared to the earlier part of the record. It was found that for the same 700-mb height field, surface temperatures were almost a degree Celsius warmer in the last few years than they were in the early 1950s, but considering the variability of the residuals over the 1950-92 period, the recent cold residuals may not yet be strikingly unusual. By comparing the full set of 109 stations to a [open quotes]clean[close quotes] subset of 24, the impact of common problems in surface data (station relocation, urbanization, etc.) was found to be quite small. The rather favorable comparison of observed surface temperatures and specified temperatures (which suffer from upper-air analysis/observation changes over the years) indicates that their respective data problems do not appear to validate their use in studies of interdecadal temperature change. 16 refs., 6 figs.

  3. Imaging of the surface resistance of an SRF cavity by low-temperature laser scanning microscopy

    SciTech Connect

    G. Ciovati, S.M. Anlage, A.V. Gurevich

    2013-06-01

    Temperature mapping of the outer surface of a superconducting radio-frequency cavity is a technique that is often used to identify lossy areas on the cavity surface. In this contribution, we present 2-D images of the superconducting state surface resistance R{sub s} of the inner surface of a superconducting radio-frequency (SRF) cavity obtained by low-temperature laser scanning microscopy. This technique, which is applied for the first time to study lossy regions in an operating SRF cavity, allows identifying 'hotspots' with about one order of magnitude better spatial resolution ( ~2 mm) than by thermometry. The R{sub s}-resolution is of the order of 1 {micro}{Ohm} at 3.3 GHz. Surface resistance maps with different laser power and optical images of the cavity surface are discussed in this contribution. It is also shown that the thermal gradient on the niobium surface created by the laser beam can move some of the hotspots, which are identified as locations of trapped bundle of fluxoids. The prospects for this microscope to identify defects that limit the performance of SRF cavities will also be discussed.

  4. Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems

    DOEpatents

    Sugama, Toshifumi.

    1990-05-22

    The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed. 2 figs.

  5. Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems

    DOEpatents

    Sugama, Toshifumi

    1990-01-01

    The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed.

  6. Terry Land

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    terry land Terry Land Terry Land follows the path of opportunity You came to the Lab as a postdoc after you got your PhD in physical chemistry from UC Irvine. What was your first research project? I was hired to do surface science-which was my background-and to work on high explosives which had never even contemplated working on. I had a lab set up in the basement of the biology building for these experiments. I also worked part time at the Sandia Combustion Research Facility while waiting for

  7. Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs

    SciTech Connect

    Pelletier, Jon D.; Murray, A. Brad; Pierce, Jennifer L.; Bierman, Paul R.; Breshears, David D.; Crosby, Benjamin T.; Ellis, Michael; Foufoula-Georgiou, Efi; Heimsath, Arjun M.; Houser, Chris; Lancaster, Nick; Marani, Marco; Merritts, Dorothy J.; Moore, Laura J.; Pederson, Joel L.; Poulos, Michael J.; Rittenour, Tammy M.; Rowland, Joel C.; Ruggiero, Peter; Ward, Dylan J.; Wickert, Andrew D.; Yager, Elowyn M.

    2015-07-14

    In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we have the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth's surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail.

  8. Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs

    DOE PAGES [OSTI]

    Pelletier, Jon D.; Murray, A. Brad; Pierce, Jennifer L.; Bierman, Paul R.; Breshears, David D.; Crosby, Benjamin T.; Ellis, Michael; Foufoula-Georgiou, Efi; Heimsath, Arjun M.; Houser, Chris; et al

    2015-07-14

    In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we havemore » the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth's surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail.« less

  9. Areas of Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Archuleta Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2σ were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4144691.792023 m Left: 285531.662851 m Right: 348694.182686 m Bottom: 4097005.210304 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984

  10. Areas of Anomalous Surface Temperature in Dolored County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Dolores Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2σ were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4186234.213315 m Left: 212558.673056 m Right: 232922.811862 m Bottom: 4176781.467043 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS

  11. Areas of Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Garfield Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2σ were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4441550.552290 m Left: 271445.053363 m Right: 359825.053363 m Bottom: 4312490.552290 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984

  12. Areas of Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Routt Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2σ were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4501071.574000 m Left: 311351.975000 m Right: 359681.975000 m Bottom: 4447251.574000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS

  13. Areas of Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Chaffee Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2σ were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4333432.368072 m Left: 366907.700763 m Right: 452457.816015 m Bottom: 4208271.566715 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS

  14. A comparative analysis of the impacts of climate change and irrigation on land surface and subsurface hydrology in the North China Plain

    SciTech Connect

    Leng, Guoyong; Tang, Qiuhong; Huang, Maoyi; Leung, Lai-Yung R.

    2015-02-01

    The Community Land Model 4.0 (CLM4) was used to investigate and compare the effects of climate change and irrigation on terrestrial water cycle. Three climate change scenarios and one irrigation scenario (IRRIG) were simulated in the North China Plain (NCP), which is one of the most vulnerable regions to climate change and human perturbations in China. The climate change scenarios consist of (1) HOT (i.e. temperature increase by 2oC); (2) HOTWET (same with HOT but with an increase of precipitation by 15%); (3) HOTDRY (same with HOT but with a decrease of precipitation by 15%). In the IRRIG scenario, the irrigation scheme was calibrated to simulate irrigation amounts that match the actual irrigation amounts and irrigation was divided between surface water and groundwater withdrawals based on census data. Our results show that the impacts of climate change were more widespread while those of irrigation were concentrated only over the agricultural regions. Specifically, the mean water table depth was simulated to decline persistently by over 1 m annually due to groundwater exploitation during the period of 1980-2000, while much smaller effects were induced by climate change. Although irrigation has comparable effects on surface fluxes and surface soil moisture as climate change, it has much greater effects on water table depth and groundwater storage. Moreover, irrigation has much larger effects on the top layer soil moisture whereas increase in precipitation associated with climate change exerts more influence on lower layer soil moisture. This study emphasizes the need to accurately account for irrigation impacts in adapting to climate change.

  15. Soot surface temperature measurements in pure and diluted flames at atmospheric and elevated pressures

    SciTech Connect

    Berry Yelverton, T.L.; Roberts, W.L. [Department of Mechanical and Aerospace Engineering, Campus Box 7910, North Carolina State University, 3211 Broughton Hall, Raleigh, NC 27695 (United States)

    2008-10-15

    Soot surface temperature was measured in laminar jet diffusion flames at atmospheric and elevated pressures. The soot surface temperature was measured in flames at one, two, four, and eight atmospheres with both pure and diluted (using helium, argon, nitrogen, or carbon dioxide individually) ethylene fuels with a calibrated two-color soot pyrometry technique. These two dimensional temperature profiles of the soot aid in the analysis and understanding of soot production, leading to possible methods for reducing soot emission. Each flame investigated was at its smoke point, i.e., at the fuel flow rate where the overall soot production and oxidation rates are equal. The smoke point was chosen because it was desirable to have similar soot loadings for each flame. A second set of measurements were also taken where the fuel flow rate was held constant to compare with earlier work. These measurements show that overall flame temperature decreases with increasing pressure, with increasing pressure the position of peak temperature shifts to the tip of the flame, and the temperatures measured were approximately 10% lower than those calculated assuming equilibrium and neglecting radiation. (author)

  16. Coral reef bleaching and sea surface temperature anomalies: 1991-1996 global patterns

    SciTech Connect

    Goreau, T.J.; Hayes, R.L.; Strong, A.

    1997-12-31

    Global spatio-temporal patterns of mass coral reef bleaching during the first half of the 1990s continued to show the strong temperature correlations which first became established in the 1980s. Satellite sea surface temperature data and field observations were used to track thermal bleaching events in real time. Most bleaching events followed warm season sea surface temperature anomalies of around +1 degree celsius above historical means. Global bleaching patterns appear to have been strongly affected by worldwide cooling which followed eruption of Mount Pinatubo in June 1991. High water temperatures and mass coral reef bleaching took place in the Caribbean, Indian Ocean, and South Pacific in 1991, but there were few thermal anomalies or bleaching events in 1992 and 1993, years which were markedly cooler worldwide. Following the settling of Mount Pinatubo aerosols and resumption of global warming trends, extensive ocean thermal hot spots and bleaching events resumed in the South Pacific, South Atlantic, and Indian Oceans in 1994. Bleaching again took place in hot spots in the Indian Ocean and Caribbean in 1995, and in the South Atlantic, Caribbean, South Pacific, North Pacific, and Persian Gulf in 1996. Coral reefs worldwide are now very close to their upper temperature tolerance limits. This sensitivity, and the fact that the warmest ecosystems have no source of immigrant species pre-adapted to warmer conditions, may make coral reef ecosystems the first to be severely impacted if global temperatures and sea levels remain at current values or increase further.

  17. Low temperature front surface passivation of interdigitated back contact silicon heterojunction solar cell

    SciTech Connect

    Shu, Brent; Das, Ujjwal; Jani, Omkar; Hegedus, Steve; Birkmire, Robert

    2009-06-08

    The interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell requires a low temperature front surface passivation/anti-reflection structure. Conventional silicon surface passivation using SiO2 or a-SiNx is performed at temperature higher than 400C, which is not suitable for the IBC-SHJ cell. In this paper, we propose a PECVD a-Si:H/a-SiNx:H/a-SiC:H stack structure to passivate the front surface of crystalline silicon at low temperature. The optical properties and passivation quality of this structure are characterized and solar cells using this structure are fabricated. With 2 nm a-Si:H layer, the stack structure exhibits stable passivation with effective minority carrier lifetime higher than 2 ms, and compatible with IBC-SHJ solar cell processing. A critical advantage of this structure is that the SiC allows it to be HF resistant, thus it can be deposited as the first step in the process. This protects the a-Si/c-Si interface and maintains a low surface recombination velocity.

  18. Solubility and Surface Adsorption Characteristics of Metal Oxides to High Temperature

    SciTech Connect

    D.J. Wesolowski; M.L. Machesky; S.E. Ziemniak; C. Xiao; D.A. Palmer; L.M. Anovitz; P. Benezeth

    2001-05-04

    The interaction of high temperature aqueous solutions with mineral surfaces plays a key role in many aspects of fossil, geothermal and nuclear energy production. This is an area of study in which the subsurface geochemical processes that determine brine composition, porosity and permeability changes, reservoir integrity, and fluid flow rates overlap with the industrial processes associated with corrosion of metal parts and deposition of solids in pipes and on heat exchanger surfaces. The sorption of ions on mineral surfaces is also of great interest in both the subsurface and ''above ground'' regimes of power production, playing a key role in subsurface migration of contaminants (nuclear waste disposal, geothermal brine re-injection, etc.) and in plant operations (corrosion mitigation, migration of radioactive metals from reactor core to heat exchanger, etc.). In this paper, results of the solubility and surface chemistry of metal oxides relevant to both regimes are summarized.

  19. UV-induced protonation of molecules adsorbed on ice surfaces at low temperature

    SciTech Connect

    Moon, Eui-Seong; Lee, Chang-Woo; Kim, Joon-Ki; Park, Seong-Chan; Kang, Heon

    2008-05-21

    UV irradiation of ice films adsorbed with methylamine molecules induces protonation of the adsorbate molecules at low temperature (50-130 K). The observation indicates that long-lived protonic defects are created in the ice film by UV light, and they transfer protons to the adsorbate molecules via tunneling mechanism at low temperature. The methylammonium ion formed by proton transfer remains to be stable at the ice surface. It is suggested that this solid-phase protonation might play a significant role in the production of molecular ions in interstellar clouds.

  20. Modeling the Effects of Irrigation on Land Surface Fluxes and States over the Conterminous United States: Sensitivity to Input Data and Model Parameters

    SciTech Connect

    Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong; Sacks, William J.; Lei, Huimin; Leung, Lai-Yung R.

    2013-09-16

    Previous studies on irrigation impacts on land surface fluxes/states were mainly conducted as sensitivity experiments, with limited analysis of uncertainties from the input data and model irrigation schemes used. In this study, we calibrated and evaluated the performance of irrigation water use simulated by the Community Land Model version 4 (CLM4) against observations from agriculture census. We investigated the impacts of irrigation on land surface fluxes and states over the conterminous United States (CONUS) and explored possible directions of improvement. Specifically, we found large uncertainty in the irrigation area data from two widely used sources and CLM4 tended to produce unrealistically large temporal variations of irrigation demand for applications at the water resources region scale over CONUS. At seasonal to interannual time scales, the effects of irrigation on surface energy partitioning appeared to be large and persistent, and more pronounced in dry than wet years. Even with model calibration to yield overall good agreement with the irrigation amounts from the National Agricultural Statistics Service (NASS), differences between the two irrigation area datasets still dominate the differences in the interannual variability of land surface response to irrigation. Our results suggest that irrigation amount simulated by CLM4 can be improved by (1) calibrating model parameter values to account for regional differences in irrigation demand and (2) accurate representation of the spatial distribution and intensity of irrigated areas.

  1. Temperature dependent dual hydrogen sensor response of Pd nanoparticle decorated Al doped ZnO surfaces

    SciTech Connect

    Gupta, D.; Barman, P. B.; Hazra, S. K.; Dutta, D.; Kumar, M.; Som, T.

    2015-10-28

    Sputter deposited Al doped ZnO (AZO) thin films exhibit a dual hydrogen sensing response in the temperature range 40 °C–150 °C after surface modifications with palladium nanoparticles. The unmodified AZO films showed no response in hydrogen in the temperature range 40 °C–150 °C. The operational temperature windows on the low and high temperature sides have been estimated by isolating the semiconductor-to-metal transition temperature zone of the sensor device. The gas response pattern was modeled by considering various adsorption isotherms, which revealed the dominance of heterogeneous adsorption characteristics. The Arrhenius adsorption barrier showed dual variation with change in hydrogen gas concentration on either side of the semiconductor-to-metal transition. A detailed analysis of the hydrogen gas response pattern by considering the changes in nano palladium due to hydrogen adsorption, and semiconductor-to-metal transition of nanocrystalline Al doped ZnO layer due to temperature, along with material characterization studies by glancing incidence X-ray diffraction, atomic force microscopy, and transmission electron microscopy, are presented.

  2. Thermal calculation of a thermogenerator at changing temperatures along thermocontact surfaces

    SciTech Connect

    Varshavskiy, G.A.; Rezgol', I.A.

    1986-01-13

    The article finds expressions for the output power of efficiency of a thermoelectric generator and temperature distribution along the heat carrier under the condition that temperatures of the thermocontact surfaces vary due to the cooling and heating of the heat carriers. Simple approximation calculation formulas are given for the particular cases examined. This work is devoted to the finding of analytical bonds, which make it possible to make the calculation of the thermogenerator at changing (as a result of heat transfer) temperatures of the solderings. The obtained expressions can be useful in the preliminary determination of the optimal parameters of the generators (maximal power and efficiency, minimal weight, etc.) and an analysis of processes of regulation.

  3. Covalent Immobilization of Peptides on Self-Assembled Monolayer Surfaces Using Soft-Landing of Mass-Selected Ions

    SciTech Connect

    Wang, Peng; Hadjar, Omar; Laskin, Julia

    2007-06-23

    Covalent immobilization of peptides on solid supports plays an important role in biochemistry with applications ranging from characterization of molecular recognition events at the amino acid level and identification of biologically active motifs in proteins to development of novel biosensors and substrates for improved cell adhesion. Self-assembled monolayer surfaces (SAMs) provide a simple and convenient platform for tailoring chemical properties of a variety of substrates. Existing techniques for linking peptides to SAMs are based on solution-phase synthetic strategies and require relatively large quantities of purified material. Here, we report a novel approach for highly selective covalent binding of peptides to SAMs using soft-landing (SL) of mass-selected ions. SL is defined as intact deposition of ions onto suitable substrates at hyperthermal (<100 eV) energies.Recent studies have demonstrated that SAMs are excellent deposition targets for SL due to their ability to dissipate kinetic energies of the projectiles and their efficiency in trapping captured species. It has been proposed that SL could be utilized for controlled preparation of protein arrays.

  4. Using reactive transport codes to provide mechanistic biogeochemistry representations in global land surface models: CLM-PFLOTRAN 1.0

    DOE PAGES [OSTI]

    Tang, G.; Yuan, F.; Bisht, G.; Hammond, G. E.; Lichtner, P. C.; Kumar, J.; Mills, R. T.; Xu, X.; Andre, B.; Hoffman, F. M.; et al

    2015-12-17

    We explore coupling to a configurable subsurface reactive transport code as a flexible and extensible approach to biogeochemistry in land surface models; our goal is to facilitate testing of alternative models and incorporation of new understanding. A reaction network with the CLM-CN decomposition, nitrification, denitrification, and plant uptake is used as an example. We implement the reactions in the open-source PFLOTRAN code, coupled with the Community Land Model (CLM), and test at Arctic, temperate, and tropical sites. To make the reaction network designed for use in explicit time stepping in CLM compatible with the implicit time stepping used in PFLOTRAN,more » the Monod substrate rate-limiting function with a residual concentration is used to represent the limitation of nitrogen availability on plant uptake and immobilization. To achieve accurate, efficient, and robust numerical solutions, care needs to be taken to use scaling, clipping, or log transformation to avoid negative concentrations during the Newton iterations. With a tight relative update tolerance to avoid false convergence, an accurate solution can be achieved with about 50 % more computing time than CLM in point mode site simulations using either the scaling or clipping methods. The log transformation method takes 60–100 % more computing time than CLM. The computing time increases slightly for clipping and scaling; it increases substantially for log transformation for half saturation decrease from 10−3 to 10−9 mol m−3, which normally results in decreasing nitrogen concentrations. The frequent occurrence of very low concentrations (e.g. below nanomolar) can increase the computing time for clipping or scaling by about 20 %; computing time can be doubled for log transformation. Caution needs to be taken in choosing the appropriate scaling factor because a small value caused by a negative update to a small concentration may diminish the update and result in false convergence even with very

  5. Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter

    DOE PAGES [OSTI]

    Bang, Woosuk; Albright, Brian James; Bradley, Paul Andrew; Vold, Erik Lehman; Boettger, Jonathan Carl; Fernández, Juan Carlos

    2016-07-12

    Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer simulations presented here show a linear dependence of expansion speed on initial plasma temperature in the warm dense matter regime. The expansion of uniformly heated 1–100 eV solid density gold foils was modeled with the RAGE radiation-hydrodynamics code, and the average surface expansion speed was found to increase linearly withmore » temperature. The origin of this linear dependence is explained by comparing predictions from the SESAME equation-of-state tables with those from the ideal gas equation-of-state. In conclusion, these simulations offer useful insight into the expansion of warm dense matter and motivate the application of optical shadowgraphy for temperature measurement.« less

  6. Adsorption of Ions on Zirconium Oxide Surfaces from Aqueous Solutions at High Temperatures.

    SciTech Connect

    Palmer, Donald; Machesky, Michael L.; Benezeth, Pascale; Wesolowski, David J

    2009-07-01

    Surface titrations were carried out on suspensions of monoclinic ZrO{sub 2} from 25 to 290 C slightly above saturation vapor pressure at ionic strengths of 0.03, 0.1 and 1.0 mol {center_dot} kg{sup -1}(NaCl). A typical increase in surface charge was observed with increasing temperature. There was no correlation between the radius of the cations, Li{sup +}, Na{sup +}, K{sup +} and (CH{sub 3}){sub 4}N{sup +}, and the magnitude of their association with the surface. The combined results were treated with a 1-pK{sub a} MUSIC model, which yielded association constants for the cations (and chloride ion at low pH) at each temperature. The pH of zero-point-charge, pH{sub zpc}, decreased with increasing temperature as found for other metal oxides, reaching an apparent minimum value of 4.1 by 250 C. Batch experiments were performed to monitor the concentration of LiOH in solutions containing suspended ZrO{sub 2} particles from 200 to 360 C. At 350 and 360 C, Li{sup +} and OH{sup -} ions were almost totally adsorbed when the pressure was lowered to near saturation vapor pressure. This reversible trend has implications not only to pressure-water reactor, PWR, operations, but is also of general scientific and other applied interest. Additional experiments probed the feasibility that boric acid/borate ions adsorb reversibly onto ZrO{sub 2} surfaces at near-neutral pH conditions as indicated in earlier publications.

  7. Effects of roughness and temperature on low-energy hydrogen positive and negative ion reflection from silicon and carbon surfaces

    SciTech Connect

    Tanaka, N.; Kato, S.; Miyamoto, T.; Wada, M.; Nishiura, M.; Tsumori, K.; Matsumoto, Y.; Kenmotsu, T.; Okamoto, A.; Kitajima, S.; Sasao, M.; Yamaoka, H.

    2014-02-15

    Angle-resolved energy distribution functions of positive and negative hydrogen ions produced from a rough-finished Si surface under 1 keV proton irradiation have been measured. The corresponding distribution from a crystalline surface and a carbon surface are also measured for comparison. Intensities of positive and negative ions from the rough-finished Si are substantially smaller than those from crystalline Si. The angular distributions of these species are broader for rough surface than the crystalline surface. No significant temperature dependence for positive and negative ion intensities is observed for all samples in the temperature range from 300 to 400 K.

  8. Stable room-temperature ferromagnetic phase at the FeRh(100) surface

    DOE PAGES [OSTI]

    Pressacco, Federico; Uhlir, Vojtech; Gatti, Matteo; Bendounan, Azzedine; Fullerton, Eric E.; Sirotti, Fausto

    2016-03-03

    Interfaces and low dimensionality are sources of strong modifications of electronic, structural, and magnetic properties of materials. FeRh alloys are an excellent example because of the first-order phase transition taking place at ~400 K from an antiferromagnetic phase at room temperature to a high temperature ferromagnetic one. It is accompanied by a resistance change and volume expansion of about 1%. We have investigated the electronic and magnetic properties of FeRh(100) epitaxially grown on MgO by combining spectroscopies characterized by different probing depths, namely X-ray magnetic circular dichroism and photoelectron spectroscopy. Furthermore, we find that the symmetry breaking induced at themore » Rh-terminated surface stabilizes a surface ferromagnetic layer involving five planes of Fe and Rh atoms in the nominally antiferromagnetic phase at room temperature. First-principles calculations provide a microscopic description of the structural relaxation and the electron spin-density distribution that support the experimental findings.« less

  9. Spreading of lithium on a stainless steel surface at room temperature

    DOE PAGES [OSTI]

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.; Koel, B. E.

    2016-01-01

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. The spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 mu m/day under ultrahigh vacuum conditions. Separatemore » experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (E-des = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (E-des = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium lithium bonding. (C) 2015 Elsevier B.V. All rights reserved.« less

  10. Spreading of lithium on a stainless steel surface at room temperature

    SciTech Connect

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.; Koel, B. E.

    2016-01-01

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. The spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 mu m/day under ultrahigh vacuum conditions. Separate experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (E-des = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (E-des = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium lithium bonding. (C) 2015 Elsevier B.V. All rights reserved.

  11. Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model

    SciTech Connect

    Wu, Huan; Adler, Robert F.; Tian, Yudong; Huffman, George J.; Li, Hongyi; Wang, JianJian

    2014-03-01

    A widely used land surface model, the Variable Infiltration Capacity (VIC) model, is coupled with a newly developed hierarchical dominant river tracing-based runoff-routing model to form the Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model, which serves as the new core of the real-time Global Flood Monitoring System (GFMS). The GFMS uses real-time satellite-based precipitation to derive flood monitoring parameters for the latitude band 50°N–50°S at relatively high spatial (~12 km) and temporal (3 hourly) resolution. Examples of model results for recent flood events are computed using the real-time GFMS (http://flood.umd.edu). To evaluate the accuracy of the new GFMS, the DRIVE model is run retrospectively for 15 years using both research-quality and real-time satellite precipitation products. Evaluation results are slightly better for the research-quality input and significantly better for longer duration events (3 day events versus 1 day events). Basins with fewer dams tend to provide lower false alarm ratios. For events longer than three days in areas with few dams, the probability of detection is ~0.9 and the false alarm ratio is ~0.6. In general, these statistical results are better than those of the previous system. Streamflow was evaluated at 1121 river gauges across the quasi-global domain. Validation using real-time precipitation across the tropics (30°S–30°N) gives positive daily Nash-Sutcliffe Coefficients for 107 out of 375 (28%) stations with a mean of 0.19 and 51% of the same gauges at monthly scale with a mean of 0.33. Finally, there were poorer results in higher latitudes, probably due to larger errors in the satellite precipitation input.

  12. Interpretation of thermoreflectance measurements with a two-temperature model including non-surface heat deposition

    SciTech Connect

    Regner, K. T.; Wei, L. C.; Malen, J. A.

    2015-12-21

    We develop a solution to the two-temperature diffusion equation in axisymmetric cylindrical coordinates to model heat transport in thermoreflectance experiments. Our solution builds upon prior solutions that account for two-channel diffusion in each layer of an N-layered geometry, but adds the ability to deposit heat at any location within each layer. We use this solution to account for non-surface heating in the transducer layer of thermoreflectance experiments that challenge the timescales of electron-phonon coupling. A sensitivity analysis is performed to identify important parameters in the solution and to establish a guideline for when to use the two-temperature model to interpret thermoreflectance data. We then fit broadband frequency domain thermoreflectance (BB-FDTR) measurements of SiO{sub 2} and platinum at a temperature of 300 K with our two-temperature solution to parameterize the gold/chromium transducer layer. We then refit BB-FDTR measurements of silicon and find that accounting for non-equilibrium between electrons and phonons in the gold layer does lessen the previously observed heating frequency dependence reported in Regner et al. [Nat. Commun. 4, 1640 (2013)] but does not completely eliminate it. We perform BB-FDTR experiments on silicon with an aluminum transducer and find limited heating frequency dependence, in agreement with time domain thermoreflectance results. We hypothesize that the discrepancy between thermoreflectance measurements with different transducers results in part from spectrally dependent phonon transmission at the transducer/silicon interface.

  13. Temperature-insensitive vertical-cavity surface-emitting lasers and method for fabrication thereof

    DOEpatents

    Chow, Weng W.; Choquette, Kent D.; Gourley, Paul L.

    1998-01-01

    A temperature-insensitive vertical-cavity surface-emitting laser (VCSEL) and method for fabrication thereof. The temperature-insensitive VCSEL comprises a quantum-well active region within a resonant cavity, the active region having a gain spectrum with a high-order subband (n.gtoreq.2) contribution thereto for broadening and flattening the gain spectrum, thereby substantially reducing any variation in operating characteristics of the VCSEL over a temperature range of interest. The method for forming the temperature-insensitive VCSEL comprises the steps of providing a substrate and forming a plurality of layers thereon for providing first and second distributed Bragg reflector (DBR) mirror stacks with an active region sandwiched therebetween, the active region including at least one quantum-well layer providing a gain spectrum having a high-order subband (n.gtoreq.2) gain contribution, and the DBR mirror stacks having predetermined layer compositions and thicknesses for providing a cavity resonance within a predetermined wavelength range substantially overlapping the gain spectrum.

  14. Temperature-insensitive vertical-cavity surface-emitting lasers and method for fabrication thereof

    DOEpatents

    Chow, W.W.; Choquette, K.D.; Gourley, P.L.

    1998-01-27

    A temperature-insensitive vertical-cavity surface-emitting laser (VCSEL) and method for fabrication thereof are disclosed. The temperature-insensitive VCSEL comprises a quantum-well active region within a resonant cavity, the active region having a gain spectrum with a high-order subband (n {>=} 2) contribution thereto for broadening and flattening the gain spectrum, thereby substantially reducing any variation in operating characteristics of the VCSEL over a temperature range of interest. The method for forming the temperature-insensitive VCSEL comprises the steps of providing a substrate and forming a plurality of layers thereon for providing first and second distributed Bragg reflector (DBR) mirror stacks with an active region sandwiched therebetween, the active region including at least one quantum-well layer providing a gain spectrum having a high-order subband (n {>=} 2) gain contribution, and the DBR mirror stacks having predetermined layer compositions and thicknesses for providing a cavity resonance within a predetermined wavelength range substantially overlapping the gain spectrum. 12 figs.

  15. Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical Western Pacific

    SciTech Connect

    Webster, P.J.; Clayson, C.A.; Curry, J.A.

    1996-04-01

    In the tropical Western Pacific (TWP) Ocean, the clouds and the cloud-radiation feedback can only be understood in the context of air/sea interactions and the ocean mixed layer. Considerable interest has been shown in attempting to explain why sea surface temperature (SST) rarely rises above 30{degrees}C, and gradients of the SST. For the most part, observational studies that address this issue have been conducted using monthly cloud and SST data, and the focus has been on intraseasonal and interannual time scales. For the unstable tropical atmosphere, using monthly averaged data misses a key feedback between clouds and SST that occurs on the cloud-SST coupling time scale, which was estimated to be 3-6 days for the unstable tropical atmosphere. This time scale is the time needed for a change in cloud properties, due to the change of ocean surface evaporation caused by SST variation, to feed back to the SST variation, to feed back to the SST through its effect on the surface heat flux. This paper addresses the relationship between clouds, surface radiation flux and SST of the TWP ocean over the diurnal cycle.

  16. Surface-Bound Intermediates in Low-Temperature Methanol Synthesis on Copper. Participants and Spectators

    SciTech Connect

    Yang, Yong; Mei, Donghai; Peden, Charles H.F.; Campbell, Charles T.; Mims, Charles A.

    2015-11-03

    The reactivity of surface adsorbed species present on copper catalysts during methanol synthesis at low temperatures was studied by simultaneous infrared spectroscopy (IR) and mass spectroscopy (MS) measurements during “titration” (transient surface reaction) experiments with isotopic tracing. The results show that adsorbed formate is a major bystander species present on the surface under steady-state methanol synthesis reaction conditions, but it cannot be converted to methanol by reaction with pure H2, nor with H2 plus added water. Formate-containing surface adlayers for these experiments were produced during steady state catalysis in (a) H2:CO2 (with substantial formate coverage) and (b) moist H2:CO (with no IR visible formate species). Both these reaction conditions produce methanol at steady state with relatively high rates. Adlayers containing formate were also produced by (c) formic acid adsorption. Various "titration" gases were used to probe these adlayers at modest temperatures (T = 410-450K) and 6 bar total pressure. Methanol gas (up to ~1% monolayer equivalent) was produced in "titration" from the H2:CO2 catalytic adlayers by H2 plus water, but not by dry hydrogen. The decay in the formate IR features accelerated in the presence of added water vapor. The H2:CO:H2O catalytic adlayer produced similar methanol titration yields in H2 plus water but showed no surface formate features in IR (less than 0.2% monolayer coverage). Finally, formate from formic acid chemisorption produced no methanol under any titration conditions. Even under (H2:CO2) catalytic reaction conditions, isotope tracing showed that pre-adsorbed formate from formic acid did not contribute to the methanol produced. Although non-formate intermediates exist during low temperature methanol synthesis on copper which can be converted to methanol gas

  17. LITERATURE REVIEW OF PUO2 CALCINATION TIME AND TEMPERATURE DATA FOR SPECIFIC SURFACE AREA

    SciTech Connect

    Daniel, G.

    2012-03-06

    The literature has been reviewed in December 2011 for calcination data of plutonium oxide (PuO{sub 2}) from plutonium oxalate Pu(C{sub 2}O{sub 4}){sub 2} precipitation with respect to the PuO{sub 2} specific surface area (SSA). A summary of the literature is presented for what are believed to be the dominant factors influencing SSA, the calcination temperature and time. The PuO{sub 2} from Pu(C{sub 2}O{sub 4}){sub 2} calcination data from this review has been regressed to better understand the influence of calcination temperature and time on SSA. Based on this literature review data set, calcination temperature has a bigger impact on SSA versus time. However, there is still some variance in this data set that may be reflecting differences in the plutonium oxalate preparation or different calcination techniques. It is evident from this review that additional calcination temperature and time data for PuO{sub 2} from Pu(C{sub 2}O{sub 4}){sub 2} needs to be collected and evaluated to better define the relationship. The existing data set has a lot of calcination times that are about 2 hours and therefore may be underestimating the impact of heating time on SSA. SRNL recommends that more calcination temperature and time data for PuO{sub 2} from Pu(C{sub 2}O{sub 4}){sub 2} be collected and this literature review data set be augmented to better refine the relationship between PuO{sub 2} SSA and its calcination parameters.

  18. Low temperature formation of electrode having electrically conductive metal oxide surface

    DOEpatents

    Anders, Simone; Anders, Andre; Brown, Ian G.; McLarnon, Frank R.; Kong, Fanping

    1998-01-01

    A low temperature process is disclosed for forming metal suboxides on substrates by cathodic arc deposition by either controlling the pressure of the oxygen present in the deposition chamber, or by controlling the density of the metal flux, or by a combination of such adjustments, to thereby control the ratio of oxide to metal in the deposited metal suboxide coating. The density of the metal flux may, in turn, be adjusted by controlling the discharge current of the arc, by adjusting the pulse length (duration of on cycle) of the arc, and by adjusting the frequency of the arc, or any combination of these parameters. In a preferred embodiment, a low temperature process is disclosed for forming an electrically conductive metal suboxide, such as, for example, an electrically conductive suboxide of titanium, on an electrode surface, such as the surface of a nickel oxide electrode, by such cathodic arc deposition and control of the deposition parameters. In the preferred embodiment, the process results in a titanium suboxide-coated nickel oxide electrode exhibiting reduced parasitic evolution of oxygen during charging of a cell made using such an electrode as the positive electrode, as well as exhibiting high oxygen overpotential, resulting in suppression of oxygen evolution at the electrode at full charge of the cell.

  19. Ferroelectric-like response from the surface of SrTiO₃ crystals at high temperatures

    SciTech Connect

    Jyotsna, Shubhra; Arora, Ashima; Sekhon, Jagmeet S.; Sheet, Goutam

    2014-09-14

    Since SrTiO₃ has a high dielectric constant, it is used as a substrate for a large number of complex physical systems for electrical characterization. Since SrTiO₃ crystals are known to be non-ferroelectric/non-piezoelectric at room temperature and above, SrTiO₃ has been believed to be a good choice as a substrate/base material for PFM (Piezoresponse Force Microscopy) on novel systems at room temperature. In this paper, from PFM-like measurement using an atomic force microscope on bare crystals of (110) SrTiO₃ we show that ferroelectric and piezoelectric-like response may originate from bare SrTiO₃ at remarkably high temperatures up to 420 K. Electrical domain writing and erasing are also possible using a scanning probe tip on the surface of SrTiO₃ crystals. This observation indicates that the role of the electrical response of SrTiO₃ needs to be revisited in the systems where signature of ferroelectricity/piezoelectricity has been previously observed with SrTiO₃ as a substrate/base material.

  20. The footprint of the inter-decadal Pacific oscillation in Indian Ocean sea surface temperatures

    DOE PAGES [OSTI]

    Dong, Lu; Zhou, Tianjun; Dai, Aiguo; Song, Fengfei; Wu, Bo; Chen, Xiaolong

    2016-02-17

    Superimposed on a pronounced warming trend, the Indian Ocean (IO) sea surface temperatures (SSTs) also show considerable decadal variations that can cause regional climate oscillations around the IO. However, the mechanisms of the IO decadal variability remain unclear. Here we perform numerical experiments using a state-of-the-art, fully coupled climate model in which the external forcings with or without the observed SSTs in the tropical eastern Pacific Ocean (TEP) are applied for 1871–2012. Both the observed timing and magnitude of the IO decadal variations are well reproduced in those experiments with the TEP SSTs prescribed to observations. Although the external forcingsmore » account for most of the warming trend, the decadal variability in IO SSTs is dominated by internal variability that is induced by the TEP SSTs, especially the Inter-decadal Pacific Oscillation (IPO). The IPO weakens (enhances) the warming of the external forcings by about 50% over the IO during IPO’s cold (warm) phase, which contributes about 10% to the recent global warming hiatus since 1999. As a result, the decadal variability in IO SSTs is modulated by the IPO-induced atmospheric adjustment through changing surface heat fluxes, sea surface height and thermocline depth.« less

  1. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    SciTech Connect

    Way, J.; Wolden, Colin

    2013-09-30

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo{sub 2}C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo{sub 2}C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft{sup 2} at a feed pressure of only 20 psig. The highest H{sub 2}/N{sub 2} selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo{sub 2}C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo{sub 2}C catalyst layers. We have fabricated a Mo{sub 2}C/V composite membrane that in pure gas testing delivered a H{sub 2} flux of 238 SCFH/ft{sup 2} at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ≥99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft{sup 2}.psi. However, during testing of a Mo{sub 2}C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft{sup 2}.psi was obtained which was stable during the entire test, meeting the permeance associated with the 2010 DOE target flux. Lastly, the Mo{sub 2}C/V composite

  2. THE SURFACE-MEDIATED UNFOLDING KINETICS OF GLOBULAR PROTEINS IS DEPENDENT ON MOLECULAR WEIGHT AND TEMPERATURE

    SciTech Connect

    Patananan, A.N.; Goheen, S.C.

    2008-01-01

    The adsorption and unfolding pathways of proteins on rigid surfaces are essential in numerous complex processes associated with biomedical engineering, nanotechnology, and chromatography. It is now well accepted that the kinetics of unfolding are characterized by chemical and physical interactions dependent on protein deformability and structure, as well as environmental pH, temperature, and surface chemistry. Although this fundamental process has broad implications in medicine and industry, little is known about the mechanism because of the atomic lengths and rapid time scales involved. Therefore, the unfolding kinetics of myoglobin, β-glucosidase, and ovalbumin were investigated by adsorbing the globular proteins to non-porous cationic polymer beads. The protein fractions were adsorbed at different residence times (0, 9, 10, 20, and 30 min) at near-physiological conditions using a gradient elution system similar to that in high-performance liquid chromatography. The elution profi les and retention times were obtained by ultraviolet/visible spectrophotometry. A decrease in recovery was observed with time for almost all proteins and was attributed to irreversible protein unfolding on the non-porous surfaces. These data, and those of previous studies, fi t a positively increasing linear trend between percent unfolding after a fi xed (9 min) residence time (71.8%, 31.1%, and 32.1% of myoglobin, β-glucosidase, and ovalbumin, respectively) and molecular weight. Of all the proteins examined so far, only myoglobin deviated from this trend with higher than predicted unfolding rates. Myoglobin also exhibited an increase in retention time over a wide temperature range (0°C and 55°C, 4.39 min and 5.74 min, respectively) whereas ovalbumin and β-glucosidase did not. Further studies using a larger set of proteins are required to better understand the physiological and physiochemical implications of protein unfolding kinetics. This study confi rms that surface

  3. The Surface-Mediated Unfolding Kinetics of Globular Proteins is Dependent on Molecular Weight and Temperature

    SciTech Connect

    Patananan, Alexander; Goheen, Steven C

    2008-12-01

    The adsorption and unfolding of proteins on rigid surfaces is characterized by numerous chemical and physical interactions such as hydrogen bonds, disulfide bridges, hydrophobic effects, and London forces. The kinetics of unfolding is dependent on pH, temperature, surface chemistry, as well as protein deformability and structure. In practical applications, this fundamental process has broad implications in biomedical engineering (i.e. artificial implants, drug delivery, and surgical equipment), nanotechnology, maritime construction, and chromatography. However, little is known about the mechanisms behind unfolding because of the atomic lengths and rapid time scales associated with the surface-mediated pathway. Therefore, the unfolding kinetics of myoglobin, β-glucosidase, and ovalbumin were investigated by adsorbing the proteins to non-porous cationic polymer beads. The protein fractions were adsorbed at different residence times (0, 9, 10, 20, and 30 min) at near-physiological conditions using a gradient elution system similar to that in high-performance liquid chromatography (HPLC). The elution profiles and retention times were obtained by UV/Vis spectrophotometry. A decrease in recovery was observed with time for almost all proteins and was attributed to protein unfolding on the non-porous surfaces. This data, and those of previous studies, fit a linear trend between percent unfolding after a fixed (9 min) residence time (71.8%, 31.1%, and 32.1% of myoglobin, β-glucosidase, and ovalbumin, respectively) and molecular weight. Of all the proteins examined so far, only myoglobin deviated from this trend. Myoglobin also exhibited an increase in retention time over a wide temperature range (0°C and 55°C, 4.39 min and 5.74 min, respectively) whereas ovalbumin and β-glucosidase did not. Further studies using a larger set of proteins are required to better understand the physiological and physiochemical implications of protein unfolding kinetics. This study confirms

  4. Causes of Ocean Surface temperature Changes in Atlantic andPacific Topical Cyclogenesis Regions

    SciTech Connect

    Santer, B.D.; Wigley, T.M.L.; Gleckler, P.J.; Bonfils, C.; Wehner, M.F.; AchutaRao, K.; Barnett, T.P.; Boyle, J.S.; Bruggemann, W.; Fiorino, M.; Gillett, N.; Hansen, J.E.; Jones, P.D.; Klein, S.A.; Meehl,G.A.; Raper, S.C.B.; Reynolds, R.W.; Stott, P.A.; Taylor, K.E.; Washington, W.M.

    2006-01-31

    Previous research has identified links between changes in sea surface temperature (SST) and hurricane intensity. We use climate models to study the possible causes of SST changes in Atlantic and Pacific tropical cyclogenesis regions. The observed SST increases in these regions range from 0.32 to 0.67 C over the 20th century. The 22 climate models examined here suggest that century-timescale SST changes of this magnitude cannot be explained solely by unforced variability of the climate system, even under conservative assumptions regarding the magnitude of this variability. Model simulations that include external forcing by combined anthropogenic and natural factors are generally capable of replicating observed SST changes in both tropical cyclogenesis regions.

  5. Linkages of Remote Sea Surface Temperatures and Atlantic Tropical Cyclone Activity Mediated by the African Monsoon

    SciTech Connect

    Taraphdar, Sourav; Leung, Lai-Yung R.; Hagos, Samson M.

    2015-01-28

    Warm sea surface temperatures (SSTs) in North Atlantic and Mediterranean (NAMED) can influence tropical cyclone (TC) activity in the tropical East Atlantic by modulating summer convection over western Africa. Analysis of 30 years of observations show that the NAMED SST is linked to a strengthening of the Saharan heat low and enhancement of moisture and moist static energy in the lower atmosphere over West Africa, which favors a northward displacement of the monsoonal front. These processes also lead to a northward shift of the African easterly jet that introduces an anomalous positive vorticity from western Africa to the main development region (50W20E; 10N20N) of Atlantic TC. By modulating multiple processes associated with the African monsoon, this study demonstrates that warm NAMED SST explains 8% of interannual variability of Atlantic TC frequency. Thus NAME SST may provide useful predictability for Atlantic TC activity on seasonal-to-interannual time scale.

  6. Development of an operational global ocean climatology through the use of remotely sensed sea surface temperature

    SciTech Connect

    Winter, T.M.

    1995-05-09

    Monthly mean satellite-derived sea surface temperature SST data have been derived globally using daytime and nighttime AVHRR (Advanced Very High Resolution Radiometer) multi-channel data. From a 12 year data set (1982-1993), valid monthly daytime and nighttime climatologies were created using an eight year subset (1984-1990, 1993). Based on buoy comparisons, four years were omitted due to volcanic aerosol corruption (El Chichon 1982/83, Mt. Pinatubo 1991/92). These resulting monthly climatologies provide SST fields at approximately 1/3rd degree latitude/longitude resolution. Difference fields have been created comparing the new satellite climatology with the older and coarser-resolution climatology constructed from conventional SST data. Regional and zonal climatology differences were also created to highlight the deficiencies, especially in the Southern Hemisphere, in the older climatology believed to result primarily from a lack of buoy/ship (in situ) data. Such comparisons made it clear that the satellite climatology provided a much better product. Ocean current systems, El Nino, La Nina, and other water mass characteristics all appear with better detail and accuracy within the high-resolution satellite climatology.

  7. Areas of Weakly Anomalous to Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Chaffee Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1σ and 2σ above the mean, as opposed to the greater than 2σ temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2σ were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4333432.368072 m Left: 366907.700763 m Right: 452457.816015 m Bottom: 4208271.566715 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO

  8. Areas of Weakly Anomalous to Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Garfield Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1σ and 2σ above the mean, as opposed to the greater than 2σ temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1σ and 2σ were considered ASTER modeled warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4442180.552290 m Left: 268655.053363 m Right: 359915.053363 m Bottom: 4312490.552290 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal

  9. Areas of Weakly Anomalous to Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Routt Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1σ and 2σ above the mean, as opposed to the greater than 2σ temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1σ and 2σ were considered ASTER modeled warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4501071.574000 m Left: 311351.975000 m Right: 359411.975000 m Bottom: 4447521.574000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code

  10. Areas of Weakly Anomalous to Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Archuleta Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1σ and 2σ above the mean, as opposed to the greater than 2σ temperatures contained in the “Anomalous Surface Temperature” dataset. Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1σ and 2σ were considered ASTER modeled warm surface exposures (thermal anomalies). Spatial Domain: Extent: Top: 4144825.235807 m Left: 285446.256851 m Right: 350577.338852 m Bottom: 4096962.250137 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO

  11. Areas of Weakly Anomalous to Anomalous Surface Temperature in Alamosa and Saguache Counties, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Alamosa Saguache Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1σ and 2σ above the mean, as opposed to the greater than 2σ temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2σ were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4217727.601630 m Left: 394390.400264 m Right: 460179.841813 m Bottom: 4156258.036086 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB

  12. Areas of Weakly Anomalous to Anomalous Surface Temperature in Dolores County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Dolores Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1σ and 2σ above the mean, as opposed to the greater than 2σ temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2σ were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4186234.213315 m Left: 212558.673056 m Right: 232922.811862 m Bottom: 4176781.467043 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO

  13. Areas of Anomalous Surface Temperature in Alamosa and Saguache Counties, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Alamosa Saguache Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2σ were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4217727.601630 m Left: 394390.400264 m Right: 460179.841813 m Bottom: 4156258.036086 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World

  14. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe

    SciTech Connect

    De Kauwe, M. G.; Zhou, S. -X.; Medlyn, B. E.; Pitman, A. J.; Wang, Y. -P.; Duursma, R. A.; Prentice, I. C.

    2015-12-21

    Future climate change has the potential to increase drought in many regions of the globe, making it essential that land surface models (LSMs) used in coupled climate models realistically capture the drought responses of vegetation. Recent data syntheses show that drought sensitivity varies considerably among plants from different climate zones, but state-of-the-art LSMs currently assume the same drought sensitivity for all vegetation. We tested whether variable drought sensitivities are needed to explain the observed large-scale patterns of drought impact on the carbon, water and energy fluxes. We implemented data-driven drought sensitivities in the Community Atmosphere Biosphere Land Exchange (CABLE) LSM and evaluated alternative sensitivities across a latitudinal gradient in Europe during the 2003 heatwave. The model predicted an overly abrupt onset of drought unless average soil water potential was calculated with dynamic weighting across soil layers. We found that high drought sensitivity at the most mesic sites, and low drought sensitivity at the most xeric sites, was necessary to accurately model responses during drought. Furthermore, our results indicate that LSMs will over-estimate drought impacts in drier climates unless different sensitivity of vegetation to drought is taken into account.

  15. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe

    DOE PAGES [OSTI]

    De Kauwe, M. G.; Zhou, S. -X.; Medlyn, B. E.; Pitman, A. J.; Wang, Y. -P.; Duursma, R. A.; Prentice, I. C.

    2015-12-21

    Future climate change has the potential to increase drought in many regions of the globe, making it essential that land surface models (LSMs) used in coupled climate models realistically capture the drought responses of vegetation. Recent data syntheses show that drought sensitivity varies considerably among plants from different climate zones, but state-of-the-art LSMs currently assume the same drought sensitivity for all vegetation. We tested whether variable drought sensitivities are needed to explain the observed large-scale patterns of drought impact on the carbon, water and energy fluxes. We implemented data-driven drought sensitivities in the Community Atmosphere Biosphere Land Exchange (CABLE) LSMmore » and evaluated alternative sensitivities across a latitudinal gradient in Europe during the 2003 heatwave. The model predicted an overly abrupt onset of drought unless average soil water potential was calculated with dynamic weighting across soil layers. We found that high drought sensitivity at the most mesic sites, and low drought sensitivity at the most xeric sites, was necessary to accurately model responses during drought. Furthermore, our results indicate that LSMs will over-estimate drought impacts in drier climates unless different sensitivity of vegetation to drought is taken into account.« less

  16. A reduced order modeling approach to represent subgrid-scale hydrological dynamics for regional- and climate-scale land-surface simulations: application in a polygonal tundra landscape

    DOE PAGES [OSTI]

    Pau, G. S. H.; Bisht, G.; Riley, W. J.

    2014-04-04

    Existing land surface models (LSMs) describe physical and biological processes that occur over a wide range of spatial and temporal scales. For example, biogeochemical and hydrological processes responsible for carbon (CO2, CH4) exchanges with the atmosphere range from molecular scale (pore-scale O2 consumption) to tens of kilometer scale (vegetation distribution, river networks). Additionally, many processes within LSMs are nonlinearly coupled (e.g., methane production and soil moisture dynamics), and therefore simple linear upscaling techniques can result in large prediction error. In this paper we applied a particular reduced-order modeling (ROM) technique known as "Proper Orthogonal Decomposition mapping method" that reconstructs temporally-resolvedmore » fine-resolution solutions based on coarse-resolution solutions. We applied this technique to four study sites in a polygonal tundra landscape near Barrow, Alaska. Coupled surface-subsurface isothermal simulations were performed for summer months (June–September) at fine (0.25 m) and coarse (8 m) horizontal resolutions. We used simulation results from three summer seasons (1998–2000) to build ROMs of the 4-D soil moisture field for the four study sites individually (single-site) and aggregated (multi-site). The results indicate that the ROM produced a significant computational speedup (> 103) with very small relative approximation error (< 0.1%) for two validation years not used in training the ROM. We also demonstrated that our approach: (1) efficiently corrects for coarse-resolution model bias and (2) can be used for polygonal tundra sites not included in the training dataset with relatively good accuracy (< 1.5% relative error), thereby allowing for the possibility of applying these ROMs across a much larger landscape. This method has the potential to efficiently increase the resolution of land models for coupled climate simulations, allowing LSMs to be used at spatial scales consistent with

  17. Near-ambient pressure XPS of high-temperature surface chemistry in Sr2Co2O5 thin films

    DOE PAGES [OSTI]

    Hong, Wesley T.; Stoerzinger, Kelsey; Crumlin, Ethan J.; Mutoro, Eva; Jeen, Hyoung Jeen; Lee, Ho Nyung; Shao-Horn, Yang

    2016-02-11

    Transition metal perovskite oxides are promising electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells, but a lack of fundamental understanding of oxide surfaces impedes the rational design of novel catalysts with improved device efficiencies. In particular, understanding the surface chemistry of oxides is essential for controlling both catalytic activity and long-term stability. Thus, elucidating the physical nature of species on perovskite surfaces and their catalytic enhancement would generate new insights in developing oxide electrocatalysts. In this article, we perform near-ambient pressure XPS of model brownmillerite Sr2Co2O5 (SCO) epitaxial thin films with different crystallographic orientations. Detailed analysis of themore » Co 2p spectra suggests that the films lose oxygen as a function of temperature. Moreover, deconvolution of the O 1s spectra shows distinct behavior for (114)-oriented SCO films compared to (001)-oriented SCO films, where an additional bulk oxygen species is observed. These findings indicate a change to a perovskite-like oxygen chemistry that occurs more easily in (114) SCO than (001) SCO, likely due to the orientation of oxygen vacancy channels out-of-plane with respect to the film surface. This difference in surface chemistry is responsible for the anisotropy of the oxygen surface exchange coefficient of SCO and may contribute to the enhanced ORR kinetics of La0.8Sr0.2CoO3-δ thin films by SCO surface particles observed previously.« less

  18. Practices for protecting and enhancing fish and wildlife on coal surface-mined land in the southcentral U. S. Handbook

    SciTech Connect

    Ambrose, R.E.; Hinkle, C.R.; Wenzel, C.R.

    1983-03-01

    This handbook contains information on the best current practices to minimize disturbances and adverse impacts of surface mining on fish and wildlife resources. Current state and federal legislation was reviewed to determine those practices which were most compatible with the best technology currently available, fish and wildlife plans, and reclamation plans for the Southcentral region of the U.S. The information presented includes risks, limitations, approximate costs, and maintenance and management requirements of each practice. Plans for the restoration of specific habitats, according to the best current practices, are also included.

  19. GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)

    SciTech Connect

    Xuan Shi, Dali Wang

    2014-05-05

    This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

  20. GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)

    DOE Data Explorer

    Xuan Shi, Dali Wang

    This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

  1. Low temperature synthesis of nanocrystalline magnesium aluminate with high surface area by surfactant assisted precipitation method: Effect of preparation conditions

    SciTech Connect

    Mosayebi, Zeinab; Rezaei, Mehran; Catalyst and Advanced Materials Research Laboratory, Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan ; Hadian, Narges; Kordshuli, Fazlollah Zareie; Meshkani, Fereshteh

    2012-09-15

    Highlights: ► MgAl{sub 2}O{sub 4} showed a high surface area and nanocrystalline structure. ► Addition of polymeric surfactant affected the structural properties of MgAl{sub 2}O{sub 4}. ► MgAl{sub 2}O{sub 4} prepared with surfactant showed a hollow cylindrical shape. -- Abstract: A surfactant assisted co-precipitation method was employed for the low temperature synthesis of magnesium aluminate spinel with nanocrystalline size and high specific surface area. Pluronic P123 triblock copolymer and ammonia solution were used as surfactant and precipitation agent, respectively. The prepared samples were characterized by thermal gravimetric and differential thermal gravimetric analyses (TG/DTG), X-ray diffraction (XRD), N{sub 2} adsorption (BET) and transmission electron microscopy (TEM) techniques. The effects of several process parameters such as refluxing temperature, refluxing time, pH, P123 to metals mole ratio (P123/metals) and calcination temperature on the structural properties of the samples were investigated. The obtained results showed that, among the process parameters pH and refluxing temperature have a significant effect on the structural properties of samples. The results revealed that increase in pH from 9.5 to 11 and refluxing temperature from 40 °C to 80 °C increased the specific surface area of prepared samples in the range of 157–188 m{sup 2} g{sup −1} and 162–184 m{sup 2} g{sup −1}, respectively. The XRD analysis showed the single-phase MgAl{sub 2}O{sub 4} was formed at 700 °C.

  2. Helical Peptide Arrays on Self-Assembled Monolayer Surfaces Through Soft and Reactive Landing of Mass-Selected Ions

    SciTech Connect

    Wang, Peng; Laskin, Julia

    2008-08-01

    The ?-helix the common building block of the protein secondary structure - plays an important role in determining protein structure and function. The biological function of the ?-helix is mainly attributed to its large macrodipole originating from the alignment of individual dipole moments of peptide bonds. Preparation of directionally aligned ?-helical peptide layers on substrates has attracted significant attention because the resulting strong net dipole is useful for a variety of applications in photonics, , molecular electronics, and catalysis. - In addition, conformationally-selected ?-helical peptide arrays can be used for detailed characterization of molecular recognition steps critical for protein folding, enzyme function and DNA binding by proteins. Existing technologies for the production of ?-helical peptide surfaces are based on a variety of solution phase synthetic strategies - that usually require relatively large quantities of purified materials.

  3. A reduced-order modeling approach to represent subgrid-scale hydrological dynamics for land-surface simulations: application in a polygonal tundra landscape

    DOE PAGES [OSTI]

    Pau, G. S. H.; Bisht, G.; Riley, W. J.

    2014-09-17

    Existing land surface models (LSMs) describe physical and biological processes that occur over a wide range of spatial and temporal scales. For example, biogeochemical and hydrological processes responsible for carbon (CO2, CH4) exchanges with the atmosphere range from the molecular scale (pore-scale O2 consumption) to tens of kilometers (vegetation distribution, river networks). Additionally, many processes within LSMs are nonlinearly coupled (e.g., methane production and soil moisture dynamics), and therefore simple linear upscaling techniques can result in large prediction error. In this paper we applied a reduced-order modeling (ROM) technique known as "proper orthogonal decomposition mapping method" that reconstructs temporally resolvedmore » fine-resolution solutions based on coarse-resolution solutions. We developed four different methods and applied them to four study sites in a polygonal tundra landscape near Barrow, Alaska. Coupled surface–subsurface isothermal simulations were performed for summer months (June–September) at fine (0.25 m) and coarse (8 m) horizontal resolutions. We used simulation results from three summer seasons (1998–2000) to build ROMs of the 4-D soil moisture field for the study sites individually (single-site) and aggregated (multi-site). The results indicate that the ROM produced a significant computational speedup (> 103) with very small relative approximation error (< 0.1%) for 2 validation years not used in training the ROM. We also demonstrate that our approach: (1) efficiently corrects for coarse-resolution model bias and (2) can be used for polygonal tundra sites not included in the training data set with relatively good accuracy (< 1.7% relative error), thereby allowing for the possibility of applying these ROMs across a much larger landscape. By coupling the ROMs constructed at different scales together hierarchically, this method has the potential to efficiently increase the resolution of land models for coupled

  4. Excellent c-Si surface passivation by low-temperature atomic layer deposited titanium oxide

    SciTech Connect

    Liao, Baochen; Hoex, Bram; Aberle, Armin G.; Bhatia, Charanjit S.; Chi, Dongzhi

    2014-06-23

    In this work, we demonstrate that thermal atomic layer deposited (ALD) titanium oxide (TiO{sub x}) films are able to provide a—up to now unprecedented—level of surface passivation on undiffused low-resistivity crystalline silicon (c-Si). The surface passivation provided by the ALD TiO{sub x} films is activated by a post-deposition anneal and subsequent light soaking treatment. Ultralow effective surface recombination velocities down to 2.8 cm/s and 8.3 cm/s, respectively, are achieved on n-type and p-type float-zone c-Si wafers. Detailed analysis confirms that the TiO{sub x} films are nearly stoichiometric, have no significant level of contaminants, and are of amorphous nature. The passivation is found to be stable after storage in the dark for eight months. These results demonstrate that TiO{sub x} films are also capable of providing excellent passivation of undiffused c-Si surfaces on a comparable level to thermal silicon oxide, silicon nitride, and aluminum oxide. In addition, it is well known that TiO{sub x} has an optimal refractive index of 2.4 in the visible range for glass encapsulated solar cells, as well as a low extinction coefficient. Thus, the results presented in this work could facilitate the re-emergence of TiO{sub x} in the field of high-efficiency silicon wafer solar cells.

  5. Silicon surface and bulk defect passivation by low temperature PECVD oxides and nitrides

    SciTech Connect

    Chen, Z.; Rohatgi, A.; Ruby, D.

    1995-01-01

    The effectiveness of PECVD passivation of surface and bulk defects in Si, as well as phosphorous diffused emitters, Is investigated and quantified. Significant hydrogen incorporation coupled with high positive charge density in the PECVD SiN layer is found to play an important role in bulk and surface passivation. It is shown that photo-assisted anneal in a forming gas ambient after PECVD depositions significantly improves the passivation of emitter and bulk defects. PECVD passivation of phosphorous doped emitters and boron doped bare Si surfaces is found to be a strong function of doping concentration. Surface recombination velocity of less than 200 cm/s for 0.2 Ohm-cm and less than 1 cm/s for high resistivity substrates ({approximately} Ohm-cm) were achieved. PECVD passivation improved bulk lifetime in the range of 30% to 70% in multicrystalline Si materials. However, the degree of the passivation was found to be highly material specific. Depending upon the passivation scheme, emitter saturation current density (J{sub oe}) can be reduced by a factor of 3 to 9. Finally, the stability of PECVD oxide/nitride passivation under prolonged UV exposure is established.

  6. Effects of 1000 C oxide surfaces on room temperature aqueous corrosion and environmental embrittlement of iron aluminides

    SciTech Connect

    Buchanan, R.A.; Perrin, R.L.

    1997-12-01

    Results of electrochemical aqueous-corrosion studies at room temperature indicate that retained in-service-type high-temperature surface oxides (1000 C in air for 24 hours) on FA-129, FAL and FAL-Mo iron aluminides cause major reductions in pitting corrosion resistance in a mild acid-chloride solution designed to simulate aggressive atmospheric corrosion. Removal of the oxides by mechanical grinding restores the corrosion resistance. In a more aggressive sodium tetrathionate solution, designed to simulate an aqueous environment contaminated by sulfur-bearing combustion products, only active corrosion occurs for both the 1000 C oxide and mechanically cleaned surfaces at FAL. Results of slow-strain-rate stress-corrosion-cracking tests on FA-129, FAL and FAL-Mo at free-corrosion and hydrogen-charging potentials in the mild acid chloride solution indicate somewhat higher ductilities (on the order of 50%) for the 1000 C oxides retard the penetration of hydrogen into the metal substrates and, consequently, are beneficial in terms of improving resistance to environmental embrittlement. In the aggressive sodium tetrathionate solution, no differences are observed in the ductilities produced by the 1000 C oxide and mechanically cleaned surfaces for FAL.

  7. Surface Anchoring of Nematic Phase on Carbon Nanotubes: Nanostructure of Ultra-High Temperature Materials

    SciTech Connect

    Ogale, Amod A

    2012-04-27

    Nuclear energy is a dependable and economical source of electricity. Because fuel supply sources are available domestically, nuclear energy can be a strong domestic industry that can reduce dependence on foreign energy sources. Commercial nuclear power plants have extensive security measures to protect the facility from intruders [1]. However, additional research efforts are needed to increase the inherent process safety of nuclear energy plants to protect the public in the event of a reactor malfunction. The next generation nuclear plant (NGNP) is envisioned to utilize a very high temperature reactor (VHTR) design with an operating temperature of 650-1000?°C [2]. One of the most important safety design requirements for this reactor is that it must be inherently safe, i.e., the reactor must shut down safely in the event that the coolant flow is interrupted [2]. This next-generation Gen IV reactor must operate in an inherently safe mode where the off-normal temperatures may reach 1500?°C due to coolant-flow interruption. Metallic alloys used currently in reactor internals will melt at such temperatures. Structural materials that will not melt at such ultra-high temperatures are carbon/graphtic fibers and carbon-matrix composites. Graphite does not have a measurable melting point; it is known to sublime starting about 3300?°C. However, neutron radiation-damage effects on carbon fibers are poorly understood. Therefore, the goal of this project is to obtain a fundamental understanding of the role of nanotexture on the properties of resulting carbon fibers and their neutron-damage characteristics. Although polygranular graphite has been used in nuclear environment for almost fifty years, it is not suitable for structural applications because it do not possess adequate strength, stiffness, or toughness that is required of structural components such as reaction control-rods, upper plenum shroud, and lower core-support plate [2,3]. For structural purposes, composites

  8. Measurements of net radiation, ground heat flux and surface temperature in an urban canyon

    SciTech Connect

    Gouveia, F J; Leach, M J; Shinn, J H

    2003-11-06

    The Joint Urban 2003 (JU2003) field study was conducted in Oklahoma City in July 2003 to collect data to increase our knowledge of dispersion in urban areas. Air motions in and around urban areas are very complicated due to the influence of urban structures on both mechanical and thermal forcing. During JU2003, meteorological instruments were deployed at various locations throughout the urban area to characterize the processes that influence dispersion. Some of the instruments were deployed to characterize urban phenomena, such as boundary layer development. In addition, particular sites were chosen for more concentrated measurements to investigate physical processes in more detail. One such site was an urban street canyon on Park Avenue between Broadway and Robinson Avenues in downtown Oklahoma City. The urban canyon study was designed to examine the processes that control dispersion within, into and out of the urban canyon. Several towers were deployed in the Park Avenue block, with multiple levels on each tower for observing the wind using sonic anemometers. Infrared thermometers, net radiometers and ground heat flux plates were deployed on two of the towers midway in the canyon to study the thermodynamic effects and to estimate the surface energy balance. We present results from the surface energy balance observations.

  9. Modeling tropical Pacific sea surface temperature with satellite-derived solar radiative forcing

    SciTech Connect

    Seager, R.; Blumenthal, M.B.

    1994-12-01

    Two independent datasets for the solar radiation at the surface derived from satellites are compared. The data derived from the Earth Radiation Budget Experiment (ERBE) is for the net solar radiation at the surface whereas the International Satellite Cloud Climatology Project (ISCCP) data is for the downward flux only and was corrected with a space- and time-varying albedo. The ISCCP net flux is at all times higher than the ERBE flux. The difference can be divided into an offset that decreases with latitude and another component that correlates with high tropical cloud cover. With this latter exception the two datasets provide spatial patterns of solar flux that are very similar. A tropical Pacific Ocean model is forced with these two datasets and observed climatological winds. The upward heat flux is parameterized taking into account separately the longwave radiative, latent, and sensible heat fluxes. Best fit values for the uncertain parameters are found using an optimization procedure that seeks to minimize the difference between model and observed SST by varying the parameters within a reasonable range of uncertainty. The SST field the model produces with the best fit parameters is the best the model can do. If the differences between the model and data are larger than can be accounted for by remaining uncertainties in the heat flux parameterization and forcing data then the ocean model must be held to be at fault. Using this method of analysis, a fundamental model fault is identified. Inadequate treatment of mixed layer/entrainment processes in upwelling regions of the eastern tropical Pacific leads to a large and seasonally varying error in the model SST. Elsewhere the model SST is insufficiently different from observed to be able to identify model errors.

  10. Addressing numerical challenges in introducing a reactive transport code into a land surface model: a biogeochemical modeling proof-of-concept with CLM–PFLOTRAN 1.0

    DOE PAGES [OSTI]

    Tang, Guoping; Yuan, Fengming; Bisht, Gautam; Hammond, Glenn E.; Lichtner, Peter C.; Kumar, Jitendra; Mills, Richard T.; Xu, Xiaofeng; Andre, Ben; Hoffman, Forrest M.; et al

    2016-03-04

    We explore coupling to a configurable subsurface reactive transport code as a flexible and extensible approach to biogeochemistry in land surface models. A reaction network with the Community Land Model carbon–nitrogen (CLM-CN) decomposition, nitrification, denitrification, and plant uptake is used as an example. We implement the reactions in the open-source PFLOTRAN (massively parallel subsurface flow and reactive transport) code and couple it with the CLM. To make the rate formulae designed for use in explicit time stepping in CLMs compatible with the implicit time stepping used in PFLOTRAN, the Monod substrate rate-limiting function with a residual concentration is used to represent the limitation ofmore » nitrogen availability on plant uptake and immobilization. We demonstrate that CLM–PFLOTRAN predictions (without invoking PFLOTRAN transport) are consistent with CLM4.5 for Arctic, temperate, and tropical sites.Switching from explicit to implicit method increases rigor but introduces numerical challenges. Care needs to be taken to use scaling, clipping, or log transformation to avoid negative concentrations during the Newton iterations. With a tight relative update tolerance (STOL) to avoid false convergence, an accurate solution can be achieved with about 50 % more computing time than CLM in point mode site simulations using either the scaling or clipping methods. The log transformation method takes 60–100 % more computing time than CLM. The computing time increases slightly for clipping and scaling; it increases substantially for log transformation for half saturation decrease from 10−3 to 10−9 mol m−3, which normally results in decreasing nitrogen concentrations. The frequent occurrence of very low concentrations (e.g. below nanomolar) can increase the computing time for clipping or scaling by about 20 %, double for log transformation. Overall, the log transformation method is accurate and robust, and the clipping and scaling

  11. Addressing numerical challenges in introducing a reactive transport code into a land surface model: A biogeochemical modeling proof-of-concept with CLM PFLOTRAN 1.0

    DOE PAGES [OSTI]

    Tang, Guoping; Yuan, Fengming; Bisht, Gautam; Hammond, Glenn E.; Lichtner, Peter C.; Kumar, Jitendra; Mills, Richard T.; Xu, Xiaofeng; Andre, Ben; Hoffman, Forrest M.; et al

    2016-03-04

    Here, we explore coupling to a configurable subsurface reactive transport code as a flexible and extensible approach to biogeochemistry in land surface models. A reaction network with the Community Land Model carbon nitrogen (CLM-CN) decomposition, nitrification, denitrification, and plant uptake is used as an example. We implement the reactions in the open-source PFLOTRAN (massively parallel subsurface flow and reactive transport) code and couple it with the CLM. To make the rate formulae designed for use in explicit time stepping in CLMs compatible with the implicit time stepping used in PFLOTRAN, the Monod substrate rate-limiting function with a residual concentration ismore » used to represent the limitation of nitrogen availability on plant uptake and immobilization. We demonstrate that CLM PFLOTRAN predictions (without invoking PFLOTRAN transport) are consistent with CLM4.5 for Arctic, temperate, and tropical sites. Switching from explicit to implicit method increases rigor but introduces numerical challenges. Care needs to be taken to use scaling, clipping, or log transformation to avoid negative concentrations during the Newton iterations. With a tight relative update tolerance (STOL) to avoid false convergence, an accurate solution can be achieved with about 50 % more computing time than CLM in point mode site simulations using either the scaling or clipping methods. The log transformation method takes 60–100 % more computing time than CLM. The computing time increases slightly for clipping and scaling; it increases substantially for log transformation for half saturation decrease from 10–3 to 10–9 mol m–3, which normally results in decreasing nitrogen concentrations. The frequent occurrence of very low concentrations (e.g. below nanomolar) can increase the computing time for clipping or scaling by about 20 %, double for log transformation. Overall, the log transformation method is accurate and robust, and the clipping and scaling methods are

  12. Electro-catalytically Active, High Surface Area Cathodes for Low Temperature SOFCs

    SciTech Connect

    Eric D. Wachsman

    2006-09-30

    This research focused on developing low polarization (area specific resistance, ASR) cathodes for intermediate temperature solid oxide fuel cells (IT-SOFCs). In order to accomplish this we focused on two aspects of cathode development: (1) development of novel materials; and (2) developing the relationships between microstructure and electrochemical performance. The materials investigated ranged from Ag-bismuth oxide composites (which had the lowest reported ASR at the beginning of this contract) to a series of pyrochlore structured ruthenates (Bi{sub 2-x}M{sub x}Ru{sub 2}O{sub 7}, where M = Sr, Ca, Ag; Pb{sub 2}Ru{sub 2}O{sub 6.5}; and Y{sub 2-2x}Pr{sub 2x}Ru{sub 2}O{sub 7}), to composites of the pyrochlore ruthenates with bismuth oxide. To understand the role of microstructure on electrochemical performance, we optimized the Ag-bismuth oxide and the ruthenate-bismuth oxide composites in terms of both two-phase composition and particle size/microstructure. We further investigated the role of thickness and current collector on ASR. Finally, we investigated issues of stability and found the materials investigated did not form deleterious phases at the cathode/electrolyte interface. Further, we established the ability through particle size modification to limit microstructural decay, thus, enhancing stability. The resulting Ag-Bi{sub 0.8}Er{sub 0.2}O{sub 1.5} and Bi{sub 2}Ru{sub 2}O{sub 7{sup -}}Bi{sub 0.8}Er{sub 0.2}O{sub 1.5} composite cathodes had ASRs of 1.0 {Omega} cm{sup 2} and 0.73 {Omega}cm{sup 2} at 500 C and 0.048 {Omega}cm{sup 2} and 0.053 {Omega}cm{sup 2} at 650 C, respectively. These ASRs are truly impressive and makes them among the lowest IT-SOFC ASRs reported to date.

  13. Characterization of Surface Water/Groundwater Exchange Regulating Uranium Transport Using Electrical Imaging and Distributed Temperature Sensing Methods

    SciTech Connect

    Lee D. Slater; Dimitrios Ntarlagiannis; Fred Day-Lewis; Kisa Mwakanyamale; Roelof J Versteeg; Andy Ward; Christopher Strickland; Carole D. Johnson; John Lane

    2010-10-01

    A critical challenge in advancing prediction of solute transport between contaminated aquifers and rivers is improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along river corridors. Here, we explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) monitoring, to improve the conceptual model for uranium transport within the river corridor at the Hanford 300 Area. We first inverted CWEI (resistivity and induced polarization) datasets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse-grained, high permeability Hanford formation and the underlying finer grained, less permeable Ringold formation, an important contact that limits vertical migration of contaminants, were resolved along ~3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). Spatial variability in the thickness of the Hanford formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. The FO- DTS data recorded along a 1.5 km of cable with a 1-m spatial resolution and 5-minute sampling interval revealed sub-reaches showing (1) temperature anomalies (relatively warm in winter and cool in summer) and, (2) a strong correlation between temperature and river stage (negative in winter and positive in summer), both indicative of reaches of enhanced surface water/groundwater exchange. The FO-DTS datasets confirm the

  14. Reconstruction of deglacial sea surface temperature in the tropical Pacific from selective analysis of a fossil coral

    SciTech Connect

    Allison, N.; Finch, A.A.; Tudhope, A.W.; Newville, M.; Sutton, S.R.; Ellam, R.M.

    2010-07-13

    The Sr/Ca of coral skeletons demonstrates potential as an indicator of sea surface temperatures (SSTs). However, the glacial-interglacial SST ranges predicted from Sr/Ca of fossil corals are usually higher than from other marine proxies. We observed infilling of secondary aragonite, characterized by high Sr/Ca ratios, along intraskeletal pores of a fossil coral from Papua New Guinea that grew during the penultimate deglaciation (130 {+-} 2 ka). Selective microanalysis of unaltered areas of the fossil coral indicates that SSTs at {approx}130 ka were {le} 1 C cooler than at present in contrast with bulk measurements (combining infilled and unaltered areas) which indicate a difference of 6-7 C. The analysis of unaltered areas of fossil skeletons by microprobe techniques may offer a route to more accurate reconstruction of past SSTs.

  15. The effect of changes in sea surface temperature on linear growth of Porites coral in Ambon Bay

    SciTech Connect

    Corvianawatie, Corry Putri, Mutiara R.; Cahyarini, Sri Y.

    2015-09-30

    Coral is one of the most important organisms in the coral reef ecosystem. There are several factors affecting coral growth, one of them is changes in sea surface temperature (SST). The purpose of this research is to understand the influence of SST variability on the annual linear growth of Porites coral taken from Ambon Bay. The annual coral linear growth was calculated and compared to the annual SST from the Extended Reconstructed Sea Surface Temperature version 3b (ERSST v3b) model. Coral growth was calculated by using Coral X-radiograph Density System (CoralXDS) software. Coral sample X-radiographs were used as input data. Chronology was developed by calculating the coral’s annual growth bands. A pair of high and low density banding patterns observed in the coral’s X-radiograph represent one year of coral growth. The results of this study shows that Porites coral extents from 2001-2009 and had an average growth rate of 1.46 cm/year. Statistical analysis shows that the annual coral linear growth declined by 0.015 cm/year while the annual SST declined by 0.013°C/year. SST and the annual linear growth of Porites coral in the Ambon Bay is insignificantly correlated with r=0.304 (n=9, p>0.05). This indicates that annual SST variability does not significantly influence the linear growth of Porites coral from Ambon Bay. It is suggested that sedimentation load, salinity, pH or other environmental factors may affect annual linear coral growth.

  16. Assessment of uncertainties in the response of the African monsoon precipitation to land use change simulated by a regional model

    SciTech Connect

    Hagos, Samson M.; Leung, Lai-Yung Ruby; Xue, Yongkang; Boone, Aaron; de Sales, Fernando; Neupane, Naresh; Huang, Maoyi; Yoon, Jin -Ho

    2014-02-22

    Land use and land cover over Africa have changed substantially over the last sixty years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties on the effect of these changes on the African Monsoon system and Sahel precipitation using an ensemble of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Furthermore, the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubs and an increase in surface air temperature.

  17. Assessment of Uncertainties in the Response of the African Monsoon Precipitation to Land Use change simulated by a regional model

    SciTech Connect

    Hagos, Samson M.; Leung, Lai-Yung R.; Xue, Yongkang; Boone, Aaron; de Sales, Fernando; Neupane, Naresh; Huang, Maoyi; Yoon, Jin-Ho

    2014-02-22

    Land use and land cover over Africa have changed substantially over the last sixty years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties on the effect of these changes on the African Monsoon system and Sahel precipitation using an ensemble of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Although the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubs and an increase in surface air temperature.

  18. Radiative forcing and temperature response to changes in urban albedos and associated CO2 offsets

    SciTech Connect

    Menon, Surabi; Akbari, Hashem; Mahanama, Sarith; Sednev, Igor; Levinson, Ronnen

    2010-02-12

    The two main forcings that can counteract to some extent the positive forcings from greenhouse gases from pre-industrial times to present-day are the aerosol and related aerosol-cloud forcings, and the radiative response to changes in surface albedo. Here, we quantify the change in radiative forcing and land surface temperature that may be obtained by increasing the albedos of roofs and pavements in urban areas in temperate and tropical regions of the globe by 0.1. Using the catchment land surface model (the land model coupled to the GEOS-5 Atmospheric General Circulation Model), we quantify the change in the total outgoing (outgoing shortwave+longwave) radiation and land surface temperature to a 0.1 increase in urban albedos for all global land areas. The global average increase in the total outgoing radiation was 0.5 Wm{sup -2}, and temperature decreased by {approx}0.008 K for an average 0.003 increase in surface albedo. These averages represent all global land areas where data were available from the land surface model used and are for the boreal summer (June-July-August). For the continental U.S. the total outgoing radiation increased by 2.3 Wm{sup -2}, and land surface temperature decreased by {approx}0.03 K for an average 0.01 increase in surface albedo. Based on these forcings, the expected emitted CO{sub 2} offset for a plausible 0.25 and 0.15 increase in albedos of roofs and pavements, respectively, for all global urban areas, was found to be {approx} 57 Gt CO{sub 2}. A more meaningful evaluation of the impacts of urban albedo increases on global climate and the expected CO{sub 2} offsets would require simulations which better characterizes urban surfaces and represents the full annual cycle.

  19. An Analysis of the Temperature and Field Dependence of the RF Surface Resistance of Nitrogen-Doped Niobium SRF Cavities with Respect to Existing Theoretical Models

    SciTech Connect

    Reece, Charles E.; Palczewski, Ari D.; Xiao, Binping

    2015-09-01

    Recent progress with the reduction of rf surface resistance (Rs) of niobium SRF cavities via the use of high temperature surface doping by nitrogen has opened a new regime for energy efficient accelerator applications. For particular doping conditions one observes dramatic decreases in Rs with increasing surface magnetic fields. The observed variations as a function of temperature may be analyzed in the context of recent theoretical treatments in hopes of gaining insight into the underlying beneficial mechanism of the nitrogen treatment. Systematic data sets of Q0 vs. Eacc vs. temperature acquired during the high Q0 R&D work of the past year will be compared with theoretical model predictions.1, 2 1. B. P. Xiao, C. E. Reece and M. J. Kelley, Physica C: Superconductivity 490 (0), 26-31 (2013). 2. A. Gurevich, PRL 113 (8), 087001 (2014).

  20. Communication: Rigorous quantum dynamics of O + O{sub 2} exchange reactions on an ab initio potential energy surface substantiate the negative temperature dependence of rate coefficients

    SciTech Connect

    Li, Yaqin; Sun, Zhigang E-mail: dawesr@mst.edu; Jiang, Bin; Guo, Hua E-mail: dawesr@mst.edu; Xie, Daiqian; Dawes, Richard E-mail: dawesr@mst.edu

    2014-08-28

    The kinetics and dynamics of several O + O{sub 2} isotope exchange reactions have been investigated on a recently determined accurate global O{sub 3} potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged “reef” structure, which was present in all previous potential energy surfaces. In addition, contributions of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.

  1. Determining the U-value of a wall from field measurements of heat flux and surface temperatures

    SciTech Connect

    Modera, M.P.; Sherman, M.H.; Sonderegger, R.C.

    1986-05-01

    Thermal conductances (U-values) and thermal resistances (R-values) are discussed throughout the literature as the appropriate parameters for characterizing heat transfer through walls. Because the quoted numbers are usually determined from the handbook values of material properties, they have several drawbacks: (1) they do not take into account degradation effects, (2) they ignore construction irregularities, and (3) they do not take into account multi-dimensional heat flow. This paper examines the use of field measurements of heat flow and surface temperatures to determine the U-values of walls. The effects of thermal mass on measurements of wall U-values are described in detail, using two data interpretation techniques to estimate the U-values of insulated and uninsulated cavity walls, with and without brick facing. The errors in U-value estimation are determined by comparison with an analytical model of wall thermal performance. For each wall, the error in the U-value determination is plotted as a function of test length for several typical weather conditions. For walls with low thermal mass, such as an fiberglass-insulated cavity wall, it appears that, under favorable test conditions, a 6-hour measurement is adequate to measure the U-value within about 10% uncertainty. For masonary walls, the measurement time required is considerably longer than 6 hours. It is shown that for masonry walls, and in general, the optimal measurement time is a multiple of 24 hours due to the effects of diurnal weather fluctuations.

  2. Land use and energy

    SciTech Connect

    Robeck, K.E.; Ballou, S.W.; South, D.W.; Davis, M.J.; Chiu, S.Y.; Baker, J.E.; Dauzvardis, P.A.; Garvey, D.B.; Torpy, M.F.

    1980-07-01

    This report provides estimates of the amount of land required by past and future energy development in the United States and examines major federal legislation that regulates the impact of energy facilities on land use. An example of one land use issue associated with energy development - the potential conflict between surface mining and agriculture - is illustrated by describing the actual and projected changes in land use caused by coal mining in western Indiana. Energy activities addressed in the report include extraction of coal, oil, natural gas, uranium, oil shale, and geothermal steam; uranium processing; preparation of synfuels from coal; oil refineries; fossil-fuel, nuclear, and hydro-electric power plants; biomass energy farms; and disposal of solid wastes generated during combustion of fossil fuels. Approximately 1.1 to 3.3 x 10/sup 6/ acres were devoted to these activities in the United States in 1975. As much as 1.8 to 2.0 x 10/sup 6/ additional acres could be required by 1990 for new, nonbiomass energy development. The production of grain for fuel ethanol could require an additional 16.9 to 55.7 x 10/sup 6/ acres by 1990. Federal laws that directly or indirectly regulate the land-use impacts of energy facilities include the National Environmental Protection Act, Clean Air Act, Federal Water Pollution Control Act, Surface Mining Control and Reclamation Act, and Coastal Zone Management Act. The major provisions of these acts, other relevant federal regulations, and similar state and local regulatons are described in this report. Federal legislation relating to air quality, water quality, and the management of public lands has the greatest potential to influence the location and timing of future energy development in the United States.

  3. Anomalous grain growth in the surface region of a nanocrystalline CeO2 film under low-temperature heavy ion irradiation

    SciTech Connect

    Edmondson, Philip D.; Zhang, Yanwen; Moll, Sandra J.; Varga, Tamas; Namavar, Fereydoon; Weber, William J.

    2012-06-15

    Grain growth and phase stability of nanocrystalline ceria are investigated under ion irradiation at different temperatures. Irradiations at temperatures of 300 and 400 K result in uniform grain growth throughout the film. Anomalous grain growth is observed in thin films of nanocrystalline ceria under 3 MeV Au+ irradiation at 160 K. At this low temperature, significant grain growth is observed within 100 nm from the surface, no obvious growth is detected in the rest of the films. While the grain growth is attributed to a defect-stimulated mechanism at room temperature and above, a defect diffusion-limited mechanism is significant at low temperature with the primary defect responsible being the oxygen vacancy. The nanocrystalline grains remain in the cubic phase regardless of defect kinetics.

  4. The influence of surface preparation on low temperature HfO{sub 2} ALD on InGaAs (001) and (110) surfaces

    SciTech Connect

    Kent, Tyler; Edmonds, Mary; Kummel, Andrew C.; Tang, Kechao; Negara, Muhammad Adi; McIntyre, Paul; Chobpattana, Varistha; Mitchell, William; Sahu, Bhagawan; Galatage, Rohit; Droopad, Ravi

    2015-10-28

    Current logic devices rely on 3D architectures, such as the tri-gate field effect transistor (finFET), which utilize the (001) and (110) crystal faces simultaneously thus requiring passivation methods for the (110) face in order to ensure a pristine 3D surface prior to further processing. Scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy (XPS), and correlated electrical measurement on MOSCAPs were utilized to compare the effects of a previously developed in situ pre-atomic layer deposition (ALD) surface clean on the InGaAs (001) and (110) surfaces. Ex situ wet cleans are very effective on the (001) surface but not the (110) surface. Capacitance voltage indicated the (001) surface with no buffered oxide etch had a higher C{sub max} hypothesized to be a result of poor nucleation of HfO{sub 2} on the native oxide. An in situ pre-ALD surface clean employing both atomic H and trimethylaluminum (TMA) pre-pulsing, developed by Chobpattana et al. and Carter et al. for the (001) surface, was demonstrated to be effective on the (110) surface for producing low D{sub it} high C{sub ox} MOSCAPs. Including TMA in the pre-ALD surface clean resulted in reduction of the magnitude of the interface state capacitance. The XPS studies show the role of atomic H pre-pulsing is to remove both carbon and oxygen while STM shows the role of TMA pre-pulsing is to eliminate H induced etching. Devices fabricated at 120 °C and 300 °C were compared.

  5. Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems...

    Office of Scientific and Technical Information (OSTI)

    and over many regions of the world, particularly during the summertime growing season when intense turbulence induced by surface radiation couples the land surface to clouds. ...

  6. Oxynitrided Surface Layer Produced On Ti6Al4V Titanium Alloy Under Low Temperature Glow Discharge Conditions For Medical Applications

    SciTech Connect

    Wierzchon, T.; Ossowski, M.; Borowski, T.; Morgiel, J.; Czarnowska, E.

    2011-01-17

    In spite that titanium oxides increase biocompatibility of titanium implants but their functional life is limited due to the problems arising from brittles and metalosis. Therefore technology, that allow to produce composite surface layer with controlled microstructure, chemical and phase composition and surface morphology on titanium alloy and eliminates the oxides disadvantages has been existing till now is searched. The requirements of titanium and its alloys implants can be fulfill by the low-temperature glow discharge assisted oxynitriding.The paper describes the surface layer of TiO{sub 2}+TiN+Ti{sub 2}N+{alpha}Ti(N) type produced at temperature 680 deg. C that preserves mechanical properties of titanium alloy Ti6Al4V. Characteristics of produced diffusion multi-phase surface layers in range of phase composition, microstructure (SEM, TEM, XRD) and its properties, such as frictional wear resistance are presented. The biological properties in dependency to the applied sterilization method are also analyzed.Properties of produced surface layers are discussed with reference to titanium alloy. The obtained data show that produced surface layers improves titanium alloy properties both frictional wear and biological. Preliminary in vitro examinations show good biocompatibility and antithrombogenic properties.

  7. Impact of modern climate change on the intercommunication: Global ocean-land (Northern Hemisphere)

    SciTech Connect

    Lobanova, H.V.; Lobanov, V.A.; Stepanenko, S.R.

    1996-12-31

    Two main temperature gradients define the synoptic and climatic conditions on the earth in general: equator-pole gradient and ocean-land gradient. The analysis of temperature on the basis of new cyclic-different-scales conception has been fulfilled in every important part of the climatic system in the Northern Hemisphere for assessment of their vulnerability to modern climate change. Historical time series of monthly surface temperature have been used for this aim in the points of regular grid over the Northern Hemisphere from 1891 to 1992. The main feature of the temperature in main climatic parts of the earth is a complexity of its spatial structure. New methods of spatial decomposition have been developed for the division of this complex fields structure into characteristics of mean value of the field and index of its non-homogeneity or spatial variation. It has been established, that the temperature gradient between ocean and land is increasing that is characterized of the increasing of an intensity of synoptic processes, their spatial non-homogeneity and more frequent appearance of the extreme synoptic events. The models of intercommunications between coefficients of temperature spatial decomposition over the ocean and land have been developed for two time period and the increasing of the relationships closeness has been established between ocean and land as well as the decrease of main planet gradient: the pole(the Polar ocean)-equator.

  8. A smart sensor system for trace organic vapor detection using a temperature-controlled array of surface acoustic wave vapor sensors, automated preconcentrator tubes, and pattern recognition

    SciTech Connect

    Grate, J.W.; Rose-Pehrsson, S.L.; Klusty, M.; Wohltjen, H.

    1993-05-01

    A smart sensor system for the detection, of toxic organophosphorus and toxic organosulfur vapors at trace concentrations has been designed, fabricated, and tested against a wide variety of vapor challenges. The key features of the system are: An array of four surface acoustic wave (SAW) vapor sensors, temperature control of the vapor sensors, the use of pattern recognition to analyze the sensor data, and an automated sampling system including thermally-desorbed preconcentrator tubes (PCTs).

  9. Land Use and Land Cover Change

    SciTech Connect

    Brown, Daniel; Polsky, Colin; Bolstad, Paul V.; Brody, Samuel D.; Hulse, David; Kroh, Roger; Loveland, Thomas; Thomson, Allison M.

    2014-05-01

    A contribution to the 3rd National Climate Assessment report, discussing the following key messages: 1. Choices about land-use and land-cover patterns have affected and will continue to affect how vulnerable or resilient human communities and ecosystems are to the effects of climate change. 2. Land-use and land-cover changes affect local, regional, and global climate processes. 3. Individuals, organizations, and governments have the capacity to make land-use decisions to adapt to the effects of climate change. 4. Choices about land use and land management provide a means of reducing atmospheric greenhouse gas levels.

  10. Low-temperature atomic layer deposition of Al{sub 2}O{sub 3} on blown polyethylene films with plasma-treated surfaces

    SciTech Connect

    Beom Lee, Gyeong; Sik Son, Kyung; Won Park, Suk; Hyung Shim, Joon; Choi, Byoung-Ho

    2013-01-15

    In this study, a layer of Al{sub 2}O{sub 3} was deposited on blown polyethylene films by atomic layer deposition (ALD) at low temperatures, and the surface characteristics of these Al{sub 2}O{sub 3}-coated blown polyethylene films were analyzed. In order to examine the effects of the plasma treatment of the surfaces of the blown polyethylene films on the properties of the films, both untreated and plasma-treated film samples were prepared under various processing conditions. The surface characteristics of the samples were determined by x-ray photoelectron spectroscopy, as well as by measuring their surface contact angles. It was confirmed that the surfaces of the plasma-treated samples contained a hydroxyl group, which helped the precursor and the polyethylene substrate to bind. ALD of Al{sub 2}O{sub 3} was performed through sequential exposures to trimethylaluminum and H{sub 2}O at 60 Degree-Sign C. The surface morphologies of the Al{sub 2}O{sub 3}-coated blown polyethylene films were observed using atomic force microscopy and scanning electron microscopy/energy-dispersive x-ray spectroscopy. Further, it was confirmed that after ALD, the surface of the plasma-treated film was covered with alumina grains more uniformly than was the case for the surface of the untreated polymer film. It was also confirmed via the focused ion beam technique that the layer Al{sub 2}O{sub 3} conformed to the surface of the blown polyethylene film.

  11. In situ atomic force microscope study of high-temperature untwinning surface relief in Mn-Fe-Cu antiferromagnetic shape memory alloy

    SciTech Connect

    Wang, L.; Cui, Y. G.; Wan, J. F.; Rong, Y. H.; Zhang, J. H.; Jin, X.; Cai, M. M.

    2013-05-06

    The N-type untwinning surface relief associated with the fcc {r_reversible} fct martensitic transformation (MT) was observed in the Mn{sub 81.5}Fe{sub 14.0}Cu{sub 4.5} antiferromagnetic high-temperature shape memory alloy (SMA) by in situ atomic force microscopy. The measured untwinning relief angles ({theta}{sub {alpha}} Double-Vertical-Line {theta}{sub {beta}}) at the ridge and at the valley were different, and both angles were less than the conventional values. The surface relief exhibited good reversibility during heating and cooling because of the crystallographic reversibility of thermal-elastic SMAs. Untwinning shear was proposed as the main mechanism of the N-type surface relief. The order of the reverse MT was discussed based on the experimental measurements.

  12. Addressing numerical challenges in introducing a reactive transport code into a land surface model: A biogeochemical modeling proof-of-concept with CLM-PFLOTRAN 1.0: Modeling Archive

    DOE Data Explorer

    R. T. Mills; G. Bisht; G. E. Hammond; J. Kumar; P. C. Lichtner; F. M. Hoffman; X. Xu; F. Yuan; S. L. Painter; G. Tang; and P.E. Thornton; B. Andre

    2016-04-19

    This Modeling Archive is in support of an NGEE Arctic discussion paper under review and available at doi:10.5194/gmd-9-927-2016. The purpose is to document the simulations to allow verification, reproducibility, and follow-up studies. This dataset contains shell scripts to create the CLM-PFLOTRAN cases, specific input files for PFLOTRAN and CLM, outputs, and python scripts to make the figures using the outputs in the publication. Through these results, we demonstrate that CLM-PFLOTRAN can approximately reproduce CLM results in selected cases for the Arctic, temperate and tropic sites. In addition, the new framework facilitates mechanistic representations of soil biogeochemistry processes in the land surface model.

  13. TRIDEC Land TRIDEC Land Transfer REQUEST Transfer REQUEST

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Area TRIDEC Land TRIDEC Land Transfer REQUEST Transfer REQUEST 300 Acres 300 Acres Additional Lands Additional Lands Identified for Identified for EA Analysis EA Analysis 2,772...

  14. Coupling a Reactive Transport Code with a Global Land Surface Model for Mechanistic Biogeochemistry Representation: 1. Addressing the Challenge of Nonnegativity

    SciTech Connect

    Tang, Guoping; Yuan, Fengming; Bisht, Gautam; Hammond, Glenn E.; Lichtner, Peter C.; Collier, Nathaniel O.; Kumar, Jitendra; Mills, Richard T.; Xu, Xiaofeng; Andre, Ben; Hoffman, Forrest M.; Painter, Scott L.; Thornton, Peter E.

    2016-01-01

    Reactive transport codes (e.g., PFLOTRAN) are increasingly used to improve the representation of biogeochemical processes in terrestrial ecosystem models (e.g., the Community Land Model, CLM). As CLM and PFLOTRAN use explicit and implicit time stepping, implementation of CLM biogeochemical reactions in PFLOTRAN can result in negative concentration, which is not physical and can cause numerical instability and errors. The objective of this work is to address the nonnegativity challenge to obtain accurate, efficient, and robust solutions. We illustrate the implementation of a reaction network with the CLM-CN decomposition, nitrification, denitrification, and plant nitrogen uptake reactions and test the implementation at arctic, temperate, and tropical sites. We examine use of scaling back the update during each iteration (SU), log transformation (LT), and downregulating the reaction rate to account for reactant availability limitation to enforce nonnegativity. Both SU and LT guarantee nonnegativity but with implications. When a very small scaling factor occurs due to either consumption or numerical overshoot, and the iterations are deemed converged because of too small an update, SU can introduce excessive numerical error. LT involves multiplication of the Jacobian matrix by the concentration vector, which increases the condition number, decreases the time step size, and increases the computational cost. Neither SU nor SE prevents zero concentration. When the concentration is close to machine precision or 0, a small positive update stops all reactions for SU, and LT can fail due to a singular Jacobian matrix. The consumption rate has to be downregulated such that the solution to the mathematical representation is positive. A first-order rate downregulates consumption and is nonnegative, and adding a residual concentration makes it positive. For zero-order rate or when the reaction rate is not a function of a reactant, representing the availability limitation of each

  15. Coupling a Reactive Transport Code with a Global Land Surface Model for Mechanistic Biogeochemistry Representation: 1. Addressing the Challenge of Nonnegativity

    DOE PAGES [OSTI]

    Tang, Guoping; Yuan, Fengming; Bisht, Gautam; Hammond, Glenn E.; Lichtner, Peter C.; Collier, Nathaniel O.; Kumar, Jitendra; Mills, Richard T.; Xu, Xiaofeng; Andre, Ben; et al

    2016-01-01

    Reactive transport codes (e.g., PFLOTRAN) are increasingly used to improve the representation of biogeochemical processes in terrestrial ecosystem models (e.g., the Community Land Model, CLM). As CLM and PFLOTRAN use explicit and implicit time stepping, implementation of CLM biogeochemical reactions in PFLOTRAN can result in negative concentration, which is not physical and can cause numerical instability and errors. The objective of this work is to address the nonnegativity challenge to obtain accurate, efficient, and robust solutions. We illustrate the implementation of a reaction network with the CLM-CN decomposition, nitrification, denitrification, and plant nitrogen uptake reactions and test the implementation atmore » arctic, temperate, and tropical sites. We examine use of scaling back the update during each iteration (SU), log transformation (LT), and downregulating the reaction rate to account for reactant availability limitation to enforce nonnegativity. Both SU and LT guarantee nonnegativity but with implications. When a very small scaling factor occurs due to either consumption or numerical overshoot, and the iterations are deemed converged because of too small an update, SU can introduce excessive numerical error. LT involves multiplication of the Jacobian matrix by the concentration vector, which increases the condition number, decreases the time step size, and increases the computational cost. Neither SU nor SE prevents zero concentration. When the concentration is close to machine precision or 0, a small positive update stops all reactions for SU, and LT can fail due to a singular Jacobian matrix. The consumption rate has to be downregulated such that the solution to the mathematical representation is positive. A first-order rate downregulates consumption and is nonnegative, and adding a residual concentration makes it positive. For zero-order rate or when the reaction rate is not a function of a reactant, representing the availability limitation

  16. Surface characterizatin of palladium-alumina sorbents for high-temperature capture of mercury and arsenic from fuel gas

    SciTech Connect

    Baltrus, J.P.; Granite, E.J.; Pennline, H.W.; Stanko, D.; Hamilton, H.; Rowsell, L.; Poulston, S.; Smith, A.; Chu, W.

    2010-01-01

    Coal gasification with subsequent cleanup of the resulting fuel gas is a way to reduce the impact of mercury and arsenic in the environment during power generation and on downstream catalytic processes in chemical production, The interactions of mercury and arsenic with PdlAl2D3 model thin film sorbents and PdlAh03 powders have been studied to determine the relative affinities of palladium for mercury and arsenic, and how they are affected by temperature and the presence of hydrogen sulfide in the fuel gas. The implications of the results on strategies for capturing the toxic metals using a sorbent bed are discussed.

  17. Surface roughness statistics and temperature step stress effects for D-T solid layers equilibrated inside a 2 mm beryllium torus

    SciTech Connect

    Sheliak, J.D.; Hoffer, J.K.

    1998-12-31

    Solid D-T layers are equilibrated inside a 2 mm diameter beryllium toroidal cell at temperatures ranging from 19.0 K to 19.6 K, using the beta-layering process. The experimental runs consists of multiple cycles of rapid- or slow-freezing of the initially liquid D-T charge, followed by a lengthy period of beta-layering equilibration, terminated by melting the layer. The temperature was changed in discrete steps at the end of some equilibration cycles in an attempt to simulate actual ICF target conditions. High-precision images of the D-T solid-vapor interface were analyzed to yield the surface roughness {sigma}{sub mns} as a sum of modal contributions. Results show an overage {sigma}{sub mns} of 1.3 {+-} 0.3 {micro}m for layers equilibrated at 19.0 K and show an inverse dependence of {sigma}{sub mns} on equilibration temperature up to 19.525 K. Inducing sudden temperature perturbations lowered {sigma}{sub mns} to 1.0 {+-} 0.05 {micro}m.

  18. C-H surface diamond field effect transistors for high temperature (400 °C) and high voltage (500 V) operation

    SciTech Connect

    Kawarada, H.; Tsuboi, H.; Naruo, T.; Yamada, T.; Xu, D.; Daicho, A.; Saito, T.; Hiraiwa, A.

    2014-07-07

    By forming a highly stable Al{sub 2}O{sub 3} gate oxide on a C-H bonded channel of diamond, high-temperature, and high-voltage metal-oxide-semiconductor field-effect transistor (MOSFET) has been realized. From room temperature to 400 °C (673 K), the variation of maximum drain-current is within 30% at a given gate bias. The maximum breakdown voltage (V{sub B}) of the MOSFET without a field plate is 600 V at a gate-drain distance (L{sub GD}) of 7 μm. We fabricated some MOSFETs for which V{sub B}/L{sub GD} > 100 V/μm. These values are comparable to those of lateral SiC or GaN FETs. The Al{sub 2}O{sub 3} was deposited on the C-H surface by atomic layer deposition (ALD) at 450 °C using H{sub 2}O as an oxidant. The ALD at relatively high temperature results in stable p-type conduction and FET operation at 400 °C in vacuum. The drain current density and transconductance normalized by the gate width are almost constant from room temperature to 400 °C in vacuum and are about 10 times higher than those of boron-doped diamond FETs.

  19. Thermodynamic understanding of Sn whisker growth on the Cu surface in Cu(top)-Sn(bottom) bilayer system upon room temperature aging

    SciTech Connect

    Huang, Lin; Jian, Wei; Lin, Bing; Wang, Jiangyong; Wen, Yuren; Gu, Lin

    2015-06-07

    Sn whiskers are observed by scanning electron microscope on the Cu surface in Cu(top)-Sn(bottom) bilayer system upon room temperature aging. Only Cu{sub 6}Sn{sub 5} phase appears in the X-ray diffraction patterns and no Sn element is detected in the Cu sublayer by scanning transmission electron microscopy. Based on the interfacial thermodynamics, the intermetallic Cu{sub 6}Sn{sub 5} compound phase may form directly at the Sn grain boundary. Driven by the stress gradient during the formation of Cu{sub 6}Sn{sub 5} compound at Sn grain boundaries, Sn atoms segregate onto the Cu surface and accumulate to form Sn whisker.

  20. Land Management - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Land Management About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us Land Management Email Email Page | Print Print Page |Text Increase Font Size...

  1. Investigation of Cathode Electrocatalytic Activity using Surface Engineered Thin Film Samples and High Temperature Physical Property Measurements

    SciTech Connect

    Salvador, Paul

    2014-02-23

    In this Final Technical Report, a summary of the technical output from the award DE-NT0004105 is given. First, the major goals and observations from the project are reviewed and then specific example results are presented as highlights. The surprising importance of microstructure on the surface chemical exchange coefficient in La0.7Sr0.3MnO3 (LSM) was uncovered in this work and is re-emphasized in this report. Significant orientation and thickness dependencies of the surface exchange coefficient are correlated with microstructural effects, especially to the nature of the strain, dislocation content, and grain boundary population. We also illustrate similar microstructural effects are present in other SOFC cathode systems, including LSCF (La1-xSrxCo1-yFeyO3) and La2NiO4 (LNO). Throughout the report, the relation to SOFC cathode performance is discussed.

  2. A KNOWLEDGE DISCOVERY STRATEGY FOR RELATING SEA SURFACE TEMPERATURES TO FREQUENCIES OF TROPICAL STORMS AND GENERATING PREDICTIONS OF HURRICANES UNDER 21ST-CENTURY GLOBAL WARMING SCENARIOS

    SciTech Connect

    Race, Caitlin; Steinbach, Michael; Ganguly, Auroop R; Semazzi, Fred; Kumar, Vipin

    2010-01-01

    The connections among greenhouse-gas emissions scenarios, global warming, and frequencies of hurricanes or tropical cyclones are among the least understood in climate science but among the most fiercely debated in the context of adaptation decisions or mitigation policies. Here we show that a knowledge discovery strategy, which leverages observations and climate model simulations, offers the promise of developing credible projections of tropical cyclones based on sea surface temperatures (SST) in a warming environment. While this study motivates the development of new methodologies in statistics and data mining, the ability to solve challenging climate science problems with innovative combinations of traditional and state-of-the-art methods is demonstrated. Here we develop new insights, albeit in a proof-of-concept sense, on the relationship between sea surface temperatures and hurricane frequencies, and generate the most likely projections with uncertainty bounds for storm counts in the 21st-century warming environment based in turn on the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios. Our preliminary insights point to the benefits that can be achieved for climate science and impacts analysis, as well as adaptation and mitigation policies, by a solution strategy that remains tailored to the climate domain and complements physics-based climate model simulations with a combination of existing and new computational and data science approaches.

  3. Effect of exposing two commercial manufacturers' second surface silver/glass mirrors to elevated temperature, mechanical loading, and high-humidity environments

    SciTech Connect

    Dake, L.S.; Lind, M.A.

    1982-04-01

    A preliminary examination of the effect of three accelerated exposure parameters on second surface silver/glass mirrors was performed. The variables studied were temperature (elevated and sub-zero), humidity and mechanical loading. One test consisted of exposing mirror coupons to dry heat (80/sup 0/C) and heat plus water vapor (80/sup 0/C, approx. 100% RH) environments. Another test consisted of subjecting mechanically loaded mirror strips to sub-zero temperature (-20/sup 0/C), dry heat (80/sup 0/C), and heat plus water vapor. Samples were evaluated qualitatively using dark field microscopy (1X and 100X). Quantitative determination of the effects of exposure testing on the mirrors was done with spectrophotometer spectral hemispherical and diffuse reflectance measurements. Degradation that was progressive with time was observed for mirrors exposed to dry heat and heat plus water vapor. The degradation did not have the same visual appearance for the two environments. Mechanical loading at -20/sup 0/C produced no degradation after three months' exposure time. Mechanical loading in dry heat and heat plus water vapor environments resulted in mirror degradation that was the same as that found in unloaded mirrors exposed to the same temperature and humidity. These preliminary tests indicate that the dry heat and heat plus water vapor accelerated tests may provide useful information about mirror degradation, while the mechanical load tests do not. The microscopy and spectrophotometer reflectance measurements were both useful techniques for determining the extent of degradation.

  4. H. R. 4053: A Bill to amend the Surface Mining Control and Reclamation Act of 1977 to provide for the remining of certain abandoned coal mine lands. Introduced in the House of Representatives, One Hundredth First Congress, Second Session, February 21, 1990

    SciTech Connect

    Not Available

    1990-01-01

    The bill would amend the Surface Mining Control and Reclamation Act of 1977 to provide for the remining of certain abandoned coal mine lands. The bill describes definitions; state remining insurance programs; state self-sustaining remining insurance fund; penalties and enforcement; special rules applicable to remining operations; and abandoned coal refuse and disposal piles.

  5. Stimulated decomposition of Fe(OH)[sub 2] in the presence of AVT chemicals and metallic surfaces - Relevance to low-temperature feedwater line corrosion

    SciTech Connect

    Joshi, P.S.; Venkateswaran, G.; Venkateswarlu, K.S.; Rao, K.A. )

    1993-04-01

    Alkalizing agents cyclohexylamine, morpholine, and hydrazine accelerate the base-induced decomposition of Fe(OH)[sub 2] even at high pH levels by lowering the activation energy of the reaction. Efficient evolution of hydrogen is observed from Fe(OH)[sub 2] suspension in the presence of hydrazine, while weakly stimulated evolution is observed in the presence of cyclohexylamine and morpholine. It appears that the concentration and complexing abilities of the additives critically determine the yield of hydrogen. Nickel-containing surfaces such as NiO and Monel 400 alloy (UNS N04400) apart from pure nickel also increase the H[sub 2] yield from Fe(OH)[sub 2] suspensions. These observations are related to corrosion occurring in the low-temperature portion of feedwater circuits of power plants.

  6. Assessment of uncertainties in the response of the African monsoon precipitation to land use change simulated by a regional model

    DOE PAGES [OSTI]

    Hagos, Samson M.; Leung, Lai-Yung Ruby; Xue, Yongkang; Boone, Aaron; de Sales, Fernando; Neupane, Naresh; Huang, Maoyi; Yoon, Jin -Ho

    2014-02-22

    Land use and land cover over Africa have changed substantially over the last sixty years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties on the effect of these changes on the African Monsoon system and Sahel precipitation using an ensemble of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Furthermore, the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubsmore » and an increase in surface air temperature.« less

  7. Spatiotemporal temperature and density characterization of high-power atmospheric flashover discharges over inert poly(methyl methacrylate) and energetic pentaerythritol tetranitrate dielectric surfaces

    SciTech Connect

    Tang, V.; Grant, C. D.; McCarrick, J. F.; Zaug, J. M.; Glascoe, E. A.; Wang, H.

    2012-03-01

    A flashover arc source that delivered up to 200 mJ on the 100s-of-ns time-scale to the arc and a user-selected dielectric surface was characterized for studying high-explosive kinetics under plasma conditions. The flashover was driven over thin pentaerythritol tetranitrate (PETN) and poly(methyl methacrylate) (PMMA) dielectric films and the resultant plasma was characterized in detail. Time- and space-resolved temperatures and electron densities of the plasma were obtained using atomic emission spectroscopy. The hydrodynamics of the plasma was captured through fast, visible imaging. Fourier transform infrared spectroscopy (FTIR) was used to characterize the films pre- and post-shot for any chemical alterations. Time-resolved infrared spectroscopy (TRIR) provided PETN depletion data during the plasma discharge. For both types of films, temperatures of 1.6-1.7 eV and electron densities of {approx}7-8 x 10{sup 17}/cm{sup 3}{approx}570 ns after the start of the discharge were observed with temperatures of 0.6-0.7 eV persisting out to 15 {mu}s. At 1.2 {mu}s, spatial characterization showed flat temperature and density profiles of 1.1-1.3 eV and 2-2.8 x 10{sup 17}/cm{sup 3} for PETN and PMMA films, respectively. Images of the plasma showed an expanding hot kernel starting from radii of {approx}0.2 mm at {approx}50 ns and reaching {approx}1.1 mm at {approx}600 ns. The thin films ablated or reacted several hundred nm of material in response to the discharge. First TRIR data showing the in situ reaction or depletion of PETN in response to the flashover arc were successfully obtained, and a 2-{mu}s, 1/e decay constant was measured. Preliminary 1 D simulations compared reasonably well with the experimentally determined plasma radii and temperatures. These results complete the first steps to resolving arc-driven PETN reaction pathways and their associated kinetic rates using in situ spectroscopy techniques.

  8. Carbon Sequestration on Surface Mine Lands

    SciTech Connect

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2005-12-07

    A major effort this quarter was to inventory all the planted areas to evaluate the diameter and height growth as well as determine survival rates. Soil bulk density and compaction continue to be evaluated on all the areas to determine the effects on tree growth and survival. The hydrologic quantity and quality are continuously monitored and quantified. Much effort was also expended in preparing technical presentations for professional meeting and field trips for a variety of audiences.

  9. Archaeology on Lab Land

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Archaeology on Lab Land Archaeology on Lab Land People have lived in this area for more than 5,000 years. Lab archaeologists are studying and preserving the ancient human occupation of the Pajarito Plateau. Archaeology on Lab Land exhibit Environmental Research & Monitoring Visit our exhibit and find out how Los Alamos researchers are studying our rich cultural diversity. READ MORE Nake'muu archaeological site Unique Archaeology The thousands of Ancestral Pueblo sites identified on Lab land

  10. Use of Electrical Imaging and Distributed Temperature Sensing Methods to Characterize Surface Water-Groundwater Exchange Regulating Uranium Transport at the Hanford 300 Area, Washington

    SciTech Connect

    Slater, Lee; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Mwakanyamale, Kisa; Versteeg, Roelof J.; Ward, Anderson L.; Strickland, Christopher E.; Johnson, Carole D.; Lane, John W.

    2010-10-31

    A critical challenge in advancing prediction of solute transport between contaminated aquifers and rivers is improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along river corridors. Here, we explored the use of waterborne geoelectrical imaging, in conjunction with fiber-optic distributed temperature sensor (DTS) monitoring, to improve the conceptual model for uranium transport within the hyporheic corridor at the Hanford 300 Area. We first inverted waterborne geoelectrical (resistivity and induced polarization) datasets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse-grained, high permeability Hanford formation and the underlying finer-grained, less permeable Ringold formation, an important contact that limits vertical migration of contaminants, were resolved along ~3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). The spatial variability captured in the geoelectrical datasets indicates that previous studies based on borehole projections and point probing overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. The DTS data recorded on 1. 5 km of cable with a 1 m spatial resolution and 5 minute sampling interval revealed sub-reaches showing (1) high temperature anomalies and, (2) a strong negative correlation between temperature and river stage, both indicative of groundwater influxes during winter months. The DTS datasets confirm the hydrologic significance of the variability identified in the geoelectrical imaging and reveal a pattern of highly focused hyporheic exchange, with

  11. Design, Construction, and Initial Test of High Spatial Resolution Thermometry Arrays for Detection of Surface Temperature Profiles on SRF Cavities in Super Fluid Helium

    SciTech Connect

    Ari Palczewski, Rongli Geng, Grigory Eremeev

    2011-07-01

    We designed and built two high resolution (0.6-0.55mm special resolution [1.1-1.2mm separation]) thermometry arrays prototypes out of the Allen Bradley 90-120 ohm 1/8 watt resistor to measure surface temperature profiles on SRF cavities. One array was designed to be physically flexible and conform to any location on a SRF cavity; the other was modeled after the common G-10/stycast 2850 thermometer and designed to fit on the equator of an ILC (Tesla 1.3GHz) SRF cavity. We will discuss the advantages and disadvantages of each array and their construction. In addition we will present a case study of the arrays performance on a real SRF cavity TB9NR001. TB9NR001 presented a unique opportunity to test the performance of each array as it contained a dual (4mm separation) cat eye defect which conventional methods such as OST (Oscillating Superleak second-sound Transducers) and full coverage thermometry mapping were unable to distinguish between. We will discuss the new arrays ability to distinguish between the two defects and their preheating performance.

  12. H. R. 4804: A bill to amend titles I, II, IV and V of the Surface Mining Control and Reclamation Act of 1977, and to add a new title X, to encourage the remining and reclamation of abandoned mined lands by active mining operations, and for other purposes. Introduced in the House of Representatives, One Hundredth Congress, Second Session, June 14, 1988

    SciTech Connect

    Not Available

    1988-01-01

    Surface coal mining operations can be effective in the reclamation of abandoned mined lands and are being encouraged by the amendments to the existing Surface Mining Control and Reclamation Act of 1977. The new section X - Remining spells out the authority of the Secretary of the Interior to enter into agreements with mining companies to use excess spoil from an active surface mine to reclaim an abandoned site, to develop a bond guarantee program whereby the operators may be compensated with reclamation bond credits for up to 80% of the reclamation costs incurred, and to make funds available on a matching basis to states or tribes to collect certain geologic and hydrologic data for watersheds or regions adversely affected by past coal mining abuses for the use of regulatory authorities to assist applicants for surface mining permits within such areas.

  13. ARM - Measurement - Surface condition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    condition ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface condition State of the surface, including vegetation, land use, surface type, roughness, and such; often provided in model output. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list

  14. Watershed response and land energy feedbacks under climate change depend upon groundwater.

    SciTech Connect

    Maxwell, R M; Kollet, S J

    2008-06-10

    Human induced climate change will have a significant impact on the hydrologic cycle, creating changes in fresh water resources, land cover, and feedbacks that are difficult to characterize, which makes it an issue of global importance. Previous studies have not included subsurface storage in climate change simulations and feedbacks. A variably-saturated groundwater flow model with integrated overland flow and land surface model processes is used to examine the interplay between coupled water and energy processes under climate change conditions. A case study from the Southern Great Plains (SGP) USA, an important agricultural region that is susceptible to drought, is used as the basis for three scenarios simulations using a modified atmospheric forcing dataset to reflect predicted effects due to human-induced climate change. These scenarios include an increase in the atmospheric temperature and variations in rainfall amount and are compared to the present-day climate case. Changes in shallow soil saturation and groundwater levels are quantified as well as the corresponding energy fluxes at the land surface. Here we show that groundwater and subsurface lateral flow processes are critical in understanding hydrologic response and energy feedbacks to climate change and that certain regions are more susceptible to changes in temperature, while others to changes in precipitation. This groundwater control is critical for understanding recharge and drought processes, possible under future climate conditions.

  15. Hierarchical Marginal Land Assessment for Land Use Planning

    SciTech Connect

    Kang, Shujiang; Post, Wilfred M; Wang, Dali; Nichols, Dr Jeff A; Bandaru, Vara Prasad

    2013-01-01

    Marginal land provides an alternative potential for food and bioenergy production in the face of limited land resources; however, effective assessment of marginal lands is not well addressed. Concerns over environmental risks, ecosystem services and sustainability for marginal land have been widely raised. The objective of this study was to develop a hierarchical marginal land assessment framework for land use planning and management. We first identified major land functions linking production, environment, ecosystem services and economics, and then classified land resources into four categories of marginal land using suitability and limitations associated with major management goals, including physically marginal land, biologically marginal land, environmental-ecological marginal land, and economically marginal land. We tested this assessment framework in south-western Michigan, USA. Our results indicated that this marginal land assessment framework can be potentially feasible on land use planning for food and bioenergy production, and balancing multiple goals of land use management. We also compared our results with marginal land assessment from the Conservation Reserve Program (CRP) and land capability classes (LCC) that are used in the US. The hierarchical assessment framework has advantages of quantitatively reflecting land functions and multiple concerns. This provides a foundation upon which focused studies can be identified in order to improve the assessment framework by quantifying high-resolution land functions associated with environment and ecosystem services as well as their criteria are needed to improve the assessment framework.

  16. NERSC Calculations Provide Independent Confirmation of Global Land Warming

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Since 1901 Calculations Provide Independent Confirmation of Global Land Warming Since 1901 NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901 September 9, 2013 Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 campo.jpg These maps show the changes in air temperatures over land as measured using thermometers (left side) and as calculated by the 20th Century Reanalysis project (left side). While more than 80 percent of the observed variation is captured by

  17. how much land | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    how much land Home Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 Solar Land Use Data on OpenEI acres csp land use how much land land requirements pv land...

  18. csp land use | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    csp land use Home Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 Solar Land Use Data on OpenEI acres csp land use how much land land requirements pv land...

  19. Deposition temperature dependence of material and Si surface passivation properties of O{sub 3}-based atomic layer deposited Al{sub 2}O{sub 3}-based films and stacks

    SciTech Connect

    Bordihn, Stefan; Mertens, Verena; Mller, Jrg W.; Kessels, W. M. M.

    2014-01-15

    The material composition and the Si surface passivation of aluminum oxide (Al{sub 2}O{sub 3}) films prepared by atomic layer deposition using Al(CH{sub 3}){sub 3} and O{sub 3} as precursors were investigated for deposition temperatures (T{sub Dep}) between 200?C and 500?C. The growth per cycle decreased with increasing deposition temperature due to a lower Al deposition rate. In contrast the material composition was hardly affected except for the hydrogen concentration, which decreased from [H]?=?3 at. % at 200?C to [H]?surface passivation performance was investigated after annealing at 300?C450?C and also after firing steps in the typical temperature range of 800?C925?C. A similar high level of the surface passivation performance, i.e., surface recombination velocity values <10?cm/s, was obtained after annealing and firing. Investigations of Al{sub 2}O{sub 3}/SiN{sub x} stacks complemented the work and revealed similar levels of surface passivation as single-layer Al{sub 2}O{sub 3} films, both for the chemical and field-effect passivation. The fixed charge density in the Al{sub 2}O{sub 3}/SiN{sub x} stacks, reflecting the field-effect passivation, was reduced by one order of magnitude from 310{sup 12}?cm{sup ?2} to 310{sup 11}?cm{sup ?2} when T{sub Dep} was increased from 300?C to 500?C. The level of the chemical passivation changed as well, but the total level of the surface passivation was hardly affected by the value of T{sub Dep}. When firing films prepared at of low T{sub Dep}, blistering of the films occurred and this strongly reduced the surface passivation. These results presented in this work demonstrate that a high level of surface passivation can be achieved for Al{sub 2}O{sub 3}-based films and stacks over a wide range of conditions when the combination of deposition temperature and annealing or firing temperature is carefully chosen.

  20. Bureau of Land Management - Land Use Planning Handbook | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    to library PermittingRegulatory Guidance - GuideHandbook: Bureau of Land Management - Land Use Planning HandbookPermittingRegulatory GuidanceGuideHandbook Abstract...

  1. Colorado State Land Board Land Survey Requirements | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Colorado State Land Board Land Survey Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Colorado...

  2. Hawaii Land Study Bureau's Land Classification Finder | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Hawaii Land Study Bureau's Land Classification Finder Citation Hawaii State...

  3. Uni Land | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Uni Land Place: Bologna, Italy Zip: 40063 Sector: Solar Product: Italian property company, which buys land without permits and develops it for residential and...

  4. Proposed Conveyance of Land

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Conveyance of Land at the Hanford Site, Richland, WA Public Scoping Fact Sheet The U.S. Department of Energy (DOE) is seeking input for a National Environmental Policy Act (NEPA) Environmental Assessment (EA) to assess the potential environmental effects of conveying approximately 1,641 acres of Hanford Site land to a local economic development organization (https://federalregister.gov/a/2012-23099). The Tri-City Development Council (TRIDEC), a DOE-recognized Community Reuse Organization

  5. integrated-land-use

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    An Integrated Land Use and Transportation Planning Tool for Sydney, Australia Dr. Matthew Berryman, University of Wollongong Monday, November 28, 2011 - 1pm Argonne TRACC Building 222, Room D-233 The SMART Infrastructure Facility at the University of Wollongong, Australia, has been building an agent-based model to explore the feedbacks between transportation and land use. We focus on livability as a key driver of agent's location choice, and in addition to transport we include factors such as:

  6. Assessing the relative influence of surface soil moisture and ENSO SST on precipitation predictability over the contiguous United States

    SciTech Connect

    Yoon, Jin-Ho; Leung, Lai-Yung R.

    2015-06-28

    This study assesses the relative influence of soil moisture memory and tropical sea surface temperature (SST) in seasonal rainfall over the contiguous United States. Using observed precipitation, the NINO3.4 index and soil moisture and evapotranspiration simulated by a land surface model for 61 years, analysis was performed using partial correlations to evaluate to what extent land surface and SST anomaly of El Niño and Southern Oscillation (ENSO) can affect seasonal precipitation over different regions and seasons. Results show that antecedent soil moisture is as important as concurrent ENSO condition in controlling rainfall anomalies over the U.S., but they generally dominate in different seasons with SST providing more predictability during winter while soil moisture, through its linkages to evapotranspiration and snow water, has larger influence in spring and early summer. The proposed methodology is applicable to climate model outputs to evaluate the intensity of land-atmosphere coupling and its relative importance.

  7. Reforesting Appalachia`s coal lands

    SciTech Connect

    Hopps, M.

    1994-11-01

    Currently, in those four states` primary coal counties, some 5,000 to 6,000 acres are surface-mined each year. Since 1977, when Congress passed the landmark Surface Mining Control and Reclamation Act (SMCRA), coal-mining companies have been required to refill the cuts they make and return the earth`s surface to approximately its original contours. Reclamation here means to aggressively-and literally-lay the groundwork for future cultivation of these lands. SMCRA calls for detailed reclamation plans before mining takes place, backed later by evaluations of how vegatation progresses up until the time of bond release-five years after mining ends. And though SMCRA has succeeded in improving the aesthetic appeal of post-mined sites, it does nothing to ensure that the most appropriate land use will be implemented for the long run.

  8. Structure and morphology of the tenfold surface of decagonal Al{sub 71.8}Ni{sub 14.8}Co{sub 13.4} in its low-temperature random tiling type-I modification

    SciTech Connect

    Sharma, H.R.; Franke, K.J.; Theis, W.; Riemann, A.; Foelsch, S.; Rieder, K.H.; Gille, P.

    2004-12-15

    We have investigated the structure and morphology of the tenfold surface of decagonal Al{sub 71.8}Ni{sub 14.8}Co{sub 13.4} by highly surface sensitive He atom scattering (HAS), high resolution low energy electron diffraction(SPA-LEED), and low temperature scanning tunneling microscopy (STM). The SPA-LEED patterns reveal more than 500 individual diffraction spots in the k-vector range of vertical bar k{sub parallel} vertical bar <3 A{sup -1}. The positions of all observed diffraction spots agree with the surface projections of the reciprocal lattice structure of the type-I bulk phase. HAS shows identical spot positions as SPA-LEED, thus demonstrating a top surface layer with long range quasicrystalline order and a reciprocal lattice structure consistent with that of a bulk truncated surface. SPA-LEED peak widths are found to vary between different diffraction orders. Based on an analysis of a randomized Fibonacci sequence, this is linked to the random nature of the tiling of the type-I structure. STM measurements reveal a surface morphology characterized by rough single-height steps separating terraces with widths on the order of 100 A. Two different surface terminations are observed, a coarse and a fine one, frequently coexisting on single terraces. The fine structure termination directly reflects the atomic structure of a bulk truncated surface, allowing a random rhombic tiling to be identified. In order to compare diffraction, real-space data, and atomic structure models, the Patterson function and autocorrelation of the surface structure, respectively, are studied. This allows an understanding of the coarse structure termination as consisting of subunits of a few atoms each arranged statistically on sites defined by the atomic tiling of the bulk tenfold planes.

  9. Isotope analysis of diamond-surface passivation effect of high-temperature H{sub 2}O-grown atomic layer deposition-Al{sub 2}O{sub 3} films

    SciTech Connect

    Hiraiwa, Atsushi E-mail: qs4a-hriw@asahi-net.or.jp; Saito, Tatsuya; Matsumura, Daisuke; Kawarada, Hiroshi

    2015-06-07

    The Al{sub 2}O{sub 3} film formed using an atomic layer deposition (ALD) method with trimethylaluminum as Al precursor and H{sub 2}O as oxidant at a high temperature (450?C) effectively passivates the p-type surface conduction (SC) layer specific to a hydrogen-terminated diamond surface, leading to a successful operation of diamond SC field-effect transistors at 400?C. In order to investigate this excellent passivation effect, we carried out an isotope analysis using D{sub 2}O instead of H{sub 2}O in the ALD and found that the Al{sub 2}O{sub 3} film formed at a conventional temperature (100?C) incorporates 50 times more CH{sub 3} groups than the high-temperature film. This CH{sub 3} is supposed to dissociate from the film when heated afterwards at a higher temperature (550?C) and causes peeling patterns on the H-terminated surface. The high-temperature film is free from this problem and has the largest mass density and dielectric constant among those investigated in this study. The isotope analysis also unveiled a relatively active H-exchange reaction between the diamond H-termination and H{sub 2}O oxidant during the high-temperature ALD, the SC still being kept intact. This dynamic and yet steady H termination is realized by the suppressed oxidation due to the endothermic reaction with H{sub 2}O. Additionally, we not only observed the kinetic isotope effect in the form of reduced growth rate of D{sub 2}O-oxidant ALD but found that the mass density and dielectric constant of D{sub 2}O-grown Al{sub 2}O{sub 3} films are smaller than those of H{sub 2}O-grown films. This is a new type of isotope effect, which is not caused by the presence of isotopes in the films unlike the traditional isotope effects that originate from the presence of isotopes itself. Hence, the high-temperature ALD is very effective in forming Al{sub 2}O{sub 3} films as a passivation and/or gate-insulation layer of high-temperature-operation diamond SC devices, and the knowledge of the

  10. Role of surface characteristics in urban meteorology and air quality

    SciTech Connect

    Sailor, D.J.

    1993-08-01

    Urbanization results in a landscape with significantly modified surface characteristics. The lower values of reflectivity to solar radiation, surface moisture availability, and vegetative cover, along with the higher values of anthropogenic heat release and surface roughness combine to result higher air temperatures in urban areas relative to their rural counterparts. Through their role in the surface energy balance and surface exchange processes, these surface characteristics are capable of modifying the local meteorology. The impacts on wind speeds, air temperatures, and mixing heights are of particular importance, as they have significant implications in terms of urban energy use and air quality. This research presents several major improvements to the meteorological modeling methodology for highly heterogeneous terrain. A land-use data-base is implemented to provide accurate specification of surface characteristic variability in simulations of the Los Angeles Basin. Several vegetation parameterizations are developed and implemented, and a method for including anthropogenic heat release into the model physics is presented. These modeling advancements are then used in a series of three-dimensional simulations which were developed to investigate the potential meteorological impact of several mitigation strategies. Results indicate that application of moderate tree-planting and urban-lightening programs in Los Angeles may produce summertime air temperature reductions on the order of 4{degree}C with a concomitant reduction in air pollution. The analysis also reveals several mechanisms whereby the application of these mitigation strategies may potentially increase pollutant concentrations. The pollution and energy use consequences are discussed in detail.

  11. Energy and land use

    SciTech Connect

    Not Available

    1981-12-01

    This report addresses the land use impacts of past and future energy development and summarizes the major federal and state legislation which influences the potential land use impacts of energy facilities and can thus influence the locations and timing of energy development. In addition, this report describes and presents the data which are used to measure, and in some cases, predict the potential conflicts between energy development and alternative uses of the nation's land resources. The topics section of this report is divided into three parts. The first part describes the myriad of federal, state and local legislation which have a direct or indirect impact upon the use of land for energy development. The second part addresses the potential land use impacts associated with the extraction, conversion and combustion of energy resources, as well as the disposal of wastes generated by these processes. The third part discusses the conflicts that might arise between agriculture and energy development as projected under a number of DOE mid-term (1990) energy supply and demand scenarios.

  12. Future land use plan

    SciTech Connect

    1995-08-31

    The US Department of Energy`s (DOE) changing mission, coupled with the need to apply appropriate cleanup standards for current and future environmental restoration, prompted the need for a process to determine preferred Future Land Uses for DOE-owned sites. DOE began the ``Future Land Use`` initiative in 1994 to ensure that its cleanup efforts reflect the surrounding communities` interests in future land use. This plan presents the results of a study of stakeholder-preferred future land uses for the Brookhaven National Laboratory (BNL), located in central Long Island, New York. The plan gives the Laboratory`s view of its future development over the next 20 years, as well as land uses preferred by the community were BNL ever to cease operations as a national laboratory (the post-BNL scenario). The plan provides an overview of the physical features of the site including its history, topography, geology/hydrogeology, biological inventory, floodplains, wetlands, climate, and atmosphere. Utility systems and current environmental operations are described including waste management, waste water treatment, hazardous waste management, refuse disposal and ground water management. To complement the physical descriptions of the site, demographics are discussed, including overviews of the surrounding areas, laboratory population, and economic and non-economic impacts.

  13. Land-use Leakage

    SciTech Connect

    Calvin, Katherine V.; Edmonds, James A.; Clarke, Leon E.; Bond-Lamberty, Benjamin; Kim, Son H.; Wise, Marshall A.; Thomson, Allison M.; Kyle, G. Page

    2009-12-01

    Leakage occurs whenever actions to mitigate greenhouse gas emissions in one part of the world unleash countervailing forces elsewhere in the world so that reductions in global emissions are less than emissions mitigation in the mitigating region. While many researchers have examined the concept of industrial leakage, land-use policies can also result in leakage. We show that land-use leakage is potentially as large as or larger than industrial leakage. We identify two potential land-use leakage drivers, land-use policies and bioenergy. We distinguish between these two pathways and run numerical experiments for each. We also show that the land-use policy environment exerts a powerful influence on leakage and that under some policy designs leakage can be negative. International offsets are a potential mechanism to communicate emissions mitigation beyond the borders of emissions mitigating regions, but in a stabilization regime designed to limit radiative forcing to 3.7 2/m2, this also implies greater emissions mitigation commitments on the part of mitigating regions.

  14. land requirements | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    land requirements Home Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 Solar Land Use Data on OpenEI acres csp land use how much land land requirements pv...

  15. Navajo-Hopi Land Commission

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Power at the Paragon-Bisti Ranch DOE TEP Review, Golden, CO May 7, 2015   THE NAVAJO-HOPI LAND SETTLEMENT ACT  Navajo-Hopi Land Settlement Act passed 1974  Required relocation of Navajo and Hopi families living on land partitioned to other tribe.  Set aside lands for the benefit of relocates  Proceeds from RE development for Relocatee Project Background   Paragon-Bisti Ranch is selected lands :  Located in northwestern New Mexico.  22,000 acres of land

  16. Bureau of Land Management - Land Use Planning | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Planning Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Bureau of Land Management - Land Use Planning Abstract The BLM's Resource Management Plans...

  17. Communication: Unraveling the {sup 4}He droplet-mediated soft-landing from ab initio-assisted and time-resolved density functional simulations: Au@{sup 4}He{sub 300}/TiO{sub 2}(110)

    SciTech Connect

    Lara-Castells, María Pilar de Aguirre, Néstor F.; Stoll, Hermann; Mitrushchenkov, Alexander O.; Mateo, David; Pi, Martí

    2015-04-07

    An ab-initio-based methodological scheme for He-surface interactions and zero-temperature time-dependent density functional theory for superfluid {sup 4}He droplets motion are combined to follow the short-time collision dynamics of the Au@{sup 4}He{sub 300} system with the TiO{sub 2}(110) surface. This composite approach demonstrates the {sup 4}He droplet-assisted sticking of the metal species to the surface at low landing energy (below 0.15 eV/atom), thus providing the first theoretical evidence of the experimentally observed {sup 4}He droplet-mediated soft-landing deposition of metal nanoparticles on solid surfaces [Mozhayskiy et al., J. Chem. Phys. 127, 094701 (2007) and Loginov et al., J. Phys. Chem. A 115, 7199 (2011)].

  18. ARM - Measurement - Surface albedo

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    albedo ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface albedo The fraction of incoming solar radiation at a surface (i.e. land, cloud top) that is effectively reflected by that surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of

  19. Impact of land use change on the local climate over the Tibetan Plateau

    SciTech Connect

    Jin, J.; Lu, S.; Li, S.; Miller, N.L.

    2010-04-01

    Observational data show that the remotely sensed leaf area index (LAI) has a significant downward trend over the east Tibetan Plateau (TP), while a warming trend is found in the same area. Further analysis indicates that this warming trend mainly results from the nighttime warming. The Single-Column Atmosphere Model (SCAM) version 3.1 developed by the National Center for Atmospheric Research is used to investigate the role of land use change in the TP local climate system and isolate the contribution of land use change to the warming. Two sets of SCAM simulations were performed at the Xinghai station that is located near the center of the TP Sanjiang (three rivers) Nature Reserve where the downward LAI trend is largest. These simulations were forced with the high and low LAIs. The modeling results indicate that, when the LAI changes from high to low, the daytime temperature has a slight decrease, while the nighttime temperature increases significantly, which is consistent with the observations. The modeling results further show that the lower surface roughness length plays a significant role in affecting the nighttime temperature increase.

  20. A framework for benchmarking land models

    SciTech Connect

    Luo, Yiqi; Randerson, J.; Abramowitz, G.; Bacour, C.; Blyth, E.; Carvalhais, N.; Ciais, Philippe; Dalmonech, D.; Fisher, J.B.; Fisher, R.; Friedlingstein, P.; Hibbard, Kathleen A.; Hoffman, F. M.; Huntzinger, Deborah; Jones, C.; Koven, C.; Lawrence, David M.; Li, D.J.; Mahecha, M.; Niu, S.L.; Norby, Richard J.; Piao, S.L.; Qi, X.; Peylin, P.; Prentice, I.C.; Riley, William; Reichstein, M.; Schwalm, C.; Wang, Y.; Xia, J. Y.; Zaehle, S.; Zhou, X. H.

    2012-10-09

    Land models, which have been developed by the modeling community in the past few decades to predict future states of ecosystems and climate, have to be critically evaluated for their performance skills of simulating ecosystem responses and feedback to climate change. Benchmarking is an emerging procedure to measure performance of models against a set of defined standards. This paper proposes a benchmarking framework for evaluation of land model performances and, meanwhile, highlights major challenges at this infant stage of benchmark analysis. The framework includes (1) targeted aspects of model performance to be evaluated, (2) a set of benchmarks as defined references to test model performance, (3) metrics to measure and compare performance skills among models so as to identify model strengths and deficiencies, and (4) model improvement. Land models are required to simulate exchange of water, energy, carbon and sometimes other trace gases between the atmosphere and land surface, and should be evaluated for their simulations of biophysical processes, biogeochemical cycles, and vegetation dynamics in response to climate change across broad temporal and spatial scales. Thus, one major challenge is to select and define a limited number of benchmarks to effectively evaluate land model performance. The second challenge is to develop metrics of measuring mismatches between models and benchmarks. The metrics may include (1) a priori thresholds of acceptable model performance and (2) a scoring system to combine datamodel mismatches for various processes at different temporal and spatial scales. The benchmark analyses should identify clues of weak model performance to guide future development, thus enabling improved predictions of future states of ecosystems and climate. The near-future research effort should be on development of a set of widely acceptable benchmarks that can be used to objectively, effectively, and reliably evaluate fundamental properties of land models

  1. A framework for benchmarking land models

    SciTech Connect

    Luo, Yiqi; Randerson, James T.; Hoffman, Forrest; Norby, Richard J

    2012-01-01

    Land models, which have been developed by the modeling community in the past few decades to predict future states of ecosystems and climate, have to be critically evaluated for their performance skills of simulating ecosystem responses and feedback to climate change. Benchmarking is an emerging procedure to measure performance of models against a set of defined standards. This paper proposes a benchmarking framework for evaluation of land model performances and, meanwhile, highlights major challenges at this infant stage of benchmark analysis. The framework includes (1) targeted aspects of model performance to be evaluated, (2) a set of benchmarks as defined references to test model performance, (3) metrics to measure and compare performance skills among models so as to identify model strengths and deficiencies, and (4) model improvement. Land models are required to simulate exchange of water, energy, carbon and sometimes other trace gases between the atmosphere and land surface, and should be evaluated for their simulations of biophysical processes, biogeochemical cycles, and vegetation dynamics in response to climate change across broad temporal and spatial scales. Thus, one major challenge is to select and define a limited number of benchmarks to effectively evaluate land model performance. The second challenge is to develop metrics of measuring mismatches between models and benchmarks. The metrics may include (1) a priori thresholds of acceptable model performance and (2) a scoring system to combine data model mismatches for various processes at different temporal and spatial scales. The benchmark analyses should identify clues of weak model performance to guide future development, thus enabling improved predictions of future states of ecosystems and climate. The near-future research effort should be on development of a set of widely acceptable benchmarks that can be used to objectively, effectively, and reliably evaluate fundamental properties of land models

  2. Coastal land loss in Texas - An overview

    SciTech Connect

    Morton, R.A.; Paine, J.G. )

    1990-09-01

    Each year in Texas more than 1,500 acres of prime real estate and productive wetlands are destroyed along the Gulf shoreline and near the bay margins primarily as a result of coastal erosion and submergence. Wetland losses constitute about half of the total land losses. Historical analyses of maps and aerial photographs since the mid-1800s indicate that land losses are accelerating and that human activities are either directly or indirectly responsible for the increased losses, Natural decreases in sediment supply since the modern sea-level stillstand have been exacerbated by (1) river basin projects that reduce the volume of sediment transported to the coast and (2) coastal structures and navigation projects that prevent redistribution of littoral sediments along the coast. Erosion is primarily caused by high wave and current energy combined with an inadequate supply of sediment. Erosion is responsible for higher local rates of land loss than submergence, and the erosion losses are more perceptible, especially after major storms when the greatest losses occur. The principal components of submergence are subsidence and the eustatic rise in sea level. Together these components are recorded by tide gauges as a relative rise in sea level. Submergence converts uplands to wetlands and wetlands to open water. These surficial changes occur mostly on the coastal plain but are also observed on barrier islands and bayhead deltas and within entrenched valleys. Although compactional subsidence is a natural process operating in the Gulf Coast basin, most of the accelerated land-surface subsidence in Texas is attributed to extraction of shallow ground water or production of hydrocarbons at moderate depths. Faults activated by the withdrawal of these fluids concentrate the subsidence near the fault planes. Coastal land losses caused by dredging are less than those caused by erosion and submergence, but they constitute a growing percentage of total land losses.

  3. Texas General Land Office | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Land Office Jump to: navigation, search Logo: Texas General Land Office Name: Texas General Land Office Address: 1700 Congress Ave Place: Austin, Texas Zip: 78701 Website:...

  4. IDRISI Land Change Modeler | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    IDRISI Land Change Modeler Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IDRISI Land Change Modeler AgencyCompany Organization: Clark Labs Sector: Land Focus Area:...

  5. California State Lands Commission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lands Commission Jump to: navigation, search Logo: California State Lands Commission Name: California State Lands Commission Abbreviation: CSLC Address: 100 Howe Ave., Suite 100...

  6. Oxygen surface exchange kinetics and stability of (La,Sr)2 CoO4±δ/La 1-xSrxMO3-δ (M = Co and Fe) hetero-interfaces at intermediate temperatures

    DOE PAGES [OSTI]

    Lee, Dongkyu; Lee, Yueh-Lin; Hong, Wesley T.; Biegalski, Michael D.; Morgan, Dane; Shao-Horn, Yang

    2015-01-01

    Heterostructured oxide interfaces created by decorating Ruddlesden-Popper phases (A2BO4) or perovskites on perovskites have shown not only pronounced cation segregation at the interface and in the A2BO4 structure but also much enhanced kinetics for oxygen electrocatalysis at elevated temperatures. In this study, we report and compare the time-dependent surface exchange kinetics and stability of (La0.5Sr0.5)2CoO4 -decorated (LSC214) La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF113) and La0.8Sr0.2CoO3-δ (LSC113) thin films. While LSC214 decoration on LSC113 greatly reduced the degradation in the surface exchange kinetics as a function of time relative to LSC113, LSCF113 with LSC214 coverage showed comparable surface exchange kinetics and stability to LSCF113. Thismore » difference can be explained by greater surface stability of LSCF113 than LSC113 under testing conditions, and that LSC214 decoration on LSC113 reduced the decomposition of LSC113 to form secondary phases that impedes oxygen exchange kinetics, and thus resulted in enhanced stability. This hypothesis is supported by the observations that annealing at 550 °C led to the formation of Sr-rich secondary particles on LSC113 while no such particles were observed on LSCF113. Density functional theory (DFT) computation provides further support, which revealed greater capacity of surface Sr segregation for LSCF113 having SrO termination than LSC113 having (La0.25Sr0.75)O termination for the experimental conditions, and lower energy gain to move Sr from LSCF113 into LSC214 relative to the LSC214-LSC113 system.« less

  7. Temperature determination using pyrometry

    DOEpatents

    Breiland, William G.; Gurary, Alexander I.; Boguslavskiy, Vadim

    2002-01-01

    A method for determining the temperature of a surface upon which a coating is grown using optical pyrometry by correcting Kirchhoff's law for errors in the emissivity or reflectance measurements associated with the growth of the coating and subsequent changes in the surface thermal emission and heat transfer characteristics. By a calibration process that can be carried out in situ in the chamber where the coating process occurs, an error calibration parameter can be determined that allows more precise determination of the temperature of the surface using optical pyrometry systems. The calibration process needs only to be carried out when the physical characteristics of the coating chamber change.

  8. High temperature lubricating process

    DOEpatents

    Taylor, R.W.; Shell, T.E.

    1979-10-04

    It has been difficult to provide adequate lubrication for load bearing, engine components when such engines are operating in excess of about 475/sup 0/C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface, such as in an engine being operated at temperatures in excess of about 475/sup 0/C. The process comprises contacting and maintaining the following steps: a gas phase is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant; the gas phase is contacted with the load bearing surface; the load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant; and the solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  9. High temperature lubricating process

    DOEpatents

    Taylor, Robert W.; Shell, Thomas E.

    1982-01-01

    It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  10. Rich land Operations Office

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    TG Department of Energy Rich land Operations Office P.O. Box 550 AES Richland, Washington 99352 CERTIFIED MAIL NOV~ 2 10 2009 Mr. Gerald Pollet Heart of America Northwest 1314 N.E. 5 6 th Street Suite 100 Seattle, Washington 98105 Dear Mr. Pollet: FREEDOM OF INFORMATION ACT REQUEST (FOI 2009-0054) The purpose of this letter is to inform you that we have withdrawn our response dated September 14, 2009, and have issued the following determination regarding item 8 of your request. In response to

  11. Rich land Operations Office

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Rich land Operations Office P.O. Box 550 July 10, 2009 CERTIFIED MAIL Mr. Ryan Jarvis Heart of America Northwest 1314 N.E. 56h" Street Suite 100 Seattle, Washington 98105 Dear Mr. Jarvis: FREEDOM OF INFORMATION ACT REQUEST (FOI 2009-0054) Pursuant to the Freedom of Information Act (FOJA), you requested the following information as stated below: 1. "The RCRA permit (both Parts A and B) for the mixed waste disposal trenches 31 and 34 located in the 200 West area of Hanford, including,

  12. From land use to land cover: Restoring the afforestation signal...

    Office of Scientific and Technical Information (OSTI)

    ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES earth system modeling; climate change; land use Word Cloud More ...

  13. Sweet Surface Area

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sweet Surface Area Sweet Surface Area Create a delicious root beer float and learn sophisticated science concepts at the same time. Sweet Surface Area Science is all around us, so why not have some delicious fun while we do it? The process of making a root beer float (PDF) is simple but it involves some pretty sophisticated scientific concepts. Carbonation, surface area, viscosity, and temperature all play a roll in creating a treat that is up to your personal highest standards

  14. Land Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Jump to: navigation, search Name: Land Energy Place: North Yorkshire, United Kingdom Zip: YO62 5DQ Sector: Biomass, Renewable Energy Product: A renewable-energy company...

  15. Characterization of fundamental catalytic properties of MoS2/WS2 nanotubes and nanoclusters for desulfurization catalysis - a surface temperature study

    SciTech Connect

    U. Burghaus

    2012-07-05

    environmental-related surface science/catalysis. This prior project, conducted at NDSU by a sma

  16. Temperature Maps and Data

    Gasoline and Diesel Fuel Update

    Temperature Maps and Data Temperature Maps Temperature Data Table

  17. The Role of Surface Energy Exchange for Simulating Wind Inflow: An

    Office of Scientific and Technical Information (OSTI)

    Evaluation of Multiple Land Surface Models in WRF for the Southern Great Plains Site Field Campaign Report (Technical Report) | SciTech Connect The Role of Surface Energy Exchange for Simulating Wind Inflow: An Evaluation of Multiple Land Surface Models in WRF for the Southern Great Plains Site Field Campaign Report Citation Details In-Document Search Title: The Role of Surface Energy Exchange for Simulating Wind Inflow: An Evaluation of Multiple Land Surface Models in WRF for the Southern

  18. Surface Meteorological Station - BAO West of Tower, Surface - Raw Data

    DOE Data Explorer

    Noone, David

    2016-10-25

    Proving basic surface meteorology, soil hydrology and temperature, and fluxes of energy (radiation and turbulent fluxes) and water (precipitation, evaporation, and soil moisture).

  19. Enhanced surface exchange activity and electrode performance of (La2−2xSr2x)(Ni1−xMnx)O4+δ cathode for intermediate temperature solid oxide fuel cells

    DOE PAGES [OSTI]

    Li, Wenyuan; Guan, Bo; Yan, Jianhua; Zhang, Nan; Zhang, Xinxin; Liu, Xingbo

    2016-06-01

    Surface exchange kinetics of Ruddlesden-Popper (R-P) phase lanthanum nickelates upon Mn doping as an intermediate temperature solid oxide fuel cells (IT-SOFCs) cathode is investigated for the first time in this communication. To promote the exchange rate in oxygen reduction reaction (ORR) on nickelates, Mn is partially substituted for Ni. The oxygen exchange resistance is accurately measured by electrochemical impedance spectroscopy (EIS) with dense thin layer cathode. It is found that Mn substantially promotes the surface kinetics; a surface exchange coefficient (k) of 1.57 106 cm/s is obtained at 700 C for La1.8Sr0.2Ni0.9Mn0.1O4þd (Sr20Mn10), ~80% higher than that of the undopedmore » La2NiO4þd (LNO). To our best knowledge, such coefficient is the highest values among the currently available R-P phase IT-SOFC cathodes. The corresponding polarization resistances (Rp) are evaluated on porous electrodes. Rp for LNO is 0.74 Ucm2 at 750 C, but decreases significantly to 0.42 Ucm2 for Sr20Mn10 which is remarkably improved compared to the reported values in the literature for La2MO4þd materials (M ¼ transition metal). Those promising results demonstrate that Mn-doped LNO is a new excellent cathode material for IT-SOFC.« less

  20. Land reclamation beautifies coal mines

    SciTech Connect

    Coblentz, B.

    2009-07-15

    The article explains how the Mississippi Agricultural and Forestry Experiments station, MAFES, has helped prepare land exploited by strip mining at North American Coal Corporation's Red Hills Mine. The 5,800 acre lignite mine is over 200 ft deep and uncovers six layers of coal. About 100 acres of land a year is mined and reclaimed, mostly as pine plantations. 5 photos.

  1. Low temperature reactive bonding

    DOEpatents

    Makowiecki, Daniel M. (Livermore, CA); Bionta, Richard M. (Livermore, CA)

    1995-01-01

    The joining technique requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process.

  2. Mined land reclamation in Wisconsin since 1973

    SciTech Connect

    Hunt, T.C.

    1989-01-01

    Reclamation has long been recognized as an essential action necessary to mitigate the degradation of land caused by mining activities. But, it is only within the past several decades that reclamation has become an integral component of the mineral extraction process. While the Metallic Mining Reclamation Act (MMRA) was passed in 1973, Wisconsin is yet to enact comprehensive state-wide reclamation requirements for mining other than metallic minerals and the code for metallic mining has yet to establish procedures and standards for reclamation success, specifically revegetation and postmining land use. This study integrates several interdisciplinary methodologies including a history of reclamation; an inventory and status report of mined lands; a critique and comparison of existing reclamation policy with previous state and current federal reclamation policies; in-field case studies of revegetation parameters, procedures, and performance standards; and an economic analysis of reclamation technology. This study makes three major recommendations: (1) The metallic mining code should be amended to establish vegetation parameters, measuring methods, and performance standards for revegetation success similar to those contained in the federal Surface Mining Control and Reclamation Act (SMCRA); (2) The metallic mining code should be amended to resolve semantic loopholes by clearly defining the endpoints of terms such as restoration, reclamation, and rehabilitation and by utilizing the reclamation continuum as a planning tool for determining acceptable postmining land use alternatives; and (3) Mandatory statewide nonmetallic legislation should be enacted to strengthen the mineral resource management program in Wisconsin by systematically and uniformly regulating the mining and reclamation of nonmetallic minerals, the state's most important mineral resource.

  3. File:03-CO-b - ROW Process for State Land Board Land.pdf | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    CO-b - ROW Process for State Land Board Land.pdf Jump to: navigation, search File File history File usage Metadata File:03-CO-b - ROW Process for State Land Board Land.pdf Size of...

  4. File:03CAAStateLandLeasingProcessAndLandAccessROWs.pdf | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    03CAAStateLandLeasingProcessAndLandAccessROWs.pdf Jump to: navigation, search File File history File usage Metadata File:03CAAStateLandLeasingProcessAndLandAccessROWs.pdf Size of...

  5. File:03-TX-f - Lease of Land Trade Lands.pdf | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    TX-f - Lease of Land Trade Lands.pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-f - Lease of Land Trade Lands.pdf Size of this preview: 463 599...

  6. Role of Surface Energy Exchange Field Campaign Report

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    0 The Role of Surface Energy Exchange for Simulating Wind Inflow: An Evaluation of Multiple Land Surface Models in WRF for the Southern Great Plains Site Field Campaign Report S ...

  7. Temperature Maps and Data

    Gasoline and Diesel Fuel Update

    Temperature Maps and Data Temperature Maps and Data Temperature Maps Temperature Data Table

  8. Geothermal/Land Use | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GeothermalLand Use < Geothermal(Redirected from Land Use) Redirect page Jump to: navigation, search REDIRECT GeothermalLand Use Planning Retrieved from "http:en.openei.orgw...

  9. LDK Uni Land JV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Uni Land JV Jump to: navigation, search Name: LDK & Uni Land JV Place: Italy Product: Italy-based JV to develop and construct PV projects. References: LDK & Uni Land JV1 This...

  10. Montana State Land Board | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Land Board Jump to: navigation, search Name: Montana State Land Board Place: Helena, Montana Website: dnrc.mt.govLandBoardStaff.as References: Webpage1 This article is a stub....

  11. AG Land 5 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    5 Jump to: navigation, search Name AG Land 5 Facility AG Land 5 Sector Wind energy Facility Type Community Wind Facility Status In Service Owner AG Land Energy LLC Developer...

  12. Colorado State Board of Land Commissioners Strategic Plan | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Reference LibraryAdd to library Land Use Plan: Colorado State Board of Land Commissioners Strategic Plan Abstract The Colorado State Board of Land Commissioners (State Land Board)...

  13. Integrated Emissivity And Temperature Measurement

    DOEpatents

    Poulsen, Peter

    2005-11-08

    A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

  14. Ewing Land Development Services | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ewing Land Development Services Jump to: navigation, search Name: Ewing Land Development & Services Place: Pella, Iowa Zip: 50219 Product: Real estate development company...

  15. Elektra Basel Land EBL | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Basel Land EBL Jump to: navigation, search Name: Elektra Basel Land (EBL) Place: Liestal, Switzerland Zip: 4410 Product: Swiss utility with a possible investment interest in...

  16. Arizona State Land Department | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Department Jump to: navigation, search Logo: Arizona State Land Department Name: Arizona State Land Department Abbreviation: ASLD Address: 1616 W. Adams St. Place: Phoenix, AZ Zip:...

  17. Quantitative Analysis of Biofuel Sustainability, Including Land...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions ...

  18. State Land Commission FAQ | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Land Commission FAQ Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: State Land Commission FAQ Abstract Frequently Asked Questions, California State...

  19. Energy Corridors on Federal Lands

    Office of Energy Efficiency and Renewable Energy (EERE)

    To improve energy delivery and enhance the electric transmission grid for the future, several government agencies currently are working together to establish a coordinated network of Federal energy corridors on Federal lands throughout the United States.

  20. Land and Facility Use Planning

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1996-07-09

    The Land and Facility Use Planning process provides a way to guide future site development and reuse based on the shared long-term goals and objectives of the Department, site and its stakeholders. Does not cancel other directives.

  1. ER2 Instrumentation and Measurements for CLASIC (Cloud Land Surface...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ER2 Desired Measurements for CLASIC June 2007 SGP May 31, 2007 1 MEASUREMENT SOURCE DESIRED MEASUREMENTS AND PRODUCTS INSTRUMENT SYSTEMS Cloud Radar System (CRS), W-Band (95 GHz)...

  2. Variation and Trends of Landscape Dynamics, Land Surface Phenology...

    Office of Scientific and Technical Information (OSTI)

    The NPP increased by 2.68 gC m-2yr-2 in more Appalachian Mountains regions from 1981 to 2000. The comparison with the North America reveals the effects of topography and ...

  3. ARM - Field Campaign - Cloud LAnd Surface Interaction Campaign...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Campaign Links CLASIC Website ARM Data Discovery Browse Data Related Campaigns CLASIC - SAM Support 2007.06.09, DeVore, SGP CLASIC - 9.4 GHz Phase Array Radar 2007.06.08, Kollias,...

  4. Surface Modification Using Reactive Landing of Mass-Selected...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Related Information: Ion Beams in Nanoscience and Technology, 37-65 Publisher: Springer, New York, United States(US). Research Org: Pacific Northwest National ...

  5. Active radiometer for self-calibrated furnace temperature measurements

    DOEpatents

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Wittle, J. Kenneth; Surma, Jeffrey E.

    1996-01-01

    Radiometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement.

  6. Temperature System

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1 Soil Water and Temperature System  SWATS In the realm of global climate modeling, numerous variables affect the state of the atmosphere and climate. One important area is soil moisture and temperature. The ARM Program uses several types of instruments to gather soil moisture information. An example is the soil water and temperature system (SWATS) (Figure 1). A SWATS is located at each of 21 extended facility sites within the CART site boundary. Each system is configured to measure soil

  7. Solar Energy Leases on Tribal Land - Project Regulatory Considerations

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SOLAR ENERGY LEASES ON TRIBAL LAND - PROJECT REGULATORY CONSIDERATIONS BUREAU OF INDIAN AFFAIRS WESTERN REGIONAL OFFICE AUGUST 2016 Long-Term Leasing - The New Legal Framework * The HEARTH Act was signed into law on July 30, 2012, potentially streamlining the process for tribes wishing to enter into long-term surface leases of tribal land, for all types of community and economic development purposes. * The HEARTH Act amends the Long-Term Leasing Act (at 25 U.S.C. § 415(h)) to allow tribes to

  8. Is the northern high latitude land-based CO2 sink weakening?

    SciTech Connect

    Mcguire, David; Kicklighter, David W.; Gurney, Kevin R; Burnside, Todd; Melillo, Jerry

    2011-01-01

    Studies indicate that, historically, terrestrial ecosystems of the northern high latitude region may have been responsible for up to 60% of the global net land-based sink for atmospheric CO2. However, these regions have recently experienced remarkable modification of the major driving forces of the carbon cycle, including surface air temperature warming that is significantly greater than the global average and associated increases in the frequency and severity of disturbances. Whether arctic tundra and boreal forest ecosystems will continue to sequester atmospheric CO2 in the face of these dramatic changes is unknown. Here we show the results of model simulations that estimate a 41 Tg C yr-1 sink in the boreal land regions from 1997 to 2006, which represents a 73% reduction in the strength of the sink estimated for previous decades in the late 20th Century. Our results suggest that CO2 uptake by the region in previous decades may not be as strong as previously estimated. The recent decline in sink strength is the combined result of 1) weakening sinks due to warming-induced increases in soil organic matter decomposition and 2) strengthening sources from pyrogenic CO2 emissions as a result of the substantial area of boreal forest burned in wildfires across the region in recent years. Such changes create positive feedbacks to the climate system that accelerate global warming, putting further pressure on emission reductions to achieve atmospheric stabilization targets.

  9. THE 0.8-14.5 {mu}m SPECTRA OF MID-L TO MID-T DWARFS: DIAGNOSTICS OF EFFECTIVE TEMPERATURE, GRAIN SEDIMENTATION, GAS TRANSPORT, AND SURFACE GRAVITY

    SciTech Connect

    Stephens, D. C.; Leggett, S. K.; Geballe, T. R.; Cushing, Michael C.; Marley, Mark S.; Saumon, D.; Golimowski, David A.; Noll, K. S.; Fan Xiaohui

    2009-09-01

    We present new 5.2-14.5 {mu}m low-resolution spectra of 14 mid-L to mid-T dwarfs. We also present new 3.0-4.1 {mu}m spectra for five of these dwarfs. These data are supplemented by existing red and near-infrared spectra ({approx}0.6-2.5 {mu}m), as well as red through mid-infrared spectroscopy of seven other L and T dwarfs presented by Cushing et al. We compare these spectra to those generated from the model atmospheres of Saumon and Marley. The models reproduce the observed spectra well, except in the case of one very red L3.5 dwarf, 2MASS J22244381-0158521. The broad wavelength coverage allows us to constrain almost independently the four parameters used to describe these photospheres in our models: effective temperature (T {sub eff}), surface gravity, grain sedimentation efficiency (f{sub sed}), and vertical gas transport efficiency (K{sub zz} ). The CH{sub 4} bands centered at 2.2, 3.3, and 7.65 {mu}m and the CO band at 2.3 {mu}m are sensitive to K{sub zz} , and indicates that chemical mixing is important in all L and T dwarf atmospheres. The sample of L3.5 to T5.5 dwarfs spans the range 1800 K{approx}> T{sub eff} {approx}>1000 K, with an L-T transition (spectral types L7 to T4) that lies between 1400 and 1100 K for dwarfs with typical near-infrared colors; bluer and redder dwarfs can be 100 K warmer or cooler, respectively, when using infrared spectral types. When using optical spectral types, the bluer dwarfs have more typical T {sub eff} values as they tend to have earlier optical spectral types. In this model analysis, f {sub sed} increases rapidly between types T0 and T4, indicating that increased sedimentation can explain the rapid disappearance of clouds at this stage of brown dwarf evolution. There is a suggestion that the transition to dust-free atmospheres happens at lower temperatures for lower gravity dwarfs.

  10. EIA - Greenhouse Gas Emissions - Land use

    Gasoline and Diesel Fuel Update

    6. Land use 6.1. Total land use, land use change, and forests This chapter presents estimates of carbon sequestration (removal from the atmosphere) and emissions (release into the atmosphere) from forests, croplands, grasslands, and residential areas (urban trees, grass clippings, and food scraps) in the United States. In 2008, land use, land use change, and forests were responsible for estimated net carbon sequestration of 940 MMTCO2e (Table 31), representing 16 percent of total U.S. CO2

  11. Sensitivity of Global Terrestrial Gross Primary Production to Hydrologic States Simulated by the Community Land Model Using Two Runoff Parameterizations

    SciTech Connect

    Lei, Huimin; Huang, Maoyi; Leung, Lai-Yung R.; Yang, Dawen; Shi, Xiaoying; Mao, Jiafu; Hayes, Daniel J.; Schwalm, C.; Wei, Yaxing; Liu, Shishi

    2014-09-01

    The terrestrial water and carbon cycles interact strongly at various spatio-temporal scales. To elucidate how hydrologic processes may influence carbon cycle processes, differences in terrestrial carbon cycle simulations induced by structural differences in two runoff generation schemes were investigated using the Community Land Model 4 (CLM4). Simulations were performed with runoff generation using the default TOPMODEL-based and the Variable Infiltration Capacity (VIC) model approaches under the same experimental protocol. The comparisons showed that differences in the simulated gross primary production (GPP) are mainly attributed to differences in the simulated leaf area index (LAI) rather than soil moisture availability. More specifically, differences in runoff simulations can influence LAI through changes in soil moisture, soil temperature, and their seasonality that affect the onset of the growing season and the subsequent dynamic feedbacks between terrestrial water, energy, and carbon cycles. As a result of a relative difference of 36% in global mean total runoff between the two models and subsequent changes in soil moisture, soil temperature, and LAI, the simulated global mean GPP differs by 20.4%. However, the relative difference in the global mean net ecosystem exchange between the two models is small (2.1%) due to competing effects on total mean ecosystem respiration and other fluxes, although large regional differences can still be found. Our study highlights the significant interactions among the water, energy, and carbon cycles and the need for reducing uncertainty in the hydrologic parameterization of land surface models to better constrain carbon cycle modeling.

  12. Low temperature reactive bonding

    DOEpatents

    Makowiecki, D.M.; Bionta, R.M.

    1995-01-17

    The joining technique is disclosed that requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process. 5 figures.

  13. Reinterpreting SMCRA: {open_quotes}Permitting{close_quotes} phased postmining land use

    SciTech Connect

    Merkin, Z.R.; Nieman, T.J.

    1996-12-31

    The coal producing area of Appalachian Kentucky has a shortage of developable land. The majority of mined land in this region has been reclaimed to pastureland or hayland, while narrow interpretation of the Surface Mining Control and Reclamation Act of 1977 (SMCRA) and regulations, especially regarding bond release, has limited alternative postmining land uses which could support economic development. A study of Federal and State of Kentucky laws and regulations shows that postmining land use regulations and their implementation have focussed on preventing and minimizing environmental damage. Land use and land use planning concepts are not well understood, thus permit applications inadequately address land use needs and the {open_quotes}highest and best use{close_quotes} of a site. Required information about pre-mining conditions is not collected and analyzed in a way useful for determining appropriate postmining land use. More comprehensive, higher quality land use information, with information about regional factors such as transportation, utilities, labor market, etc., should be included in the permit application to identify sites with strong development potential. This, combined with a broader interpretation of the law recognizing the validity of a phased implementation of postmined land use, would continue environmental protection while preparing reclaimed land to meet potential future land use needs. The mining plan can be designed so that appropriate areas are prepared and laid out for future buildings or roads, yet are conducive to interim use for pasture, wildlife or recreation. Reclamation to the interim use, sufficient to protect the public and allow bond release, maintains the potential for later development. Land later can be made available in response to development demands, contributing to a more diversified economy.

  14. High temperature detonator

    DOEpatents

    Johnson, James O.; Dinegar, Robert H.

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  15. Method for making mirrored surfaces comprising superconducting material

    DOEpatents

    Early, J.T.; Hargrove, R.S.

    1989-12-12

    Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40 K and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.

  16. Method for making mirrored surfaces comprising superconducting material

    DOEpatents

    Early, James T.; Hargrove, R. Steven

    1989-01-01

    Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40.degree. K. and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.

  17. Temperature monitoring device and thermocouple assembly therefor

    DOEpatents

    Grimm, Noel P.; Bauer, Frank I.; Bengel, Thomas G.; Kothmann, Richard E.; Mavretish, Robert S.; Miller, Phillip E.; Nath, Raymond J.; Salton, Robert B.

    1991-01-01

    A temperature monitoring device for measuring the temperature at a surface of a body, composed of: at least one first thermocouple and a second thermocouple; support members supporting the thermocouples for placing the first thermocouple in contact with the body surface and for maintaining the second thermocouple at a defined spacing from the body surface; and a calculating circuit connected to the thermocouples for receiving individual signals each representative of the temperature reading produced by a respective one of the first and second thermocouples and for producing a corrected temperature signal having a value which represents the temperature of the body surface and is a function of the difference between the temperature reading produced by the first thermocouple and a selected fraction of the temperature reading provided by the second thermocouple.

  18. Bureau of Land Management - Table 1.4-1 - Land Use Planning Process...

    OpenEI (Open Energy Information) [EERE & EIA]

    LibraryAdd to library PermittingRegulatory Guidance - Instructions: Bureau of Land Management - Table 1.4-1 - Land Use Planning Process StepsPermittingRegulatory...

  19. Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Page 4 of 8 Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not Suitable for Conveyance

  20. Career Map: Land Acquisition Specialist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Land Acquisition Specialist Career Map: Land Acquisition Specialist a male land acquisition specialist takes notes while surveying a piece of land. Land Acquisition Specialist Position Title Land Acquisition Specialist Alternate Title(s) Land Agent, Land Acquisition Associate Education & Training Level Bachelor degree required, prefer graduate degree Education & Training Level Description Land acquisition specialists are expected to have a bachelor's degree or higher in business, real

  1. Solar Land Use | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Land Use Jump to: navigation, search (The following text is derived from a National Renewable Energy Laboratory report on solar land use in the United States.)1 One concern...

  2. Land Use Planning Handbook | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Handbook H-1601-1 released by the United States Department of the Interior Bureau of Land Management (BLM). "This Handbook provides supplemental guidance to the Bureau of Land...

  3. Tropical Africa: Land use, biomass, and carbon estimates for 1980

    SciTech Connect

    Brown, S.; Gaston, G.; Daniels, R.C.

    1996-06-01

    This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980 and describes a methodology that may be used to extend this data set to 1990 and beyond based on population and land cover data. The biomass data and carbon estimates are for woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with the possible magnitude of historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth`s land surface and includes those countries that for the most part are located in Tropical Africa. Countries bordering the Mediterranean Sea and in southern Africa (i.e., Egypt, Libya, Tunisia, Algeria, Morocco, South Africa, Lesotho, Swaziland, and Western Sahara) have maximum potential biomass and land cover information but do not have biomass or carbon estimate. The database was developed using the GRID module in the ARC/INFO{sup TM} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass-carbon values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

  4. Marine One Landing Exercise at Argonne

    SciTech Connect

    2013-03-20

    Marine One and its support helicopters conduct a landing exercise at Argonne prior to the President's visit.

  5. Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern...

    Office of Environmental Management (EM)

    Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on...

  6. Geothermal/Land Use Planning | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Land Use Planning < Geothermal(Redirected from GeothermalLand Use) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field...

  7. Hawaii State Land Use Commission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hawaii State Land Use Commission Jump to: navigation, search Name: State Land Use Commission Abbreviation: LUC Place: Honolulu, Hawaii References: State Land Use Commission -...

  8. RCW 79.13 Land Leases | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    RCW 79.13 Land LeasesLegal Abstract Washington statute governing the administration of land leases for state trust lands. Published NA Year Signed or Took Effect...

  9. Land-Use Change and Bioenergy

    SciTech Connect

    2011-07-01

    This publication describes the Biomass Program’s efforts to examine the intersection of land-use change and bioenergy production. It describes legislation requiring land-use change assessments, key data and modeling challenges, and the research needs to better assess and understand the impact of bioenergy policy on land-use decisions.

  10. Evolving the Land Information System into a Cloud Computing Service

    SciTech Connect

    Houser, Paul R.

    2015-02-17

    The Land Information System (LIS) was developed to use advanced flexible land surface modeling and data assimilation frameworks to integrate extremely large satellite- and ground-based observations with advanced land surface models to produce continuous high-resolution fields of land surface states and fluxes. The resulting fields are extremely useful for drought and flood assessment, agricultural planning, disaster management, weather and climate forecasting, water resources assessment, and the like. We envisioned transforming the LIS modeling system into a scientific cloud computing-aware web and data service that would allow clients to easily setup and configure for use in addressing large water management issues. The focus of this Phase 1 project was to determine the scientific, technical, commercial merit and feasibility of the proposed LIS-cloud innovations that are currently barriers to broad LIS applicability. We (a) quantified the barriers to broad LIS utility and commercialization (high performance computing, big data, user interface, and licensing issues); (b) designed the proposed LIS-cloud web service, model-data interface, database services, and user interfaces; (c) constructed a prototype LIS user interface including abstractions for simulation control, visualization, and data interaction, (d) used the prototype to conduct a market analysis and survey to determine potential market size and competition, (e) identified LIS software licensing and copyright limitations and developed solutions, and (f) developed a business plan for development and marketing of the LIS-cloud innovation. While some significant feasibility issues were found in the LIS licensing, overall a high degree of LIS-cloud technical feasibility was found.

  11. Surface Meteorological Instruments for TWP (SMET) Handbook

    SciTech Connect

    Ritsche, MT

    2009-01-01

    The TWP Surface Meteorology station (SMET) uses mainly conventional in situ sensors to obtain 1-minute statistics of surface wind speed, wind direction, air temperature, relative humidity, barometric pressure and rainfall amount.

  12. Webtrends Archives by Fiscal Year - Topic Landing Pages | Department...

    Energy.gov [DOE] (indexed site)

    topic landing pages by fiscal year. Topic Landing Pages FY10 (2.04 MB) Topic Landing Pages FY11 (2.02 MB) Topic Landing Pages FY12-FY13 (366.66 KB) More Documents & Publications ...

  13. Managing complexity in simulations of land surface and near-surface processes

    DOE PAGES [OSTI]

    Coon, Ethan T.; Moulton, J. David; Painter, Scott L.

    2016-01-12

    Increasing computing power and the growing role of simulation in Earth systems science have led to an increase in the number and complexity of processes in modern simulators. We present a multiphysics framework that specifies interfaces for coupled processes and automates weak and strong coupling strategies to manage this complexity. Process management is enabled by viewing the system of equations as a tree, where individual equations are associated with leaf nodes and coupling strategies with internal nodes. A dynamically generated dependency graph connects a variable to its dependencies, streamlining and automating model evaluation, easing model development, and ensuring models aremore » modular and flexible. Additionally, the dependency graph is used to ensure that data requirements are consistent between all processes in a given simulation. Here we discuss the design and implementation of these concepts within the Arcos framework, and demonstrate their use for verification testing and hypothesis evaluation in numerical experiments.« less

  14. Beamline Temperatures

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Temperatures Energy: 3.0000 GeV Current: 500.0443 mA Date: 21-Nov-2016 03:15:12 Beamline Temperatures Energy 3.0000 GeV Current 500.0 mA 21-Nov-2016 03:15:12 LN:MainTankLevel 168.1 in LN:MainTankPress 57.1 psi SPEAR-BL:B120HeFlow 14.0 l/min SPEAR-BL:B131HeFlow 22.1 l/min SPEAR-BL:B137HePress 124.0 psi SPEAR-BL:B137HeHighPress 968.0 psi BL 2 BL02:M0_LCW 31.5 ℃ BL02-1:M0_LCWHtrUp 30.9 ℃ BL02-1:M0_LCWHtrDown 32.5 ℃ BL02-1:M0_LCWUp 32.4 ℃ BL02-1:M0_LCWDown 32.6 ℃ BL 4-1 BL04-1:BasePlate

  15. Wind Development on Tribal Lands

    SciTech Connect

    Ken Haukaas; Dale Osborn; Belvin Pete

    2008-01-18

    Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

  16. Surface-stabilized gold nanocatalysts

    DOEpatents

    Dai, Sheng [Knoxville, TN; Yan, Wenfu [Oak Ridge, TN

    2009-12-08

    A surface-stabilized gold nanocatalyst includes a solid support having stabilizing surfaces for supporting gold nanoparticles, and a plurality of gold nanoparticles having an average particle size of less than 8 nm disposed on the stabilizing surfaces. The surface-stabilized gold nanocatalyst provides enhanced stability, such as at high temperature under oxygen containing environments. In one embodiment, the solid support is a multi-layer support comprising at least a first layer having a second layer providing the stabilizing surfaces disposed thereon, the first and second layer being chemically distinct.

  17. Montana Rule 36.25.1 Surface Management Rules | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    36.25.1 Surface Management RulesLegal Abstract Montana regulation governing the administration of state surface land Published NA Year Signed or Took Effect 2014 Legal Citation...

  18. Remining to reclaim abandoned mined lands: Virginia`s initiative

    SciTech Connect

    Zipper, C.E.; Lambert, B.

    1998-12-31

    Abandoned Mined Lands (AML) are lands that were mined prior to implementation of the federal Surface Mining Control and Reclamation Act (SMCRA) in 1977, but were inadequately reclaimed. Re-mining of AML is being conducted on a routine basis by coal-mining operations in eastern states such as Virginia. Re-mining is a potentially important means of reclaiming AML. However, under current policies, re-mining operations often fail to permit and reclaim priority 1, 2, and 3 AML, especially those areas which present the most severe environmental problems. This paper describes policy issues which affect the potential for AML reclamation by re-mining operations in mountainous mining areas, such as Virginia; efforts underway in Virginia which seek to resolve those issues; and progress achieved to date under that initiative.

  19. Multispectral image feature fusion for detecting land mines

    SciTech Connect

    Clark, G.A.; Fields, D.J.; Sherwood, R.J.

    1994-11-15

    Our system fuses information contained in registered images from multiple sensors to reduce the effect of clutter and improve the the ability to detect surface and buried land mines. The sensor suite currently consists if a camera that acquires images in sixible wavelength bands, du, dual-band infrared (5 micron and 10 micron) and ground penetrating radar. Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite of sensors detects a variety of physical properties that are more separate in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, holes made by animals and natural processes, etc.) and some artifacts.

  20. Method of sputter etching a surface

    DOEpatents

    Henager, Jr., Charles H.

    1984-01-01

    The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion.

  1. Method of sputter etching a surface

    DOEpatents

    Henager, C.H. Jr.

    1984-02-14

    The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion. 4 figs.

  2. Superhydrophobic surfaces

    DOEpatents

    Wang, Evelyn N; McCarthy, Matthew; Enright, Ryan; Culver, James N; Gerasopoulos, Konstantinos; Ghodssi, Reza

    2015-03-24

    Surfaces having a hierarchical structure--having features of both microscale and nanoscale dimensions--can exhibit superhydrophobic properties and advantageous condensation and heat transfer properties. The hierarchical surfaces can be fabricated using biological nanostructures, such as viruses as a self-assembled nanoscale template.

  3. ARM - Lesson Plans: When Land Ice Melts

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    When Land Ice Melts Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: When Land Ice Melts Objective The objective of this activity is to demonstrate what happens when land ice melts and how it is different from the effect of melting icebergs. Materials A big rectangular container

  4. LANL Land Transfers 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Land Transfers 2015 LANL Land Transfers 2015 Land transfer activities are planned to occur fiscal year 2016 which will require independent verification of Los Alamos National Laboratory (LANL)'s sampling protocol and analyses. The former Sewage Treatment Plant within land tract A-16-D and the southern portion of A-16-E are on track for MARSSIM final status survey. The remainder of TA-21 will require verification once final D&D of structures is complete. The sampling activities for these

  5. Renewable Energy Development on Tribal Lands

    SciTech Connect

    Not Available

    2006-10-01

    Brochure describes the Tribal Energy Program, which provides American Indian tribes with financial and technical assistance for developing renewable energy projects on tribal land.

  6. Renewable Energy Development on Tribal Lands (Brochure)

    SciTech Connect

    2009-01-18

    Brochure describes the Tribal Energy Program, which provides American Indian tribes with financial and technical assistance for developing renewable energy projects on tribal land.

  7. Agriculture, land use, and commercial biomass energy

    SciTech Connect

    Edmonds, J.A.; Wise, M.A.; Sands, R.D.; Brown, R.A.; Kheshgi, H.

    1996-06-01

    In this paper we have considered commercial biomass energy in the context of overall agriculture and land-use change. We have described a model of energy, agriculture, and land-use and employed that model to examine the implications of commercial biomass energy or both energy sector and land-use change carbon emissions. In general we find that the introduction of biomass energy has a negative effect on the extent of unmanaged ecosystems. Commercial biomass introduces a major new land use which raises land rental rates, and provides an incentive to bring more land into production, increasing the rate of incursion into unmanaged ecosystems. But while the emergence of a commercial biomass industry may increase land-use change emissions, the overall effect is strongly to reduce total anthropogenic carbon emissions. Further, the higher the rate of commercial biomass energy productivity, the lower net emissions. Higher commercial biomass energy productivity, while leading to higher land-use change emissions, has a far stronger effect on fossil fuel carbon emissions. Highly productive and inexpensive commercial biomass energy technologies appear to have a substantial depressing effect on total anthropogenic carbon emissions, though their introduction raises the rental rate on land, providing incentives for greater rates of deforestation than in the reference case.

  8. Bureau of Land Management - Final Programmatic Environmental...

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search OpenEI Reference LibraryAdd to library Report: Bureau of Land Management - Final Programmatic Environmental Impact Statement for Geothermal Leasing in the...

  9. LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN...

    Office of Scientific and Technical Information (OSTI)

    AND LAND EXCHANGES: CROSS-JURISDICTIONAL MANAGEMENT AND IMPACTS ON UNCONVENTIONAL FUEL DEVELOPMENT IN UTAH'S UINTA BASIN Utah is rich in oil shale and oil sands resources. ...

  10. Advanced Surface Nitriding

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Surface Nitriding Robert Balerio October 18, 2016 Texas A&M Nuclear Engineering Why Nitride * Low-temperature process * No quench requirement * Minimal distortion * Resistance to oxidation * High hardness values * Same core properties Basic Theory * Large voltage frees bound electrons * Particle acceleration * Vacuum increase mfp => greater energy * Ions collide to give off visible light Initial Design Initial nitriding chamber design [1]. Problems with Initial Design * Severe arcing when

  11. Livestock impacts for management of reclaimed land at Navajo Mine: Vegetation responses

    SciTech Connect

    Wood, M.K.; Buchanan, B.A.; Estrada, O.

    1997-12-31

    The post-mining land use for Navajo Mine, a large surface coal mine in northwest New Mexico, is livestock grazing. Reclamation began in the early 1970`s and has been primarily directed toward the development of a grassland with shrubs. However, none of these lands were grazed before 1994 and none have been released back to the Navajo Nation. Therefore, it is not known how these reclaimed lands will respond to livestock impacts once the lands are released. Livestock impacts include grazing, trampling, and adding feces and urine. Cattle impacts were applied in 1994 to a land that had been reclaimed in 1978, 1991 and 1992. Vegetation monitoring procedures were implemented to detect and document successful and unsuccessful impact practices for both impacted areas and areas excluded from cattle. After three impact seasons, there were similar levels of perennial plant cover, production, and density on impacted lands compared to excluded lands. Based on age structure analysis, there is a trend that establishment of seedlings is stimulated by cattle. Cattle also decrease the amount of previous years` growth of standing phytomass with a trend to stimulate new growth. It is possible that some of the previous year`s growth was reduced by cattle trampling as much as by grazing because cattle generally prefer to eat the current year`s growth before it cures. No differences in number of seedheads per plant, animal sign, plant pedestals, and soil rills could be detected after three seasons of impacting.

  12. Livestock impacts for management of reclaimed land at Navajo Mine: The decision-making process

    SciTech Connect

    Estrada, O.J.; Grogan, S.; Gadzia, K.L.

    1997-12-31

    Livestock grazing is the post-mining use for reclaimed land at Navajo Mine, a large surface coal mine on the Navajo Nation in northwest New Mexico. The Navajo Mine Grazing Management Program (GMP) uses holistic management on approximately 2,083 ha of reclaimed land to plan for final liability release and return of the land to the Navajo Nation, and to minimize the potential for post-release liability. The GMP began in 1991 to establish that livestock grazing on the reclaimed land is sustainable. Assuming that sustainability requires alternatives to conventional land management practices, the GMP created a Management Team consisting of company staff, local, Navajo Nation, and Federal government officials, and technical advisors. Community members contributed to the formation of a holistic goal for the GMP that articulates their values and their desire for sustainable grazing. Major decisions (e.g., artificial insemination, water supply, supplemental feed) are tested against the goal. Biological changes in the land and the grazing animals are monitored daily to provide early feedback to managers, and annually to document the results of grazing. To date, the land has shown resilience to grazing and the animals have generally prospered. Community participation in the GMP and public statements of support by local officials indicate that the GMP`s strategy is likely to succeed.

  13. Navajo Hopi Land Commission Office (NHLCO): Navajo Hopi Land Commission Office (NHLCO)- 2012 Project

    Energy.gov [DOE]

    The Navajo Hopi Land Commission (NHLCO), together with its partners, will conduct a feasibility study (FS) of a program to develop renewable energy on the Paragon-Bisti ranch lands in northwestern New Mexico, which were set aside under the Navajo-Hopi Land Settlement Act for the benefit of relocatees (defined as Navajo families living on Hopi Partitioned Lands as of December 22, 1974).

  14. Does surface roughness amplify wetting?

    SciTech Connect

    Malijevský, Alexandr

    2014-11-14

    Any solid surface is intrinsically rough on the microscopic scale. In this paper, we study the effect of this roughness on the wetting properties of hydrophilic substrates. Macroscopic arguments, such as those leading to the well-known Wenzel's law, predict that surface roughness should amplify the wetting properties of such adsorbents. We use a fundamental measure density functional theory to demonstrate the opposite effect from roughness for microscopically corrugated surfaces, i.e., wetting is hindered. Based on three independent analyses we show that microscopic surface corrugation increases the wetting temperature or even makes the surface hydrophobic. Since for macroscopically corrugated surfaces the solid texture does indeed amplify wetting there must exist a crossover between two length-scale regimes that are distinguished by opposite response on surface roughening. This demonstrates how deceptive can be efforts to extend the thermodynamical laws beyond their macroscopic territory.

  15. How much of the world’s land has been urbanized, really? A hierarchical framework for evading confusion

    SciTech Connect

    Liu, zhifeng; He, Chunyang; Zhou, Yuyu; Wu, jianguo

    2014-05-01

    Urbanization has transformed the world’s landscapes, resulting in a series of ecological and environmental problems. To assess urbanization impacts and improve sustainability, one of the first questions that we must address is: how much of the world’s land has been urbanized? Unfortunately, the estimates of the global urban land reported in the literature vary widely from less than 1% to 3% primarily because different definitions of urban land were used. To evade confusion, here we propose a hierarchical framework for representing and communicating the spatial extent of the world’s urbanized land at the global, regional, and more local levels. The hierarchical framework consists of three spatially nested definitions: “urban area” that is delineated by administrative boundaries, “built-up area” that is dominated by artificial surfaces, and “impervious surface area” that is devoid of life. These are really three different measures of urbanization. In 2010, the global urban land was close to 3%, the global built-up area was 0.65%, and the global impervious surface area was 0.45%, of the word’s total land area (excluding Antarctica and Greenland). We argue that this hierarchy of urban land measures, in particular the ratios between them, can also facilitate better understanding the biophysical and socioeconomic processes and impacts of urbanization.

  16. Surface Soil

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Surface Soil Surface Soil We compare local soil samples with samples collected from northern New Mexico locations that are beyond the range of potential influence from normal Laboratory operations. April 12, 2012 Farm soil sampling Two LANL environmental field team members take soil samples from a farm. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Measurements are compared to samples from the regional sites and

  17. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect

    Jonathan Aggett

    2003-12-15

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this segment of work, our goal was to review methods for estimating tree survival, growth, yield and value of forests growing on surface mined land in the eastern coalfields of the USA, and to determine the extent to which carbon sequestration is influenced by these factors. Public Law 95-87, the Surface Mining Control and Reclamation Act of 1977 (SMCRA), mandates that mined land be reclaimed in a fashion that renders the land at least as productive after mining as it was before mining. In the central Appalachian region, where prime farmland and economic development opportunities for mined land are scarce, the most practical land use choices are hayland/pasture, wildlife habitat, or forest land. Since 1977, the majority of mined land has been reclaimed as hayland/pasture or wildlife habitat, which is less expensive to reclaim than forest land, since there are no tree planting costs. As a result, there are now hundreds of thousands of hectares of grasslands and scrublands in various stages of natural succession located throughout otherwise forested mountains in the U.S. A literature review was done to develop the basis for an economic feasibility study of a range of land-use conversion scenarios. Procedures were developed for both mixed hardwoods and white pine under a set of low product prices and under a set of high product prices. Economic feasibility is based on land expectation values. Further, our review shows that three types of incentive schemes might be important: (1) lump sum payment at planting (and equivalent series of annual payments); (2) revenue incentive at harvest; and (3) benefit based on carbon volume.

  18. Oak Ridge reservation land-use plan

    SciTech Connect

    Bibb, W. R.; Hardin, T. H.; Hawkins, C. C.; Johnson, W. A.; Peitzsch, F. C.; Scott, T. H.; Theisen, M. R.; Tuck, S. C.

    1980-03-01

    This study establishes a basis for long-range land-use planning to accommodate both present and projected DOE program requirements in Oak Ridge. In addition to technological requirements, this land-use plan incorporates in-depth ecological concepts that recognize multiple uses of land as a viable option. Neither environmental research nor technological operations need to be mutually exclusive in all instances. Unique biological areas, as well as rare and endangered species, need to be protected, and human and environmental health and safety must be maintained. The plan is based on the concept that the primary use of DOE land resources must be to implement the overall DOE mission in Oak Ridge. This document, along with the base map and overlay maps, provides a reasonably detailed description of the DOE Oak Ridge land resources and of the current and potential uses of the land. A description of the land characteristics, including geomorphology, agricultural productivity and soils, water courses, vegetation, and terrestrial and aquatic animal habitats, is presented to serve as a resource document. Essentially all DOE land in the Oak Ridge area is being fully used for ongoing DOE programs or has been set aside as protected areas.

  19. Active radiometer for self-calibrated furnace temperature measurements

    DOEpatents

    Woskov, P.P.; Cohn, D.R.; Titus, C.H.; Wittle, J.K.; Surma, J.E.

    1996-11-12

    A radiometer is described with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. 5 figs.

  20. Selecting reasonable future land use scenarios

    SciTech Connect

    Allred, W.E.; Smith, R.W.

    1995-12-31

    This paper examines a process to help select the most reasonable future land use scenarios for hazardous waste and/or low-level radioactive waste disposal sites. The process involves evaluating future land use scenarios by applying selected criteria currently used by commercial mortgage companies to determine the feasibility of obtaining a loan for purchasing such land. The basis for the process is that only land use activities for which a loan can be obtained will be considered. To examine the process, a low-level radioactive waste site, the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory, is used as an example. The authors suggest that the process is a very precise, comprehensive, and systematic (common sense) approach for determining reasonable future use of land. Implementing such a process will help enhance the planning, decisionmaking, safe management, and cleanup of present and future disposal facilities.

  1. Ambient temperature thermal battery

    SciTech Connect

    Fletcher, A. N.; Bliss, D. E.; McManis III

    1985-11-26

    An ambient temperature thermal battery having two relatively high temperature melting electrolytes which form a low melting temperature electrolyte upon activation.

  2. Reduction of particle deposition on substrates using temperature gradient control

    DOEpatents

    Rader, Daniel J.; Dykhuizen, Ronald C.; Geller, Anthony S.

    2000-01-01

    A method of reducing particle deposition during the fabrication of microelectronic circuitry is presented. Reduction of particle deposition is accomplished by controlling the relative temperatures of various parts of the deposition system so that a large temperature gradient near the surface on which fabrication is taking place exists. This temperature gradient acts to repel particles from that surface, thereby producing cleaner surfaces, and thus obtaining higher yields from a given microelectronic fabrication process.

  3. Solar Development on Contaminated and Disturbed Lands

    SciTech Connect

    Macknick, Jordan; Lee, Courtney; Mosey, Gail; Melius, Jenny

    2013-12-01

    Land classified as contaminated and disturbed across the United States has the potential to host developments of utility-scale solar power. This report examines the prospect of developing utility- and commercial-scale concentrated solar power (CSP) and solar photovoltaics (PV) technologies on degraded and environmentally contaminated lands. The potential for solar development on contaminated anddisturbed lands was assessed, and for the largest and highest solar resource sites, the economic impacts and feasibility were evaluated. Developing solar power on contaminated and disturbed lands can help create jobs and revitalize local and state economies, and selecting these sites over greenfield sites can potentially have permitting and environmental mitigation advantages. The U.S.Department of Energy (DOE) SunShot goals call for 632 GW of PV and 83 GW of CSP to be deployed by 2050. Conservative land-use estimates of this study (10 acres per megawatt) show that there are disturbed and environmentally contaminated lands throughout the country that could be suitable for utility-scale solar power, and, that there is sufficient land area to meet SunShot solar deployment goals. The purpose of this assessment is to improve the understanding of these sites and facilitate solar developers' selection of contaminated and disturbed sites for development.

  4. Idaho State Board of Land Commissioners | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Board of Land Commissioners Jump to: navigation, search Logo: Idaho State Board of Land Commissioners Name: Idaho State Board of Land Commissioners Address: 300 N. 6th St, Suite...

  5. Nevada Division of State Lands | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    State Lands Jump to: navigation, search Logo: Nevada Division of State Lands Name: Nevada Division of State Lands Address: 901 S. Stewart St., Suite 5003 Place: Carson City, Nevada...

  6. VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study () | Data...

    Office of Scientific and Technical Information (OSTI)

    VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study Title: VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study VOCALS (VAMOS* Ocean-Cloud-Atmosphere-Land Study) is an international ...

  7. Sustainable Land Lab Tour | Photosynthetic Antenna Research Center

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sustainable Land Lab Tour Sustainable Land Lab Tour PARC researchers and guests were taken on a tour of the new Sustainable land lab and shown the rennovations going on in North ...

  8. Surface mine regulations complicate reclamation

    SciTech Connect

    Seltz-Patrash, A.

    1980-09-01

    The Surface Mining Control and Reclamation Act of 1977 is a landmark environmental law intended to protect U.S. lands from stripmining effects. However, coal mine operators claim that some SMCRA regulations are misguidedcosting time and money, but yielding no substantial environmental benefit. Unlike other environmental acts, SMCRA details specifically the goals of reclamation and the methods that must be implemented to meet these goals. Coal industry representatives believe that this discourages innovation, promotes inefficiency by ignoring regional differences among sites, and results in unnecessary expense to the industry. Reclamation practices and progress among western coal mining companies are evaluated. (1 map, 5 photos)

  9. RAPID/Geothermal/Land Access/New Mexico | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Mexico State Land Office Competitive Land Leasing: Yes, New Mexico State Land Office issues geothermal leases through competitive auction. Noncompetitive Land Leasing: No Royalty...

  10. Apparatus for preventing high temperatures in a glazed solar collector

    DOEpatents

    Buckley, Bruce S.

    1979-01-01

    Venting the glazing (i.e., transparent cover) of a solar collector can be used to prevent the collector's absorber surface from reaching too high a temperature.

  11. Effect of Engine Operating Condition and Coolant Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    microstructure and chemical composition of the deposits in the fouled heat exchanger surfaces, at two engine loads: medium and low, and at two coolant temperatures: 85C and ...

  12. Taking an engine`s temperature

    SciTech Connect

    Allison, S.W.; Beshears, D.L.; Cates, M.R.; Noel, B.W.; Turley, W.D.

    1997-01-01

    Ceramic and ceramic-coated components will be of increasing importance in the advanced engines now under development. Ceramics enable engines to run at much higher temperatures than the superalloys in more conventional engines can. The two options for noncontact high-temperature measurements of ceramic components are pyrometry and phosphor thermometry. This article describes how when properly applied as a thin coating, thermally sensitive phosphors can monitor the temperature of ceramic surfaces inside an engine.

  13. Crystal face temperature determination means

    DOEpatents

    Nason, D.O.; Burger, A.

    1994-11-22

    An optically transparent furnace having a detection apparatus with a pedestal enclosed in an evacuated ampule for growing a crystal thereon is disclosed. Temperature differential is provided by a source heater, a base heater and a cold finger such that material migrates from a polycrystalline source material to grow the crystal. A quartz halogen lamp projects a collimated beam onto the crystal and a reflected beam is analyzed by a double monochromator and photomultiplier detection spectrometer and the detected peak position in the reflected energy spectrum of the reflected beam is interpreted to determine surface temperature of the crystal. 3 figs.

  14. Utah Public Lands Policy Coordination Office | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lands Policy Coordination Office Jump to: navigation, search Name: Governor's Public Lands Policy Coordination Office Address: 5110 State Office Building Place: Salt Lake City,...

  15. Bayesian Calibration of the Community Land Model using Surrogates...

    Office of Scientific and Technical Information (OSTI)

    Bayesian Calibration of the Community Land Model using Surrogates Citation Details In-Document Search Title: Bayesian Calibration of the Community Land Model using Surrogates We ...

  16. Approaches used for Clearance of Lands from Nuclear Facilities...

    Energy Saver

    Approaches used for Clearance of Lands from Nuclear Facilities among Several Countries: Evaluation for Regulatory Input Approaches used for Clearance of Lands from Nuclear ...

  17. Vectorizing the Community Land Model (CLM) (Journal Article)...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Vectorizing the Community Land Model (CLM) Citation Details In-Document Search Title: Vectorizing the Community Land Model (CLM) In this paper we describe our...

  18. Agriculture and Land Use National Greenhouse Gas Inventory Software...

    OpenEI (Open Energy Information) [EERE & EIA]

    Agriculture and Land Use National Greenhouse Gas Inventory Software Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Agriculture and Land Use National Greenhouse Gas...

  19. ORS 197 - Comprehensive Land Use Planning | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    197 - Comprehensive Land Use Planning Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: ORS 197 - Comprehensive Land Use...

  20. RAPID/Geothermal/Land Access/Utah | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    RAPIDGeothermalLand AccessUtah < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  1. Hawaii's Rainforest Crunch: Land, People, and Geothermal Development...

    OpenEI (Open Energy Information) [EERE & EIA]

    Rainforest Crunch: Land, People, and Geothermal Development Jump to: navigation, search OpenEI Reference LibraryAdd to library Periodical: Hawaii's Rainforest Crunch: Land, People,...

  2. California Land Use Planning Information Network | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Land Use Planning Information Network Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: California Land Use Planning Information...

  3. Beijing Ideal land Technology Development Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ideal land Technology Development Co Ltd Jump to: navigation, search Name: Beijing Ideal-land Technology Development Co Ltd Place: China Sector: Biofuels Product: Biofuels (...

  4. Geothermal/Land Use Planning | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GeothermalLand Use Planning < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection...

  5. Hawaii Department of Land and Natural Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Logo: Hawaii Department of Land and Natural Resources Name: Hawaii Department of Land and Natural Resources Address: 1151 Punchbowl St Place: Honolulu, Hawaii Zip: 96813 Website:...

  6. RAPID/Geothermal/Land Access/Nevada | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    RAPIDGeothermalLand AccessNevada < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  7. Montana - Land Use License Application | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Land Use License Application Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Montana - Land Use License Application Author Montana Department of Natural...

  8. RAPID/Solar/Land Access/Nevada | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    RAPIDSolarLand AccessNevada < RAPID | Solar | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  9. Idaho - Idaho Dept. of Lands - Application for Easement | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Easement. Boise, Idaho. Idaho Department of Lands. Easement Application Instructions; 4p. Retrieved from "http:en.openei.orgwindex.php?titleIdaho-IdahoDept.ofLands-A...

  10. EA-1927: Paducah Gaseous Diffusion Plant Potential Land and Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Paducah Gaseous Diffusion Plant Potential Land and Facilities Transfers; McCracken County, Kentucky EA-1927: Paducah Gaseous Diffusion Plant Potential Land and Facilities ...

  11. RAPID/Geothermal/Land Use/Federal | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    RAPIDGeothermalLand UseFederal < RAPID | Geothermal | Land Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  12. RAPID/Geothermal/Land Access/Colorado | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    RAPIDGeothermalLand AccessColorado < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About...

  13. RAPID/Geothermal/Land Access/Oregon | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    RAPIDGeothermalLand AccessOregon < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  14. RAPID/Geothermal/Land Access/Alaska | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    RAPIDGeothermalLand AccessAlaska < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  15. Mozambique-Biofuels, Land Access and Rural Livelihoods | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels, Land Access and Rural Livelihoods Jump to: navigation, search Name Mozambique-Biofuels, Land Access and Rural Livelihoods AgencyCompany Organization International...

  16. Tanzania-Biofuels, Land Access and Rural Livelihoods | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Tanzania-Biofuels, Land Access and Rural Livelihoods Jump to: navigation, search Name Tanzania-Biofuels, Land Access and Rural Livelihoods AgencyCompany Organization...

  17. CleanEnergyProjectsonTribalLands_Project_Descriptions_072011...

    Energy.gov [DOE] (indexed site)

    CleanEnergyProjectsonTribalLandsProjectDescriptions072011.pdf More Documents & Publications CleanEnergyProjectsonTribalLandsProjectDescriptions072011.pdf...

  18. NREL: Energy Analysis - Renewable Energy on Contaminated Lands

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Renewable Energy on Contaminated Lands Map of U.S. Map of Potential Limbo Land Sites for Consideration for Renewable Energy Technology Development. Enlarge image NREL's ...

  19. Oregon Land Management Division - Easements | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Division - Easements Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Land Management Division - Easements Author Oregon Land Management...

  20. Vermont State Lands Administration: Application Page | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    State Lands Administration: Application Page Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Vermont State Lands Administration: Application Page...

  1. Utah School and Institutional Trust Lands Administration | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    School and Institutional Trust Lands Administration Jump to: navigation, search Logo: Utah School and Institutional Trust Lands Administration Name: Utah School and Institutional...

  2. Exploratory Well At Salt Wells Area (Bureau of Land Management...

    OpenEI (Open Energy Information) [EERE & EIA]

    Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Salt Wells Area (Bureau of Land Management,...

  3. Mays Landing, New Jersey: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Smart Grid Project Registered Energy Companies in Mays Landing, New Jersey Energy Enterprises Utility Companies in Mays Landing, New Jersey Atlantic City Electric Co References...

  4. Hawaii Department of Land and Natural Resources Office of Conservation...

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name: Hawaii Department of Land and Natural Resources Office of Conservation and Coastal Lands From Open Energy Information Address: P.O. Box 261 Place:...

  5. Soil carbon sequestration and land use change associated with...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Soil carbon sequestration and land use change associated with biofuel production: empirical evidence Title Soil carbon sequestration and land use change associated with biofuel...

  6. Land Management Practices More Critical as Biofuels Use Grows

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Land Management Practices More Critical as Biofuels Use Grows Land Management Practices More Critical as Biofuels Use Grows Climate Simulations Run at NERSC Show Cultivation Causes ...

  7. Coordination of Federal Transmission Permitting on Federal Lands...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Planning Coordination of Federal Transmission Permitting on Federal Lands (216(h)) Coordination of Federal Transmission Permitting on Federal Lands (216(h)) On October 23, 2009, ...

  8. EA-1856: Conveyance of Land and Facilities at the Portsmouth...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    56: Conveyance of Land and Facilities at the Portsmouth Gaseous Diffusion Plant for Economic Development Purposes, Piketon, Ohio EA-1856: Conveyance of Land and Facilities at the...

  9. ORS Chapter 273 State Lands Generally | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    ORS Chapter 273 State Lands GenerallyLegal Abstract Oregon statute setting forth rules and procedures related to state land. Published NA Year Signed or Took Effect...

  10. Department of Energy Land Ice Modeling Efforts (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    Energy Land Ice Modeling Efforts Citation Details In-Document Search Title: Department of Energy Land Ice Modeling Efforts Authors: Price, Stephen F. Dr 1 + Show Author...

  11. Assessment of Biomass Resources from Marginal Lands in APEC Countries...

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Resources from Marginal Lands in APEC Countries Jump to: navigation, search Logo: Assessment of Biomass Resources from Marginal Lands in APEC Countries Name Assessment of...

  12. RAPID/Geothermal/Land Access/Montana | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Way Easement for Utilities Through State Lands. Local Land Access Process not available Policies & Regulations An Introduction to Electric Power Transmission Environmental...

  13. Title 16 USC 818 Public Lands Included in Project - Reservation...

    OpenEI (Open Energy Information) [EERE & EIA]

    Entry (1996). Retrieved from "http:en.openei.orgwindex.php?titleTitle16USC818PublicLandsIncludedinProject-ReservationofLandsFromEntry&oldid722800" ...

  14. Oregon Division of State Lands | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lands. The agency is comprised of four divisions: Director's Office, Land Management, Wetlands and Waterways Conservation, and Finance and Administration, and the South Slough...

  15. Modeling the impact of agricultural land use and management on US carbon budgets

    DOE PAGES [OSTI]

    Drewniak, B. A.; Mishra, U.; Song, J.; Prell, J.; Kotamarthi, V. R.

    2014-09-22

    Cultivation of the terrestrial land surface can create either a source or sink of atmospheric CO2, depending on land management practices. The Community Land Model (CLM) provides a useful tool to explore how land use and management impact the soil carbon pool at regional to global scales. CLM was recently updated to include representation of managed lands growing maize, soybean, and spring wheat. In this study, CLM-Crop is used to investigate the impacts of various management practices, including fertilizer use and differential rates of crop residue removal, on the soil organic carbon (SOC) storage of croplands in the continental Unitedmore » States over approximately a 170 year period. Results indicate that total US SOC stocks have already lost over 8 Pg C (10%) due to land cultivation practices (e.g., fertilizer application, cultivar choice, and residue removal), compared to a land surface composed of native vegetation (i.e., grasslands). After long periods of cultivation, individual plots growing maize and soybean lost up to 65% of the carbon stored, compared to a grassland site. Crop residue management showed the greatest effect on soil carbon storage, with low and medium residue returns resulting in additional losses of 5% and 3.5%, respectively, in US carbon storage, while plots with high residue returns stored 2% more carbon. Nitrogenous fertilizer can alter the amount of soil carbon stocks significantly. Under current levels of crop residue return, not applying fertilizer resulted in a 5% loss of soil carbon. Our simulations indicate that disturbance through cultivation will always result in a loss of soil carbon, and management practices will have a large influence on the magnitude of SOC loss.« less

  16. Modeling the impact of agricultural land use and management on US carbon budgets

    DOE PAGES [OSTI]

    Drewniak, B. A.; Mishra, U.; Song, J.; Prell, J.; Kotamarthi, V. R.

    2015-04-09

    Cultivation of the terrestrial land surface can create either a source or sink of atmospheric CO2, depending on land management practices. The Community Land Model (CLM) provides a useful tool for exploring how land use and management impact the soil carbon pool at regional to global scales. CLM was recently updated to include representation of managed lands growing maize, soybean, and spring wheat. In this study, CLM-Crop is used to investigate the impacts of various management practices, including fertilizer use and differential rates of crop residue removal, on the soil organic carbon (SOC) storage of croplands in the continental Unitedmore » States over approximately a 170-year period. Results indicate that total US SOC stocks have already lost over 8 Pg C (10%) due to land cultivation practices (e.g., fertilizer application, cultivar choice, and residue removal), compared to a land surface composed of native vegetation (i.e., grasslands). After long periods of cultivation, individual subgrids (the equivalent of a field plot) growing maize and soybean lost up to 65% of the carbon stored compared to a grassland site. Crop residue management showed the greatest effect on soil carbon storage, with low and medium residue returns resulting in additional losses of 5 and 3.5%, respectively, in US carbon storage, while plots with high residue returns stored 2% more carbon. Nitrogenous fertilizer can alter the amount of soil carbon stocks significantly. Under current levels of crop residue return, not applying fertilizer resulted in a 5% loss of soil carbon. Our simulations indicate that disturbance through cultivation will always result in a loss of soil carbon, and management practices will have a large influence on the magnitude of SOC loss.« less

  17. Land Use License | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Land Use LicenseLegal Published NA Year Signed or Took Effect 2013 Legal Citation Not...

  18. pv land use | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    pv land use Home Rosborne318's picture Submitted by Rosborne318(5) Member 2 December, 2013 - 11:06 Request for Information Renewable Energy GenerationProduction Shreveport Airport...

  19. solar land use | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    solar land use Home Rosborne318's picture Submitted by Rosborne318(5) Member 2 December, 2013 - 11:06 Request for Information Renewable Energy GenerationProduction Shreveport...

  20. Renewable Energy Development on Tribal Lands Conference

    Energy.gov [DOE]

    The Electric Utility Consultants, Inc. (EUCI) is hosting a conference to examine key considerations when designing tribal projects to improve feasibility, assess risks and opportunities of active vs. passive tribal participation, and building a project on tribal lands.

  1. AG Land 1 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 42.145531, -93.432161 Show Map Loading map... "minzoom":false,"mappings...

  2. AG Land 4 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 42.206397, -93.325714 Show Map Loading map... "minzoom":false,"mappings...

  3. AG Land 2 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 41.904231, -93.354864 Show Map Loading map... "minzoom":false,"mappings...

  4. AG Land 3 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 42.146061, -93.428028 Show Map Loading map... "minzoom":false,"mappings...

  5. 2015 Tribal Lands and Environment Forum

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Institute for Tribal Environmental Professionals (ITEP) are hosting the annual Tribal Lands and Environment Forum. The four-day forum will feature special trainings, field trips, and breakout sessions focused on tribal water programs.

  6. 2015 Tribal Lands and Environment Forum

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Institute for Tribal Environmental Professionals (ITEP) are hosting the annual Tribal Lands and Environment Forum. The four-day forum will feature special trainings, field trips, and breakout...

  7. Marine and Land Active-Source Seismic

    Office of Scientific and Technical Information (OSTI)

    Marine and Land Active-Source Seismic Imaging of mid-Miocene to Holocene-aged Faulting near Geothermal Prospects at Pyramid Lake, Nevada Amy Eisses1-3, Annie Kell1'3, Graham ...

  8. Land O Lakes Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    O Lakes Inc Jump to: navigation, search Name: Land O'Lakes Inc Place: Saint Paul, Minnesota Zip: 55164-0101 Product: Farmer-owned cooperative, marketer of dairy-based products for...

  9. GCAM Bioenergy and Land Use Modeling

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    GCAM Bioenergy and Land Use Modeling March 25, 2015 Analysis and Sustainability PI: Marshall Wise Pacific Northwest National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement Support BETO Analysis and Sustainability goals by studying bioenergy production and use in a systems and economic context of US and global energy, agriculture, land use, and emissions. MYPP goal: Develop and maintain analytical tools, models,

  10. TREATMENT OF URANIUM SURFACES

    DOEpatents

    Slunder, C.J.

    1959-02-01

    An improved process is presented for prcparation of uranium surfaces prior to electroplating. The surfacc of the uranium to be electroplated is anodized in a bath comprising a solution of approximately 20 to 602 by weight of phosphoric acid which contains about 20 cc per liter of concentrated hydrochloric acid. Anodization is carried out for approximately 20 minutes at a current density of about 0.5 amperes per square inch at a temperature of about 35 to 45 C. The oxidic film produced by anodization is removed by dipping in strong nitric acid, followed by rinsing with water just prior to electroplating.

  11. Surface mining

    SciTech Connect

    Not Available

    1989-06-01

    This paper reports on a GAO study of attorney and expert witness fees awarded as a result of litigation brought under the Surface Mining Control and Reclamation Act. As of March 24, 1989, a total of about $1.4 million had been awarded in attorney fees and expenses - about $1.3 subject to the provisions of the Employee Retirement Income Security Act, a comparison of its features with provisions of ERISA showed that the plan differed from ERISA provisions in areas such as eligibility, funding, and contribution limits.

  12. Land Record System PIA, Bonneville Power Administration | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Land Record System PIA, Bonneville Power Administration Land Record System PIA, Bonneville Power Administration Land Record System PIA, Bonneville Power Administration Land Record System PIA, Bonneville Power Administration (61.28 KB) More Documents & Publications PIA - Bonneville Power Adminstration Ethics Helpline Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory

  13. High temperature control rod assembly

    SciTech Connect

    Vollman, Russell E.

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  14. Reinventing the Bureau of Land Management

    SciTech Connect

    Yager, J.O.; Muller, K.

    1995-12-01

    The Bureau of Land Management (BLM) has developed a {open_quotes}Blueprint for the Future{close_quotes} changing its organizational structure to better manage nearly 270 million acres of public lands and 540 million acres of subsurface mineral resources. Both efforts focus on ecosystem management and better business practices. The mission identified in the {open_quotes}Blueprint{close_quotes} is {open_quotes}to sustain the health, diversity and productivity of the public lands for the use and enjoyment of present and future generations.{close_quotes} Within this mission goals include maintaining healthy ecosystems and improving customer service and business practices. In conjunction with the Blueprint, the BLM developed strategies to streamline its headquarters and field organizational structures and to accommodate an ecosystem management approach. The new headquarters structure uses flexible interdisciplinary work teams in place of the programmatic hierarchical approach. These teams may be established on either a permanent or temporary basis. For example, one team is responsible for reporting on the condition of the public lands as an essential part of maintaining healthy ecosystems. Although it is too early to judge the success of the BLM`s reinvention efforts, insights can be gained from a review of these efforts. One insight is that most people are so used to thinking about the public lands on a statute by statute, resource by resource, project by project basis, that is difficult for them to adjust to the ecosystem management or streamlining paradigms.

  15. Molecular dynamics simulation of annealed ZnO surfaces

    SciTech Connect

    Min, Tjun Kit; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    The effect of thermally annealing a slab of wurtzite ZnO, terminated by two surfaces, (0001) (which is oxygen-terminated) and (0001{sup ¯}) (which is Zn-terminated), is investigated via molecular dynamics simulation by using reactive force field (ReaxFF). We found that upon heating beyond a threshold temperature of ∼700 K, surface oxygen atoms begin to sublimate from the (0001) surface. The ratio of oxygen leaving the surface at a given temperature increases as the heating temperature increases. A range of phenomena occurring at the atomic level on the (0001) surface has also been explored, such as formation of oxygen dimers on the surface and evolution of partial charge distribution in the slab during the annealing process. It was found that the partial charge distribution as a function of the depth from the surface undergoes a qualitative change when the annealing temperature is above the threshold temperature.

  16. Land management practices to become important as biofuels use grows |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Land Record System PIA, Bonneville Power Administration Land Record System PIA, Bonneville Power Administration Land Record System PIA, Bonneville Power Administration Land Record System PIA, Bonneville Power Administration (61.28 KB) More Documents & Publications PIA - Bonneville Power Adminstration Ethics Helpline Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory

    Land and Asset

  17. Results from KamLAND-Zen

    DOE PAGES [OSTI]

    Asakura, K.; Gando, A.; Gando, Y.; Hachiya, T.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, T.; Ishio, S.; et al

    2015-07-15

    KamLAND-Zen reports on a preliminary search for neutrinoless double-beta decay with 136Xe based on 114.8 live-days after the purification of the xenon loaded liquid scintillator. In this data, the problematic 110mAg background peak identified in previous searches is reduced by more than a factor of 10. By combining the KamLAND-Zen pre- and post-purification data, we obtain a preliminary lower limit on the 0νββ decay half-life of T0ν1/2 > 2.6×1025 yr at 90% C.L. The search sensitivity will be enhanced with additional low background data after the purification. As a result, prospects for further improvements with future KamLAND-Zen upgrades are alsomore » presented.« less

  18. Results from KamLAND-Zen

    SciTech Connect

    Asakura, K.; Gando, A.; Gando, Y.; Hachiya, T.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, T.; Ishio, S.; Koga, M.; Matsuda, R.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakamura, K.; Obara, S.; Oki, Y.; Otani, M.; Oura, T.; Shimizu, I.; Shirahata, Y.; Shirai, J.; Suzuki, A.; Tachibana, H.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamauchi, Y.; Yoshida, H.; Kozlov, A.; Takemoto, Y.; Yoshido, S.; Fushimi, K.; Banks, T. I.; Freedman, S. J.; Fujikawa, B. K.; O'Donnell, T.; Winslow, L. A.; Berger, B. E.; Efremenko, Y.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.

    2015-07-15

    KamLAND-Zen reports on a preliminary search for neutrinoless double-beta decay with 136Xe based on 114.8 live-days after the purification of the xenon loaded liquid scintillator. In this data, the problematic 110mAg background peak identified in previous searches is reduced by more than a factor of 10. By combining the KamLAND-Zen pre- and post-purification data, we obtain a preliminary lower limit on the 0??? decay half-life of T0?1/2 > 2.61025 yr at 90% C.L. The search sensitivity will be enhanced with additional low background data after the purification. As a result, prospects for further improvements with future KamLAND-Zen upgrades are also presented.

  19. Use of composts in revegetating arid lands

    SciTech Connect

    Brandt, C.A.; Hendrickson, P.L.

    1991-09-01

    Compost has been suggested as a soil amendment for arid lands at the US Department of Energy's Hanford Site in southeastern Washington State. The operating contractor of the site, Westinghouse Hanford Company, requested that the Pacific Northwest Laboratory conduct a literature review to compile additional information on the use of compost amendments and their benefits. This report provides background information on the factors needed for plant growth and the consequences of severe soil disturbance. This report also discussed the characteristics of composts relative to other amendments and how they each affect plant growth. Finally,regulatory requirements that could affect land application of sludge-based compost on the Hanford Site are reviewed.

  20. Land use and value after reclamation

    SciTech Connect

    Phelps, W.R.

    1998-12-31

    This presentation discusses the process of analyzing the size and condition of producing land parcels concerning management and income relationships, tract location, and soil and water conservation structures. It reviews production schemes for crops such as corn, soybeans, wheat, alfalfa hay, and warm season grasses, as well as use for recreation. Management of tenants and leases is discussed concerning evaluation of crop share leases, cash renting, custom farming, and tenant selection. Factors involving subsidence due to underground mining by longwall or room and pillar extraction are discussed. Issues related to planning for and management of taxes, long-term improvements, and other land costs are presented.

  1. Surface Meteorology, Barrow, Alaska, Area A, B, C and D, Ongoing from 2012

    DOE Data Explorer

    Bob Busey; Larry Hinzman; William Cable; Vladimir Romanovsky

    2014-12-04

    Meteorological data are being collected at several points within four intensive study areas in Barrow. These data assist in the calculation of the energy balance at the land surface and are also useful as inputs into modeling activities.

  2. Surface Meteorology, Barrow, Alaska, Area A, B, C and D, Ongoing from 2012

    DOE Data Explorer

    Bob Busey; Larry Hinzman; William Cable; Vladimir Romanovsky

    Meteorological data are being collected at several points within four intensive study areas in Barrow. These data assist in the calculation of the energy balance at the land surface and are also useful as inputs into modeling activities.

  3. Cooled, temperature controlled electrometer

    DOEpatents

    Morgan, John P.

    1992-08-04

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  4. Cooled, temperature controlled electrometer

    DOEpatents

    Morgan, John P.

    1992-01-01

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  5. Controlling the Charge State and Redox Properties of Supported Polyoxometalates via Soft Landing of Mass Selected Ions

    SciTech Connect

    Gunaratne, Kalupathirannehelage Don D.; Johnson, Grant E.; Andersen, Amity; Du, Dan; Zhang, Weiying; Prabhakaran, Venkateshkumar; Lin, Yuehe; Laskin, Julia

    2014-12-04

    We investigate the controlled deposition of Keggin polyoxometalate (POM) anions, PMo12O403- and PMo12O402-, onto different self-assembled monolayer (SAM) surfaces via soft landing of mass-selected ions. Utilizing in situ infrared reflection absorption spectroscopy (IRRAS), ex situ cyclic voltammetry (CV) and electronic structure calculations, we examine the structure and charge retention of supported multiply-charged POM anions and characterize the redox properties of the modified surfaces. SAMs of alkylthiol (HSAM), perfluorinated alkylthiol (FSAM), and alkylthiol terminated with NH3+ functional groups (NH3+SAM) are chosen as model substrates for soft landing to examine the factors which influence the immobilization and charge retention of multiply charged anionic molecules. The distribution of charge states of POMs on different SAM surfaces are determined by comparing the IRRAS spectra with vibrational spectra calculated using density functional theory (DFT). In contrast to the results obtained previously for multiply charged cations, soft landed anions are found to retain charge on all three SAM surfaces. This charge retention is attributed to the substantial electron binding energy of the POM anions. Investigation of redox properties by CV reveals that, while surfaces prepared by soft landing exhibit similar features to those prepared by adsorption of POM from solution, the soft landed POM2- has a pronounced shift in oxidation potential compared to POM3- for one of the redox couples. These results demonstrate that ion soft landing is uniquely suited for precisely controlled preparation of substrates with specific electronic and chemical properties that cannot be achieved using conventional deposition techniques.

  6. Variable temperature electrochemical strain microscopy of Sm-doped ceria

    SciTech Connect

    Jesse, Stephen; Morozovska, A. N.; Kalinin, Sergei V; Eliseev, E. A.; Yang, Nan; Doria, Sandra; Tebano, Antonello

    2013-01-01

    Variable temperature electrochemical strain microscopy has been used to study the electrochemical activity of Sm-doped ceria as a function of temperature and bias. The electrochemical strain microscopy hysteresis loops have been collected across the surface at different temperatures and the relative activity at different temperatures has been compared. The relaxation behavior of the signal at different temperatures has been also evaluated to relate kinetic process during bias induced electrochemical reactions with temperature and two different kinetic regimes have been identified. The strongly non-monotonic dependence of relaxation behavior on temperature is interpreted as evidence for water-mediated mechanisms.

  7. High temperature furnace

    DOEpatents

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  8. Ecological perspectives of land use history: The Arid Lands Ecology (ALE) Reserve

    SciTech Connect

    Hinds, N R; Rogers, L E

    1991-07-01

    The objective of this study was to gather information on the land use history of the Arid Land Ecology (ALE) Reserve so that current ecological research could be placed within a historical perspective. The data were gathered in the early 1980s by interviewing former users of the land and from previously published research (where available). Interviews with former land users of the ALE Reserve in Benton County, Washington, revealed that major land uses from 1880 to 1940 were homesteading, grazing, oil/gas production, and road building. Land use practices associated with grazing and homesteading have left the greatest impact on the landscape. Disturbed sites where succession is characterized by non-native species, plots where sagebrush was railed away, and sheep trails are major indications today of past land uses. Recent estimates of annual bunchgrass production do ALE do not support the widespread belief that bunchgrass were more productive during the homesteading era, though the invasion of cheatgrass (Bromus tectorum), Jim Hill mustard (Sisymbrium altissium), and other European alien plant species has altered pre-settlement succession patterns. 15 refs., 6 figs., 1 tab.

  9. Method for preparing hydride configurations and reactive metal surfaces

    DOEpatents

    Silver, G.L.

    1984-05-18

    A method for preparing reactive metal surfaces, particularly uranium surfaces is disclosed, whereby the metal is immediately reactive to hydrogen gas at room temperature and low pressure. The metal surfaces are first pretreated by exposure to an acid which forms an adherent hydride-bearing composition on the metal surface. Subsequent heating of the pretreated metal at a temperature sufficient to decompose the hydride coating in vacuum or inert gas renders the metal surface instantaneously reactive to hydrogen gas at room temperature and low pressure.

  10. A thermal control system for long-term survival of scientific instruments on lunar surface

    SciTech Connect

    Ogawa, K.; Iijima, Y.; Tanaka, S.; Sakatani, N.; Otake, H.

    2014-03-15

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime ?200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a regolith mound. Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.

  11. WIND SPEED AND ATMOSPHERIC STABILITY TRENDS FOR SELECTED UNITED STATES SURFACE STATIONS

    SciTech Connect

    Buckley, R; Allen H. Weber, A

    2006-11-01

    Recently it has been suggested that global warming and a decrease in mean wind speeds over most land masses are related. Decreases in near surface wind speeds have been reported by previous investigators looking at records with time spans of 15 to 30 years. This study focuses on United States (US) surface stations that have little or no location change since the late 1940s or the 1950s--a time range of up to 58 years. Data were selected from 62 stations (24 of which had not changed location) and separated into ten groups for analysis. The group's annual averages of temperature, wind speed, and percentage of Pasquill-Gifford (PG) stability categories were fitted with linear least squares regression lines. The results showed that the temperatures have increased for eight of the ten groups as expected. Wind speeds have decreased for nine of the ten groups. The mean slope of the wind speed trend lines for stations within the coterminous US was -0.77 m s{sup -1} per century. The percentage frequency of occurrence for the neutral (D) PG stability category decreased, while that for the unstable (B) and the stable (F) categories increased in almost all cases except for the group of stations located in Alaska.

  12. Methods and apparatuses for preparing a surface to have catalytic activity

    DOEpatents

    Cooks, Robert G.; Peng, Wen-Ping; Ouyang, Zheng; Goodwin, Michael P.

    2011-03-22

    The invention provides methods and apparatuses that utilize mass spectrometry for preparation of a surface to have catalytic activity through molecular soft-landing of mass selected ions. Mass spectrometry is used to generate combinations of atoms in a particular geometrical arrangement, and ion soft-landing selects this molecular entity or combination of entities and gently deposits the entity or combination intact onto a surface.

  13. Surface studies of plasma processed Nb samples

    SciTech Connect

    Tyagi, Puneet V; Doleans, Marc; Hannah, Brian S; Afanador, Ralph; Stewart, Stephen; Mammosser, John; Howell, Matthew P; Saunders, Jeffrey W; Degraff, Brian D; Kim, Sang-Ho

    2015-01-01

    Contaminants present at top surface of superconducting radio frequency (SRF) cavities can act as field emitters and restrict the cavity accelerating gradient. A room temperature in-situ plasma processing technology for SRF cavities aiming to clean hydrocarbons from inner surface of cavities has been recently developed at the Spallation Neutron Source (SNS). Surface studies of the plasma processed Nb samples by Secondary ion mass spectrometry (SIMS) and Scanning Kelvin Probe (SKP) showed that the NeO2 plasma processing is very effective to remove carbonaceous contaminants from top surface and improves the surface work function by 0.5 to 1.0 eV.

  14. Arid Lands Ecology Facility management plan

    SciTech Connect

    None

    1993-02-01

    The Arid Lands Ecology (ALE) facility is a 312-sq-km tract of land that lies on the western side of the Hanford Site in southcentral Washington. The US Atomic Energy Commission officially set aside this land area in 1967 to preserve shrub-steppe habitat and vegetation. The ALE facility is managed by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) for ecological research and education purposes. In 1971, the ALE facility was designated the Rattlesnake Hills Research Natural Area (RNA) as a result of an interagency federal cooperative agreement, and remains the largest RNA in Washington. it is also one of the few remaining large tracts of shrub-steppe vegetation in the state retaining a predominant preeuropean settlement character. This management plan provides policy and implementation methods for management of the ALE facilities consistent with both US Department of Energy Headquarters and the Richland Field Office decision (US Congress 1977) to designate and manage ALE lands as an RNA and as a component of the DOE National Environmental Research Park System.

  15. Waste Isolation Pilot Plant land management plan

    SciTech Connect

    1996-05-01

    On October 30, 1992, the WIPP Land Withdrawal Act became law. This Act transferred the responsibility for the management of the WIPP Land Withdrawal Area (WILWA) from the Secretary of the Interior to the Secretary of Energy. In accordance with sections 3(a)(1) and (3) of the Act, these lands {open_quotes}{hor_ellipsis}are withdrawn from all forms of entry, appropriation, and disposal under the public land laws{hor_ellipsis}{close_quotes}and are reserved for the use of the Secretary of Energy {open_quotes}{hor_ellipsis}for the construction, experimentation, operation, repair and maintenance, disposal, shutdown, monitoring, decommissioning, and other activities, associated with the purposes of WIPP as set forth in the Department of Energy National Security and Military Applications of Nuclear Energy Act of 1980 and this Act.{close_quotes}. As a complement to this LMP, a MOU has been executed between the DOE and the BLM, as required by section 4(d) of the Act. The state of New Mexico was consulted in the development of the MOU and the associated Statement of Work (SOW).

  16. Climate Effects of Global Land Cover Change

    SciTech Connect

    Gibbard, S G; Caldeira, K; Bala, G; Phillips, T; Wickett, M

    2005-08-24

    There are two competing effects of global land cover change on climate: an albedo effect which leads to heating when changing from grass/croplands to forest, and an evapotranspiration effect which tends to produce cooling. It is not clear which effect would dominate in a global land cover change scenario. We have performed coupled land/ocean/atmosphere simulations of global land cover change using the NCAR CAM3 atmospheric general circulation model. We find that replacement of current vegetation by trees on a global basis would lead to a global annual mean warming of 1.6 C, nearly 75% of the warming produced under a doubled CO{sub 2} concentration, while global replacement by grasslands would result in a cooling of 0.4 C. These results suggest that more research is necessary before forest carbon storage should be deployed as a mitigation strategy for global warming. In particular, high latitude forests probably have a net warming effect on the Earth's climate.

  17. Land Use Baseline Report Savannah River Site

    SciTech Connect

    Noah, J.C.

    1995-06-29

    This document is to serve as a resource for Savannah River Site managers, planners, and SRS stakeholders by providing a general description of the site and land-use factors important to future use decisions and plans. The intent of this document is to be comprehensive in its review of SRS and the surrounding area.

  18. Possible mechanism of abrupt jump in winter surface air temperature...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 120; Journal Issue: 24; Journal ID: ISSN 2169-897X Publisher: Wiley Blackwell (John Wiley & Sons) Sponsoring Org: USDOE Country of ...

  19. Influence of 21st century atmospheric and sea surface temperature...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: SC USDOE - Office of Science (SC) Country of Publication: United States Language: English Subject: African monsoon; Earth System Modeling; Climate Change Word Cloud ...

  20. Changing Surface Shapes with Temperature | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    while the hole pockets vanished above 165 K (-162.67 F). Researchers are studying this material and its cousins because of their unusual and dramatic resistance change...

  1. MEMS sensor measurement of surface temperature response during...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 67; Journal Issue: C; Journal ID: ISSN 0894-1777 Publisher: Elsevier Sponsoring Org: USDOE Country of Publication: United States ...

  2. Surface Plasma Source Electrode Activation by Surface Impurities

    SciTech Connect

    Dudnikov, Vadim; Han, Baoxi; Johnson, Rolland P.; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Stockli, Martin P; Welton, Robert F

    2011-01-01

    In experiments with RF saddle antenna surface plasma sources (SPS), the efficiency of H- ion generation was increased by up to a factor of 5 by long time plasma electrode activation, without adding Cs from Cs supply, by heating the collar to high temperature using hot air flow and plasma discharge. Without cracking or heating the cesium ampoule, but likely with Cs recovery from impurities, the achieved energy efficiency was comparable to that of conventionally cesiated SNS RF sources with an external or internal Cs supply. In the experiments, perfect cesiation was produced (without additional Cs supply) by the collection and trapping of traces of remnant cesium compounds from SPS surfaces.

  3. High temperature thermographic measurements of laser heated silica

    SciTech Connect

    Elhadj, S; Yang, S T; Matthews, M J; Cooke, D J; Bude, J D; Johnson, M; Feit, M; Draggoo, V; Bisson, S E

    2009-11-02

    In situ spatial and temporal surface temperature profiles of CO{sub 2} laser-heated silica were obtained using a long wave infrared (LWIR) HgCdTe camera. Solutions to the linear diffusion equation with volumetric and surface heating are shown to describe the temperature evolution for a range of beam powers, over which the peak surface temperature scales linearly with power. These solutions were used with on-axis steady state and transient experimental temperatures to extract thermal diffusivity and conductivity for a variety of materials, including silica, spinel, sapphire, and lithium fluoride. Experimentally-derived thermal properties agreed well with reported values and, for silica, thermal conductivity and diffusivity are shown to be approximately independent of temperature between 300 and 2800K. While for silica our analysis based on a temperature independent thermal conductivity is shown to be accurate, for other materials studied this treatment yields effective thermal properties that represent reasonable approximations for laser heating. Implementation of a single-wavelength radiation measurement in the semi-transparent regime is generally discussed, and estimates of the apparent temperature deviation from the actual outer surface temperature are also presented. The experimental approach and the simple analysis presented yield surface temperature measurements that can be used to validate more complex physical models, help discriminate dominant heat transport mechanisms, and to predict temperature distribution and evolution during laser-based material processing.

  4. Enzymatic temperature change indicator

    DOEpatents

    Klibanov, Alexander M.; Dordick, Jonathan S.

    1989-01-21

    A temperature change indicator is described which is composed of an enzyme and a substrate for that enzyme suspended in a solid organic solvent or mixture of solvents as a support medium. The organic solvent or solvents are chosen so as to melt at a specific temperature or in a specific temperature range. When the temperature of the indicator is elevated above the chosen, or critical temperature, the solid organic solvent support will melt, and the enzymatic reaction will occur, producing a visually detectable product which is stable to further temperature variation.

  5. Crystal face temperature determination means

    DOEpatents

    Nason, Donald O.; Burger, Arnold

    1994-01-01

    An optically transparent furnace (10) having a detection apparatus (29) with a pedestal (12) enclosed in an evacuated ampule (16) for growing a crystal (14) thereon. Temperature differential is provided by a source heater (20), a base heater (24) and a cold finger (26) such that material migrates from a polycrystalline source material (18) to grow the crystal (14). A quartz halogen lamp (32) projects a collimated beam (30) onto the crystal (14) and a reflected beam (34) is analyzed by a double monochromator and photomultiplier detection spectrometer (40) and the detected peak position (48) in the reflected energy spectrum (44) of the reflected beam (34) is interpreted to determine surface temperature of the crystal (14).

  6. Vermont Land Use: Essentials of Local Land Use Planning and Regulation...

    OpenEI (Open Energy Information) [EERE & EIA]

    Use: Essentials of Local Land Use Planning and Regulation Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook:...

  7. Self-calibrated active pyrometer for furnace temperature measurements

    DOEpatents

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.

    1998-01-01

    Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.

  8. Setting the course for the Surface Mining Control and Reclamation Act of 1977

    SciTech Connect

    Beck, R.E.

    1995-12-31

    The Surface Mining Control and Reclamation Act of 1977 focuses on ensuring reclamation of the land after mining by restoring land affected to a condition capable of supporting prior uses and sets up a program for reclaiming abandoned mined land to be financed by a tax on coal produced. This article discusses the landmark legal decisions which represent major efforts to limit the federal role in the Surface Mining Control and Reclamation Act of 1977 through the Commerce Clause, the Tenth Amendment, and statutory interpretation.

  9. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  10. Temperature-profile detector

    DOEpatents

    Not Available

    1981-01-29

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors creating short circuits which are detectable as to location.

  11. Temperature profile detector

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors, creating short circuits which are detectable as to location.

  12. EA-1779: Proposed Changes to the Sanitary Biosolids Land Application Program on the Oak Ridge Reservation, Oak Ridge, Tennessee

    Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to amend (e.g., by changing setback requirements from surface water features and potential channels to groundwater) the Sanitary Biosolids Land Application Program at the Oak Ridge Reservation in Oak Ridge, Tennessee.

  13. Optimizing the Use of Federal Lands Through Disposition

    Energy.gov [DOE]

    The foundation of the U.S. Department of Energy (DOE) Office of Legacy Management’s (LM) Goal 4, “Optimize the use of land and assets,” is to establish environmentally sound and protective land...

  14. Energy Department Releases New Land-Based/Offshore Wind Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Releases New Land-BasedOffshore Wind Resource Map Energy Department Releases New Land-BasedOffshore Wind Resource Map May 1, 2012 - 2:23pm Addthis This is an excerpt from the ...

  15. H.R.S. 205 - Land Use | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    5 - Land Use Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: H.R.S. 205 - Land UseLegal Published NA Year Signed or Took Effect...

  16. 31 TAC, Part 4, School Land Board | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    School Land Board Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 31 TAC, Part 4, School Land BoardLegal Abstract Texas...

  17. Montana Natural Streambed and Land Preservation Act Webpage ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Streambed and Land Preservation Act Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Natural Streambed and Land Preservation Act Webpage...

  18. Title 36 CFR 251 Land Uses | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    51 Land Uses Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 36 CFR 251 Land UsesLegal Abstract...

  19. Alaska Division of Mining Land and Water | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Mining Land and Water Jump to: navigation, search Name: Alaska Division of Mining Land and Water Address: 550 W. 7th Ave., Suite 1260 Place: Anchorage, Alaska Zip: 99501-3557 Phone...

  20. Alaska Department of Natural Resources Land Use Planning Webpage...

    OpenEI (Open Energy Information) [EERE & EIA]

    OpenEI Reference LibraryAdd to library Web Site: Alaska Department of Natural Resources Land Use Planning Webpage Abstract This webpage provides an overview of Alaska's land use...

  1. Title 50 CFR 29 Land Use Management | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    9 Land Use Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 50 CFR 29 Land Use ManagementLegal Abstract...

  2. Texas General Land Office - Rights of Way and Miscellaneous Easements...

    OpenEI (Open Energy Information) [EERE & EIA]

    General Land Office - Rights of Way and Miscellaneous Easements Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Texas General Land Office - Rights of...

  3. Leasing State Trust Lands in Washington | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Leasing State Trust Lands in Washington Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Leasing State Trust Lands in WashingtonLegal...

  4. NRS 322 - Use of State Lands | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2 - Use of State Lands Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: NRS 322 - Use of State LandsLegal Abstract This chapter...

  5. Oregon Department of State Lands | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    of State Lands Name: Oregon Department of State Lands Address: 775 Summer Street, Suite 100 Place: Salem, Oregon Zip: 97301-1279 Phone Number: 503-986-5200 Website:...

  6. Soil fungal and bacterial responses to conversion of open land...

    Office of Scientific and Technical Information (OSTI)

    of open land to short-rotation woody biomass crops Citation Details In-Document Search ... of open land to short-rotation woody biomass crops Authors: Xue, Chao 1 ; Penton, ...

  7. File:03FDBTribalLandLeasing.pdf | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    03FDBTribalLandLeasing.pdf Jump to: navigation, search File File history File usage Metadata File:03FDBTribalLandLeasing.pdf Size of this preview: 463 599 pixels. Other...

  8. File:03NVBStateLandAccess.pdf | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    NVBStateLandAccess.pdf Jump to: navigation, search File File history File usage Metadata File:03NVBStateLandAccess.pdf Size of this preview: 463 599 pixels. Other resolution:...

  9. File:03FDAFederalLandLeasing.pdf | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    03FDAFederalLandLeasing.pdf Jump to: navigation, search File File history File usage Metadata File:03FDAFederalLandLeasing.pdf Size of this preview: 463 599 pixels. Other...

  10. File:01LandUseOverview.pdf | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    1LandUseOverview.pdf Jump to: navigation, search File File history File usage Metadata File:01LandUseOverview.pdf Size of this preview: 463 599 pixels. Other resolution: 464 ...

  11. Grout treatment facility land disposal restriction management plan

    SciTech Connect

    Hendrickson, D.W.

    1991-04-04

    This document establishes management plans directed to result in the land disposal of grouted wastes at the Hanford Grout Facilities in compliance with Federal, State of Washington, and Department of Energy land disposal restrictions. 9 refs., 1 fig.

  12. Geothermal Power Plants — Minimizing Land Use and Impact

    Office of Energy Efficiency and Renewable Energy (EERE)

    For energy production and development, geothermal power plants don't use much land compared to coal and nuclear power plants. And the environmental impact upon the land they use is minimal.

  13. High temperature sensor

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  14. Sustainable Land Management Through Market-Oriented Commodity...

    OpenEI (Open Energy Information) [EERE & EIA]

    Commodity Development: Case studies from Ethiopia AgencyCompany Organization: International Livestock Research Institute Sector: Land Focus Area: Agriculture Topics:...

  15. Webtrends Archives by Fiscal Year — Topic Landing Pages

    Energy.gov [DOE]

    From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the topic landing pages by fiscal year.

  16. Solar Energy on Public Lands | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    on Public Lands Solar Energy on Public Lands This website describes federal policy for deploying utility scale solar on public lands. It includes a roadmap for deployment, a general overview of the status of the Bureau of Land Management's efforts in the utility solar sector, and a history of deployment in the Southwest United States. The site also links to other relevant agencies and resources. Partner Agency: U.S. Department of Interior Resource Type: Webpage Stakeholder Group(s): Rural

  17. Developing Clean Energy Projects on Tribal Lands: Data and Resources...

    Office of Scientific and Technical Information (OSTI)

    RENEWABLE ENERGY; TECHNOLOGY POTENTIAL; MAPS; WIND; SOLAR PHOTOVOLTAICS; HYDROELECTRICITY; GEOTHERMAL; CONCENTRATED SOLAR POWER; BIOMASS; TECHNICAL ASSISTANCE; TRIBAL LANDS; ...

  18. Illinois abandoned mined lands reclamation program: a progress report

    SciTech Connect

    Hickmann, T.J.; Jenkusky, S.M.; Massie, S.

    1985-12-01

    The Illinois Abandoned Mined Lands Reclamation Council (AMLRC), created in 1975, is responsible for the abatement of hazardous and environmental problems associated with pre-law abandoned coal mines throughout the State. The availability of federal funds for reclamation, through passage of the Surface Mining Control and Reclamation Act of 1977 (SMCRA), greatly expanded the program. With funds provided through early cooperative agreements and current annual grants from the federal Office of Surface Mining (OSM), the State has reclaimed, or is currently reclaiming, 182 mine sites and has assisted OSM in the abatement of 67 emergency situations. This paper reviews the progress made by the AMLRC in dealing with the State's abandoned mine problems. Specifically, the numbers and types of problem sites reclaimed annually, their costs, and reclamation methods are identified. Progress of the program relative to the entire State's abandoned mine problems is reviewed. The effects of other reclamation factors, such as natural revegetation, remaining privately-funded reclamation, and secondary carbon recovery, on the overall scope of the State's program are also examined. General comments are made concerning grant preparation, State-OSM cooperation and AML-Inventory control. Selected reclamation projects and techniques are also discussed. 11 references, 3 tables.

  19. Land-Use Change Data Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Office (BETO) 2015 Project Peer Review 4.1.2.40 Land-Use Change Data Analysis 03/25/2015 Analysis & Sustainability Nagendra Singh (PI) Keith Kline, Rebecca Efroymson, Raju Vatsavai, Huina Mao, Erica Pham, Budhendra Bhaduri. Oak Ridge National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Presentation name Goal Statement Project Goal Design and develop scalable tools and assessment methods to establish scientific basis for

  20. Resource Assessment and Land Use Change

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resource Assessment and Land Use Change Zia Haq Light Duty Vehicles/Fuels Workshop, July 26, 2010 Biomass Program Strategic Analysis Activities Strategic Analysis Impact Assessment TEA Pathway Analysis Program- wide Analysis Systems Integration ANL, INL, ORNL, PNNL NREL, PNNL, INL PNNL, NREL, ORNL * FY10 Funding: $5.5 million strategic analysis, $2.5 million systems integration * FY11 Funding (request): $4 million strategic analysis, $4 million sustainability, $2 million systems integration *

  1. Global Biofuels Modeling and Land Use

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biofuels Modeling and Land Use DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Strategic Analysis & Cross-cutting Sustainability March 25 2015 Gbadebo Oladosu (PI) Oak Ridge National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information GOAL STATEMENT * Primary goal of the project is to demonstrate the viability of biofuels in the context of the national/global economy. * Metrics include: - Cost effectiveness:

  2. Temperature compensated photovoltaic array

    DOEpatents

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  3. Temperature compensated photovoltaic array

    DOEpatents

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  4. Land Disposal Restrictions (LDR) program overview

    SciTech Connect

    Not Available

    1993-04-01

    The Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA) enacted in 1984 required the Environmental Protection Agency (EPA) to evaluate all listed and characteristic hazardous wastes according to a strict schedule and to develop requirements by which disposal of these wastes would be protective of human health and the environment. The implementing regulations for accomplishing this statutory requirement are established within the Land Disposal Restrictions (LDR) program. The LDR regulations (40 CFR Part 268) impose significant requirements on waste management operations and environmental restoration activities at DOE sites. For hazardous wastes restricted by statute from land disposal, EPA is required to set levels or methods of treatment that substantially reduce the waste`s toxicity or the likelihood that the waste`s hazardous constituents will migrate. Upon the specified LDR effective dates, restricted wastes that do not meet treatment standards are prohibited from land disposal unless they qualify for certain variances or exemptions. This document provides an overview of the LDR Program.

  5. Paddy field, groundwater and land subsidence

    SciTech Connect

    Wen, L.J.

    1995-12-31

    Through many years of research and technical interchange both at home and abroad, it is commonly recognized that paddy fields possess the functions of micro-climate adjustment, flood detection and prevention, soil and water conservation, river-flow stabilization, soil salinization prevention, water purification, groundwater recharge, rural area beautification and environmental protection which are all beneficial to the public. In recent years, the global environmental problems have become a series concern throughout the world. These include the broken ozone layer, green house effects, acid rain, land desertion, tropical rain forest disappearing etc. Among them, rain forest disappearing draws great attention. Both rain forests and paddy fields are in tropical areas. They have similar functions and are disappearing because of economic pressure. This paper describes the special functions of paddy fields on water purification, ground water recharge and prevention of land subsidence, and reiterates groundwater utilization and land subsidence prevention measures. In view of the importance of groundwater resources, paddy fields, which can not be replaced by any other artificial groundwater recharge facilities, should not be reduced in acreage, nor can they be left idle. Paddy fields shall be properly maintained and managed in order to strengthen their special functions in the years to come even under heavy pressure from foreign countries.

  6. Project Reports for Navajo Hopi Land Commission Office (NHLCO): Navajo Hopi Land Commission Office (NHLCO)- 2012 Project

    Energy.gov [DOE]

    The Navajo Hopi Land Commission (NHLCO), together with its partners, will conduct a feasibility study (FS) of a program to develop renewable energy on the Paragon-Bisti ranch lands in northwestern New Mexico, which were set aside under the Navajo-Hopi Land Settlement Act for the benefit of relocatees (defined as Navajo families living on Hopi Partitioned Lands as of December 22, 1974).

  7. Industrial Applications of Low Temperature Plasmas

    SciTech Connect

    Bardsley, J N

    2001-03-15

    The use of low temperature plasmas in industry is illustrated by the discussion of four applications, to lighting, displays, semiconductor manufacturing and pollution control. The type of plasma required for each application is described and typical materials are identified. The need to understand radical formation, ionization and metastable excitation within the discharge and the importance of surface reactions are stressed.

  8. ENHANCEMENT OF TERRESTRIAL CARBON SINKS THROUGH RECLAMATION OF ABANDONED MINE LANDS IN THE APPALACHIAN REGION

    SciTech Connect

    Gary D. Kronrad

    2002-12-01

    The U.S.D.I. Office of Surface Mining (OSM) estimates that there are approximately 1 million acres of abandoned mine land (AML) in the Appalachian region. AML lands are classified as areas that were inadequately reclaimed or were left unreclaimed prior to the passage of the 1977 Surface Mining Control and Reclamation Act, and where no federal or state laws require any further reclamation responsibility to any company or individual. Reclamation and afforestation of these sites have the potential to provide landowners with cyclical timber revenues, generate environmental benefits to surrounding communities, and sequester carbon in the terrestrial ecosystem. Through a memorandum of understanding, the OSM and the U.S. Department of Energy (DOE) have decided to investigate reclaiming and afforesting these lands for the purpose of mitigating the negative effects of anthropogenic carbon dioxide in the atmosphere. This study determined the carbon sequestration potential of northern red oak (Quercus rubra L.), one of the major reclamation as well as commercial species, planted on West Virginia AML sites. Analyses were conducted to (1) calculate the total number of tons that can be stored, (2) determine the cost per ton to store carbon, and (3) calculate the profitability of managing these forests for timber production alone and for timber production and carbon storage together. The Forest Management Optimizer (FORMOP) was used to simulate growth data on diameter, height, and volume for northern red oak. Variables used in this study included site indices ranging from 40 to 80 (base age 50), thinning frequencies of 0, 1, and 2, thinning percentages of 20, 25, 30, 35, and 40, and a maximum rotation length of 100 years. Real alternative rates of return (ARR) ranging from 0.5% to 12.5% were chosen for the economic analyses. A total of 769,248 thinning and harvesting combinations, net present worths, and soil expectation values were calculated in this study. Results indicate that

  9. EIS-0222: Hanford Comprehensive Land-Use Plan

    Energy.gov [DOE]

    DOE has prepared the EIS to evaluate the potential environmental impacts associated with implementing a comprehensive land-use plan (CLUP) for the Hanford Site for at least the next 50 years. DOE is expected to use this land-use plan in its decision-making process to establish what is the “highest and best use” of the land (41 Code of Federal Regulations [CFR] 101-47, “Federal Property Management Regulations”). The final selection of a land-use map, land-use policies, and implementing procedures would create the working CLUP when they are adopted through the ROD for the EIS.

  10. Tropical Africa: Land Use, Biomass, and Carbon Estimates for 1980 (NDP-055)

    SciTech Connect

    Brown, S.

    2002-04-16

    This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980. The biomass data and carbon estimates are associated with woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with estimating historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth's land surface and is comprised of countries that are located in tropical Africa (Angola, Botswana, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Congo, Benin, Equatorial Guinea, Ethiopia, Djibouti, Gabon, Gambia, Ghana, Guinea, Ivory Coast, Kenya, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger, Nigeria, Guinea-Bissau, Zimbabwe (Rhodesia), Rwanda, Senegal, Sierra Leone, Somalia, Sudan, Tanzania, Togo, Uganda, Burkina Faso (Upper Volta), Zaire, and Zambia). The database was developed using the GRID module in the ARC/INFO{trademark} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

  11. Physiological and ecological consequences of sleeping-site selection by the Galapagos land iguana (Conolophus pallidus)

    SciTech Connect

    Christian, K.A.; Tracy, C.R.

    1984-01-01

    Field observations and biophysical models were combined to analyze sleeping-site selection by Galapagos land iguanas (Conolophus pallidus). Iguanas slept in different kinds of sleeping sites during different seasons. In the coolest season (garua), adult land iguanas were found in sleeping sites that were warmer than the coolest sites available. This may be because the garua season (cool, overcast, and foggy) is a time when environmental conditions mitigate against rapid warm-up in the mornings, so lizards may regulate nighttime body temperatures so that it is easier to warm up to preferred daytime body temperatures. In the warmest season, adult iguanas were found in the coolest sleeping sites available. This observation is consistent with hypotheses of voluntary hypothermia, which can be advantageous in energy conservation and in avoiding detrimental effects associated with maintenance of constant body temperatures throughout the day and night. Juvenile iguanas were found sleeping in rock crevices regardless of the ambient thermal environments. Such sites are likely to be important as refugia for this life stage, which, unlike the adult stage, is vulnerable to predation. It was concluded that selection of sleeping sites is a process that may help in avoidance of predation, optimization of body temperature at the end of the sleeping period, and reduction of metabolic costs during sleeping. The importance of some of these factors may change with the thermal milieu (e.g., season).

  12. An international land-biosphere model benchmarking activity for the IPCC Fifth Assessment Report (AR5)

    SciTech Connect

    Hoffman, Forrest M [ORNL; Randerson, James T [ORNL; Thornton, Peter E [ORNL; Bonan, Gordon [National Center for Atmospheric Research (NCAR); Erickson III, David J [ORNL; Fung, Inez [University of California, Berkeley

    2009-12-01

    The need to capture important climate feedbacks in general circulation models (GCMs) has resulted in efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, called Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results (Friedlingstein et al., 2006). This work suggests that a more rigorous set of global offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are needed. The Carbon-Land Model Intercomparison Project (C-LAMP) was designed to meet this need by providing a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). Recently, a similar effort in Europe, called the International Land Model Benchmark (ILAMB) Project, was begun to assess the performance of European land surface models. These two projects will now serve as prototypes for a proposed international land-biosphere model benchmarking activity for those models participating in the IPCC Fifth Assessment Report (AR5). Initially used for model validation for terrestrial biogeochemistry models in the NCAR Community Land Model (CLM), C-LAMP incorporates a simulation protocol for both offline and partially coupled simulations using a prescribed historical trajectory of atmospheric CO2 concentrations. Models are confronted with data through comparisons against AmeriFlux site measurements, MODIS satellite observations, NOAA Globalview flask records, TRANSCOM inversions, and Free Air CO2 Enrichment (FACE) site measurements. Both sets of experiments have been performed using two different terrestrial biogeochemistry modules coupled to the CLM version 3 in the Community Climate System Model version 3 (CCSM3): the CASA model of Fung, et al., and the carbon

  13. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE PAGES [OSTI]

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  14. High-temperature Pump Monitoring - High-temperature ESP Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - High-temperature ESP Monitoring; 2010 Geothermal Technology Program Peer Review Report High-temperature Pump Monitoring - High-temperature ESP Monitoring; 2010 Geothermal ...

  15. Magnetic nanoparticle temperature estimation

    SciTech Connect

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-05-15

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  16. Surface texturing of superconductors by controlled oxygen pressure

    DOEpatents

    Chen, N.; Goretta, K.C.; Dorris, S.E.

    1999-01-05

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.

  17. Surface texturing of superconductors by controlled oxygen pressure

    DOEpatents

    Chen, Nan; Goretta, Kenneth C.; Dorris, Stephen E.

    1999-01-01

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO.sub.2 atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO.sub.2 atmosphere to cause solidification of the molten superconductor in a textured surface layer.

  18. Solar Land Use Data on OpenEI | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Land Use Data on OpenEI Home > Groups > OpenEI Community Central Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 acres csp land use how much land land...

  19. ARM - Measurement - Atmospheric temperature

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list

  20. High-temperature sensor

    DOEpatents

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  1. Automatic temperature adjustment apparatus

    DOEpatents

    Chaplin, James E.

    1985-01-01

    An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

  2. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  3. Low temperature cryoprobe

    DOEpatents

    Sungaila, Zenon F.

    1989-01-01

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperature of 77 degrees Kelvin.

  4. Temperature and productivity

    Office of Scientific and Technical Information (OSTI)

    ... and performance of office work under combined exposure to temperature, noise and air pollution. PhD Thesis. International Centre for Indoor Environment and Energy, Department of ...

  5. Internal temperature monitor for work pieces

    DOEpatents

    Berthold, John W.

    1993-01-01

    A method and apparatus for measuring the internal temperature of a work piece comprises an excitation laser for generating laser pulses which are directed through a water cooled probe, and in an optical fiber, to a first surface of the work piece. The laser is of sufficient intensity to ablate the surface of the work piece, producing a displacement and a resulting ultrasonic pulse which propagates within the thickness of the work piece to an opposite surface. The ultrasonic pulse is reflected from the opposite surface and returns to the first surface to create a second displacement. A second continuous laser also shines its light through an optical fiber in the probe into the first surface and is used in conjunction with signal processing equipment to measure the time between the first and second displacements. This time is proportional to the time-of-flight of the ultrasonic pulse in the work piece which, with a known or detected thickness of the work piece, can be used to calculate the internal temperature of the work piece.

  6. Internal temperature monitor for work pieces

    DOEpatents

    Berthold, J.W.

    1993-07-13

    A method and apparatus for measuring the internal temperature of a work piece comprises an excitation laser for generating laser pulses which are directed through a water cooled probe, and in an optical fiber, to a first surface of the work piece. The laser is of sufficient intensity to ablate the surface of the work piece, producing a displacement and a resulting ultrasonic pulse which propagates within the thickness of the work piece to an opposite surface. The ultrasonic pulse is reflected from the opposite surface and returns to the first surface to create a second displacement. A second continuous laser also shines its light through an optical fiber in the probe into the first surface and is used in conjunction with signal processing equipment to measure the time between the first and second displacements. This time is proportional to the time-of-flight of the ultrasonic pulse in the work piece which, with a known or detected thickness of the work piece, can be used to calculate the internal temperature of the work piece.

  7. The Carbon-Land Model Intercomparison Project (C-LAMP): A Model-Data Comparison System for Evaluation of Coupled Biosphere-Atmosphere Models

    SciTech Connect

    Hoffman, Forrest M; Randerson, Jim; Thornton, Peter E; Mahowald, Natalie; Bonan, Gordon; Running, Steven; Fung, Inez

    2009-01-01

    The need to capture important climate feebacks in general circulation models (GCMs) has resulted in new efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, now often referred to as Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results, suggesting that a more rigorous set of offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are warranted. The Carbon-Land Model Intercomparison Project (C-LAMP) provides a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). C-LAMP provides feedback to the modeling community regarding model improvements and to the measurement community by suggesting new observational campaigns. C-LAMP Experiment 1 consists of a set of uncoupled simulations of terrestrial carbon models specifically designed to examine the ability of the models to reproduce surface carbon and energy fluxes at multiple sites and to exhibit the influence of climate variability, prescribed atmospheric carbon dioxide (CO{sub 2}), nitrogen (N) deposition, and land cover change on projections of terrestrial carbon fluxes during the 20th century. Experiment 2 consists of partially coupled simulations of the terrestrial carbon model with an active atmosphere model exchanging energy and moisture fluxes. In all experiments, atmospheric CO{sub 2} follows the prescribed historical trajectory from C{sup 4}MIP. In Experiment 2, the atmosphere model is forced with prescribed sea surface temperatures (SSTs) and corresponding sea ice concentrations from the Hadley Centre; prescribed CO{sub 2} is radiatively active; and land, fossil fuel, and ocean CO{sub 2} fluxes are advected by the model. Both sets of experiments

  8. High temperature solid electrolyte fuel cell configurations and interconnections

    DOEpatents

    Isenberg, Arnold O.

    1984-01-01

    High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

  9. Rapid reconnaissance of geothermal prospects using shallow temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    at Coso, a simple set of surface conditions. It is concluded that making useful shallow temperature measurements where there is a modest amount of ground water flow need not be a...

  10. Green Lands Blue Water 2014 Fall Conference

    Energy.gov [DOE]

    The Green Lands Blue Water 2014 Fall Conference will be held from November 19–20, 2014, at the Richland Community College in Decatur, Illinois. The event will focus on bioenergy and sustainable agriculture and explore topics ranging from logistics, energy conversion technologies, and markets for grass biomass. BETO Sustainability Program Technology Manager Kristen Johnson will be speaking about the Energy Department’s perspective on sustainable bioenergy landscapes and will focus on BETO’s recent work with landscape design. The conference will be November 19–20 only. On November 18, participants may choose to participate in a pre-conference field tour.

  11. ARM - Word Seek: Temperature

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Temperature Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Word Seek: Temperature

  12. Fiber optic temperature sensor

    SciTech Connect

    Rabold, D.

    1995-12-01

    Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

  13. Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Science Plan

    SciTech Connect

    Fast, JD; Berg, LK

    2015-12-01

    Cumulus convection is an important component in the atmospheric radiation budget and hydrologic cycle over the Southern Great Plains and over many regions of the world, particularly during the summertime growing season when intense turbulence induced by surface radiation couples the land surface to clouds. Current convective cloud parameterizations contain uncertainties resulting in part from insufficient coincident data that couples cloud macrophysical and microphysical properties to inhomogeneities in boundary layer and aerosol properties. The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) campaign is designed to provide a detailed set of measurements that are needed to obtain a more complete understanding of the life cycle of shallow clouds by coupling cloud macrophysical and microphysical properties to land surface properties, ecosystems, and aerosols. HI-SCALE consists of 2, 4-week intensive observational periods, one in the spring and the other in the late summer, to take advantage of different stages and distribution of “greenness” for various types of vegetation in the vicinity of the Atmospheric Radiation and Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site as well as aerosol properties that vary during the growing season. Most of the proposed instrumentation will be deployed on the ARM Aerial Facility (AAF) Gulfstream 1 (G-1) aircraft, including those that measure atmospheric turbulence, cloud water content and drop size distributions, aerosol precursor gases, aerosol chemical composition and size distributions, and cloud condensation nuclei concentrations. Routine ARM aerosol measurements made at the surface will be supplemented with aerosol microphysical properties measurements. The G-1 aircraft will complete transects over the SGP Central Facility at multiple altitudes within the boundary layer, within clouds, and above clouds.

  14. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  15. High Temperature ESP Monitoring

    SciTech Connect

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  16. Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate

    SciTech Connect

    Deng, Yi

    2014-11-24

    : 1) the distinctly different roles played by atmospheric dynamical processes in establishing surface temperature response to ENSO at tropics and extratropics (i.e., atmospheric dynamics disperses energy out of tropics during ENSO warm events and modulate surface temperature at mid-, high-latitudes through controlling downward longwave radiation); 2) the representations of ENSO-related temperature response in climate models fail to converge at the process-level particularly over extratropics (i.e., models produce the right temperature responses to ENSO but with wrong reasons); 3) water vapor feedback contributes substantially to the temperature anomalies found over U.S. during different phases of the Northern Annular Mode (NAM), which adds new insight to the traditional picture that cold/warm advective processes are the main drivers of local temperature responses to the NAM; 4) the overall land surface temperature biases in the latest NCAR model (CESM1) are caused by biases in surface albedo while the surface temperature biases over ocean are related to multiple factors including biases in model albedo, cloud and oceanic dynamics, and the temperature biases over different ocean basins are also induced by different process biases. These results provide a detailed guidance for process-level model turning and improvement, and thus contribute directly to the overall goal of reducing model uncertainty in projecting future changes in the Earth’s climate system, especially in the ENSO and AM variability.

  17. Cost analysis of aerial photographic and satellite imagery for monitoring mined land reclamation

    SciTech Connect

    Green, J.E.; Buschur, J.P.

    1980-12-01

    Five sections of the Surface Mining Control and Reclamation Act of 1977 require information that is easily and efficiently obtainable by aerial photographic and remote sensing methods. Most states in which mining is important and to which the Act most specifically applies, maintain or have available to them aerial photographic or remotely sensed information of the type required. This information could be used to meet the requirements of the Act which call for monitoring reclamation progress, identifying land areas unsuitable for mining and determining land use prior to mining to name a few examples. At the regional scale, LANDSAT imagery of a scale of 1:250,000 provides a good combination of aerial coverage and detail for regional problem solving. At the local scale, such coverage as is provided by the Agricultural Stabilization and Conservation Service through their aerial observation method of compliance technique can supply local, detailed information to meet site specific needs.

  18. Structural analysis of three global land models on carbon cycle simulations using a traceability framework

    DOE PAGES [OSTI]

    Rafique, R.; Xia, J.; Hararuk, O.; Luo, Y.

    2014-06-27

    Modeled carbon (C) storage capacity is largely determined by the C residence time and net primary productivity (NPP). Extensive research has been done on NPP dynamics but the residence time and their relationships with C storage are much less studied. In this study, we implemented a traceability analysis to understand the modeled C storage and residence time in three land surface models: CSIRO's Atmosphere Biosphere Land Exchange (CABLE) with 9 C pools, Community Land Model (version 3.5) combined with Carnegie-Ames-Stanford Approach (CLM3.5-CASA) with 12 C pools and Community Land Model (version 4) (CLM4) with 26 C pools. The globally averagedmoreC storage and residence time was computed at both individual pool and total ecosystem levels. The spatial distribution of total ecosystem C storage and residence time differ greatly among the three models. The CABLE model showed a closer agreement with measured C storage and residence time in plant and soil pools than CLM3.5-CASA and CLM4. However, CLM3.5-CASA and CLM4 were close to each other in modeled C storage but not with measured data. CABLE stores more C in root whereas CLM3.5-CASA and CLM4 store more C in woody pools, partly due to differential NPP allocation in respective pools. The C residence time in individual C pools is greatly different among models, largely because of different transfer coefficient values among pools. CABLE had higher bulk residence time for soil C pools than the other two models. Overall, the traceability analysis used in this study can help fully characterizes the behavior of complex land models.less

  19. Strontium sorption on hematite at elevated temperatures

    SciTech Connect

    Karasyova, O.N.; Ivanova, L.I.; Lakshtanov, L.Z.; Loevgren, L.

    1999-12-15

    Acid-base reactions and surface complexation of Sr(II) at the hematite/water interface have been studied by means of potentiometric titrations at three different temperatures: 25, 50, and 75 C. Equilibrium measurements were performed in 0.1 M NaCl. In the evaluation of equilibrium models for the acid-base reactions and complexation reactions in the three-component system H{sup +} -({triple{underscore}bond}FeOH)-Sr{sup 2+}, the constant capacitance model was applied. During the titrations with Sr, aliquots of the suspension were sampled at in several points. The aqueous concentrations of Sr were analyzed by atomic absorption spectrometry. Treatment of data included tests for formation of both inner-sphere and outer-sphere complexes of different stoichiometric composition. The proposed equilibrium model consists of the following surface complexes of inner sphere type: {triple{underscore}bond}FeOHSr{sup 2+} and {triple{underscore}bond}FeOSrOH. Besides the stability constants for the surface complexes, the thermodynamic parameters {Delta}H and {Delta}S were evaluated. The combined effect of a decrease in pH{sub pzc} with increasing temperature and positive enthalpies of surface complex formation favors adsorption of Sr at elevated temperatures.

  20. Ecological Principles and Guidelines for Managing the Use of Land

    SciTech Connect

    Dale, Virginia H; Brown, Sandra; Haeuber, R A; Hobbs, N T; Huntly, N; Naiman, R J; Riebsame, W E; Turner, M G; Valone, T J

    2014-01-01

    The many ways that people have used and managed land throughout history has emerged as a primary cause of land-cover change around the world. Thus, land use and land management increasingly represent a fundamental source of change in the global environment. Despite their global importance, however, many decisions about the management and use of land are made with scant attention to ecological impacts. Thus, ecologists' knowledge of the functioning of Earth's ecosystems is needed to broaden the scientific basis of decisions on land use and management. In response to this need, the Ecological Society of America established a committee to examine the ways that land-use decisions are made and the ways that ecologists could help inform those decisions. This paper reports the scientific findings of that committee. Five principles of ecological science have particular implications for land use and can assure that fundamental processes of Earth's ecosystems are sustained. These ecological principles deal with time, species, place, dis- turbance, and the landscape. The recognition that ecological processes occur within a temporal setting and change over time is fundamental to analyzing the effects of land use. In addition, individual species and networks of interacting species have strong and far-reaching effects on ecological processes. Furthermore, each site or region has a unique set of organisms and abiotic conditions influencing and constraining ecological processes. Distur- bances are important and ubiquitous ecological events whose effects may strongly influence population, com- munity, and ecosystem dynamics. Finally, the size, shape, and spatial relationships of habitat patches on the landscape affect the structure and function of ecosystems. The responses of the land to changes in use and management by people depend on expressions of these fundamental principles in nature. These principles dictate several guidelines for land use. The guidelines give practical