National Library of Energy BETA

Sample records for klong hoi khong

  1. transport Lau, Hoi-Kwan; James, Daniel F. V. [Department of Physics...

    Office of Scientific and Technical Information (OSTI)

    Stark effect in rapid ion transport Lau, Hoi-Kwan; James, Daniel F. V. Department of Physics, University of Toronto, 60 Saint George Street, Toronto, M5S 1A7 Ontario (Canada) 71...

  2. ALSNews Vol. 342

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    biomedicine. Read more and watch a video about Hoi-Ying's research... Industry @ ALS: Diabetes Drug Developed at ALS Gains FDA Approval In January 2013, the U.S. Food and Drug...


    Office of Scientific and Technical Information (OSTI)

    Decoherence and dephasing errors caused by the dc Stark effect in rapid ion transport Lau Hoi Kwan James Daniel F V Department of Physics University of Toronto Saint George Street...

  4. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Decoherence and dephasing errors caused by the dc Stark effect in rapid ion transport","Lau, Hoi-Kwan; James, Daniel F. V. Department of Physics, University of Toronto, 60 Saint...

  5. Calculated secondary yields for proton broadband using DECAY TURTLE

    SciTech Connect

    Sondgeroth, A.


    The calculations for the yields were done by Al Sondgeroth and Anthony Malensek. The authors used the DECAY deck called PBSEC{_}E.DAT from the CMS DECKS library. After obtaining the run modes and calibration modes from the liaison physicist, they made individual decay runs, using DECAY TURTLE from the CMS libraries and a production spectrum subroutine which was modified by Anthony, for each particle and decay mode for all particle types coming out of the target box. Results were weighted according to branching ratios for particles with more than one decay mode. The production spectra were produced assuming beryllium as the target. The optional deuterium target available to broadband will produce slightly higher yields. It should be noted that they did not include pion yields from klong decays because they could not simulate three body decays. Pions from klongs would add a very small fraction to the total yield.

  6. Kinetics of iodine hydrolysis in unbuffered solutions

    SciTech Connect

    Palmer, D.A.; Lyons, L.J.


    The kinetics of hydrolysis or disproportionation of hypoiodite were studied spectrophotometrically in basic solution at an ionic strength of 0.2 M as a function of pH, iodide and total iodine concentration, and temperature. The existence of three independent pathways for this second-order process was confirmed. The pH-stat method was used to monitor the corresponding reaction of hypoiodous acid in weakly alkaline solution. The generalized rate law for the disproportionation is: /minus/d((HOI) + (OI/sup /minus//))dt = k /sub a/(HOI)/sup 2/ + k/sub b/(HOI) (OI/sup /minus//) + k/sub c/(OI/sup /minus//)/sup 2/ + k/sub d/(I/sub 2/OH/sup /minus//) (OI/sup /minus//). The values of k/sub a/ and k/sub b/ are substantially smaller than previously reported. However, an unexplained contribution to the rate law resulting from the pH-stat measurements was also obtained. The rapid recombination of iodide and iodate in HClO/sub 4/ solutions was followed by stopped-flow spectrophotometry at three ionic strengths, and over a range of iodide and hydrogen ion concentrations, and at eight temperatures. Fifth-order kinetics were observed with no detectable induction period. 14 refs., 4 figs., 1 tab.

  7. New analytical reagents for the determination of sulfur dioxide and carbon monoxide

    SciTech Connect

    Trump, E.L.


    Four solid reagent methods were developed for the determination of sulfur dioxide in air, and one method was developed to measure carbon monoxide. When applied to filter paper with acetamide as the humectant and 4-phenylcyclohexanone as a bisulfite absorbent, oxohydroxybis(8-hydroxyquinolinyl-) vanadium (V) changes from yellow to black in the presence of sulfur dioxide. The three other methods, also on a filter paper support, utilized the reduction of bromate to bromine which then changed 3-,3'-, 5-,5'-tetramethylbenzidine from yellow to blue, phenothiazine from white to green, and 4-dimethylamino-4'-,4/double prime/-dimethoxytriphenylmethanol from colorless to red-purple. Quantitative measurements were made by reflectance spectroscopy. The method for carbon monoxide involved the use of tetrakis (acetamide-) Pd(II) ditetrafluoroborate, sodium iodate, and leuco crystal violet all together on a filter paper support. Carbon monoxide reduced the Pd(II)-acetamide complex to metallic palladium. The metallic palladium then reduced iodate to hypoiodous acid, HOI, which, in turn, oxidized leuco crystal violet to crystal violet. The crystal violet color was then measured by reflectance.

  8. A Literature Survey to Identify Potentially Volatile Iodine-Bearing Species Present in Off-Gas Streams

    SciTech Connect

    Bruffey, S. H.; Spencer, B. B.; Strachan, D. M.; Jubin, R. T.; Soelberg, N. R.; Riley, B. J.


    Four radionuclides have been identified as being sufficiently volatile in the reprocessing of nuclear fuel that their gaseous release needs to be controlled to meet regulatory requirements (Jubin et al. 2011, 2012). These radionuclides are 3H, 14C, 85Kr, and 129I. Of these, 129I has the longest half-life and potentially high biological impact. Accordingly, control of the release of 129I is most critical with respect to the regulations for the release of radioactive material in stack emissions. It is estimated that current EPA regulations (EPA 2010) would require any reprocessing plant in the United States to limit 129I release to less than 0.05 Ci/MTIHM for a typical fuel burnup of 55 gigawatt days per metric tonne (GWd/t) (Jubin 2011). The study of inorganic iodide in off-gas systems has been almost exclusively limited to I2 and the focus of organic iodide studies has been CH3I. In this document, we provide the results of an examination of publically available literature that is relevant to the presence and sources of both inorganic and organic iodine-bearing species in reprocessing plants. We especially focus on those that have the potential to be poorly sequestered with traditional capture methodologies. Based on the results of the literature survey and some limited thermodynamic modeling, the inorganic iodine species hypoiodous acid (HOI) and iodine monochloride (ICl) were identified as potentially low-sorbing iodine species that could present in off-gas systems. Organic species of interest included both short chain alkyl iodides such as methyl iodide (CH3I) and longer alkyl iodides up to iodododecane (C10H21I). It was found that fuel dissolution may provide conditions conducive to HOI formation and has been shown to result in volatile long-chain alkyl iodides, though these may not volatilize until later in the reprocessing sequence. Solvent extraction processes were found to be significant sources of various organic iodine-bearing species; formation of these