National Library of Energy BETA

Sample records for lakeview oregon uranium

  1. Performance Evaluation of the Engineered Cover at the Lakeview, Oregon,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Uranium Mill Tailings Site | Department of Energy Evaluation of the Engineered Cover at the Lakeview, Oregon, Uranium Mill Tailings Site Performance Evaluation of the Engineered Cover at the Lakeview, Oregon, Uranium Mill Tailings Site Performance Evaluation of the Engineered Cover at the Lakeview, Oregon, Uranium Mill Tailings Site Performance Evaluation of the Engineered Cover at the Lakeview, Oregon, Uranium Mill Tailings Site (150.61 KB) More Documents & Publications Applied Science

  2. Lakeview, Oregon, Processing and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    Lakeview, Oregon, Processing/Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site and disposal site near Lakeview, Oregon. This site is managed by the U.S. Department of Energy Office of Legacy Management. Locations of the Lakeview, Oregon, Sites Site Description and History The Lakeview processing site is a former uranium-ore processing facility located approximately 1.5 miles north- northwest of the town of

  3. Performance Evaluation of the Engineered Cover at the Lakeview, Oregon, Uranium Mill Tailings Site

    SciTech Connect (OSTI)

    Waugh, J.; Smith, G.; Danforth, B.; Gee, G.; Kothari, V.; Pauling, T.

    2007-07-01

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is evaluating the performance of disposal cell covers at LM sites and exploring ways to enhance their sustainability. The cover of the Lakeview, Oregon, disposal cell relies on a compacted soil layer (CSL) to limit radon escape and water percolation into underlying tailings. The design created habitat favorable for growth of woody plants that sent roots through the CSL. The mean saturated hydraulic conductivity (K{sub sat}) of the CSL, measured at 17 locations, was 3.0 x 10{sup -5} cm s{sup -1}, 300 times greater than the design target. The highest K{sub sat} values were measured near the top of the CSL at locations both with and without roots; the lowest K{sub sat} values were measured deeper in the CSL. Water flux meters (WFMs) installed in 2005 to directly measure percolation flux show significant percolation through the cover. Three WMFs began recording percolation in mid-November, 7 days after the start of a prolonged precipitation event, and continued until early June 2006. Percolation flux during this period ranged between 3.1 x 10{sup -5} and 8.5 x 10{sup -5} cm s{sup -1}. The cumulative percolation was greater than total precipitation during the period, probably because of a water-harvesting effect. The WFMs were strategically placed in down-gradient positions on the cover top slope where water likely accumulated in a sand drainage layer. Routine monitoring at Lakeview shows that the ground water remains protected. LM plans to evaluate potential effects of high percolation rates in covers to ensure that disposal cells remain protective for the long term. (authors)

  4. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1

    SciTech Connect (OSTI)

    1995-12-01

    Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  5. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Lakeview, Oregon. Revision 2

    SciTech Connect (OSTI)

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the UMTRA Project site near Lakeview, Oregon, was completed in 1989. The mill operated from February 1958 to November 1960. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  6. May 2016 Groundwater Sampling at the Lakeview, Oregon, Processing Site

    Office of Legacy Management (LM)

    Lakeview, Oregon, Processing Site August 2016 LMS/LKP/S00516 This page intentionally left blank U.S. Department of Energy DVP-May 2016, Lakeview, Oregon August 2016 Task LKV01.1-16050001 Page i Contents Sampling Event Summary ...............................................................................................................1 Lakeview, Oregon, Processing Site Sample Location Map .............................................................3 Data Assessment Summary

  7. Lakeview GCAP Acceptance

    Energy.gov [DOE]

    The Lakeview, Oregon, Processing Site’s groundwater compliance action plan (GCAP) received U.S. Nuclear Regulatory Commission (NRC) concurrence last month. This makes Lakeview the first Uranium...

  8. Feasibility Study of Economics and Performance of Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Hillesheim, M.; Mosey, G.

    2013-11-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Lakeview Uranium Mill site in Lakeview, Oregon, for a feasibility study of renewable energy production. The EPA contracted with the National Renewable Energy Laboratory (NREL) to provide technical assistance for the project. The purpose of this report is to describe an assessment of the site for possible development of a geothermal power generation facility and to estimate the cost, performance, and site impacts for the facility. In addition, the report recommends development pathways that could assist in the implementation of a geothermal power system at the site.

  9. Feasibility analysis of geothermal district heating for Lakeview, Oregon

    SciTech Connect (OSTI)

    Not Available

    1980-12-23

    An analysis of the geothermal resource at Lakeview, Oregon, indicates that a substantial resource exists in the area capable of supporting extensive residential, commercial and industrial heat loads. Good resource productivity is expected with water temperatures of 200{degrees}F at depths of 600 to 3000 feet in the immediate vicinity of the town. Preliminary district heating system designs were developed for a Base Case serving 1170 homes, 119 commercial and municipal buildings, and a new alcohol fuel production facility; a second design was prepared for a downtown Mini-district case with 50 commercial users and the alcohol plant. Capital and operating costs were determined for both cases. Initial development of the Lakeview system has involved conducting user surveys, well tests, determinations of institutional requirements, system designs, and project feasibility analyses. A preferred approach for development will be to establish the downtown Mini-district and, as experience and acceptance are obtained, to expand the system to other areas of town. Projected energy costs for the Mini-district are $10.30 per million Btu while those for the larger Base Case design are $8.20 per million Btu. These costs are competitive with costs for existing sources of energy in the Lakeview area.

  10. DOE - Office of Legacy Management -- Oregon

    Office of Legacy Management (LM)

    Oregon Oregon Oregon Sites Albany Site Lakeview Disposal Site Lakeview Processing Site Last Updated: 12/10

  11. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    Lakeview, Oregon Page 9-1 9.0 Lakeview, Oregon, Disposal Site 9.1 Compliance Summary The Lakeview, Oregon, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected September 16 and 17, 2015. Other than some ongoing concern with erosion-control rock riprap degradation, the disposal cell was in good condition. Some minor fence repairs and vegetation removal, and minor erosion repair work along the west site fence is planned. Inspectors identified no other

  12. Lake County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Zone Subtype B. Places in Lake County, Oregon Crump Geyser, Oregon Lakeview, Oregon Paisley, Oregon Retrieved from "http:en.openei.orgwindex.php?titleLakeCounty,Oregon&ol...

  13. Environmental Assessment Lakeview Geothermal Project

    SciTech Connect (OSTI)

    Treis, Tania

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  14. DOE - Office of Legacy Management -- Lakeview Mill - OR 0-01

    Office of Legacy Management (LM)

    Licensed to DOE for long-term custody and managed by the Office of Legacy Management ... custody and managed by the Office of Legacy Management Also see Lakeview, Oregon, ...

  15. Lakeview Residences Space Heating Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Lakeview Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lakeview Residences Space Heating Low Temperature Geothermal Facility...

  16. Lakeview Light & Power | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Lakeview Light & Power Jump to: navigation, search Name: Lakeview Light & Power Place: Washington Phone Number: (253) 584-6060 Website: lakeviewlight.com Facebook: https:...

  17. National uranium resource evaluation, Vya Quadrangle, Nevada, Oregon, and California

    SciTech Connect (OSTI)

    Castor, S.B.; Mitchell, T.P.; Quade, J.G.

    1982-03-01

    The Vya 2/sup 0/ quadrangle occupies the northwest corner of Nevada and portions of Oregon and California. It lies in the westernmost portion of the Basin and Range Province and contains Paleozoic through Holocene rocks. A surface reconnaissance was made of all geologic environments, including 19 uranium occurrences, thought to be favorable for uranium deposits. Geochemical, radiometric, and petrographic analyses were used in the evaluation and were supplemented by water analyses and geologic mapping. Areas and environments considered favorable for uranium deposits, in accord with National Uranium Resource Evaluation criteria, include: the McDermitt caldera in the northeast of the quadrangle, favorable for hydrothermal and strata-bound deposits; the Virgin Valley area in the northcentral part of the quadrangle, favorable for strata-bound deposits; the Bottle Creek area, southwest of the McDermitt caldera, favorable for volcanogenic deposits; and the Cottonwood Basin area, in the southwest of the quadrangle, which has uranium in volcaniclastic sediments and is similar to the Virgin Valley area.

  18. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Lakeview, Oregon: Volume 2, Appendices E through G

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    Volume two contains appendices for: final plans and specifications; compliance strategy for the proposed EPA groundwater standards; and comment and response document.

  19. Low-temperature geothermal database for Oregon

    SciTech Connect (OSTI)

    Black, G.

    1994-11-01

    The goals of the low-temperature assessment project, performed by the Oregon Department of Geology and Mineral Industries (DOGAMI) is aimed primarily at updating the inventory of the nation's low and moderate temperature geothermal resources. The study has begun in Oregon, where the areas of Paisley, Lakeview, Burns/Hines, Lagrande, and Vale were identified over 40 sites as having potential for direct heat utilization. Specifics sites are outlined, detailing water temperature, flow, and current uses of the sites.

  20. Lakeview Light and Power- Commercial Lighting Rebate Program

    Energy.gov [DOE]

    Lakeview Light and Power offers a commercial lighting rebate program. Rebates apply to the installation of energy efficient lighting retrofits in non-residential buildings. The rebate program is...

  1. Oregon - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oregon Oregon

  2. Oregon - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oregon Oregon

  3. Oregon - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) (indexed site)

    Oregon Oregon

  4. Uranium

    SciTech Connect (OSTI)

    Gabelman, J.W.; Chenoweth, W.L.; Ingerson, E.

    1981-10-01

    The uranium production industry is well into its third recession during the nuclear era (since 1945). Exploration is drastically curtailed, and many staffs are being reduced. Historical market price production trends are discussed. A total of 3.07 million acres of land was acquired for exploration; drastic decrease. Surface drilling footage was reduced sharply; an estimated 250 drill rigs were used by the uranium industry during 1980. Land acquisition costs increased 8%. The domestic reserve changes are detailed by cause: exploration, re-evaluation, or production. Two significant discoveries of deposits were made in Mohave County, Arizona. Uranium production during 1980 was 21,850 short tons U/sub 3/O/sub 8/; an increase of 17% from 1979. Domestic and foreign exploration highlights were given. Major producing areas for the US are San Juan basin, Wyoming basins, Texas coastal plain, Paradox basin, northeastern Washington, Henry Mountains, Utah, central Colorado, and the McDermitt caldera in Nevada and Oregon. 3 figures, 8 tables. (DP)

  5. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    SciTech Connect (OSTI)

    1995-08-01

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  6. uranium

    National Nuclear Security Administration (NNSA)

    to prepare surplus plutonium for disposition, and readiness to begin the Second Uranium Cycle, to start processing spent nuclear fuel.

    H Canyon is also being...

  7. Linn County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Oregon Halsey, Oregon Harrisburg, Oregon Idanha, Oregon Lebanon, Oregon Lyons, Oregon Mill City, Oregon Millersburg, Oregon Scio, Oregon Sodaville, Oregon South Lebanon, Oregon...

  8. Annual status report on the Uranium Mill Tailings Remedial Action Program

    SciTech Connect (OSTI)

    Not Available

    1985-12-01

    FY 1985 project accomplishments include: completed 90% of the processing site remedial actions at Canonsburg, Pennsylvania, and initiated remedial actions at Salt Lake City, Utah, and Shiprock, New Mexico; awarded remedial action contracts on 329 vicinity properties at seven designated locations and completed survey and inclusion activities on a total of 1620 vicinity properties; published the Environmental Assessment (EA) for Lakeview, Oregon, issued the draft and prepared the final Environmental Impact Statement (EIS) for Durango, Colorado; completed the Remedial Action Plan (RAP) for Lakeview, Oregon, and prepared the draft RAP for Durango, Colorado; executed cooperative agreements with Idaho, New Mexico, and the Navajo Nation/Hopi Tribe; executed a Memorandum of Understanding with the Nuclear Regulatory Commission; and developed proposed UMTRA Project design review criteria between DOE and the NRC.

  9. USG OREGON | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    USG OREGON USG OREGON USG OREGON USG OREGON USG OREGON USG OREGON USG OREGON USG OREGON USG OREGON USG OREGON USG OREGON USG OREGON USG OREGON PROJECT SUMMARY In February 2011, the Department of Energy issued a $97 million loan guarantee to finance USG Oregon, a 22-MW geothermal power plant, located at the Neal Hot Springs in eastern Oregon. USG Oregon started commercial operations in November 2012. TECHNOLOGY INNOVATION USG Oregon uses a more efficient method of extracting thermal energy from

  10. Minto, Alaska Lakeview Lodge START Program Weatherization and Rehab Project Final Report

    SciTech Connect (OSTI)

    Titus, Bessie; Messier, Dave

    2015-11-20

    This report details the process that Minto Village Council undertook during the DOE sponsored START program and the work that was completed on the main energy consumer in the community, the Minto Lakeview Lodge. The report takes a look at the steps leading up to the large weatherization and renovation project, the work the was completed as a result of the funding and the results in terms of effect on the community and real energy savings.

  11. Lincoln County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Oregon Depoe Bay, Oregon Lincoln Beach, Oregon Lincoln City, Oregon Newport, Oregon Rose Lodge, Oregon Siletz, Oregon Toledo, Oregon Waldport, Oregon Yachats, Oregon Retrieved...

  12. Jackson County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Oregon Ashland, Oregon Butte Falls, Oregon Central Point, Oregon Eagle Point, Oregon Gold Hill, Oregon Jacksonville, Oregon Medford, Oregon Phoenix, Oregon Rogue River, Oregon...

  13. Umatilla County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Echo, Oregon Gopher Flats, Oregon Helix, Oregon Hermiston, Oregon Kirkpatrick, Oregon Milton-Freewater, Oregon Mission, Oregon Pendleton, Oregon Pilot Rock, Oregon Riverside,...

  14. USG OREGON | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    USG OREGON USG OREGON DOE-LPOProject-PostersGEOUSG-Oregon.pdf More Documents & Publications GRANITE RELIABLE BLUE MOUNTAIN ORMAT NEVADA...

  15. DOE - Office of Legacy Management -- Lake_D

    Office of Legacy Management (LM)

    Disposal Site Key Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents Fact Sheet 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Lakeview, Oregon, Disposal Site Long-Term Surveillance Plan for the Collins Ranch Disposal Site, Lakeview, Oregon February 23, 2000 Page Changes March 25, 1998 Page Changes August 15, 1998 Page Changes Please be green. Do not print these documents unless absolutely

  16. Baker County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Places in Baker County, Oregon Baker City, Oregon Haines, Oregon Halfway, Oregon Huntington, Oregon Richland, Oregon Sumpter, Oregon Unity, Oregon Retrieved from "http:...

  17. Columbia County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Subtype C. Places in Columbia County, Oregon Clatskanie, Oregon Columbia City, Oregon Prescott, Oregon Rainier, Oregon Scappoose, Oregon St. Helens, Oregon Vernonia, Oregon...

  18. Lane County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass Facility Places in Lane County, Oregon Coburg, Oregon Cottage Grove, Oregon Creswell, Oregon Dunes City, Oregon Eugene, Oregon Florence, Oregon Junction City, Oregon...

  19. USG OREGON | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    USG OREGON USG OREGON DOE-LPO_Project-Posters_GEO_USG-Oregon.pdf (414.89 KB) More Documents & Publications GRANITE RELIABLE BLUE MOUNTAIN ORMAT NEVADA

  20. Potential hydrologic effects of developing coal and other geoenergy resources in Oregon: a review

    SciTech Connect (OSTI)

    Sidle, W.C.

    1981-01-01

    Geoenergy resources in Oregon, in addition to coal, include noncommercial deposits of oil shale, natural gas, and geothermal heat. Commercial quantities of natural gas were discovered at Mist in northwestern Oregon in 1979. Gas presently is being produced from five wells and additional exploratory drilling is underway. More than 2 million acres of Oregon land is under lease for petroleum and natural gas exploration, mostly in the Astoria embayment-Willamette syncline, central (Oregon) Paleozoic-Mesozoic basin, and eastern Tertiary nonmarine basin. The Cascade Range and eastern Oregon contain sizable resources of geothermal heat, of which a small part has been developed for space heating at Klamath Falls and Lakeview. Thirteen Known Geothermal Resource Areas (KGRA's) comprising 432,000 acres have been identified, 422,000 acres are currently leased for geothermal development. KGRA's judged to have potential for generation of electrical power are Newberry Crater, Crump Geyser, and Alvord Desert. No adverse hydrologic effects have been noted to date from coal or other geoenergy exploration or development in Oregon, and no effects are expected if federal and state regulations are adhered to. The southwestern Oregon coals would have to be mined by underground methods. Potential hydrologic impacts would be local increases in sedimentation, turbidity, and mineralization of surface and ground water. Water-quality degradation, including both thermal pollution and increased concentrations of dissolved minerals, could result from geothermal development. Other potential problems include land subsidence and consumptive use of water associated with both coal and geothermal development. 53 refs., 3 figs., 1 tab.

  1. Malheur County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hot Springs Geothermal Power Plant Places in Malheur County, Oregon Adrian, Oregon Jordan Valley, Oregon Nyssa, Oregon Ontario, Oregon Vale, Oregon Retrieved from "http:...

  2. Tillamook County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Oregon Oceanside, Oregon Pacific City, Oregon Rockaway Beach, Oregon Tillamook, Oregon Wheeler, Oregon Retrieved from "http:en.openei.orgwindex.php?titleTillamookCounty,Oreg...

  3. Morrow County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Climate Zone Number 5 Climate Zone Subtype B. Places in Morrow County, Oregon Boardman, Oregon Heppner, Oregon Ione, Oregon Irrigon, Oregon Lexington, Oregon Retrieved from...

  4. Oregon's Solar Advantage

    Energy.gov [DOE]

    This presentation summarizes the information discussed by the Oregon Business Development Department during the PV Manufacturing Workshop, March 25, 2011.

  5. Solar Oregon | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    article is a stub. You can help OpenEI by expanding it. Solar Oregon is a policy organization located in Portland, Oregon. References About Solar Oregon Retrieved from...

  6. Solaicx (Oregon) | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Solaicx (Oregon) Jump to: navigation, search Name: Solaicx Address: 7832 N Leadbetter Rd Place: Portland, Oregon Zip: 97203 Region: Pacific Northwest Area Sector: Solar Product:...

  7. Polk County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Number 4 Climate Zone Subtype C. Registered Energy Companies in Polk County, Oregon Diesel Brewing Places in Polk County, Oregon Dallas, Oregon Eola, Oregon Falls City, Oregon...

  8. ,"Oregon Natural Gas Summary"

    U.S. Energy Information Administration (EIA) (indexed site)

    Prices" "Sourcekey","N3050OR3","N3010OR3","N3020OR3","N3035OR3","N3045OR3" "Date","Natural Gas Citygate Price in Oregon (Dollars per Thousand Cubic Feet)","Oregon Price of Natural ...

  9. Clean Energy Works Oregon (CEWO)

    Energy.gov [DOE]

    Presents Clean Energy Works Oregon's program background and the four easy steps to lender selection.

  10. Oregon Coastal Management Program | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Program Jump to: navigation, search Logo: Oregon Coastal Management Program Name: Oregon Coastal Management Program Address: 635 Capitol St. NE Place: Salem, Oregon Zip: 97301-2540...

  11. Oregon State University | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    University Jump to: navigation, search Logo: Oregon State University Name: Oregon State University Address: Oregon State University Corvallis, OR Zip: 97331-4501 Year Founded: 1868...

  12. Oregon Public Health Division | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Division Jump to: navigation, search Name: Oregon Public Health Division Address: 800 NE Oregon Street, Suite 930 Place: Portland, Oregon Zip: 97232 Phone Number: 971-673-1222...

  13. Earth Share Oregon | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Share Oregon Jump to: navigation, search Name: Earth Share Oregon Address: 319 SW Washington Street Place: Portland, Oregon Zip: 97204 Region: Pacific Northwest Area Website:...

  14. Oregon's Solar Advantage

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ' S l Ad t Oregon's Solar Advantage Bruce Laird Clean Technology Recruitment Officer C ea ec o ogy ec u e O ce Oregon Business Development Department Valley of Death Valley of Death IUS Incentive Averages * Very High-Over 25% of initial State & Local -- Cash Very High Over 25% of initial CapX * High---15% to 20% of initial CapX * Average-Good Project- Below 15% Below 15% Oregon's Solar Industry ti Incentives Company Type p y yp SolarWorld Ingots to Modules Solexant Thin Film Solaicx/MEMC

  15. South Oregon Coast Reinforcement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1998-05-01

    The Bonneville Power Administration is proposing to build a transmission line to reinforce electrical service to the southern coast of Oregon. This FYI outlines the proposal, tells how one can learn more, and how one can share ideas and opinions. The project will reinforce Oregon`s south coast area and provide the necessary transmission for Nucor Corporation to build a new steel mill in the Coos Bay/North Bend area. The proposed plant, which would use mostly recycled scrap metal, would produce rolled steel products. The plant would require a large amount of electrical power to run the furnace used in its steel-making process. In addition to the potential steel mill, electrical loads in the south Oregon coast area are expected to continue to grow.

  16. BLM Oregon State Office | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Oregon State Office Jump to: navigation, search Logo: BLM Oregon State Office Name: BLM Oregon State Office Abbreviation: Oregon Address: 333 S.W. 1st Avenue Place: Portland, OR...

  17. Oregon: Oregon's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Oregon.

  18. Long-Term Surveillance Plan for the Collins Ranch Disposal Site, Lakeview, Oregon, DOE/AL/62350-19F, Revision 3, August 1994

    Office of Legacy Management (LM)

    This page intentionally left blank LONG-TERM SURMtUANQ M N FOA T ) ( E C O W S RANW D S W S A L S m . IAKEVEW . OREOON T A W UF C O N l W f S TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 INTRODUCTION 1-1 ........................................... 1.1 Background 1-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Licensing process 1-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  19. Clatsop County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    4 Climate Zone Subtype C. Energy Generation Facilities in Clatsop County, Oregon Wauna Mill Biomass Facility Places in Clatsop County, Oregon Astoria, Oregon Cannon Beach, Oregon...

  20. Gilliam County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Number 5 Climate Zone Subtype B. Places in Gilliam County, Oregon Arlington, Oregon Condon, Oregon Lonerock, Oregon Retrieved from "http:en.openei.orgwindex.php?titleGillia...

  1. Oregon - ORS 439.300 - Definitions | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Oregon, 2014 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Oregon - ORS 439.300 - Definitions Citation Oregon. 2014. Oregon - ORS...

  2. Oregon Department of Land Conservation and Development - Farmland...

    Open Energy Information (Open El) [EERE & EIA]

    Oregon. State of Oregon. cited 20140929. Available from: http:www.oregon.govLCDPagesfarmprotprog.aspx Retrieved from "http:en.openei.orgwindex.php?titleOregonD...

  3. Oregon Department of Land Conservation and Department - Forest...

    Open Energy Information (Open El) [EERE & EIA]

    Oregon. State of Oregon. cited 20140929. Available from: http:www.oregon.govLCDpagesforlandprot.aspx Retrieved from "http:en.openei.orgwindex.php?titleOregonDe...

  4. CX-002193: Categorical Exclusion Determination

    Energy.gov [DOE]

    Install Geotechnical Holes At The Lakeview, Oregon, Disposal SiteCX(s) Applied: B3.1Date: 05/03/2010Location(s): Lakeview, OregonOffice(s): Legacy Management

  5. Albany, Oregon, Site Fact Sheet

    Office of Legacy Management (LM)

    Albany, Oregon, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under the Formerly Utilized Sites Remedial Action Program. Albany, Oregon, Site Albany Corvallis Four Corners Hayesville Keizer Lebanon Salem Woodburn 20 20 5 5 Albany Site M:\LTS\111\0001\10\S03046\S0304600.mxd smithw 09/16/2011 12:08:34 PM 0 10 20 Miles Salem OREGON Location of the Albany, Oregon, Site Site Description and History The Albany, Oregon, Site (formerly the Albany Research Center

  6. URANIUM ALLOYS

    DOE Patents [OSTI]

    Colbeck, E.W.

    1959-12-29

    A uranium alloy is reported containing from 0.1 to 5 per cent by weight of molybdenum and from 0.1 to 5 per cent by weight of silicon, the balance being uranium.

  7. Microsoft Word - 10053038 DVP SED.doc

    Office of Legacy Management (LM)

    Lakeview, Oregon, Processing Site August 2010 LMS/LKP/S0510 This page intentionally left blank U.S. Department of Energy DVP-May 2010, Lakeview, Oregon August 2010 RIN 10053038 Page i Contents Sampling Event Summary ...............................................................................................................1 Lakeview, Oregon, Processing Site Sample Location Map.............................................................2 Data Assessment

  8. Microsoft Word - RIN 12054530 DVP

    Office of Legacy Management (LM)

    Lakeview, Oregon, Processing Site August 2012 LMS/LKP/S00512 This page intentionally left blank U.S. Department of Energy DVP-May 2012, Lakeview, Oregon August 2012 RIN 12054530 Page i Contents Sampling Event Summary ...............................................................................................................1 Lakeview, Oregon, Processing Site Sample Location Map .............................................................3 Data Assessment Summary

  9. Idanha, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    is a stub. You can help OpenEI by expanding it. Idanha is a city in Linn County and Marion County, Oregon. It falls under Oregon's 4th congressional district and Oregon's 5th...

  10. Gates, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    is a stub. You can help OpenEI by expanding it. Gates is a city in Linn County and Marion County, Oregon. It falls under Oregon's 4th congressional district and Oregon's 5th...

  11. Curry County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Zone Number 4 Climate Zone Subtype C. Places in Curry County, Oregon Brookings, Oregon Gold Beach, Oregon Harbor, Oregon Port Orford, Oregon Retrieved from "http:en.openei.org...

  12. Oregon Fire Marshall Letter

    Alternative Fuels and Advanced Vehicles Data Center

    and E85 fuel ethanol fuel specification, dispensers, and dispenser labeling requirements This is a summary of Oregon's biofuel (biodiesel, biodiesel blends, and E85 fuel ethanol) regulations and dispenser labeling requirements. Please refer to OAR 603-027-0410 thru OAR 603-027-0490 for the complete regulation. In addition, we try to answer some common questions about dispensers permitted for use with biofuels. Due to the unique characteristics of these fuels, certain precautions must be taken.

  13. Oregon Trail Mushrooms Industrial Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Mushrooms Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Trail Mushrooms Industrial Low Temperature Geothermal Facility Facility Oregon...

  14. Oregon Department of Agriculture | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Agriculture Jump to: navigation, search Name: Oregon Department of Agriculture Address: 635 Capitol St NE Place: Salem, Oregon Zip: 97301 Phone Number: 503-986-4550 Website:...

  15. Oregon/Transmission | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Electric Cooperative, Columbia Grid, Northern Tier Transmission Group, and Bonneville Power Administration. Oregon Energy Policy The Oregon Department of Energy's Governor's...

  16. Oregon Water Resources Commission | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Water Resources Commission Jump to: navigation, search Name: Oregon Water Resources Commission Abbreviation: OWRC Address: 725 Summer Street NE, Suite A Place: Salem, Oregon Zip:...

  17. Oregon Water Resources Department | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Resources Department Jump to: navigation, search Logo: Oregon Water Resources Department Name: Oregon Water Resources Department Address: 725 Summer Street NE, Suite A Place:...

  18. Oregon Underground Injection Control Program Authorized Injection...

    Open Energy Information (Open El) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Web Site: Oregon Underground Injection Control Program Authorized Injection Systems Webpage Author Oregon Department of...

  19. Portland, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    (Oregon) First Wind (Formerly UPC Wind) (Oregon) Green Electronics Council Green Empowerment Greenwood Resources Iberdrola Renewables Iberdrola Renewables formerly PPM Energy...

  20. Oregon Administrative Rules | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Oregon Administrative Rules Citation Oregon Administrative Rules (2014)....

  1. Oregon Revised Statutes | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Oregon Revised Statutes Citation Oregon Revised Statutes (2014). Retrieved...

  2. Oregon Department of Environmental Quality Contacts Webpage ...

    Open Energy Information (Open El) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Web Site: Oregon Department of Environmental Quality Contacts Webpage Abstract Contact information for DEQ. Author Oregon...

  3. Oregon State University Hydrodynamics | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search Hydro | Hydrodynamic Testing Facilities Name Oregon State University Address O.H. Hinsdale Wave Research Laboratory, 220 Owen Hall Place Corvallis, Oregon Zip 97331...

  4. Disposition of Uranium Oxide From Conversion of Depleted Uranium...

    Energy Savers

    Disposition of Uranium Oxide From Conversion of Depleted Uranium Hexafluoride Disposition of Uranium Oxide From Conversion of Depleted Uranium Hexafluoride Disposition of Uranium ...

  5. URANIUM COMPOSITIONS

    DOE Patents [OSTI]

    Allen, N.P.; Grogan, J.D.

    1959-05-12

    This patent relates to high purity uranium alloys characterized by improved stability to thermal cycling and low thermal neutron absorption. The high purity uranium alloy contains less than 0.1 per cent by weight in total amount of any ore or more of the elements such as aluminum, silicon, phosphorous, tin, lead, bismuth, niobium, and zinc.

  6. Oregon Wave Energy Trust OWET | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wave Energy Trust OWET Jump to: navigation, search Name: Oregon Wave Energy Trust (OWET) Place: Portland, Oregon Zip: 97207 Product: String representation "The Oregon Wave ... rgy...

  7. Oregon Air Contaminant Discharge Webpage | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    library Web Site: Oregon Air Contaminant Discharge Webpage Abstract Provides overview of air quality discharge permit process. Author State of Oregon Published State of Oregon,...

  8. Oregon Air Contaminant Discharge Permits Webpage | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Air Contaminant Discharge Permits Webpage Citation Oregon Department of Environmental Quality. Oregon Air Contaminant Discharge Permits Webpage Internet. State of Oregon....

  9. Clean Energy Works Oregon (CEWO) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Works Oregon's program background and the four easy steps to lender selection. Clean Energy Works Oregon More Documents & Publications Clean Energy Works Oregon (CEWO)...

  10. Oregon State Endangered Species List | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    to library Web Site: Oregon State Endangered Species List Author Oregon Department of Fish and Wildlife Published State of Oregon, Date Not Provided DOI Not Provided Check for...

  11. RAPID/Geothermal/Environment/Oregon | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    None ContactsAgencies: Oregon State Historic Preservation Office, Oregon Department of Fish and Wildlife, Oregon Department of Environmental Quality State Environment Process...

  12. Oregon Land Conservation and Development Commission | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Commission Abbreviation: LCDC Place: Portland, Oregon Website: www.oregon.govLCDpageslcdc. References: Oregon Department of Land Conservation and Development1 This...

  13. Uranium industry annual 1997

    SciTech Connect (OSTI)

    1998-04-01

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  14. JACKETING URANIUM

    DOE Patents [OSTI]

    Saller, H.A.; Keeler, J.R.

    1959-07-14

    The bonding to uranium of sheathing of iron or cobalt, or nickel, or alloys thereof is described. The bonding is accomplished by electro-depositing both surfaces to be joined with a coating of silver and amalgamating or alloying the silver layer with mercury or indium. Then the silver alloy is homogenized by exerting pressure on an assembly of the uranium core and the metal jacket, reducing the area of assembly and heating the assembly to homogenize by diffusion.

  15. RAPID/Overview/Geothermal/Exploration/Oregon | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Oregon < RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationOregon) Redirect page Jump to: navigation, search REDIRECT...

  16. Huntington, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Huntington is a city in Baker County, Oregon. It falls under Oregon's 2nd congressional...

  17. Unity, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Unity is a city in Baker County, Oregon. It falls under Oregon's 2nd congressional...

  18. Adams, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Adams is a city in Umatilla County, Oregon. It falls under Oregon's 2nd congressional...

  19. Willamina, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Map This article is a stub. You can help OpenEI by expanding it. Willamina is a city in Polk County and Yamhill County, Oregon. It falls under Oregon's 5th congressional district...

  20. Oregon Department of Aviation | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Aviation Jump to: navigation, search Name: Oregon Department of Aviation Abbreviation: ODA Address: 3040 25th St. SE Place: Salem, Oregon Zip: 97302 Phone Number: 503-378-4880...

  1. Jacksonville, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    This article is a stub. You can help OpenEI by expanding it. Jacksonville is a city in Jackson County, Oregon. It falls under Oregon's 2nd congressional district.12 References...

  2. Ashland, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Map This article is a stub. You can help OpenEI by expanding it. Ashland is a city in Jackson County, Oregon. It falls under Oregon's 2nd congressional district.12 Registered...

  3. Phoenix, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Map This article is a stub. You can help OpenEI by expanding it. Phoenix is a city in Jackson County, Oregon. It falls under Oregon's 2nd congressional district.12 References...

  4. Talent, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Map This article is a stub. You can help OpenEI by expanding it. Talent is a city in Jackson County, Oregon. It falls under Oregon's 2nd congressional district.12 References...

  5. Medford, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Map This article is a stub. You can help OpenEI by expanding it. Medford is a city in Jackson County, Oregon. It falls under Oregon's 2nd congressional district.12 Registered...

  6. Salem, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Map This article is a stub. You can help OpenEI by expanding it. Salem is a city in Marion County and Polk County, Oregon. It falls under Oregon's 5th congressional...

  7. Oregon Department of Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Energy Jump to: navigation, search Name: Oregon Department of Energy Address: 625 Marion St. NE Place: Salem, OR Zip: 97301-3737 Phone Number: 800-221-8035 Website: www.oregon.gov...

  8. Oregon Environmental Quality Commission | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Commission Jump to: navigation, search Name: Oregon Environmental Quality Commission Address: 811 SW 6th Avenue Place: Portland, Oregon Zip: 97204-1390 Phone Number: 503-229-5301...

  9. Oregon Industrial Stormwater Discharge Monitoring Report (DEQ...

    Open Energy Information (Open El) [EERE & EIA]

    discharge. Form Type ApplicationNotice Form Topic Industrial Stormwater Discharge Monitoring Report Organization Oregon Department of Environmental Quality Published...

  10. The Oregon Geothermal Planning Conference

    SciTech Connect (OSTI)

    1980-10-02

    Oregon's geothermal resources represent a large portion of the nation's total geothermal potential. The State's resources are substantial in size, widespread in location, and presently in various stages of discovery and utilization. The exploration for, and development of, geothermal is presently dependent upon a mixture of engineering, economic, environmental, and legal factors. In response to the State's significant geothermal energy potential, and the emerging impediments and incentives for its development, the State of Oregon has begun a planning program intended to accelerate the environmentally prudent utilization of geothermal, while conserving the resource's long-term productivity. The program, which is based upon preliminary work performed by the Oregon Institute of Technology's Geo-Heat Center, will be managed by the Oregon Department of Energy, with the assistance of the Departments of Economic Development, Geology and Mineral Industries, and Water Resources. Funding support for the program is being provided by the US Department of Energy. The first six-month phase of the program, beginning in July 1980, will include the following five primary tasks: (1) coordination of state and local agency projects and information, in order to keep geothermal personnel abreast of the rapidly expanding resource literature, resource discoveries, technological advances, and each agency's projects. (2) Analysis of resource commercialization impediments and recommendations of incentives for accelerating resource utilization. (3) Compilation and dissemination of Oregon geothermal information, in order to create public and potential user awareness, and to publicize technical assistance programs and financial incentives. (4) Resource planning assistance for local governments in order to create local expertise and action; including a statewide workshop for local officials, and the formulation of two specific community resource development plans. (5) Formulation and

  11. Uranium enrichment

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This book presents the GAO's views on the Department of Energy's (DOE) program to develop a new uranium enrichment technology, the atomic vapor laser isotope separation process (AVLIS). Views are drawn from GAO's ongoing review of AVLIS, in which the technical, program, and market issues that need to be addressed before an AVLIS plant is built are examined.

  12. Uranium industry annual 1996

    SciTech Connect (OSTI)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  13. Structural Sequestration of Uranium in Bacteriogenic Manganese Oxides

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Sequestration of Uranium in Bacteriogenic Manganese Oxides Samuel M. Webb (Stanford Synchrotron Radiation Laboratory), Bradley M. Tebo (Oregon Health and Science University), and John Bargar (Stanford Synchrotron Radiation Laboratory). Microbial Respiration Figure 1. Manganese oxides precipitated around a spore (cell) of the marine Mn(II)-oxidizing bacterium, Bacillus sp., strain SG-1. This cell is about 0.5 µm diameter (small axis). Manganese oxides are formed in soils, watersheds, and sea

  14. Clean Energy Works Oregon (CEWO) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Works Oregon (CEWO) Clean Energy Works Oregon (CEWO) Presents an exploration of Clean Energy Works Oregon's loan offerings its on-bill program to date. Clean Energy Works Oregon (142.21 KB) More Documents & Publications Clean Energy Works Oregon (CEWO) Lender-Based Revenues and Cost-Savings Loan Performance Data and Communication

  15. Uranium enrichment

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    This paper reports that in 1990 the Department of Energy began a two-year project to illustrate the technical and economic feasibility of a new uranium enrichment technology-the atomic vapor laser isotope separation (AVLIS) process. GAO believes that completing the AVLIS demonstration project will provide valuable information about the technical viability and cost of building an AVLIS plant and will keep future plant construction options open. However, Congress should be aware that DOE still needs to adequately demonstrate AVLIS with full-scale equipment and develop convincing cost projects. Program activities, such as the plant-licensing process, that must be completed before a plant is built, could take many years. Further, an updated and expanded uranium enrichment analysis will be needed before any decision is made about building an AVLIS plant. GAO, which has long supported legislation that would restructure DOE's uranium enrichment program as a government corporation, encourages DOE's goal of transferring AVLIS to the corporation. This could reduce the government's financial risk and help ensure that the decision to build an AVLIS plant is based on commercial concerns. DOE, however, has no alternative plans should the government corporation not be formed. Further, by curtailing a planned public access program, which would have given private firms an opportunity to learn about the technology during the demonstration project, DOE may limit its ability to transfer AVLIS to the private sector.

  16. Uranium Marketing Annual Report -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    9. Foreign purchases of uranium by U.S. suppliers and owners and operators of U.S. ... Foreign Purchase: A uranium purchase of foreign-origin uranium from a firm located outside ...

  17. COPPER COATED URANIUM ARTICLE

    DOE Patents [OSTI]

    Gray, A.G.

    1958-10-01

    Various techniques and methods for obtaining coppercoated uranium are given. Specifically disclosed are a group of complex uranium coatings having successive layers of nickel, copper, lead, and tin.

  18. Uranium Marketing Annual Report -

    Annual Energy Outlook

    2. Maximum anticipated uranium market requirements of owners and operators of U.S. ... Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual ...

  19. Uranium Marketing Annual Report -

    Annual Energy Outlook

    a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ... 1 Distribution divides total quantity of uranium delivered (with a price) into eight ...

  20. Harney County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    169-2006 Climate Zone Number 5 Climate Zone Subtype B. Places in Harney County, Oregon Burns, Oregon Hines, Oregon Retrieved from "http:en.openei.orgwindex.php?titleHarneyCo...

  1. Mill City, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    is a stub. You can help OpenEI by expanding it. Mill City is a city in Linn County and Marion County, Oregon. It falls under Oregon's 4th congressional district and Oregon's 5th...

  2. West Oregon Electric Coop Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Oregon Electric Coop Inc Jump to: navigation, search Name: West Oregon Electric Coop Inc Place: Oregon Phone Number: 503-429-3021 or 1-800-777-1276 Website: www.westoregon.org...

  3. Clean Energy Works Oregon (CEWO) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Works Oregon (CEWO) Clean Energy Works Oregon (CEWO) Presents an exploration of Clean Energy Works Oregon's loan offerings its on-bill program to date. Clean Energy ...

  4. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  5. Oregon Public Utility Commission | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Oregon Public Utility Commission Oregon Public Utility Commission Offer comments on the United States Department of Energy Smart Grid Request for Information (RFI). Oregon Public Utility Commission (330.3 KB) More Documents & Publications Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy- Request for Information Edison Electric Institute (EEI) Regulatory Burden RFI, 77 Fed. Reg. 47328 Comments of the American Public

  6. PROJECT PROFILE: Oregon State University

    Energy.gov [DOE]

    Oregon State University will continue the development of a microchannel solar receiver, using supercritical carbon dioxide (sCO2) as the heat transfer fluid. The research will resolve key issues associated with the commercial viability of the technology, which allows for a radical reduction in the size of a solar central receiver. The project will culminate in a field test of a commercial scale receiver module with a surface area of approximately one square meter.

  7. Oregon/Incentives | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Loan Program Yes Ashland Electric Utility - Bright Way to Heat Water Rebate (Oregon) Utility Rebate Program Yes Ashland Electric Utility - Commercial Conservation Loan Program...

  8. Oregon Modification Application Geothermal Wells Form | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Modification Application Geothermal Wells Form Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Oregon Modification Application Geothermal Wells Form Form...

  9. Salem, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    5th congressional district.12 Registered Energy Companies in Salem, Oregon Diesel Brewing References US Census Bureau Incorporated place and minor civil division...

  10. Bonneville Power Administration, Oregon Energy Northwest, Washington...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Bonneville Power Administration, Oregon Energy Northwest, Washington; Wholesale Electric Primary Credit Analyst: David N Bodek, New York (1) 212-438-7969; david.bodek@standardandpo...

  11. Oregon State University OSU | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    OSU Jump to: navigation, search Name: Oregon State University OSU Address: 1148 Kelley Engineering Center Place: Corvallis Zip: 97331 Region: United States Sector: Marine and...

  12. Oregon Water Quality Permit Program (Stormwater - Industrial...

    Open Energy Information (Open El) [EERE & EIA]

    Activities) Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Water Quality Permit Program (Stormwater - Industrial Activities) Website...

  13. Hillsboro, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Registered Energy Companies in Hillsboro, Oregon ClearEdge Power formerly Quantum Leap Technology Jax Industries Micro Power Electronics Inc SpectraWatt References ...

  14. EnergyConnect (Oregon) | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Lake Oswego, Oregon Zip: 97035 Region: Pacific Northwest Area Sector: Efficiency Product: Demand response system provideroperator Website: www.energyconnectinc.com Coordinates:...

  15. Oregon Nonpoint Source Program Implementation Webpage | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Implementation Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Nonpoint Source Program Implementation Webpage Abstract Provides...

  16. REC Solar (Oregon) | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Place: Portland, Oregon Zip: 97214 Region: Pacific Northwest Area Sector: Solar Product: Solar panel installer Website: recsolar.com Coordinates: 45.5136593, -122.657084 Show...

  17. Oregon Department of Transportation - Maintenance and Operations...

    Open Energy Information (Open El) [EERE & EIA]

    Maintenance and Operations Branch Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Department of Transportation - Maintenance and Operations...

  18. Oregon Underground Injection Control Registration Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Form: Oregon Underground Injection Control Registration Geothermal Heating Systems (DEQ Form UICGEO-1004(f)) Abstract Required...

  19. Oregon General Industrial Water Pollution Control Facilities...

    Open Energy Information (Open El) [EERE & EIA]

    General Industrial Water Pollution Control Facilities Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon General Industrial Water Pollution...

  20. Oregon Underground Injection Control Registration Application...

    Open Energy Information (Open El) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Form: Oregon Underground Injection Control Registration Application Fees (DEQ Form UIC 1003-GIC) Abstract Required fees and form...

  1. Oregon/Wind Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Guidebook >> Oregon Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  2. Oregon/Geothermal | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I -...

  3. Portland, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    RES North America LLC REpower Systems SeQuential Biofuels LLC Shorepower Technologies Sky Power LLC Solaicx (Oregon) Solar Nation Inc Stoel Rives, LLP The Green Building...

  4. ,"Oregon Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Gross Withdrawals and Production",10,"Monthly","62016","01151991" ,"Release ...

  5. Oregon Plugging Record Form | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Topic Plugging Record - Geothermal Well Organization State of Oregon Department of Geology and Mineral Industries Published Publisher Not Provided, 42012 DOI Not Provided...

  6. Newberg, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Energy Companies in Newberg, Oregon Abundant Renewable Energy ARE Renewable Energy Engineering LLC References US Census Bureau Incorporated place and minor civil...

  7. Oregon Iron Works Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search Name: Oregon Iron Works Inc Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  8. Gresham, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Gresham, Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.4981757, -122.4314796 Show Map Loading map... "minzoom":false,"mappingservi...

  9. Oregon Department of Transportation | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    services; transportation safety programs; driver and vehicle licensing; and motor carrier regulation. ODOT is actively involved in developing Oregon's system of...

  10. Oregon Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) [DOE]

    is designated for your school's state, county, city, or district. For more information, please visit the Middle School Coach page. Oregon Region Middle School Regional Oregon BPA...

  11. RAPID/Geothermal/Transmission Siting & Interconnection/Oregon...

    Open Energy Information (Open El) [EERE & EIA]

    and Necessity Oregon ORS 469, Energy Facilities Oregon ORS 757.005, Public Utility Definition State Electricity Profiles State Generation & Transmission Siting Directory...

  12. EA-1996: Glass Buttes Radio Station, Lake County, Oregon | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6: Glass Buttes Radio Station, Lake County, Oregon EA-1996: Glass Buttes Radio Station, Lake County, Oregon SUMMARY The Bureau of Land Management (BLM), with DOE's Bonneville Power...

  13. Marion County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Number 4 Climate Zone Subtype C. Registered Energy Companies in Marion County, Oregon Diesel Brewing Energy Generation Facilities in Marion County, Oregon Covanta Marion Inc....

  14. Oregon State Historic Preservation Office | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Historic Preservation Office Jump to: navigation, search Logo: Oregon State Historic Preservation Office Name: Oregon State Historic Preservation Office Address: 725 Summer St NE,...

  15. Maywood Industries of Oregon Space Heating Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Maywood Industries of Oregon Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Maywood Industries of Oregon Space Heating Low Temperature...

  16. Oregon NPDES Permits, Forms, and Information | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Abstract The Oregon Department of Environmental Quality provides NPDES forms on its website. Published NA Year Signed or Took Effect 2014 Legal Citation Oregon NPDES...

  17. Oregon Institute of Technology Geothermal Facility | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Type Binary Owner Oregon Institute of Technology Developer Oregon Institute of Technology Energy Purchaser Pratt & Whitney Commercial Online Date 2009 Power Plant Data Type of...

  18. EverPower Renewables (Oregon) | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewables (Oregon) Jump to: navigation, search Name: EverPower Renewables Address: 70 NW Couch Street Place: Portland, Oregon Zip: 97209 Region: Pacific Northwest Area Sector:...

  19. Oregon Water Rights Public Notice Webpage | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Water Rights Public Notice Webpage Abstract Provides access to Oregon Water Resources...

  20. Noble Americas Energy Solutions LLC (Oregon) | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Oregon) Jump to: navigation, search Name: Noble Americas Energy Solutions LLC Place: Oregon Phone Number: 1 877-273-6772 Website: www.noblesolutions.com Outage Hotline: 1...

  1. NCAI Tribal Energy Energy Education Initiative Workshop: Oregon...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    NCAI Tribal Energy Energy Education Initiative Workshop: Oregon November 1, 2011 - 12:27pm Addthis November 1, 2011 Portland, Oregon The Tribal Leader Energy Education Initiative ...

  2. Grant County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Number 5 Climate Zone Subtype B. Energy Generation Facilities in Grant County, Oregon Co-Gen LLC Biomass Facility Prairie City Biomass Facility Places in Grant County, Oregon...

  3. Douglas County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    4 Climate Zone Subtype C. Energy Generation Facilities in Douglas County, Oregon Co-Gen II LLC Biomass Facility Riddle Biomass Facility Places in Douglas County, Oregon...

  4. EERE Success Story-Oregon: Clean Energy Works Coordinates Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Positive Impact EERE-funded program is reducing energy waste, which is slowing the effects of climate change. Locations Oregon Partners Clean Energy Works Oregon EERE Investment ...

  5. Portland, Oregon: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Portland, Oregon: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Portland, Oregon: Solar in Action (Brochure), Solar America Cities, ...

  6. Oregon Land Management Division - Easements | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Division - Easements Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Land Management Division - Easements Author Oregon Land Management...

  7. Oregon Land Use Compatibility Statements Website | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Statements Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Land Use Compatibility Statements Website Author Oregon Department of...

  8. Oregon's 3rd congressional district: Energy Resources | Open...

    Open Energy Information (Open El) [EERE & EIA]

    in Oregon's 3rd congressional district Pacific Northwest Generating Coop Retrieved from "http:en.openei.orgwindex.php?titleOregon%27s3rdcongressionaldistrict&oldid197282...

  9. EIS-0492: Oregon LNG Export Project (Warrenton, OR) and Washington...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Oregon, and add 39 miles of new pipeline in Columbia County, Oregon, and Cowlitz County, Washington, to interconnect with the Northwest Pipeline, and (2) to expand the capacity ...

  10. Oregon Department of Fish and Wildlife | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Fish and Wildlife Jump to: navigation, search Logo: Oregon Department of Fish and Wildlife Name: Oregon Department of Fish and Wildlife Address: 3406 Cherry Ave. NE Place: Salem,...

  11. City of Hermiston, Oregon (Utility Company) | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hermiston, Oregon (Utility Company) Jump to: navigation, search Name: City of Hermiston Place: Oregon Phone Number: (541) 289-2000 Website: www.hermiston.or.usenergy-ser Outage...

  12. EIS-0492: Oregon LNG Export Project (Warrenton, OR) and Washington...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2: Oregon LNG Export Project (Warrenton, OR) and Washington Expansion Project (between Sumas and Woodland, WA) EIS-0492: Oregon LNG Export Project (Warrenton, OR) and Washington ...

  13. Better Buildings: Workforce: Spotlight on Portland, Oregon: Making...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Workforce: Spotlight on Portland, Oregon: Making the Program Work for Contractors Better Buildings: Workforce: Spotlight on Portland, Oregon: Making the Program Work for ...

  14. Alternative Fuels Data Center: Oregon Boosts EV Adoption Through...

    Alternative Fuels and Advanced Vehicles Data Center

    Oregon Boosts EV Adoption Through Popular Electric Vehicle Events to someone by E-mail Share Alternative Fuels Data Center: Oregon Boosts EV Adoption Through Popular Electric ...

  15. Oregon Department of Geology and Mineral Industries | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Geology and Mineral Industries Jump to: navigation, search Logo: Oregon Department of Geology and Mineral Industries Name: Oregon Department of Geology and Mineral Industries...

  16. Oregon Parks and Recreation Department | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Recreation Department Jump to: navigation, search Logo: Oregon Parks and Recreation Department Name: Oregon Parks and Recreation Department Address: 725 Summer St., N.E. Suite C...

  17. Oregon Oil, Gas, and Geothermal | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Oil, Gas, and Geothermal Jump to: navigation, search Name: Oregon Oil, Gas, and Geothermal Address: 229 Broadalbin St. SW Place: Oregon Zip: 97321 Website: www.oregongeology.org...

  18. Microsoft Word - S06182_GCAP.doc

    Office of Legacy Management (LM)

    Groundwater Compliance Action Plan for the Lakeview, Oregon, Processing Site June 2010 LMS/LKP/S06182 This page intentionally left blank LMS/LKP/S06182 Groundwater Compliance Action Plan for the Lakeview, Oregon, Processing Site June 2010 This page intentionally left blank U.S. Department of Energy Groundwater Compliance Action Plan for the Lakeview, Oregon, Processing Site June 2010 Doc. No.S06182 Page i Contents

  19. URANIUM EXTRACTION

    DOE Patents [OSTI]

    Harrington, C.D.; Opie, J.V.

    1958-07-01

    The recovery of uranium values from uranium ore such as pitchblende is described. The ore is first dissolved in nitric acid, and a water soluble nitrate is added as a salting out agent. The resulting feed solution is then contacted with diethyl ether, whereby the bulk of the uranyl nitrate and a portion of the impurities are taken up by the ether. This acid ether extract is then separated from the aqueous raffinate, and contacted with water causing back extractioa of the uranyl nitrate and impurities into the water to form a crude liquor. After separation from the ether extract, this crude liquor is heated to about 118 deg C to obtain molten uranyl nitrate hexahydratc. After being slightly cooled the uranyl nitrate hexahydrate is contacted with acid free diethyl ether whereby the bulk of the uranyl nitrate is dissolved into the ethcr to form a neutral ether solution while most of the impurities remain in the aqueous waste. After separation from the aqueous waste, the resultant ether solution is washed with about l0% of its volume of water to free it of any dissolved impurities and is then contacted with at least one half its volume of water whereby the uranyl nitrate is extracted into the water to form an aqueous product solution.

  20. PRODUCTION OF URANIUM MONOCARBIDE

    DOE Patents [OSTI]

    Powers, R.M.

    1962-07-24

    A method of making essentially stoichiometric uranium monocarbide by pelletizing a mixture of uranium tetrafluoride, silicon, and carbon and reacting the mixture at a temperature of approximately 1500 to 1700 deg C until the reaction goes to completion, forming uranium monocarbide powder and volatile silicon tetrafluoride, is described. The powder is then melted to produce uranium monocarbide in massive form. (AEC)

  1. PRODUCTION OF URANIUM TETRACHLORIDE

    DOE Patents [OSTI]

    Calkins, V.P.

    1958-12-16

    A process is descrlbed for the production of uranium tetrachloride by contacting uranlum values such as uranium hexafluoride, uranlum tetrafluoride, or uranium oxides with either aluminum chloride, boron chloride, or sodium alumlnum chloride under substantially anhydrous condltlons at such a temperature and pressure that the chlorldes are maintained in the molten form and until the uranium values are completely converted to uranlum tetrachloride.

  2. DECONTAMINATION OF URANIUM

    DOE Patents [OSTI]

    Feder, H.M.; Chellew, N.R.

    1958-02-01

    This patent deals with the separation of rare earth and other fission products from neutron bombarded uranium. This is accomplished by melting the uranium in contact with either thorium oxide, maguesium oxide, alumnum oxide, beryllium oxide, or uranium dioxide. The melting is preferably carried out at from 1150 deg to 1400 deg C in an inert atmosphere, such as argon or helium. During this treatment a scale of uranium dioxide forms on the uranium whtch contains most of the fission products.

  3. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    of the U.S. uranium industry, 1993-2015" ,"Exploration and Development Surface ","Exploration and Development Drilling","Mine Production of Uranium ","Uranium Concentrate ...

  4. Energy Department Joins Navy and Agriculture Departments to Invest...

    Energy.gov (indexed) [DOE]

    per year refinery in Lakeview, Oregon, using gasification and Fischer-Trpsch conversion technology to turn forest biomass and wood wastes into renewable fuels for the military. ...

  5. URANIUM DECONTAMINATION

    DOE Patents [OSTI]

    Buckingham, J.S.; Carroll, J.L.

    1959-12-22

    A process is described for reducing the extractability of ruthenium, zirconium, and niobium values into hexone contained in an aqueous nitric acid uranium-containing solution. The solution is made acid-deficient, heated to between 55 and 70 deg C, and at that temperature a water-soluble inorganic thiosulfate is added. By this, a precipitate is formed which carries the bulk of the ruthenium, and the remainder of the ruthenium as well as the zirconium and niobium are converted to a hexone-nonextractable form. The rutheniumcontaining precipitate can either be removed from the solu tion or it can be dissolved as a hexone-non-extractable compound by the addition of sodium dichromate prior to hexone extraction.

  6. Landslide assessment of Newell Creek Canyon, Oregon City, Oregon

    SciTech Connect (OSTI)

    Growney, L.; Burris, L.; Garletts, D.; Walsh, K. . Dept. of Geology)

    1993-04-01

    A study has been conducted in Newell Creek Canyon near Oregon City, Oregon, T3S, T2S, R2E. A landslide inventory has located 53 landslides in the 2.8 km[sup 2] area. The landslides range in area from approximately 15,000m[sup 2] to 10m[sup 2]. Past slides cover an approximate 7% of the canyon area. Landslide processes include: slump, slump-translational, slump-earthflow and earthflow. Hard, impermeable clay-rich layers in the Troutdale Formation form the failure planes for most of the slides. Slopes composed of Troutdale material may seem to be stable, but when cuts and fills are produced, slope failure is common because of the perched water tables and impermeable failure planes. Good examples of cut and fill failures are present on Highway 213 which passes through Newell Creek Canyon. Almost every cut and fill has failed since the road construction began. The latest failure is in the fill located at mile-post 2.1. From data gathered, a slope stability risk map was generated. Stability risk ratings are divided into three groups: high, moderate and low. High risk of slope instability is designated to all landslides mapped in the slide inventory. Moderate risk is designated to slopes in the Troutdale Formation greater than 8[degree]. Low risk is designated to slopes in the Troutdale Formation less than 8[degree].

  7. Uranium industry annual 1998

    SciTech Connect (OSTI)

    1999-04-22

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  8. Uranium industry annual 1994

    SciTech Connect (OSTI)

    1995-07-05

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  9. Process for electroslag refining of uranium and uranium alloys

    DOE Patents [OSTI]

    Lewis, P.S. Jr.; Agee, W.A.; Bullock, J.S. IV; Condon, J.B.

    1975-07-22

    A process is described for electroslag refining of uranium and uranium alloys wherein molten uranium and uranium alloys are melted in a molten layer of a fluoride slag containing up to about 8 weight percent calcium metal. The calcium metal reduces oxides in the uranium and uranium alloys to provide them with an oxygen content of less than 100 parts per million. (auth)

  10. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  11. PRODUCTION OF PURIFIED URANIUM

    DOE Patents [OSTI]

    Burris, L. Jr.; Knighton, J.B.; Feder, H.M.

    1960-01-26

    A pyrometallurgical method for processing nuclear reactor fuel elements containing uranium and fission products and for reducing uranium compound; to metallic uranium is reported. If the material proccssed is essentially metallic uranium, it is dissolved in zinc, the sulution is cooled to crystallize UZn/sub 9/ , and the UZn/sub 9/ is distilled to obtain uranium free of fission products. If the material processed is a uranium compound, the sollvent is an alloy of zinc and magnesium and the remaining steps are the same.

  12. Method of recovering uranium hexafluoride

    DOE Patents [OSTI]

    Schuman, S.

    1975-12-01

    A method of recovering uranium hexafluoride from gaseous mixtures which comprises adsorbing said uranium hexafluoride on activated carbon is described.

  13. Alternative Fuels Data Center: Oregon Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center

    Fuels and Vehicles Oregon Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Oregon Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Oregon Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Oregon Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Oregon

  14. Workplace Charging Challenge Partner: State of Oregon | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Oregon Workplace Charging Challenge Partner: State of Oregon Workplace Charging Challenge Partner: State of Oregon Joined the Challenge: July 2014 Headquarters: Salem, OR Charging Locations: Salem, OR; Corvallis, OR; Portland, OR Domestic Employees: 82,800 As the first state in the country to sign up for the Workplace Charging Challenge, the State of Oregon has over 20 EVSE available for employees, demonstrating that employers can help to accelerate EV deployment. Oregon is working on

  15. METHOD FOR PURIFYING URANIUM

    DOE Patents [OSTI]

    Knighton, J.B.; Feder, H.M.

    1960-04-26

    A process is given for purifying a uranium-base nuclear material. The nuclear material is dissolved in zinc or a zinc-magnesium alloy and the concentration of magnesium is increased until uranium precipitates.

  16. Uranium Marketing Annual Report -

    Annual Energy Outlook

    7. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by ... Weighted-average prices are not adjusted for inflation. UF6 is uranium hexafluoride. The ...

  17. Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Notes: Totals may not equal sum of components because of independent rounding. Foreign purchase: A uranium purchase of foreign-origin uranium from a firm located outside the United ...

  18. Nuclear Fuel Facts: Uranium

    Energy.gov [DOE]

    Uranium is a silvery-white metallic chemical element in the periodic table, with atomic number 92. It is assigned the chemical symbol U. A uranium atom has 92 protons and 92 electrons, of which 6...

  19. Uranium Marketing Annual Report -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    0. Contracted purchases of uranium from suppliers by owners and operators of U.S. civilian ... Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual ...

  20. Uranium Marketing Annual Report -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    3. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by ... Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual ...

  1. Uranium Marketing Annual Report -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    0. U.S. broker and trader purchases of uranium by origin, supplier, and delivery year, ... 2012 2013 2014 2015 Received U.S.-origin uranium Purchases 1,668 1,194 W 410 2,702 ...

  2. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update

    Uranium in fuel assemblies loaded into U.S. civilian nuclear power reactors by year, 2011-15 thousand pounds U3O8 equivalent Origin of uranium 2011 2012 2013 2014 P2015 ...

  3. Uranium Marketing Annual Report -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    5. Shipments of uranium feed by owners and operators of U.S. civilian nuclear power ... Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual ...

  4. Uranium Marketing Annual Report -

    Annual Energy Outlook

    Inventories of uranium by owner as of end of year, 2011-15 thousand pounds U3O8 equivalent Inventories at the end of the year Owner of uranium inventory 2011 2012 2013 2014 P2015 ...

  5. Uranium Marketing Annual Report -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    natural and enriched uranium by material type as of end of year, 2011-15 thousand pounds U3O8 equivalent Inventories at the end of the year Type of uranium inventory owned by 2011 ...

  6. NICKEL COATED URANIUM ARTICLE

    DOE Patents [OSTI]

    Gray, A.G.

    1958-10-01

    Nickel coatings on uranium and various methods of obtaining such coatings are described. Specifically disclosed are such nickel or nickel alloy layers as barriers between uranium and aluminum- silicon, chromium, or copper coatings.

  7. PREPARATION OF URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Lawroski, S.; Jonke, A.A.; Steunenberg, R.K.

    1959-10-01

    A process is described for preparing uranium hexafluoride from carbonate- leach uranium ore concentrate. The briquetted, crushed, and screened concentrate is reacted with hydrogen fluoride in a fluidized bed, and the uranium tetrafluoride formed is mixed with a solid diluent, such as calcium fluoride. This mixture is fluorinated with fluorine and an inert diluent gas, also in a fluidized bed, and the uranium hexafluoride obtained is finally purified by fractional distillation.

  8. PROCESS OF PURIFYING URANIUM

    DOE Patents [OSTI]

    Seaborg, G.T.; Orlemann, E.F.; Jensen, L.H.

    1958-12-23

    A method of obtaining substantially pure uranium from a uranium composition contaminated with light element impurities such as sodium, magnesium, beryllium, and the like is described. An acidic aqueous solution containing tetravalent uranium is treated with a soluble molybdate to form insoluble uranous molybdate which is removed. This material after washing is dissolved in concentrated nitric acid to obtaln a uranyl nitrate solution from which highly purified uranium is obtained by extraction with ether.

  9. Uranium industry annual 1995

    SciTech Connect (OSTI)

    1996-05-01

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  10. Thermal hydraulic analysis for the Oregon State TRIGA reactor using RELAP5-3D

    SciTech Connect (OSTI)

    Marcum, W.R.; Woods, B.G.; Hartman, M.

    2008-07-15

    Thermal hydraulic analyses have being conducted at Oregon State University (OSU) in support of the conversion of the OSU TRIGA reactor (OSTR) core from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel as part of the Reduced Enrichment for Research and Test Reactors program. The goals of the thermal hydraulic analyses were to calculate natural circulation flow rates, coolant temperatures and fuel temperatures as a function of core power for both the HEU and LEU cores; calculate peak values of fuel temperature, cladding temperature, surface heat flux as well as departure from nuclear boiling ratio (DNBR) for steady state and pulse operation; and perform accident analyses for the accident scenarios identified in the OSTR safety analysis report. RELAP5-3D Version 2.4.2 was implemented to develop a model for the thermal hydraulic study. The OSTR core conversion is planned to take place in late 2008. (author)

  11. PRODUCTION OF URANIUM TETRAFLUORIDE

    DOE Patents [OSTI]

    Shaw, W.E.; Spenceley, R.M.; Teetzel, F.M.

    1959-08-01

    A method is presented for producing uranium tetrafluoride from the gaseous hexafluoride by feeding the hexafluoride into a high temperature zone obtained by the recombination of molecularly dissociated hydrogen. The molal ratio of hydrogen to uranium hexnfluoride is preferably about 3 to 1. Uranium tetrafluoride is obtained in a finely divided, anhydrous state.

  12. Final Uranium Leasing Program Programmatic Environmental Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Final Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Uranium Leasing ...

  13. Oregon Siting Process | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Siting Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Siting Process Abstract Overview of the siting process for energy facilities in...

  14. Bend, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Energy Companies in Bend, Oregon Davenport Power LLC Geopower Texas Co IdaTech plc Northwest Geothermal Company PV Powered Inc Silvan Power Company SunEnergy Power Corp...

  15. U.S. Uranium Reserves Estimates

    Gasoline and Diesel Fuel Update

    Major U.S. Uranium Reserves

  16. URANIUM SEPARATION PROCESS

    DOE Patents [OSTI]

    Hyde, E.K.; Katzin, L.I.; Wolf, M.J.

    1959-07-14

    The separation of uranium from a mixture of uranium and thorium by organic solvent extraction from an aqueous solution is described. The uranium is separrted from an aqueous mixture of uranium and thorium nitrates 3 N in nitric acid and containing salting out agents such as ammonium nitrate, so as to bring ihe total nitrate ion concentration to a maximum of about 8 N by contacting the mixture with an immiscible aliphatic oxygen containing organic solvent such as diethyl carbinol, hexone, n-amyl acetate and the like. The uranium values may be recovered from the organic phase by back extraction with water.

  17. PRODUCTION OF URANIUM

    DOE Patents [OSTI]

    Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

    1958-04-15

    The production of uranium metal by the reduction of uranium tetrafluoride is described. Massive uranium metal of high purily is produced by reacting uranium tetrafluoride with 2 to 20% stoichiometric excess of magnesium at a temperature sufficient to promote the reaction and then mantaining the reaction mass in a sealed vessel at temperature in the range of 1150 to 2000 d C, under a superatomospheric pressure of magnesium for a period of time sufficient 10 allow separation of liquid uranium and liquid magnesium fluoride into separate layers.

  18. PROCESS OF RECOVERING URANIUM

    DOE Patents [OSTI]

    Carter, J.M.; Larson, C.E.

    1958-10-01

    A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.

  19. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Yeager, J.H.

    1958-08-12

    In the prior art processing of uranium ores, the ore is flrst digested with nitric acid and filtered, and the uranium values are then extracted tom the filtrate by contacting with an organic solvent. The insoluble residue has been processed separately in order to recover any uranium which it might contain. The improvement consists in contacting a slurry, composed of both solution and residue, with the organic solvent prior to filtration. Tbe result is that uranium values contained in the residue are extracted along with the uranium values contained th the solution in one step.

  20. Method for converting uranium oxides to uranium metal

    DOE Patents [OSTI]

    Duerksen, Walter K.

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  1. EIS-0296: South Oregon Coast Reinforcement Project, Coos Bay/North Bend, Oregon

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EIS analyzes BPA's proposed action to build a 500- kilovolt (kV) transmission line and new substation to reinforce electrical service to the southern coast of the state of Oregon. Nucor Steel, a division of Nucor Corporation, may build a new steel mill in the Coos Bay/North Bend, Oregon, area.

  2. EIS-0296: South Oregon Coast Reinforcement Project, Coos Bay/North Bend, Oregon

    Energy.gov [DOE]

    Bonneville Power Administration proposes to build a 500- kilovolt (kV) transmission line and new substation to reinforce electrical service to the southern coast of the state of Oregon. Nucor Steel, a division of Nucor Corporation, may build a new steel mill in the Coos Bay/North Bend, Oregon, area.

  3. Airborne gamma-ray spectrometer and magnetometer survey, Roseburg Quadrangle, Oregon. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Roseburg, Oregon, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1596 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  4. Airborne gamma-ray spectrometer and magnetometer survey, Medford Quadrangle Oregon. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Medford, Oregon, map area. Traverse lines were flown in an east-west direction at a line spacing of three miles. Tie lines were flown north-south approximately twelve miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 2925 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  5. About the Uranium Mine Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Uranium Mine Team About the Uranium Mine Team Text coming

  6. Disposition of DOE Excess Depleted Uranium, Natural Uranium,...

    Energy.gov (indexed) [DOE]

    U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large ...

  7. 1982 Oregon energy resource manual

    SciTech Connect (OSTI)

    Ebert, R.; Ebert, J. (eds.)

    1982-01-01

    This manual is divided into three distinct sections. Part one contains 40 passive solar home plans designed for the Pacific Northwest by Oregon architects and designers. Floor plans and exterior renderings of multi-family and single-family dwellings, earth sheltered and bermed designs, and light commercial structures are included. The degree of solar contribution each residence achieves is graphically presented for ease of understanding. Part two, renewable-energy-resource guide, is primarily designed as a locator to indepth publications that explain specific energy resources in detail. It contains illustrated book reviews of pertinent private and government publications available. Various tables, forms, diagrams, energy system evaluation criteria, an illustrated glossary, BPA energy programs, utility programs, financial outlooks and non-profit organizations are included. The product locator index makes up part three. This indexed directory contains the listings of businesses, including the address, phone number, contact person and a 30 to 50 word description of the product or services currently offered. These renewable energy companies range from architectural and engineering services to research and development firms.

  8. Klamath Falls geothermal field, Oregon

    SciTech Connect (OSTI)

    Lienau, P.J.; Culver, G.; Lund, J.W.

    1989-09-01

    Klamath Falls, Oregon, is located in a Known Geothermal Resource Area which has been used by residents, principally to obtain geothermal fluids for space heating, at least since the turn of the century. Over 500 shallow-depth wells ranging from 90 to 2,000 ft (27 to 610 m) in depth are used to heat (35 MWt) over 600 structures. This utilization includes the heating of homes, apartments, schools, commercial buildings, hospital, county jail, YMCA, and swimming pools by individual wells and three district heating systems. Geothermal well temperatures range from 100 to 230{degree}F (38 to 110{degree}C) and the most common practice is to use downhole heat exchangers with city water as the circulating fluid. Larger facilities and district heating systems use lineshaft vertical turbine pumps and plate heat exchangers. Well water chemistry indicates approximately 800 ppM dissolved solids, with sodium sulfate having the highest concentration. Some scaling and corrosion does occur on the downhole heat exchangers (black iron pipe) and on heating systems where the geo-fluid is used directly. 73 refs., 49 figs., 6 tabs.

  9. King City, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. King City is a city in Washington County, Oregon. It falls under Oregon's 1st congressional...

  10. EIS-0507: Boardman-Hemingway Transmission Line, Oregon and Idaho...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7: Boardman-Hemingway Transmission Line, Oregon and Idaho EIS-0507: Boardman-Hemingway Transmission Line, Oregon and Idaho Summary The Bureau of Land Management and the U.S. Forest ...

  11. Oregon Trail El Cons Coop, Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    El Cons Coop, Inc Jump to: navigation, search Name: Oregon Trail El Cons Coop, Inc Place: Oregon Phone Number: Baker County: 541-523-3616; Harney: 541-573-2666; Grant:...

  12. Oregon Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Oregon Natural Gas Gross Withdrawals (Million Cubic Feet) Oregon Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 159 ...

  13. RAPID/Geothermal/Exploration/Oregon | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Industries, Oregon Division of State Lands Exploration Permit (Pre-drilling): No person shall explore by any means whatever on, in, or under land owned by the State of Oregon...

  14. City of Milton-Freewater, Oregon (Utility Company) | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Milton-Freewater, Oregon (Utility Company) Jump to: navigation, search Name: City of Milton-Freewater Place: Oregon Phone Number: (541) 938-8232 After Hours (541) 938-5511 Website:...

  15. Central Point, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    article is a stub. You can help OpenEI by expanding it. Central Point is a city in Jackson County, Oregon. It falls under Oregon's 2nd congressional district.12 References...

  16. White City, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    stub. You can help OpenEI by expanding it. White City is a census-designated place in Jackson County, Oregon.1 Registered Energy Companies in White City, Oregon Biomass One LP...

  17. Butte Falls, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    This article is a stub. You can help OpenEI by expanding it. Butte Falls is a town in Jackson County, Oregon. It falls under Oregon's 2nd congressional district.12 References...

  18. Shady Cove, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    This article is a stub. You can help OpenEI by expanding it. Shady Cove is a city in Jackson County, Oregon. It falls under Oregon's 2nd congressional district.12 References...

  19. Rogue River, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    This article is a stub. You can help OpenEI by expanding it. Rogue River is a city in Jackson County, Oregon. It falls under Oregon's 2nd congressional district.12 References...

  20. Eagle Point, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    This article is a stub. You can help OpenEI by expanding it. Eagle Point is a city in Jackson County, Oregon. It falls under Oregon's 2nd congressional district.12 References...

  1. Oregon Department of State Lands | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    of State Lands Name: Oregon Department of State Lands Address: 775 Summer Street, Suite 100 Place: Salem, Oregon Zip: 97301-1279 Phone Number: 503-986-5200 Website:...

  2. West Linn, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Linn is a city in Clackamas County, Oregon. It falls under Oregon's 5th congressional...

  3. City of Monmouth, Oregon (Utility Company) | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Monmouth, Oregon (Utility Company) Jump to: navigation, search Name: City of Monmouth Place: Oregon Phone Number: 503-838-3526 Website: www.ci.monmouth.or.uspView.as Outage...

  4. Plug-in Electric Vehicles Charge Forward in Oregon | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... EV Everywhere Charges Up the Workplace Project Overview Positive Impact More plug-in hybrid and all-electric vehicles in Oregon. Oregon is planning for the large-scale deployment ...

  5. Deschutes County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Oregon Central Oregon Irrigation District Davenport Power LLC Geopower Texas Co IdaTech plc Northwest Geothermal Company PV Powered Inc Silvan Power Company SunEnergy Power Corp...

  6. Gold Hill, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Gold Hill is a city in Jackson County, Oregon. It falls under Oregon's 2nd congressional...

  7. Oregon Department of Land Conservation and Development | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Place: Salem, Oregon Zip: 97301-2540 Phone Number: 503-373-0050 Website: www.oregon.govlcdPagesindex Coordinates: 44.943778, -123.026308 Show Map Loading map......

  8. EA-1891: Alvey-Fairview Transmission Line Rebuild Project, Oregon

    Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to rebuild DOE’s Bonneville Power Administration’s Alvey-Fairview No. 1 230-kV transmission line located between Eugene, Oregon, and Coquille, Oregon.

  9. Wood Village, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Wood Village is a city in Multnomah County, Oregon. It falls under Oregon's 3rd...

  10. Microsoft Word - 09062422_DVP.doc

    Office of Legacy Management (LM)

    Disposal Site October 2009 LMS/LKD/S00709 This page intentionally left blank U.S. Department of Energy DVP-July 2009, Lakeview, Oregon October 2009 RIN 09062422 Page i Contents Sampling Event Summary ...............................................................................................................1 Lakeview, Oregon, Disposal Site Sample Location Map ................................................................2 Data Assessment

  11. Microsoft Word - 09062426 DVP.doc

    Office of Legacy Management (LM)

    Processing Site November 2009 LMS/LKP/S00709 This page intentionally left blank U.S. Department of Energy DVP-July 2009, Lakeview, Oregon November 2009 RIN 09062426 Page i Contents Sampling Event Summary ...............................................................................................................1 Lakeview, Oregon, Processing Site Sample Location Map .............................................................2 Data Assessment

  12. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Disposal Site August 2014 LMS/LKD/S00514 This page intentionally left blank U.S. Department of Energy DVP-May 2014, Lakeview, Oregon, Disposal August 2014 RIN 14056157 Page i Contents Sampling Event Summary ...............................................................................................................1 Lakeview, Oregon, Disposal Site, Sample Location Map ...............................................................3 Data Assessment Summary

  13. Corrosion prevention of Oregon's reinforced coastal bridges

    SciTech Connect (OSTI)

    Bullard, Sophie J.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Ziomek-Moroz, Margaret; Cryer. C.B; Gallardo, M. L.

    2004-06-01

    The Oregon Department of Transportation (Oregon DOT) maintains more than 120 coastal bridges; many are reinforced concrete structures over 15 m (50 ft) in length. Twelve of these bridges are historic structures. Oregon DOT is concerned about the ongoing deterioration of these bridges, rising maintenance and repair costs, and the need to protect Oregons large investment in coastal bridges. Over 80,000 m2 (850,000 ft2) of coastal bridge surface have been repaired and protected from further chloride-induced corrosion damage by using conductive coating anodes. Most of the anode area is thermal-sprayed (TS) Zn. Other anode materials include TS Ti, Zn-hydrogel, and conductive carbon paint. TS Zn anodes are estimated to have a service life exceeding 25 years but exhibit increasing anode polarization with age. Catalyzed TS Ti anodes develop no significant anode polarization and have exhibited stable long-term performance over 8 years of service. Galvanic Zn-hydrogel anodes produce a stable protection current with no evidence of aging effects over 6 years of service. The conductive carbon paint anode operates at a low anode current density and consumption rate with a low rate of acidification at the anode-concrete interface, which has contributed to a stable protection current over 17 years of service.

  14. Biomass Boiler to Heat Oregon School | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School April 26, 2011 - 5:29pm Addthis Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Joel Danforth Project Officer, Golden

  15. Workplace Charging Challenge Partner: Oregon State University | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Oregon State University Workplace Charging Challenge Partner: Oregon State University Workplace Charging Challenge Partner: Oregon State University Joined the Challenge: June 2015 Headquarters: Corvallis, OR Charging Location: Corvallis, OR Domestic Employees: 6,080 Oregon State University (OSU) is an organization committed to sustainability and carbon emissions reduction. In an effort to reduce their impact on the environment, OSU supports, offers and promotes a number of more

  16. Better Buildings: Workforce: Spotlight on Portland, Oregon: Making the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program Work for Contractors | Department of Energy Workforce: Spotlight on Portland, Oregon: Making the Program Work for Contractors Better Buildings: Workforce: Spotlight on Portland, Oregon: Making the Program Work for Contractors Better Buildings: Workforce: Spotlight on Portland, Oregon: Making the Program Work for Contractors. Spotlight on Portland (536.02 KB) More Documents & Publications Better Buildings - Spotlight on Portland, Oregon; Financing and Incetntives: Use Incentives

  17. Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Maui Hawaii & Glass Buttes, Oregon Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon Innovative Exploration Technologies Maui Hawii & Glass Buttes, Oregon presentation at the April 2013 peer review meeting held in Denver, Colorado. moui_glass_buttes_ormat_peer2013.pdf (1.01 MB) More Documents & Publications Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon Blind Geothermal System Exploration in Active Volcanic

  18. Oregon Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) (indexed site)

    Oregon" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3349,3686,3653,3626,3577 " ... " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" ...

  19. Advanced Battery Manufacturing Making Strides in Oregon | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Advanced Battery Manufacturing Making Strides in Oregon Advanced Battery Manufacturing Making Strides in Oregon February 16, 2012 - 12:09pm Addthis EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program What are the key facts? Through the Recovery Act, the Department has

  20. Oregon School District Benefits from Energy Improvements | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Oregon School District Benefits from Energy Improvements Oregon School District Benefits from Energy Improvements February 29, 2016 - 2:53pm Addthis Before-and-after scenes of the energy-saving renovations at Oregon's Lowell School District in summer 2015. Upgrades included insulation of attics and exterior walls, roof replacements, and removal and replacement of asbestos siding. Before-and-after scenes of the energy-saving renovations at Oregon's Lowell School District in summer

  1. Oregon: Oregon’s Clean Energy Resources and Economy

    SciTech Connect (OSTI)

    2013-03-25

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Oregon.

  2. Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon

    Energy.gov [DOE]

    Innovative Exploration Technologies Maui Hawii & Glass Buttes, Oregon presentation at the April 2013 peer review meeting held in Denver, Colorado.

  3. Oregon Hospital Heats Up with a Biomass Boiler

    Energy.gov [DOE]

    Highlighting how a rural Oregon hospital was able to cut its heating bills while stimulating the local economy.

  4. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update

    S2. Uranium feed deliveries, enrichment services, and uranium loaded by owners and operators of U.S. civilian nuclear power reactors, 1994-2015 million pounds U3O8 equivalent million separative work units (SWU) Year Feed deliveries by owners and operators of U.S. civilian nuclear power reactors Uranium in fuel assemblies loaded into U.S. civilian nuclear power reactors U.S.-origin enrichment services purchased Foreign-origin enrichment services purchased Total purchased enrichment services

  5. Preparation of uranium compounds

    DOE Patents [OSTI]

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  6. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  7. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  8. highly enriched uranium

    National Nuclear Security Administration (NNSA)

    and radioisotope supply capabilities of MURR and Nordion with General Atomics' selective gas extraction technology-which allows their low-enriched uranium (LEU) targets to remain...

  9. Uranium Marketing Annual Report -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual Survey" (20

  10. Uranium Marketing Annual Report -

    Annual Energy Outlook

    because of independent rounding. Average prices are not adjusted for inflation. Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual Survey" (2011

  11. COATING URANIUM FROM CARBONYLS

    DOE Patents [OSTI]

    Gurinsky, D.H.; Storrs, S.S.

    1959-07-14

    Methods are described for making adherent corrosion resistant coatings on uranium metal. According to the invention, the uranium metal is heated in the presence of an organometallic compound such as the carbonyls of nickel, molybdenum, chromium, niobium, and tungsten at a temperature sufficient to decompose the metal carbonyl and dry plate the resultant free metal on the surface of the uranium metal body. The metal coated body is then further heated at a higher temperature to thermally diffuse the coating metal within the uranium bcdy.

  12. PRODUCTION OF URANIUM

    DOE Patents [OSTI]

    Ruehle, A.E.; Stevenson, J.W.

    1957-11-12

    An improved process is described for the magnesium reduction of UF/sub 4/ to produce uranium metal. In the past, there have been undesirable premature reactions between the Mg and the bomb liner or the UF/sub 4/ before the actual ignition of the bomb reaction. Since these premature reactions impair the yield of uranium metal, they have been inhibited by forming a protective film upon the particles of Mg by reacting it with hydrated uranium tetrafluoride, sodium bifluoride, uranyl fluoride, or uranium trioxide. This may be accomplished by adding about 0.5 to 2% of the additive to the bomb charge.

  13. Uranium Purchases Report

    Reports and Publications

    1996-01-01

    Final issue. This report details natural and enriched uranium purchases as reported by owners and operators of commercial nuclear power plants. 1996 represents the most recent publication year.

  14. Uranium Dispersion & Dosimetry Model.

    Energy Science and Technology Software Center (OSTI)

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for applicationmore » to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.« less

  15. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Kaufman, D.

    1958-04-15

    A process of recovering uranium from very low-grade ore residues is described. These low-grade uraniumcontaining hydroxide precipitates, which also contain hydrated silica and iron and aluminum hydroxides, are subjected to multiple leachings with aqueous solutions of sodium carbonate at a pH of at least 9. This leaching serves to selectively extract the uranium from the precipitate, but to leave the greater part of the silica, iron, and aluminum with the residue. The uranium is then separated from the leach liquor by the addition of an acid in sufficient amount to destroy the carbonate followed by the addition of ammonia to precipitate uranium as ammonium diuranate.

  16. METHOD OF ROLLING URANIUM

    DOE Patents [OSTI]

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  17. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Energy SOPAMIN (Socit de Patrimoine des Mines du Niger "Heritage Society of Mines in Niger") Rossing Uranium Limited Rio Tinto Uranium Limited TENAM Corporation SOPAMIN ...

  18. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    "SOPAMIN (Socit de Patrimoine des Mines du Niger ""Heritage Society of Mines in Niger"")","Rossing Uranium Limited","Rio Tinto Uranium Limited" "TENAM Corporation","SOPAMIN ...

  19. PROCESS FOR MAKING URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Rosen, R.

    1959-07-14

    A process is described for producing uranium hexafluoride by reacting uranium hexachloride with hydrogen fluoride at a temperature below about 150 deg C, under anhydrous conditions.

  20. 2015 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update

    U.S. Energy Information Administration 2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 thousand ...

  1. URANIUM LEACHING AND RECOVERY PROCESS

    DOE Patents [OSTI]

    McClaine, L.A.

    1959-08-18

    A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.

  2. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    U.S. Energy Information Administration 2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 ...

  3. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    U.S. Energy Information Administration, Form EIA-858 ""Uranium Marketing Annual Survey"" (2015)." " U.S. Energy Information Administration 2015 Uranium Marketing Annual Report 25

  4. 2015 Uranium Market Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    U.S. Energy Information Administration, Form EIA-858 ""Uranium Marketing Annual Survey"" (2015)." "16 U.S. Energy Information Administration 2015 Uranium Marketing Annual Report

  5. 2015 Uranium Marketing Annual Survey

    U.S. Energy Information Administration (EIA) (indexed site)

    5 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual ...

  6. :- : DRILLING URANIUM BILLETS ON A

    Office of Legacy Management (LM)

    ' z . , -, .- . >. ; . .. :- : DRILLING URANIUM BILLETS ON A .-... r .. .. i ' ... DRILLING URANIUM BILLETS ON A LEBLOND-CARLSTEDT RAPID BORER By R. J. Jansen* TECHNICAL ...

  7. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Purchases Weighted- average price Purchases Weighted- ...

  8. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    5 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual ...

  9. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    b. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ... Administration: Form EIA-858 ""Uranium Marketing Annual Survey"" (2013-15)." "14 ...

  10. 2015 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update

    Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Number of purchasers Quantity with reported price ...

  11. 2015 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update

    Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Deliveries 2011 2012 2013 2014 2015 Purchases of ...

  12. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    U.S. Energy Information Administration 2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Origin of ...

  13. 2015 Uranium Marketing Annual Report

    Annual Energy Outlook

    3 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... 1 Distribution divides total quantity of uranium delivered (with a price) into eight ...

  14. 2015 Uranium Market Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    6 U.S. Energy Information Administration 2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Purchase ...

  15. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    U.S. Energy Information Administration 2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Minimum ...

  16. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    6a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ... Distribution divides total quantity of uranium delivered (with a price) into eight ...

  17. U.S.Uranium Reserves

    Gasoline and Diesel Fuel Update

    Uranium Reserves Data for: 2003 Release Date: June 2004 Next Release: Not determined Uranium Reserves Estimates The Energy Information Administration (EIA) has reported the...

  18. Uranium industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

  19. Excess Uranium Management

    Office of Energy Efficiency and Renewable Energy (EERE)

    On July 19, 2016, the Department issued a Request for Information on the effects of DOE transfers of excess uranium on domestic uranium mining, conversion, and enrichment industries. The Request for Information established an August 18, 2016 deadline for the submission of written comments. On August 1, 2016, the Department extended the comment period to September 19, 2016.

  20. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update

    1. Foreign sales of uranium from U.S. suppliers and owners and operators of U.S. civilian ... 2011 2012 2013 2014 2015 U.S.-origin uranium Foreign sales 4,387 4,798 4,148 4,210 ...

  1. Uranium Marketing Annual Report -

    Annual Energy Outlook

    . Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by ... 2011 2012 2013 2014 2015 U.S.-Origin Uranium Purchases 5,205 9,807 9,484 3,316 3,419 ...

  2. DECONTAMINATION OF URANIUM

    DOE Patents [OSTI]

    Spedding, F.H.; Butler, T.A.

    1962-05-15

    A process is given for separating fission products from uranium by extracting the former into molten aluminum. Phase isolation can be accomplished by selectively hydriding the uranium at between 200 and 300 deg C and separating the hydride powder from coarse particles of fissionproduct-containing aluminum. (AEC)

  3. URANIUM SEPARATION PROCESS

    DOE Patents [OSTI]

    McVey, W.H.; Reas, W.H.

    1959-03-10

    The separation of uranium from an aqueous solution containing a water soluble uranyl salt is described. The process involves adding an alkali thiocyanate to the aqueous solution, contacting the resulting solution with methyl isobutyl ketons and separating the resulting aqueous and organic phase. The uranium is extracted in the organic phase as UO/sub 2/(SCN)/sub/.

  4. Uranium dioxide electrolysis

    DOE Patents [OSTI]

    Willit, James L.; Ackerman, John P.; Williamson, Mark A.

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  5. URANIUM PRECIPITATION PROCESS

    DOE Patents [OSTI]

    Thunaes, A.; Brown, E.A.; Smith, H.W.; Simard, R.

    1957-12-01

    A method for the recovery of uranium from sulfuric acid solutions is described. In the present process, sulfuric acid is added to the uranium bearing solution to bring the pH to between 1 and 1.8, preferably to about 1.4, and aluminum metal is then used as a reducing agent to convert hexavalent uranium to the tetravalent state. As the reaction proceeds, the pH rises amd a selective precipitation of uranium occurs resulting in a high grade precipitate. This process is an improvement over the process using metallic iron, in that metallic aluminum reacts less readily than metallic iron with sulfuric acid, thus avoiding consumption of the reducing agent and a raising of the pH without accomplishing the desired reduction of the hexavalent uranium in the solution. Another disadvantage to the use of iron is that positive ferric ions will precipitate with negative phosphate and arsenate ions at the pH range employed.

  6. METHOD FOR PURIFYING URANIUM

    DOE Patents [OSTI]

    Kennedy, J.W.; Segre, E.G.

    1958-08-26

    A method is presented for obtaining a compound of uranium in an extremely pure state and in such a condition that it can be used in determinations of the isotopic composition of uranium. Uranium deposited in calutron receivers is removed therefrom by washing with cold nitric acid and the resulting solution, coataining uranium and trace amounts of various impurities, such as Fe, Ag, Zn, Pb, and Ni, is then subjected to various analytical manipulations to obtain an impurity-free uranium containing solution. This solution is then evaporated on a platinum disk and the residue is ignited converting it to U2/sub 3//sub 8/. The platinum disk having such a thin film of pure U/sub 2/O/sub 8/ is suitable for use with isotopic determination techaiques.

  7. EIS-0204: Hermiston Generating Project, Hermiston, Oregon

    Energy.gov [DOE]

    The U.S. Department of Energy’s Bonneville Power Administration prepared this statement to analyze the alternatives and environmental and socioeconomic impacts thereof of transferring electrical power from a proposed privately-owned, combined cycle combustion turbine cogeneration plant in Oregon.

  8. PROCESS OF RECOVERING URANIUM

    DOE Patents [OSTI]

    Kilner, S.B.

    1959-12-29

    A method is presented for separating and recovering uranium from a complex mixure of impurities. The uranium is dissolved to produce an aqueous acidic solution including various impurities. In accordance with one method, with the uranium in the uranyl state, hydrogen cyanide is introduced into the solution to complex the impurities. Subsequently, ammonia is added to the solution to precipitate the uraniunn as ammonium diuranate away from the impurities in the solution. Alternatively, the uranium is precipitated by adding an alkaline metal hydroxide. In accordance with the second method, the uranium is reduced to the uranous state in the solution. The reduced solution is then treated with solid alkali metal cyanide sufficient to render the solution about 0.1 to 1.0 N in cyanide ions whereat cyanide complex ions of the metal impurities are produced and the uranium is simultaneously precipituted as uranous hydroxide. Alternatively, hydrogen cyanide may be added to the reduced solution and the uranium precipitated subsequently by adding ammonium hydroxide or an alkali metal hydroxide. Other refinements of the method are also disclosed.

  9. India's Worsening Uranium Shortage

    SciTech Connect (OSTI)

    Curtis, Michael M.

    2007-01-15

    As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

  10. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update

    4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2013-15 2013 2014 2015 American Fuel Resources, LLC Advance Uranium Asset Management Ltd. AREVA / AREVA NC, Inc. AREVA NC, Inc. AREVA / AREVA NC, Inc. ARMZ (AtomRedMetZoloto) BHP Billiton Olympic Dam Corporation Pty Ltd ARMZ (AtomRedMetZoloto) BHP Billiton Olympic Dam Corporation Pty Ltd CAMECO BHP Billiton Olympic Dam Corporation Pty Ltd CAMECO ConverDyn CAMECO CGN Global Uranium Limited Deutsche Bank Deutsche

  11. Depleted uranium management alternatives

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  12. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Stevenson, J.W.; Werkema, R.G.

    1959-07-28

    The recovery of uranium from magnesium fluoride slag obtained as a by- product in the production of uranium metal by the bomb reduction prccess is presented. Generally the recovery is accomplished by finely grinding the slag, roasting ihe ground slag air, and leaching the roasted slag with a hot, aqueous solution containing an excess of the sodium bicarbonate stoichiometrically required to form soluble uranium carbonate complex. The roasting is preferably carried out at between 425 and 485 deg C for about three hours. The leaching is preferably done at 70 to 90 deg C and under pressure. After leaching and filtration the uranium may be recovered from the clear leach liquor by any desired method.

  13. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update

    b. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by purchaser, 2013-15 deliveries thousand pounds U3O8 ...

  14. Uranium Marketing Annual Report -

    Annual Energy Outlook

    3. Deliveries of uranium feed by owners and operators of U.S. civilian nuclear power reactors by enrichment country and delivery year, 2013-15 thousand pounds U3O8 equivalent Feed ...

  15. Uranium Marketing Annual Report -

    Annual Energy Outlook

    9. Contracted purchases of uranium by owners and operators of U.S. civilian nuclear power reactors, signed in 2015, by delivery year, 2016-25 thousand pounds U3O8 equivalent Year ...

  16. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update

    4. Deliveries of uranium feed for enrichment by owners and operators of U.S. civilian nuclear power reactors by origin country and delivery year, 2013-15 thousand pounds U3O8 ...

  17. PURIFICATION OF URANIUM FUELS

    DOE Patents [OSTI]

    Niedrach, L.W.; Glamm, A.C.

    1959-09-01

    An electrolytic process of refining or decontaminating uranium is presented. The impure uranium is made the anode of an electrolytic cell. The molten salt electrolyte of this cell comprises a uranium halide such as UF/sub 4/ or UCl/sub 3/ and an alkaline earth metal halide such as CaCl/sub 2/, BaF/sub 2/, or BaCl/sub 2/. The cathode of the cell is a metal such as Mn, Cr, Co, Fe, or Ni which forms a low melting eutectic with U. The cell is operated at a temperature below the melting point of U. In operation the electrodeposited uranium becomes alloyed with the metal of the cathode, and the low melting alloy thus formed drips from the cathode.

  18. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update

    9. Summary production statistics of the U.S. uranium industry, 1993-2015 Year Exploration and development surface drilling (million feet) Exploration and development drilling expenditures 1 (million dollars) Mine production of uranium (million pounds U3O8) Uranium concentrate production (million pounds U3O8) Uranium concentrate shipments (million pounds U3O8) Employment (person-years) 1993 1.1 5.7 2.1 3.1 3.4 871 1994 0.7 1.1 2.5 3.4 6.3 980 1995 1.3 2.6 3.5 6.0 5.5 1,107 1996 3.0 7.2 4.7 6.3

  19. ANODIC TREATMENT OF URANIUM

    DOE Patents [OSTI]

    Kolodney, M.

    1959-02-01

    A method is presented for effecting eloctrolytic dissolution of a metallic uranium article at a uniform rate. The uranium is made the anode in an aqueous phosphoric acid solution containing nitrate ions furnished by either ammonium nitrate, lithium nitrate, sodium nitrate, or potassium nitrate. A stainless steel cathode is employed and electrolysls carried out at a current density of about 0.1 to 1 ampere per square inch.

  20. URANIUM EXTRACTION PROCESS

    DOE Patents [OSTI]

    Baldwin, W.H.; Higgins, C.E.

    1958-12-16

    A process is described for recovering uranium values from acidic aqueous solutions containing hexavalent uranium by contacting the solution with an organic solution comprised of a substantially water-immiscible organlc diluent and an organic phosphate to extract the uranlum values into the organic phase. Carbon tetrachloride and a petroleum hydrocarbon fraction, such as kerosene, are sultable diluents to be used in combination with organlc phosphates such as dibutyl butylphosphonate, trlbutyl phosphine oxide, and tributyl phosphate.

  1. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, A.B.

    1982-10-27

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  2. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, Alvin B.

    1983-01-01

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  3. Southern Oregon University: Committed to Sustainability | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy University: Committed to Sustainability Southern Oregon University: Committed to Sustainability November 16, 2012 - 12:32pm Addthis Southern Oregon University, a small liberal arts school based in Ashland, Oregon, showcases its commitment to sustainability. Steven R. Thai Steven R. Thai Office of Public Affairs Get More Info Visit sou.edu/sustainable to learn more. In the fourth edition of the Energy Department's "Clean Energy in Our Community" video series, energy.gov is

  4. Better Buildings - Spotlight on Portland, Oregon; Financing and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Incetntives: Use Incentives to Get Attention and Encourage Deep Savings | Department of Energy - Spotlight on Portland, Oregon; Financing and Incetntives: Use Incentives to Get Attention and Encourage Deep Savings Better Buildings - Spotlight on Portland, Oregon; Financing and Incetntives: Use Incentives to Get Attention and Encourage Deep Savings Better Buildings - Spotlight on Portland, Oregon; Financing and Incentives: Use Incentives to Get Attention and Encourage Deep Savings. Spotlight

  5. Energy Department Recognizes Cities of Beaverton and Hillsboro, Oregon,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Portland Public Schools in Better Buildings Challenge | Department of Energy Cities of Beaverton and Hillsboro, Oregon, Portland Public Schools in Better Buildings Challenge Energy Department Recognizes Cities of Beaverton and Hillsboro, Oregon, Portland Public Schools in Better Buildings Challenge October 7, 2014 - 11:59am Addthis News Media Contact 202-586-4940 Energy Department Recognizes Cities of Beaverton and Hillsboro, Oregon, Portland Public Schools in Better Buildings Challenge

  6. New Wave Power Project In Oregon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wave Power Project In Oregon New Wave Power Project In Oregon June 17, 2011 - 3:12pm Addthis Michael Reed Michael Reed Director, Technical and Project Management Division What does this project do? Promises to add tremendous value to the wave energy industry, reinforcing utility-scale viability, collecting ground-breaking environmental impact data and exploring avenues for cost reduction. Has issued localized manufacturing contracts for the PB150 to several Oregon companies. If you've ever been

  7. EERE Success Story-Oregon: Clean Energy Works Coordinates Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency Efforts | Department of Energy Clean Energy Works Coordinates Energy Efficiency Efforts EERE Success Story-Oregon: Clean Energy Works Coordinates Energy Efficiency Efforts July 26, 2013 - 12:00am Addthis With an eroding coast and interest in preserving the environment, Oregon encourages collaboration across state and local communities to slow global warming and demonstrate solutions that individuals and businesses can easily employ to protect the climate. Clean Energy Works Oregon

  8. NCAI Tribal Energy Energy Education Initiative Workshop: Oregon |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy NCAI Tribal Energy Energy Education Initiative Workshop: Oregon NCAI Tribal Energy Energy Education Initiative Workshop: Oregon November 1, 2011 - 12:27pm Addthis November 1, 2011 Portland, Oregon The Tribal Leader Energy Education Initiative Workshop held on November 1, 2011, at the National Congress of American Indians (NCAI) provided information about the Office of Indian Energy's efforts to develop training curriculum on renewable energy tribal project development

  9. Oregon Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) (indexed site)

    Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region East Region South Central Region Midwest Region Mountain Region Pacific Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources &

  10. Oregon Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) (indexed site)

    Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region East Region South Central Region Midwest Region Mountain Region Pacific Region Period: Monthly Annual Download Series History Download

  11. Geothermal research, Oregon Cascades: Final technical report

    SciTech Connect (OSTI)

    Priest, G.R.; Black, G.L.

    1988-10-27

    Previous USDOE-funded geothermal studies have produced an extensive temperature gradient and heat flow data base for the State of Oregon. One of the important features identified as a result of these studies is a rapid transition from heat flow values on the order of 40 mW/m/sup 2/ in the Willamette Valley and Western Cascades to values of greater than or equal to100 mW/m/sup 2/ in the High Cascades and the eastern portion of the Western Cascades. These data indicate that the Cascade Range in Oregon has potential as a major geothermal province and stimulated much of the later work completed by government agencies and private industry. Additional data generated as a result of this grant and published in DOGAMI Open-File Report 0-86-2 further define the location and magnitude of this transition zone. In addition, abundant data collected from the vicinity of Breitenbush and Austin Hot Springs have permitted the formulation of relatively detailed models of these hydrothermal systems. These models are published in DOGAMI Open-File Report 0-88-5. Task 1.2 of the Deliverables section of Amendment M001 is fulfilled by DOGAMI publication GMS-48, Geologic map of the McKenzie Bridge quadrangle, Lane County, Oregon. This map was printed in October, 1988, and is part of the final submission to USDOE. 8 refs.

  12. Oregon Removal-Fill Permit Application Webpage | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Application Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Removal-Fill Permit Application Webpage Abstract Provides information for...

  13. Wind Taking Flight in Oregon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Taking Flight in Oregon Wind Taking Flight in Oregon February 12, 2013 - 6:49pm Addthis The Deputy Secretary tours Oregon’s Caithness Shepherds Flat wind farm, which is able to create up to 845 megawatts of emission-free wind power (enough electricity to power nearly 260,000 homes). The Deputy Secretary tours Oregon's Caithness Shepherds Flat wind farm, which is able to create up to 845 megawatts of emission-free wind power (enough electricity to power nearly 260,000 homes). Daniel B.

  14. Southern Oregon University Highlighted by U.S. Energy Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WASHINGTON - Today, the Energy Department released its fourth video in the "Clean Energy in Our Community" video series, highlighting clean energy investments by Southern Oregon ...

  15. Oregon Federal and State Historic Preservation Laws Webpage ...

    Open Energy Information (Open El) [EERE & EIA]

    Laws Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Federal and State Historic Preservation Laws Webpage Abstract Provides...

  16. Johnson City, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Johnson City, Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.4045648, -122.5789805 Show Map Loading map... "minzoom":false,"mapping...

  17. Oregon Onsite Wastewater Management Program Forms by County Webpage...

    Open Energy Information (Open El) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Web Site: Oregon Onsite Wastewater Management Program Forms by County Webpage Abstract Provides access to county level onsite...

  18. Oregon Onsite Wastewater Management Program Webpage | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Onsite Wastewater Management Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Onsite Wastewater Management Program Webpage...

  19. Oregon: Clean Energy Works Coordinates Energy Efficiency Efforts...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    With an eroding coast and interest in preserving the environment, Oregon encourages collaboration across state and local communities to slow global warming and demonstrate ...

  20. Oregon Recovery Act State Memo | Department of Energy

    Energy Savers

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Oregon reflect ...

  1. Oregon: DOE Advances Game-Changing EGS Geothermal Technology...

    Energy Savers

    demonstration project, at Newberry Volcano near Bend, Oregon, represents a key step in geothermal energy development, demonstrating that an engineered geothermal reservoir can...

  2. RAPID/BulkTransmission/Environment/Oregon | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    impacts are reviewed during the Site Certification application process. Environmental Review Agency: Oregon Energy Facility Siting Council Type of State Environmental Review...

  3. Oregon Land Use Compatibility Statement for Onsite Wastewater...

    Open Energy Information (Open El) [EERE & EIA]

    Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Oregon Land Use Compatibility Statement for Onsite Wastewater Treatment System Permits Abstract...

  4. Oregon Wave Energy Partners LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Partners LLC Jump to: navigation, search Name: Oregon Wave Energy Partners LLC Address: 1590 Reed Road Place: Pennington Zip: 8534 Region: United States Sector: Marine and...

  5. Oregon's 4th congressional district: Energy Resources | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Individual developer Light Electric Vehcles Company Trillium FiberFuels Inc WETGen (Wave Energy Turbine GENerator) Registered Financial Organizations in Oregon's 4th congressional...

  6. Cedar Mill, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Mill, Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.5048397, -122.7984325 Show Map Loading map... "minzoom":false,"mappingservice"...

  7. Energy Department Conditionally Authorizes Oregon LNG to Export...

    Energy.gov (indexed) [DOE]

    WASHINGTON - The Energy Department announced today that it has conditionally authorized LNG Development Co., LLC (Oregon LNG) to export domestically produced liquefied natural gas ...

  8. Oregon National Register and Survey Program Webpage | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    National Register and Survey Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon National Register and Survey Program Webpage...

  9. Oregon Water Quality Permit Program (Stormwater Discharge Permits...

    Open Energy Information (Open El) [EERE & EIA]

    Permits) Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Water Quality Permit Program (Stormwater Discharge Permits) Website...

  10. Oregon Federal and State Compliance for Historic and Archaeological...

    Open Energy Information (Open El) [EERE & EIA]

    Resources Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Federal and State Compliance for Historic and Archaeological Resources...

  11. RAPID/Geothermal/Water Use/Oregon | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Water UseOregon < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission...

  12. Oregon Water Resource Department Forms Webpage | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Water Resource Department Forms Webpage Abstract Provides access to water resource...

  13. Forest Grove, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Forest Grove, Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.5198364, -123.1106631 Show Map Loading map... "minzoom":false,"mapping...

  14. Oregon 401 Evaluation and Findings Checklist | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    401 Evaluation and Findings Checklist Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Checklist: Oregon 401 Evaluation and...

  15. Oregon: Clean Energy Works Coordinates Energy Efficiency Efforts...

    Energy.gov (indexed) [DOE]

    environment, Oregon encourages collaboration across state and local communities to slow global warming and demonstrate solutions that individuals and businesses can easily employ...

  16. RAPID/Geothermal/Land Access/Oregon | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    RAPIDGeothermalLand AccessOregon < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  17. Oregon Natural Gas Underground Storage Net Withdrawals (Million...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Underground Storage Net Withdrawals (Million Cubic Feet) Oregon Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  18. Oregon Department of Environmental Quality | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    its decision-making. DEQ is responsible for protecting and enhancing Oregon's water and air quality, for cleaning up spills and releases of hazardous materials, for managing the...

  19. Oregon Coastal Management Program Website | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Program Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Coastal Management Program Website Abstract Provides information on...

  20. Oregon Underground Injection Control Program Webpage | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Underground Injection Control Program Webpage Abstract Provides overview of regulations...

  1. ,"Oregon Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon...

  2. Oregon's 5th congressional district: Energy Resources | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Lincoln People's Utility District Pacific Northwest Generating Coop Retrieved from "http:en.openei.orgwindex.php?titleOregon%27s5thcongressionaldistrict&oldid197284...

  3. Oregon's 1st congressional district: Energy Resources | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Northwest Generating Coop Retrieved from "http:en.openei.orgwindex.php?titleOregon%27s1stcongressionaldistrict&oldid197280" Feedback Contact needs updating Image needs...

  4. Better Buildings - Spotlight on Portland, Oregon; Financing and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to Get Attention and Encourage Deep Savings Better Buildings - Spotlight on Portland, Oregon; Financing and Incetntives: Use Incentives to Get Attention and Encourage ...

  5. RAPID/BulkTransmission/Oregon | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including Oregon. WECC also provides an environment...

  6. Oregon Section 401 Removal/Fill Certification Webpage | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Certification Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Section 401 RemovalFill Certification Webpage Abstract Provides overview...

  7. Oregon Willamette River Basin Mitigation Agreement | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    River Basin Mitigation Agreement Author State of Oregon Recipient Bonneville Power Administration Published Publisher Not Provided, 10222010 DOI Not Provided Check for DOI...

  8. Oregon Construction/Installation Permit for Onsite Wastewater...

    Open Energy Information (Open El) [EERE & EIA]

    ConstructionInstallation Permit for Onsite Wastewater Treatment System Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Construction...

  9. Oregon Fish and Wildlife Mitigation Policy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Fish and Wildlife Mitigation Policy Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Oregon Fish and Wildlife Mitigation Policy Published Publisher Not...

  10. Oregon Application for Onsite Sewage Treatment System | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Application for Onsite Sewage Treatment System Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Oregon Application for Onsite Sewage Treatment System...

  11. Clackamas County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    RES North America LLC REpower Systems SeQuential Biofuels LLC Shorepower Technologies Sky Power LLC Solaicx (Oregon) Solar Nation Inc Stoel Rives, LLP The Green Building...

  12. Multnomah County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    RES North America LLC REpower Systems SeQuential Biofuels LLC Shorepower Technologies Sky Power LLC Solaicx (Oregon) Solar Nation Inc Stoel Rives, LLP The Green Building...

  13. Oregon Rulemaking Announcement for Onsite Septic System Program...

    Open Energy Information (Open El) [EERE & EIA]

    OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: Oregon Rulemaking Announcement for Onsite Septic System ProgramPermittingRegulatory...

  14. Oregon Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) [DOE]

    Oregon Regions National Science Bowl (NSB) NSB Home About High School High School ... WDTS Home Contact Information National Science Bowl U.S. Department of Energy SC-27 ...

  15. Oregon Rules of Appellate Procedure | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    RegulationRegulation: Oregon Rules of Appellate ProcedureLegal Abstract These rules set forth the procedure for hearings before the state courts of appeals. Published NA Year...

  16. Maywood Park, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Park, Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.5528965, -122.5603714 Show Map Loading map... "minzoom":false,"mappingservice"...

  17. Oregon Directive for NPDES Permits and Section 401 Water Quality...

    Open Energy Information (Open El) [EERE & EIA]

    CertificationsPermittingRegulatory GuidanceSupplemental Material Abstract Provides methods and direction to be followed by the DEQ for implementing Oregon's Antidegradation...

  18. First Wind (Formerly UPC Wind) (Oregon) | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    First Wind (Formerly UPC Wind) Address: 1001 S.W. Fifth Avenue Place: Portland, Oregon Zip: 97204 Region: Pacific Northwest Area Sector: Wind energy Product: Wind power developer...

  19. Oregon Certified Water Right Examiners Query Webpage | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Oregon Certified Water Right Examiners Query Webpage Citation State of...

  20. Oregon - ORS 758.015 - Certificate of Public Convenience and...

    Open Energy Information (Open El) [EERE & EIA]

    from "http:en.openei.orgwindex.php?titleOregon-ORS758.015-CertificateofPublicConvenienceandNecessity&oldid800919" Feedback Contact needs updating Image...

  1. Microsoft Word - DOE-ID-14-039 Oregon State University _1 EC...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A. Project Title: Fluid Stratification Separate Effects Analysis, Testing, and Benchmarking- Oregon State University SECTION B. Project Description Oregon State University...

  2. Microsoft Word - DOE-ID-13-051 Oregon St EC B3-6.doc

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    New Mechanistic Models of Creep-Fatigue Crack Growth Interactions for Advanced High Temperature Reactor Components- Oregon State University SECTION B. Project Description Oregon ...

  3. Microsoft Word - DOE-ID-15-081 Oregon State B3-6.doc

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1 SECTION A. Project Title: Computational and Experimental Benchmarking for Transient Fuel Testing - Oregon State University SECTION B. Project Description Oregon State University,...

  4. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A.

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  5. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A.

    1989-08-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  6. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect (OSTI)

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  7. Uranium hexafluoride handling. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  8. PRODUCTION OF URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Fowler, R.D.

    1957-08-27

    A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method, the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ converted to UF/sub 6/ by reaction with a fluorinating agent, such as CoF/sub 3/. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reac tion chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. After nitrogen gas is used to sweep out the hydrogen and the water vapor formed, and while continuing to inaintain the temperature between 400 deg C and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion of UO/sub 2/ to UF/sub 4/ the temperature of the reaction chamber is lowered to about 400 deg C or less, the UF/sub 4/ is mixed with the requisite quantity of CoF/sub 3/, and after evacuating the chamber, the mixture is heated to 300 to 400 deg C, and the resulting UF/sub 6/ is led off and delivered to a condenser.

  9. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    9 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Figure 3. Uranium purchased by owners and operators of U.S. civilian nuclear power ...

  10. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Deliveries Uranium concentrate Natural UF 6 Enriched UF 6 Natural UF 6 and Enriched UF ...

  11. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    9 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Figure 10. Annual unfilled uranium market requirements of owners and operators of U.S. ...

  12. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    7 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Figure 17. Foreign purchases of uranium by U.S. suppliers and owners and operators of U.S. ...

  13. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    1 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Table 13. Deliveries of uranium feed by owners and operators of U.S. civilian nuclear ...

  14. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    7 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Figure S6. Weighted-average price of foreign purchases and foreign sales of uranium, ...

  15. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Figure 22. Commercial inventories of uranium by owner as of end of year, 2011-15 ...

  16. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    3 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Figure 14. Shipments of uranium feed by owners and operators of U.S. civilian nuclear ...

  17. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    9 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Figure 19. Foreign sales of uranium from U.S. suppliers and owners and operators of U.S. ...

  18. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    7 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Table 9. Contracted purchases of uranium by owners and operators of U.S. civilian ...

  19. Microsoft Word - uranium.doc

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Utah, is contaminated with up to 17 mgL uranium leached from processed tailings at an ore ... PRB in-situ treatment technologies for abating the ground water uranium contamination. ...

  20. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 thousand pounds U 3 O 8 equivalent Year Maximum ...

  1. METHOD OF RECOVERING URANIUM COMPOUNDS

    DOE Patents [OSTI]

    Poirier, R.H.

    1957-10-29

    S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

  2. 2015 Uranium Marketing Annual Survey

    U.S. Energy Information Administration (EIA) (indexed site)

    7. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by ... Weighted-average prices are not adjusted for inflation. " "UF6 is uranium hexafluoride. ...

  3. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    7. Employment in the U.S. uranium production industry by state, 2003-15" "person-years" ... Administration: Form EIA-851A, ""Domestic Uranium Production Report"" (2003-15)." "10

  4. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    3. U.S. uranium concentrate production, shipments, and sales, 2003-15" "Activity at U.S. ..."W","W","W","W","W","W","W","W","W","W" "Uranium Concentrate Produced at U.S. Mills" ...

  5. METHOD OF SINTERING URANIUM DIOXIDE

    DOE Patents [OSTI]

    Henderson, C.M.; Stavrolakis, J.A.

    1963-04-30

    This patent relates to a method of sintering uranium dioxide. Uranium dioxide bodies are heated to above 1200 nif- C in hydrogen, sintered in steam, and then cooled in hydrogen. (AEC)

  6. Uranium resources: Issues and facts

    SciTech Connect (OSTI)

    Delene, J.G.

    1993-12-31

    Although there are several secondary issues, the most important uranium resource issue is, ``will there be enough uranium available at a cost which will allow nuclear power to be competitive in the future?`` This paper will attempt to answer this question by discussing uranium supply, demand, and economics from the perspective of the United States. The paper will discuss: how much uranium is available; the sensitivity of nuclear power costs to uranium price; the potential future demand for uranium in the Unites States, some of the options available to reduce this demand, the potential role of the Advanced Liquid Metal Cooled Reactor (ALMR) in reducing uranium demand; and potential alternative uranium sources and technologies.

  7. Uranium-titanium-niobium alloy

    DOE Patents [OSTI]

    Ludtka, Gail M.; Ludtka, Gerard M.

    1990-01-01

    A uranium alloy having small additions of Ti and Nb shows improved strength and ductility in cross section of greater than one inch over prior uranium alloy having only Ti as an alloying element.

  8. 2015 Domestic Uranium Production Report

    Annual Energy Outlook

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 State(s) 2003 2004 2005 2006 2007 2008 2009 2010 ...

  9. 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Activity at U.S. Mills and In-Situ-Leach Plants ...

  10. 2015 Domestic Uranium Production Report

    Annual Energy Outlook

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Table 9. Summary production statistics of the U.S. ...

  11. uranium | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    uranium Klotz visits Y-12 to see progress on new projects and ongoing work on NNSA's national security missions Last week, NNSA Administrator Lt. Gen. Frank Klotz (Ret.) visited the Y-12 National Security Complex to check on the status of ongoing projects like the Uranium Processing Facility as well as the site's continuing uranium operations. He also met with the Region 2 volunteers of the Radiogical... NNSA Announces Arrival of Plutonium and Uranium from Japan's Fast Critical Assembly at

  12. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update

    . Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by supplier and delivery year, 2011-15 thousand pounds U3O8 equivalent, dollars per pound U3O8 equivalent Deliveries 2011 2012 2013 2014 2015 Purchased from U.S. producers Purchases of U.S.-origin and foreign-origin uranium 550 W W W 1,455 Weighted-average price 58.12 W W W 52.35 Purchased from U.S. brokers and traders Purchases of U.S.-origin and foreign-origin uranium 14,778 11,545 12,835 17,111 13,852

  13. EXTRACTION OF URANIUM

    DOE Patents [OSTI]

    Kesler, R.D.; Rabb, D.D.

    1959-07-28

    An improved process is presented for recovering uranium from a carnotite ore. In the improved process U/sub 2/O/sub 5/ is added to the comminuted ore along with the usual amount of NaCl prior to roasting. The amount of U/sub 2/O/ sub 5/ is dependent on the amount of free calcium oxide and the uranium in the ore. Specifically, the desirable amount of U/sub 2/O/sub 5/ is 3.2% for each 1% of CaO, and 5 to 6% for each 1% of uranium. The mixture is roasted at about 1560 deg C for about 30 min and then leached with a 3 to 9% aqueous solution of sodium carbonate.

  14. Process for recovering uranium

    DOE Patents [OSTI]

    MacWood, G. E.; Wilder, C. D.; Altman, D.

    1959-03-24

    A process useful in recovering uranium from deposits on stainless steel liner surfaces of calutrons is presented. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickel, copper, and iron is treated with an excess of ammonium hydroxide to precipitnte the uranium, iron, and chromium and convert the nickel and copper to soluble ammonio complexions. The precipitated material is removed, dried and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/ sub 4/, UCl/sub 5/, FeCl/sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temperature of about 500 to 400 deg C.

  15. Uranium industry annual, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-09-29

    This report provides current statistical data on the US uranium industry for the Congress, federal and state agencies, the uranium and utility industries, and the public. It utilizes data from the mandatory ''Uranium Industry Annual Survey,'' Form EIA-858; historical data collected by the Energy Information Administration (EIA) and by the Grand Junction (Colorado) Project Office of the Idaho Operations Office of the US Department of Energy (DOE); and other data from federal agencies that preceded the DOE. The data provide a comprehensive statistical characterization of the industry's annual activities and include some information about industry plans and commitments over the next several years. Where these data are presented in aggregate form, care has been taken to protect the confidentiality of company-specific data while still conveying an accurate and complete statistical representation of the industry data.

  16. PROCESS FOR RECOVERING URANIUM

    DOE Patents [OSTI]

    MacWood, G.E.; Wilder, C.D.; Altman, D.

    1959-03-24

    A process is described for recovering uranium from deposits on stainless steel liner surfaces of calutrons. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickels copper, and iron is treated with excess of ammonium hydroxide to precipitatc the uranium, irons and chromium and convert thc nickel and copper to soluble ammonia complexions. The precipitated material is removed, dried, and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/sub 4/, UCl/sub 5/, FeCl/ sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temprrature of about 300 to400 deg C.

  17. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update

    3. U.S. uranium concentrate production, shipments, and sales, 2003-15 Activity at U.S. mills and In-Situ-Leach plants 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Estimated contained U3O8 (thousand pounds) Ore from Mines and Stockpiles Fed to Mills1 0 W W W 0 W W W W W W W 0 Other Feed Materials 2 W W W W W W W W W W W W W Total Mill Feed W W W W W W W W W W W W W Uranium Concentrate Produced at U.S. Mills (thousand pounds U3O8) W W W W W W W W W W W W W Uranium Concentrate

  18. Uranium immobilization and nuclear waste

    SciTech Connect (OSTI)

    Duffy, C.J.; Ogard, A.E.

    1982-02-01

    Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

  19. PROCESS OF PREPARING URANIUM CARBIDE

    DOE Patents [OSTI]

    Miller, W.E.; Stethers, H.L.; Johnson, T.R.

    1964-03-24

    A process of preparing uranium monocarbide is de scribed. Uranium metal is dissolved in cadmium, zinc, cadmium-- zinc, or magnesium-- zinc alloy and a small quantity of alkali metal is added. Addition of stoichiometric amounts of carbon at 500 to 820 deg C then precipitates uranium monocarbide. (AEC)

  20. Uranium Transport Modeling

    SciTech Connect (OSTI)

    Bostick, William D.

    2008-01-15

    Uranium contamination is prevalent at many of the U.S. DOE facilities and at several civilian sites that have supported the nuclear fuel cycle. The potential off-site mobility of uranium depends on the partitioning of uranium between aqueous and solid (soil and sediment) phases. Hexavalent U (as uranyl, UO{sub 2}{sup 2+}) is relatively mobile, forming strong complexes with ubiquitous carbonate ion which renders it appreciably soluble even under mild reducing conditions. In the presence of carbonate, partition of uranyl to ferri-hydrate and select other mineral phases is usually maximum in the near-neutral pH range {approx} 5-8. The surface complexation reaction of uranyl with iron-containing minerals has been used as one means to model subsurface migration, used in conjunction with information on the site water chemistry and hydrology. Partitioning of uranium is often studied by short-term batch 'equilibrium' or long-term soil column testing ; MCLinc has performed both of these methodologies, with selection of method depending upon the requirements of the client or regulatory authority. Speciation of uranium in soil may be determined directly by instrumental techniques (e.g., x-ray photoelectron spectroscopy, XPS; x-ray diffraction, XRD; etc.) or by inference drawn from operational estimates. Often, the technique of choice for evaluating low-level radionuclide partitioning in soils and sediments is the sequential extraction approach. This methodology applies operationally-defined chemical treatments to selectively dissolve specific classes of macro-scale soil or sediment components. These methods recognize that total soil metal inventory is of limited use in understanding bioavailability or metal mobility, and that it is useful to estimate the amount of metal present in different solid-phase forms. Despite some drawbacks, the sequential extraction method can provide a valuable tool to distinguish among trace element fractions of different solubility related to

  1. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update

    b. Weighted-average price of uranium purchased by owners and operators of U.S. civilian nuclear power reactors, 1994-2015 dollars per pound U3O8 equivalent Delivery year Total purchased (weighted-average price) Purchased from U.S. producers Purchased from U.S. brokers and traders Purchased from other owners and operators of U.S. civilian nuclear power reactors, other U.S. suppliers, (and U.S. government for 2007)1 Purchased from foreign suppliers U.S.-origin uranium (weighted-average price)

  2. TREATMENT OF URANIUM SURFACES

    DOE Patents [OSTI]

    Slunder, C.J.

    1959-02-01

    An improved process is presented for prcparation of uranium surfaces prior to electroplating. The surfacc of the uranium to be electroplated is anodized in a bath comprising a solution of approximately 20 to 602 by weight of phosphoric acid which contains about 20 cc per liter of concentrated hydrochloric acid. Anodization is carried out for approximately 20 minutes at a current density of about 0.5 amperes per square inch at a temperature of about 35 to 45 C. The oxidic film produced by anodization is removed by dipping in strong nitric acid, followed by rinsing with water just prior to electroplating.

  3. PREPARATION OF URANIUM TRIOXIDE

    DOE Patents [OSTI]

    Buckingham, J.S.

    1959-09-01

    The production of uranium trioxide from aqueous solutions of uranyl nitrate is discussed. The uranium trioxide is produced by adding sulfur or a sulfur-containing compound, such as thiourea, sulfamic acid, sulfuric acid, and ammonium sulfate, to the uranyl solution in an amount of about 0.5% by weight of the uranyl nitrate hexahydrate, evaporating the solution to dryness, and calcining the dry residue. The trioxide obtained by this method furnished a dioxide with a considerably higher reactivity with hydrogen fluoride than a trioxide prepared without the sulfur additive.

  4. METHOD OF ELECTROPOLISHING URANIUM

    DOE Patents [OSTI]

    Walker, D.E.; Noland, R.A.

    1959-07-14

    A method of electropolishing the surface of uranium articles is presented. The process of this invention is carried out by immersing the uranium anticle into an electrolyte which contains from 35 to 65% by volume sulfuric acid, 1 to 20% by volume glycerine and 25 to 50% by volume of water. The article is made the anode in the cell and polished by electrolyzing at a voltage of from 10 to 15 volts. Discontinuing the electrolysis by intermittently withdrawing the anode from the electrolyte and removing any polarized film formed therein results in an especially bright surface.

  5. PROCESS OF RECOVERING URANIUM

    DOE Patents [OSTI]

    Price, T.D.; Jeung, N.M.

    1958-06-17

    An improved precipitation method is described for the recovery of uranium from aqueous solutions. After removal of all but small amounts of Ni or Cu, and after complexing any iron present, the uranium is separated as the peroxide by adding H/sub 2/O/sub 2/. The improvement lies in the fact that the addition of H/sub 2/O/sub 2/ and consequent precipitation are carried out at a temperature below the freezing; point of the solution, so that minute crystals of solvent are present as seed crystals for the precipitation.

  6. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update

    5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2011-15 In-Situ-Leach plant owner In-Situ-Leach plant name County, state (existing and planned locations) Production capacity (pounds U3O8 per year) Operating status at end of the year 2011 2012 2013 2014 2015 AUC LLC Reno Creek Campbell, Wyoming 2,000,000 - - Developing Developing Partially Permitted and Licensed Azarga Uranium Corp Dewey Burdock Project Fall River and Custer, South

  7. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update

    4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2011-15 Owner Mill and Heap Leach1 Facility name County, state (existing and planned locations) Capacity (short tons of ore per day) Operating status at end of the year 2011 2012 2013 2014 2015 Anfield Resources Shootaring Canyon Uranium Mill Garfield, Utah 750 Standby Standby Standby Standby Standby EPR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating- Processing

  8. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update

    10. Uranium reserve estimates at the end of 2014 and 2015 million pounds U3O8 End of 2014 End of 2015 Forward Cost2 Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s) $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 154.6 24.3 W 151.6 Properties Under Development for Production and Development

  9. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  10. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, Jr., Victor M.; Pullen, William C.; Kollie, Thomas G.; Bell, Richard T.

    1983-01-01

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  11. URANIUM PRODUCERS OF AMERICA 141 EAST PALACE AVENUE, POST OFFICE...

    Office of Environmental Management (EM)

    Excess Uranium on Domestic Uranium Mining, Conversion, and Enrichment Industries: Dear Mr. ... uranium transfers on the domestic uranium mining, conversion, and enrichment industries. ...

  12. High loading uranium fuel plate

    DOE Patents [OSTI]

    Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  13. RECOVERY OF URANIUM FROM PITCHBLENDE

    DOE Patents [OSTI]

    Ruehle, A.E.

    1958-06-24

    The decontamination of uranium from molybdenum is described. When acid solutions containing uranyl nitrate are contacted with ether for the purpose of extracting the uranium values, complex molybdenum compounds are coextracted with the uranium and also again back-extracted from the ether with the uranium. This invention provides a process for extracting uranium in which coextraction of molybdenum is avoided. It has been found that polyhydric alcohols form complexes with molybdenum which are preferentially water-soluble are taken up by the ether extractant to only a very minor degree. The preferred embodiment of the process uses mannitol, sorbitol or a mixture of the two as the complexing agent.

  14. Oregon Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) (indexed site)

    Oregon Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,261 100.0 Total Net Summer Renewable Capacity 10,684 74.9 Geothermal - - Hydro Conventional 8,425 59.1 Solar - - Wind 2,004 14.1 Wood/Wood Waste 221 1.6 MSW/Landfill Gas 31 0.2 Other Biomass 3 * Generation (thousand megawatthours) Total Electricity Net Generation 55,127 100.0

  15. Oregon Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) (indexed site)

    Oregon" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",14261,100 "Total Net Summer Renewable Capacity",10684,74.9 " Geothermal","-","-" " Hydro Conventional",8425,59.1 "

  16. STRIPPING OF URANIUM FROM ORGANIC EXTRACTANTS

    DOE Patents [OSTI]

    Crouse, D.J. Jr.

    1962-09-01

    A liquid-liquid extraction method is given for recovering uranium values from uranium-containing solutions. Uranium is removed from a uranium-containing organic solution by contacting said organic solution with an aqueous ammonium carbonate solution substantially saturated in uranium values. A uranium- containing precipitate is thereby formed which is separated from the organic and aqueous phases. Uranium values are recovered from this separated precipitate. (AE C)

  17. Uranium Reduction by Clostridia

    SciTech Connect (OSTI)

    Francis, A.J.; Dodge, Cleveland J.; Gillow, Jeffrey B.

    2006-04-05

    The FRC groundwater and sediment contain significant concentrations of U and Tc and are dominated by low pH, and high nitrate and Al concentrations where dissimilatory metal reducing bacterial activity may be limited. The presence of Clostridia in Area 3 at the FRC site has been confirmed and their ability to reduce uranium under site conditions will be determined. Although the phenomenon of uranium reduction by Clostridia has been firmly established, the molecular mechanisms underlying such a reaction are not very clear. The authors are exploring the hypothesis that U(VI) reduction occurs through hydrogenases and other enzymes (Matin and Francis). Fundamental knowledge of metal reduction using Clostridia will allow us to exploit naturally occurring processes to attenuate radionuclide and metal contaminants in situ in the subsurface. The outline for this report are as follows: (1) Growth of Clostridium sp. under normal culture conditions; (2) Fate of metals and radionuclides in the presence of Clostridia; (3) Bioreduction of uranium associated with nitrate, citrate, and lepidocrocite; and (4) Utilization of Clostridium sp. for immobilization of uranium at the FRC Area 3 site.

  18. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Hyman, H.H.; Dreher, J.L.

    1959-07-01

    The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

  19. Rebuilding Our Local Economy One Home at a Time-- Clean Energy Works Oregon

    Energy.gov [DOE]

    Provides an overview of the Clean Energy Works Oregon program including progress and rebates offered.

  20. Uranium Isotopic Assay Instrument

    SciTech Connect (OSTI)

    Anheier, Norman C.; Wojcik, Michael D.; Bushaw, Bruce A.

    2006-12-01

    The isotopic assay instrument under development at Pacific Northwest National Laboratory (PNNL) is capable of rapid prescreening to detect small and rare particles containing high concentrations of uranium in a heterogeneous sample. The isotopic measurement concept is based on laser vaporization of solid samples followed with sensitive isotope specific detection using either uranium atomic fluorescence emission or uranium atomic absorbance. Both isotopes are measured concurrently, following a single ablation laser pulse, using two external-cavity violet diode lasers. The simultaneous measurement of both isotopes enables the correlation of the fluorescence and absorbance signals on a shot-to-shot basis. This measurement approach demonstrated negligible channel crosstalk between isotopes. Rapid sample scanning provides high spatial resolution isotopic fluorescence and absorbance sample imagery of heterogeneous samples. Laser ablation combined with measurements of laser-induced fluorescence (LALIF) and through-plume laser absorbance (LAPLA) was applied to measure gadolinium isotope ratios in solid samples. Gadolinium has excitation wavelengths very close to the transitions of interest in uranium. Gadolinium has seven stable isotopes, and the natural 152Gd:160Gd ratio of 0.009 is in the range of what will be encountered for 235U:238U isotopic ratios. LAPLA measurements were demonstrated clearly using 152Gd (0.2% isotopic abundance) with a good signal-to-noise ratio. The ability to measure gadolinium abundances at this level indicates that measurements of 235U/238U isotopic ratios for natural (0.72%), depleted (0.25%), and low enriched uranium samples will be feasible.

  1. Uranium from seawater

    SciTech Connect (OSTI)

    Gregg, D.; Folkendt, M.

    1982-09-21

    A novel process for recovering uranium from seawater is proposed and some of the critical technical parameters are evaluated. The process, in summary, consists of two different options for contacting adsorbant pellets with seawater without pumping the seawater. It is expected that this will reduce the mass handling requirements, compared to pumped seawater systems, by a factor of approximately 10/sup 5/, which should also result in a large reduction in initial capital investment. Activated carbon, possibly in combination with a small amount of dissolved titanium hydroxide, is expected to be the preferred adsorbant material instead of the commonly assumed titanium hydroxide alone. The activated carbon, after exposure to seawater, can be stripped of uranium with an appropriate eluant (probably an acid) or can be burned for its heating value (possible in a power plant) leaving the uranium further enriched in its ash. The uranium, representing about 1% of the ash, is then a rich ore and would be recovered in a conventional manner. Experimental results have indicated that activated carbon, acting alone, is not adequately effective in adsorbing the uranium from seawater. We measured partition coefficients (concentration ratios) of approximately 10/sup 3/ in seawater instead of the reported values of 10/sup 5/. However, preliminary tests carried out in fresh water show considerable promise for an extraction system that uses a combination of dissolved titanium hydroxide (in minute amounts) which forms an insoluble compound with the uranyl ion, and the insoluble compound then being sorbed out on activated carbon. Such a system showed partition coefficients in excess of 10/sup 5/ in fresh water. However, the system was not tested in seawater.

  2. Northeast Oregon Hatchery Project, Final Siting Report.

    SciTech Connect (OSTI)

    Watson, Montgomery

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  3. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    DOE Patents [OSTI]

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  4. Method of preparation of uranium nitride

    DOE Patents [OSTI]

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  5. file://\\fs-f1\shared\uranium\uranium.html

    U.S. Energy Information Administration (EIA) (indexed site)

    Glossary Home > Nuclear > U.S. Uranium Reserves Estimates U.S. Uranium Reserves Estimates Data for: 2008 Report Released: July 2010 Next Release Date: 2012 Summary The U.S. Energy Information Administration (EIA) has updated its estimates of uranium reserves for year-end 2008. This represents the first revision of the estimates since 2004. The update is based on analysis of company annual reports, any additional information reported by companies at conferences and in news releases,

  6. Method of preparing uranium nitride or uranium carbonitride bodies

    DOE Patents [OSTI]

    Wilhelm, Harley A.; McClusky, James K.

    1976-04-27

    Sintered uranium nitride or uranium carbonitride bodies having a controlled final carbon-to-uranium ratio are prepared, in an essentially continuous process, from U.sub.3 O.sub.8 and carbon by varying the weight ratio of carbon to U.sub.3 O.sub.8 in the feed mixture, which is compressed into a green body and sintered in a continuous heating process under various controlled atmospheric conditions to prepare the sintered bodies.

  7. RECOVERY OF URANIUM FROM ZIRCONIUM-URANIUM NUCLEAR FUELS

    DOE Patents [OSTI]

    Gens, T.A.

    1962-07-10

    An improvement was made in a process of recovering uranium from a uranium-zirconium composition which was hydrochlorinated with gsseous hydrogen chloride at a temperature of from 350 to 800 deg C resulting in volatilization of the zirconium, as zirconium tetrachloride, and the formation of a uranium containing nitric acid insoluble residue. The improvement consists of reacting the nitric acid insoluble hydrochlorination residue with gaseous carbon tetrachloride at a temperature in the range 550 to 600 deg C, and thereafter recovering the resulting uranium chloride vapors. (AEC)

  8. Method for fabricating uranium foils and uranium alloy foils

    DOE Patents [OSTI]

    Hofman, Gerard L.; Meyer, Mitchell K.; Knighton, Gaven C.; Clark, Curtis R.

    2006-09-05

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  9. PREPARATION OF DENSE URANIUM DIOXIDE PARTICLES FROM URANIUM HEXAFLUORI...

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology. A ... A fluid-bed method was developed for the direct preparation from uranium hexafluoride of ...

  10. METHOD OF PRODUCING URANIUM

    DOE Patents [OSTI]

    Foster, L.S.; Magel, T.T.

    1958-05-13

    A modified process is described for the production of uranium metal by means of a bomb reduction of UF/sub 4/. Difficulty is sometimes experienced in obtaining complete separation of the uranium from the slag when the process is carried out on a snnall scale, i.e., for the production of 10 grams of U or less. Complete separation may be obtained by incorporating in the reaction mixture a quantity of MnCl/sub 2/, so that this compound is reduced along with the UF/sub 4/ . As a result a U--Mn alloy is formed which has a melting point lower than that of pure U, and consequently the metal remains molten for a longer period allowing more complete separation from the slag.

  11. PROCESS FOR PRODUCING URANIUM TETRAFLUORIDE

    DOE Patents [OSTI]

    Harvey, B.G.

    1954-09-14

    >This patent relates to improvements in the method for producing uranium tetrafluoride by treating an aqueous solutlon of a uranyl salt at an elevated temperature with a reducing agent effective in acld solutlon in the presence of hydrofluoric acid. Uranium tetrafluoride produced this way frequentiy contains impurities in the raw material serving as the source of uranium. Uranium tetrafluoride much less contaminated with impurities than when prepared by the above method can be prepared from materials containing such impurities by first adding a small proportion of reducing agent so as to cause a small fraction, for example 1 to 5% of the uranium tetrafluoride to be precipitated, rejecting such precipitate, and then precipitating and recovering the remainder of the uranium tetrafluoride.

  12. ELECTROLYSIS OF THORIUM AND URANIUM

    DOE Patents [OSTI]

    Hansen, W.N.

    1960-09-01

    An electrolytic method is given for obtaining pure thorium, uranium, and thorium-uranium alloys. The electrolytic cell comprises a cathode composed of a metal selected from the class consisting of zinc, cadmium, tin, lead, antimony, and bismuth, an anode composed of at least one of the metals selected from the group consisting of thorium and uranium in an impure state, and an electrolyte composed of a fused salt containing at least one of the salts of the metals selected from the class consisting of thorium, uranium. zinc, cadmium, tin, lead, antimony, and bismuth. Electrolysis of the fused salt while the cathode is maintained in the molten condition deposits thorium, uranium, or thorium-uranium alloys in pure form in the molten cathode which thereafter may be separated from the molten cathode product by distillation.

  13. Recovery of uranium from seawater

    SciTech Connect (OSTI)

    Sugasaka, K.; Katoh, S.; Takai, N.; Takahashi, H.; Umezawa, Y.

    1981-01-01

    Seawater contains various elements in solution. Deuterium, lithium, and uranium are the important ingredients for energy application at present and in the future. This paper deals with the recovery of uranium from seawater, with emphasis on the development of an adsorbent with high selectivity and rate of adsorption for uranium. Polyacrylamidoxime chelating resins were synthesized from various co-polymers of acrylonitrile and cross-linking agents. The resulting resins with the chelating amidoxime group showed selective adsorption for uranium in seawater. The amount of uranium adsorbed from seawater at room temperature reached 3.2 mg/g resin after 180 days. Polyacrylamidoxime fiber, which was prepared from polyacrylonitrile fiber and hydroxylamine, showed a high rate of adsorption for uranium. The polyacrylamidoxime fiber conditioned with 1 M HC1 and 1 M NaOH adsorbed 4 mg U/g fiber from seawater in ten days. 9 figures, 6 tables.

  14. WELDED JACKETED URANIUM BODY

    DOE Patents [OSTI]

    Gurinsky, D.H.

    1958-08-26

    A fuel element is presented for a neutronic reactor and is comprised of a uranium body, a non-fissionable jacket surrounding sald body, thu jacket including a portion sealed by a weld, and an inclusion in said sealed jacket at said weld of a fiux having a low neutron capture cross-section. The flux is provided by combining chlorine gas and hydrogen in the intense heat of-the arc, in a "Heliarc" welding muthod, to form dry hydrochloric acid gas.

  15. PROCESS FOR PREPARING URANIUM METAL

    DOE Patents [OSTI]

    Prescott, C.H. Jr.; Reynolds, F.L.

    1959-01-13

    A process is presented for producing oxygen-free uranium metal comprising contacting iodine vapor with crude uranium in a reaction zone maintained at 400 to 800 C to produce a vaporous mixture of UI/sub 4/ and iodine. Also disposed within the maction zone is a tungsten filament which is heated to about 1600 C. The UI/sub 4/, upon contacting the hot filament, is decomposed to molten uranium substantially free of oxygen.

  16. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 2011 2012 2013 2014 2015 AUC LLC Reno Creek Campbell, Wyoming 2,000,000 - - Developing Developing Partially Permitted and Licensed Azarga Uranium Corp Dewey Burdock Project Fall River and Custer, South Dakota 1,000,000 Undeveloped Developing Developing Partially Permitted And Licensed Partially Permitted And Licensed Cameco Crow Butte Operation Dawes, Nebraska

  17. METHOD OF DISSOLVING URANIUM METAL

    DOE Patents [OSTI]

    Slotin, L.A.

    1958-02-18

    This patent relates to an economicai means of dissolving metallic uranium. It has been found that the addition of a small amount of perchloric acid to the concentrated nitric acid in which the uranium is being dissolved greatly shortens the time necessary for dissolution of the metal. Thus the use of about 1 or 2 percent of perchioric acid based on the weight of the nitric acid used, reduces the time of dissolution of uranium by a factor of about 100.

  18. VANE Uranium One JV | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    VANE Uranium One JV Jump to: navigation, search Name: VANE-Uranium One JV Place: London, England, United Kingdom Zip: EC4V 6DX Product: JV between VANE Minerals Plc & Uranium One....

  19. Clean Energy Works Oregon Final Technical Report

    SciTech Connect (OSTI)

    Jacob, Andria; Cyr, Shirley

    2013-12-31

    In April 2010, the City of Portland received a $20 million award from the U.S. Department of Energy, as part of the Energy Efficiency and Conservation Block Grant program. This award was appropriated under the American Recovery and Reinvestment Act (ARRA), passed by President Obama in 2009. DOE’s program became known as the Better Buildings Neighborhood Program (BBNP). The BBNP grant objectives directed the City of Portland Bureau of Planning and Sustainability (BPS) as the primary grantee to expand the BPS-led pilot program, Clean Energy Works Portland, into Clean Energy Works Oregon (CEWO), with the mission to deliver thousands of home energy retrofits, create jobs, save energy and reduce carbon dioxide emissions.The Final Technical Report explores the successes and lessons learned from the first 3 years of program implementation.

  20. Oregon Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update

    Commercial Consumers (Number of Elements) Oregon Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 40,967 41,998 43,997 1990's 47,175 55,374 50,251 51,910 53,700 55,409 57,613 60,419 63,085 65,034 2000's 66,893 68,098 69,150 74,515 71,762 73,520 74,683 80,998 76,868 76,893 2010's 77,370 77,822 78,237 79,276 80,480 80,877 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  1. SEPARATION OF THORIUM FROM URANIUM

    DOE Patents [OSTI]

    Bane, R.W.

    1959-09-01

    A description is given for the separation of thorium from uranium by forming an aqueous acidic solution containing ionic species of thorium, uranyl uranium, and hydroxylamine, flowing the solution through a column containing the phenol-formaldehyde type cation exchange resin to selectively adsorb substantially all the thorium values and a portion of the uranium values, flowing a dilute solution of hydrochloric acid through the column to desorb the uranium values, and then flowing a dilute aqueous acidic solution containing an ion, such as bisulfate, which has a complexing effect upon thortum through the column to desorb substantially all of the thorium.

  2. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    Prior editions of this report may be found: http:www.eia.govnuclearreports.cfm ... U.S. uranium mills and heap leach facilities by owner, location, capacity, and ...

  3. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    By law, EIA's data, analyses, and forecasts are independent ... on information reported on Form EIA-858, "Uranium Marketing ... nuclear power reactors by contract type and material type, ...

  4. THERMAL DECOMPOSITION OF URANIUM COMPOUNDS

    DOE Patents [OSTI]

    Magel, T.T.; Brewer, L.

    1959-02-10

    A method is presented of preparing uranium metal of high purity consisting contacting impure U metal with halogen vapor at between 450 and 550 C to form uranium halide vapor, contacting the uranium halide vapor in the presence of H/sub 2/ with a refractory surface at about 1400 C to thermally decompose the uranium halides and deposit molten U on the refractory surface and collecting the molten U dripping from the surface. The entire operation is carried on at a sub-atmospheric pressure of below 1 mm mercury.

  5. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Delivery year Total purchased (weighted- average price) Purchased from U.S. producers Purchased from U.S. brokers and traders Purchased from other owners and operators of U.S. civilian nuclear power reactors, other U.S. suppliers, (and U.S. government for 2007) 1 Purchased from foreign suppliers U.S.-origin uranium (weighted- average price) Foreign-origin uranium (weighted-

  6. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    5 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Table S2. Uranium feed deliveries, enrichment services, and uranium loaded by owners and operators of U.S. civilian nuclear power reactors, 1994-2015 Year Feed deliveries by owners and operators of U.S. civilian nuclear power reactors Uranium in fuel assemblies loaded into U.S. civilian nuclear power reactors U.S.-origin enrichment services purchased Foreign-origin enrichment services purchased Total

  7. ELECTROLYTIC PRODUCTION OF URANIUM TETRAFLUORIDE

    DOE Patents [OSTI]

    Lofthouse, E.

    1954-08-31

    This patent relates to electrolytic methods for the production of uranium tetrafluoride. According to the present invention a process for the production of uranium tetrafluoride comprises submitting to electrolysis an aqueous solution of uranyl fluoride containing free hydrofluoric acid. Advantageously the aqueous solution of uranyl fluoride is obtained by dissolving uranium hexafluoride in water. On electrolysis, the uranyl ions are reduced to uranous tons at the cathode and immediately combine with the fluoride ions in solution to form the insoluble uranium tetrafluoride which is precipitated.

  8. Highly Enriched Uranium Materials Facility

    National Nuclear Security Administration (NNSA)

    Appropriations Subcommittee, is shown some of the technology in the Highly Enriched Uranium Materials Facility by Warehousing and Transportation Operations Manager Byron...

  9. METHOD FOR RECOVERING URANIUM FROM OILS

    DOE Patents [OSTI]

    Gooch, L.H.

    1959-07-14

    A method is presented for recovering uranium from hydrocarbon oils, wherein the uranium is principally present as UF/sub 4/. According to the invention, substantially complete removal of the uranium from the hydrocarbon oil may be effected by intimately mixing one part of acetone to about 2 to 12 parts of the hydrocarbon oil containing uranium and separating the resulting cake of uranium from the resulting mixture. The uranium in the cake may be readily recovered by burning to the oxide.

  10. EECBG Success Story: Biomass Boiler to Heat Oregon School | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The site for the new integrated K-12 school in Vernonia, Oregon, is in the ... of April Baer, OPB. ...

  11. Oregon ORS 469, Energy Facilities | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    469, Energy Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Oregon ORS 469, Energy FacilitiesLegal Abstract Chapter...

  12. Oregon Natural Gas Underground Storage Volume (Million Cubic...

    Gasoline and Diesel Fuel Update

    Underground Storage Volume (Million Cubic Feet) Oregon Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 6,996 ...

  13. Oregon Program Aims to Create Jobs, Save Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Oregon Program Aims to Create Jobs, Save Energy April 29, 2010 - 5:35pm Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs PORTLAND -...

  14. Oregon Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) (indexed site)

    Oregon" "Energy Source",2006,2007,2008,2009,2010 "Fossil",13621,19224,21446,19338,19781 " Coal",2371,4352,4044,3197,4126 " Petroleum",12,14,15,8,3 " Natural Gas",11239,14858,17387,...

  15. Oregon Natural Gas Input Supplemental Fuels (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) (indexed site)

    Input Supplemental Fuels (Million Cubic Feet) Oregon Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  16. Oregon Department of Energy Small, Low-Impact Hydropower Website...

    Open Energy Information (Open El) [EERE & EIA]

    Hydropower Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Department of Energy Small, Low-Impact Hydropower Website Abstract The...

  17. Avista Utilities (Gas)- Oregon Residential Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Avista Utilities also provides a free in-home inspection to evaluate the cost and benefits associated with weatherizing your home. This free analysis is available to qualified Oregon residential...

  18. Wheeler County, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Wheeler County is a county in Oregon. Its FIPS County Code is 069. It is classified as ASHRAE...

  19. Oregon Institute of Technology District Heating Low Temperature...

    Open Energy Information (Open El) [EERE & EIA]

    Annual Generation 46.60x109 Btuyr 13.70 GWhyr Delat T 57.00 F Load Factor 0.25 Start Up Date 1964 Contact 541-885-1691 References Oregon Institute of Technology's Geo-Heat...

  20. West Haven-Sylvan, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Haven-Sylvan is a census-designated place in Washington County, Oregon.1 References...

  1. West Slope, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Slope is a census-designated place in Washington County, Oregon.1 References US...

  2. Oregon DEQ Hazardous Waste Fact Sheet | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    DEQ Hazardous Waste Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Oregon DEQ Hazardous Waste Fact...

  3. Biomass Boiler to Heat Oregon School | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    British Thermal Units (MMBTU) per hour and will be fueled by locally derived wood-pellet feedstocks. A new school in Vernonia, Oregon is beginning to take form as the town...

  4. Oregon Cascades Play Fairway Analysis: Faults and Heat Flow maps

    SciTech Connect (OSTI)

    Adam Brandt

    2015-11-15

    This submission includes a fault map of the Oregon Cascades and backarc, a probability map of heat flow, and a fault density probability layer. More extensive metadata can be found within each zip file.

  5. Oregon Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Working Gas) (Million Cubic Feet) Oregon Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 3,705 2,366 ...

  6. Oregon Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    from Gas Wells (Million Cubic Feet) Oregon Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 246 244 232 ...

  7. Oregon Learning About and Applying for Water Rights Webpage ...

    Open Energy Information (Open El) [EERE & EIA]

    Learning About and Applying for Water Rights Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Learning About and Applying for Water...

  8. University of Oregon: GPS-based Precipitable Water Vapor (PWV)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vignola, F.; Andreas, A.

    2013-08-22

    A partnership with the University of Oregon and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect Precipitable Water Vapor (PWV) data to compliment existing resource assessment data collection by the university.

  9. BLM Offers Geothermal Leases in Utah, Idaho, and Oregon

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Bureau of Land Management (BLM) announced in early November that it will hold a competitive lease sale for geothermal energy development on 61 parcels totaling nearly 200,000 acres in the states of Utah, Oregon, and Idaho.

  10. New Biorefinery Will Bring Jobs to Northeastern Oregon

    Energy.gov [DOE]

    In northeastern Oregon, ZeaChem, a Colorado-based biofuel company, recently broke ground on a 250,000 gallon integrated cellulosic biorefinery. The technology development project is expected to be operating in 2011.

  11. University of Oregon: GPS-based Precipitable Water Vapor (PWV)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vignola, F.; Andreas, A.

    A partnership with the University of Oregon and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect Precipitable Water Vapor (PWV) data to compliment existing resource assessment data collection by the university.

  12. Oregon Celebrates Launch of Statewide Clean Energy Works Program |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Celebrates Launch of Statewide Clean Energy Works Program Oregon Celebrates Launch of Statewide Clean Energy Works Program March 21, 2011 - 12:00am Addthis WASHINGTON, D.C. - U.S. Department of Energy Acting Assistant Secretary for Energy Efficiency and Renewable Energy Henry Kelly today issued a statement celebrating the launch of Oregon's Clean Energy Works statewide program, as well as the successful completion of its pilot project in the city of Portland. The pilot

  13. Oregon Institute of Technology Recognized for Increasing its Use of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal and Solar Energy | Department of Energy Institute of Technology Recognized for Increasing its Use of Geothermal and Solar Energy Oregon Institute of Technology Recognized for Increasing its Use of Geothermal and Solar Energy April 23, 2014 - 2:01pm Addthis NEWS MEDIA CONTACT 202-586-4940 America's First Geothermally Heated University Campus Adds 3.5 Megawatts of Clean Electricity Generation WASHINGTON-Today, the Department of Energy recognized the Oregon Institute of Technology

  14. Portland, Oregon: Solar in Action (Brochure), Solar America Cities, Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency & Renewable Energy (EERE) | Department of Energy Portland, Oregon: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Portland, Oregon: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) This brochure provides an overview of the challenges and successes of Portland, OR, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case

  15. EIS-0529 Columbia River System Operations; Idaho, Montana, Oregon, and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Washington | Department of Energy 9 Columbia River System Operations; Idaho, Montana, Oregon, and Washington EIS-0529 Columbia River System Operations; Idaho, Montana, Oregon, and Washington Summary The U.S. Army Corps of Engineers, the Bureau of Reclamation, and DOE's Bonneville Power Administration (BPA), as joint lead agencies, are preparing an EIS that analyzes the potential environmental impacts of the operation (as a coordinated system) and maintenance of 14 federal multiple-purpose

  16. Uranium Biomineralization By Natural Microbial Phosphatase Activities...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface Citation Details In-Document Search Title: Uranium Biomineralization By ...

  17. Nuclear radiation cleanup and uranium prospecting (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Nuclear radiation cleanup and uranium prospecting Citation Details In-Document Search Title: Nuclear radiation cleanup and uranium prospecting Apparatus, systems, and methods for...

  18. Nuclear radiation cleanup and uranium prospecting (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Nuclear radiation cleanup and uranium prospecting Citation Details In-Document Search Title: Nuclear radiation cleanup and uranium prospecting You are accessing a document from...

  19. PROCESS OF PRODUCING REFRACTORY URANIUM OXIDE ARTICLES

    DOE Patents [OSTI]

    Hamilton, N.E.

    1957-12-01

    A method is presented for fabricating uranium oxide into a shaped refractory article by introducing a uranium halide fluxing reagent into the uranium oxide, and then mixing and compressing the materials into a shaped composite mass. The shaped mass of uranium oxide and uranium halide is then fired at an elevated temperature so as to form a refractory sintered article. It was found in the present invention that the introduction of a uraninm halide fluxing agent afforded a fluxing action with the uranium oxide particles and that excellent cohesion between these oxide particles was obtained. Approximately 90% of uranium dioxide and 10% of uranium tetrafluoride represent a preferred composition.

  20. Consolidated Edison Uranium Solidification Project | Department...

    Energy Savers

    Consolidated Edison Uranium Solidification Project Consolidated Edison Uranium Solidification Project CEUSP Inventory11-6-13Finalprint-ready.pdf (4.03 MB) CEUSPtimelinefinalp...