National Library of Energy BETA

Sample records for joint inversion system

  1. Stochastic Joint Inversion for Integrated Data Interpretation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal Exploration Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal Exploration ...

  2. Joint inversion of electrical and seismic data for Fracture char...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char. and ...

  3. Joint inversion of electrical and seismic data for Fracture char...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Michael Batzle, PI Colorado School of Mines Track Name: Fluid ...

  4. Joint inversion in coupled quasi-static poroelasticity (Journal...

    Office of Scientific and Technical Information (OSTI)

    Joint inversion in coupled quasi-static poroelasticity Citation Details In-Document Search Title: Joint inversion in coupled quasi-static poroelasticity Authors: Hesse, Marc A. ; ...

  5. Joint inversion of electrical and seismic data for Fracture char. and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Imaging of Fluid Flow in Geothermal Systems | Department of Energy Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  6. Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal Exploration

    Energy.gov [DOE]

    Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal Exploration presentation at the April 2013 peer review meeting held in Denver, Colorado.

  7. Time-lapse Joint Inversion of Geophysical Data and its Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal ...

  8. Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal Exploration

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal Exploration Principal Investigator: Robert J. Mellors Lawrence Livermore National Laboratory Track 1: Geophysics Project Officer: Eric Hass Total Project Funding: $890,000 April 24, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. Mandatory slide Data Flow models Subsurface permeability and temperatures 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact

  9. Time-lapse Joint Inversion of Geophysical Data and its Applications to

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal Prospecting | Department of Energy Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting presentation at the April 2013 peer review meeting held in Denver, Colorado. ormat_colorado_school_mines_peer2013.pdf (3.53 MB) More Documents & Publications Use of

  10. Time-lapse Joint Inversion of Geophysical Data and its Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    flow (2) Multiscale porous media Geology and texture (1) Joint inversion (2) ... and O. Macedo, Influence of the regional topography on the remote emplacement of ...

  11. Joint Environmental Management System (EMS) Declaration of Conformance...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Services Environmental Management System Joint Environmental Management System (EMS) Declaration of Conformance Joint Environmental Management System (EMS) Declaration of ...

  12. Joint transmission system projects to improve system reliability

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    County PUD, 425-783-8444 Joint transmission system projects to improve system reliability First major regional electric grid improvements in decades prepare the area for the...

  13. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data

    DOE PAGES [OSTI]

    Syracuse, Ellen M.; Maceira, Monica; Prieto, German A.; Zhang, Haijiang; Ammon, Charles J.

    2016-06-15

    Subduction beneath the northernmost Andes in Colombia is complex. Based on seismicity distributions, multiple segments of slab appear to be subducting, and arc volcanism ceases north of 5° N. Here, we illuminate the subduction system through hypocentral relocations and Vp and Vs models resulting from the joint inversion of local body wave arrivals, surface wave dispersion measurements, and gravity data. The simultaneous use of multiple data types takes advantage of the differing sensitivities of each data type, resulting in velocity models that have improved resolution at both shallower and deeper depths than would result from traditional travel time tomography alone.more » The relocated earthquake dataset and velocity model clearly indicate a tear in the Nazca slab at 5° N, corresponding to a 250-km shift in slab seismicity and the termination of arc volcanism. North of this tear, the slab is flat, and it comprises slabs of two sources: the Nazca and Caribbean plates. The Bucaramanga nest, a small region of among the most intense intermediate-depth seismicity globally, is associated with the boundary between these two plates and possibly with a zone of melting or elevated water content, based on reduced Vp and increased Vp/Vs. As a result, we also use relocated seismicity to identify two new faults in the South American plate, one related to plate convergence and one highlighted by induced seismicity.« less

  14. Estimation of field-scale soil hydraulic and dielectric parametersthrough joint inversion of GPR and hydrological data

    SciTech Connect

    Kowalsky, Michael B.; Finsterle, Stefan; Peterson, John; Hubbard,Susan; Rubin, Yoram; Majer, Ernest; Ward, Andy; Gee, Glendon

    2005-05-05

    A method is described for jointly using time-lapse multiple-offset cross-borehole ground-penetrating radar (GPR) travel time measurements and hydrological measurements to estimate field-scale soil hydraulic parameters and parameters of the petrophysical function, which relates soil porosity and water saturation to the effective dielectric constant. We build upon previous work to take advantage of a wide range of GPR data acquisition configurations and to accommodate uncertainty in the petrophysical function. Within the context of water injection experiments in the vadose zone, we test our inversion methodology with synthetic examples and apply it to field data. The synthetic examples show that while realistic errors in the petrophysical function cause substantial errors in the soil hydraulic parameter estimates,simultaneously estimating petrophysical parameters allows for these errors to be minimized. Additionally, we observe in some cases that inaccuracy in the GPR simulator causes systematic error in simulated travel times, making necessary the simultaneous estimation of a correction parameter. We also apply the method to a three-dimensional field setting using time-lapse GPR and neutron probe (NP) data sets collected during an infiltration experiment at the U.S. Department of Energy (DOE) Hanford site in Washington. We find that inclusion of GPR data in the inversion procedure allows for improved predictions of water content, compared to predictions made using NP data alone.

  15. Structure of the Crust beneath Cameroon, West Africa, from the Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions

    SciTech Connect

    Tokam, A K; Tabod, C T; Nyblade, A A; Julia, J; Wiens, D A; Pasyanos, M E

    2010-02-18

    Cameroon using 1-D shear wave velocity models obtained from the joint inversion of Rayleigh wave group velocities and P-receiver functions for 32 broadband seismic stations. From the 1-D shear wave velocity models, we obtain new insights into the composition and structure of the crust and upper mantle across Cameroon. After briefly reviewing the geological framework of Cameroon, we describe the data and the joint inversion method, and then interpret variations in crustal structure found beneath Cameroon in terms of the tectonic history of the region.

  16. Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting - GEODE

    SciTech Connect

    Revil, Andre

    2015-12-31

    The objectives of this project were to develop new algorithms to decrease the cost of drilling for geothermal targets during the exploration phase of a hydrothermal field and to improve the monitoring of a geothermal field to better understand its plumbing system and keep the resource renewable. We developed both new software and algorithms for geothermal explorations (that can also be used in other areas of interest to the DOE) and we applied the methods to a geothermal field of interest to ORMAT in Nevada.

  17. Validation of the BERT Point Source Inversion Scheme Using the Joint Urban 2003 Tracer Experiment Dataset - Final Report

    SciTech Connect

    Brambilla, Sara; Brown, Michael J.

    2012-06-18

    zones. Due to a unique source inversion technique - called the upwind collector footprint approach - the tool runs fast and the source regions can be determined in a few minutes. In this report, we provide an overview of the BERT framework, followed by a description of the source inversion technique. The Joint URBAN 2003 field experiment held in Oklahoma City that was used to validate BERT is then described. Subsequent sections describe the metrics used for evaluation, the comparison of the experimental data and BERT output, and under what conditions the BERT tool succeeds and performs poorly. Results are aggregated in different ways (e.g., daytime vs. nighttime releases, 1 vs. 2 vs. 3 hit collectors) to determine if BERT shows any systematic errors. Finally, recommendations are given for how to improve the code and procedures for optimizing performance in operational mode.

  18. Sensitivity analysis for joint inversion of ground-penetratingradar and thermal-hydrological data from a large-scale underground heatertest

    SciTech Connect

    Kowalsky, M.B.; Birkholzer, J.; Peterson, J.; Finsterle, S.; Mukhopadhya y, S.; Tsang, Y.T.

    2007-06-25

    We describe a joint inversion approach that combinesgeophysical and thermal-hydrological data for the estimation of (1)thermal-hydrological parameters (such as permeability, porosity, thermalconductivity, and parameters of the capillary pressure and relativepermeability functions) that are necessary for predicting the flow offluids and heat in fractured porous media, and (2) parameters of thepetrophysical function that relates water saturation, porosity andtemperature to the dielectric constant. The approach incorporates thecoupled simulation of nonisothermal multiphase fluid flow andground-penetrating radar (GPR) travel times within an optimizationframework. We discuss application of the approach to a large-scale insitu heater test which was conducted at Yucca Mountain, Nevada, to betterunderstand the coupled thermal, hydrological, mechanical, and chemicalprocesses that may occur in the fractured rock mass around a geologicrepository for high-level radioactive waste. We provide a description ofthe time-lapse geophysical data (i.e., cross-borehole ground-penetratingradar) and thermal-hydrological data (i.e., temperature and water contentdata) collected before and during the four-year heating phase of thetest, and analyze the sensitivity of the most relevantthermal-hydrological and petrophysical parameters to the available data.To demonstrate feasibility of the approach, and as a first step towardcomprehensive inversion of the heater test data, we apply the approach toestimate one parameter, the permeability of the rock matrix.

  19. Expansion joint for guideway for magnetic levitation transportation system

    DOEpatents

    Rossing, Thomas D.

    1993-01-01

    An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The sidewalls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging sidewalls so that the cuts have a substantially dove-tail shape.

  20. Expansion joint for guideway for magnetic levitation transportation system

    DOEpatents

    Rossing, T.D.

    1993-02-09

    An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The side walls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging side walls so that the cuts have a substantially dove-tail shape.

  1. The Cost of Jointness: Insights from Environmental Monitoring Systems in Low-Earth Orbit

    SciTech Connect

    Dwyer, Morgan Maeve

    2014-09-01

    This report summarizes the results of doctoral research that explored the cost impact of acquiring complex government systems jointly. The report begins by reviewing recent evidence that suggests that joint programs experience greater cost growth than non-joint programs. It continues by proposing an alternative approach for studying cost growth on government acquisition programs and demonstrates the utility of this approach by applying it to study the cost of jointness on three past programs that developed environmental monitoring systems for low-Earth orbit. Ultimately, the report concludes that joint programs' costs grow when the collaborating government agencies take action to retain or regain their autonomy. The report provides detailed qualitative and quantitative data in support of this conclusion and generalizes its findings to other joint programs that were not explicitly studied here. Finally, it concludes by presenting a quantitative model that assesses the cost impacts of jointness and by demonstrating how government agencies can more effectively architect joint programs in the future.

  2. Independent wheel suspension system using constant velocity universal joints in combination with a single prop shaft joint and mounted differentials

    SciTech Connect

    Krude, W.

    1986-06-24

    An independent wheel suspension system is described for a vehicle having a chassis, vehicle support means for resiliently supporting the chassis for displacement with respect to a driving surface, a wheel assembly with a wheel rotatable about a wheel axis, and an engine adapted to provide driving torque about an engine output axis at an engine output, the independent wheel suspension system consists of: control arm means having a wheel end pivotably connected to the wheel assembly and a pair of frame ends pivotably connected to a respective pair of pivot bearings carried by the vehicle support means to define a swing axis therethrough; differential means comprising a differential housing, differential input means and differential output means within the differential housing establishing a respective differential input axis and a differential output axis substantially perpendicular thereto; transverse pivot means coupling the differential means and the vehicle support means for allowing the differential means to pivot relative to the vehicle support means about a transverse pivot axis substantially parallel to the differential output axis; and prop shaft means having a prop shaft axis and first and second prop shaft coupling means coupling, respectively, to the engine output and the differential input, the first prop shaft coupling means being a constant velocity universal joint, the second prop shaft coupling means being one of an axially splined joint or a fixed joint; whereby, as the first prop shaft coupling means undergoes articulation with respect to the prop shaft means as the chassis undergoes the displacement, the transverse pivot means allows the differential means to pivot relative to the vehicle support means about the transverse pivot axis to accommodate the articulation without articulation between the differential means and the prop shaft means.

  3. Fundamental continuity equation for material transport in fractured media and retention factor for a system of joints

    SciTech Connect

    Mukhopadhyay, N.C.; Hadermann, J.

    1982-01-01

    Transport of radioactive nuclides through a system of joints is discussed including a linear sorption isotherm. The expression for the effective retention factor is derived for (a) a single joint, (b) a system of identical joints separated by a given distance, and (c) a system of joints with arbitrary apertures and sorption characteristics. It is shown that the retention factors for cases a and b are the same. In the limit of dense fractures, the retention factor for the porous medium is recovered. Relevance to the one-dimensional geosphere transport problem in the heterogeneous geology is pointed out. An arbitrary number of joint sets can now be included in such a problem.

  4. Coordinated joint motion control system with position error correction

    DOEpatents

    Danko, George L.

    2016-04-05

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  5. Coordinated joint motion control system with position error correction

    DOEpatents

    Danko, George

    2011-11-22

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two-joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  6. Application of principal component analysis (PCA) and improved joint probability distributions to the inverse first-order reliability method (I-FORM) for predicting extreme sea states

    DOE PAGES [OSTI]

    Eckert-Gallup, Aubrey C.; Sallaberry, Cédric J.; Dallman, Ann R.; Neary, Vincent S.

    2016-01-06

    Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulations as a part of the standard current practice for designing marine structures to survive extreme sea states. These environmental contours are characterized by combinations of significant wave height (Hs) and either energy period (Te) or peak period (Tp) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first-order reliability method (I-FORM) is a standard design practice for generating environmental contours. This papermore » develops enhanced methodologies for data analysis prior to the application of the I-FORM, including the use of principal component analysis (PCA) to create an uncorrelated representation of the variables under consideration as well as new distribution and parameter fitting techniques. As a result, these modifications better represent the measured data and, therefore, should contribute to the development of more realistic representations of environmental contours of extreme sea states for determining design loads for marine structures.« less

  7. Center for Inverse Design: Inverse Design Approach

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Inverse Design Approach This page describes the inverse materials design methodology used by the Center for Inverse Design, which integrates and combines the following: (1) theory, ...

  8. Joint Facilities User Forum

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Joint Environmental Management System (EMS) Joint Environmental Management System (EMS) Joint Environmental Management System (EMS) The environmental management system (EMS) has two areas of focus: environmental compliance and environmental sustainability. The environmental compliance aspect of the EMS consists of regulatory compliance and monitoring programs that implement federal, state, local, and tribal requirements; agreements; and permits under the Legacy Management contract. The

  9. SU-E-T-555: A Protontherapy Inverse Treatment Planning System Prototype with Linear Energy Transfer (LET) Optimization

    SciTech Connect

    Sanchez-Parcerisa, D; Carabe-Fernandez, A

    2014-06-01

    Purpose: Develop and benchmark an inverse treatment planning system (TPS) for proton radiotherapy integrating fast analytical dose and LET calculations in patient geometries and a dual objective function with both dose and LET components, enabling us to apply optimization techniques to improve the predicted outcome of treatments based on radiobiological models. Methods: The software package was developed in MATLAB and implements a fluence-dose calculation technique based on a pencil beam model for dose calculations and a 3D LET model based on the extension of the LET in the radial direction as a function of the predicted radiological pathway. Both models were benchmarked against commissioning data from our institution, dose calculations performed with a commercial treatment planning system and Monte Carlo simulations. The optimization is based on the adaptive simulated annealing approach . Results: The dose and LET calculations were tested in a water phantom and several real patient treatments. The pass rate for the gamma index analysis (3%/3mm) test was above 90% for all test cases analyzed, and the calculation time was of the order of seconds. The inverse planning module produced plans with a significantly higher mean LET in the target compared to traditional plans, without any loss of target coverage. The clinical relevance of this improvement is under consideration . Conclusion: The developed treatment planning system is a valuable clinical and research tool that enables us to incorporate LET effects into proton radiotherapy planning in a streamlined fashion.

  10. Measurement of joint kinematics using a conventional clinical single-perspective flat-panel radiography system

    SciTech Connect

    Seslija, Petar; Teeter, Matthew G.; Yuan Xunhua; Naudie, Douglas D. R.; Bourne, Robert B.; MacDonald, Steven J.; Peters, Terry M.; Holdsworth, David W.

    2012-10-15

    Purpose: The ability to accurately measure joint kinematics is an important tool in studying both normal joint function and pathologies associated with injury and disease. The purpose of this study is to evaluate the efficacy, accuracy, precision, and clinical safety of measuring 3D joint motion using a conventional flat-panel radiography system prior to its application in an in vivo study. Methods: An automated, image-based tracking algorithm was implemented to measure the three-dimensional pose of a sparse object from a two-dimensional radiographic projection. The algorithm was tested to determine its efficiency and failure rate, defined as the number of image frames where automated tracking failed, or required user intervention. The accuracy and precision of measuring three-dimensional motion were assessed using a robotic controlled, tibiofemoral knee phantom programmed to mimic a subject with a total knee replacement performing a stair ascent activity. Accuracy was assessed by comparing the measurements of the single-plane radiographic tracking technique to those of an optical tracking system, and quantified by the measurement discrepancy between the two systems using the Bland-Altman technique. Precision was assessed through a series of repeated measurements of the tibiofemoral kinematics, and was quantified using the across-trial deviations of the repeated kinematic measurements. The safety of the imaging procedure was assessed by measuring the effective dose of ionizing radiation associated with the x-ray exposures, and analyzing its relative risk to a human subject. Results: The automated tracking algorithm displayed a failure rate of 2% and achieved an average computational throughput of 8 image frames/s. Mean differences between the radiographic and optical measurements for translations and rotations were less than 0.08 mm and 0.07 Degree-Sign in-plane, and 0.24 mm and 0.6 Degree-Sign out-of-plane. The repeatability of kinematics measurements performed

  11. Integrated Microbial Genomes (IMG) System from the DOE Joint Genome Institute (JGI)

    DOE Data Explorer

    The integrated microbial genomes (IMG) system is a data management, analysis and annotation platform for all publicly available genomes. IMG contains both draft and complete JGI microbial genomes integrated with all other publicly available genomes from all three domains of life, together with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and annotating genomes, genes and functions, individually or in a comparative context. Since its first release in 2005, IMG's data content and analytical capabilities have been constantly expanded through quarterly releases. IMG is provided by the DOE-Joint Genome Institute (JGI) and is available from http://img.jgi.doe.gov. [Abstract from The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions; Victor M. Markowitz, Ernest Szeto, Krishna Palaniappan, Yuri Grechkin, Ken Chu, I-Min A. Chen, Inna Dubchak, Iain Anderson, Athanasios Lykidis, Konstantinos Mavromatis, Natalia N. Ivanova and Nikos C. Kyrpides; Nucleic Acids Research, 2008, Vol. 36. (Database Issue) See also the companion system, Integrated Microbial Genomes with Microbiome Samples.

  12. JOINT-INDUSTRY PARTNERSHIP TO DEVELOP A HOLLOW SPHERE DUAL-GRADIENT DRILLING SYSTEM

    SciTech Connect

    William C. Maurer; Colin Ruan; Greg Deskins

    2003-05-01

    Maurer Technology Inc. (MTI) formed a joint-industry partnership to fund the development of a hollow sphere dual-gradient drilling (DGD) system. Phase I consisted of collecting, compiling, analyzing, and distributing information and data regarding a new DGD system for use by the oil and gas industry. Near the end of Phase I, DOE provided funding to the project that was used to conduct a series of critical follow-on tests investigating sphere separation in weighted waterbase and oilbase muds. Drilling costs in deep water are high because seawater pressure on the ocean floor creates a situation where many strings of casing are required due to the relatively close spacing between fracture and pore pressure curves. Approximately $100 million have been spent during the past five years on DGD systems that place pumps on the seafloor to reduce these drilling problems by reducing the annulus fluid pressure at the bottom of the riser. BP estimates that a DGD system can save $9 million per well in the Thunderhorse Field and Conoco estimates it can save $5 to $15 million per well in its deepwater operations. Unfortunately, previous DGD development projects have been unsuccessful due to the high costs ($20 to $50 million) and reliability problems with seafloor pump systems. MTI has been developing a simple DGD system concept that would pump hollow glass spheres into the bottom of the riser to reduce density of the mud in the riser. This eliminates the requirement for seafloor pumps and replaces them with low cost mud pumps, shale shakers, and other oilfield equipment that can be operated on the rig by conventional crews. A $1.8 million Phase I joint-industry project funded by five service companies and three operators showed that hollow spheres could be pumped well, but difficulties were encountered in separating the spheres from a polymer mud supplied by Halliburton due to the high viscosity of this mud at the low shear rates encountered on oilfield shale shaker screens. As a

  13. Depth-resolved registration of transesophageal echo to x-ray fluoroscopy using an inverse geometry fluoroscopy system

    SciTech Connect

    Hatt, Charles R.; Tomkowiak, Michael T.; Dunkerley, David A. P.; Slagowski, Jordan M.; Funk, Tobias; Raval, Amish N.; Speidel, Michael A.

    2015-12-15

    Purpose: Image registration between standard x-ray fluoroscopy and transesophageal echocardiography (TEE) has recently been proposed. Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system designed for cardiac procedures. This study presents a method for 3D registration of SBDX and TEE images based on the tomosynthesis and 3D tracking capabilities of SBDX. Methods: The registration algorithm utilizes the stack of tomosynthetic planes produced by the SBDX system to estimate the physical 3D coordinates of salient key-points on the TEE probe. The key-points are used to arrive at an initial estimate of the probe pose, which is then refined using a 2D/3D registration method adapted for inverse geometry fluoroscopy. A phantom study was conducted to evaluate probe pose estimation accuracy relative to the ground truth, as defined by a set of coregistered fiducial markers. This experiment was conducted with varying probe poses and levels of signal difference-to-noise ratio (SDNR). Additional phantom and in vivo studies were performed to evaluate the correspondence of catheter tip positions in TEE and x-ray images following registration of the two modalities. Results: Target registration error (TRE) was used to characterize both pose estimation and registration accuracy. In the study of pose estimation accuracy, successful pose estimates (3D TRE < 5.0 mm) were obtained in 97% of cases when the SDNR was 5.9 or higher in seven out of eight poses. Under these conditions, 3D TRE was 2.32 ± 1.88 mm, and 2D (projection) TRE was 1.61 ± 1.36 mm. Probe localization error along the source-detector axis was 0.87 ± 1.31 mm. For the in vivo experiments, mean 3D TRE ranged from 2.6 to 4.6 mm and mean 2D TRE ranged from 1.1 to 1.6 mm. Anatomy extracted from the echo images appeared well aligned when projected onto the SBDX images. Conclusions: Full 6 DOF image registration between SBDX and TEE is feasible and accurate to within 5 mm. Future studies will focus on

  14. Aerial Measuring System (AMS)/Israel Atomic Energy Commission (IAEC) Joint Comparison Study Report

    SciTech Connect

    Wasiolek, P.; Halevy, I.

    2013-12-23

    Under the 13th Bilateral Meeting to Combat Nuclear Terrorism conducted on January 8–9, 2013, the committee approved the development of a cost-effective proposal to conduct a Comparison Study of the Aerial Measuring System (AMS) of the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and Israel Atomic Energy Commission (IAEC). The study was to be held at the Remote Sensing Laboratory (RSL), Nellis Air Force Base, Las Vegas, Nevada, with measurements at the Nevada National Security Site (NNSS). The goal of the AMS and the IAEC joint survey was to compare the responses of the two agencies’ aerial radiation detection systems to varied radioactive surface contamination levels and isotopic composition experienced at the NNSS, and the differing data processing techniques utilized by the respective teams. Considering that for the comparison both teams were using custom designed and built systems, the main focus of the short campaign was to investigate the impact of the detector size and data analysis techniques used by both teams. The AMS system, SPectral Advanced Radiological Computer System, Model A (SPARCS-A), designed and built by RSL, incorporates four different size sodium iodide (NaI) crystals: 1" × 1", 2" × 4" × 4", 2" × 4" ×16", and an “up-looking” 2" × 4" × 4". The Israel AMS System, Air RAM 2000, was designed by the IAEC Nuclear Research Center – Negev (NRCN) and built commercially by ROTEM Industries (Israel) and incorporates two 2" diameter × 2" long NaI crystals. The operational comparison was conducted at RSL-Nellis in Las Vegas, Nevada, during week of June 24–27, 2013. The Israeli system, Air RAM 2000, was shipped to RSL-Nellis and mounted together with the DOE SPARCS on a DOE Bell-412 helicopter for a series of aerial comparison measurements at local test ranges, including the Desert Rock Airport and Area 3 at the NNSS. A 4-person Israeli team from the IAEC NRCN supported the activity together with 11

  15. Grinding assembly, grinding apparatus, weld joint defect repair system, and methods

    DOEpatents

    Larsen, Eric D.; Watkins, Arthur D.; Bitsoi, Rodney J.; Pace, David P.

    2005-09-27

    A grinding assembly for grinding a weld joint of a workpiece includes a grinder apparatus, a grinder apparatus includes a grinding wheel configured to grind the weld joint, a member configured to receive the grinding wheel, the member being configured to be removably attached to the grinder apparatus, and a sensor assembly configured to detect a contact between the grinding wheel and the workpiece. The grinding assembly also includes a processing circuitry in communication with the grinder apparatus and configured to control operations of the grinder apparatus, the processing circuitry configured to receive weld defect information of the weld joint from an inspection assembly to create a contour grinding profile to grind the weld joint in a predetermined shape based on the received weld defect information, and a manipulator having an end configured to carry the grinder apparatus, the manipulator further configured to operate in multiple dimensions.

  16. Ceramic joints

    DOEpatents

    Miller, Bradley J.; Patten, Jr., Donald O.

    1991-01-01

    Butt joints between materials having different coefficients of thermal expansion are prepared having a reduced probability of failure of stress facture. This is accomplished by narrowing/tapering the material having the lower coefficient of thermal expansion in a direction away from the joint interface and not joining the narrow-tapered surface to the material having the higher coefficient of thermal expansion.

  17. Survey of tracking systems and rotary joints for coolant piping. Final report, August 15, 1978-August 14, 1978. [Includes patents

    SciTech Connect

    Furaus, J P; Gruchalla, M E; Sower, G D

    1980-01-01

    Problems were surveyed and evaluated with respect to solar tracking mechanisms and rotary joints for coolant piping. An analytical development of celestial mechanics, one- and two-axis tracking configurations and the effect of tracking accuracy versus collector efficiency are reported. Daily operational requirements and tracking modes were defined and evaluated. A literature and patent search on solar tracking technology was performed. Tracking system and control system performance specifications were determined. Alternative conceptual tracking approaches were defined and a cost and performance evaluation of a mechanical tracking concept was performed. Fluid coupling service specifications were determined. The cost and performance of several types of actuators and error detectors were evaluated with respect to solar tracking mechanisms.

  18. Center for Inverse Design: Modality 1 - Inverse Band Structure

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1: Inverse Band Structure Modality 1 applies to cases where we have a single material system, but an astronomical number of configurations, and where the target properties can be calculated on the fly. The approach is also called Inverse Band Structure (IBS). The IBS approach began a dozen years ago within the Solid-State Theory group at the National Renewable Energy Laboratory (NREL), under support from the U.S. Department of Energy's Office of Basic Energy Sciences. Imagine that you have a

  19. Center for Inverse Design

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Inverse Design EFRC Director: Alex Zunger Lead Institution: National Renewable Energy Laboratory Mission: Achieve the grand challenge of materials and nanostructures by design: ...

  20. Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference

    SciTech Connect

    Geiling, D.W.

    1993-08-01

    The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

  1. Joint perpendicular anisotropy and strong interlayer exchange coupling in systems with thin vanadium spacers

    SciTech Connect

    Devolder, T. Le Goff, A.; Eimer, S.; Adam, J.-P.

    2015-04-28

    We study the influence of the insertion of a vanadium spacer layer between an FeCoB layer and a [Co/Ni] multilayer in an MgO substrate-based system mimicking the reference system of a perpendicular anisotropy magnetic tunnel junction. The anisotropy of the [Co/Ni] multilayer gradually improves with the vanadium thicknesses t, up to an optimized state for t = 8 Å, with little influence of the thermal annealing. The interlayer exchange coupling is ferromagnetic and very strong for t≤6 Å. It can be adjusted by thermal treatment at t = 8 Å from no coupling in the as-grown state to more than 2 mJ/m{sup 2} after 250 °C annealing. For this spacer thickness, the magnetic properties are consistent with the occurrence of a bcc (001) to an fcc (111) crystalline structure transition at the vanadium spacer. The remaining interlayer exchange coupling at t = 8 Å is still substantially higher than the one formerly obtained with a Tantalum spacer, which holds promise for further optimization of the reference layers of tunnel junctions meant for magnetic random access memories.

  2. Control method and system for hydraulic machines employing a dynamic joint motion model

    DOEpatents

    Danko, George

    2011-11-22

    A control method and system for controlling a hydraulically actuated mechanical arm to perform a task, the mechanical arm optionally being a hydraulically actuated excavator arm. The method can include determining a dynamic model of the motion of the hydraulic arm for each hydraulic arm link by relating the input signal vector for each respective link to the output signal vector for the same link. Also the method can include determining an error signal for each link as the weighted sum of the differences between a measured position and a reference position and between the time derivatives of the measured position and the time derivatives of the reference position for each respective link. The weights used in the determination of the error signal can be determined from the constant coefficients of the dynamic model. The error signal can be applied in a closed negative feedback control loop to diminish or eliminate the error signal for each respective link.

  3. Braze system and method for reducing strain in a braze joint

    DOEpatents

    Cadden, Charles H.; Goods, Steven H.; Prantil, Vincent C.

    2004-05-11

    A system for joining a pair of structural members having widely differing coefficients of thermal expansion is disclosed. A mechanically "thick" foil is made by dispersing a refractory metal powder, such as molybdenum, niobium, tantalum, or tungsten into a quantity of a liquid, high expansion metal such as copper, silver, or gold, casting an ingot of the mixture, and then cutting sections of the ingot about 1 mm thick to provide the foil member. These foil members are shaped, and assembled between surfaces of structural members for joining, together with a layer of a braze alloy on either side of the foil member capable of wetting both the surfaces of the structural members and the foil. The assembled body is then heated to melt the braze alloy and join the assembled structure. The foil member subsequently absorbs the mechanical strain generated by the differential contraction of the cooling members that results from the difference in the coefficients of thermal expansion of the members.

  4. Metal to ceramic sealed joint

    DOEpatents

    Lasecki, J.V.; Novak, R.F.; McBride, J.R.

    1991-08-27

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.

  5. Metal to ceramic sealed joint

    DOEpatents

    Lasecki, John V.; Novak, Robert F.; McBride, James R.

    1991-01-01

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.

  6. Inverse Energy Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Inverse Energy Transfer by Near-Resonant Interactions with a Damped-Wave Spectrum P.W. Terry Center for Magnetic Self Organization in Laboratory and Astrophysical Plasmas and Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 USA (Received 12 January 2004; published 1 December 2004) The interaction of long-wavelength anisotropic drift waves with the plasma turbulence of electron density advection is shown to produce the inverse energy transfer that condenses onto

  7. Shock transmissibility of threaded joints

    SciTech Connect

    Hansen, N.R.; Bateman, V.I.; Brown, F.A.

    1996-12-31

    Sandia National Laboratories (SNL) designs mechanical systems with threaded joints that must survive high shock environments. These mechanical systems include penetrators that must survive soil and rock penetration; drilling pipe strings that must survive rock-cutting, shock environments; and laydown weapons that must survive delivery impact shock. This paper summarizes an analytical study and an experimental evaluation of compressive, one-dimensional, shock transmission through a threaded joint in a split Hopkinson bar configuration. Thread geometries were scaled to simulate large diameter threaded joints with loadings parallel to the axis of the threads. Both strain and acceleration were evaluated with experimental measurements and analysis. Analytical results confirm the experimental conclusions that in this split Hopkinson bar configuration, the change in the one-dimensional shock wave by the threaded joint is localized to a length equal to a few diameters` length beyond the threaded joint.

  8. STOCHASTIC JOINT INVERSION OF A GEOTHERMAL PROSPECT (Conference...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Lawrence Livermore National Laboratory (LLNL), Livermore, CA Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 24 POWER ...

  9. UNDERSTANDING INVERSIONS Background

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    UNDERSTANDING INVERSIONS Background When placing any two fluids (either two liquids or two gases) in proximity, the fluids will want to stratify or layer according to their densities (mass per volume). The variation in density can be linked to either what is dissolved in each liquid or the temperature of the two liquids or gases. The denser fluid will settle to the bottom; the warmer fluid will rise to the top, creating an inversion because it is opposite or inverted from what a typical

  10. Joint Coordinating Committee | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Joint Coordinating Committee

  11. DEVELOPMENT, INSTALLATION AND OPERATION OF THE MPC&A OPERATIONS MONITORING (MOM) SYSTEM AT THE JOINT INSTITUTE FOR NUCLEAR RESEARCH (JINR) DUBNA, RUSSIA

    SciTech Connect

    Kartashov,V.V.; Pratt,W.; Romanov, Y.A.; Samoilov, V.N.; Shestakov, B.A.; Duncan, C.; Brownell, L.; Carbonaro, J.; White, R.M.; Coffing, J.A.

    2009-07-12

    The Material Protection, Control and Accounting (MPC&A) Operations Monitoring (MOM) systems handling at the International Intergovernmental Organization - Joint Institute for Nuclear Research (JINR) is described in this paper. Category I nuclear material (plutonium and uranium) is used in JINR research reactors, facilities and for scientific and research activities. A monitoring system (MOM) was installed at JINR in April 2003. The system design was based on a vulnerability analysis, which took into account the specifics of the Institute. The design and installation of the MOM system was a collaborative effort between JINR, Brookhaven National Laboratory (BNL) and the U.S. Department of Energy (DOE). Financial support was provided by DOE through BNL. The installed MOM system provides facility management with additional assurance that operations involving nuclear material (NM) are correctly followed by the facility personnel. The MOM system also provides additional confidence that the MPC&A systems continue to perform effectively.

  12. Center for Inverse Design: About the Center for Inverse Design

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Learn more about some recent research highlights from the Center for Inverse Design Meet some of our principal investigators in the Center for Inverse Design by viewing the short ...

  13. Jointly Sponsored Research Program

    SciTech Connect

    Everett A. Sondreal; John G. Hendrikson; Thomas A. Erickson

    2009-03-31

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC26-98FT40321 funded through the Office of Fossil Energy and administered at the National Energy Technology Laboratory (NETL) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy & Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying highly efficient, nonpolluting energy systems that meet the nation's requirements for clean fuels, chemicals, and electricity in the 21st century. The EERC in partnership with its nonfederal partners jointly performed 131 JSRP projects for which the total DOE cost share was $22,716,634 (38%) and the nonfederal share was $36,776,573 (62%). Summaries of these projects are presented in this report for six program areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, and (6) advanced materials. The work performed under this agreement addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration; near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources.

  14. 2014 Joint Action Workshop

    Energy.gov [DOE]

    The Joint Action Workshop is an annual event for joint action agencies and their members to meet informally and discuss emerging policy, regulatory, and power supply issues, and other topics...

  15. Large displacement spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2002-01-01

    A new class of spherical joints has a very large accessible full cone angle, a property which is beneficial for a wide range of applications. Despite the large cone angles, these joints move freely without singularities.

  16. Information basis for developing comprehensive waste management system-US-Japan joint nuclear energy action plan waste management working group phase I report.

    SciTech Connect

    Nutt, M.; Nuclear Engineering Division

    2010-05-25

    The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of the Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors

  17. Linear functional minimization for inverse modeling

    SciTech Connect

    Barajas-Solano, David A.; Wohlberg, Brendt Egon; Vesselinov, Velimir Valentinov; Tartakovsky, Daniel M.

    2015-06-01

    In this paper, we present a novel inverse modeling strategy to estimate spatially distributed parameters of nonlinear models. The maximum a posteriori (MAP) estimators of these parameters are based on a likelihood functional, which contains spatially discrete measurements of the system parameters and spatiotemporally discrete measurements of the transient system states. The piecewise continuity prior for the parameters is expressed via Total Variation (TV) regularization. The MAP estimator is computed by minimizing a nonquadratic objective equipped with the TV operator. We apply this inversion algorithm to estimate hydraulic conductivity of a synthetic confined aquifer from measurements of conductivity and hydraulic head. The synthetic conductivity field is composed of a low-conductivity heterogeneous intrusion into a high-conductivity heterogeneous medium. Our algorithm accurately reconstructs the location, orientation, and extent of the intrusion from the steady-state data only. Finally, addition of transient measurements of hydraulic head improves the parameter estimation, accurately reconstructing the conductivity field in the vicinity of observation locations.

  18. Donor states in inverse opals

    SciTech Connect

    Mahan, G. D.

    2014-09-21

    We calculate the binding energy of an electron bound to a donor in a semiconductor inverse opal. Inverse opals have two kinds of cavities, which we call octahedral and tetrahedral, according to their group symmetry. We put the donor in the center of each of these two cavities and obtain the binding energy. The binding energies become very large when the inverse opal is made from templates with small spheres. For spheres less than 50 nm in diameter, the donor binding can increase to several times its unconfined value. Then electrons become tightly bound to the donor and are unlikely to be thermally activated to the semiconductor conduction band. This conclusion suggests that inverse opals will be poor conductors.

  19. Tomographic inversion techniques incorporating physical constraints...

    Office of Scientific and Technical Information (OSTI)

    In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often ...

  20. WIPP - Joint Information Center

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Joint Information Center is located at 4021 National Parks Highway in Carlsbad, N.M. Joint Information Center In the unlikely event of an emergency, the WIPP Joint Information Center (JIC) serves as a central control point to coordinate multi-agency efforts to issue timely and accurate information to the public, news media and project employees. Emergency contact information: The public If the JIC is activated, members of the general public, including family members, may call (575) 234-7380

  1. Inverse scattering code

    SciTech Connect

    Hale, A.; King, A.

    1997-09-01

    A methodology for the evaluation of complex electromagnetics problems is presented. The methodology reduces the computational requirements for the analysis of large scale computational electromagnetics problems by hybridizing the method of moments and physical optics techniques. The target model is based on triangular facets and the incident field source by its system response function. Data which can be obtained from the analysis are radar cross section, power spectral density, and range profiles.

  2. Center for Inverse Design Highlight: Iron Chalcogenide PV Absorbers

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Iron Chalcogenide Photovoltaic Absorbers The Center for Inverse Design has identified the iron-based ternary chalcogenide materials Fe 2 SiS 4 and Fe 2 GeS 4 as promising new photovoltaic materials, which circumvent the problems historically encountered with iron sulfide FeS 2 (iron pyrite). There is intense interest in earth-abundant materials, including iron-bearing systems, for the widespread development of photovoltaic (PV) technologies to sustainably meet growing energy needs. The inverse

  3. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect

    Alex Savitski; Connie Reichert; John Coffey

    2005-07-13

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  4. Inspection of Fusion Joints in Plastic Pipe

    SciTech Connect

    Connie Reichert

    2005-09-01

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost-effective method exists for assessing the quality of fusion joints in the field. Visual examination and pressure testing are current nondestructive approaches, which do not provide any assurance about the long-term pipeline performance. This project developed, demonstrated, and validated an in-situ nondestructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system includes a laser-based image-recognition system that automatically generates and interprets digital images of pipe joints and assigns them a pass/fail rating, which eliminates operator bias in evaluating joint quality. An EWI-patented process, the Weld Zone Inspection Method (WZIM) was developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation, which reveals the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and two destructive forms of testing: short-term tensile testing and long-term creep rupture testing. There appears to be a direct correlation between the WZIM and the destructive testing results. Although WZIM appears to be more sensitive than destructive testing can verify, the approach appears valid.

  5. Electrical Detector for Liquid Lithium Leaks Around Demountable Pipe Joints

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    | Princeton Plasma Physics Lab Electrical Detector for Liquid Lithium Leaks Around Demountable Pipe Joints This system is designed to detect leaks of liquid lithium from around demountable pipe joints. Demountable pipe joints such as vacuum fittings are likely spots for a leak in any system transporting fluids. Since liquid lithium reacts with air, water, concrete and other common materials, it is important to quickly detect a leak. The system will partially contain the leak and is designed

  6. Joint BioEnergy Institute (Other) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    JOINT BIOENERGY INSTITUTE; JBEI; GENOMICS; SYSTEMS BIOLOGY; SUGAR; FUEL SYNTHESIS; SWITCH GRASS Word Cloud More Like This Multimedia File size NAView Multimedia View Multimedia

  7. CHARACTERIZATION OF DAMPING IN BOLTED LAP JOINTS

    SciTech Connect

    C. MALONEY; D. PEAIRS; ET AL

    2000-08-01

    The dynamic response of a jointed beam was measured in laboratory experiments. The data were analyzed and the system was mathematically modeled to establish plausible representations of joint damping behavior. Damping is examined in an approximate, local linear framework using log decrement and half power bandwidth approaches. in addition, damping is modeled in a nonlinear framework using a hybrid surface irregularities model that employs a bristles-construct. Experimental and analytical results are presented.

  8. High pressure ceramic joint

    DOEpatents

    Ward, M.E.; Harkins, B.D.

    1993-11-30

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.

  9. High pressure ceramic joint

    DOEpatents

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  10. Calorimetric and magnetic study for Ni{sub 50}Mn{sub 36}In{sub 14} and relative cooling power in paramagnetic inverse magnetocaloric systems

    SciTech Connect

    Chen, Jing-Han; Bruno, Nickolaus M.; Karaman, Ibrahim; Huang, Yujin; Li, Jianguo; Ross, Joseph H.

    2014-11-28

    The non-stoichiometric Heusler alloy Ni{sub 50}Mn{sub 36}In{sub 14} undergoes a martensitic phase transformation in the vicinity of 345 K, with the high temperature austenite phase exhibiting paramagnetic rather than ferromagnetic behavior, as shown in similar alloys with lower-temperature transformations. Suitably prepared samples are shown to exhibit a sharp transformation, a relatively small thermal hysteresis, and a large field-induced entropy change. We analyzed the magnetocaloric behavior both through magnetization and direct field-dependent calorimetry measurements. For measurements passing through the first-order transformation, an improved method for heat-pulse relaxation calorimetry was designed. The results provide a firm basis for the analytic evaluation of field-induced entropy changes in related materials. An analysis of the relative cooling power (RCP), based on the integrated field-induced entropy change and magnetizing behavior of the Mn spin system with ferromagnetic correlations, shows that a significant RCP may be obtained in these materials by tuning the magnetic and structural transformation temperatures through minor compositional changes or local order changes.

  11. Pyramidal inversion domain boundaries revisited

    SciTech Connect

    Remmele, T.; Albrecht, M.; Irmscher, K.; Fornari, R.; Strassburg, M.

    2011-10-03

    The structure of pyramidal inversion domain boundaries in GaN:Mg was investigated by aberration corrected transmission electron microscopy. The analysis shows the upper (0001) boundary to consist of a single Mg layer inserted between polarity inverted GaN layers in an abcab stacking. The Mg bound in these defects is at least one order of magnitude lower than the chemical Mg concentration. Temperature dependent Hall effect measurements show that up to 27% of the Mg acceptors is electrically compensated.

  12. INVERSIONS H. Michael Mogil, Certified Consulting Meteorologist

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SEPTEMBER 2008 INVERSIONS H. Michael Mogil, Certified Consulting Meteorologist In the August 2008 issue of Climate Education Update, we looked at the concept of inversions, situations in which the temperature increases with increasing altitude. This is the opposite of what one would expect in the troposphere, the lowest shell of the atmosphere that is in contact with the Earth. Inversions are always present when fog is present. The most commonly observed inversion is the one found near the

  13. Joint Working Group for Fusion Safety | Princeton Plasma Physics Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Organization Business Operations Careers/ Human Resources Directory Diversity and Inclusion Environment, Safety & Health Environmental Management System Joint Working Group for Fusion Safety Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Contact Us Business Operations Careers/ Human Resources Directory Diversity and Inclusion Environment, Safety & Health Environmental Management System Joint Working Group for Fusion Safety Furth Plasma Physics Library

  14. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    SciTech Connect

    Stovall, Therese K; Biswas, Kaushik; Song, Bo; Zhang, Sisi

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and

  15. Inverse scattering method and soliton double solution family for the general symplectic gravity model

    SciTech Connect

    Gao Yajun

    2008-08-15

    A previously established Hauser-Ernst-type extended double-complex linear system is slightly modified and used to develop an inverse scattering method for the stationary axisymmetric general symplectic gravity model. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method applied fine and effective. As an application, a concrete family of soliton double solutions for the considered theory is obtained.

  16. Absolutely and uniformly convergent iterative approach to inverse scattering with an infinite radius of convergence

    DOEpatents

    Kouri, Donald J.; Vijay, Amrendra; Zhang, Haiyan; Zhang, Jingfeng; Hoffman, David K.

    2007-05-01

    A method and system for solving the inverse acoustic scattering problem using an iterative approach with consideration of half-off-shell transition matrix elements (near-field) information, where the Volterra inverse series correctly predicts the first two moments of the interaction, while the Fredholm inverse series is correct only for the first moment and that the Volterra approach provides a method for exactly obtaining interactions which can be written as a sum of delta functions.

  17. Gamesa Santana Joint Venture | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gamesa Santana Joint Venture Place: Spain Sector: Wind energy Product: Wind turbine manufacturing joint venture in Spain. References: Gamesa Santana Joint Venture1 This article...

  18. Inversion for Eigenvalues and Modes Using Sierra-SD and ROL.

    SciTech Connect

    Walsh, Timothy; Aquino, Wilkins; Ridzal, Denis; Kouri, Drew Philip

    2015-12-01

    In this report we formulate eigenvalue-based methods for model calibration using a PDE-constrained optimization framework. We derive the abstract optimization operators from first principles and implement these methods using Sierra-SD and the Rapid Optimization Library (ROL). To demon- strate this approach, we use experimental measurements and an inverse solution to compute the joint and elastic foam properties of a low-fidelity unit (LFU) model.

  19. Achieving joint benefits from joint implementation

    SciTech Connect

    Moomaw, W.R.

    1995-11-01

    Joint Implementation (JI) appears to have been born with Applied Energy Services Guatemala project in 1988. That project, to plant 52 million trees, protect existing forests from cutting and fire, and enhance rural development, is being implemented by CARE Guatemala to offset 120 per cent of the emissions of a small coal burning power plant that has been built in Connecticut. Since that time, several utilities and governments have initiated additional projects. Not all of these necessarily consist of tree planting in other countries, but may consist of energy efficiency or energy conservation programs designed to reduce carbon emissions by at least as much as the additional releases from a new facility. All JI projects share the characteristic of linking the release of greenhouse gases in an industrial country with an offset that reduces or absorbs a comparable amount in another country. The emitter in the industrial country is willing to pay for the reduction elsewhere because costs are less than they would be at home.

  20. Double slotted socket spherical joint

    SciTech Connect

    Bieg, Lothar F.; Benavides, Gilbert L.

    2001-05-22

    A new class of spherical joints is disclosed. These spherical joints are capable of extremely large angular displacements (full cone angles in excess of 270.degree.), while exhibiting no singularities or dead spots in their range of motion. These joints can improve or simplify a wide range of mechanical devices.

  1. Tomographic inversion techniques incorporating physical constraints...

    Office of Scientific and Technical Information (OSTI)

    Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the ...

  2. From Deterministic Inversion to Uncertainty Quantification: Planning...

    Office of Scientific and Technical Information (OSTI)

    Planning a Long Journey in Ice Sheet Modeling. Citation Details In-Document Search Title: From Deterministic Inversion to Uncertainty Quantification: Planning a Long Journey in ...

  3. Formation of tough composite joints

    SciTech Connect

    Brun, M.K.

    1997-05-01

    Joints which exhibit tough fracture behavior were formed in a composite with a Si/SiC matrix reinforced with Textron SCS-6 fibers with either boron nitride or silicon nitride fiber coatings. In composites with BN coatings fibers were aligned uniaxially, while composites with Si{sub 3}N{sub 4}-coated fibers had a 0/90{degree} architecture. Lapped joints (joints with overlapping fingers) were necessary to obtain tough behavior. Geometrical requirements necessary to avoid brittle joint failure have been proposed. Joints with a simple overlap geometry (only a few fingers) would have to be very long in order to prevent brittle failure. Typical failure in these joints is caused by a crack propagating along the interfaces between the joint fingers. Joints of the same overall length, but with geometry changed to be symmetric about the joint centerline and with an extra shear surface exhibited tough fractures accompanied with extensive fiber pullout. The initial matrix cracking of these joints was relatively low because cracks propagated easily through the ends of the fingers. Joints with an optimized stepped sawtooth geometry produced composite-like failures with the stress/strain curves containing an elastic region followed by a region of rising stress with an increase of strain. Increasing the fiber/matrix interfacial strength from 9 to 25 MPa, by changing the fiber coating, increased matrix cracking and ultimate strength of the composite significantly. The best joints had matrix cracking stress and ultimate strength of 138 and 240 MPa, respectively. Joint failure was preceded by multiple matrix cracking in the entire composite. The high strength of the joints will permit building of structures containing joints with only a minor reduction of design stresses.

  4. Handbook on dynamics of jointed structures.

    SciTech Connect

    Ames, Nicoli M.; Lauffer, James P.; Jew, Michael D.; Segalman, Daniel Joseph; Gregory, Danny Lynn; Starr, Michael James; Resor, Brian Ray

    2009-07-01

    The problem of understanding and modeling the complicated physics underlying the action and response of the interfaces in typical structures under dynamic loading conditions has occupied researchers for many decades. This handbook presents an integrated approach to the goal of dynamic modeling of typical jointed structures, beginning with a mathematical assessment of experimental or simulation data, development of constitutive models to account for load histories to deformation, establishment of kinematic models coupling to the continuum models, and application of finite element analysis leading to dynamic structural simulation. In addition, formulations are discussed to mitigate the very short simulation time steps that appear to be required in numerical simulation for problems such as this. This handbook satisfies the commitment to DOE that Sandia will develop the technical content and write a Joints Handbook. The content will include: (1) Methods for characterizing the nonlinear stiffness and energy dissipation for typical joints used in mechanical systems and components. (2) The methodology will include practical guidance on experiments, and reduced order models that can be used to characterize joint behavior. (3) Examples for typical bolted and screw joints will be provided.

  5. Stochastic Inversion of 2D Magnetotelluric Data

    Energy Science and Technology Software Center

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  6. MODEL SELECTION FOR SPECTROPOLARIMETRIC INVERSIONS

    SciTech Connect

    Asensio Ramos, A.; Manso Sainz, R.; Martinez Gonzalez, M. J.; Socas-Navarro, H.; Viticchie, B.

    2012-04-01

    Inferring magnetic and thermodynamic information from spectropolarimetric observations relies on the assumption of a parameterized model atmosphere whose parameters are tuned by comparison with observations. Often, the choice of the underlying atmospheric model is based on subjective reasons. In other cases, complex models are chosen based on objective reasons (for instance, the necessity to explain asymmetries in the Stokes profiles) but it is not clear what degree of complexity is needed. The lack of an objective way of comparing models has, sometimes, led to opposing views of the solar magnetism because the inferred physical scenarios are essentially different. We present the first quantitative model comparison based on the computation of the Bayesian evidence ratios for spectropolarimetric observations. Our results show that there is not a single model appropriate for all profiles simultaneously. Data with moderate signal-to-noise ratios (S/Ns) favor models without gradients along the line of sight. If the observations show clear circular and linear polarization signals above the noise level, models with gradients along the line are preferred. As a general rule, observations with large S/Ns favor more complex models. We demonstrate that the evidence ratios correlate well with simple proxies. Therefore, we propose to calculate these proxies when carrying out standard least-squares inversions to allow for model comparison in the future.

  7. Tomographic inversion techniques incorporating physical constraints for line integrated spectroscopy in stellarators and tokamaksa)

    DOE PAGES [OSTI]

    Pablant, N. A.; Bell, R. E.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Lazerson, S.; Morita, S.

    2014-08-08

    Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at LHD. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy and tomographic inversion, XICSmore » can provide pro file measurements of the local emissivity, temperature and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modifi ed Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.« less

  8. Tomographic inversion techniques incorporating physical constraints for line integrated spectroscopy in stellarators and tokamaksa)

    SciTech Connect

    Pablant, N. A.; Bell, R. E.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Lazerson, S.; Morita, S.

    2014-11-01

    Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at LHD. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy and tomographic inversion, XICS can provide pro#12;file measurements of the local emissivity, temperature and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modifi#12;ed Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.

  9. PNNL: About PNNL - Joint Appointments

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Mike Hochella Mike Hochella, a joint appointee between Virginia Tech and PNNL, is an Earth scientist specializing in nano-bio-geo-environmental science at local, regional, and ...

  10. Inverse Design Summer School brochure, Sept 2011

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Denver Marriott West * 1717 Denver West Blvd. * Golden, CO 80401 1-888-238-1803 (toll-free) * 303-279-9100 (local) Inverse Design Summer School September 13-14, 2011 The Center for Inverse Design-an Energy Frontier Research Center of the U.S. Department of Energy- is offering a no-cost, two-day summer school on inverse design. We invite you to attend if you are a: * Scientist or engineer interested in materials design and discovery * Technical leader in materials, electronics, or chemical

  11. CRUCIFORM CONTROL ROD JOINT

    DOEpatents

    Thorp, A.G. II

    1962-08-01

    An invention is described which relates to nuclear reactor control rod components and more particularly to a joint between cruciform control rod members and cruciform control rod follower members. In one embodiment this invention provides interfitting crossed arms at adjacent ends of a control rod and its follower in abutting relation. This holds the members against relative opposite longitudinal movement while a compression member keys the arms against relative opposite rotation around a common axis. Means are also provided for centering the control rod and its follower on a common axis and for selectively releasing the control rod from its follower for the insertion of a replacement of the control rod and reuse of the follower. (AEC)

  12. 3D electromagnetic inversion for environmental site characterization

    SciTech Connect

    Alumbaugh, D.L.; Newman, G.A.

    1997-04-01

    A 3-D non-linear electromagnetic inversion scheme has been developed to produce images of subsurface conductivity structure from electromagnetic geophysical data. The solution is obtained by successive linearized model updates where full forward modeling is employed at each iteration to compute model sensitivities and predicted data. Regularization is applied to the problem to provide stability. Because the inverse part of the problem requires the solution of 10`s to 100`s of thousands of unknowns, and because each inverse iteration requires many forward models to be computed, the code has been implemented on massively parallel computer platforms. The use of the inversion code to image environmental sites is demonstrated on a data set collected with the Apex Parametrics {open_quote}MaxMin I-8S{close_quote} over a section of stacked barrels and metal filled boxes at the Idaho National Laboratory`s {open_quote}Cold Test Pit{close_quote}. The MaxMin is a loop-loop frequency domain system which operates from 440 Hz up to 56 kHz using various coil separations; for this survey coil separations of 15, 30 and 60 feet were employed. The out-of phase data are shown to be of very good quality while the in-phase are rather noisy due to slight mispositioning errors, which cause improper cancellation of the primary free space field in the receiver. Weighting the data appropriately by the estimated noise and applying the inversion scheme is demonstrated to better define the structure of the pit. In addition, comparisons are given for single coil separations and multiple separations to show the benefits of using multiple offset data.

  13. Time-lapse Joint Inversion of Geophysical Data and its Applications...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Colorado School of Mines, Golden, CO (United States) Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Office ...

  14. 2D Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data...

    OpenEI (Open Energy Information) [EERE & EIA]

    depends on the number and spacing of the AMT sites. The models obtained from experimental data display a low resistivity zone (< 20 Omega m) in the central part of the...

  15. Inverse Pm3(-)n cubic micellar lyotropic phases from zwitterionic...

    Office of Scientific and Technical Information (OSTI)

    Inverse Pm3(-)n cubic micellar lyotropic phases from zwitterionic triazolium gemini surfactants Citation Details In-Document Search Title: Inverse Pm3(-)n cubic micellar lyotropic...

  16. Importance of Elevation and Temperature Inversions for the Interpretat...

    OpenEI (Open Energy Information) [EERE & EIA]

    with elevation, on which temperature inversions appear superimposed as opposite trends. Such inversions are common and they should be taken into account, along with the...

  17. Seismic Inversion Methods (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Title: Seismic Inversion Methods With the rapid advances in sophisticated solar modeling and the abundance of high-quality solar pulsation data, efficient and robust inversion ...

  18. Femtosecond Population Inversion and Stimulated Emission of Dense...

    Office of Scientific and Technical Information (OSTI)

    Femtosecond Population Inversion and Stimulated Emission of Dense Dirac Fermions in Graphene Citation Details In-Document Search Title: Femtosecond Population Inversion and...

  19. Method of forming a joint

    DOEpatents

    Butt, Darryl Paul; Cutler, Raymond Ashton; Rynders, Steven Walton; Carolan, Michael Francis

    2006-08-22

    A method of joining at least two sintered bodies to form a composite structure, including providing a first multicomponent metallic oxide having a perovskitic or fluorite crystal structure; providing a second sintered body including a second multicomponent metallic oxide having a crystal structure of the same type as the first; and providing at an interface a joint material containing at least one metal oxide containing at least one metal identically contained in at least one of the first and second multicomponent metallic oxides. The joint material is free of cations of Si, Ge, Sn, Pb, P and Te and has a melting point below the sintering temperatures of both sintered bodies. The joint material is heated to a temperature above the melting point of the metal oxide(s) and below the sintering temperatures of the sintered bodies to form the joint. Structures containing such joints are also disclosed.

  20. Seismicity and structure of Akutan and Makushin Volcanoes, Alaska, using joint body and surface wave tomography

    SciTech Connect

    Syracuse, E. M.; Maceira, M.; Zhang, H.; Thurber, C. H.

    2015-02-18

    Joint inversions of seismic data recover models that simultaneously fit multiple constraints while playing upon the strengths of each data type. Here, we jointly invert 14 years of local earthquake body wave arrival times from the Alaska Volcano Observatory catalog and Rayleigh wave dispersion curves based upon ambient noise measurements for local Vp, Vs, and hypocentral locations at Akutan and Makushin Volcanoes using a new joint inversion algorithm.The velocity structure and relocated seismicity of both volcanoes are significantly more complex than many other volcanoes studied using similar techniques. Seismicity is distributed among several areas beneath or beyond the flanks of both volcanoes, illuminating a variety of volcanic and tectonic features. The velocity structures of the two volcanoes are exemplified by the presence of narrow high-Vp features in the near surface, indicating likely current or remnant pathways of magma to the surface. A single broad low-Vp region beneath each volcano is slightly offset from each summit and centered at approximately 7 km depth, indicating a potential magma chamber, where magma is stored over longer time periods. Differing recovery capabilities of the Vp and Vs datasets indicate that the results of these types of joint inversions must be interpreted carefully.

  1. Seismicity and structure of Akutan and Makushin Volcanoes, Alaska, using joint body and surface wave tomography

    DOE PAGES [OSTI]

    Syracuse, E. M.; Maceira, M.; Zhang, H.; Thurber, C. H.

    2015-02-18

    Joint inversions of seismic data recover models that simultaneously fit multiple constraints while playing upon the strengths of each data type. Here, we jointly invert 14 years of local earthquake body wave arrival times from the Alaska Volcano Observatory catalog and Rayleigh wave dispersion curves based upon ambient noise measurements for local Vp, Vs, and hypocentral locations at Akutan and Makushin Volcanoes using a new joint inversion algorithm.The velocity structure and relocated seismicity of both volcanoes are significantly more complex than many other volcanoes studied using similar techniques. Seismicity is distributed among several areas beneath or beyond the flanks ofmore » both volcanoes, illuminating a variety of volcanic and tectonic features. The velocity structures of the two volcanoes are exemplified by the presence of narrow high-Vp features in the near surface, indicating likely current or remnant pathways of magma to the surface. A single broad low-Vp region beneath each volcano is slightly offset from each summit and centered at approximately 7 km depth, indicating a potential magma chamber, where magma is stored over longer time periods. Differing recovery capabilities of the Vp and Vs datasets indicate that the results of these types of joint inversions must be interpreted carefully.« less

  2. Center for Inverse Design: Organization of the Center for Inverse Design

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Organization of the Center for Inverse Design This page shows the organizational management structure of the Center for Inverse Design, an Energy Frontier Research Center. It also describes the roles and responsibilities of the key staff within the Center for Inverse Design. Large blue equilateral triangle pointing up with a smaller purple equilateral triangle pointing down enclosed within the larger triangle that divides the larger triangle into three smaller blue triangles. The upper small

  3. HBCU/UCR Joint Kickoff Meeting - 2015

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    5 Crosscutting Research Technology Program 2015 HBCU/UCR Joint Kickoff Meeting Tuesday, October 27 Welcome and Introductory Remarks (Jessica Mullen and Bob Romanosky) Passive Wireless Sensors Fabricated by Direct-Writing for Temperature and Health Monitoring of Energy Systems in Harsh-Environments PI: Edward Sabolsky, West Virginia University Wireless 3D Nanorod Composite Arrays based High Temperature Surface-Acoustic Wave Sensors for Selective Gas Detection through Machine Learning Algorithms

  4. Introduction to Using NERSC for the Joint Genome Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NERSC Introduction to Using NERSC for the Joint Genome Institute May 2, 2011 jgi logo sm NERSC Training Event 1:00-5:00 p.m. PDT May 2, 2011 Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA Introduction to Using NERSC Richard Gerber, NERSC User Services Group Shane Canon, NERSC Technology Integration Group This half-day training will enable new users from the Joint Genome Institute to get connected and running jobs at NERSC. We will cover NERSC computational and storage systems,

  5. Joint NERSC/OLCF/NICS Cray XT5 Workshop

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Events » Joint NERSC/OLCF/NICS Cray XT5 Workshop Joint NERSC/OLCF/NICS Cray XT5 Workshop February 1, 2010 February 1-3, 2010 Berkeley, CA The Joint Cray XT5 Workshop is designed to provide an in-depth introduction to using the world's newest and largest Cray XT5 systems. Representatives and staff from the National Energy Research Scientific Computing Center, the Oak Ridge Leadership Computing Facility, the National Institute for Computational Science, Cray, and AMD will explain how to use XT5

  6. Italy Joint Statement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Italy Joint Statement Italy Joint Statement " U.S.-Italy Joint Statement prepared as part of the International Partnership for a Hydrogen Economy " italy_joint_statement.pdf (63.17 KB) More Documents & Publications (Energy Efficiency) Joint Statement by Energy Ministers of G8, The People's Republic of China, India and The Republic of Korea (June 2008) Joint Statement by Energy Ministers of G8, The People's Republic of China, India and The Republic of Korea

  7. Jurassic extension and Alpine inversion of the northern Morocco

    SciTech Connect

    Zizi, M. )

    1993-09-01

    The lower Mesozoic half grabens of northern Morocco form part of an extensional system that is related to the opening of the western Tethys. They appear to be somewhat younger than the Triassic-Jurassic systems associated with the opening the Atlantic Ocean. During the Tertiary and as consequence of the Alpine collision of Africa with Europe, these half graben systems were inverted as shown by the High and the Middle Atlas mountains. Seismic illustrations of similar but smaller inversion structures are available from the Guercif area and the [open quotes]Rides Prerifaines[close quotes] of northern Morocco. These seismic profiles serve as small models for the much larger Atlas Mountains. In the Guercif area, the inversions are limited in scope, but in the [open quotes]Ride Prerifaines[close quotes] are extensive decollement systems that sole out in the Triassic evaporites. These systems evolve into complex thrust faults and associated lateral ramps that are strongly influenced by the configuration of the Jurassic transtensional systems. Significant hydrocarbon accumulation have been known for some time from the [open quotes]Rides Prerifaines.[close quotes] A review of the geometry of the inverted half-graben systems, combined with detailed stratigraphic studies, is likely to lead to the discovery of additional reserves in the area.

  8. Bayesian Abel Inversion in Quantitative X-Ray Radiography

    DOE PAGES [OSTI]

    Howard, Marylesa; Fowler, Michael; Luttman, Aaron; Mitchell, Stephen E.; Hock, Margaret C.

    2016-05-19

    A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and uoresces in the visible spectrum in response to the absorbed photons, and a CCD camera that images the visible light emitted from the scintillator. The intensity image is related to areal density, and, for an object that is radially symmetric about a central axis, the Abel transform then gives the object's volumetric density. Two of the primary drawbacks to classical variational methods for Abel inversion are their sensitivity to the type andmore » scale of regularization chosen and the lack of natural methods for quantifying the uncertainties associated with the reconstructions. In this work we cast the Abel inversion problem within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown density pro le, the data precision matrix, and two scale parameters. This allows the data to drive the localization of features in the reconstruction and results in a joint posterior distribution for the unknown density pro le, the prior parameters, and the spatial structure of the precision matrix. Results of the density reconstructions and pointwise uncertainty estimates are presented for both synthetic signals and real data from a U.S. Department of Energy X-ray imaging facility.« less

  9. Climate Leaders Joint Venture | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Leaders Joint Venture Jump to: navigation, search Name: Climate Leaders' Joint Venture Place: Dallas, Texas Product: Tudor Investment and Camco International have partnered to...

  10. Malibu Joint Venture | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Malibu Joint Venture Jump to: navigation, search Name: Malibu Joint Venture Place: Germany Sector: Solar Product: String representation "German utility ... e of next year." is too...

  11. Russian Health Studies Program - Joint Coordinating Committee...

    Energy.gov [DOE] (indexed site)

    Joint Coordinating Committee for Radiation Effects Research (JCCRER) All About the Joint Coordinating Committee for Radiation Effects Research What is the JCCRER? Why is it ...

  12. Markov Chain Monte Carlo Sampling Methods for 1D Seismic and EM Data Inversion

    Energy Science and Technology Software Center

    2008-09-22

    This software provides several Markov chain Monte Carlo sampling methods for the Bayesian model developed for inverting 1D marine seismic and controlled source electromagnetic (CSEM) data. The current software can be used for individual inversion of seismic AVO and CSEM data and for joint inversion of both seismic and EM data sets. The structure of the software is very general and flexible, and it allows users to incorporate their own forward simulation codes and rockmore » physics model codes easily into this software. Although the softwae was developed using C and C++ computer languages, the user-supplied codes can be written in C, C++, or various versions of Fortran languages. The software provides clear interfaces for users to plug in their own codes. The output of this software is in the format that the R free software CODA can directly read to build MCMC objects.« less

  13. Inverse scattering theory: Inverse scattering series method for one dimensional non-compact support potential

    SciTech Connect

    Yao, Jie; Lesage, Anne-Cécile; Hussain, Fazle; Bodmann, Bernhard G.; Kouri, Donald J.

    2014-12-15

    The reversion of the Born-Neumann series of the Lippmann-Schwinger equation is one of the standard ways to solve the inverse acoustic scattering problem. One limitation of the current inversion methods based on the reversion of the Born-Neumann series is that the velocity potential should have compact support. However, this assumption cannot be satisfied in certain cases, especially in seismic inversion. Based on the idea of distorted wave scattering, we explore an inverse scattering method for velocity potentials without compact support. The strategy is to decompose the actual medium as a known single interface reference medium, which has the same asymptotic form as the actual medium and a perturbative scattering potential with compact support. After introducing the method to calculate the Green’s function for the known reference potential, the inverse scattering series and Volterra inverse scattering series are derived for the perturbative potential. Analytical and numerical examples demonstrate the feasibility and effectiveness of this method. Besides, to ensure stability of the numerical computation, the Lanczos averaging method is employed as a filter to reduce the Gibbs oscillations for the truncated discrete inverse Fourier transform of each order. Our method provides a rigorous mathematical framework for inverse acoustic scattering with a non-compact support velocity potential.

  14. Partitioned Waveform Inversion Applied to Eurasia and Northern Africa

    SciTech Connect

    bedle, H; Matzel, E; Flanagan, M

    2006-07-27

    This report summarizes the data analysis achieved during Heather Bedle's eleven-week Technical Scholar internship at Lawrence Livermore National Labs during the early summer 2006. The work completed during this internship resulted in constraints on the crustal and upper mantle S-velocity structure in Northern Africa, the Mediterranean, the Middle East, and Europe, through the fitting of regional waveform data. This data extends current raypath coverage and will be included in a joint inversion along with data from surface wave group velocity measurements, S and P teleseismic arrival time data, and receiver function data to create an improved velocity model of the upper mantle in this region. The tectonic structure of the North African/Mediterranean/Europe/Middle Eastern study region is extremely heterogeneous. This region consists of, among others, stable cratons and platforms such as the West Africa Craton, and Baltica in Northern Europe; oceanic subduction zones throughout the Mediterranean Sea where the African and Eurasian plate collide; regions of continental collision as the Arabian Plate moves northward into the Turkish Plate; and rifting in the Red Sea, separating the Arabian and Nubian shields. With such diverse tectonic structures, many of the waveforms were difficult to fit. This is not unexpected as the waveforms are fit using an averaged structure. In many cases the raypaths encounter several tectonic features, complicating the waveform, and making it hard for the software to converge on a 1D average structure. Overall, the quality of the waveform data was average, with roughly 30% of the waveforms being discarded due to excessive noise that interfered with the frequency ranges of interest. An inversion for the 3D S-velocity structure of this region was also performed following the methodology of Partitioned Waveform Inversion (Nolet, 1990; Van der Lee and Nolet, 1997). The addition of the newly fit waveforms drastically extends the range of the model

  15. Error handling strategies in multiphase inverse modeling

    SciTech Connect

    Finsterle, S.; Zhang, Y.

    2010-12-01

    Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.

  16. Pyrothermal treatment of welded joints

    SciTech Connect

    Serikov, S.V.; Idiyatullin, R.S.; Myakushkin, S.N.; Yaufman, V.V.

    1992-03-01

    The results of investigation of the structure and distribution of residual stresses in welded joints in pipes after heat treatment, which includes heating of the surface being treated due to combustion of plates formed from a thermite-type material of pyrotechnic composition, placed around the perimeter of the welded joint, and also an assessment of the level of residual stresses prior to and after pyrotechnic treatment demonstrated the promising nature of the proposed method. 5 refs., 5 figs.

  17. Evaluating atmospheric CO2 inversions at multiple scales over a highly-inventoried agricultural landscape.

    SciTech Connect

    Schuh, Andrew E.; Lauvaux, Thomas; West, Tristram O.; Denning, A.; Davis, Kenneth J.; Miles, Natasha; Richardson, S. J.; Uliasz, Marek; Lokupitiya, Erandathie; Cooley, Dan; Andrews, Arlyn; Ogle, Stephen

    2013-05-01

    An intensive regional research campaign was conducted by the North American Carbon Program (NACP) in 2005 to study the carbon cycle of the highly productive agricultural regions of the Midwestern United States. Forty-_ve di_erent associated projects were spawned across _ve U.S. agencies over the course of nearly a decade involving hundreds of researchers. The primary objective of the project was to investigate the ability of atmospheric inversion techniques to use highly calibrated CO2 mixing ratio data to estimate CO2 exchange over the major croplands of the U.S. Statistics from densely monitored crop production, consisting primarily corn and soybeans, provided the backbone of a well-studied\\bottom up"flux estimate that was used to evaluate the atmospheric inversion results. Three different inversion systems, representing spatial scales varying from high resolution mesoscale, to continental, to global, coupled to different transport models and optimization techniques were compared to the bottom up" inventory estimates. The mean annual CO2-C sink for 2007 from the inversion systems ranged from 120 TgC to 170 TgC, when viewed across a wide variety of inversion setups, with the best" point estimates ranging from 145 TgC to 155 TgC. Inversion-based mean C sink estimates were generally slightly stronger, but statistically indistinguishable,from the inventory estimate whose mean C sink was 135 TgC. The inversion results showed temporal correlations at seasonal lengths while week to week correlations remained low. Comparisons were made between atmospheric transport yields of the two regional inversion systems, which despite having different influence footprints in space and time due to differences in underlying transport models and external forcings, showed similarity when aggregated in space and time.

  18. The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland

    SciTech Connect

    Mernild, Sebastian Haugard [Los Alamos National Laboratory; Liston, Glen [COLORADO STATE UNIV.

    2009-01-01

    In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y

  19. US initiative on joint implementation: An overview

    SciTech Connect

    Dixon, R.K.

    1996-12-31

    More than 150 countries are now Party to United Nations Framework Convention on Climate Change, which seeks as its ultimate objective, to stabilize atmospheric concentrations of greenhouse gases at a level that would prevent dangerous human interference with the global climate system. As a step towards that goal, all Parties are to take measures to mitigate greenhouse gas emissions and to promote cooperation in the development and diffusion of technologies and practices that control or reduce emissions and enhance sinks of greenhouse gases. In the U.S. view, efforts between countries or entities within them to reduce net greenhouse gas emissions undertaken cooperatively, termed joint implementation (JI), holds significant potential both for reducing the threat of global climate change and for promoting sustainable development. To develop and operationalize the JI concept, the U.S. launched its Initiative on Joint Implementation (IJI) in October, 1993, and designed a program to attract private sector resources and to encourage the diffusion of innovative technologies to mitigate greenhouse gas emissions. The goals of U.S. IJI complement the principles of Decision 5, First Conference of the FCCC Parties, establishing an Activities Implemented Jointly pilot phase.

  20. A feasibility study for experimentally determining dynamic force distribution in a lap joint.

    SciTech Connect

    Mayes, Randall Lee

    2013-11-01

    Developing constitutive models of the physics in mechanical joints is currently stymied by inability to measure forces and displacements within the joint. The current state of the art estimates whole joint stiffness and energy loss per cycle from external measured force input and one or two acceleration responses. To validate constitutive models beyond this state requires a measurement of the distributed forces and displacements at the joint interface. Unfortunately, introducing measurement devices at the interface completely disrupts the desired physics. A feasibility study is presented for a non-intrusive method of solving for the interface dynamic forces from an inverse problem using full field measured responses. The responses come from the viewable surface of a beam. The noise levels associated with digital image correlation and continuous scanning laser Doppler velocimetry are evaluated from typical beam experiments. Two inverse problems are simulated. One utilizes the extended Sum of Weighted Accelerations Technique (SWAT). The second is a new approach dubbed the method of truncated orthogonal forces. These methods are much more robust if the contact patch geometry is well identified. Various approaches to identifying the contact patch are investigated, including ion marker tracking, Prussian blue and ultrasonic measurements. A typical experiment is conceived for a beam which has a lap joint at one end with a single bolt connecting it to another identical beam. In a virtual test using the beam finite element analysis, it appears that the SWAT inverse method requires evaluation of too many coefficients to adequately identify the force distribution to be viable. However, the method of truncated orthogonal forces appears viable with current digital image correlation (and probably other) imaging techniques.

  1. Center for Inverse Design: Partner Institutions in the Center for Inverse

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Design Partner Institutions in the Center for Inverse Design This page provides information about the six institutions that are partners in the Center of Inverse Design: the National Renewable Energy Laboratory (NREL), Colorado School of Mines (CSM), Oregon State University (OSU), Northwestern University (NU), Stanford Linear Accelerator Center (SLAC), and University of Colorado at Boulder (CU). You can also find information about the groups and departments within these institutions, where

  2. Implement Method for Automated Testing of Markov Chain Convergence into INVERSE for ORNL12-RS-108J: Advanced Multi-Dimensional Forward and Inverse Modeling

    SciTech Connect

    Bledsoe, Keith C.

    2015-04-01

    The DiffeRential Evolution Adaptive Metropolis (DREAM) method is a powerful optimization/uncertainty quantification tool used to solve inverse transport problems in Los Alamos National Laboratorys INVERSE code system. The DREAM method has been shown to be adept at accurate uncertainty quantification, but it can be very computationally demanding. Previously, the DREAM method in INVERSE performed a user-defined number of particle transport calculations. This placed a burden on the user to guess the number of calculations that would be required to accurately solve any given problem. This report discusses a new approach that has been implemented into INVERSE, the Gelman-Rubin convergence metric. This metric automatically detects when an appropriate number of transport calculations have been completed and the uncertainty in the inverse problem has been accurately calculated. In a test problem with a spherical geometry, this method was found to decrease the number of transport calculations (and thus time required) to solve a problem by an average of over 90%. In a cylindrical test geometry, a 75% decrease was obtained.

  3. Approximate inverse preconditioners for general sparse matrices

    SciTech Connect

    Chow, E.; Saad, Y.

    1994-12-31

    Preconditioned Krylov subspace methods are often very efficient in solving sparse linear matrices that arise from the discretization of elliptic partial differential equations. However, for general sparse indifinite matrices, the usual ILU preconditioners fail, often because of the fact that the resulting factors L and U give rise to unstable forward and backward sweeps. In such cases, alternative preconditioners based on approximate inverses may be attractive. We are currently developing a number of such preconditioners based on iterating on each column to get the approximate inverse. For this approach to be efficient, the iteration must be done in sparse mode, i.e., we must use sparse-matrix by sparse-vector type operatoins. We will discuss a few options and compare their performance on standard problems from the Harwell-Boeing collection.

  4. Optical inverse-square displacement sensor

    DOEpatents

    Howe, Robert D.; Kychakoff, George

    1989-01-01

    This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R+.DELTA.R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as ##EQU1##

  5. Optical inverse-square displacement sensor

    DOEpatents

    Howe, R.D.; Kychakoff, G.

    1989-09-12

    This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R + [Delta]R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as given in an equation. 10 figs.

  6. Pole EXpansion and Selected Inversion (PEXSI)

    Energy Science and Technology Software Center

    2014-03-01

    The Pole EXpansion and Selected Inversion method (PEXSI) is a fast method for evaluating certain selected elements of a matrix function. PEXSI is highly scalable on distributed memory parallel machines. For sparse matrices, the PEXSI method can be more efficient than the widely used diagonalization method for evaluating matrix functions, especially when a relatively large number of eigenpairs are needed to be computed in the diagonalization methond

  7. Joint BioEnergy Institute

    SciTech Connect

    Keasling, Jay; Simmons, Blake; Tartaglino, Virginia; Baidoo, Edward; Kothari, Ankita

    2015-06-15

    The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center dedicated to developing advanced biofuels—liquid fuels derived from the solar energy stored in plant biomass that can replace gasoline, diesel and jet fuels.

  8. Balancing aggregation and smoothing errors in inverse models

    DOE PAGES [OSTI]

    Turner, A. J.; Jacob, D. J.

    2015-01-13

    Inverse models use observations of a system (observation vector) to quantify the variables driving that system (state vector) by statistical optimization. When the observation vector is large, such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state vector that is too large cannot be effectively constrained by the observations, leading to smoothing error. However, reducing the dimension of the state vector leads to aggregation error as prior relationships between state vector elements are imposed rather than optimized. Here we present a method for quantifying aggregation and smoothing errors as a function ofmore » state vector dimension, so that a suitable dimension can be selected by minimizing the combined error. Reducing the state vector within the aggregation error constraints can have the added advantage of enabling analytical solution to the inverse problem with full error characterization. We compare three methods for reducing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution state vector elements are projected using radial basis functions (RBFs). The GMM method leads to somewhat lower aggregation error than the other methods, but more importantly it retains resolution of major local features in the state vector while smoothing weak and broad features.« less

  9. Balancing aggregation and smoothing errors in inverse models

    DOE PAGES [OSTI]

    Turner, A. J.; Jacob, D. J.

    2015-06-30

    Inverse models use observations of a system (observation vector) to quantify the variables driving that system (state vector) by statistical optimization. When the observation vector is large, such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state vector that is too large cannot be effectively constrained by the observations, leading to smoothing error. However, reducing the dimension of the state vector leads to aggregation error as prior relationships between state vector elements are imposed rather than optimized. Here we present a method for quantifying aggregation and smoothing errors as a function ofmore » state vector dimension, so that a suitable dimension can be selected by minimizing the combined error. Reducing the state vector within the aggregation error constraints can have the added advantage of enabling analytical solution to the inverse problem with full error characterization. We compare three methods for reducing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution state vector elements are projected using radial basis functions (RBFs). The GMM method leads to somewhat lower aggregation error than the other methods, but more importantly it retains resolution of major local features in the state vector while smoothing weak and broad features.« less

  10. Efficient Inversion of Mult-frequency and Multi-Source Electromagnetic Data

    SciTech Connect

    Gary D. Egbert

    2007-03-22

    The project covered by this report focused on development of efficient but robust non-linear inversion algorithms for electromagnetic induction data, in particular for data collected with multiple receivers, and multiple transmitters, a situation extremely common in eophysical EM subsurface imaging methods. A key observation is that for such multi-transmitter problems each step in commonly used linearized iterative limited memory search schemes such as conjugate gradients (CG) requires solution of forward and adjoint EM problems for each of the N frequencies or sources, essentially generating data sensitivities for an N dimensional data-subspace. These multiple sensitivities allow a good approximation to the full Jacobian of the data mapping to be built up in many fewer search steps than would be required by application of textbook optimization methods, which take no account of the multiplicity of forward problems that must be solved for each search step. We have applied this idea to a develop a hybrid inversion scheme that combines features of the iterative limited memory type methods with a Newton-type approach using a partial calculation of the Jacobian. Initial tests on 2D problems show that the new approach produces results essentially identical to a Newton type Occam minimum structure inversion, while running more rapidly than an iterative (fixed regularization parameter) CG style inversion. Memory requirements, while greater than for something like CG, are modest enough that even in 3D the scheme should allow 3D inverse problems to be solved on a common desktop PC, at least for modest (~ 100 sites, 15-20 frequencies) data sets. A secondary focus of the research has been development of a modular system for EM inversion, using an object oriented approach. This system has proven useful for more rapid prototyping of inversion algorithms, in particular allowing initial development and testing to be conducted with two-dimensional example problems, before

  11. U.S.-Japan Joint Statement

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Joint Statement of The United States and Japan on High-Level Consultations on Climate Change Following is the text of a joint statement released by the U.S. and Japan following ...

  12. Digital Sofcell Digital Ultracap joint venture | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ultracap joint venture Jump to: navigation, search Name: Digital Sofcell - Digital Ultracap joint venture Product: Digital Sofcell will joint venture with Digital Ultracap to...

  13. CLEERS Coordination & Joint Development of Benchmark Kinetics...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications CLEERS Coordination & Joint Development of Benchmark Kinetics for LNT & SCR CLEERS Coordination & Development of Catalyst Process Kinetic...

  14. DOE-EERC jointly sponsored research program

    SciTech Connect

    Hendrikson, J.G.; Sondreal, E.A.

    1999-09-01

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC21-93MC30098 funded through the Office of Fossil Energy and administered at the Federal Energy Technology Center (FETC) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy and Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying efficient, nonpolluting energy technologies that can compete effectively in meeting market demands for clean fuels, chemical feedstocks, and electricity in the 21st century. The objective of the JSRP was to advance the deployment of advanced technologies for improving energy efficiency and environmental performance through jointly sponsored research on topics that would not be adequately addressed by the private sector alone. Examples of such topics include the barriers to hot-gas cleaning impeding the deployment of high-efficiency power systems and the search for practical means for sequestering CO{sub 2} generated by fossil fuel combustion. The selection of particular research projects was guided by a combination of DOE priorities and market needs, as provided by the requirement for joint venture funding approved both by DOE and the private sector sponsor. The research addressed many different energy resource and related environmental problems, with emphasis directed toward the EERC's historic lead mission in low-rank coals (LRCs), which represent approximately half of the U.S. coal resources in the conterminous states, much larger potential resources in Alaska, and a major part of the energy base in the former U.S.S.R., East Central Europe, and the Pacific Rim. The Base and JSRP agreements were tailored to the growing awareness of critical environmental issues, including water supply and quality, air toxics (e.g., mercury), fine respirable particulate matter (PM{sub 2.5}), and the goal of zero net CO{sub 2} emissions.

  15. Joint Munitions Program | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Joint Munitions Program DOD/DOE NNSA Joint Munitions Program: 30 years of collaborative innovation As part of NNSA's commitment to protecting and preserving the nation's nuclear deterrent, NNSA collaborates with the Department of Defense (DOD) in the Joint Munitions Program (JMP). This year marks more than 30 years of partnership through the JMP to improve and invest in innovative

  16. The inverse problems of wing panel manufacture processes

    SciTech Connect

    Oleinikov, A. I.; Bormotin, K. S.

    2013-12-16

    It is shown that inverse problems of steady-state creep bending of plates in both the geometrically linear and nonlinear formulations can be represented in a variational formulation. Steady-state values of the obtained functionals corresponding to the solutions of the problems of inelastic deformation and springback are determined by applying a finite element procedure to the functionals. Optimal laws of creep deformation are formulated using the criterion of minimizing damage in the functionals of the inverse problems. The formulated problems are reduced to the problems solved by the finite element method using MSC.Marc software. Currently, forming of light metals poses tremendous challenges due to their low ductility at room temperature and their unusual deformation characteristics at hot-cold work: strong asymmetry between tensile and compressive behavior, and a very pronounced anisotropy. We used the constitutive models of steady-state creep of initially transverse isotropy structural materials the kind of the stress state has influence. The paper gives basics of the developed computer-aided system of design, modeling, and electronic simulation targeting the processes of manufacture of wing integral panels. The modeling results can be used to calculate the die tooling, determine the panel processibility, and control panel rejection in the course of forming.

  17. Center for Inverse Design: Need Help?

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Need Help? Use this form to send us your comments and questions, to report problems with the Center for Inverse Design site, or to ask for help in finding information on our site. Enter your name and e-mail address in the boxes provided, then type your message. When you are finished, click "Send Message." If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Content Last Updated: October 09,

  18. Research and development joint ventures

    SciTech Connect

    Not Available

    1984-01-01

    Three panels made up of members of Congress and representatives of research and high technology industries testified at a hearing held to consider H.R. 1952 and H.R. 3393, both bills dealing with joint venture policies that diminish US competitiveness. The bills are designed to eliminate disincentives stemming from antitrust concerns about joint research and development (R and D) activities and to encourage private investment in R and D. The witnesses were asked to evaluate and compare the potential of these bills to overcome institutional barriers and to stimulate capital formation. Three appendices with statements from the National Association of Manufacturers, the Semiconductor Industry Association, and the Institute of Electrical and Electronics Engineers submitted for the record follow the testimony of the eight witnesses. (DCK)

  19. US/Brazil joint pilot project objectives

    SciTech Connect

    1997-12-01

    This paper describes a joint US/Brazil pilot project for rural electrification, whose major goals are: to establish technical, institutional, and economic confidence in using renewable energy (PV and wind) to meet the needs of the citizens of rural Brazil; to establish on-going institutional, individual and business relationships necessary to implement sustainable programs and commitments; to lay the groundwork for larger scale rural electrification through the use of distributed renewable technologies. The projects have supported low power home lighting systems, lighting and refrigeration for schools and medical centers, and water pumping systems. This is viewed as a long term project, where much of the equipment will come from the US, but Brazil will be responsible for program management, and sharing data gained from the program. The paper describes in detail the Brazilian program which was instituted to support this phased project.

  20. Intermetallic Layers in Soldered Joints

    Energy Science and Technology Software Center

    1998-12-10

    ILAG solves the one-dimensional partial differential equations describing the multiphase, multicomponent, solid-state diffusion-controlled growth of intermetallic layers in soldered joints. This software provides an analysis capability for materials researchers to examine intermetallic growth mechanisms in a wide variety of defense and commercial applications involving both traditional and advanced materials. ILAG calculates the interface positions of the layers, as well as the spatial distribution of constituent mass fractions, and outputs the results at user-prescribed simulation times.

  1. Metal-ceramic joint assembly

    DOEpatents

    Li, Jian

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  2. Inverse Load Calculation of Wind Turbine Support Structures - A Numerical Verification Using the Comprehensive Simulation Code FAST: Preprint (Revised)

    SciTech Connect

    Pahn, T.; Jonkman, J.; Rolges, R.; Robertson, A.

    2012-11-01

    Physically measuring the dynamic responses of wind turbine support structures enables the calculation of the applied loads using an inverse procedure. In this process, inverse means deriving the inputs/forces from the outputs/responses. This paper presents results of a numerical verification of such an inverse load calculation. For this verification, the comprehensive simulation code FAST is used. FAST accounts for the coupled dynamics of wind inflow, aerodynamics, elasticity and turbine controls. Simulations are run using a 5-MW onshore wind turbine model with a tubular tower. Both the applied loads due to the instantaneous wind field and the resulting system responses are known from the simulations. Using the system responses as inputs to the inverse calculation, the applied loads are calculated, which in this case are the rotor thrust forces. These forces are compared to the rotor thrust forces known from the FAST simulations. The results of these comparisons are presented to assess the accuracy of the inverse calculation. To study the influences of turbine controls, load cases in normal operation between cut-in and rated wind speed, near rated wind speed and between rated and cut-out wind speed are chosen. The presented study shows that the inverse load calculation is capable of computing very good estimates of the rotor thrust. The accuracy of the inverse calculation does not depend on the control activity of the wind turbine.

  3. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    DOE PAGES [OSTI]

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    2016-08-19

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~101 to ~102 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less

  4. DOE Joint Genome Institute | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    DOE Joint Genome Institute Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Genomic Science DOE Bioenergy Research Centers Bioimaging Technology DOE Joint Genome Institute Structural Biology Radiochemistry & Imaging Instrumentation Radiobiology: Low Dose Radiation Research DOE Human Subjects Protection Program Climate and Environmental Sciences Division (CESD) Research Abstracts Searchable Archive of BER Highlights External link

  5. Quantifying shallow subsurface water and heat dynamics using coupled hydrological-thermal-geophysical inversion

    DOE PAGES [OSTI]

    Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan S.; Kowalsky, Michael B.; Long, Philip; Tokunaga, Tetsu K.; Williams, Kenneth H.

    2016-08-31

    Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme – which is based on a nonisothermal, multiphase hydrological model – provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of themore » dependence of the subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash–Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics.« less

  6. Elastic-Waveform Inversion with Compressive Sensing for Sparse Seismic Data

    SciTech Connect

    Lin, Youzuo; Huang, Lianjie

    2015-01-26

    Accurate velocity models of compressional- and shear-waves are essential for geothermal reservoir characterization and microseismic imaging. Elastic-waveform inversion of multi-component seismic data can provide high-resolution inversion results of subsurface geophysical properties. However, the method requires seismic data acquired using dense source and receiver arrays. In practice, seismic sources and/or geophones are often sparsely distributed on the surface and/or in a borehole, such as 3D vertical seismic profiling (VSP) surveys. We develop a novel elastic-waveform inversion method with compressive sensing for inversion of sparse seismic data. We employ an alternating-minimization algorithm to solve the optimization problem of our new waveform inversion method. We validate our new method using synthetic VSP data for a geophysical model built using geologic features found at the Raft River enhanced-geothermal-system (EGS) field. We apply our method to synthetic VSP data with a sparse source array and compare the results with those obtained with a dense source array. Our numerical results demonstrate that the velocity mode ls produced with our new method using a sparse source array are almost as accurate as those obtained using a dense source array.

  7. Developments in precision casing joint and radioactive bullet measurements for compaction monitoring

    SciTech Connect

    Allen, D.R.

    1981-01-01

    A method has been developed in Wilmington Field, California, for measuring oil zone compaction and expansion by the deformation in well casing. Possible formation compaction is also directly investigated by locating radioactive bullets previously placed in the formation. Random joint lengths, under field conditions, have been repeatedly measured and remeasured with a standard deviation of .0159 ft. (4.8 mm). An alternate system, developed by R.A. Ruedrich et al utilized multiple collar locators and specially milled casing joints. Both systems can be applied to field situations where random joint lengths are found; however, the odometer system should be more reliable under these conditions. 5 refs.

  8. Classical and quantum dynamics in an inverse square potential

    SciTech Connect

    Guillaumn-Espaa, Elisa; Nez-Ypez, H. N.; Salas-Brito, A. L.

    2014-10-15

    The classical motion of a particle in a 3D inverse square potential with negative energy, E, is shown to be geodesic, i.e., equivalent to the particle's free motion on a non-compact phase space manifold irrespective of the sign of the coupling constant. We thus establish that all its classical orbits with E < 0 are unbounded. To analyse the corresponding quantum problem, the Schrdinger equation is solved in momentum space. No discrete energy levels exist in the unrenormalized case and the system shows a complete fall-to-the-center with an energy spectrum unbounded by below. Such behavior corresponds to the non-existence of bound classical orbits. The symmetry of the problem is SO(3) SO(2, 1) corroborating previously obtained results.

  9. n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator

    Energy Science and Technology Software Center

    2012-09-12

    nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator) is a comprehensive well test analysis software package. It provides a user-interface, a well test analysis model and many tools to analyze both field and simulated data. The well test analysis model simulates a single-phase, one-dimensional, radial/non-radial flow regime, with a borehole at the center of the modeled flow system. nSIGHTS solves the radially symmetric n-dimensional forward flow problem using a solver based on a graph-theoretic approach.more » The results of the forward simulation are pressure, and flow rate, given all the input parameters. The parameter estimation portion of nSIGHTS uses a perturbation-based approach to interpret the best-fit well and reservoir parameters, given an observed dataset of pressure and flow rate.« less

  10. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  11. Inverse time-of-flight spectrometer for beam plasma research

    SciTech Connect

    Yushkov, Yu. G., E-mail: yuyushkov@gmail.com; Zolotukhin, D. B.; Tyunkov, A. V. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Oks, E. M. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation); Savkin, K. P. [Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2014-08-15

    The paper describes the design and principle of operation of an inverse time-of-flight spectrometer for research in the plasma produced by an electron beam in the forevacuum pressure range (520 Pa). In the spectrometer, the deflecting plates as well as the drift tube and the primary ion beam measuring system are at high potential with respect to ground. This provides the possibility to measure the mass-charge constitution of the plasma created by a continuous electron beam with a current of up to 300 mA and electron energy of up to 20 keV at forevacuum pressures in the chamber placed at ground potential. Research results on the mass-charge state of the beam plasma are presented and analyzed.

  12. Elasticity and Inverse Temperature Transition in Elastin

    SciTech Connect

    Perticaroli, Stefania; Ehlers, Georg; Jalarvo, Niina; Katsaras, John; Nickels, Jonathan D.

    2015-09-22

    Structurally, elastin is protein and biomaterial that provides elasticity and resilience to a range of tissues. This work provides insights into the elastic properties of elastin and its peculiar inverse temperature transition (ITT). These features are dependent on hydration of elastin and are driven by a similar mechanism of hydrophobic collapse to an entropically favorable state. Moreover, when using neutron scattering, we quantify the changes in the geometry of molecular motions above and below the transition temperature, showing a reduction in the displacement of water-induced motions upon hydrophobic collapse at the ITT. Finally, we measured the collective vibrations of elastin gels as a function of elongation, revealing no changes in the spectral features associated with local rigidity and secondary structure, in agreement with the entropic origin of elasticity.

  13. Elasticity and Inverse Temperature Transition in Elastin

    DOE PAGES [OSTI]

    Perticaroli, Stefania; Ehlers, Georg; Jalarvo, Niina; Katsaras, John; Nickels, Jonathan D.

    2015-09-22

    Structurally, elastin is protein and biomaterial that provides elasticity and resilience to a range of tissues. This work provides insights into the elastic properties of elastin and its peculiar inverse temperature transition (ITT). These features are dependent on hydration of elastin and are driven by a similar mechanism of hydrophobic collapse to an entropically favorable state. Moreover, when using neutron scattering, we quantify the changes in the geometry of molecular motions above and below the transition temperature, showing a reduction in the displacement of water-induced motions upon hydrophobic collapse at the ITT. Finally, we measured the collective vibrations of elastinmore » gels as a function of elongation, revealing no changes in the spectral features associated with local rigidity and secondary structure, in agreement with the entropic origin of elasticity.« less

  14. Inverse free-electron laser accelerator development

    SciTech Connect

    Fisher, A.; Gallardo, J.; Steenbergen, A. van; Sandweiss, J.; Fang, J.M.

    1994-06-01

    The study of the Inverse Free-Electron Laser, as a potential mode of electron acceleration, has been pursued at Brookhaven National Laboratory for a number of years. More recent studies focused on the development of a low energy (few GeV), high gradient, multistage linear accelerator. The authors are presently designing a short accelerator module which will make use of the 50 MeV linac beam and high power (2 {times} 10{sup 11} W) CO{sub 2} laser beam of the Accelerator Test Facility (ATF) at the Center for Accelerator Physics (CAP), Brookhaven National Laboratory. These elements will be used in conjunction with a fast excitation (300 {mu}sec pulse duration) variable period wiggler, to carry out an accelerator demonstration stage experiment.

  15. Joint Center for Artificial Photosynthesis

    ScienceCinema

    Koval, Carl; Lee, Kenny; Houle, Frances; Lewis, Nate

    2016-07-12

    The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology. Established in 2010 as a U.S. Department of Energy (DOE) Energy Innovation Hub, JCAP aims to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide as inputs. JCAP brings together more than 140 top scientists and researchers from the California Institute of Technology and its lead partner, Berkeley Lab, along with collaborators from the SLAC National Accelerator Laboratory, and the University of California campuses at Irvine and San Diego.

  16. Full waveform inversion of solar interior flows

    SciTech Connect

    Hanasoge, Shravan M.

    2014-12-10

    The inference of flows of material in the interior of the Sun is a subject of major interest in helioseismology. Here, we apply techniques of full waveform inversion (FWI) to synthetic data to test flow inversions. In this idealized setup, we do not model seismic realization noise, training the focus entirely on the problem of whether a chosen supergranulation flow model can be seismically recovered. We define the misfit functional as a sum of L {sub 2} norm deviations in travel times between prediction and observation, as measured using short-distance filtered f and p {sub 1} and large-distance unfiltered p modes. FWI allows for the introduction of measurements of choice and iteratively improving the background model, while monitoring the evolution of the misfit in all desired categories. Although the misfit is seen to uniformly reduce in all categories, convergence to the true model is very slow, possibly because it is trapped in a local minimum. The primary source of error is inaccurate depth localization, which, due to density stratification, leads to wrong ratios of horizontal and vertical flow velocities ({sup c}ross talk{sup )}. In the present formulation, the lack of sufficient temporal frequency and spatial resolution makes it difficult to accurately localize flow profiles at depth. We therefore suggest that the most efficient way to discover the global minimum is to perform a probabilistic forward search, involving calculating the misfit associated with a broad range of models (generated, for instance, by a Monte Carlo algorithm) and locating the deepest minimum. Such techniques possess the added advantage of being able to quantify model uncertainty as well as realization noise (data uncertainty).

  17. Stochastic inverse problems: Models and metrics

    SciTech Connect

    Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim; Aldrin, John C.; Annis, Charles; Knopp, Jeremy S.

    2015-03-31

    In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3D®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds.

  18. Center for Inverse Design: Principal Investigators in the Center for

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Inverse Design Principal Investigators in the Center for Inverse Design This page provides brief descriptions of the principal investigators within the Center for Inverse Design. More complete biographical summaries are also available. Principal investigators are organized within their research institutions-the National Renewable Energy Laboratory (NREL), Colorado School of Mines (CSM), Oregon State University (OSU), Northwestern University (NU), Stanford Linear Accelerator Center (SLAC),

  19. Center for Inverse Design: Research Thrusts and Subtasks

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Thrusts and Subtasks The Center for Inverse Design creates an unprecedented coupling of theory and experiment to realize the thesis that inverse design can revolutionize the way materials science will be done in the future. Inverse design entails the theory-driven search of materials with given functionality, and discovery of hitherto unreported materials with relevant functionality. We have three thrusts, with six subtasks, that map directly into the overall Center objectives.

  20. The Utility-Scale Joint-Venture Program

    SciTech Connect

    Gallup, D.R.; Mancini, T.R.

    1994-06-01

    The Department of Energy`s Utility-Scale Joint-Venture (USJV) Program was developed to help industry commercialize dish/engine electric systems. Sandia National Laboratories developed this program and has placed two contracts, one with Science Applications International Corporation`s Energy Projects Division and one with the Cummins Power Generation Company. In this paper we present the designs for the two dish/Stirling systems that are being developed through the USJV Program.

  1. Jointly Sponsored Research Program Energy Related Research

    SciTech Connect

    Western Research Institute

    2009-03-31

    Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental impacts

  2. On parameterization of the inverse problem for estimating aquifer...

    Office of Scientific and Technical Information (OSTI)

    Title: On parameterization of the inverse problem for estimating aquifer properties using tracer data Authors: Kowalsky, M. B. ; Finsterle, S. ; Commer, M. ; Williams, K. H. ; ...

  3. Three-dimensional gravity modeling and focusing inversion using...

    Office of Scientific and Technical Information (OSTI)

    Using synthetic data from models of varying complexity and a field data set, it is demonstrated that, given an adequate depth weighting function, the gravity inversion in the ...

  4. Inverse Modeling of Hydrologic Parameters Using Surface Flux...

    Office of Scientific and Technical Information (OSTI)

    and illustrated the necessity and possibility of parameter calibration. Two inversion strategies, the deterministic least-square fitting and stochastic Markov-Chain...

  5. Inversion of synthetic aperture radar interferograms for sources...

    OpenEI (Open Energy Information) [EERE & EIA]

    Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field Jump to: navigation, search OpenEI Reference...

  6. Inverse Sensitivity/Uncertainty Methods Development for Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Development for Nuclear Fuel Cycle Applications Citation Details In-Document Search Title: Inverse SensitivityUncertainty Methods Development for Nuclear Fuel Cycle ...

  7. Estimating Bacteria Emissions from Inversion of Atmospheric Transport...

    Office of Scientific and Technical Information (OSTI)

    Bacteria Emissions from Inversion of Atmospheric Transport: Sensitivity to Modelled Particle Characteristics Citation Details In-Document Search Title: Estimating Bacteria ...

  8. A Target-Oriented Magnetotelluric Inversion Approach For Characterizin...

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Target-Oriented Magnetotelluric Inversion Approach For...

  9. Viscoacoustic wave form inversion of transmission data for velocity...

    Office of Scientific and Technical Information (OSTI)

    and attenuation. An efficient frequency domain implementation is applied that consists of performing a series of single frequency inversions sweeping from low to high frequency. ...

  10. Quantifying the influences of spectral resolution on uncertainty in leaf trait estimates through a Bayesian approach to RTM inversion

    DOE PAGES [OSTI]

    Shiklomanov, Alexey N.; Dietze, Michael C.; Viskari, Toni; Townsend, Philip A.; Serbin, Shawn P.

    2016-06-09

    The remote monitoring of plant canopies is critically needed for understanding of terrestrial ecosystem mechanics and biodiversity as well as capturing the short- to long-term responses of vegetation to disturbance and climate change. A variety of orbital, sub-orbital, and field instruments have been used to retrieve optical spectral signals and to study different vegetation properties such as plant biochemistry, nutrient cycling, physiology, water status, and stress. Radiative transfer models (RTMs) provide a mechanistic link between vegetation properties and observed spectral features, and RTM spectral inversion is a useful framework for estimating these properties from spectral data. However, existing approaches tomore » RTM spectral inversion are typically limited by the inability to characterize uncertainty in parameter estimates. Here, we introduce a Bayesian algorithm for the spectral inversion of the PROSPECT 5 leaf RTM that is distinct from past approaches in two important ways: First, the algorithm only uses reflectance and does not require transmittance observations, which have been plagued by a variety of measurement and equipment challenges. Second, the output is not a point estimate for each parameter but rather the joint probability distribution that includes estimates of parameter uncertainties and covariance structure. We validated our inversion approach using a database of leaf spectra together with measurements of equivalent water thickness (EWT) and leaf dry mass per unit area (LMA). The parameters estimated by our inversion were able to accurately reproduce the observed reflectance (RMSEVIS = 0.0063, RMSENIR-SWIR = 0.0098) and transmittance (RMSEVIS = 0.0404, RMSENIR-SWIR = 0.0551) for both broadleaved and conifer species. Inversion estimates of EWT and LMA for broadleaved species agreed well with direct measurements (CVEWT = 18.8%, CVLMA = 24.5%), while estimates for conifer species were less accurate (CVEWT = 53.2%, CVLMA = 63.3%). To

  11. Joint Outreach Task Group Calendar: September 2013

    Energy.gov [DOE]

    Joint Outreach Task Group (JOTG)has created a monthly calendar of community events to facilitate interagency and community involvement in these events. September 2013

  12. CLEERS Coordination & Joint Development of Benchmark Kinetics...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Catalyst Process Kinetic Data CLEERS Coordination & Joint Development of Benchmark Kinetics for LNT & SCR Functionality of Commercial NOx Storage-Reduction Catalysts...

  13. Joint Convention | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Joint Convention U.S. Leads Fifth International Review Meeting on the Safety of Spent Fuel and Radioactive Waste Management at the IAEA VIENNA, AUSTRIA - Today, representatives...

  14. High-temperature brazed ceramic joints

    DOEpatents

    Jarvinen, Philip O.

    1986-01-01

    High-temperature joints formed from metallized ceramics are disclosed wherein the metal coatings on the ceramics are vacuum sputtered thereon.

  15. LDRD joint computational/experimental project

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    LDRD joint computationalexperimental project - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy ...

  16. Joint Actinide Shock Physics Experimental Research | National...

    National Nuclear Security Administration (NNSA)

    Joint Actinide Shock Physics Experimental Research The JASPER gas gun at the Nevada ... For more information visit JASPER's webpage. Jasper Gun Related Topics Maintaining the ...

  17. An Inverse Free-Electron-Laser accelerator

    SciTech Connect

    Fisher, A.S.; Gallardo, J.C.; van Steenbergen, A.; Ulc, S.; Woodle, M.; Sandweiss, J.; Fang, Jyan-Min

    1993-08-01

    Recent work at BNL on electron acceleration using the Inverse Free-Electron Laser (IFEL) has considered a low-energy, high-gradient, multi-stage linear accelerator. Experiments are planned at BNL`s Accelerator Test Facility using its 50-MeV linac and 100-GW CO{sub 2} laser. We have built and tested a fast-excitation wiggler magnet with constant field, tapered period, and overall length of 47 cm. Vanadium-Permendur ferromagnetic laminations are stacked in alternation with copper, eddy-current-induced, field reflectors to achieve a 1.4-T peak field with a 4-mm gap and a typical period of 3 cm. The laser beam will pass through the wiggler in a low-loss, dielectric-coated stainless-steel, rectangular waveguide. The attenuation and transverse mode has been measured in waveguide sections of various lengths, with and without the dielectric. Results of 1-D and 3-D IFEL simulations, including wiggler errors, will be presented for several cases: the initial, single-module experiment with {Delta}E = 39 MeV, a four-module design giving {Delta}E = 100 MeV in a total length of 2 m, and an eight-module IFEL with {Delta}E = 210 MeV.

  18. Inversion of normal moveout for monoclinic media

    SciTech Connect

    Grechka, V.; Contreras, P.; Tsvankin, I.

    2000-05-01

    Multiple vertical fracture sets, possibly combined with horizontal fine layering, produce an equivalent medium of monoclinic symmetry with a horizontal symmetry plane. Although monoclinic models may be rather common for fractured formations, they have hardly been used in seismic methods of fracture detection due to the large number of independent elements in the stiffness tensor. Here, the authors show that multicomponent wide-azimuth walkaway VSP surveys provide enough information to invert for all but one anisotropic parameters of monoclinic media. In order to facilitate the inversion procedure, the authors introduce a Thomsen-style parametrization for monoclinic media that includes the vertical velocities of the P-wave and one of the split S-waves and a set of dimensionless anisotropic coefficients. The parameter-estimation algorithm, based on NMO equations valid for any strength of the anisotropy, is designed to obtain anisotropic parameters of monoclinic media by inverting the vertical velocities and NMO ellipses of the P-, S{sub 1}- and S{sub 2}-waves. A Dix-type representation of the NMO velocity of mode-converted waves makes it possible to replace the pure shear modes in reflection surveys with the PS{sub 1}- and PS{sub 2}-waves. Numerical tests show that this method yields stable estimates of all relevant parameters for both a single layer and a horizontally stratified monoclinic medium.

  19. Inversion Breakup in Small Rocky Mountain and Alpine Basins

    SciTech Connect

    Whiteman, Charles D.; Pospichal, Bernhard; Eisenbach, Stefan; Weihs, P.; Clements, Craig B.; Steinacker, Reinhold; Mursch-Radlgruber, Erich; Dorninger, Manfred

    2004-08-01

    Comparisons are made between the post-sunrise breakup of temperature inversions in two similar closed basins in quite different climate settings, one in the eastern Alps and one in the Rocky Mountains. The small, high-altitude, limestone sinkholes have both experienced extreme temperature minima below -50C. On undisturbed clear nights, temperature inversions reach to 120 m heights in both sinkholes, but are much stronger in the drier Rocky Mountain basin (24K versus 13K). Inversion destruction takes place 2.6 to 3 hours after sunrise and is accomplished primarily by subsidence warming associated with the removal of air from the base of the inversion by the upslope flows that develop over the sidewalls. Differences in inversion strengths and post-sunrise heating rates are caused by differences in the surface energy budget, with drier soil and a higher sensible heat flux in the Rocky Mountain sinkhole.

  20. EM Contributes to Joint Convention Meeting

    Office of Energy Efficiency and Renewable Energy (EERE)

    EM officials recently participated in the Fifth Review Meeting of the Parties to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention) at the International Atomic Energy Agency (IAEA) headquarters.

  1. High temperature ceramic/metal joint structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  2. MODELING UNDERGROUND STRUCTURE VULNERABILITY IN JOINTED ROCK

    SciTech Connect

    R. SWIFT; D. STEEDMAN

    2001-02-01

    The vulnerability of underground structures and openings in deep jointed rock to ground shock attack is of chief concern to military planning and security. Damage and/or loss of stability to a structure in jointed rock, often manifested as brittle failure and accompanied with block movement, can depend significantly on jointed properties, such as spacing, orientation, strength, and block character. We apply a hybrid Discrete Element Method combined with the Smooth Particle Hydrodynamics approach to simulate the MIGHTY NORTH event, a definitive high-explosive test performed on an aluminum lined cylindrical opening in jointed Salem limestone. Representing limestone with discrete elements having elastic-equivalence and explicit brittle tensile behavior and the liner as an elastic-plastic continuum provides good agreement with the experiment and damage obtained with finite-element simulations. Extending the approach to parameter variations shows damage is substantially altered by differences in joint geometry and liner properties.

  3. Technical status of the Dish/Stirling Joint Venture Program

    SciTech Connect

    Bean, J.R.; Diver, R.B.

    1995-06-01

    Initiated in 1991; the Dish/Stirling Joint Venture Program (DSJVP) is a 5-year, $17.2 million joint venture which is funded by Cummins Power Generation, Inc. (CPG) of Columbus, Indiana and the United States Department of Energy`s (DOE) Solar Thermal and Biomass Power Division. Sandia National Laboratories administers and provides technical management for this contract on the DOE`s behalf. In January, 1995; CPG advanced to Phase 3 of this three-phase contract. The objective of the DSJVP is to develop and commercialize a 7-kW. Dish/Stirling System for remote power markets by 1997. In this paper, the technical status of the major subsystems which comprise the CPG 7-kW{sub e} Dish/Stirling System is presented. These subsystems include the solar concentrator, heat pipe receiver, engine/alternator, power conditioning, and automatic controls.

  4. Vacancy-Induced Formation and Growth of Inversion Domains in Transition-Metal Dichalcogenide Monolayer

    DOE PAGES [OSTI]

    Lin, Junhao; Pantelides, Sokrates T.; Zhou, Wu

    2015-04-23

    Sixty degree grain boundaries in semiconducting transition-metal dichalcogenide (TMDC) monolayers have been shown to act as conductive channels that have profound influence on both the transport properties and exciton behavior of the monolayers. We show that annealing TMDC monolayers at high temperature induces the formation of large-scale inversion domains surrounded by such 60° grain boundaries. To study the formation mechanism of such inversion domains, we use the electron beam in a scanning transmission electron microscope to activate the dynamic process within pristine TMDC monolayers. Moreover, the electron beam acts to generate chalcogen vacancies in TMDC monolayers and provide energy formore » them to undergo structural evolution. We directly visualize the nucleation and growth of such inversion domains and their 60° grain boundaries atom-by-atom within a MoSe2 monolayer and explore their formation mechanism. Combined with density functional theory, we conclude that the nucleation of the inversion domains and migration of their 60° grain boundaries are driven by the collective evolution of Se vacancies and subsequent displacement of Mo atoms, where such a dynamical process reduces the vacancy-induced lattice shrinkage and stabilizes the system. Our results can help to understand the performance of such materials under severe conditions (e.g., high temperature).« less

  5. Structural inversion: Occurrence, mechanics, and implications for petroleum exploration

    SciTech Connect

    Lowell, J.D.

    1994-11-01

    Structural inversion, defined as the uplift of previously extended, subsiding regions by later contraction, has been recognized on every continent that has been explored for petroleum. The process can occur at the large scale of deformation in orogenic belts, but this presentation focused on inversion affecting sedimentary basins and their associated structures. The mid-continent rift and the Uinta Mountains of northeastern Utah are good examples of basin inversion. Typically, rift and sag basins can be later inverted. Mainly by reactivation of older normal faults, inversion selects rift basins where, in pure shear, weakening because of necking or thinning of lithosphere has occurred, and where, in simple shear, mechanical detachment surfaces are available for subsequent movement. Sag basins can apparently be inverted in the absence of reactivated normal faults, as in the southern altiplano of Bolivia and offshore Sabah, Borneo. Basins can be inverted by dominant strike slip with some convergent component, e.g., offshore northeast Brazil, and by almost direct compression, e.g., Atlas Mountains, Morocco. Structural inversion has important implications for petroleum exploration. Areas of inversion frequently have tighter porosity for a potential reservoir and faster seismic velocity for a particular stratigraphic interval than would be expected for their present depth of burial. Burial history curves characteristically have an upward inflection at the time of inversion, which can affect the hydrocarbon maturation process. Some source rocks may be overmature for present burial depths. In some presently shallow basins, however, maturation would not have occurred had not source rocks once been buried more deeply. Inversion can cause remigration of hydrocarbons. Finally, inversion can create the trapping structures.

  6. United States and France Sign Joint Statement on Civil Liability...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and France Sign Joint Statement on Civil Liability for Nuclear Damage United States and France Sign Joint Statement on Civil Liability for Nuclear Damage Joint Statement Signed.pdf ...

  7. U.S.-Brazil Strategic Energy Dialogue Joint Report | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dialogue Joint Report U.S.-Brazil Strategic Energy Dialogue Joint Report PDF icon First Joint Report to Presidents on U.S.-Brazil Strategic Energy Dialogue.pdf More Documents &...

  8. Sealed joint structure for electrochemical device

    DOEpatents

    Tucker, Michael C; Jacobson, Craig P; De Jonghe, Lutgard C; Visco, Steven J

    2013-05-21

    Several members make up a joint in a high-temperature electrochemical device, wherein the various members perform different functions. The joint is useful for joining multiple cells (generally tubular modules) of an electrochemical device to produce a multi-cell segment-in-series stack for a solid oxide fuel cell, for instance. The joint includes sections that bond the joining members to each other; one or more seal sections that provide gas-tightness, and sections providing electrical connection and/or electrical insulation between the various joining members. A suitable joint configuration for an electrochemical device has a metal joint housing, a first porous electrode, a second porous electrode, separated from the first porous electrode by a solid electrolyte, and an insulating member disposed between the metal joint housing and the electrolyte and second electrode. One or more brazes structurally and electrically connects the first electrode to the metal joint housing and forms a gas tight seal between the first electrode and the second electrode.

  9. Joint Venture Established Between Russian Weapons Plant And the...

    National Nuclear Security Administration (NNSA)

    Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home Library Press Releases Joint Venture Established Between Russian Weapons Plant ... Joint Venture Established...

  10. International Power Girasolar joint company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: International Power Girasolar joint company Sector: Solar Product: Joint venture announced between US IPWG and Netherlands-headquartered Girasolar, to...

  11. EA-1945: Northern Mid-Columbia Joint Project; Grant, Douglas...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EA-1945: Northern Mid-Columbia Joint Project; Grant, Douglas, and Chelan Counties, Washington EA-1945: Northern Mid-Columbia Joint Project; Grant, Douglas, and Chelan Counties, ...

  12. Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Agenda Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Agenda Agenda for the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 ...

  13. Joint Meeting on Hydrogen Delivery Modeling and Analysis, May...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007, Discussion ... the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007. ...

  14. Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Attendees List Attendee list from the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 ...

  15. DOE Joint Solid-State Lighting Roundtables on Science Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Joint Solid-State Lighting Roundtables on Science Challenges DOE Joint Solid-State Lighting Roundtables on Science Challenges PDF icon 2014BES-EEREroundtables...

  16. 11th Annual Energy Department Joint Genome Institute Genomics...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    11th Annual Energy Department Joint Genome Institute Genomics of Energy & Environment Meeting 11th Annual Energy Department Joint Genome Institute Genomics of Energy & Environment ...

  17. New Report Describes Joint Opportunities for Natural Gas and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel Cell Vehicle Markets New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel Cell Vehicle...

  18. Joint Maintenance Status Report of Potomac Electric Power Company...

    Energy Saver

    Joint Maintenance Status Report of Potomac Electric Power Company amd PJM Interconnection, LLC Joint Maintenance Status Report of Potomac Electric Power Company amd PJM Interconnection, ...

  19. Ryazan Metal Ceramics Instrumentation Plant Joint Stock Co RMCIP...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ryazan Metal Ceramics Instrumentation Plant Joint Stock Co RMCIP JSC Jump to: navigation, search Name: Ryazan Metal Ceramics Instrumentation Plant Joint Stock Co (RMCIP JSC) Place:...

  20. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar...

    Energy.gov [DOE] (indexed site)

    the presentation slides from the "Joint Fuel Cell Technologies Office and Advanced Manufacturing Office Webinar" held November 20, 2012. PDF icon Joint Fuel Cell Technologies ...

  1. EA-1945: Northern Mid-Columbia Joint Project; Grant, Douglas...

    Office of Environmental Management (EM)

    5: Northern Mid-Columbia Joint Project; Grant, Douglas, and Chelan Counties, Washington EA-1945: Northern Mid-Columbia Joint Project; Grant, Douglas, and Chelan Counties, ...

  2. Tianjin Lishen Battery Joint stock Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lishen Battery Joint stock Co Ltd Jump to: navigation, search Name: Tianjin Lishen Battery Joint-stock Co Ltd Place: Tianjin, Tianjin Municipality, China Zip: 300384 Product:...

  3. United States and Japan Sign Joint Nuclear Energy Action Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy Cooperation United States and Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy ...

  4. Joint Global Change Research Institute | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    solutions. Joint Institute staff bring decades of experience and expertise to bear in science, technology, economics, and policy. "The Joint Global Change Research Institute...

  5. Joint Fuel Cell Bus Workshop Summary Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Bus Workshop Summary Report Joint Fuel Cell Bus Workshop Summary Report Presentation at DOE & DOT Joint Fuel Cell Bus Workshop, June 7, 2010 PDF icon...

  6. Third National Report for the Joint Convention on the Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Third National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Third National Report for the Joint ...

  7. Fifth National Report for the Joint Convention on the Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fifth National Report for the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management Fifth National Report for the Joint Convention ...

  8. National Report Joint Convention on the Safety of Spent Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management National Report Joint Convention on the Safety of Spent ...

  9. Second National Report for the Joint Convention on the Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Second National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Second National Report for the Joint ...

  10. Fourth National Report for the Joint Convention on the Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fourth National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Fourth National Report for the Joint ...

  11. "Bionic" Liquids from Lignin: Joint BioEnergy Institute Results...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bionic" Liquids from Lignin: Joint BioEnergy Institute Results Pave the Way for ... Combustion Research Facility Joint BioEnergy Institute Research Engineering and ...

  12. Inverse Opals, a New Nanomaterial | Solid State Solar Thermal...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Inverse Opals, a New Nanomaterial Seminar Wednesday Apr 6, 2016 12:00pm Location: 1-150 S3TEC welcomes Prof. Gerald Mahan for our monthly seminar

  13. Three-Dimensional Inversion of Magnetotelluric Data on a PC,...

    OpenEI (Open Energy Information) [EERE & EIA]

    Inversion of Magnetotelluric Data on a PC, Methodology and Applications to the Coso Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  14. Center for Inverse Design: Collaboration Tool for the Center...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    If you already have a login and password, go directly to the Center for Inverse Design SharePoint Collaboration Tool. If you have forgotten your password, contact the Webmaster. If ...

  15. Binary Tracers and Multiple Geophysical Data Set Inversion Methods to

    Office of Scientific and Technical Information (OSTI)

    Improve EGS Reservoir Characterization and Imaging (Technical Report) | SciTech Connect Technical Report: Binary Tracers and Multiple Geophysical Data Set Inversion Methods to Improve EGS Reservoir Characterization and Imaging Citation Details In-Document Search Title: Binary Tracers and Multiple Geophysical Data Set Inversion Methods to Improve EGS Reservoir Characterization and Imaging Authors: Reimus, Paul W. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date:

  16. Inverse Sensitivity/Uncertainty Methods Development for Nuclear Fuel Cycle

    Office of Scientific and Technical Information (OSTI)

    Applications (Conference) | SciTech Connect Conference: Inverse Sensitivity/Uncertainty Methods Development for Nuclear Fuel Cycle Applications Citation Details In-Document Search Title: Inverse Sensitivity/Uncertainty Methods Development for Nuclear Fuel Cycle Applications The Standardized Computer Analyses for Licensing Evaluation (SCALE) software package developed at the Oak Ridge National Laboratory includes codes that propagate uncertainties available in the nuclear data libraries to

  17. Solving Inverse Detection Problems Using Passive Radiation Signatures

    SciTech Connect

    Favorite, Jeffrey A.; Armstrong, Jerawan C.; Vaquer, Pablo A.

    2012-08-15

    The ability to reconstruct an unknown radioactive object based on its passive gamma-ray and neutron signatures is very important in homeland security applications. Often in the analysis of unknown radioactive objects, for simplicity or speed or because there is no other information, they are modeled as spherically symmetric regardless of their actual geometry. In these presentation we discuss the accuracy and implications of this approximation for decay gamma rays and for neutron-induced gamma rays. We discuss an extension of spherical raytracing (for uncollided fluxes) that allows it to be used when the exterior shielding is flat or cylindrical. We revisit some early results in boundary perturbation theory, showing that the Roussopolos estimate is the correct one to use when the quantity of interest is the flux or leakage on the boundary. We apply boundary perturbation theory to problems in which spherically symmetric systems are perturbed in asymmetric nonspherical ways. We apply mesh adaptive direct search (MADS) algorithms to object reconstructions. We present a benchmark test set that may be used to quantitatively evaluate inverse detection methods.

  18. Analysis of preloaded bolted joints under exponentially decaying pressure

    SciTech Connect

    Esmailzadeh, E.; Chorashi, M.; Ohadi, A.R.

    1996-11-01

    Dynamic properties of joints must be considered when designing complex structures. A good deal of investigation has been carried out for a better understanding of the dynamic behavior of mechanical joints. It is suitable initially to identify the parameters of a mechanical joint by using either experimental modal analysis or accurate finite element model, and then predicating the behavior of closure bolting system by means of spring-mass-damper model. The effect of bolt prestress on the maximum bolt displacement and stress has been treated. The loading is assumed to be initially peaked, exponentially decaying internal pressure pulse acting on the closure. The dependence of peak bolt stresses and deflections on the bolt prestress level and system damping is investigated. It has been shown that the derived formulas, if damping is neglected, reduce to those reported in the literature. Furthermore, the damping effect is shown to be most important, especially for large natural frequencies, longer loading duration, and lower levels of prestress. Existence of damping, which results in the reduction of maximum bolt displacement and stress, was shown to be beneficial, especially for longer loading duration. The importance of bolt displacement reduction from the viewpoint of fatigue life, vibration loosening, and sealing, especially for lower values of prestress, has been fully emphasized.

  19. Butt Joint Tool Status: ITER-US-LLNL-NMARTOVETSKY-01312007

    SciTech Connect

    Martovetsky, N N

    2007-02-01

    Butt joint tool vacuum vessel has been built at C&H Enterprise, Inc. Leak checking and loading tests were taken place at the factory. The conductor could not be pumped down better than to 500 mtorr and therefore we could not check the sealing mechanism of the seal around conductor. But the rest of the vessel, including the flat gasket, one of the difficult seals worked well, no indication of leak at sensitivity 1e-7 l*torr/sec. The load test showed fully functional system of the load mechanism. The conductors were loaded up to 2200 kgf (21560 N) and the pressure between the butts was uniform with 100% of the contact proved by pressure sensitive film. The status of the butt joint tool development is reported.

  20. Remote controlled vacuum joint closure mechanism

    DOEpatents

    Doll, David W. (San Diego, CA); Hager, E. Randolph (La Jolla, CA)

    1986-01-01

    A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange.

  1. Simulation of thermomechanical fatigue in solder joints

    SciTech Connect

    Fang, H.E.; Porter, V.L.; Fye, R.M.; Holm, E.A.

    1997-12-31

    Thermomechanical fatigue (TMF) is a very complex phenomenon in electronic component systems and has been identified as one prominent degradation mechanism for surface mount solder joints in the stockpile. In order to precisely predict the TMF-related effects on the reliability of electronic components in weapons, a multi-level simulation methodology is being developed at Sandia National Laboratories. This methodology links simulation codes of continuum mechanics (JAS3D), microstructural mechanics (GLAD), and microstructural evolution (PARGRAIN) to treat the disparate length scales that exist between the macroscopic response of the component and the microstructural changes occurring in its constituent materials. JAS3D is used to predict strain/temperature distributions in the component due to environmental variable fluctuations. GLAD identifies damage initiation and accumulation in detail based on the spatial information provided by JAS3D. PARGRAIN simulates the changes of material microstructure, such as the heterogeneous coarsening in Sn-Pb solder, when the component`s service environment varies.

  2. Joint Genome Institute's Automation Approach and History

    SciTech Connect

    Roberts, Simon

    2006-07-05

    Department of Energy/Joint Genome Institute (DOE/JGI) collaborates with DOE national laboratories and community users, to advance genome science in support of the DOE missions of clean bio-energy, carbon cycling, and bioremediation.

  3. Joint Implementation Network (JIN) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2.2 JIN Programs 3 References About Joint Implementation Network (JIN) was established in 1995 as knowledge centre for climate change policy issues in general and the concept of...

  4. Joint Actinide Shock Physics Experimental Research - JASPER

    ScienceCinema

    None

    2016-07-12

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  5. Joint Fuel Cell Bus Workshop Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Joint Fuel Cell Bus Workshop Summary Report Prepared for: U.S. Department of Energy (DOE... of Transportation (DOT) will hold a Fuel Cell Bus Workshop on June 7, 2010 at the ...

  6. Joint Actinide Shock Physics Experimental Research - JASPER

    SciTech Connect

    2014-10-31

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  7. Advanced Serpentine Heat Exchangers to Minimize the Number of Joints and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Leakage in HVAC&R Systems | Department of Energy Serpentine Heat Exchangers to Minimize the Number of Joints and Leakage in HVAC&R Systems Advanced Serpentine Heat Exchangers to Minimize the Number of Joints and Leakage in HVAC&R Systems Lead Performer: Optimized Thermal Systems-Beltsville, MD Partners: Heat Transfer Technologies, LLC-Prospect Heights, IL; UTRC-East Hartford, CT DOE Total Funding: $500,000 Cost Share: $140,000 Project Term: 2016-2019 Funding Type: Building Energy

  8. Socovoltaic Systems | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Socovoltaic Systems Place: Vicenza, Italy Zip: 36100 Product: Socovoltaic is a joint venture between Socotherm and TSNergy. References: Socovoltaic Systems1 This...

  9. Solutions of the Schrdinger equation with inversely quadratic Hellmann plus inversely quadratic potential using Nikiforov-Uvarov method

    SciTech Connect

    Ita, B. I.

    2014-11-12

    By using the Nikiforov-Uvarov (NU) method, the Schrdinger equation has been solved for the interaction of inversely quadratic Hellmann (IQHP) and inversely quadratic potential (IQP) for any angular momentum quantum number, l. The energy eigenvalues and their corresponding eigenfunctions have been obtained in terms of Laguerre polynomials. Special cases of the sum of these potentials have been considered and their energy eigenvalues also obtained.

  10. DOC-DOE Joint China Mission Statement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Joint China Mission Statement DOC-DOE Joint China Mission Statement DOC-DOE Joint China Mission Statement DOC-DOE Joint China Mission Statement (109.75 KB) More Documents & Publications DOC-DOE China Mission Announcement Press Release FACT SHEET: U.S.-China Clean Energy Cooperation Announcements US-China Clean Energy Cooperation

  11. U.S.-Japan Joint Statement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Japan Joint Statement U.S.-Japan Joint Statement U.S.-Japan Joint Statement prepared as part of the International Partnership for a Hydrogen Economy us_japan_statement_release.pdf (99.92 KB) More Documents & Publications US-Japan Clean Energy Cooperation United States -Japan Joint Nuclear Energy Action Plan US-Japan_NuclearEnergyActionPlan.pdf

  12. Synchronization of spin-transfer torque oscillators by spin pumping, inverse spin Hall, and spin Hall effects

    SciTech Connect

    Elyasi, Mehrdad; Bhatia, Charanjit S.; Yang, Hyunsoo

    2015-02-14

    We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal with high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.

  13. Qualification of the Joints for ITER Central Solenoid

    SciTech Connect

    Martovetsky, Nicolai N; Berryhill, Adam B; Kenney, Steven J

    2012-01-01

    The ITER Central Solenoid has 36 interpancake joints, 12 bus joints, and 12 feeder joints in the magnet. The joints are required to have resistance below 4 nOhm at 45 kA at 4.5 K. The US ITER Project Office developed two different types of interpancake joints with some variations in details in order to find a better design, qualify the joints, and establish a fabrication process. We built and tested four samples of the sintered joints and two samples with butt-bonded joints (a total of eight joints). Both designs met the specifications. Results of the joint development, test results, and selection of the baseline design are presented and discussed in the paper.

  14. Image Appraisal for 2D and 3D Electromagnetic Inversion

    SciTech Connect

    Alumbaugh, D.L.; Newman, G.A.

    1999-01-28

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  15. Robust, Multifunctional Joint for Large Scale Power Production Stacks -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Innovation Portal Robust, Multifunctional Joint for Large Scale Power Production Stacks Lawrence Berkeley National Laboratory Contact LBL About This Technology DIAGRAM OF BERKELEY LAB'S MULTIFUNCTIONAL JOINT DIAGRAM OF BERKELEY LAB'S MULTIFUNCTIONAL JOINT Technology Marketing SummaryBerkeley Lab scientists have developed a multifunctional joint for metal supported, tubular SOFCs that divides various joint functions so that materials and methods optimizing each function can be chosen

  16. Qualification of the Joints for the ITER Central Solenoid

    SciTech Connect

    Martovetsky, N; Berryhill, A; Kenney, S

    2011-09-01

    The ITER Central Solenoid has 36 interpancake joints, 12 bus joints, and 12 feeder joints in the magnet. The joints are required to have resistance below 4 nOhm at 45 kA at 4.5 K. The US ITER Project Office developed two different types of interpancake joints with some variations in details in order to find a better design, qualify the joints, and establish a fabrication process. We built and tested four samples of the sintered joints and two samples with butt-bonded joints (a total of eight joints). Both designs met the specifications. Results of the joint development, test results, and selection of the baseline design are presented and discussed in the paper. The ITER Central Solenoid (CS) consists of six modules. Each module is composed of six wound hexapancakes and one quadrapancake. The multipancakes are connected electrically and hydraulically by in-line interpancake joints. The joints are located at the outside diameter (OD) of the module. Cable in conduit conductor (CICC) high-current joints are critical elements in the CICC magnets. In addition to low resistivity, the CS joints must fit a space envelope equivalent to the regular conductor cross section and must have low hydraulic impedance and enough structural strength to withstand the hoop and compressive forces during operation, including cycling. This paper is the continuation of the work reported on the intermodule joints.

  17. Remote controlled vacuum joint closure mechanism

    DOEpatents

    Doll, D.W.; Hager, E.R.

    1984-02-22

    A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange and maintain the high vacuum seal established by the displacement of the flange assembly and extension of the bellows without displacing the entire duct.

  18. An evolution equation modeling inversion of tulip flames

    SciTech Connect

    Dold, J.W.; Joulin, G.

    1995-02-01

    The authors attempt to reduce the number of physical ingredients needed to model the phenomenon of tulip-flame inversion to a bare minimum. This is achieved by synthesizing the nonlinear, first-order Michelson-Sivashinsky (MS) equation with the second order linear dispersion relation of Landau and Darrieus, which adds only one extra term to the MS equation without changing any of its stationary behavior and without changing its dynamics in the limit of small density change when the MS equation is asymptotically valid. However, as demonstrated by spectral numerical solutions, the resulting second-order nonlinear evolution equation is found to describe the inversion of tulip flames in good qualitative agreement with classical experiments on the phenomenon. This shows that the combined influences of front curvature, geometric nonlinearity and hydrodynamic instability (including its second-order, or inertial effects, which are an essential result of vorticity production at the flame front) are sufficient to reproduce the inversion process.

  19. Asymptotic expansions for oscillatory integrals using inverse functions.

    SciTech Connect

    Lyness, J. N.; Lottes, J. W.

    2009-05-01

    We treat finite oscillatory integrals of the form {integral}{sub a}{sup b} F(x)e{sup ikG(x)} dx in which both F and G are real on the real line, are analytic over the open integration interval, and may have algebraic singularities at either or both interval end points. For many of these, we establish asymptotic expansions in inverse powers of k. No appeal to the theories of stationary phase or steepest descent is involved. We simply apply theory involving inverse functions and expansions for a Fourier coefficient {integral}{sub a}{sup b} {phi}(t)e{sup ikt} dt. To this end, we have assembled several results involving inverse functions. Moreover, we have derived a new asymptotic expansion for this integral, valid when {phi}(t) = {Sigma}a{sub j}t{sup {sigma}}j, -1 < {sigma}{sub 1} < {sigma}{sub 2} < {hor_ellipsis}.

  20. Recombinant chromosome 18 resulting from a maternal pericentric inversion

    SciTech Connect

    Ayukawa, Hiroshi; Tsukahara, Masato; Fukuda, Masamichi; Kondoh, Osamu

    1994-05-01

    We report on a newborn girl with duplication of 18q12.2{yields}18 qter and deficiency of 18p11.2{yields}18pter which resulted from meiotic recombination of the maternal pericentric inversion, inv(18)(p11.2q12.2). Her clinical manifestations were compatible with those of partial trisomy 18q syndrome. We review the previously reported 9 cases in 8 families of rec(18) resulting from recombination of a parental pericentric inversion. 8 refs., 3 figs., 1 tab.

  1. Inverse spin Hall effect in Pt/(Ga,Mn)As

    SciTech Connect

    Nakayama, H.; Chen, L.; Chang, H. W.; Ohno, H.; Matsukura, F.

    2015-06-01

    We investigate dc voltages under ferromagnetic resonance in a Pt/(Ga,Mn)As bilayer structure. A part of the observed dc voltage is shown to originate from the inverse spin Hall effect. The sign of the inverse spin Hall voltage is the same as that in Py/Pt bilayer structure, even though the stacking order of ferromagnetic and nonmagnetic layers is opposite to each other. The spin mixing conductance at the Pt/(Ga,Mn)As interface is determined to be of the order of 10{sup 19 }m{sup −2}, which is about ten times greater than that of (Ga,Mn)As/p-GaAs.

  2. TIME-LAPSE SEISMIC MODELING & INVERSION OF CO2 SATURATION FOR SEQUESTRATION AND ENHANCED OIL RECOVERY

    SciTech Connect

    Mark A. Meadows

    2006-03-31

    Injection of carbon dioxide (CO2) into subsurface aquifers for geologic storage/sequestration, and into subsurface hydrocarbon reservoirs for enhanced oil recovery, has become an important topic to the nation because of growing concerns related to global warming and energy security. In this project we developed new ways to predict and quantify the effects of CO2 on seismic data recorded over porous reservoir/aquifer rock systems. This effort involved the research and development of new technology to: (1) Quantitatively model the rock physics effects of CO2 injection in porous saline and oil/brine reservoirs (both miscible and immiscible). (2) Quantitatively model the seismic response to CO2 injection (both miscible and immiscible) from well logs (1D). (3) Perform quantitative inversions of time-lapse 4D seismic data to estimate injected CO2 distributions within subsurface reservoirs and aquifers. This work has resulted in an improved ability to remotely monitor the injected CO2 for safe storage and enhanced hydrocarbon recovery, predict the effects of CO2 on time-lapse seismic data, and estimate injected CO2 saturation distributions in subsurface aquifers/reservoirs. We applied our inversion methodology to a 3D time-lapse seismic dataset from the Sleipner CO2 sequestration project, Norwegian North Sea. We measured changes in the seismic amplitude and traveltime at the top of the Sleipner sandstone reservoir and used these time-lapse seismic attributes in the inversion. Maps of CO2 thickness and its standard deviation were generated for the topmost layer. From this information, we estimated that 7.4% of the total CO2 injected over a five-year period had reached the top of the reservoir. This inversion approach could also be applied to the remaining levels within the anomalous zone to obtain an estimate of the total CO2 injected.

  3. An iterative particle filter approach for coupled hydro-geophysical inversion of a controlled infiltration experiment

    SciTech Connect

    Manoli, Gabriele; Rossi, Matteo; Pasetto, Damiano; Deiana, Rita; Ferraris, Stefano; Cassiani, Giorgio; Putti, Mario

    2015-02-15

    The modeling of unsaturated groundwater flow is affected by a high degree of uncertainty related to both measurement and model errors. Geophysical methods such as Electrical Resistivity Tomography (ERT) can provide useful indirect information on the hydrological processes occurring in the vadose zone. In this paper, we propose and test an iterated particle filter method to solve the coupled hydrogeophysical inverse problem. We focus on an infiltration test monitored by time-lapse ERT and modeled using Richards equation. The goal is to identify hydrological model parameters from ERT electrical potential measurements. Traditional uncoupled inversion relies on the solution of two sequential inverse problems, the first one applied to the ERT measurements, the second one to Richards equation. This approach does not ensure an accurate quantitative description of the physical state, typically violating mass balance. To avoid one of these two inversions and incorporate in the process more physical simulation constraints, we cast the problem within the framework of a SIR (Sequential Importance Resampling) data assimilation approach that uses a Richards equation solver to model the hydrological dynamics and a forward ERT simulator combined with Archie's law to serve as measurement model. ERT observations are then used to update the state of the system as well as to estimate the model parameters and their posterior distribution. The limitations of the traditional sequential Bayesian approach are investigated and an innovative iterative approach is proposed to estimate the model parameters with high accuracy. The numerical properties of the developed algorithm are verified on both homogeneous and heterogeneous synthetic test cases based on a real-world field experiment.

  4. Managing inventory costs through joint procurement programs

    SciTech Connect

    Harlan, T.E. ); Williams, M.C. )

    1992-01-01

    Given current economic and regulatory challenges, utilities are facing the need to manage inventories more efficiently, lower spare parts costs, and reduce the downtime associated with equipment failure. Two programs helping utilities achieve these goals are the Joint Procurement Corporation (JPC) for multicompany purchase of common equipment and services and the pooled inventory management (PIM) program for joint purchase and storage of nuclear generating unit spare parts. Both of these are cooperative programs that decrease the probability of extended plant outages and reduce duplication of effort and/or inventory among participating utilities.

  5. Videos - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    December 3, 2012, Videos Press Conference on the Batteries and Energy Storage Hub Announcement: November 30, 2012 UChicago President Robert Zimmer was joined by U.S. Secretary of Energy Steven Chu on November 30, 2012, to announce that a multi-partner team led by Argonne National Laboratory was selected for an award of up to $120 million over five years to establish a new Batteries and Energy Storage Hub, the Joint Center for Energy Storage (JCESR). Read More November 30, 2012, Videos Joint

  6. Thomas Moore creates joint invention with MIT

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Thomas Moore creates joint invention with MIT 20 Nov 2009 For Arizona State University (ASU) Professor Thomas Moore, an invitation to guest lecture became a demonstration in a lab which led to a seafood lunch - which led to a joint invention with colleagues from the Massachusetts Institute of Technology (MIT) that contributed to a sustainable energy start-up company. Moore had been asked to speak at a summer course taught by well-known MIT Professor Daniel Nocera and, after the lecture, Moore

  7. Joint Facilities User Forum on Data-Intensive Computing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Using the Adaptable I/O System (ADIOS) Joint Facilities User Forum on Data-Intensive Computing June 18, 2014 Norbert Podhorszki Thanks to: H. Abbasi, S. Ahern, C. S. Chang, J. Chen, S. Ethier, B. Geveci, J. Kim, T. Kurc, S. Klasky, J. Logan, Q. Liu, K. Mu, G. Ostrouchov, M. Parashar, D. Pugmire, J. Saltz, N. Samatova, K. Schwan, A. Shoshani, W. Tang, Y. Tian, M. Taufer, W. Xue, M. Wolf + many more Subtle m essage o f t he f orum a genda . . . . . . . . . What i s A DIOS? * ADaptable I /O S ystem

  8. Inversion of Airborne Contaminants in a Regional Model

    SciTech Connect

    Akcelik, V.; Biros, G.; Draganescu, A.; Ghattas, O.; Hill, J.; van Bloemen Waanders, B.; /SLAC /Pennsylvania U. /Texas U. /Sandia

    2007-01-10

    We are interested in a DDDAS problem of localization of airborne contaminant releases in regional atmospheric transport models from sparse observations. Given measurements of the contaminant over an observation window at a small number of points in space, and a velocity field as predicted for example by a mesoscopic weather model, we seek an estimate of the state of the contaminant at the beginning of the observation interval that minimizes the least squares misfit between measured and predicted contaminant field, subject to the convection-diffusion equation for the contaminant. Once the ''initial'' conditions are estimated by solution of the inverse problem, we issue predictions of the evolution of the contaminant, the observation window is advanced in time, and the process repeated to issue a new prediction, in the style of 4D-Var. We design an appropriate numerical strategy that exploits the spectral structure of the inverse operator, and leads to efficient and accurate resolution of the inverse problem. Numerical experiments verify that high resolution inversion can be carried out rapidly for a well-resolved terrain model of the greater Los Angeles area.

  9. Inverse Marx modulators for self-biasing klystron depressed collectors

    SciTech Connect

    Kemp, Mark A.

    2014-07-31

    A novel pulsed depressed collector biasing scheme is proposed. This topology feeds forward energy recovered during one RF pulse for use on the following RF pulse. The presented ''inverse'' Marx charges biasing capacitors in series, and discharges them in parallel. Simulations are shown along with experimental demonstration on a 62kW klystron.

  10. Wide temperature range seal for demountable joints

    DOEpatents

    Sixsmith, H.; Valenzuela, J.A.; Nutt, W.E.

    1991-07-23

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof. 6 figures.

  11. Joint with application in electrochemical devices

    DOEpatents

    Weil, K Scott [Richland, WA; Hardy, John S [Richland, WA

    2010-09-14

    A joint for use in electrochemical devices, such as solid oxide fuel cells (SOFCs), oxygen separators, and hydrogen separators, that will maintain a hermetic seal at operating temperatures of greater than 600.degree. C., despite repeated thermal cycling excess of 600.degree. C. in a hostile operating environment where one side of the joint is continuously exposed to an oxidizing atmosphere and the other side is continuously exposed to a wet reducing gas. The joint is formed of a metal part, a ceramic part, and a flexible gasket. The flexible gasket is metal, but is thinner and more flexible than the metal part. As the joint is heated and cooled, the flexible gasket is configured to flex in response to changes in the relative size of the metal part and the ceramic part brought about by differences in the coefficient of thermal expansion of the metal part and the ceramic part, such that substantially all of the tension created by the differences in the expansion and contraction of the ceramic and metal parts is absorbed and dissipated by flexing the flexible gasket.

  12. Wide temperature range seal for demountable joints

    DOEpatents

    Sixsmith, Herbert; Valenzuela, Javier A.; Nutt, William E.

    1991-07-23

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof.

  13. Joint Statement of the U.S.-Iraq Joint Coordinating Committee...

    Energy Saver

    Addthis The governments of the United States of America and the Republic of Iraq reaffirmed their commitment to joint cooperation in the areas of oil production and export, natural ...

  14. AMS/NRCan Joint Survey Report: Aerial Campaign

    SciTech Connect

    Wasiolek, Piotr; Stampahar, Jez; Malchow, Rusty; Stampahar, Tom; Lukens, Mike; Seywerd, Henry; Fortin, Richard; Harvey, Brad; Sinclair, Laurel

    2014-12-31

    In January 2014 the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) Aerial Measuring System (AMS) and the Natural Resources Canada (NRCan) Nuclear Emergency Response project conducted a series of joint surveys at a number of locations in Nevada including the Nevada National Security Site (NNSS). The goal of this project was to compare the responses of the two agencies’ aerial radiation detection systems and data analysis techniques. This test included varied radioactive surface contamination levels and isotopic composition experienced at the NNSS and the differing data processing techniques utilized by the respective teams. Because both teams used the commercial aerial radiation detection systems from Radiation Solutions, Inc., the main focus of the campaign was to investigate the data acquisition techniques, data analysis, and ground-truth verification. The NRCan system consisted of four 4" × 4" × 16" NaI(Tl) scintillator crystals of which two were externally mounted in a modified commercial cargo basket certified for the Eurocopter AS350; the NNSA AMS system consisted of twelve 2" × 4" × 16" NaI(Tl) crystals in externally mounted dedicated pods. For NRCan, the joint survey provided an opportunity to characterize their system’s response to extended sources of various fission products at the NNSS. Since both systems play an important role in their respective countries’ national framework of radiological emergency response and are subject to multiple mutual cooperation agreements, it was important for each country to obtain more thorough knowledge of how they would employ these important assets and define the roles that they would each play in an actual response.

  15. Joint statement of the European Commission's Joint Research Centre and the

    National Nuclear Security Administration (NNSA)

    United States Department of Energy's National Nuclear Security Administration regarding the reduction of excess nuclear material | National Nuclear Security Administration | (NNSA) Joint statement of the European Commission's Joint Research Centre and the United States Department of Energy's National Nuclear Security Administration regarding the reduction of excess nuclear material March 24, 2014 Nuclear safety and security are priorities for the European Union and the United States of

  16. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    SciTech Connect

    Kiran M. Kothari; Gerard T. Pittard

    2005-07-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. Bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs with the pipe in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, minimize excavation, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct safe repair operations on live mains.

  17. DOE, USDA, and NSF Launch Joint Climate Change Prediction Research...

    Energy Saver

    DOE, USDA, and NSF Launch Joint Climate Change Prediction Research Program DOE, USDA, and NSF Launch Joint Climate Change Prediction Research Program March 22, 2010 - 12:00am ...

  18. Introduction to Using NERSC for the Joint Genome Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NERSC Introduction to Using NERSC for the Joint Genome Institute May 2, 2011 jgi logo sm NERSC Training Event 1:00-5:00 p.m. PDT May 2, 2011 Joint Genome Institute, 2800 Mitchell...

  19. Electric Vehicle Preparedness - Task 2: Identification of Joint...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PROGRAM Electric Vehicle Preparedness Task 2: Identification of Joint Base Lewis McChord Vehicles for Installation of Data Loggers June 2013 Prepared for: Joint Base Lewis McChord ...

  20. Tianjin B M Science Technology Joint Stock Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Science Technology Joint Stock Ltd Jump to: navigation, search Name: Tianjin B&M Science & Technology Joint Stock, Ltd Place: China Product: China-based maker of cathode material...

  1. PP-82-3 The Joint Owners of the Highgate Interconnection Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 The Joint Owners of the Highgate Interconnection Facilities PP-82-3 The Joint Owners of the Highgate Interconnection Facilities Presidential Permit authorizing The Joint Owners ...

  2. Re-Inversion of Surface Electrical Resistivity Tomography Data from the Hanford Site B-Complex

    SciTech Connect

    Johnson, Timothy C.; Wellman, Dawn M.

    2013-05-01

    This report documents the three-dimensional (3D) inversion results of surface electrical resistivity tomography (ERT) data collected over the Hanford Site B-Complex. The data were collected in order to image the subsurface distribution of electrically conductive vadose zone contamination resulting from both planned releases of contamination into subsurface infiltration galleries (cribs, trenches, and tile fields), as well as unplanned releases from the B, BX, and BY tank farms and/or associated facilities. Electrically conductive contaminants are those which increase the ionic strength of pore fluids compared to native conditions, which comprise most types of solutes released into the subsurface B-Complex. The ERT data were collected and originally inverted as described in detail in report RPP-34690 Rev 0., 2007, which readers should refer to for a detailed description of data collection and waste disposal history. Although the ERT imaging results presented in that report successfully delineated the footprint of vadose zone contamination in areas outside of the tank farms, imaging resolution was not optimized due to the inability of available inversion codes to optimally process the massive ERT data set collected at the site. Recognizing these limitations and the potential for enhanced ERT characterization and time-lapse imaging at contaminated sites, a joint effort was initiated in 2007 by the U.S. Department of Energy – Office of Science (DOE-SC), with later support by the Office of Environmental Management (DOE-EM), and the U.S. Department of Defense (DOD), to develop a high-performance distributed memory parallel 3D ERT inversion code capable of optimally processing large ERT data sets. The culmination of this effort was the development of E4D (Johnson et al., 2010,2012) In 2012, under the Deep Vadose Zone Applied Field Research Initiative (DVZ-AFRI), the U.S. Department of Energy – Richland Operations Office (DOE-RL) and CH2M Hill Plateau Remediation

  3. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar

    Energy.gov [DOE]

    Presentation slides from the joint Fuel Cell Technologies Office and Advanced Manufacturing Office webinar held November 20, 2012.

  4. Seismic Capacity of Threaded, Brazed, and Grooved Pipe Joints

    Office of Environmental Management (EM)

    SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS Brent Gutierrez, PhD, PE George Antaki, PE, F.ASME DOE NPH Conference October 25-26, 2011 Motivation * Understand the behavior and failure mode of common joints under extreme lateral loads * Static and shake table tests conducted of pressurized - Threaded, - Brazed, - Mechanical joints Static Testing o Pressurized spool to 150 psi o Steady downward force applied while recording deflections o Grooved clamped mech. joints * 16 tests

  5. Microbial Genomics Data from the DOE Joint Genome Institute (JGI)

    DOE Data Explorer

    As of March 2008, The Joint Genome Institute has released 296 Prokaryotic microbial sites, with 216 in finished status.

  6. Comments of the Joint Center for Political and Economic Studies |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Joint Center for Political and Economic Studies Comments of the Joint Center for Political and Economic Studies The Media and Technology Institute and the Climate Change Initiative at the Joint Center for Political and Economic Studies ("Joint Center")1 respectfully submit these comments in response to the United States Department of Energy's ("DoE") Request for Information regarding its implementation of the Smart Grid provisions of Federal

  7. Russian Health Studies Program - Joint Coordinating Committee for Radiation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Effects Research (JCCRER) | Department of Energy Joint Coordinating Committee for Radiation Effects Research (JCCRER) Russian Health Studies Program - Joint Coordinating Committee for Radiation Effects Research (JCCRER) Joint Coordinating Committee for Radiation Effects Research (JCCRER) All About the Joint Coordinating Committee for Radiation Effects Research What is the JCCRER? Why is it important? DOE's Russian Health Studies Program Principal Areas of Cooperation Under the JCCRER

  8. 2010_Nuclear_Security_Joint_Statement.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    _Nuclear_Security_Joint_Statement.pdf 2010_Nuclear_Security_Joint_Statement.pdf (411.14 KB) More Documents & Publications United States and France Sign Joint Statement on Civil Liability for Nuclear Damage US-Japan_NuclearEnergyActionPlan.pdf Before the Senate Armed Services Committee

  9. U.S.-European Union Joint Statement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    European Union Joint Statement U.S.-European Union Joint Statement U.S.-European Union Joint Statement prepared as part of the International Partnership for a Hydrogen Economy us_eu_hydrogen_summit_statement.pdf (61.18 KB) More Documents & Publications Microsoft Word - Document1 International Partnerships for the Hydrogen Economy Fact Sheet International Partnerships for the Hydrogen Economy Fact Sheet

  10. Scanned_Joint_Declaration_(English).pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    English).pdf Scanned_Joint_Declaration_(English).pdf (124.72 KB) More Documents & Publications Joint Statement by Energy Ministers of G8, The People's Republic of China, India and The Republic of Korea (June 2008) Joint Statement by Energy Ministers of G8, The People's Republic of China, India and The Republic of Korea MOED_of_the_Italian_Republic.PDF

  11. Adhesive joint and composites modeling in SIERRA.

    SciTech Connect

    Ohashi, Yuki; Brown, Arthur A.; Hammerand, Daniel Carl; Adolf, Douglas Brian; Chambers, Robert S.; Foulk, James W., III

    2005-11-01

    Polymers and fiber-reinforced polymer matrix composites play an important role in many Defense Program applications. Recently an advanced nonlinear viscoelastic model for polymers has been developed and incorporated into ADAGIO, Sandia's SIERRA-based quasi-static analysis code. Standard linear elastic shell and continuum models for fiber-reinforced polymer-matrix composites have also been added to ADAGIO. This report details the use of these models for advanced adhesive joint and composites simulations carried out as part of an Advanced Simulation and Computing Advanced Deployment (ASC AD) project. More specifically, the thermo-mechanical response of an adhesive joint when loaded during repeated thermal cycling is simulated, the response of some composite rings under internal pressurization is calculated, and the performance of a composite container subjected to internal pressurization, thermal loading, and distributed mechanical loading is determined. Finally, general comparisons between the continuum and shell element approaches for modeling composites using ADAGIO are given.

  12. NN inversion potentials intermediate energy proton-nucleus elastic scattering

    SciTech Connect

    Arellano, H.F.; Brieva, F.A.; Love, W.G.; Geramb, H.V. von

    1995-10-01

    Recently developed nucleon-nucleon interactions using the quantum inverse scattering method shed new fight on the off-shell properties of the internucleon effective force for nucleon-nucleus scattering. Calculations of proton elastic scattering from {sup 40}Ca and {sup 208}Pb in the 500 MeV region show that variations in off-shell contributions are determined to a great extent by the accuracy with which the nucleon-nucleon phase shifts are reproduced. The study is based on the full-folding approach to the nucleon-nucleus optical potential which allows a deep understanding of the interplay between on- and off-shell effects in nucleon scattering. Results and the promising extension offered by the inversion potentials beyond the range of validity of the low-energy internucleon forces will be discussed.

  13. Inverse problems in heterogeneous and fractured media using peridynamics

    SciTech Connect

    Turner, Daniel Z.; van Bloemen Waanders, Bart G.; Parks, Michael L.

    2015-12-10

    The following work presents an adjoint-based methodology for solving inverse problems in heterogeneous and fractured media using state-based peridynamics. We show that the inner product involving the peridynamic operators is self-adjoint. The proposed method is illustrated for several numerical examples with constant and spatially varying material parameters as well as in the context of fractures. We also present a framework for obtaining material parameters by integrating digital image correlation (DIC) with inverse analysis. This framework is demonstrated by evaluating the bulk and shear moduli for a sample of nuclear graphite using digital photographs taken during the experiment. The resulting measured values correspond well with other results reported in the literature. Lastly, we show that this framework can be used to determine the load state given observed measurements of a crack opening. Furthermore, this type of analysis has many applications in characterizing subsurface stress-state conditions given fracture patterns in cores of geologic material.

  14. HBCU/UCR Joint Kickoff Meeting - 2016

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    6 Crosscutting Research Program 2016 HBCU/UCR Joint Kickoff Meeting Wednesday, October 5 Welcome and Introductory Remarks (Jessica Mullen and Bob Romanosky) Topic Area: Sensors and Controls Engineering Metal Oxide Nanomaterials for Fiber Optical Sensor Platforms PI: Kevin Chen, University of Pittsburgh Raman Spectroscopy for the On-Line Analysis of Oxidation States of Oxygen Carrier Particles PI: Hergen Eilers, Washington State University Investigation of High Temperature Silica Based Fiber

  15. Leadership - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Leadership George Crabtree George Crabtree, an Argonne National Laboratory Distinguished Fellow, is the Director of the Joint Center for Energy Storage Research. As JCESR Director, Crabtree directs the overall strategy and goals of the research program and operational plan, acts as liaison to executives of JCESR partner organizations, and represents JCESR with external constituencies and advisory committees. View Bio Venkat Srinivasan Venkat Srinivasan, JCESR Deputy Director, Research and

  16. Presentations - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Presentations To view notes or play video, please download. JCESR Presentations at the 228th Electrochemical Society Meeting, Phoenix, AZ (10-11-15) The Joint Center for Energy Storage Research (JCESR): A New Paradigm for Energy Storage Research George Crabtree, JCESR Director Overcoming Key Challenges for a Viable Lithium-Sulfur Transportation Battery Kevin Zavadil, JCESR Thrust PI, Chemical Transformation Pathways to Non-aqueous Redox Flow (NRF) Batteries for Grid Storage Fikile Brushett,

  17. The oil and gas joint operating agreement

    SciTech Connect

    Not Available

    1990-01-01

    This book covers the following topics: introduction to the AAPL model form operating agreement; property provisions of the operating agreement; Article 6---the drilling and development article; duties and obligations revisited---who bear what risk of loss; operator's liens; accounting procedure joint operations; insurance; taking gas in kind absent a balancing agreement; RMMLF Form 5 Gas Balancing Agreement; tax partnerships for nontax professionals; alternative agreement forms.

  18. Joint voltages resulting from lightning currents.

    SciTech Connect

    Johnson, William Arthur; Warne, Larry Kevin; Merewether, Kimball O.; Chen, Kenneth C.

    2007-03-01

    Simple formulas are given for the interior voltages appearing across bolted joints from exterior lightning currents. External slot and bolt inductances as well as internal slot and bolt diffusion effects are included. Both linear and ferromagnetic wall materials are considered. A useful simplification of the slot current distribution into linear stripline and cylindrical parts (near the bolts) allows the nonlinear voltages to be estimated in closed form.

  19. TCAP HYDROGEN ISOTOPE SEPARATION USING PALLADIUM AND INVERSE COLUMNS

    SciTech Connect

    Heung, L.; Sessions, H.; Xiao, S.

    2010-08-31

    The Thermal Cycling Absorption Process (TCAP) was further studied with a new configuration. Previous configuration used a palladium packed column and a plug flow reverser (PFR). This new configuration uses an inverse column to replace the PFR. The goal was to further improve performance. Both configurations were experimentally tested. The results showed that the new configuration increased the throughput by a factor of more than 2.

  20. Three-dimensional induced polarization data inversion for complex resistivity

    SciTech Connect

    Commer, M.; Newman, G.A.; Williams, K.H.; Hubbard, S.S.

    2011-03-15

    The conductive and capacitive material properties of the subsurface can be quantified through the frequency-dependent complex resistivity. However, the routine three-dimensional (3D) interpretation of voluminous induced polarization (IP) data sets still poses a challenge due to large computational demands and solution nonuniqueness. We have developed a flexible methodology for 3D (spectral) IP data inversion. Our inversion algorithm is adapted from a frequency-domain electromagnetic (EM) inversion method primarily developed for large-scale hydrocarbon and geothermal energy exploration purposes. The method has proven to be efficient by implementing the nonlinear conjugate gradient method with hierarchical parallelism and by using an optimal finite-difference forward modeling mesh design scheme. The method allows for a large range of survey scales, providing a tool for both exploration and environmental applications. We experimented with an image focusing technique to improve the poor depth resolution of surface data sets with small survey spreads. The algorithm's underlying forward modeling operator properly accounts for EM coupling effects; thus, traditionally used EM coupling correction procedures are not needed. The methodology was applied to both synthetic and field data. We tested the benefit of directly inverting EM coupling contaminated data using a synthetic large-scale exploration data set. Afterward, we further tested the monitoring capability of our method by inverting time-lapse data from an environmental remediation experiment near Rifle, Colorado. Similar trends observed in both our solution and another 2D inversion were in accordance with previous findings about the IP effects due to subsurface microbial activity.

  1. Combined approach to the inverse protein folding problem. Final report

    SciTech Connect

    Ruben A. Abagyan

    2000-06-01

    The main scientific contribution of the project ''Combined approach to the inverse protein folding problem'' submitted in 1996 and funded by the Department of Energy in 1997 is the formulation and development of the idea of the multilink recognition method for identification of functional and structural homologues of newly discovered genes. This idea became very popular after they first announced it and used it in prediction of the threading targets for the CASP2 competition (Critical Assessment of Structure Prediction).

  2. Joint implementation: Biodiversity and greenhouse gas offsets

    SciTech Connect

    Cutright, N.J.

    1996-11-01

    One of the most pressing environmental issues today is the possibility that projected increases in global emissions of greenhouse gases form increased deforestation, development, and fossil-fuel combustion could significantly alter global climate patterns. Under the terms of the United Nations Framework Convention on Climate Change, signed in Rio de janeiro during the June 19923 Earth Summit, the United States and other industrialized countries committed to balancing greenhouse gas emissions at 1990 levels in the year 2000. Included in the treaty is a provision titled {open_quotes}Joint Implementation,{close_quotes} whereby industrialized countries assist developing countries in jointly modifying long-term emission trends, either through emission reductions or by protecting and enhancing greenhouse gas sinks (carbon sequestration). The US Climate Action Plan, signed by President Clinton in 1993, calls for voluntary climate change mitigation measures by various sectors, and the action plan included a new program, the US Initiative on Joint Implementation. Wisconsin Electric decided to invest in a JI project because its concept encourages creative, cost-effective solutions to environmental problems through partnering, international cooperation, and innovation. The project chosen, a forest preservation and management effort in Belize, will sequester more than five million tons of carbon dioxide over a 40-year period, will become economically self-sustaining after ten years, and will have substantial biodiversity benefits. 6 refs., 1 tab.

  3. Selection of stirling engine parameter and modes of joint operation with the Topaz II

    SciTech Connect

    Kirillov, E.Y.; Ogloblin, B.G.; Shalaev, A.I.

    1996-03-01

    In addition to a high-temperature thermionic conversion cycle, application of a low-temperature machine cycle, such as the Stirling engine, is being considered. To select the optimum mode for joint operation of the Topaz II system and Stirling engine, output electric parameters are obtained as a function of thermal power released in the TFE fuel cores. The hydraulic diagram used for joint operation of the Topaz II and the Stirling engine is considered. Requirements to hydraulic characteristics of the Stirling engine heat exchanges are formulated. Scope of necessary modifications to mount the Stirling Engine on the Topaz II is estimated. {copyright} {ital 1996 American Institute of Physics.}

  4. An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions

    DOE PAGES [OSTI]

    Li, Weixuan; Lin, Guang

    2015-03-21

    Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes’ rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle thesemore » challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.« less

  5. An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions

    SciTech Connect

    Li, Weixuan; Lin, Guang

    2015-03-21

    Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle these challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.

  6. Inverse transport problem solvers based on regularized and compressive sensing techniques

    SciTech Connect

    Cheng, Y.; Cao, L.; Wu, H.; Zhang, H.

    2012-07-01

    According to the direct exposure measurements from flash radiographic image, regularized-based method and compressive sensing (CS)-based method for inverse transport equation are presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. With a large number of measurements, least-square method is utilized to complete the reconstruction. Owing to the ill-posedness of the inverse problems, regularized algorithm is employed. Tikhonov method is applied with an appropriate posterior regularization parameter to get a meaningful solution. However, it's always very costly to obtain enough measurements. With limited measurements, CS sparse reconstruction technique Orthogonal Matching Pursuit (OMP) is applied to obtain the sparse coefficients by solving an optimization problem. This paper constructs and takes the forward projection matrix rather than Gauss matrix as measurement matrix. In the CS-based algorithm, Fourier expansion and wavelet expansion are adopted to convert an underdetermined system to a well-posed system. Simulations and numerical results of regularized method with appropriate regularization parameter and that of CS-based agree well with the reference value, furthermore, both methods avoid amplifying the noise. (authors)

  7. Self-similar inverse cascade of magnetic helicity driven by the chiral anomaly

    DOE PAGES [OSTI]

    Hirono, Yuji; Kharzeev, Dmitri E.; Yin, Yi

    2015-12-28

    For systems with charged chiral fermions, the imbalance of chirality in the presence of magnetic field generates an electric current—this is the chiral magnetic effect (CME). We study the dynamical real-time evolution of electromagnetic fields coupled by the anomaly to the chiral charge density and the CME current by solving the Maxwell-Chern-Simons equations. We find that the CME induces the inverse cascade of magnetic helicity toward the large distances, and that at late times this cascade becomes self-similar, with universal exponents. We also find that in terms of gauge field topology the inverse cascade represents the transition from linked electricmore » and magnetic fields (Hopfions) to the knotted configuration of magnetic field (Chandrasekhar-Kendall states). The magnetic reconnections are accompanied by the pulses of the CME current directed along the magnetic field lines. In conclusion, we devise an experimental signature of these phenomena in heavy ion collisions, and speculate about implications for condensed matter systems.« less

  8. An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions

    SciTech Connect

    Li, Weixuan; Lin, Guang

    2015-03-21

    Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes’ rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle these challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.

  9. Spin-polarization inversion at small organic molecule/Fe{sub 4}N interfaces: A first-principles study

    SciTech Connect

    Zhang, Qian; Mi, Wenbo

    2015-09-21

    We report the first-principles calculations on the electronic structure and simulation of the spin-polarized scan tunneling microscopy graphic of the small organic molecules (benzene, thiophene, and cyclopentadienyl)/Fe{sub 4}N interfaces. It is found that the plane of benzene and thiophene keeps parallel to Fe{sub 4}N surface, while that of cyclopentadienyl does not. For all the systems, the organic molecules bind strongly with Fe{sub 4}N. Due to the hybridization between molecule p{sub z} orbitals and d orbitals of Fe, i.e., Zener interaction, all the three systems realize the spin-polarization inversion, whereas the spatial spin-polarization inversion distribution shows different intensities influenced by the competition between the spin polarization of C p{sub z} and Fe d states.

  10. Vacuum Bellows, Vacuum Piping, Cryogenic Break, and Copper Joint Failure Rate Estimates for ITER Design Use

    SciTech Connect

    L. C. Cadwallader

    2010-06-01

    The ITER international project design teams are working to produce an engineering design in preparation for construction of the International Thermonuclear Experimental Reactor (ITER) tokamak. During the course of this work, questions have arisen in regard to safety barriers and equipment reliability as important facets of system design. The vacuum system designers have asked several questions about the reliability of vacuum bellows and vacuum piping. The vessel design team has asked about the reliability of electrical breaks and copper-copper joints used in cryogenic piping. Research into operating experiences of similar equipment has been performed to determine representative failure rates for these components. The following chapters give the research results and the findings for vacuum system bellows, power plant stainless steel piping (amended to represent vacuum system piping), cryogenic system electrical insulating breaks, and copper joints.

  11. Generalized Uncertainty Quantification for Linear Inverse Problems in X-ray Imaging

    SciTech Connect

    Fowler, Michael James

    2014-04-25

    In industrial and engineering applications, X-ray radiography has attained wide use as a data collection protocol for the assessment of material properties in cases where direct observation is not possible. The direct measurement of nuclear materials, particularly when they are under explosive or implosive loading, is not feasible, and radiography can serve as a useful tool for obtaining indirect measurements. In such experiments, high energy X-rays are pulsed through a scene containing material of interest, and a detector records a radiograph by measuring the radiation that is not attenuated in the scene. One approach to the analysis of these radiographs is to model the imaging system as an operator that acts upon the object being imaged to produce a radiograph. In this model, the goal is to solve an inverse problem to reconstruct the values of interest in the object, which are typically material properties such as density or areal density. The primary objective in this work is to provide quantitative solutions with uncertainty estimates for three separate applications in X-ray radiography: deconvolution, Abel inversion, and radiation spot shape reconstruction. For each problem, we introduce a new hierarchical Bayesian model for determining a posterior distribution on the unknowns and develop efficient Markov chain Monte Carlo (MCMC) methods for sampling from the posterior. A Poisson likelihood, based on a noise model for photon counts at the detector, is combined with a prior tailored to each application: an edge-localizing prior for deconvolution; a smoothing prior with non-negativity constraints for spot reconstruction; and a full covariance sampling prior based on a Wishart hyperprior for Abel inversion. After developing our methods in a general setting, we demonstrate each model on both synthetically generated datasets, including those from a well known radiation transport code, and real high energy radiographs taken at two U. S. Department of Energy

  12. Final Technical Report for "Applied Mathematics Research: Simulation Based Optimization and Application to Electromagnetic Inverse Problems"

    SciTech Connect

    Haber, Eldad

    2014-03-17

    The focus of research was: Developing adaptive mesh for the solution of Maxwell's equations; Developing a parallel framework for time dependent inverse Maxwell's equations; Developing multilevel methods for optimization problems with inequal- ity constraints; A new inversion code for inverse Maxwell's equations in the 0th frequency (DC resistivity); A new inversion code for inverse Maxwell's equations in low frequency regime. Although the research concentrated on electromagnetic forward and in- verse problems the results of the research was applied to the problem of image registration.

  13. Parallel Infrastructure Modeling and Inversion Module for E4D

    Energy Science and Technology Software Center

    2014-10-09

    Electrical resistivity tomography ERT is a method of imaging the electrical conductivity of the subsurface. Electrical conductivity is a useful metric for understanding the subsurface because it is governed by geomechanical and geochemical properties that drive subsurface systems. ERT works by injecting current into the subsurface across a pair of electrodes, and measuring the corresponding electrical potential response across another pair of electrodes. Many such measurements are strategically taken across an array of electrodes tomore » produce an ERT data set. These data are then processed through a computationally demanding process known as inversion to produce an image of the subsurface conductivity structure that gave rise to the measurements. Data can be inverted to provide 2D images, 3D images, or in the case of time-lapse 3D imaging, 4D images. ERT is generally not well suited for environments with buried electrically conductive infrastructure such as pipes, tanks, or well casings, because these features tend to dominate and degrade ERT images. This reduces or eliminates the utility of ERT imaging where it would otherwise be highly useful for, for example, imaging fluid migration from leaking pipes, imaging soil contamination beneath leaking subusurface tanks, and monitoring contaminant migration in locations with dense network of metal cased monitoring wells. The location and dimension of buried metallic infrastructure is often known. If so, then the effects of the infrastructure can be explicitly modeled within the ERT imaging algorithm, and thereby removed from the corresponding ERT image. However,there are a number of obstacles limiting this application. 1) Metallic infrastructure cannot be accurately modeled with standard codes because of the large contrast in conductivity between the metal and host material. 2) Modeling infrastructure in true dimension requires the computational mesh to be highly refined near the metal inclusions, which increases

  14. Safety Monitor Joint Working Group (JWG) Tour

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4 th Meeting of the Joint Working Group of the U.S.-Japan Coordinating Committee of Fusion Energy on Safety in Inter-Institutional Collaborations (U.S.-Japan Safety Monitoring Program) Meeting in Japan, July 29-August 2, 2013 Submitted: October 16, 2013 Respectfully submitted to: Barry Sullivan Program Manager - ES&H U.S. DOE - Office of Fusion Energy Sciences Professor Kiyohiko Nishimura Head of Division for Health and Safety Management National Institute for Fusion Science Prepared by: Lee

  15. Joint Center for Energy Storage Research

    SciTech Connect

    Eric Isaacs

    2012-11-30

    The Joint Center for Energy Storage Research (JCESR) is a major public-private research partnership that integrates U.S. Department of Energy national laboratories, major research universities and leading industrial companies to overcome critical scientific challenges and technical barriers, leading to the creation of breakthrough energy storage technologies. JCESR, centered at Argonne National Laboratory, outside of Chicago, consolidates decades of basic research experience that forms the foundation of innovative advanced battery technologies. The partnership has access to some of the world's leading battery researchers as well as scientific research facilities that are needed to develop energy storage materials that will revolutionize the way the United States and the world use energy.

  16. Surface preparation of adhesively bonded joints

    SciTech Connect

    Hogg, I.C.; Janardhana, M.N.

    1993-12-31

    For the bonding of structures, it is essential that correct surface preparation is completed to ensure both a reliable and a durable bond. In a controlled environment this can be achieved easily, but difficulties can occur in the field. This paper is a compilation of research completed in the area of surface preparation for the bonding of aluminum and graphite epoxy composites. Finite element analysis software MSC/NASTRAN has been used to investigate the effect of adhesion on the strength and failure characteristics of a single lap joint.

  17. Joint Integration Office Independent Review Committee annual report, 1985

    SciTech Connect

    Not Available

    1986-08-01

    Comprised of seven persons with extensive experience in the issues of nuclear waste, the Independent Review Committee (IRC) provides independent and objective review of Defense Transuranic Waste Program (DTWP) activities managed by the Joint Integration Office (JIO), formerly the Defense Transuranic Waste Lead Organization (TLO). The Committee is ensured a broad, interdisciplinary perspective since its membership includes representatives from the fields of nuclear engineering, nuclear waste transportation, industrial quality control, systems and environmental engineering and state and local government. The scope of IRC activities includes overall review of specific TLO plans, projects and activities, and technical review of particular research and development projects. The Committee makes specific suggestions and recommendations based upon expertise in the field of TRU Waste Management. The IRC operates as a consulting group, under an independent charter providing objective review of program activities. This report summarizes the 12 major topics reviewed by the committee during 1985.

  18. DOE/PNC joint program on transportation technology

    SciTech Connect

    Kubo, M.; Kajitani, M.; Seya, M.; Yoshimura, H.R.; Moya, J.L.; May, R.A.; Huerta, M.; Stenberg, D.R.

    1986-01-01

    This paper summarizes the work performed in a cooperative program on transportation technology between the Department of Energy (DOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. This work was performed at Sandia National Laboratories (SNL) in Albuquerque, New Mexico. The joint program emphasized the safety analysis for truck transportation of special nuclear materials (SNM) in Japan. Tasks included structural analyses and testing, thermal testing, leak rate studies and tests, and transportation risk assessments. The purpose of this paper is to present the results of full-scale structural and thermal tests conducted on a PNC development SNM transport system. Correlation of full-scale impact test results with structural analysis and scale model testing will also be reviewed.

  19. Advancing Inverse Sensitivity/Uncertainty Methods for Nuclear Fuel Cycle Applications

    SciTech Connect

    Arbanas, Goran; Williams, Mark L; Leal, Luiz C; Dunn, Michael E; Khuwaileh, Bassam A.; Wang, C; Abdel-Khalik, Hany

    2015-01-01

    The inverse sensitivity/uncertainty quantification (IS/UQ) method has recently been implemented in the Inverse Sensitivity/UnceRtainty Estimiator (INSURE) module of the AMPX system [1]. The IS/UQ method aims to quantify and prioritize the cross section measurements along with uncer- tainties needed to yield a given nuclear application(s) target response uncertainty, and doing this at a minimum cost. Since in some cases the extant uncertainties of the differential cross section data are already near the limits of the present-day state-of-the-art measurements, requiring significantly smaller uncertainties may be unrealistic. Therefore we have incorporated integral benchmark exper- iments (IBEs) data into the IS/UQ method using the generalized linear least-squares method, and have implemented it in the INSURE module. We show how the IS/UQ method could be applied to systematic and statistical uncertainties in a self-consistent way. We show how the IS/UQ method could be used to optimize uncertainties of IBE s and differential cross section data simultaneously.

  20. Inflation in the generalized inverse power law scenario

    SciTech Connect

    Lu, Zhun

    2013-11-01

    We propose a single field inflationary model by generalizing the inverse power law potential from the intermediate model. We study the implication of our model on the primordial anisotropy of cosmological microwave background radiation. Specifically, we apply the slow-roll approximation to calculate the scalar spectral tilt n{sub s} and the tensor-to-scalar ratio r. The results are compared with the recent data measured by the Planck satellite. We find that by choosing proper values for the parameters, our model can well describe the Planck data.

  1. Center for Inverse Design: EFRC Researchers in Focus (Text Version)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    EFRC Researchers in Focus Tom Mason (Text Version) This is the text version for the EFRC Researchers in Focus: Tom Mason video. One of the reasons as an experimentalist that I'm so excited about being involved with the Center for Inverse Design-as are the students and postdocs-is the opportunity to reverse the paradigm. In conventional materials science, we stumble on to new materials, and then we have the theorists tell us what the band structure is, and we've already developed the properties.

  2. Seismic Attenuation Inversion with t* Using tstarTomog.

    SciTech Connect

    Preston, Leiph

    2014-09-01

    Seismic attenuation is defined as the loss of the seismic wave amplitude as the wave propagates excluding losses strictly due to geometric spreading. Information gleaned from seismic waves can be utilized to solve for the attenuation properties of the earth. One method of solving for earth attenuation properties is called t*. This report will start by introducing the basic theory behind t* and delve into inverse theory as it pertains to how the algorithm called tstarTomog inverts for attenuation properties using t* observations. This report also describes how to use the tstarTomog package to go from observed data to a 3-D model of attenuation structure in the earth.

  3. Sneutrino inflation in supersymmetric B - L with inverse seesaw

    SciTech Connect

    Khalil, Shaaban; Sil, Arunansu

    2012-07-27

    We have shown that inflation in the supersymmetric B - L extension of the Standard Model can be realized where one of the associated right-handed sneutrinos can provide a non-trivial inflationary trajectory at tree level (hence breaking B - L during inflation). As soon as the inflation ends, the right-handed sneutrino falls into the supersymmetric vacuum, with a vanishing vacuum expectation value, so that B - L symmetry is restored. The B - L gauge symmetry will be radiatively broken at a TeV scale and light neutrino masses are generated through the inverse seesaw mechanism.

  4. A computational model for three-dimensional jointed media with a single joint set; Yucca Mountain Site Characterization Project

    SciTech Connect

    Koteras, J.R.

    1994-02-01

    This report describes a three-dimensional model for jointed rock or other media with a single set of joints. The joint set consists of evenly spaced joint planes. The normal joint response is nonlinear elastic and is based on a rational polynomial. Joint shear stress is treated as being linear elastic in the shear stress versus slip displacement before attaining a critical stress level governed by a Mohr-Coulomb faction criterion. The three-dimensional model represents an extension of a two-dimensional, multi-joint model that has been in use for several years. Although most of the concepts in the two-dimensional model translate in a straightforward manner to three dimensions, the concept of slip on the joint planes becomes more complex in three dimensions. While slip in two dimensions can be treated as a scalar quantity, it must be treated as a vector in the joint plane in three dimensions. For the three-dimensional model proposed here, the slip direction is assumed to be the direction of maximum principal strain in the joint plane. Five test problems are presented to verify the correctness of the computational implementation of the model.

  5. Waveform inversion of acoustic waves for explosion yield estimation

    DOE PAGES [OSTI]

    Kim, K.; Rodgers, A. J.

    2016-07-08

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  6. Inversion of seismic reflection traveltimes using a nonlinear optimization scheme

    SciTech Connect

    Pullammanappallil, S.K.; Louie, J.N. (Univ. of Nevada, Reno, NV (United States). Mackay School of Mines)

    1993-11-01

    The authors present the use of a nonlinear optimization scheme called generalized simulated annealing to invert seismic reflection times for velocities, reflector depths, and lengths. A finite-difference solution of the eikonal equation computes reflection traveltimes through the velocity model and avoids ray tracing. They test the optimization scheme on synthetic models and compare it with results from a linearized inversion. The synthetic tests illustrate that, unlike linear inversion schemes, the results obtained by the optimization scheme are independent of the initial model. The annealing method has the ability to produce a suite of models that satisfy the data equally well. They make use of this property to determine the uncertainties associated with the model parameters obtained. Synthetic examples demonstrate that allowing the reflector length to vary, along with its position, helps the optimization process obtain a better solution. The authors put this to use in imaging the Garlock fault, whose geometry at depth is poorly known. They use reflection times picked from shot gathers recorded along COCORP Mojave Line 5 to invert for the Garlock fault and velocities within the Cantil Basin below Fremont Valley, California. The velocities within the basin obtained by their optimization scheme are consistent with earlier studies, though their results suggest that the basin might extend 1--2 km further south. The reconstructed reflector seems to suggest shallowing of the dip of the Garlock fault at depth.

  7. Inverse problems in heterogeneous and fractured media using peridynamics

    DOE PAGES [OSTI]

    Turner, Daniel Z.; van Bloemen Waanders, Bart G.; Parks, Michael L.

    2015-12-10

    The following work presents an adjoint-based methodology for solving inverse problems in heterogeneous and fractured media using state-based peridynamics. We show that the inner product involving the peridynamic operators is self-adjoint. The proposed method is illustrated for several numerical examples with constant and spatially varying material parameters as well as in the context of fractures. We also present a framework for obtaining material parameters by integrating digital image correlation (DIC) with inverse analysis. This framework is demonstrated by evaluating the bulk and shear moduli for a sample of nuclear graphite using digital photographs taken during the experiment. The resulting measuredmore » values correspond well with other results reported in the literature. Lastly, we show that this framework can be used to determine the load state given observed measurements of a crack opening. Furthermore, this type of analysis has many applications in characterizing subsurface stress-state conditions given fracture patterns in cores of geologic material.« less

  8. Solution accelerators for large scale 3D electromagnetic inverse problems

    SciTech Connect

    Newman, Gregory A.; Boggs, Paul T.

    2004-04-05

    We provide a framework for preconditioning nonlinear 3D electromagnetic inverse scattering problems using nonlinear conjugate gradient (NLCG) and limited memory (LM) quasi-Newton methods. Key to our approach is the use of an approximate adjoint method that allows for an economical approximation of the Hessian that is updated at each inversion iteration. Using this approximate Hessian as a preconditoner, we show that the preconditioned NLCG iteration converges significantly faster than the non-preconditioned iteration, as well as converging to a data misfit level below that observed for the non-preconditioned method. Similar conclusions are also observed for the LM iteration; preconditioned with the approximate Hessian, the LM iteration converges faster than the non-preconditioned version. At this time, however, we see little difference between the convergence performance of the preconditioned LM scheme and the preconditioned NLCG scheme. A possible reason for this outcome is the behavior of the line search within the LM iteration. It was anticipated that, near convergence, a step size of one would be approached, but what was observed, instead, were step lengths that were nowhere near one. We provide some insights into the reasons for this behavior and suggest further research that may improve the performance of the LM methods.

  9. Smart sensor technology for joint test assembly flights.

    SciTech Connect

    Berry, Nina M.; Sheaffer, Donald A.; Bierbaum, Rene Lynn; Dimkoff, Jason L.; Walsh, Edward J.; Deyle, Travis Jay ); Marx, Kenneth D.; Pancerella, Carmen M.; Doser, Adele Beatrice; Armstrong, Robert C.

    2003-09-01

    The world relies on sensors to perform a variety of tasks from the mundane to sophisticated. Currently, processors associated with these sensors are sufficient only to handle rudimentary logic tasks. Though multiple sensors are often present in such devices, there is insufficient processing power for situational understanding. Until recently, no processors that met the electrical power constraints for embedded systems were powerful enough to perform sophisticated computations. Sandia performs many expensive tests using sensor arrays. Improving the efficacy, reliability and information content resulting from these sensor arrays is of critical importance. With the advent of powerful commodity processors for embedded use, a new opportunity to do just that has presented itself. This report describes work completed under Laboratory-Directed Research and Development (LDRD) Project 26514, Task 1. The goal of the project was to demonstrate the feasibility of using embedded processors to increase the amount of useable information derived from sensor arrays while improving the believability of the data. The focus was on a system of importance to Sandia: Joint Test Assemblies for ICBM warheads. Topics discussed include: (1) two electromechanical systems to provide data, (2) sensors used to monitor those systems, (3) the processors that provide decision-making capability and data manipulation, (4) the use of artificial intelligence and other decision-making software, and (5) a computer model for the training of artificial intelligence software.

  10. Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Agenda |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Agenda Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Agenda Agenda for the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 deliv_analysis_agenda.pdf (77.66 KB) More Documents & Publications Hydrogen Delivery Analysis Models Hydrogen Delivery Analysis Plus Meeting: DTT, STT, HPTT, Other Analysts, Invited Guests Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Attendees List

  11. Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Attendees

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    List | Department of Energy Attendees List Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Attendees List Attendee list from the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 deliv_analysis_attendees.pdf (77.35 KB) More Documents & Publications DOE and FreedomCAR and Fuel Partnership Analysis Workshop Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Agenda DOE and FreedomCAR and Fuel Partnership Analysis Workshop

  12. Secretary Bodman, Director Rumyantsev Issue Joint Statement on Bratislava

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nuclear Security Initiatives | Department of Energy Bodman, Director Rumyantsev Issue Joint Statement on Bratislava Nuclear Security Initiatives Secretary Bodman, Director Rumyantsev Issue Joint Statement on Bratislava Nuclear Security Initiatives November 9, 2005 - 2:20pm Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel Bodman and Russian Federal Atomic Energy Agency Director, Aleksandr Rumyantsev today released a joint statement on the status of the Bratislava Nuclear Security

  13. Joint Electromagnetic Pulse Resilience Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electromagnetic Pulse Resilience Strategy Joint Electromagnetic Pulse Resilience Strategy The Joint Electromagnetic Pulse Resilience Strategy is a collaboration between the Department of Energy (DOE) and the Electric Power Research Institute (EPRI) that enhances coordination and guides future efforts to help meet the growing demands for electromagnetic pulse (EMP) guidance. The Joint Strategy lays out five strategic goals to guide DOE and EPRI to minimize EMP impacts and improve resilience: 1.

  14. Development of the bus joint for the ITER Central Solenoid

    SciTech Connect

    Martovetsky, Nicolai N; Irick, David Kim; Kenney, Steven J

    2013-01-01

    The terminations of the Central Solenoid (CS) modules are connected to the bus extensions by joints located outside the CS in the gap between the CS and Torodial Field (TF) assemblies. These joints have very strict space limitations. Low resistance is a common requirement for all ITER joints. In addition, the CS bus joints will experience and must be designed to withstand significant variation in the magnetic field of several tenths of a Tesla per second during initiation of plasma. The joint resistance is specified to be less than 4 nOhm. The joints also have to be soldered in the field and designed with the possibility to be installed and dismantled in order to allow cold testing in the cold test facility. We have developed coaxial joints that meet these requirements and have demonstrated the feasibility to fabricate and assemble them in the vertical configuration. We introduced a coupling cylinder with superconducting strands soldered to the surface of the cable that can be installed in the ITER assembly hall and at the Cold Test Facility. This cylinder serves as a transition area between the CS module and the bus extension. We made two racetrack samples and tested four bus joints in our Joint Test Apparatus. Resistance of the bus joints was measured by a decay method and by a microvoltmeter; the value of the current was measured by the Hall probes. This measurement method was verified in the previous tests. The resistance of the joints varied insignificantly from 1.5 to 2 nOhm. One of the challenges associated with a soldered joint is the inability to use corrosive chemicals that are difficult to clean. This paper describes our development work on cable preparation, chrome removal, compaction, soldering, and final assembly and presents the test results.

  15. Science On Tap - From Trinity to Artificial Joints

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science On Tap - From Trinity to Artificial Joints Science On Tap - From Trinity to Artificial Joints WHEN: Jul 16, 2015 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central Park Square, Los Alamos, New Mexico 87544, USA SPEAKER: Nathaniel Morgan, Los Alamos National Laboratory CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Science on Tap series Event Description From Trinity to artificial joints: How computational mathematics has transformed our world.

  16. United States -Japan Joint Nuclear Energy Action Plan | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy -Japan Joint Nuclear Energy Action Plan United States -Japan Joint Nuclear Energy Action Plan President Bush of the United States and Prime Minister Koizumi of Japan have both stated their strong support for the contribution of nuclear power to energy security and the global environment. Japan was the first nation to endorse President Bush's Global Nuclear Energy Partnership. This describes a background of the partnership. United States -Japan Joint Nuclear Energy Action Plan (551.62

  17. Joint Environmental Management System (EMS) | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    (EMS) has two areas of focus: environmental compliance and environmental sustainability. ... The environmental sustainability aspect promotes and integrates sustainability initiatives ...

  18. Joint Environmental Management System (EMS) Declaration of Conformance

    Energy Saver

    Jason Bordoff About Us Jason Bordoff - Associate Director for Energy and Climate Change at the White House Council on Environmental Quality and a Senior Advisor for Energy and Environmental Policy at the National Economic Council Most Recent Unlocking the Power of Energy Data May 23

    Jason Hartke About Us Jason Hartke - Commercial Buildings Integration Program Manager Most Recent Game On: DOE Initiative Supports Leadership in Sports Venues August 29 UC Berkeley Captures Energy Savings by

  19. Fluid Imaging of Enhanced Geothermal Systems through Joint 3D...

    OpenEI (Open Energy Information) [EERE & EIA]

    reservoirs that have been created to extract economical amounts of heat from low permeability andor porosity geothermal resources. Critical to the success of EGS is the...

  20. Joint NSRC Workshop 2015: Big, Deep, and Smart Data Analytics...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NSRC Workshop 2015 Joint NSRC Workshop 2015: Big, Deep, and Smart Data Analytics in Materials Imaging Home Announcement Meeting REGISTRATION Call for Abstracts Abstract Submission...

  1. Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Administration; Appendix Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration; Appendix ...

  2. WTP Safety Culture Advice Joint Topic (HSEP/TWC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    consensus on any particular issue. WTP Safety Culture Advice Joint Topic (HSEPTWC) Framing questions for discussion regarding DOE's recently released Implementation Plan: Re:...

  3. El Salvador-Joint Programme on Resource Efficient and Cleaner...

    OpenEI (Open Energy Information) [EERE & EIA]

    (RECP) in Developing and Transition Countries Jump to: navigation, search Name El Salvador-Joint Programme on Resource Efficient and Cleaner Production (RECP) in Developing and...

  4. Joint Statement from Los Alamos Director Michael Anastasio, Lawrence...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Joint Statement from Los Alamos Director Michael Anastasio, Lawrence Livermore Director ... Laboratories-Dr. George Miller from Lawrence Livermore National Laboratory, Dr. ...

  5. Joint Genome Institute Progress Report 2002-2005

    SciTech Connect

    Gilbert, David

    2005-10-03

    Progress report covering activities at the DOE-Joint Genome Institute in Walnut Creek, California for the period 2002-2005.

  6. Joint retrievals of cloud and drizzle in marine boundary layer...

    Office of Scientific and Technical Information (OSTI)

    radar, lidar and zenith radiances Prev Next Title: Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith ...

  7. Equivalent Continuum Modeling for Shock Wave Propagation in Jointed...

    Office of Scientific and Technical Information (OSTI)

    Equivalent Continuum Modeling for Shock Wave Propagation in Jointed Media Citation Details In-Document Search Title: Equivalent Continuum Modeling for Shock Wave Propagation in ...

  8. U.S.-Brazil Binational Joint Action Plan

    Energy.gov [DOE]

    U.S.-Brazil Binational Energy Working Group, formed on July 20, 2010, when DOE and the Brazilian Ministry of Mines and Energy signed a Joint Action Plan

  9. Director's Message - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    October 1, 2015, News Articles Director's Message George Crabtree The Joint Center for Energy Storage Research (JCESR), a Department of Energy Innovation Hub led by Argonne ...

  10. United States -Japan Joint Nuclear Energy Action Plan

    Energy.gov [DOE] (indexed site)

    -Japan Joint Nuclear Energy Action Plan 1. Introduction 1.1 Background and Objective ... for the contribution of nuclear power to energy security and the global environment. ...

  11. Forces in bolted joints: analysis methods and test results utilized...

    Office of Scientific and Technical Information (OSTI)

    nuclear core applications (LWBR Development Program) Citation Details In-Document Search Title: Forces in bolted joints: analysis methods and test results utilized for nuclear ...

  12. New Report Describes Joint Opportunities for Natural Gas and...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Describes Joint Opportunities for Natural Gas and Hydrogen Fuel-Cell Vehicle Markets - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & ...

  13. Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Administration Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration This document ...

  14. Transcript of March 4, 2011 Joint Public Meeting | Department...

    Energy.gov [DOE] (indexed site)

    of March 4, 2011 Joint Public Meeting More Documents & Publications CERTIFICATE OF AUTHENTICITY Office of Information Resources U.S. Offshore Wind Advanced Technology...

  15. Research Highlights - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the possibility of future optimization of functional K-doping in carbon cathode materials. ... Strategy of the Joint Center for Energy Storage Research to Influence Laboratory Safety ...

  16. ORISE: Providing Support to the DOE Joint Information Center

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Joint Information Center (JIC) ORISE supports DOE's Oak Ridge Office by managing crisis communication facility for drills, exercises and emergencies In the event of an emergency,...

  17. Science On Tap - From Trinity to Artificial Joints

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    artificial human joints, and biological implants, using MRI scanning software, radiation therapy and even creating cartoons is all done using computational mathematics. The world...

  18. Comparison of Joint Modeling Approaches Including Eulerian Sliding...

    Office of Scientific and Technical Information (OSTI)

    Eulerian Sliding Interfaces Citation Details In-Document Search Title: Comparison of Joint Modeling Approaches Including Eulerian Sliding Interfaces You are accessing a ...

  19. Equivalent Continuum Modeling for Shock Wave Propagation in Jointed...

    Office of Scientific and Technical Information (OSTI)

    In one approach, jointed are modeled explicitly in a Lagrangian framework with appropriate contact algorithms used to track motion along the interfaces. In the other approach, the ...

  20. Comparison of Joint Modeling Approaches Including Eulerian Sliding...

    Office of Scientific and Technical Information (OSTI)

    However, once slip displacement on the joints become comparable to the zone size, Lagrangian (even non-conforming) meshes could suffer from tangling and decreased time step ...

  1. Joint Motion to Intervene of Northern States Power Company (Minnesota...

    Energy Saver

    States Power Company (Minnesota) et al. on the Proposed Open Access Requirements Joint Motion to Intervene of Northern States Power Company (Minnesota) et al. on the Proposed ...

  2. Berkeley India Joint Leadership on Energy and Environment | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    of pathways and approaches for reducing the emissions of greenhouse gases while pursuing sustainable economic development. The Berkeley India Joint Leadership on Energy and...

  3. Montana Joint Application for Proposed Work in Montana's Streams...

    OpenEI (Open Energy Information) [EERE & EIA]

    Notice Form Topic JOINT APPLICATION FOR PROPOSED WORK IN MONTANA'S STREAMS, WETLANDS, FLOODPLAINS, AND OTHER WATER BODIES Organization Montana Department of Natural...

  4. US - Brazil Binational Energy Working Group Joint Action Plan...

    Energy.gov [DOE] (indexed site)

    brazilactionplan7202010.pdf More Documents & Publications U.S.-Brazil Binational Joint Action Plan Webtrends Archives by Fiscal Year - International Activities EIS-0309: Record...

  5. USDOE/Russian Ministry of Fuel and Energy joint collaboration for renewable energy resources

    SciTech Connect

    Touryan, K.

    1997-12-01

    This paper describes a joint collaboration between the US and Russia to develop renewable energy resources. There are five main goals of the project. First is to establish Intersolarcenter as a sister organization to NREL for joint R&D activities, and to provide training to the staff. Second is to install demonstration systems in parks and selected locations around Moscow. Third is to install pilot projects: a wind/diesel hybrid system at 21 sites in the northern territories; a 500 kW biomass power plant in the Arkhangelsk Region. Fourth is to assist in the start-up operations of a 2 MW/yr Triple Junction amorphous-Si manufacturing facility in Moscow using US technology. Fifth is to explore the possibilities of financing large-scale wind/hybrid and biomass power systems for the nouthern territories (possibly 900 sites).

  6. Static and Fatigue Strength Evaluations for Bolted Composite/Steel Joints for Heavy Vehicle Chassis Components

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Herling, Darrell R.

    2004-09-14

    In May 2003, ORNL and PNNL began collaboration on a four year research effort focused on developing joining techniques to overcome the technical issues associated with joining lightweight materials in heavy vehicles. The initial focus of research is the development and validation of joint designs for a composite structural member attached to a metal member that satisfy the structural requirements both economically and reliably. Huck-bolting is a common joining method currently used in heavy truck chassis structures. The initial round of testing was conducted to establish a performance benchmark by evaluating the static and fatigue behavior of an existing steel/steel chassis joint at the single huck-bolt level. Both tension and shear loading conditions were considered, and the resulting static and fatigue strengths will be used to guide the joint design for a replacement composite/steel joint. A commercially available, pultruded composite material was chosen to study the generic issues related to composite/steel joints. Extren is produced by STRONGWELL, and it is a combination of fiberglass reinforcement and thermosetting polyester or vinyl ester resin systems. Extren sheets of 3.2 mm thick were joined to 1.4 mm SAE1008 steel sheets with a standard grade 5 bolt with 6.35 mm diameter. Both tension and shear loading modes were considered for the single hybrid joint under static and fatigue loading conditions. Since fiberglass reinforced thermoset polymer composites are a non-homogenous material, their strengths and behavior are dependent upon the design of the composite and reinforcement. The Extren sheet stock was cut along the longitudinal direction to achieve maximum net-section strength. The effects of various manufacturing factors and operational conditions on the static and fatigue strength of the hybrid joint were modeled and experimentally verified. It was found that loading mode and washer size have significant influence on the static and fatigue strength of

  7. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996--Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer

    SciTech Connect

    Vermeul, Vincent R.; Cole, Charles R.; Bergeron, Marcel P.; Thorne, Paul D.; Wurstner, Signe K.

    2001-08-29

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures and parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty. These results, however, indicate that additional improvements are required to the conceptual model framework. An investigation was initiated at the end of this basalt inverse modeling effort to determine whether facies-based zonation would improve specific yield parameter estimation results (ACM-2). A description of the justification and methodology to develop this zonation is discussed.

  8. Joint Institute for Nanoscience Annual Report 2004

    SciTech Connect

    Baer, Donald R.; Campbell, Charles

    2005-02-01

    Due to the inherently interdisciplinary nature of nanoscience and nanotechnology, research in this arena is often significantly enhanced through creative cooperative activities. The Joint Institute for Nanoscience (JIN) is a venture of the University of Washington (UW) and Pacific Northwest National Laboratory (PNNL) to encourage and enhance high impact and high quality nanoscience and nanotechnology research that leverages the strengths and capabilities of both institutions, and to facilitate education in these areas. This report summarizes JIN award activities that took place during fiscal year 2004 and provides a historical list of JIN awardees, their resulting publications, and JIN-related meetings. Major portions of the JIN efforts and resources are dedicated to funding graduate students and postdoctoral research associates to perform research in collaborations jointly directed by PNNL staff scientists and UW professors. JIN fellowships are awarded on the basis of applications that include research proposals. They have been very successful in expanding collaborations between PNNL and UW, which have led to many excellent joint publications and presentations and enhanced the competitiveness of both institutions for external grant funding. JIN-based interactions are playing a significant role in creating new research directions and reshaping existing research programs at both the UW and PNNL. The JIN also co-sponsors workshops on Nanoscale Science and Technology, four of which have been held in Seattle and one in Richland. In addition to involving PNNL staff in various UW nanoscience courses and seminars, a National Science Foundation grant, Development of UW-PNL Collaborative Curriculums in Nano-Science and Technology, has allowed the development of three intensive short courses that are taught by UW faculty, PNNL staff, and faculty from other institutions, including Washington State University, the University of Idaho, Stanford University, and the University of

  9. Spectral shape deformation in inverse spin Hall voltage in Y{sub 3}Fe{sub 5}O{sub 12}|Pt bilayers at high microwave power levels

    SciTech Connect

    Lustikova, J. Shiomi, Y.; Handa, Y.; Saitoh, E.

    2015-02-21

    We report on the deformation of microwave absorption spectra and of the inverse spin Hall voltage signals in thin film bilayers of yttrium iron garnet (YIG) and platinum at high microwave power levels in a 9.45-GHz TE{sub 011} cavity. As the microwave power increases from 0.15 to 200 mW, the resonance field shifts to higher values, and the initially Lorentzian spectra of the microwave absorption intensity as well as the inverse spin Hall voltage signals become asymmetric. The contributions from opening of the magnetization precession cone and heating of YIG cannot well reproduce the data. Control measurements of inverse spin Hall voltages on thin-film YIG|Pt systems with a range of line widths underscore the role of spin-wave excitations in spectral deformation.

  10. Transient Inverse Calibration of Hanford Site-Wide Groundwater Model to Hanford Operational Impacts - 1943 to 1996

    SciTech Connect

    Cole, Charles R.; Bergeron, Marcel P.; Wurstner, Signe K.; Thorne, Paul D.; Orr, Samuel; Mckinley, Mathew I.

    2001-05-31

    This report describes a new initiative to strengthen the technical defensibility of predictions made with the Hanford site-wide groundwater flow and transport model. The focus is on characterizing major uncertainties in the current model. PNNL will develop and implement a calibration approach and methodology that can be used to evaluate alternative conceptual models of the Hanford aquifer system. The calibration process will involve a three-dimensional transient inverse calibration of each numerical model to historical observations of hydraulic and water quality impacts to the unconfined aquifer system from Hanford operations since the mid-1940s.

  11. Titan Energy Systems Enfinity JV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Systems & Enfinity JV Place: Andhra Pradesh, India Sector: Solar Product: India-based joint venture to develop solar PV projects. References: Titan Energy Systems & Enfinity...

  12. Joint Institute for Nanoscience Annual Report 2003

    SciTech Connect

    Baer, Donald R.; Campbell, Charles

    2004-02-01

    The Joint Institute for Nanoscience (JIN) is a cooperative venture of the University of Washington and Pacific Northwest National Laboratory to encourage and enhance high-impact and high-quality nanoscience and nanotechnology of all types. This first annual report for the JIN summarizes activities beginning in 2001 and ending at the close of fiscal year 2003 and therefore represents somewhat less than two years of activities. Major portions of the JIN resources are dedicated to funding graduate students and postdoctoral research associates to perform research in collaborations jointly directed by Pacific Northwest National Laboratory (PNNL) staff scientists and University of Washington (UW) professors. These fellowships were awarded on the basis of applications that included research proposals. JIN co-sponsors an annual Nanoscale Science and Technology Workshop held in Seattle. In addition to involving PNNL staff in various UW nanoscience courses and seminars, a National Science Foundation grant Development of UW-PNL Collaborative Curriculums in Nano-Science and Technology has allowed the development of three intensive short courses that are taught by UW faculty, PNNL staff, and faculty from other institutions, including Washington State University, the University of Idaho, Stanford University, and the University of Alaska. The initial JIN agreement recognized that expansion of cooperation beyond UW and PNNL would be highly valuable. Starting in early 2003, efforts were initiated to form a regional communication link called the Northwest Nanoscience and Nanotechnology Network (N₄). In concept, N₄ is a tool to encourage communication and help identify regional resources and nanoscience and technology activities.

  13. Temporal variability of the trade wind inversion: Measured with a boundary layer vertical profiler. Master's thesis

    SciTech Connect

    Grindinger, C.M.

    1992-05-01

    This study uses Hawaiian Rainband Project (HaRP) data, from the summer of 1991, to show a boundary layer wind profiler can be used to measure the trade wind inversion. An algorithm has been developed for the profiler that objectively measures the depth of the moist oceanic boundary layer. The Hilo inversion, measured by radiosonde, is highly correlated with the moist oceanic boundary layer measured by the profiler at Paradise Park. The inversion height on windward Hawaii is typically 2253 + or - 514 m. The inversion height varies not only on a daily basis, but on less than an hourly basis. It has a diurnal, as well as a three to four day cycle. There appears to be no consistent relationship between inversion height and precipitation. Currently, this profiler is capable of making high frequency (12 minute) measurements of the inversion base variation, as well as other features.

  14. Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion

    SciTech Connect

    Hinnell, A.C.; Ferre, T.P.A.; Vrugt, J.A.; Huisman, J.A.; Moysey, S.; Rings, J.; Kowalsky, M.B.

    2009-11-01

    There is increasing interest in the use of multiple measurement types, including indirect (geophysical) methods, to constrain hydrologic interpretations. To date, most examples integrating geophysical measurements in hydrology have followed a three-step, uncoupled inverse approach. This approach begins with independent geophysical inversion to infer the spatial and/or temporal distribution of a geophysical property (e.g. electrical conductivity). The geophysical property is then converted to a hydrologic property (e.g. water content) through a petrophysical relation. The inferred hydrologic property is then used either independently or together with direct hydrologic observations to constrain a hydrologic inversion. We present an alternative approach, coupled inversion, which relies on direct coupling of hydrologic models and geophysical models during inversion. We compare the abilities of coupled and uncoupled inversion using a synthetic example where surface-based electrical conductivity surveys are used to monitor one-dimensional infiltration and redistribution.

  15. Rapid Evaluation of Particle Properties using Inverse SEM Simulations

    SciTech Connect

    Bekar, Kursat B.; Miller, Thomas Martin; Patton, Bruce W.; Weber, Charles F.

    2016-01-01

    This report is the final deliverable of a 3 year project whose purpose was to investigate the possibility of using simulations of X-ray spectra generated inside a scanning electron microscope (SEM) as a means to perform quantitative analysis of the sample imaged in the SEM via an inverse analysis methodology. Using the nine point Technology Readiness Levels (TRL) typically used by the US Department of Defense (DOD) and the National Aeronautics and Space Administration (NASA), this concept is now at a TRL of 3. In other words, this work has proven the feasibility of this concept and is ready to be further investigated to address some of the issues highlighted by this initial proof of concept.

  16. Zeroth-order inversion of transient head observations

    SciTech Connect

    Vasco, D.W.

    2007-08-15

    A high-frequency, asymptotic solution for transient head,appropriate for a medium containing smoothly varying heterogeneity,provides a basis for efficient inverse modeling. The semi analyticsolution is trajectory based, akin to ray methods used in modeling wavepropagation, and may be constructed by post processing the output of anumerical simulator. For high frequencies, the amplitude sensitivities,the relationship between changes in flow properties and changes in headampliude, are dominated by the phase term which may be computed directlyfrom the output of the simulator. Thus, transient head waveforms may beinverted with little more computation than is required to invert arrivaltimes. An applicatino to synthetic head values indicates that thetechnique can be used to improve the fit to waveforms. An application totransient head data from the Migration experiment in Switzerland revealsa narrow, high conductivity pathway within a 0.5 m thick zone offracturing.

  17. Fast full-wave seismic inversion using source encoding.

    SciTech Connect

    Ho Cha, Young; Baumstein, Anatoly; Lee, Sunwoong; Hinkley, David; Anderson, John E.; Neelamani, Ramesh; Krebs, Jerome R.; Lacasse, Martin-Daniel

    2010-05-01

    Full Wavefield Seismic Inversion (FWI) estimates a subsurface elastic model by iteratively minimizing the difference between observed and simulated data. This process is extremely compute intensive, with a cost on the order of at least hundreds of prestack reverse time migrations. For time-domain and Krylov-based frequency-domain FWI, the cost of FWI is proportional to the number of seismic sources inverted. We have found that the cost of FWI can be significantly reduced by applying it to data processed by encoding and summing individual source gathers, and by changing the encoding functions between iterations. The encoding step forms a single gather from many input source gathers. This gather represents data that would have been acquired from a spatially distributed set of sources operating simultaneously with different source signatures. We demonstrate, using synthetic data, significant cost reduction by applying FWI to encoded simultaneous-source data.

  18. Unified dark energy-dark matter model with inverse quintessence

    SciTech Connect

    Ansoldi, Stefano; Guendelman, Eduardo I. E-mail: guendel@bgu.ac.il

    2013-05-01

    We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future.

  19. Source-independent full waveform inversion of seismic data

    DOEpatents

    Lee, Ki Ha

    2006-02-14

    A set of seismic trace data is collected in an input data set that is first Fourier transformed in its entirety into the frequency domain. A normalized wavefield is obtained for each trace of the input data set in the frequency domain. Normalization is done with respect to the frequency response of a reference trace selected from the set of seismic trace data. The normalized wavefield is source independent, complex, and dimensionless. The normalized wavefield is shown to be uniquely defined as the normalized impulse response, provided that a certain condition is met for the source. This property allows construction of the inversion algorithm disclosed herein, without any source or source coupling information. The algorithm minimizes the error between data normalized wavefield and the model normalized wavefield. The methodology is applicable to any 3-D seismic problem, and damping may be easily included in the process.

  20. Current Activities Assessing Butt Fusion Joint Integrity in High Density Polyethylene Piping

    SciTech Connect

    Crawford, Susan L.; Cinson, Anthony D.; Doctor, Steven R.; Denslow, Kayte M.

    2012-09-01

    The Pacific Northwest National Laboratory (PNNL) in Richland, Washington, conducted initial studies to evaluate the effectiveness of nondestructive examinations (NDE) coupled with mechanical testing for assessing butt fusion joint integrity in high density polyethylene (HDPE) pipe. The work provided insightful information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques for detecting lack of fusion (LOF) conditions in the fusion joints. HDPE has been installed on a limited basis in American Society of Mechanical Engineers (ASME) Class 3, buried piping systems at several operating U.S. nuclear power plants and has been proposed for use in new construction. A comparison was made between the results from ultrasonic and microwave nondestructive examinations and the results from mechanical destructive evaluations, specifically the high-speed tensile test and the side-bend test, for determining joint integrity. The data comparison revealed that none of the NDE techniques detected all of the lack-of-fusion conditions that were revealed by the destructive tests. Follow-on work has recently been initiated at PNNL to accurately characterize the NDE responses from machined flaws of varying size and location in PE 4710 materials as well as the LOF condition. This effort is directed at quantifying the ability of volumetric NDE techniques to detect flaws in relation to the critical flaw size associated with joint integrity. A status of these latest investigations is presented.

  1. Atmospheric Inverse Estimates of Methane Emissions from Central California

    SciTech Connect

    Zhao, Chuanfeng; Andrews, Arlyn E.; Bianco, Laura; Eluszkiewicz, Janusz; Hirsch, Adam; MacDonald, Clinton; Nehrkorn, Thomas; Fischer, Marc L.

    2008-11-21

    Methane mixing ratios measured at a tall-tower are compared to model predictions to estimate surface emissions of CH{sub 4} in Central California for October-December 2007 using an inverse technique. Predicted CH{sub 4} mixing ratios are calculated based on spatially resolved a priori CH{sub 4} emissions and simulated atmospheric trajectories. The atmospheric trajectories, along with surface footprints, are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. An uncertainty analysis is performed to provide quantitative uncertainties in estimated CH{sub 4} emissions. Three inverse model estimates of CH{sub 4} emissions are reported. First, linear regressions of modeled and measured CH{sub 4} mixing ratios obtain slopes of 0.73 {+-} 0.11 and 1.09 {+-} 0.14 using California specific and Edgar 3.2 emission maps respectively, suggesting that actual CH{sub 4} emissions were about 37 {+-} 21% higher than California specific inventory estimates. Second, a Bayesian 'source' analysis suggests that livestock emissions are 63 {+-} 22% higher than the a priori estimates. Third, a Bayesian 'region' analysis is carried out for CH{sub 4} emissions from 13 sub-regions, which shows that inventory CH{sub 4} emissions from the Central Valley are underestimated and uncertainties in CH{sub 4} emissions are reduced for sub-regions near the tower site, yielding best estimates of flux from those regions consistent with 'source' analysis results. The uncertainty reductions for regions near the tower indicate that a regional network of measurements will be necessary to provide accurate estimates of surface CH{sub 4} emissions for multiple regions.

  2. Spherical Resorcinol-Formaldehyde Synthesis by Inverse Suspension Polymerization

    SciTech Connect

    Ray, Robert J.; Scrivens, Walter A.; Nash, Charles

    2005-10-21

    Base catalyzed sol-gel polycondensation of resorcinol (1,3-dihydroxybenzene) with formaldehyde by inverse suspension polymerization leads to the formation of uniform, highly cross-linked, translucent, spherical gels, which have increased selectivity and capacity for cesium ion removal from high alkaline solutions. Because of its high selectivity for cesium ion, resorcinol-formaldehyde (R-F) resins are being considered for process scale column radioactive cesium removal by ion-exchange at the Waste Treatment and Immobilization Plant (WTP), which is now under construction at the Hanford site. Other specialty resins such as Superlig{reg_sign} 644 have been ground and sieved and column tested for process scale radioactive cesium removal but show high pressure drops across the resin bed during transition from column regeneration to loading and elution. Furthermore, van Deemter considerations indicate better displacement column chromatography by the use of spherical particle beads rather than irregularly shaped ground or granular particles. In our studies batch contact equilibrium experiments using a high alkaline simulant show a definite increase in cesium loading onto spherical R-F resin. Distribution coefficient (Kd) values ranged from 777 to 429 mL/g in the presence of 0.1M and 0.7M potassium ions, respectively. Though other techniques for making R-F resins have been employed, to our knowledge no one has made spherical R-F resins by inverse suspension polymerization. Moreover, in this study we discuss the data comparisons to known algebraic isotherms used to evaluate ion-exchange resins for WTP plant scale cesium removal operations.

  3. Preparation of LiFePO{sub 4} with inverse opal structure and its satisfactory electrochemical properties

    SciTech Connect

    Lu Junbiao . E-mail: ljb01@mails.tsinghua.edu.cn; Tang Zilong; Zhang Zhongtai; Shen Wanci

    2005-12-08

    Phase pure, well-crystallized and homogeneous LiFePO{sub 4} powder with inverse opal structure was obtained by calcining the precursors of Li{sup +}, Fe{sup 2+} and PO{sub 4} {sup 3-} in the presence of organic template of poly(styrene-methyl methacrylate-acrylic acid) latex micro-spheres under nitrogen atmosphere. The resultant products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), chemical titration, Fourier transform infrared (FTIR) and Land 2001A electrochemical measurement system. Results indicated that after the decomposition of organic template, inverse opal structure and conductive carbon were left in the resultant products. With the large specific surface area resulting from inverse opal structure and with the conductive carbon, the products delivered satisfactory capacity and superior rate capability at room temperature, i.e., over 100 mAh/g at the high current density of 5.9C.

  4. Discovery of a Single Topological Dirac Fermion in the Strong Inversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Asymmetric Compound BiTeCl | Stanford Synchrotron Radiation Lightsource Discovery of a Single Topological Dirac Fermion in the Strong Inversion Asymmetric Compound BiTeCl Friday, January 31, 2014 Topological insulators comprise a new state of quantum matter that has been predicted theoretically and realized experimentally in the past few years. Every topological insulator discovered so far in experiments has been inversion symmetric - except for strained HgTe, which has weak inversion

  5. Majorana Demonstrator Bolted Joint Mechanical and Thermal Analysis

    SciTech Connect

    Aguayo Navarrete, Estanislao; Reid, Douglas J.; Fast, James E.

    2012-06-01

    The MAJORANA DEMONSTRATOR is designed to probe for neutrinoless double-beta decay, an extremely rare process with a half-life in the order of 1026 years. The experiment uses an ultra-low background, high-purity germanium detector array. The germanium crystals are both the source and the detector in this experiment. Operating these crystals as ionizing radiation detectors requires having them under cryogenic conditions (below 90 K). A liquid nitrogen thermosyphon is used to extract the heat from the detectors. The detector channels are arranged in strings and thermally coupled to the thermosyphon through a cold plate. The cold plate is joined to the thermosyphon by a bolted joint. This circular plate is housed inside the cryostat can. This document provides a detailed study of the bolted joint that connects the cold plate and the thermosyphon. An analysis of the mechanical and thermal properties of this bolted joint is presented. The force applied to the joint is derived from the torque applied to each one of the six bolts that form the joint. The thermal conductivity of the joint is measured as a function of applied force. The required heat conductivity for a successful experiment is the combination of the thermal conductivity of the detector string and this joint. The thermal behavior of the joint is experimentally implemented and analyzed in this study.

  6. EM's Acting Assistant Secretary Selected to Lead Joint Convention

    Energy.gov [DOE]

    The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention) selected David Huizenga, Acting Assistant Secretary for the Office of Environmental Management, as the President for the Fifth Review Meeting of the Parties.

  7. NuSTAR Observations of the Bullet Cluster: Constraints on Inverse...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of the Bullet Cluster: Constraints on Inverse Compton Emission Wik, Daniel R.; NASA, Goddard Johns Hopkins U.; Hornstrup, A.; Denmark, Tech. U.; Molendi, S.; IASF,...

  8. Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data...

    Office of Scientific and Technical Information (OSTI)

    of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil ... Title: Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring ...

  9. NuSTAR Observations of the Bullet Cluster: Constraints on Inverse...

    Office of Scientific and Technical Information (OSTI)

    the Bullet Cluster: Constraints on Inverse Compton Emission Authors: Wik, Daniel R. ; NASA, Goddard Johns Hopkins U. ; Hornstrup, A. ; Denmark, Tech. U. ; Molendi, S. ; IASF,...

  10. Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data...

    Office of Scientific and Technical Information (OSTI)

    data for Monitoring Dielectric Permittivity and Soil Moisture Variations Citation Details In-Document Search Title: Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data ...

  11. FELIX: advances in modeling forward and inverse ice-sheet problems...

    Office of Scientific and Technical Information (OSTI)

    Title: FELIX: advances in modeling forward and inverse ice-sheet problems. Abstract not provided. Authors: Salinger, Andrew G. ; Perego, Mauro ; Hoffman, Mattew ; Leng, Wei ; ...

  12. Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data...

    Office of Scientific and Technical Information (OSTI)

    the Bayesian estimates from the previous inversion (as a memory function) with new data. ... Country of Publication: United States Language: English Subject: 58 GEOSCIENCES ...

  13. Inverse Cascade of Non-helical Magnetic Turbulence in a Relativistic...

    Office of Scientific and Technical Information (OSTI)

    Title: Inverse Cascade of Non-helical Magnetic Turbulence in a Relativistic Fluid Authors: Zrake, Jonathan ; KIPAC, Menlo Park Publication Date: 2014-10-23 OSTI Identifier: ...

  14. Development and experience of large conductor cable 35-kV joints at the Los Angeles Department of Water and Power

    SciTech Connect

    Calderon, F.; Findon, E.J. )

    1990-01-01

    The Los Angeles Department of Water and Power (LADWP) places a high priority on developing its distribution system in the most reliable and cost-effective manner. At higher distribution voltages, such as 34.5-kV, jointing systems which are easily, consistently, and quickly installed by both utility and contracted personnel offer significant economic advantages. With increasing loads and higher load densities at LADWP, the use of 34.5-kV, cross-linked polyethylene (CLP) aluminum, 1000-kcmil cable is becoming more common to meet customer load requirements. Two methods of jointing this large conductor cable were historically used, although each method had limitations. This paper provides an overview of LADWP's distribution system, past jointing techniques, the investigation and evaluation of alternate approaches, and the field experience with the joint selected for use.

  15. Inelastic analysis of dissimilar metallic pipe joints for CRBRP application

    SciTech Connect

    Yang, C C; Dalcher, A W

    1982-01-19

    A preliminary inelastic analysis of a dissimilar metallic transition joint was made based on the piping design specification for CRBRP applications. The transition joint was analyzed to satisfy the elevated temperature ASME Code requirements. The transition joint analyzed is a tri-metallic joint composed of 316 stainless steel, alloy 800H, and 2-1/4 Cr-1Mo steel sections. The preliminary results from this analysis showed that the plastic deformation occurs predominantly in the alloy 800H section, while the accumulated inelastic strain due to creep is much more significant in the 2-1/4 Cr-1Mo section. The region of this transition joint which experiences the greatest amount of accumulated damage is at the interface of the 2-1/4 Cr-1Mo steel and the Inconel 82 weldment.

  16. Development of the Butt Joint for the ITER Central Solenoid

    SciTech Connect

    Martovetsky, N N

    2006-08-23

    The ITER Central Solenoid (CS) requires compact and reliable joints for its Cable-in-Conduit Conductor (CICC). The baseline design is a diffusion bonded butt joint. In such a joint the mating cables are compacted to a very low void fraction in a copper sleeve and then heat treated. After the heat treatment the ends are cut, polished and aligned against each other and then diffusion bonded under high compression in a vacuum chamber at 750 C. The jacket is then welded on the conductor to complete the joint, which remarkably does not require more room than a regular conductor. This joint design is based on a proven concept developed for the ITER CS Model Coil that was successfully tested in the previous R&D phase.

  17. Inverse oxide/metal catalysts in fundamental studies and practical applications: A perspective of recent developments

    DOE PAGES [OSTI]

    Rodriguez, José A.; Liu, Ping; Graciani, Jesús; Senanayake, Sanjaya D.; Grinter, David C.; Stacchiola, Dario; Hrbek, Jan; Fernández-Sanz, Javier

    2016-06-21

    Inverse oxide/metal catalysts have shown to be excellent systems for studying the role of the oxide and oxide–metal interface in catalytic reactions. These systems can have special structural and catalytic properties due to strong oxide–metal interactions difficult to attain when depositing a metal on a regular oxide support. Oxide phases that are not seen or are metastable in a bulk oxide can become stable in an oxide/metal system opening the possibility for new chemical properties. Using these systems, it has been possible to explore fundamental properties of the metal–oxide interface (composition, structure, electronic state), which determine catalytic performance in themore » oxidation of CO, the water–gas shift and the hydrogenation of CO2 to methanol. Recently, there has been a significant advance in the preparation of oxide/metal catalysts for technical or industrial applications. In conclusion, one goal is to identify methods able to control in a precise way the size of the deposited oxide particles and their structure on the metal substrate.« less

  18. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    SciTech Connect

    Shen, Junjun Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; Santos, Jorge F. dos

    2014-05-12

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl{sub 2} eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  19. Electrical detection of liquid lithium leaks from pipe joints

    SciTech Connect

    Schwartz, J. A. Jaworski, M. A.; Mehl, J.; Kaita, R.; Mozulay, R.

    2014-11-15

    A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 kΩ trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.

  20. The institutional needs of joint implementation projects

    SciTech Connect

    Watt, E.; Sathaye, J.; Buen, O. de; Masera, O.; Gelil, I.A.; Ravindranath, N.H.; Zhou, D.; Li, J.; Intarapravich, D.

    1995-10-21

    In this paper, the authors discuss options for developing institutions for joint implementation (JI) projects. They focus on the tasks which are unique to JI projects or require additional institutional needs--accepting the project by the host and investor countries and assessing the project`s greenhouse gas (GHG) emission reduction or sequestration--and they suggest the types of institutions that would enhance their performance. The evaluation is based on four sets of governmental and international criteria for JI projects, the experiences of ten pilot JI projects, and the perspectives of seven collaborating authors from China, Egypt, India, Mexico, and Thailand, who interviewed relevant government and non-government staff involved in JI issue assessment in their countries. After examining the roles for potential JI institutions, they present early findings arguing for a decentralized national JI structure, which includes: (1) national governmental panels providing host country acceptance of proposed JI projects; (2) project parties providing the assessment data on the GHG reduction or sequestration for the projects; (3) technical experts calculating these GHG flows; (4) certified verification teams checking the GHG calculations; and (5) members of an international JI Secretariat training and certifying the assessors, as well as resolving challenges to the verifications. 86 refs.

  1. Proceedings of the Third International Workshop on Jointed Structures.

    SciTech Connect

    Starr, Michael James; Brake, Matthew Robert; Segalman, Daniel Joseph; Bergman, Lawrence A.; Ewins, David J.

    2013-08-01

    The Third International Workshop on Jointed Structures was held from August 16th to 17th, 2012, in Chicago Illinois, following the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Thirty two researchers from both the United States and international locations convened to discuss the recent progress of mechanical joints related research and associated efforts in addition to developing a roadmap for the challenges to be addressed over the next five to ten years. These proceedings from the workshop include the minutes of the discussions and follow up from the 2009 workshop [1], presentations, and outcomes of the workshop. Specifically, twelve challenges were formulated from the discussions at the workshop, which focus on developing a better understanding of uncertainty and variability in jointed structures, incorporating high fidelity models of joints in simulations that are tractable/efficient, motivating a new generation of researchers and funding agents as to the importance of joint mechanics research, and developing new insights into the physical phenomena that give rise to energy dissipation in jointed structures. The ultimate goal of these research efforts is to develop a predictive model of joint mechanics.

  2. Microstructural characterization of titanium to 304 stainless steel brazed joints

    SciTech Connect

    Camargo, P.R.C.; Liu, S. . Center for Welding and Joining Research); Trevisan, R.E. . Dept. of Fabrication Engineering)

    1993-12-01

    The formation of intermetallic compounds in brazed joints between titanium and 304 stainless steel is of major concern, since they considerably degrade the joint properties. This research examined the vacuum brazing of commercially pure titanium to 304 stainless steel using two different silver-copper brazing filler metals. Pure copper and silver were used to prepare the brazing filler metals in these experiments. Special attention was given to the characterization of the different phases formed at the brazed joint and the effect of the intermetallic compounds on the mechanical properties of the brazed joints. Light and electron microscopy, electron probe microanalysis, microhardness, and shear testing were used to support the investigation. From the mechanical properties point of view, brazed joints using an eutectic composition filler metal (Ag-28 wt-% Cu) proved to be superior compared to the joints prepared with a filler metal of composition Ag-46 wt-% Cu. To maximize the shear strength of the joint, the brazing time must be optimized such that interfacial reactions, titanium-iron intermetallics formation are minimized.

  3. Ultrasonic inspection of polyethylene butt-fussion joints

    SciTech Connect

    House, L.J.; Day, R.A.

    1982-01-01

    Researchers investigated nondestructive pulse-echo, pitch-catch, and spectroscopic ultrasonic methods for determining voids and inclusions, lack of bond, and inadequate fusion in heat-fused polyethylene butt joints in 4-in. gas distribution pipe. The pulse-echo method, using a 2.25-MHz, cylindrically focused transducer, provided the best sensitivity to the joint defects, detecting flaws as small as 0.014 in. in diameter. No correlation was established between the ultrasonic spectroscopy results and the cohesive strength of incompletely fused joints in the 1.2-3.2 MHz frequency range.

  4. US, Russian Federation Sign Joint Statement on Reactor Conversion |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy US, Russian Federation Sign Joint Statement on Reactor Conversion US, Russian Federation Sign Joint Statement on Reactor Conversion June 26, 2012 - 12:00pm Addthis News Media Contact (202) 586-4940 This release is cross-posted from NNSA.energy.gov. MOSCOW - The U.S. and Russian Federation jointly announced today that the first stage of work defined in the Implementing Agreement between the Russian State Corporation for Atomic Energy (Rosatom) and the Department of Energy

  5. Transportation Systems Modeling

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling TRANSPORTATION SYSTEMS MODELING Overview of TSM Transportation systems modeling research at TRACC uses the TRANSIMS (Transportation Analysis SIMulation System) traffic micro simulation code developed by the U.S. Department of Transportation (USDOT). The TRANSIMS code represents the latest generation of traffic simulation codes developed jointly under multiyear programs by USDOT, the

  6. Negative terahertz conductivity in disordered graphene bilayers with population inversion

    SciTech Connect

    Svintsov, D.; Otsuji, T.; Ryzhii, V.; Mitin, V.; Shur, M. S.

    2015-03-16

    The gapless energy band spectra make the structures based on graphene and graphene bilayer with the population inversion to be promising media for the interband terahertz (THz) lasing. However, a strong intraband absorption at THz frequencies still poses a challenge for efficient THz lasing. In this paper, we show that in the pumped graphene bilayer, the indirect interband radiative transitions accompanied by scattering of carriers by disorder can provide a substantial negative contribution to the THz conductivity (together with the direct interband transitions). In the graphene bilayer on high-? substrates with point charged defects, these transitions substantially compensate the losses due to the intraband (Drude) absorption. We also demonstrate that the indirect interband contribution to the THz conductivity in a graphene bilayer with the extended defects (such as the charged impurity clusters) can surpass by several times the fundamental limit associated with the direct interband transitions, and the Drude conductivity as well. These predictions can affect the strategy of the graphene-based THz laser implementation.

  7. Development of an Inverse Algorithm for Resonance Inspection

    SciTech Connect

    Lai, Canhai; Xu, Wei; Sun, Xin

    2012-10-01

    Resonance inspection (RI), which employs the natural frequency spectra shift between the good and the anomalous part populations to detect defects, is a non-destructive evaluation (NDE) technique with many advantages such as low inspection cost, high testing speed, and broad applicability to structures with complex geometry compared to other contemporary NDE methods. It has already been widely used in the automobile industry for quality inspections of safety critical parts. Unlike some conventionally used NDE methods, the current RI technology is unable to provide details, i.e. location, dimension, or types, of the flaws for the discrepant parts. Such limitation severely hinders its wide spread applications and further development. In this study, an inverse RI algorithm based on maximum correlation function is proposed to quantify the location and size of flaws for a discrepant part. A dog-bone shaped stainless steel sample with and without controlled flaws are used for algorithm development and validation. The results show that multiple flaws can be accurately pinpointed back using the algorithms developed, and the prediction accuracy decreases with increasing flaw numbers and decreasing distance between flaws.

  8. Self-annihilation of inversion domains by high energy defects in III-Nitrides

    SciTech Connect

    Koukoula, T.; Kioseoglou, J. Kehagias, Th.; Komninou, Ph.; Ajagunna, A. O.; Georgakilas, A.

    2014-04-07

    Low-defect density InN films were grown on Si(111) by molecular beam epitaxy over an ?1??m thick GaN/AlN buffer/nucleation layer. Electron microscopy observations revealed the presence of inverse polarity domains propagating across the GaN layer and terminating at the sharp GaN/InN (0001{sup }) interface, whereas no inversion domains were detected in InN. The systematic annihilation of GaN inversion domains at the GaN/InN interface is explained in terms of indium incorporation on the Ga-terminated inversion domains forming a metal bonded In-Ga bilayer, a structural instability known as the basal inversion domain boundary, during the initial stages of InN growth on GaN.

  9. JOINT EPA/DOE STATEMENT: Radiation Monitors Confirm That No Radiation...

    Office of Environmental Management (EM)

    JOINT EPADOE STATEMENT: Radiation Monitors Confirm That No Radiation Levels of Concern Have Reached the United States JOINT EPADOE STATEMENT: Radiation Monitors Confirm That No ...

  10. Data Needs for LCLS-II Amedeo Perazzo SLAC Joint Facilities User...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Amedeo Perazzo SLAC Joint Facilities User Forum on Data Intensive Computing, June 16 th 2014 Joint Facilities User Forum on Data Intensive Computing - LCLS-II Data Needs ...

  11. Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferat...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States Joint Statement on Future ...

  12. Final Joint Statement from G-7 Energy Ministers Meeting in Rome...

    Energy.gov [DOE] (indexed site)

    Final Joint Statement from G-7 Energy Ministers Meeting in Rome More Documents & Publications Final Joint Statement from G-7 Energy Ministers Meeting in Rome Before the Senate...

  13. United States -- Mexican joint ventures: A case history approach

    SciTech Connect

    Moore, N.L.; Chidester, R.J.; Hughes, K.R.; Fowler, R.A.

    1993-03-01

    Because the Mexican government has encouraged investment in Mexico by increasing the percentage of ownership of a Mexican business that a US company can hold, joint ventures are more attractive now than they had been in the past. This study provides preliminary information for US renewable energy companies who are interested in forming a joint venture with a Mexican company. This report is not intended to be a complete reference but does identifies a number of important factors that should be observed when forming a Mexican joint venture: (1)Successful joint ventures achieve the goals of each partner. (2)It is essential that all parties agree to the allocation of responsibilities. (3)Put everything in writing. (4)Research in depth the country or countries in which you are considering doing business.

  14. David Willets Visits JCESR - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    19, 2014, Videos David Willets Visits JCESR willets-audio UK Universities and Science Minister, David Willetts, visited Argonne National Laboratory and the Joint Center for Energy Storage Research (JCESR).

  15. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FCT and AMO Webinar 11202012 eere.energy.gov Joint Fuel Cell Technologies and Advanced ... of R&D Progress Reduced high-volume cost of Reduced cost of electrolyzer fuel ...

  16. Gas turbine igniter with ball-joint support

    SciTech Connect

    Steber, C.E.; Travis, R.J.; Rizzo, J.A.

    1990-02-27

    This patent describes a support for an igniter for a combustor of a gas turbine, the combustor being of a type including a casing and a liner within the casing. It comprises: a ball joint; means for supporting the ball joint disposed a substantial distance outward from the casing; a body section of the igniter affixed in the ball joint; means for permitting the ball joint, and the body section to rotate through a substantial range; an igniter tip on the body section; and a hole in the liner. The igniter tip entering through the hole and into an interior of the liner. The hole being a tight fit to the igniter tip, whereby leakage past the igniter tip through the hole is limited. The substantial range being sufficient to permit fitting the igniter tip in the hole in the presence of manufacturing tolerances, and to permit the igniter tip to track the hole in the presence of differential thermal expansion during operation.

  17. Joint Meeting on Hydrogen Delivery Modeling and Analysis | Department...

    Office of Environmental Management (EM)

    Meeting on Hydrogen Delivery Modeling and Analysis Joint Meeting on Hydrogen Delivery Modeling and Analysis On May 8-9, 2007, the U.S. Department of Energy (DOE) held a meeting to ...

  18. Statement from Secretary Moniz on Adoption Day for the Joint...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in nature. Today, as the Joint Comprehensive Plan of Action (JCPOA) comes into effect, Iran will begin taking substantial and verifiable steps to roll back its nuclear program and...

  19. Joint comments of consumers energy company and the detriot edison...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Northeast Power Coordinating Council FE Docket No. 99-1 Joint Motion to Intervene of Northern States Power Company (Minnesota) et al. on the Proposed Open Access Requirements

  20. Method of forming a ceramic to ceramic joint

    DOEpatents

    Cutler, Raymond Ashton; Hutchings, Kent Neal; Kleinlein, Brian Paul; Carolan, Michael Francis

    2010-04-13

    A method of joining at least two sintered bodies to form a composite structure, includes: providing a joint material between joining surfaces of first and second sintered bodies; applying pressure from 1 kP to less than 5 MPa to provide an assembly; heating the assembly to a conforming temperature sufficient to allow the joint material to conform to the joining surfaces; and further heating the assembly to a joining temperature below a minimum sintering temperature of the first and second sintered bodies. The joint material includes organic component(s) and ceramic particles. The ceramic particles constitute 40-75 vol. % of the joint material, and include at least one element of the first and/or second sintered bodies. Composite structures produced by the method are also disclosed.

  1. Mechanical properties of dissimilar metal joints composed of...

    Office of Scientific and Technical Information (OSTI)

    composed of DP 980 Steel and AA 7075-T6 Citation Details In-Document Search Title: Mechanical properties of dissimilar metal joints composed of DP 980 Steel and AA 7075-T6 A ...

  2. Seismic Capacity of Threaded, Brazed, and Grooved Pipe Joints

    Office of Environmental Management (EM)

    joints * 4 tests o Brazed (copper) * 4 tests Grooved Couplings o Catalog items o ASTM A106 Grade B piping o ASTM A 536 couplings o Lateral deflections imposed well above...

  3. SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS

    Energy.gov [DOE]

    Seismic Capacity of Threaded, Brazed and Grooved Pipe Joints Brent Gutierrez, PhD, PE George Antaki, PE, F.ASME DOE NPH Conference October 25-26, 2011

  4. Transcript of March 4, 2011 Joint Public Meeting

    Office of Environmental Management (EM)

    Title: Disposal of Low-Level Nuclear Waste Joint NRCDOE Workshop Docket Number: (n... ON 1 DISPOSAL OF LOW-LEVEL RADIOACTIVE WASTE 2 + + + + + 3 Hyatt Regency Phoenix 4 122 ...

  5. Montana Joint Application for Proposed Work in Streams, Lakes...

    OpenEI (Open Energy Information) [EERE & EIA]

    Streams, Lakes and Wetlands Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Joint Application for Proposed Work in Streams, Lakes and...

  6. Building a Better Battery - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    October 23, 2013, Videos Building a Better Battery Phil Ponce speaks with Director George Crabtree about the Joint Center for Energy Storage's research and initiative to build a better battery.

  7. Y-12 presented with joint resolution honoring 70th anniversary...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Posted: September 24, 2015 - 11:17am Ray Smith (left) accepts a copy of a joint resolution ... The resolution was presented to Y-12 historian Ray Smith at an Aug. 29 event in Oak Ridge. ...

  8. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin

    DOE PAGES [OSTI]

    Cui, Yu Yan; Brioude, Jerome; McKeen, Stuart A.; Angevine, Wayne M.; Kim, Si -Wan; Frost, Gregory J.; Ahmadov, Ravan; Peischl, Jeff; Bousserez, Nicolas; Liu, Zhen; et al

    2015-07-28

    Methane (CH4) is the primary component of natural gas and has a larger global warming potential than CO2. Some recent top-down studies based on observations showed CH4 emissions in California's South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up state inventories. In this study, we quantify CH4 emissions with an advanced mesoscale inverse modeling system at a resolution of 8 km × 8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use the FLEXible PARTicle-Weather Research andmore » Forecasting (FLEXPART-WRF) Lagrangian particle dispersion model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We determine surface fluxes of CH4 using a Bayesian least squares method in a four-dimensional inversion. Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency's National Emission Inventory 2005, R2 = 0.5). The emission estimates for CH4 in the posterior, 46.3 ± 9.2 Mg CH4/h, are consistent with published observation-based estimates. Changes in the spatial distribution of CH4 emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between the prior and posterior inventories. Furthermore, we estimate that dairies contributed 5.9 ± 1.7 Mg CH4/h and the two sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 ± 8.1 Mg CH4/h in the SoCAB.« less

  9. Effect of filler metal composition on the strength of yttria stabilized zirconia joints brazed with Pd-Ag-CuOx

    SciTech Connect

    Darsell, Jens T.; Weil, K. Scott

    2008-09-08

    The Ag-CuOx system is of interest to be used to be used as an air braze filler metal for joining high temperature electrochemical devices. Previous work has shown that the melting temperatures can be increased by adding palladium to Ag-CuOx and it is expected that this may aid high temperature stability. This work compares the room temperature bend strength of joints made between yttria-stabilized zirconia (YSZ) air brazed using Ag-CuOx without palladium and with 5 and 15mol% palladium additions. It has been found that in general palladium decreases joint strength, especially in low copper oxide compositions filler metals. At high copper oxide contents, brittle fracture through both copper oxide rich phases and the YSZ limits joint strength.

  10. Joint DOE-Rosatom Statement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE-Rosatom Statement Joint DOE-Rosatom Statement Joint DOE-Rosatom Statement (22.44 KB) More Documents & Publications Report on the Effect the Low Enriched Uranium Delivered Under the Highly Enriched Uranium Agreement Between the USA and the Russian Federation has on the Domestic Uranium Mining, Conversion, and Enrichment Industries and the Ops of the Gaseous Diffusion ISMS/EMS Lessons Learned Disposition Projects at SRS EIS-0283-S2: Final Supplemental Environmental Impact Statement

  11. Joint Outreach Task Group Former Workers Screening Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Former Workers Screening Program Joint Outreach Task Group Former Workers Screening Program The Joint Outreach Task Group (JOTG) includes representatives from DOE, Department of Labor (DOL), the National Institute for Occupational Safety and Health (NIOSH), the Offices of the Ombudsman for DOL and NIOSH, and the DOE-funded FWP projects. The JOTG was established in 2009 under the premise that agencies/programs with common goals can work together by combining resources and coordinating

  12. Joint Statement on United States - Israel Energy Dialogue | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy on United States - Israel Energy Dialogue Joint Statement on United States - Israel Energy Dialogue October 20, 2015 - 11:52am Addthis Joint Statement on United States - Israel Energy Dialogue News Media Contact (202) 586-4940 On Monday, October 19, 2015, U.S. Secretary of Energy Ernest J. Moniz and Israeli Minister of National Infrastructures, Energy, and Water Resources Yuval Steinitz launched the 2015 U.S.-Israel Energy Dialogue. The dialogue, held regularly since 2011, includes

  13. Senior International Energy Officials Issue Joint Statement in Support of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Global Nuclear Energy Partnership | Department of Energy International Energy Officials Issue Joint Statement in Support of the Global Nuclear Energy Partnership Senior International Energy Officials Issue Joint Statement in Support of the Global Nuclear Energy Partnership May 21, 2007 - 12:55pm Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today announced that the U.S. Department of Energy (DOE) and senior energy officials from some of the world's leading economies

  14. Joint Technical Operations Team | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | (NNSA) Joint Technical Operations Team JTOT Logo NNSA's Joint Technical Operations Team (JTOT) provides specialized technical capabilities in support of lead federal agencies to respond to weapons of mass destruction. Furthermore, the JTOT provides real-time technical support to other deployed NNSA emergency response assets through the JTOT Home Team. Mission The JTOT mission is to provide scientific and technical support of the lead federal agency during all aspects of a nuclear or

  15. Thorium: Crustal abundance, joint production, and economic availability

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | DOE PAGES Thorium: Crustal abundance, joint production, and economic availability « Prev Next » Title: Thorium: Crustal abundance, joint production, and economic availability Recently, interest in thorium's potential use in a nuclear fuel cycle has been renewed. Thorium is more abundant, at least on average, than uranium in the earth's crust and, therefore, could theoretically extend the use of nuclear energy technology beyond the economic limits of uranium resources.

  16. Thorium: Crustal abundance, joint production, and economic availability

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Thorium: Crustal abundance, joint production, and economic availability Citation Details In-Document Search Title: Thorium: Crustal abundance, joint production, and economic availability Recently, interest in thorium's potential use in a nuclear fuel cycle has been renewed. Thorium is more abundant, at least on average, than uranium in the earth's crust and, therefore, could theoretically extend the use of nuclear energy technology beyond

  17. Improved Braze Joint Quality Through Use of Enhanced Surface Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Braze Joint Quality Through Use of Enhanced Surface Technologies Improved Braze Joint Quality Through Use of Enhanced Surface Technologies Lead Performer: Trane-La Crosse, WI Partner: University of Illinois-Champaign, IL DOE Total Funding: $330,000 Cost Share: $83,000 Project Term: 2016-2019 Funding Type: Building Energy Efficiency Frontiers and Innovations Technologies (BENEFIT) - 2016 (DE-FOA-0001383) PROJECT OBJECTIVE Trane, in partnership with the University of

  18. 2013 Progress Report -- DOE Joint Genome Institute (Program Document) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Program Document: 2013 Progress Report -- DOE Joint Genome Institute Citation Details In-Document Search Title: 2013 Progress Report -- DOE Joint Genome Institute In October 2012, we introduced a 10-Year Strategic Vision [http://bit.ly/JGI-Vision] for the Institute. A central focus of this Strategic Vision is to bridge the gap between sequenced genomes and an understanding of biological functions at the organism and ecosystem level. This involves the continued massive-scale

  19. U.S. - Pakistan Joint Press Statement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - Pakistan Joint Press Statement U.S. - Pakistan Joint Press Statement March 13, 2006 - 11:50am Addthis ISLAMABAD, PAKISTAN - As agreed during President Bush's visit to Pakistan on 3-4 March 2006, U.S. Secretary of Energy Samuel Bodman visited Islamabad today to discuss a wide range of issues related to Pakistan's growing energy needs. Secretary Bodman's visit symbolizes the strengthened and expanded relationship between the United States and Pakistan over the last five years. Closer

  20. Rooted in Wonder: Joint Genome Institute Study Reveals Amazing World

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Underfoot | Department of Energy Rooted in Wonder: Joint Genome Institute Study Reveals Amazing World Underfoot Rooted in Wonder: Joint Genome Institute Study Reveals Amazing World Underfoot August 13, 2012 - 2:33pm Addthis By developing a better understanding of the microbes that affect the growth of other plants (crops like corn or wheat) researchers may be able to improve their growth -- or provide better care for them in times of drought. By developing a better understanding of the

  1. Iterative electromagnetic Born inversion applied to earth conductivity imaging

    SciTech Connect

    Alumbaugh, D.L.

    1993-08-01

    This thesis investigates the use of a fast imaging technique to deduce the spatial conductivity distribution in the earth from low frequency (< 1 MHz), cross well electromagnetic (EM) measurements. The theory embodied in this work is the extension of previous strategies and is based on the Born series approximation to solve both the forward and inverse problem. Nonlinear integral equations are employed to derive the series expansion which accounts for the scattered magnetic fields that are generated by inhomogeneities embedded in either a homogenous or a layered earth. A sinusoidally oscillating, vertically oriented magnetic dipole is employed as a source, and it is assumed that the scattering bodies are azimuthally symmetric about the source dipole axis. The use of this model geometry reduces the 3-D vector problem to a more manageable 2-D scalar form. The validity of the cross well EM method is tested by applying the imaging scheme to two sets of field data. Images of the data collected at the Devine, Texas test site show excellent correlation with the well logs. Unfortunately there is a drift error present in the data that limits the accuracy of the results. A more complete set of data collected at the Richmond field station in Richmond, California demonstrates that cross well EM can be successfully employed to monitor the position of an injected mass of salt water. Both the data and the resulting images clearly indicate the plume migrates toward the north-northwest. The plausibility of these conclusions is verified by applying the imaging code to synthetic data generated by a 3-D sheet model.

  2. An inverse free electron laser accelerator: Experiment and theoretical interpretation

    SciTech Connect

    Fang, Jyan-Min

    1997-06-01

    Experimental and numerical studies of the Inverse Free Electron Laser using a GW-level 10.6 {mu}m CO{sub 2} laser have been carried out at Brookhaven`s Accelerator Test Facility. An energy gain of 2.5 % ({Delta}E/E) on a 40 MeV electron beam has been observed E which compares well with theory. The effects on IFEL acceleration with respect to the variation of the laser electric field, the input electron beam energy, and the wiggler magnetic field strength were studied, and show the importance of matching the resonance condition in the IFEL. The numerical simulations were performed under various conditions and the importance of the electron bunching in the IFEL is shown. The numerical interpretation of our IFEL experimental results was examined. Although good numerical agreement with the experimental results was obtained, there is a discrepancy between the level of the laser power measured in the experiment and used in the simulation, possibly due to the non-Gaussian profile of the input high power laser beam. The electron energy distribution was studied numerically and a smoothing of the energy spectrum by the space charge effect at the location of the spectrometer was found, compared with the spectrum at the exit of the wiggler. The electron bunching by the IFEL and the possibility of using the IFEL as an electron prebuncher for another laser-driven accelerator were studied numerically. We found that bunching of the electrons at 1 meter downstream from the wiggler can be achieved using the existing facility. The simulation shows that there is a fundamental difference between the operating conditions for using the IFEL as a high gradient accelerator, and as a prebuncher for another accelerator.

  3. Iron aluminide alloy coatings and joints, and methods of forming

    DOEpatents

    Wright, Richard N.; Wright, Julie K.; Moore, Glenn A.

    1994-01-01

    A method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600.degree. C. to less than the melting point of the lower melting point body; d) applying pressure on the juxtaposed surfaces; and e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.

  4. Iron aluminide alloy coatings and joints, and methods of forming

    DOEpatents

    Wright, R.N.; Wright, J.K.; Moore, G.A.

    1994-09-27

    Disclosed is a method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: (a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; (b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; (c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600 C to less than the melting point of the lower melting point body; (d) applying pressure on the juxtaposed surfaces; and (e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.

  5. Dish-Stirling Joint Venture Program

    SciTech Connect

    1993-12-31

    A brief report about DOE/Sandia National Laboratories/Cummins Engine Company dish-Stirling solar electric engine system being perfected.

  6. Affiliates - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The program includes nearly one-hundred stakeholder organizations involved in electrical energy storage, ranging from chemical and material manufacturers to battery system ...

  7. DOE Joint Genome Institute 2008 Progress Report

    SciTech Connect

    Gilbert, David

    2009-03-12

    While initially a virtual institute, the driving force behind the creation of the DOE Joint Genome Institute in Walnut Creek, California in the Fall of 1999 was the Department of Energy's commitment to sequencing the human genome. With the publication in 2004 of a trio of manuscripts describing the finished 'DOE Human Chromosomes', the Institute successfully completed its human genome mission. In the time between the creation of the Department of Energy Joint Genome Institute (DOE JGI) and completion of the Human Genome Project, sequencing and its role in biology spread to fields extending far beyond what could be imagined when the Human Genome Project first began. Accordingly, the targets of the DOE JGI's sequencing activities changed, moving from a single human genome to the genomes of large numbers of microbes, plants, and other organisms, and the community of users of DOE JGI data similarly expanded and diversified. Transitioning into operating as a user facility, the DOE JGI modeled itself after other DOE user facilities, such as synchrotron light sources and supercomputer facilities, empowering the science of large numbers of investigators working in areas of relevance to energy and the environment. The JGI's approach to being a user facility is based on the concept that by focusing state-of-the-art sequencing and analysis capabilities on the best peer-reviewed ideas drawn from a broad community of scientists, the DOE JGI will effectively encourage creative approaches to DOE mission areas and produce important science. This clearly has occurred, only partially reflected in the fact that the DOE JGI has played a major role in more than 45 papers published in just the past three years alone in Nature and Science. The involvement of a large and engaged community of users working on important problems has helped maximize the impact of JGI science. A seismic technological change is presently underway at the JGI. The Sanger capillary-based sequencing process that

  8. Observation of Strong Resonant Behavior in the Inverse Photoelectron Spectroscopy of Ce Oxide

    SciTech Connect

    Tobin, J G; Yu, S W; Chung, B W; Waddill, G D; Damian, E; Duda, L; Nordgren, J

    2009-12-15

    X-ray Emission Spectroscopy (XES) and Resonant Inverse Photoelectron Spectroscopy (RIPES) have been used to investigate the photon emission associated with the Ce3d5/2 and Ce3d3/2 thresholds. Strong resonant behavior has been observed in the RIPES of Ce Oxide near the 5/2 and 3/2 edges. Inverse Photoelectron Spectroscopy (IPES) and its high energy variant, Bremstrahlung Isochromat Spectroscopy (BIS), are powerful techniques that permit a direct interrogation of the low-lying unoccupied electronic structure of a variety of materials. Despite being handicapped by counting rates that are approximately four orders of magnitude less that the corresponding electron spectroscopies (Photoelectron Spectroscopy, PES, and X-ray Photoelectron Spectroscopy, XPS) both IPES and BIS have a long history of important contributions. Over time, an additional variant of this technique has appeared, where the kinetic energy (KE) of the incoming electron and photon energy (hv) of the emitted electron are roughly the same magnitude as the binding energy of a core level of the material in question. Under these circumstances and in analogy to Resonant Photoelectron Spectroscopy, a cross section resonance can occur, giving rise to Resonant Inverse Photoelectron Spectroscopy or RIPES. Here, we report the observation of RIPES in an f electron system, specifically the at the 3d{sub 5/2} and 3d{sub 3/2} thresholds of Ce Oxide. The resonant behavior of the Ce4f structure at the 3d thresholds has been addressed before, including studies of the utilization of the technique as a probe of electron correlation in a variety of Ce compounds. Interestingly, the first RIPES work on rare earths dates back to 1974, although under conditions which left the state of the surface and near surface regions undefined. Although they did not use the more modern terminology of 'RIPES,' it is clear that RIPES was actually first performed in 1974 by Liefeld, Burr and Chamberlain on both La and Ce based materials. In

  9. Development of an Advanced Hydraulic Fracture Mapping System

    SciTech Connect

    Norm Warpinski; Steve Wolhart; Larry Griffin; Eric Davis

    2007-01-31

    The project to develop an advanced hydraulic fracture mapping system consisted of both hardware and analysis components in an effort to build, field, and analyze combined data from tiltmeter and microseismic arrays. The hardware sections of the project included: (1) the building of new tiltmeter housings with feedthroughs for use in conjunction with a microseismic array, (2) the development of a means to use separate telemetry systems for the tilt and microseismic arrays, and (3) the selection and fabrication of an accelerometer sensor system to improve signal-to-noise ratios. The analysis sections of the project included a joint inversion for analysis and interpretation of combined tiltmeter and microseismic data and improved methods for extracting slippage planes and other reservoir information from the microseisms. In addition, testing was performed at various steps in the process to assess the data quality and problems/issues that arose during various parts of the project. A prototype array was successfully tested and a full array is now being fabricated for industrial use.

  10. Progress and interim results of the INPRO joint study on assessment of INS based on closed nuclear fuel cycle with fast reactors

    SciTech Connect

    Usanov, Vladimir; Raj, Baldev; Vasile, Alfredo

    2007-07-01

    The purpose of the work is to review interim results of the Joint Study on assessment of an Innovative Nuclear System based on a Closed Nuclear Fuel Cycle with Fast Reactors (INS CNFC-FR). This study is a part of the IAEA international project for innovative reactors and fuel cycle technologies (INPRO). Now it is being implemented by Canada, China, France, India, Japan, Republic of Korea, Russia, and Ukraine. A report on results of implementation of the first phase of the Joint Study was presented to the INPRO Steering Committee meeting in December 2006. It was also agreed by the Joint Study participants to reveal these results to broader discussion at scientific conferences and meetings. The authors' interpretation of the Joint Study findings and issues is presented in the paper. (authors)

  11. Accomplishments - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    JCESR is applying techno-economic models to project the performance and cost of a wide array of promising new battery systems before they are prototyped. The results from ...

  12. Joint Statement of Intent Concerning the Arak Heavy Water Reactor Research Reactor Modernization Project under the Joint Comprehensive Plan of Action

    Energy.gov [DOE]

    Joint statement on future steps of the modernization of the Arak reactor as contemplated in the Joint Comprehensive Plan of Action of July 14, 2015 (JCPOA) and United Nations Security Council Resolution 2231.

  13. Survey and analysis of selected jointly owned large-scale electric utility storage projects

    SciTech Connect

    Not Available

    1982-05-01

    The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

  14. Integrated Global System Modeling Framework | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    System Modeling Framework AgencyCompany Organization: MIT Joint Program on the Science and Policy of Global Change Sector: Climate, Energy Focus Area: Renewable Energy...

  15. Wave Energy Converter System Requirements and Performance Metrics

    Energy.gov [DOE]

    The Energy Department and Wave Energy Scotland are holding a joint workshop on wave energy converter (WEC) system requirements and performance metrics on Friday, February 26.

  16. Application Of 3D Inversion To Magnetotelluric Data In The Ogiri...

    OpenEI (Open Energy Information) [EERE & EIA]

    3D Inversion To Magnetotelluric Data In The Ogiri Geothermal Area, Japan Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Application Of 3D...

  17. 3-D Inversion Of Borehole-To-Surface Electrical Data Using A...

    OpenEI (Open Energy Information) [EERE & EIA]

    Inversion Of Borehole-To-Surface Electrical Data Using A Back-Propagation Neural Network Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: 3-D...

  18. Whistler turbulence forward vs. inverse cascade. Three-dimensional particle-in-cell simulations

    DOE PAGES [OSTI]

    Chang, Ouliang; Gary, S. Peter; Wang, Joseph

    2015-02-12

    In this study, we present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta βe = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in themore » inverse cascade regime is much weaker than that in the forward cascade regime.« less

  19. Whistler turbulence forward vs. inverse cascade: Three-dimensional particle-in-cell simulations

    SciTech Connect

    Chang, Ouliang; Gary, S. Peter; Wang, Joseph

    2015-02-12

    In this study, we present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta ?e = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in the inverse cascade regime is much weaker than that in the forward cascade regime.

  20. Methods to control phase inversions and enhance mass transfer in liquid-liquid dispersions

    DOEpatents

    Tsouris, Constantinos; Dong, Junhang

    2002-01-01

    The present invention is directed to the effects of applied electric fields on liquid-liquid dispersions. In general, the present invention is directed to the control of phase inversions in liquid-liquid dispersions. Because of polarization and deformation effects, coalescence of aqueous drops is facilitated by the application of electric fields. As a result, with an increase in the applied voltage, the ambivalence region is narrowed and shifted toward higher volume fractions of the dispersed phase. This permits the invention to be used to ensure that the aqueous phase remains continuous, even at a high volume fraction of the organic phase. Additionally, the volume fraction of the organic phase may be increased without causing phase inversion, and may be used to correct a phase inversion which has already occurred. Finally, the invention may be used to enhance mass transfer rates from one phase to another through the use of phase inversions.

  1. Sapphire decomposition and inversion domains in N-polar aluminum nitride

    SciTech Connect

    Hussey, Lindsay White, Ryan M.; Kirste, Ronny; Bryan, Isaac; Guo, Wei; Osterman, Katherine; Haidet, Brian; Bryan, Zachary; Bobea, Milena; Collazo, Ramn; Sitar, Zlatko; Mita, Seiji

    2014-01-20

    Transmission electron microscopy (TEM) techniques and potassium hydroxide (KOH) etching confirmed that inversion domains in the N-polar AlN grown on c-plane sapphire were due to the decomposition of sapphire in the presence of hydrogen. The inversion domains were found to correspond to voids at the AlN and sapphire interface, and transmission electron microscopy results showed a V-shaped, columnar inversion domain with staggered domain boundary sidewalls. Voids were also observed in the simultaneously grown Al-polar AlN, however no inversion domains were present. The polarity of AlN grown above the decomposed regions of the sapphire substrate was confirmed to be Al-polar by KOH etching and TEM.

  2. THERMAL EXPANSION AND PHASE INVERSION OF RARE-EARTH OXIDES (Technical...

    Office of Scientific and Technical Information (OSTI)

    Thermal expansion and phase inversion measurements are reported on oxides of Sc, Y, La, and 12 lanthanide series elements up to 1350 deg C. (J.R.D.) Authors: Stecura, S. ; Campbell...

  3. Albany, OR * Anchorage, AK * Morgantown...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    An Advanced Joint Inversion System for CO2 Storage Modeling with Large Date Sets for Characterization and Real- Time Monitoring - Enhancing Storage Performance and Reducing Failure...

  4. Fluid Imaging | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Systems through Joint 3D Geophysical Inverse Modeling California Lawrence Berkeley National Laboratory Laboratory Call for Submission of Applications for Research,...

  5. Fact Sheet: United States-Japan Joint Nuclear Energy Action Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy United States-Japan Joint Nuclear Energy Action Plan Fact Sheet: United States-Japan Joint Nuclear Energy Action Plan Fact Sheet: United States-Japan Joint Nuclear Energy Action Plan (41.25 KB) More Documents & Publications United States -Japan Joint Nuclear Energy Action Plan US-Japan_NuclearEnergyActionPlan.pdf United States-Japan Joint Nuclear Energy Action Plan

  6. Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for

    Office of Scientific and Technical Information (OSTI)

    Monitoring Dielectric Permittivity and Soil Moisture Variations (Technical Report) | SciTech Connect Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil Moisture Variations Citation Details In-Document Search Title: Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil Moisture Variations In this study, we evaluate the possibility of monitoring soil moisture variation using

  7. Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for

    Office of Scientific and Technical Information (OSTI)

    Monitoring Dielectric Permittivity and Soil Moisture Variations (Technical Report) | SciTech Connect Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil Moisture Variations Citation Details In-Document Search Title: Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil Moisture Variations In this study, we evaluate the possibility of monitoring soil moisture variation using

  8. Accelerating Atomic Orbital-based Electronic Structure Calculation via Pole Expansion plus Selected Inversion

    SciTech Connect

    Lin, Lin; Chen, Mohan; Yang, Chao; He, Lixin

    2012-02-10

    We describe how to apply the recently developed pole expansion plus selected inversion (PEpSI) technique to Kohn-Sham density function theory (DFT) electronic structure calculations that are based on atomic orbital discretization. We give analytic expressions for evaluating charge density, total energy, Helmholtz free energy and atomic forces without using the eigenvalues and eigenvectors of the Kohn-Sham Hamiltonian. We also show how to update the chemical potential without using Kohn-Sham eigenvalues. The advantage of using PEpSI is that it has a much lower computational complexity than that associated with the matrix diagonalization procedure. We demonstrate the performance gain by comparing the timing of PEpSI with that of diagonalization on insulating and metallic nanotubes. For these quasi-1D systems, the complexity of PEpSI is linear with respect to the number of atoms. This linear scaling can be observed in our computational experiments when the number of atoms in a nanotube is larger than a few hundreds. Both the wall clock time and the memory requirement of PEpSI is modest. This makes it even possible to perform Kohn-Sham DFT calculations for 10,000-atom nanotubes on a single processor. We also show that the use of PEpSI does not lead to loss of accuracy required in a practical DFT calculation.

  9. Stacking order dependence of inverse spin Hall effect and anomalous Hall effect in spin pumping experiments

    SciTech Connect

    Kim, Sang-Il; Seo, Min-Su; Park, Seung-Young; Kim, Dong-Jun; Park, Byong-Guk

    2015-05-07

    The dependence of the measured DC voltage on the non-magnetic material (NM) in NM/CoFeB and CoFeB/NM bilayers is studied under ferromagnetic resonance conditions in a TE{sub 011} resonant cavity. The directional change of the inverse spin Hall effect (ISHE) voltage V{sub ISHE} for the stacking order of the bilayer can separate the pure V{sub ISHE} and the anomalous Hall effect (AHE) voltage V{sub AHE} utilizing the method of addition and subtraction. The Ta and Ti NMs show a broad deviation of the spin Hall angle θ{sub ISH}, which originates from the AHE in accordance with the high resistivity of NMs. However, the Pt and Pd NMs show that the kinds of NMs with low resistivity are consistent with the previously reported θ{sub ISH} values. Therefore, the characteristics that NM should simultaneously satisfy to obtain a reasonable V{sub ISHE} value in bilayer systems are large θ{sub ISH} and low resistivity.

  10. Joint used for coupling long heaters

    DOEpatents

    Menottie, James Louis

    2013-02-26

    Systems for coupling ends of elongated heaters and methods of using such systems to treat a subsurface formation are described herein. A system may include two elongated heaters with an end portion of one heater abutted or near to an end portion of the other heater and a core coupling material. The core coupling material may extend between the two elongated heaters. The elongated heaters may include cores and at least one conductor substantially concentrically surrounds the cores. The cores may have a lower melting point than the conductors. At least one end portion of the conductor may have a beveled edge. The gap formed by the beveled edge may be filled with a coupling material for coupling the one or more conductors. One end portion of at least one core may have a recessed opening and the core coupling material may be partially inside the recessed opening.

  11. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    SciTech Connect

    Kiran M. Kothari; Gerard T. Pittard

    2003-01-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and attaching a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service (which results in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management was previously completed. Two reports, one describing the program management plan and the other consisting of the technology assessment, were submitted to the DOE COR in the first quarter. Task 2--Establishment of Detailed Design Specifications and Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves are now well underway. First-quarter activities included conducting detailed analyses to determine the capabilities of coiled-tubing locomotion for entering and repairing gas mains and the first design iteration of the joint-sealing sleeve. The maximum horizontal reach of coiled tubing inside a pipeline before buckling prevents further access was calculated for a

  12. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    SciTech Connect

    Kiran M. Kothari; Gerard T. Pittard

    2003-06-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and attaching a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service (which results in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1-Program Management was previously completed. Two reports, one describing the program management plan and the other consisting of the technology assessment, were submitted to the DOE COR in the first quarter. Task 2-Establishment of Detailed Design Specifications and Task 3-Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves are now well underway. First-quarter activities included conducting detailed analyses to determine the capabilities of coiled-tubing locomotion for entering and repairing gas mains and the first design iteration of the joint-sealing sleeve. The maximum horizontal reach of coiled tubing inside a pipeline before buckling prevents further access was calculated for a wide

  13. Highly Dispersed Pseudo-Homogeneous and Heterogeneous Catalysts Synthesized via Inverse Micelle Solutions for the Liquefaction of Coal

    SciTech Connect

    Hampden-Smith, M.; Kawola, J.S.; Martino, A.; Sault, A.G.; Yamanaka, S.A.

    1999-01-05

    The mission of this project was to use inverse micelle solutions to synthesize nanometer sized metal particles and test the particles as catalysts in the liquefaction of coal and other related reactions. The initial focus of the project was the synthesis of iron based materials in pseudo-homogeneous form. The frost three chapters discuss the synthesis, characterization, and catalyst testing in coal liquefaction and model coal liquefaction reactions of iron based pseudo-homogeneous materials. Later, we became interested in highly dispersed catalysts for coprocessing of coal and plastic waste. Bifunctional catalysts . to hydrogenate the coal and depolymerize the plastic waste are ideal. We began studying, based on our previously devised synthesis strategies, the synthesis of heterogeneous catalysts with a bifunctional nature. In chapter 4, we discuss the fundamental principles in heterogeneous catalysis synthesis with inverse micelle solutions. In chapter 5, we extend the synthesis of chapter 4 to practical systems and use the materials in catalyst testing. Finally in chapter 6, we return to iron and coal liquefaction now studied with the heterogeneous catalysts.

  14. Joint Facilities User Forum on Data-Intensive Computing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Computing Joint Facilities User Forum on Data-Intensive Computing All logos June 16-18, 2014 Oakland City Center Conference Center 500 12th Street, Suite 105 Oakland, CA Directions and Site Brochure Held in conjunction with DOE HPC Operational Review (HPCOR) June 17-19, 2014 The Joint Facilities User Forum on Data-Intensive Computing will bring together users and HPC center staff to discuss successes, failures, lessons learned, and the future of data-driven scientific discovery. There will also

  15. Statement from Secretary Moniz on Implementation Day for the Joint

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Comprehensive Plan of Action | Department of Energy Statement from Secretary Moniz on Implementation Day for the Joint Comprehensive Plan of Action Statement from Secretary Moniz on Implementation Day for the Joint Comprehensive Plan of Action January 16, 2016 - 5:07pm Addthis News Media Contact (202) 586-4940 DOENews@hq.doe.gov Implementation Day is a milestone in the effort to ensure that Iran's nuclear program is exclusively peaceful in nature by blocking potential pathways to a bomb. As

  16. MO-C-BRE-01: The WMIS-AAPM Joint Symposium: Advances in Molecular Imaging

    SciTech Connect

    Contag, C; Pogue, B; Lewis, J

    2014-06-15

    This joint symposium of the World Molecular Imaging Society (WMIS) and the AAPM includes three luminary speakers discussing work in new paradigms of molecular imaging in cancer (Contag), applications of optical imaging technologies to radiation therapy (Pogue) and an update on PET imaging as a surrogate biomarker for cancer progression and response to therapy. Learning Objectives: Appreciate the current trends in molecular and systems imaging. Understand how optical imaging technologies, and particularly Cerenkov detectors, can be used in advancing radiation oncology. Stay current on new PET tracers - and targets - of interest in cancer treatment.

  17. Advanced 3D inverse method for designing turbomachine blades

    SciTech Connect

    Dang, T.

    1995-10-01

    To meet the goal of 60% plant-cycle efficiency or better set in the ATS Program for baseload utility scale power generation, several critical technologies need to be developed. One such need is the improvement of component efficiencies. This work addresses the issue of improving the performance of turbo-machine components in gas turbines through the development of an advanced three-dimensional and viscous blade design system. This technology is needed to replace some elements in current design systems that are based on outdated technology.

  18. Climate Models from the Joint Global Change Research Institute

    DOE Data Explorer

    Staff at the Joint Institute develop and use models to simulate the economic and physical impacts of global change policy options. The GCAM, for example, gives analysts insight into how regional and national economies might respond to climate change mitigation policies including carbon taxes, carbon trading, and accelerated deployment of energy technology. Three available models are Phoenix, GCAM, and EPIC. Phoenix is a global, dynamic recursive, computable general equilibrium model that is solved in five-year time steps from 2005 through 2100 and divides the world into twenty-four regions. Each region includes twenty-six industrial sectors. Particular attention is paid to energy production in Phoenix. There are nine electricity-generating technologies (coal, natural gas, oil, biomass, nuclear, hydro, wind, solar, and geothermal) and four additional energy commodities: crude oil, refined oil products, coal, and natural gas. Phoenix is designed to answer economic questions related to international climate and energy policy and international trade. Phoenix replaces the Second Generation Model (SGM) that was formerly used for general equilibrium analysis at JGCRI. GCAM is the Global Change Assessment Model, a partial equilibrium model of the world with 14 regions. GCAM operates in 5 year time steps from 1990 to 2095 and is designed to examine long-term changes in the coupled energy, agriculture/land-use, and climate system. GCAM includes a 151-region agriculture land-use module and a reduced form carbon cycle and climate module in addition to its incorporation of demographics, resources, energy production and consumption. The model has been used extensively in a number of assessment and modeling activities such as the Energy Modeling Forum (EMF), the U.S. Climate Change Technology Program, and the U.S. Climate Change Science Program and IPCC assessment reports. GCAM is now freely available as a community model. The Environmental Policy Integrated Climate (EPIC) Model

  19. Guideline for bolted joint design and analysis : version 1.0.

    SciTech Connect

    Brown, Kevin H.; Morrow, Charles W.; Durbin, Samuel; Baca, Allen

    2008-01-01

    This document provides general guidance for the design and analysis of bolted joint connections. An overview of the current methods used to analyze bolted joint connections is given. Several methods for the design and analysis of bolted joint connections are presented. Guidance is provided for general bolted joint design, computation of preload uncertainty and preload loss, and the calculation of the bolted joint factor of safety. Axial loads, shear loads, thermal loads, and thread tear out are used in factor of safety calculations. Additionally, limited guidance is provided for fatigue considerations. An overview of an associated Mathcad{copyright} Worksheet containing all bolted joint design formulae presented is also provided.

  20. Radiological approaches in the evaluation of joint disease in children

    SciTech Connect

    Poznanski, A.K.; Conway, J.J.; Shkolnik, A.; Pachman, L.M.

    1987-04-01

    In summary, the newer technologies in radiology have allowed us to visualize more clearly the manifestation of joint disease in children. The presence of small erosions and cartilage damage can be seen much better with magnetic resonance imaging than with any other modality short of arthrography, a much more invasive examination. Joint effusion, although sometimes visualized with conventional radiography, is probably best recognized with ultrasound or magnetic resonance imaging, although it can be detected with computed tomography as well. For the evaluation of avascular necrosis that can be associated with steroid use in joint disease, bone scintigraphy is a simple, sensitive method. Magnetic resonance may be as or more sensitive and gives additional information as well. In the detection of change with time, conventional radiography probably will remain the standard as it is still the simplest, least expensive examination; however, it has many limitations in specific cases. Bone scintigraphy may be of value in selected cases. Although we have still not had enough experience with magnetic resonance imaging to use it as a way of evaluating progress of joint disease, it promises to be the most sensitive radiologic measure of evaluating progress as small anatomical changes can be detected within the cartilage, which cannot be done easily with other means. 27 references.

  1. B31.3 Appendix X rules for expansion joints

    SciTech Connect

    Becht, C. IV

    1995-08-01

    In 1988, ASME B31.3 added Appendix X containing requirements for Metallic Bellows Expansion Joints into the Chemical Plant and Petroleum Refinery Piping Code. These have been revised and improved in subsequent addenda to the Code. This paper describes some of the salient features of this Appendix, as well as the revisions and the background behind them.

  2. Joint Comprehensive Plan of Action | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Joint Comprehensive Plan of Action Team members receive DOE Secretary Awards for nuclear security efforts This month NNSA team members received honors as part of the Secretary's Awards Program. The program, designed to recognize service and contributions of Department of Energy (DOE) employees to mission in benefit of the Nation, is comprised of several award types. The Secretary's Honor

  3. Thermoacoustic method for relaxation of residual stresses in welded joints

    SciTech Connect

    Koshovyi, V.V.; Pakhn`o, M.I.; Tsykhan, O.I.

    1995-01-01

    We propose a thermoacoustic method for the relaxation of residual stresses in welded joints, present a block diagram of a generator of local thermoacoustic pulses designed for implementation of this method, and describe our experiment aimed at relaxation of residual tensile stresses.

  4. 2nd Annual National Joint Tribal Emergency Management Conference

    Energy.gov [DOE]

    Hosted by the Kalispel Indian Tribe, this three-day workshop is a joint collaboration between the National Congress of American Indians, United South and Eastern Tribes, Affiliated Tribes of the Northwest Indians, and more. The event will feature several speaker sessions and networking opportunities.

  5. ARAMS/FRAMES JOINT FREQUENCY DATA (JFD) GENERATOR

    SciTech Connect

    Droppo, James G.; Pelton, Mitch A.

    2006-10-04

    An ARAMS/FRAMES utility entitled ''Joint Frequency Data (JFD) Generator'' provides the capability of creating joint frequency tables. The resultant JFD tables contain summaries of the frequency of occurrence of meteorological dispersion, wind speed, and wind direction that are required as input in climatological air dispersion models. The JFD Generator computations are made by an updated version of the EPA STAR (STAbility ARray) program. Surface observations are combined with computed seasonally and diurnally varying solar flux rates to estimate the ambient atmospheric dispersion rates, represented as a stability category. The wind speeds and directions are obtained directly from the hourly surface observation data. The product is a file in a format that can be directly read by an air dispersion model. The JFD Generator can input hourly meteorological surface observation data in CD-144, Samson, and SCRAM data formats. An enhanced joint frequency table file that can be read directly by the ARAMS/FRAMES interface is produced. The output file has a format can be used by the MEPAS air dispersion program or can be modified for input to other models requiring joint frequency input.

  6. Operation Ivy. Joint Task Force 132, 1952. Final report

    SciTech Connect

    Not Available

    1985-09-01

    This report covers the activities of the Joint Task Force 132 in Operation Ivy, in 1952 at Eniwetok Atoll. Shots Mike and King were detonated in conjunction with eleven experimental programs. This report describes the device, weapon, and experimental programs, giving as many preliminary conclusions as can be drawn from early analysis of the data.

  7. Scanned_Joint_Declaration_(Italian).pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Italian).pdf Scanned_Joint_Declaration_(Italian).pdf (126.4 KB) More Documents & Publications FTCP Face to Face Meeting - March 30, 2010 Introducción al Conocimiento de Energía Energy Education Resources in Spanish Get Current: Switch on Clean Energy Coloring Book

  8. Position feedback control system

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-01-01

    Disclosed is a system and method for independently evaluating the spatial positional performance of a machine having a movable member, comprising an articulated coordinate measuring machine comprising: a first revolute joint; a probe arm, having a proximal end rigidly attached to the first joint, and having a distal end with a probe tip attached thereto, wherein the probe tip is pivotally mounted to the movable machine member; a second revolute joint; a first support arm serially connecting the first joint to the second joint; and coordinate processing means, operatively connected to the first and second revolute joints, for calculating the spatial coordinates of the probe tip; means for kinematically constraining the articulated coordinate measuring machine to a working surface; and comparator means, in operative association with the coordinate processing means and with the movable machine, for comparing the true position of the movable machine member, as measured by the true position of the probe tip, with the desired position of the movable machine member.

  9. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin

    SciTech Connect

    Cui, Yu Yan; Brioude, Jerome; McKeen, Stuart A.; Angevine, Wayne M.; Kim, Si -Wan; Frost, Gregory J.; Ahmadov, Ravan; Peischl, Jeff; Bousserez, Nicolas; Liu, Zhen; Ryerson, Thomas B.; Wofsy, Steve C.; Santoni, Gregory W.; Kort, Eric A.; Fischer, Marc L.; Trainer, Michael

    2015-07-28

    Methane (CH4) is the primary component of natural gas and has a larger global warming potential than CO2. Some recent top-down studies based on observations showed CH4 emissions in California's South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up state inventories. In this study, we quantify CH4 emissions with an advanced mesoscale inverse modeling system at a resolution of 8 km 8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use the FLEXible PARTicle-Weather Research and Forecasting (FLEXPART-WRF) Lagrangian particle dispersion model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We determine surface fluxes of CH4 using a Bayesian least squares method in a four-dimensional inversion. Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency's National Emission Inventory 2005, R2 = 0.5). The emission estimates for CH4 in the posterior, 46.3 9.2 Mg CH4/h, are consistent with published observation-based estimates. Changes in the spatial distribution of CH4 emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between the prior and posterior inventories. Furthermore, we estimate that dairies contributed 5.9 1.7 Mg CH4/h and the two sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 8.1 Mg CH4/h in the SoCAB.

  10. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin

    SciTech Connect

    Cui, Yu Yan; Brioude, Jerome; McKeen, Stuart A.; Angevine, Wayne M.; Kim, Si -Wan; Frost, Gregory J.; Ahmadov, Ravan; Peischl, Jeff; Bousserez, Nicolas; Liu, Zhen; Ryerson, Thomas B.; Wofsy, Steve C.; Santoni, Gregory W.; Kort, Eric A.; Fischer, Marc L.; Trainer, Michael

    2015-07-28

    Methane (CH4) is the primary component of natural gas and has a larger global warming potential than CO2. Some recent top-down studies based on observations showed CH4 emissions in California's South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up state inventories. In this study, we quantify CH4 emissions with an advanced mesoscale inverse modeling system at a resolution of 8 km × 8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use the FLEXible PARTicle-Weather Research and Forecasting (FLEXPART-WRF) Lagrangian particle dispersion model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We determine surface fluxes of CH4 using a Bayesian least squares method in a four-dimensional inversion. Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency's National Emission Inventory 2005, R2 = 0.5). The emission estimates for CH4 in the posterior, 46.3 ± 9.2 Mg CH4/h, are consistent with published observation-based estimates. Changes in the spatial distribution of CH4 emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between the prior and posterior inventories. Furthermore, we estimate that dairies contributed 5.9 ± 1.7 Mg CH4/h and the two sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 ± 8.1 Mg CH4/h in the SoCAB.

  11. Joint HVAC transmission EMF environmental study

    SciTech Connect

    Stormshak, F.; Thompson, J. )

    1992-05-01

    This document describes the rationale, procedures, and results of a carefully controlled study conducted to establish whether chronic exposure of female (ewe) Suffolk lambs to the environment of a 500-kV 60-Hz transmission line would affect various characteristics of growth, endocrine function, and reproductive development. This experiment used identical housing and management schemes for control and line-exposed ewes, thus minimizing these factors as contributors to between-group experimental error. Further, throughout the 10-month duration of this study, changes in electric and magnetic fields, audible noise, and weather conditions were monitored continuously by a computerized system. Such measurements provided the opportunity to identify any relationship between environmental factors and biological responses. Because of reports in the literature that electric and magnetic fields alter concentrations of melatonin in laboratory animals, the primary objective of this study was to ascertain whether a similar effect occurs in lambs exposed to a 500-kV a-c line in a natural setting. In addition, onset of puberty, changes in body weight, wool growth, and behavior were monitored. To determine whether the environment of a 500-kV line caused stress in the study animals, serum levels of cortisol were measured. The study was conducted at Bonneville Power Administration's Ostrander Substation near Estacada, Oregon.

  12. Structure of the murine constitutive androstane receptor complexed to androstenol: a molecular basis for inverse agonism

    SciTech Connect

    Shan, L.; Vincent, J.; Brunzelle, J.S.; Dussault, I.; Lin, M.; Ianculescu, I.; Sherman, M.A.; Forman, B.M.; Fernandez, E.

    2010-03-08

    The nuclear receptor CAR is a xenobiotic responsive transcription factor that plays a central role in the clearance of drugs and bilirubin while promoting cocaine and acetaminophen toxicity. In addition, CAR has established a 'reverse' paradigm of nuclear receptor action where the receptor is active in the absence of ligand and inactive when bound to inverse agonists. We now report the crystal structure of murine CAR bound to the inverse agonist androstenol. Androstenol binds within the ligand binding pocket, but unlike many nuclear receptor ligands, it makes no contacts with helix H12/AF2. The transition from constitutive to basal activity (androstenol bound) appears to be associated with a ligand-induced kink between helices H10 and H11. This disrupts the previously predicted salt bridge that locks H12 in the transcriptionally active conformation. This mechanism of inverse agonism is distinct from traditional nuclear receptor antagonists thereby offering a new approach to receptor modulation.

  13. High-Power Laser Pulse Recirculation for Inverse Compton Scattering-Produced Gamma-Rays

    SciTech Connect

    Jovanovic, I; Shverdin, M; Gibson, D; Brown, C

    2007-04-17

    Inverse Compton scattering of high-power laser pulses on relativistic electron bunches represents an attractive method for high-brightness, quasi-monoenergetic {gamma}-ray production. The efficiency of {gamma}-ray generation via inverse Compton scattering is severely constrained by the small Thomson scattering cross section. Furthermore, repetition rates of high-energy short-pulse lasers are poorly matched with those available from electron accelerators, resulting in low repetition rates for generated {gamma}-rays. Laser recirculation has been proposed as a method to address those limitations, but has been limited to only small pulse energies and peak powers. Here we propose and experimentally demonstrate an alternative method for laser pulse recirculation that is uniquely capable of recirculating short pulses with energies exceeding 1 J. Inverse Compton scattering of recirculated Joule-level laser pulses has a potential to produce unprecedented peak and average {gamma}-ray brightness in the next generation of sources.

  14. Inversion of salt diapirs and sedimentary bed observations: Gulf Coast case histories

    SciTech Connect

    Petersen, K.; Lerche, I. )

    1993-09-01

    An inverse procedure is used to remove sediments from around salt diapirs in a manner consistent with evolution of the salt diapir, which also is determined self-consistently by the inverse procedure. The corresponding evolving stress and strain of the sediments are then calculated from use of specified Lame constants, and the times and spatial domains identified where the Coulomb-Mohr rock failure criterion is satisfied, thereby yielding estimates of fault and fracture locations. In addition, the combined evolutionary picture is used to assess thermal focusing by the highly conductive evolving salt, so that thermal anomalies in relation to hydrocarbon maturation around the evolving salt and structural development of sediment bed upturning and salt overhang evolution can be timed better relative to hydrocarbon emplacement. Several examples from the Gulf of Mexico are analyzed using this new inversion procedure.

  15. Using a derivative-free optimization method for multiple solutions of inverse transport problems

    DOE PAGES [OSTI]

    Armstrong, Jerawan C.; Favorite, Jeffrey A.

    2016-01-14

    Identifying unknown components of an object that emits radiation is an important problem for national and global security. Radiation signatures measured from an object of interest can be used to infer object parameter values that are not known. This problem is called an inverse transport problem. An inverse transport problem may have multiple solutions and the most widely used approach for its solution is an iterative optimization method. This paper proposes a stochastic derivative-free global optimization algorithm to find multiple solutions of inverse transport problems. The algorithm is an extension of a multilevel single linkage (MLSL) method where a meshmore » adaptive direct search (MADS) algorithm is incorporated into the local phase. Furthermore, numerical test cases using uncollided fluxes of discrete gamma-ray lines are presented to show the performance of this new algorithm.« less

  16. Measurement of an inverse Compton scattering source local spectrum using k-edge filters

    SciTech Connect

    Golosio, Bruno; Oliva, Piernicola; Carpinelli, Massimo; Endrizzi, Marco; Delogu, Pasquale; Pogorelsky, Igor; Yakimenko, Vitaly

    2012-04-16

    X-ray sources based on the inverse Compton scattering process are attracting a growing interest among scientists, due to their extremely fast pulse, quasi-monochromatic spectrum, and relatively high intensity. The energy spectrum of the x-ray beam produced by inverse Compton scattering sources in a fixed observation direction is a quasi-monochromatic approximately Gaussian distribution. The mean value of this distribution varies with the scattering polar angle between the electron beam direction and the x-ray beam observation direction. Previous works reported experimental measurements of the mean energy as a function of the polar angle. This work introduces a method for the measurement of the whole local energy spectrum (i.e., the spectrum in a fixed observation direction) of the x-ray beam yielded by inverse Compton scattering sources, based on a k-edge filtering technique.

  17. Microbial Genomics Data from the DOE Joint Genome Institute (JGI)

    DOE Data Explorer

    The JGI makes high-quality genome sequencing data freely available to the greater scientific community through its web portal. Having played a significant role in the federally funded Human Genome Project -- generating the complete sequences of Chromosomes 5, 16, and 19--the JGI has now moved on to contributing in other critical areas of genomics research. While NIH-funded genome sequencing activities continue to emphasize human biomedical targets and applications, the JGI has since shifted its focus to the non-human components of the biosphere, particularly those relevant to the science mission of the Department of Energy. With efficiencies of scale established at the PGF, and capacity now exceeding three billion bases generated on a monthly basis, the JGI has tackled scores of additional genomes. These include more than 60 microbial genomes and many important multicellular organisms and communities of microbes. In partnership with other federal institutions and universities, the JGI is in the process of sequencing a frog (Xenopus tropicalis), a green alga (Chlamydomonas reinhardtii), a diatom (Thalassiosira pseudonana) , the cottonwood tree (Populus trichocarpa), and a host of agriculturally important plants and plant pathogens. Microorganisms, for example those that thrive under extreme conditions such as high acidity, radiation, and metal contamination, are of particular interest to the DOE and JGI. Investigations by JGI and its partners are shedding light on the cellular machinery of microbes and how they can be harnessed to clean up contaminated soil or water, capture carbon from the atmosphere, and produce potentially important sources of energy such as hydrogen and methane. [Excerpt from the JGI page "Who We Are" at http://www.jgi.doe.gov/whoweare/whoweare.html] From the JGI webportal users can view a photo grid of organisims, check assemblies for status, access the Integrated Microbial Genomes (IMG) system to do comparative analysis of publicly available

  18. Joint Solar Silicon GmbH Co KG JSSI | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Joint Solar Silicon GmbH & Co KG (JSSI) Place: Germany Sector: Solar Product: Joint venture between Degussa and SolarWorld for the production of solar-grade silicon on...

  19. Digital Sofcell Shanghai ShenLi Goeta solid oxide fuel cell joint...

    OpenEI (Open Energy Information) [EERE & EIA]

    ShenLi Goeta solid oxide fuel cell joint venture Jump to: navigation, search Name: Digital Sofcell - Shanghai ShenLi - Goeta solid oxide fuel cell joint venture Place: China...

  20. Application for Presidential Permit OE Docket No. PP-82-4 Joint...

    Energy Saver

    Inc. (VELCO), operating-and-management agent for the Joint Owners of the Highgate ... PP-82-4 The Joint Owners of the Highgate Project: Federal Register Notice, Volume 80, No. ...

  1. JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND NUCLEAR...

    Office of Environmental Management (EM)

    JOINT STATEMENT OF THE CO-CHAIRS OF THE NUCLEAR ENERGY AND NUCLEAR SECURITY WORKING GROUP OF THE BILATERAL U.S. - RUSSIA PRESIDENTIAL COMMISSION JOINT STATEMENT OF THE CO-CHAIRS OF ...

  2. File:07-CA-e - BLM-CEC Joint Siting Process.pdf | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    07-CA-e - BLM-CEC Joint Siting Process.pdf Jump to: navigation, search File File history File usage Metadata File:07-CA-e - BLM-CEC Joint Siting Process.pdf Size of this preview:...

  3. Inverse scattering transform for the focusing nonlinear Schrdinger equation with nonzero boundary conditions

    SciTech Connect

    Biondini, Gino; Kova?i?, Gregor

    2014-03-15

    The inverse scattering transform for the focusing nonlinear Schrdinger equation with non-zero boundary conditions at infinity is presented, including the determination of the analyticity of the scattering eigenfunctions, the introduction of the appropriate Riemann surface and uniformization variable, the symmetries, discrete spectrum, asymptotics, trace formulae and the so-called theta condition, and the formulation of the inverse problem in terms of a Riemann-Hilbert problem. In addition, the general behavior of the soliton solutions is discussed, as well as the reductions to all special cases previously discussed in the literature.

  4. Analysis of forward and inverse problems in chemical dynamics and spectroscopy

    SciTech Connect

    Rabitz, H.

    1993-12-01

    The overall scope of this research concerns the development and application of forward and inverse analysis tools for problems in chemical dynamics and chemical kinetics. The chemical dynamics work is specifically associated with relating features in potential surfaces and resultant dynamical behavior. The analogous inverse research aims to provide stable algorithms for extracting potential surfaces from laboratory data. In the case of chemical kinetics, the focus is on the development of systematic means to reduce the complexity of chemical kinetic models. Recent progress in these directions is summarized below.

  5. Use of traveltime skips in refraction analysis to delineate velocity inversion

    SciTech Connect

    Tewari, H.C.; Dixit, M.M.; Murty, P.R.K.

    1995-08-01

    First arrival refraction data does not normally provide any indication of the velocity inversion problem. However, under certain favorable circumstances, when the low-velocity layer (LVL) is considerably thicker than the overlying higher-velocity layer (HVL), the velocity inversion can be seen in the form of a traveltime skip. Model studies show that in such cases the length of the HVL traveltime branch can be used to determine the thickness of the HVL and the magnitude of the traveltime skip in order to determine the thickness of the LVL. This is also applicable in the case of field data.

  6. EMS - Environmental Management System | Princeton Plasma Physics Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Directory Diversity and Inclusion Environment, Safety & Health Environmental Management System Joint Working Group for Fusion Safety Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Contact Us Business Operations Careers/ Human Resources Directory Diversity and Inclusion Environment, Safety & Health Environmental Management System Joint Working Group for Fusion Safety Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer EMS

  7. Water vapor and temperature inversions near the 0 deg C level over the tropical western Pacific. Master's thesis

    SciTech Connect

    Hart, K.A.

    1994-01-01

    During the Intensive Observation Period (IOP), several periods of water vapor and temperature inversions near the 0 deg C level were observed. Satellite and radiosonde data from TOGA COARE are used to document the large-scale conditions and thermodynamic and kinematic structures present during three extended periods in which moisture and temperature inversions near the freezing level were very pronounced. Observations from each case are synthesized into schematics which represent typical structures of the inversion phenomena. Frequency distributions of the inversion phenomena along with climatological humidity and temperature profiles are calculated for the four-month IOP.

  8. Thermonuclear inverse magnetic pumping power cycle for stellarator reactor

    DOEpatents

    Ho, Darwin D.; Kulsrud, Russell M.

    1991-01-01

    The plasma column in a stellarator is compressed and expanded alternatively in minor radius. First a plasma in thermal balance is compressed adiabatically. The volume of the compressed plasma is maintained until the plasma reaches a new thermal equilibrium. The plasma is then expanded to its original volume. As a result of the way a stellarator works, the plasma pressure during compression is less than the corresponding pressure during expansion. Therefore, negative work is done on the plasma over a complete cycle. This work manifests itself as a back-voltage in the toroidal field coils. Direct electrical energy is obtained from this voltage. Alternatively, after the compression step, the plasma can be expanded at constant pressure. The cycle can be made self-sustaining by operating a system of two stellarator reactors in tandem. Part of the energy derived from the expansion phase of a first stellarator reactor is used to compress the plasma in a second stellarator reactor.

  9. Damage prognosis of adhesively-bonded joints in laminated composite structural components of unmanned aerial vehicles

    SciTech Connect

    Farrar, Charles R; Gobbato, Maurizio; Conte, Joel; Kosmatke, John; Oliver, Joseph A

    2009-01-01

    The extensive use of lightweight advanced composite materials in unmanned aerial vehicles (UAVs) drastically increases the sensitivity to both fatigue- and impact-induced damage of their critical structural components (e.g., wings and tail stabilizers) during service life. The spar-to-skin adhesive joints are considered one of the most fatigue sensitive subcomponents of a lightweight UAV composite wing with damage progressively evolving from the wing root. This paper presents a comprehensive probabilistic methodology for predicting the remaining service life of adhesively-bonded joints in laminated composite structural components of UAVs. Non-destructive evaluation techniques and Bayesian inference are used to (i) assess the current state of damage of the system and, (ii) update the probability distribution of the damage extent at various locations. A probabilistic model for future loads and a mechanics-based damage model are then used to stochastically propagate damage through the joint. Combined local (e.g., exceedance of a critical damage size) and global (e.g.. flutter instability) failure criteria are finally used to compute the probability of component failure at future times. The applicability and the partial validation of the proposed methodology are then briefly discussed by analyzing the debonding propagation, along a pre-defined adhesive interface, in a simply supported laminated composite beam with solid rectangular cross section, subjected to a concentrated load applied at mid-span. A specially developed Eliler-Bernoulli beam finite element with interlaminar slip along the damageable interface is used in combination with a cohesive zone model to study the fatigue-induced degradation in the adhesive material. The preliminary numerical results presented are promising for the future validation of the methodology.

  10. Tunable inverse topological heterostructure utilizing (Bi1−xInx)2Se3 and multichannel weak-antilocalization effect

    DOE PAGES [OSTI]

    Brahlek, Matthew J.; Koirala, Nikesh; Liu, Jianpeng; Yusufaly, Tahir I.; Salehi, Maryam; Han, Myung-Geun; Zhu, Yimei; Vanderbilt, David; Oh, Seongshik

    2016-03-10

    In typical topological insulator (TI) systems the TI is bordered by a non-TI insulator, and the surrounding conventional insulators, including vacuum, are not generally treated as part of the TI system. Here, we implement a material system where the roles are reversed, and the topological surface states form around the non-TI (instead of the TI) layers. This is realized by growing a layer of the tunable non-TI (Bi1-xInx)2Se3 in between two layers of the TI Bi2Se3 using the atomically precise molecular beam epitaxy technique. On this tunable inverse topological platform, we systematically vary the thickness and the composition of themore » (Bi1-xInx)2Se3 layer and show that this tunes the coupling between the TI layers from strongly coupled metallic to weakly coupled, and finally to a fully decoupled insulating regime. This system can be used to probe the fundamental nature of coupling in TI materials and provides a tunable insulating layer for TI devices.« less

  11. Probabilistic Accident Consequence Uncertainty - A Joint CEC/USNRC Study

    SciTech Connect

    Gregory, Julie J.; Harper, Frederick T.

    1999-07-28

    The joint USNRC/CEC consequence uncertainty study was chartered after the development of two new probabilistic accident consequence codes, MACCS in the U.S. and COSYMA in Europe. Both the USNRC and CEC had a vested interest in expanding the knowledge base of the uncertainty associated with consequence modeling, and teamed up to co-sponsor a consequence uncertainty study. The information acquired from the study was expected to provide understanding of the strengths and weaknesses of current models as well as a basis for direction of future research. This paper looks at the elicitation process implemented in the joint study and discusses some of the uncertainty distributions provided by eight panels of experts from the U.S. and Europe that were convened to provide responses to the elicitation. The phenomenological areas addressed by the expert panels include atmospheric dispersion and deposition, deposited material and external doses, food chain, early health effects, late health effects and internal dosimetry.

  12. Sintered silver joints via controlled topography of electronic packaging subcomponents

    DOEpatents

    Wereszczak, Andrew A.

    2014-09-02

    Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.

  13. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates

    SciTech Connect

    Nordberg, Henrik; Cantor, Michael; Dushekyo, Serge; Hua, Susan; Poliakov, Alexander; Shabalov, Igor; Smirnova, Tatyana; Grigoriev, Igor V.; Dubchak, Inna

    2013-10-10

    The U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a national user facility, serves the diverse scientific community by providing integrated high-throughput sequencing and computational analysis to enable system-based scientific approaches in support of DOE missions related to clean energy generation and environmental characterization. The JGI Genome Portal (http://genome.jgi.doe.gov) provides unified access to all JGI genomic databases and analytical tools. The JGI maintains extensive data management systems and specialized analytical capabilities to manage and interpret complex genomic data. A user can search, download and explore multiple data sets available for all DOE JGI sequencing projects including their status, assemblies and annotations of sequenced genomes. Here we describe major updates of the Genome Portal in the past 2 years with a specific emphasis on efficient handling of the rapidly growing amount of diverse genomic data accumulated in JGI.

  14. Design of charge exchange recombination spectroscopy for the joint Texas experimental tokamak

    SciTech Connect

    Chi, Y.; Zhuang, G. Cheng, Z. F.; Hou, S. Y.; Cheng, C.; Li, Z.; Wang, J. R.; Wang, Z. J.

    2014-11-15

    The old diagnostic neutral beam injector first operated at the University of Texas at Austin is ready for rejoining the joint Texas experimental tokamak (J-TEXT). A new set of high voltage power supplies has been equipped and there is no limitation for beam modulation or beam pulse duration henceforth. Based on the spectra of fully striped impurity ions induced by the diagnostic beam the design work for toroidal charge exchange recombination spectroscopy (CXRS) system is presented. The 529 nm carbon VI (n = 8 ? 7 transition) line seems to be the best choice for ion temperature and plasma rotation measurements and the considered hardware is listed. The design work of the toroidal CXRS system is guided by essential simulation of expected spectral results under the J-TEXT tokamak operation conditions.

  15. In the News 2012 - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2 Is Chicago a new cleantech hub? Christian Science Monitor December 10, 2012‎ The recently-announced Joint Center for Energy Storage Research in suburban Chicago arguably leapfrogs the Windy City into the top echelon of cleantech technology research clusters. Berkeley Scientists Join Team to Create Better Battery KQED Dec 3, 2012 Northwestern University Becomes Part of Large Effort for Energy Storage Dec 1, 2012‎ Northwestern University is part of a multi-partner team led by Argonne

  16. In the News 2013 - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3 Berkeley: Scientific Collaboration Seeks Ultimate Battery Inside Bay Area December 4, 2013 Lawrence Berkeley National Laboratory seeks the ultimate battery in a collaborative partnership known as the Joint Center for Energy Storage Research. U.S. Quest for 5X Battery Boost Seeks 'Game-Changing' Tech Computer World November 15, 2013 In the push to develop a new type of battery by 2017, the government has focused on three research avenues. The Future Requires (Better) Batteries The Wall Street

  17. George Crabtree - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    George Crabtree JCESR Director George Crabtree, an Argonne National Laboratory Distinguished Fellow, is the Director of the Joint Center for Energy Storage Research. As JCESR Director, Crabtree directs the overall strategy and goals of the research program and operational plan, acts as liaison to executives of JCESR partner organizations, and represents JCESR with external constituencies and advisory committees. He has won numerous awards for his research, most recently the Kammerlingh Onnes

  18. Joint DOE-MSA News Release Media Contacts:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    March 19, 2015 Joint DOE-MSA News Release Media Contacts: Cameron Hardy, DOE, (509) 376-5365, Cameron.Hardy@rl.doe.gov Rae Weil, Mission Support Alliance, (509) 376-6522, Rae_S_Weil@rl.gov DOE-NNSA, Washington to take part in regional exercise in Benton and Franklin Counties Training designed to enable responders to work together effectively during radiological emergencies Richland, Wash. - The U.S. Department of Energy's (DOE) National Nuclear Security Administration's (NNSA) Radiological

  19. Joint Actinide Shock Physics Experimental Research | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Joint Actinide Shock Physics Experimental Research The JASPER gas gun at the Nevada National Security Site is used to fire a projectile at a plutonium target. The shock wave produced by the impact passes through the plutonium, and diagnostic equipment measures the properties of the shocked plutonium. Shock physics experiments such as this are critical to maintaining the safety and security of the nation's stockpile in the absence of underground nuclear

  20. Status of activities for inspecting weld overlaid pipe joints

    SciTech Connect

    Good, M.S.; Van Fleet, L.G.

    1986-02-01

    Pacific Northwest Laboratory (PNL) evaluated the ultrasonic inspectability of weld overlaid pipe joints. As part of this task, PNL is providing NRC staff with conclusions and recommendations concerning the effectiveness of ultrasonic inspections performed on weld overlaid pipe joints. PNL evaluated data from available technical literature, conducted experiments to determine the distortional effects of weld overlay on ultrasound, and reviewed data from the weld overlay inspection development efforts of the Electric Power Research Institute NDE Center. Based on these reviews and experiments, PNL concluded that ultrasonic inspection of weld overlaid pipe joints has not been demonstrated to be reliable, for two reasons. First, insufficient data exists to demonstrate the reliable detection and sizing of intergranular stress corrosion cracks. Second, the detection of unacceptable fabrication flaws contained within the weld overlay material has a low reliability due to poor signal-to-noise ratios. However, as current research and development programs lead to a more comprehensive engineering data-base, these conclusions may change. 29 refs., 25 figs.