National Library of Energy BETA

Sample records for joaquin valley clean

  1. The San Joaquin Valley Westside Perspective

    SciTech Connect

    Quinn, Nigel W.T.; Linneman, J. Christopher; Tanji, Kenneth K.

    2006-03-27

    Salt management has been a challenge to westside farmerssince the rapid expansion of irrigated agriculture in the 1900 s. Thesoils in this area are naturally salt-affected having formed from marinesedimentary rocks rich in sea salts rendering the shallow groundwater,and drainage return flows discharging into the lower reaches of the SanJoaquin River, saline. Salinity problems are affected by the importedwater supply from Delta where the Sacramento and San Joaquin Riverscombine. Water quality objectives on salinity and boron have been inplace for decades to protect beneficial uses of the river. However it wasthe selenium-induced avian toxicity that occurred in the evaporationponds of Kesterson Reservoir (the terminal reservoir of a planned but notcompleted San Joaquin Basin Master Drain) that changed public attitudesabout agricultural drainage and initiated a steady stream ofenvironmental legislation directed at reducing non-point source pollutionof the River. Annual and monthly selenium load restrictions and salinityand boron Total Maximum Daily Loads (TMDLs) are the most recent of thesepolicy initiatives. Failure by both State and Federal water agencies toconstruct a Master Drain facility serving mostly west-side irrigatedagriculture has constrained these agencies to consider only In-Valleysolutions to ongoing drainage problems. For the Westlands subarea, whichhas no surface irrigation drainage outlet to the San Joaquin River,innovative drainage reuse systems such as the Integrated Farm DrainageManagement (IFDM) offer short- to medium-term solutions while morepermanent remedies to salt disposal are being investigated. Real-timesalinity management, which requires improved coordination of east-sidereservoir releases and west-side drainage, offers some relief toGrasslands Basin farmers and wetland managers - allowing greater salinityloading to the River than under a strict TMDL. However, currentregulation drives a policy that results in a moratorium on all

  2. Landslide oil field, San Joaquin Valley, California

    SciTech Connect

    Collins, B.P.; March, K.A.; Caballero, J.S.; Stolle, J.M.

    1988-03-01

    The Landslide field, located at the southern margin of the San Joaquin basin, was discovered in 1985 by a partnership headed by Channel Exploration Company, on a farm out from Tenneco Oil Company. Initial production from the Tenneco San Emidio 63X-30 was 2064 BOPD, making landslide one of the largest onshore discoveries in California during the past decade. Current production is 7100 BOPD from a sandstone reservoir at 12,500 ft. Fifteen wells have been drilled in the field, six of which are water injectors. Production from the Landslide field occurs from a series of upper Miocene Stevens turbidite sandstones that lie obliquely across an east-plunging structural nose. These turbidite sandstones were deposited as channel-fill sequences within a narrowly bounded levied channel complex. Both the Landslide field and the larger Yowlumne field, located 3 mi to the northwest, comprise a single channel-fan depositional system that developed in the restricted deep-water portion of the San Joaquin basin. Information from the open-hole logs, three-dimensional surveys, vertical seismic profiles, repeat formation tester data, cores, and pressure buildup tests allowed continuous drilling from the initial discovery to the final waterflood injector, without a single dry hole. In addition, the successful application of three-dimensional seismic data in the Landslide development program has helped correctly image channel-fan anomalies in the southern Maricopa basin, where data quality and severe velocity problems have hampered previous efforts. New exploration targets are currently being evaluated on the acreage surrounding the Landslide discovery and should lead to an interesting new round of drilling activity in the Maricopa basin.

  3. South Belridge fields, Borderland basin, U. S. , San Joaquin Valley

    SciTech Connect

    Miller, D.D. ); McPherson, J.G. )

    1991-03-01

    South Belridge is a giant field in the west San Joaquin Valley, Kern County. Cumulative field production is approximately 700 MMBO and 220 BCFG, with remaining recoverable reserves of approximately 500 MMBO. The daily production is nearly 180 MBO from over 6100 active wells. The focus of current field development and production is the shallow Tulare reservoir. Additional probable diatomite reserves have been conservatively estimated at 550 MMBO and 550 BCFG. South Belridge field has two principal reservoir horizons; the Mio-Pliocene Belridge diatomite of the upper Monterey Formation, and the overlying Plio-Pleistocene Tulare Formation. The field lies on the crest of a large southeast-plunging anticline, sub-parallel to the nearby San Andreas fault system. The reservoir trap in both the Tulare and diatomite reservoir horizons is a combination of structure, stratigraphic factors, and tar seals; the presumed source for the oil is the deeper Monterey Formation. The diatomite reservoir produces light oil (20-32{degree} API gravity) form deep-marine diatomite and diatomaceous shales with extremely high porosity (average 60%) and low permeability (average 1 md). In contrast, the shallow ({lt}1000 ft (305 m) deep) overlying Tulare reservoir produces heavy oil (13-14{degree} API gravity) from unconsolidated, arkosic, fluviodeltaic sands of high porosity (average 35%) and permeability (average 3000 md). The depositional model is that of a generally prograding fluviodeltaic system sourced in the nearby basin-margin highlands. More than 6000 closely spaced, shallow wells are the key to steamflood production from hundreds of layered and laterally discontinuous reservoir sands which create laterally and vertically discontinuous reservoir flow units.

  4. Clean Cities: San Joaquin Valley Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    coalition, these groups have conducted award-winning programs in the transportation, alternate fuels, agriculture, and public education arenas. A graduate of UCLA, Urata...

  5. EA-1697: San Joaquin Valley Right-of-Way Project, California

    Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of right-of-way maintenance (including facility inspection and repair, vegetation management, and equipment upgrades for transmission lines and associated rights-or-way, access roads, substations, and a maintenance facility) in the San Joaquin Valley in California.

  6. Clean Cities: Valley of the Sun Clean Cities coalition (Phoenix...

    Alternative Fuels and Advanced Vehicles Data Center

    Photo of Bill Sheaffer Bill Sheaffer began serving as coordinator of the Valley of the Sun Clean Cities coalition in 2002 and now serves as the executive director of this...

  7. Bottom-up, decision support system development : a wetlandsalinity management application in California's San Joaquin Valley

    SciTech Connect

    Quinn, Nigel W.T.

    2006-05-10

    Seasonally managed wetlands in the Grasslands Basin ofCalifornia's San Joaquin Valley provide food and shelter for migratorywildfowl during winter months and sport for waterfowl hunters during theannual duck season. Surface water supply to these wetland contain saltwhich, when drained to the San Joaquin River during the annual drawdownperiod, negatively impacts downstream agricultural riparian waterdiverters. Recent environmental regulation, limiting discharges salinityto the San Joaquin River and primarily targeting agricultural non-pointsources, now addresses return flows from seasonally managed wetlands.Real-time water quality management has been advocated as a means ofmatching wetland return flows to the assimilative capacity of the SanJoaquin River. Past attempts to build environmental monitoring anddecision support systems to implement this concept have failed forreasons that are discussed in this paper. These reasons are discussed inthe context of more general challenges facing the successfulimplementation of environmental monitoring, modelling and decisionsupport systems. The paper then provides details of a current researchand development project which will ultimately provide wetland managerswith the means of matching salt exports with the available assimilativecapacity of the San Joaquin River, when fully implemented. Manipulationof the traditional wetland drawdown comes at a potential cost to thesustainability of optimal wetland moist soil plant habitat in thesewetlands - hence the project provides appropriate data and a feedback andresponse mechanism for wetland managers to balance improvements to SanJoaquin River quality with internally-generated information on the healthof the wetland resource. The author concludes the paper by arguing thatthe architecture of the current project decision support system, whencoupled with recent advances in environmental data acquisition, dataprocessing and information dissemination technology, holds significantpromise

  8. Hudson Valley Clean Energy Office and Warehouse

    Building Catalog

    Rhinebeck, NY Hudson Valley Clean Energy's new head office and warehouse building in Rhinebeck, New York, achieved proven net-zero energy status on July 2, 2008, upon completing its first full year of operation. The building consists of a lobby, meeting room, two offices, cubicles for eight office workers, an attic space for five additional office workers, ground- and mezzanine-level parts and material storage, and indoor parking for three contractor trucks. 06/01/2015 - 14:11

  9. San Joaquin Valley Clean Energy Organization | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Reference needed Missing content Broken link Other Additional Comments Cancel Submit Categories: Organizations Networking Organizations Stubs Articles with outstanding TODO tasks...

  10. Silicon Valley Clean Tech Alliance | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Alliance Jump to: navigation, search Name: Silicon Valley Clean Tech Alliance Address: Box 1855 Place: Cupertino, California Zip: 95015 Region: Bay Area Website:...

  11. Agriculture, irrigation, and drainage on the west side of the San Joaquin Valley, California: Unified perspective on hydrogeology, geochemistry and management

    SciTech Connect

    Narasimhan, T.N.; Quinn, N.W.T.

    1996-03-01

    The purpose of this report is to provide a broad understanding of water-related issues of agriculture and drainage on the west side of the San Joaquin Valley. To this end, an attempt is made to review available literature on land and water resources of the San Joaquin Valley and to generate a process-oriented framework within which the various physical-, chemical-, biological- and economic components of the system and their interactions are placed in mutual perspective.

  12. Clean Cities: Clean Cities Coachella Valley Region coalition

    Alternative Fuels and Advanced Vehicles Data Center

    achievements, and from DOE for outstanding public outreach. Through his leadership, hydrogen fueling infrastructure and vehicles were also implemented in the Coachella Valley. In...

  13. Influence of uplift on oil migration: Tulare heavy oil accumulations, west side San Joaquin Valley, California

    SciTech Connect

    Chamberlain, E.R.; Madrid, V.M.

    1986-07-01

    Shallow (2000 ft), heavy (11/sup 0/-14/sup 0/ API) oil accumulations within the Pleistocene, nonmarine, Tulare sands along the west side of the San Joaquin Valley represent major thermal enhanced oil recovery (EOR) objectives. These low-pressure reservoirs display a variety of petrophysical characteristics indicating a complex history of oil migration resulting from uplift of the Tulare reservoirs above the regional ground-water table (RGT). In the Cymric-McKittrick area, it is possible to correlate Tulare outcrops with subsurface log data and determine the relationship between oil saturation, structural elevation, and proximity to the present RGT. The observed relationship is that economic oil saturations (S/sub 0/ = 30-75%) occur in structural lows and grade updip to reduced oil saturations (S/sub 0/ = 0-30%). The equivalent sands above the RGT exhibit formation density log-compensated neutron log (FDC/CNL) cross-over. Basinward, as the entire Tulare reservoir dips below the RGT, it exhibits characteristics of conventional reservoirs, such as high water saturations in structural lows, grading upward to increased oil saturations in structural highs. The authors present the following model to explain these observations. (1) Oil migrated into Tulare sands and originally filled all stratigraphic/structural traps below the paleo-RGT. (2) Subsequent uplift of the Tulare reservoirs above the paleo-RGT resulted in gravity drainage of original accumulations into structural lows. (3) Washing of the oils by repeated ground-water fluctuations along with biodegradation resulted in the essentially immobile Tulare heavy oil accumulations observed today.

  14. Clean Cities: Silicon Valley Clean Cities (San Jose) coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    various programs at Breathe California of the Bay Area the "Local Clean Air and Healthy Lungs Leader," a nonprofit grassroots organization founded in 1911 to fight lung disease and...

  15. Implications from a study of the timing of oil entrapment in Monterey siliceous shales, Lost Hills, San Joaquin Valley, California

    SciTech Connect

    Julander, D.R. )

    1992-01-01

    The oil and gas-rich upper Miocene siliceous shales of the Monterey Group are the primary development target in the Lost Hills Oil Field, San Joaquin Valley, California. As a result of diagenesis, the siliceous shales can be subdivided by opal phase into three sections (from shallow to deep): the Opal-A diatomites which are rich in oil saturation; the Opal-CT porcellanites which are predominantly wet but include pockets of moderate oil saturation; and the Quartz cherts and porcellanites which in some places are highly oil saturated immediately below the Opal CT section. Productivity trends in each of the three sections have been established through drilling and production testing, but a predictive model was not available until a study of the timing of oil entrapment at Lost Hills was recently completed. The study included an analysis of the depositional history of the siliceous shales and timing of: (1) structural growth of the Lost Hills fold, (2) source-rock maturation, and (3) development of the opal-phase segregation of the Monterey shales. The study led to enhanced understanding of the known oil saturation and production trends in the three opal-phase sections and yielded a predictive model that is being used to identify areas in the field with remedial or delineation potential. The study also produced evidence of fold axis rotation during the Pliocene and Pleistocene that helps explain differences in fracture orientations within the Monterey shales.

  16. Ammonia and methane dairy emissions in the San Joaquin Valley of California from individual feedlot to regional scale

    DOE PAGES [OSTI]

    Miller, David J.; Sun, Kang; Tao, Lei; Nowak, John B.; Liu, Zhen; Diskin, Glenn; Sasche, Glen; Beyersdorf, Andreas; Ferrare, Richard; Scarino, Amy Jo; et al

    2015-09-27

    Agricultural ammonia (NH3) emissions are highly uncertain, with high spatiotemporal variability and a lack of widespread in situ measurements. Regional NH3 emission estimates using mass balance or emission ratio approaches are uncertain due to variable NH3 sources and sinks as well as unknown plume correlations with other dairy source tracers. We characterize the spatial distributions of NH3 and methane (CH4) dairy plumes using in situ surface and airborne measurements in the Tulare dairy feedlot region of the San Joaquin Valley, California, during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality 2013more » field campaign. Surface NH3 and CH4 mixing ratios exhibit large variability with maxima localized downwind of individual dairy feedlots. The geometric mean NH3:CH4 enhancement ratio derived from surface measurements is 0.15 ± 0.03 ppmv ppmv–1. Individual dairy feedlots with spatially distinct NH3 and CH4 source pathways led to statistically significant correlations between NH3 and CH4 in 68% of the 69 downwind plumes sampled. At longer sampling distances, the NH3:CH4 enhancement ratio decreases 20–30%, suggesting the potential for NH3 deposition as a loss term for plumes within a few kilometers downwind of feedlots. Aircraft boundary layer transect measurements directly above surface mobile measurements in the dairy region show comparable gradients and geometric mean enhancement ratios within measurement uncertainties, even when including NH3 partitioning to submicron particles. Individual NH3 and CH4 plumes sampled at close proximity where losses are minimal are not necessarily correlated due to lack of mixing and distinct source pathways. As a result, our analyses have important implications for constraining NH3 sink and plume variability influences on regional NH3 emission estimates and for improving NH3 emission inventory spatial allocations.« less

  17. Ammonia and methane dairy emissions in the San Joaquin Valley of California from individual feedlot to regional scale

    SciTech Connect

    Miller, David J.; Sun, Kang; Tao, Lei; Nowak, John B.; Liu, Zhen; Diskin, Glenn; Sasche, Glen; Beyersdorf, Andreas; Ferrare, Richard; Scarino, Amy Jo; Zondlo, Mark A.; Pan, Da

    2015-09-27

    Agricultural ammonia (NH3) emissions are highly uncertain, with high spatiotemporal variability and a lack of widespread in situ measurements. Regional NH3 emission estimates using mass balance or emission ratio approaches are uncertain due to variable NH3 sources and sinks as well as unknown plume correlations with other dairy source tracers. We characterize the spatial distributions of NH3 and methane (CH4) dairy plumes using in situ surface and airborne measurements in the Tulare dairy feedlot region of the San Joaquin Valley, California, during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality 2013 field campaign. Surface NH3 and CH4 mixing ratios exhibit large variability with maxima localized downwind of individual dairy feedlots. The geometric mean NH3:CH4 enhancement ratio derived from surface measurements is 0.15 ± 0.03 ppmv ppmv–1. Individual dairy feedlots with spatially distinct NH3 and CH4 source pathways led to statistically significant correlations between NH3 and CH4 in 68% of the 69 downwind plumes sampled. At longer sampling distances, the NH3:CH4 enhancement ratio decreases 20–30%, suggesting the potential for NH3 deposition as a loss term for plumes within a few kilometers downwind of feedlots. Aircraft boundary layer transect measurements directly above surface mobile measurements in the dairy region show comparable gradients and geometric mean enhancement ratios within measurement uncertainties, even when including NH3 partitioning to submicron particles. Individual NH3 and CH4 plumes sampled at close proximity where losses are minimal are not necessarily correlated due to lack of mixing and distinct source pathways. As a result, our analyses have

  18. Interstate Clean Transportation Corridor Project Under Way

    Alternative Fuels and Advanced Vehicles Data Center

    rucks that travel in the western United States will soon be able to operate clean-burning alternative fuel vehicles (AFVs) along the Interstate Clean Transpor- tation Corridor (ICTC). The ICTC project is the first effort to develop clean transportation corridors to connect Los Angeles, San Bernar- dino, the San Joaquin Valley, Sacra- mento/San Francisco, Salt Lake City, Reno, and Las Vegas along routes 1-15, 1-80, and 1-5/CA-99. The ICTC team, headed by California- based Gladstein and

  19. San Joaquin-Tulare Conjunctive Use Model: Detailed model description

    SciTech Connect

    Quinn, N.W.T.

    1992-03-01

    The San Joaquin - Tulare Conjunctive Use Model (SANTUCM) was originally developed for the San Joaquin Valley Drainage Program to evaluate possible scenarios for long-term management of drainage and drainage - related problems in the western San Joaquin Valley of California. A unique aspect of this model is its coupling of a surface water delivery and reservoir operations model with a regional groundwater model. The model also performs salinity balances along the tributaries and along the main stem of the San Joaquin River to allow assessment of compliance with State Water Resources Control Board water quality objectives for the San Joaquin River. This document is a detailed description of the various subroutines, variables and parameters used in the model.

  20. OTT's Clean Energy Investment Center Holds its Inaugural Laboratory-Investor Knowledge Seminar in Silicon Valley

    Energy.gov [DOE]

    The Clean Energy Investment Center (CEIC) held its inaugural Laboratory-Investor Knowledge Seminar (LINKS) on Thursday, April 28, co-hosted with Lawrence Livermore National Laboratory at Innovate Pleasanton in Pleasanton, CA.

  1. 3D Geologic Modeling of the Southern San Joaquin Basin for the Westcarb Kimberlina Demonstration Project- A Status Report

    SciTech Connect

    Wagoner, J

    2009-02-23

    The objective of the Westcarb Kimberlina pilot project is to safely inject 250,000 t CO{sub 2}/yr for four years into the deep subsurface at the Clean Energy Systems (CES) Kimberlina power plant in southern San Joaquin Valley, California. In support of this effort, we have constructed a regional 3D geologic model of the southern San Joaquin basin. The model is centered on the Kimberlina power plant and spans the UTM range E 260000-343829 m and N 3887700-4000309 m; the depth of the model ranges from the topographic surface to >9000 m below sea level. The mapped geologic units are Quaternary basin fill, Tertiary marine and continental deposits, and pre-Tertiary basement rocks. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geologic framework. Fifteen time-stratigraphic formations were mapped, as well as >140 faults. The free surface is based on a 10 m lateral resolution DEM. We use Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a 3D model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. This grid represents a realistic model of the subsurface geology and provides input into subsequent flow simulations.

  2. 3D Geologic Modeling of the Southern San Joaquin Basin for the Westcarb Kimberlina Demonstration Project- A Status Report

    SciTech Connect

    Wagoner, J

    2009-04-24

    The objective of the Westcarb Kimberlina pilot project is to safely inject 250,000 t CO{sub 2}/yr for four years into the deep subsurface at the Clean Energy Systems (CES) Kimberlina power plant in southern San Joaquin Valley, California. In support of this effort, we have constructed a regional 3D geologic model of the southern San Joaquin basin. The model is centered on the Kimberlina power plant and spans the UTM range E 260000-343829 m and N 3887700-4000309 m; the depth of the model ranges from the topographic surface to >9000 m below sea level. The mapped geologic units are Quaternary basin fill, Tertiary marine and continental deposits, and pre-Tertiary basement rocks. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geologic framework. Fifteen time-stratigraphic formations were mapped, as well as >140 faults. The free surface is based on a 10 m lateral resolution DEM. We use Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a 3D model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. This grid represents a realistic model of the subsurface geology and provides input into subsequent flow simulations.

  3. Clean Cities: Treasure Valley Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Baird held a variety of positions related to air quality management. She has worked for air-pollution-control agencies for Colorado and Idaho, for an environmental engineering...

  4. Clean Cities: Rogue Valley Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center

    of AFV-based petroleum savings. Annual greenhouse gas emissions avoided: 24,799 tons of CO2 See the GHG by AFV tab for a breakdown of AFV-based greenhouse gas savings. Annual...

  5. Joaquin Correa JoaquinCorrea@lbl.gov NERSC Data and Analytics Services

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Joaquin Correa JoaquinCorrea@lbl.gov NERSC Data and Analytics Services NERSC User Meeting August, 2015 Data Analytics at NERSC Data analytics at NERSC Hardware Resource Management Runtime Framework Tools + Libraries Analytics Capabilities Science Applications Climate, Cosmology, Kbase, Materials, BioImaging, Your science! Statistics, Machine Learning R, python, MLBase Image Processing MATLAB OMERO, Fiji Graph Analytics GraphX Database Operations SQL MPI Spark SciDB Filesystems (Lustre),

  6. Calif--San Joaquin Basin onsh Shale Proved Reserves (Billion...

    Energy Information Administration (EIA) (indexed site)

    onsh Shale Proved Reserves (Billion Cubic Feet) Calif--San Joaquin Basin onsh Shale Proved Reserves (Billion Cubic Feet) No Data Available For This Series - No Data Reported; --...

  7. San Joaquin, California: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    it. San Joaquin is a city in Fresno County, California. It falls under California's 20th congressional district.12 References US Census Bureau Incorporated place and...

  8. Clean Energy Investment Center Holds its Inaugural Laboratory-Investor

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Knowledge Seminar in Silicon Valley | Department of Energy Holds its Inaugural Laboratory-Investor Knowledge Seminar in Silicon Valley Clean Energy Investment Center Holds its Inaugural Laboratory-Investor Knowledge Seminar in Silicon Valley May 3, 2016 - 3:39pm Addthis Success! The Clean Energy Investment Center (CEIC) held its inaugural Laboratory-Investor Knowledge Seminar (LINKS) on Thursday, April 28, co-hosted with Lawrence Livermore National Laboratory at Innovate Pleasanton in

  9. San Joaquin Solar 1 & 2 Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar 1 & 2 Solar Power Plant Jump to: navigation, search Name San Joaquin Solar 1 & 2 Solar Power Plant Facility San Joaquin Solar 1 & 2 Sector Solar Facility Type Hybrid...

  10. Lobbyist Disclosure Form - Silicon Valley | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Silicon Valley Lobbyist Disclosure Form - Silicon Valley Jonathan Silver, Energy Department executive director loans program, gave Colleen Quinn, Silicon Valley Leadership Group vice president of government relations and public policy, a broad overview of the work done by the LPO, and discussed the possible future of clean energy investment. Lobbyist Disclosure Form - Silicon Valley.pdf (35.2 KB) More Documents & Publications Lobbyist Disclosure Form - AltEn Lobbyist Disclosure Form - First

  11. California - San Joaquin Basin Onshore Coalbed Methane Proved Reserves

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) San Joaquin Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, San Joaquin Basin Onshore Coalbed

  12. Clean Cities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Clean Cities works to reduce U.S. reliance on petroleum in transportation by establishing local coalitions of public- and private-sector stakeholders across the country.

  13. clean power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    clean power - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  14. CLEAN AIR | FEDEX | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY...

    OpenEI (Open Energy Information) [EERE & EIA]

    | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY ACT | ENERGY INDEPENDENCE | FREDRICK SMITH | OIL | RENEWABLE ENERGY Home There are currently no posts in this category. Syndicate...

  15. Upgrading of heavy oil from the San Joaquin Valley of California by aqueous pyrolysis

    SciTech Connect

    Reynolds, J.G.; Murray, A.M.; Nuxoll, E.V.; Fox, G.A.

    1995-10-01

    Midway Sunset crude oil and well-head oil were treated at elevated temperatures in a closed system with the presence of water. Mild to moderate upgrading, as measured by increase in API gravity, was observed at 400{degrees}C or above. Reduced pressure operation exhibited upgrading activity comparable to upgrading under normal aqueous pyrolysis conditions. Reduced pressure operation was obtained by the use of specific blending methods, a surfactant, and the proper amount of water. The use of additives provided additional upgrading. The best of the minimum set tested was Co(II) 2-ethylhexanoate. Fe(III) 2-ethylhexanoate also showed some activity under certain conditions.

  16. Upgrading of heavy oil from the San Joaquin valley of California by aqueous pyrolysis

    SciTech Connect

    Reynolds, J.G.; Murray, A.M.; Nuxoll, E.V.; Fox, G.A.; Thorsness, C.B.; Khan, M.R.

    1997-08-01

    Midway Sunset crude oil and well-head oil were treated at elevated temperatures in a closed system with the presence of water. Mild to moderate upgrading, as measured by increasing in API gravity, was observed at 400 C or above. Reduced pressure operation exhibited upgrading activity comparable to upgrading under normal aqueous pyrolysis conditions. Reduced pressure operation was obtained by the use of specific blending methods, a surfactant, and the proper amount of water. The use of metal complexes provided additional upgrading. The best of the minimum set tested was Co(II) 2-ethylhexanoate. Fe, Zn, Mo, Cu, and Ni complexes also showed some levels of activity.

  17. Clean Cities Internships

    Energy.gov [DOE]

    Clean Cities offers internships through the Clean Cities University Workforce Development Program, which unites Clean Cities coalitions with students interested in changing the future of onroad...

  18. California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas,

    Energy Information Administration (EIA) (indexed site)

    Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 137 1980's 94 126 144 149 155 155 151 156 156 159 1990's 145 140 127 126 131 107 121 131 175 205 2000's 186 224 188

  19. California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas,

    Energy Information Administration (EIA) (indexed site)

    Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Field Discoveries (Billion Cubic Feet) California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 5 0 0 14 1 0 0 3 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 2 0 0 0 0 0 0 0 0 0 2010's 0 0 4 0 0 - = No Data Reported; -- = Not Applicable; NA = Not

  20. California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas,

    Energy Information Administration (EIA) (indexed site)

    Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 2 0 1 5 3 1 0 2 2 3 1990's 3 0 5 0 0 0 1 0 0 0 2000's 0 0 0 0 0 0 0 0 9 0 2010's 0 0 1 0 0 - =

  1. California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas,

    Energy Information Administration (EIA) (indexed site)

    Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 49 5 0 16 36 0 118 3 1 58 2010's 0 0 4 27 995 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  2. California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas,

    Energy Information Administration (EIA) (indexed site)

    Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -60 1980's 14 20 -61 19 -36 -34 64 -13 -42 15 1990's 4 33 -2 54 -135 -3 -11 -14 -73 101 2000's -153 9 24 -22 -9 0 2 3 -4 -2 2010's 2 907 -594 -19 -8 - = No Data

  3. California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas,

    Energy Information Administration (EIA) (indexed site)

    Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 10 70 22 25 19 14 15 11 10 2 1990's 2 1 8 18 6 11 12 45 43 5 2000's 92 83 72 20 38 42 11 1 95 468 2010's 9 70 3 2 0 - = No Data Reported; -- = Not Applicable;

  4. California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas,

    Energy Information Administration (EIA) (indexed site)

    Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 38 1980's 114 63 98 36 87 74 49 19 15 16 1990's 18 25 27 45 65 6 17 6 155 127 2000's 57 124 61 77 37 42 341 49 217 97 2010's 367 1,892 403 18 146 - = No

  5. California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas,

    Energy Information Administration (EIA) (indexed site)

    Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 434 1980's 642 45 81 79 104 51 53 202 112 135 1990's 101 75 63 37 35 58 101 296 437 340 2000's 282 50 91 212 327 655 53 231 142 95 2010's 467 1,382 319

  6. California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas,

    Energy Information Administration (EIA) (indexed site)

    Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 49 1 1 20 15 0 26 2 0 4 2010's 0 0 0 38 1,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  7. California - San Joaquin Basin Onshore Crude Oil + Lease Condensate

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 161 2010's 152 149 148 147 151 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  8. California - San Joaquin Basin Onshore Crude Oil + Lease Condensate

    Energy Information Administration (EIA) (indexed site)

    Reserves Acquisitions (Million Barrels) Acquisitions (Million Barrels) California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 18 2010's 1 16 5 206 426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil

  9. California - San Joaquin Basin Onshore Crude Oil + Lease Condensate

    Energy Information Administration (EIA) (indexed site)

    Reserves Adjustments (Million Barrels) Adjustments (Million Barrels) California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -30 2010's 1 16 14 -39 16 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus

  10. California - San Joaquin Basin Onshore Crude Oil + Lease Condensate

    Energy Information Administration (EIA) (indexed site)

    Reserves Extensions (Million Barrels) Extensions (Million Barrels) California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 22 2010's 13 18 6 15 11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus

  11. California - San Joaquin Basin Onshore Crude Oil + Lease Condensate

    Energy Information Administration (EIA) (indexed site)

    Reserves New Field Discoveries (Million Barrels) New Field Discoveries (Million Barrels) California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 2 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  12. California - San Joaquin Basin Onshore Crude Oil + Lease Condensate

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Decreases (Million Barrels) Decreases (Million Barrels) California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 68 2010's 125 217 318 79 188 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  13. California - San Joaquin Basin Onshore Crude Oil + Lease Condensate

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Increases (Million Barrels) Increases (Million Barrels) California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 192 2010's 204 229 382 172 328 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  14. California - San Joaquin Basin Onshore Crude Oil + Lease Condensate

    Energy Information Administration (EIA) (indexed site)

    Reserves Sales (Million Barrels) Sales (Million Barrels) California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 2010's 0 0 0 208 419 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate

  15. California - San Joaquin Basin Onshore Crude Oil + Lease Condensate New

    Energy Information Administration (EIA) (indexed site)

    Reservoir Discoveries in Old Fields (Million Barrels) New Reservoir Discoveries in Old Fields (Million Barrels) California - San Joaquin Basin Onshore Crude Oil + Lease Condensate New Reservoir Discoveries in Old Fields (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  16. California - San Joaquin Basin Onshore Dry Natural Gas New Reservoir

    Energy Information Administration (EIA) (indexed site)

    Discoveries in Old Fields (Billion Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) California - San Joaquin Basin Onshore Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 15 2 2 1980's 8 34 5 33 16 2 0 2 6 11 1990's 32 11 13 14 7 14 17 9 1 3 2000's 5 2 5 0 5 2 1 1 14 0 2010's 0 0 9 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  17. California - San Joaquin Basin Onshore Dry Natural Gas Reserves

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) California - San Joaquin Basin Onshore Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 109 20 35 19 138 227 156 225 23 78 2010's 0 42 92 25 1,074 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  18. California - San Joaquin Basin Onshore Dry Natural Gas Reserves Adjustments

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Adjustments (Billion Cubic Feet) California - San Joaquin Basin Onshore Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -1 54 -183 1980's 46 66 -31 37 43 -136 66 -63 3 -14 1990's 11 103 -20 104 -82 11 -119 -31 -44 125 2000's -79 28 29 -60 26 5 -12 31 -8 2 2010's 4 902 -574 -55 10 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  19. California - San Joaquin Basin Onshore Dry Natural Gas Reserves Estimated

    Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) California - San Joaquin Basin Onshore Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 235 252 285 1980's 238 310 290 307 342 323 313 292 286 259 1990's 252 270 245 219 213 188 186 178 217 237 2000's 256 307 264 238 220 234 232 227 217 214 2010's 220 289 178 165 150 - = No Data Reported; -- = Not Applicable; NA = Not

  20. California - San Joaquin Basin Onshore Dry Natural Gas Reserves Extensions

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Extensions (Billion Cubic Feet) California - San Joaquin Basin Onshore Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 78 159 51 1980's 69 131 102 136 106 221 70 33 37 23 1990's 53 8 27 51 62 27 15 53 46 8 2000's 107 200 79 54 51 120 166 13 96 446 2010's 8 69 3 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. California - San Joaquin Basin Onshore Dry Natural Gas Reserves Revision

    Energy Information Administration (EIA) (indexed site)

    Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) California - San Joaquin Basin Onshore Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 122 102 137 1980's 181 253 248 126 275 184 256 102 123 87 1990's 96 74 134 123 133 68 53 27 244 291 2000's 91 161 114 99 94 96 371 217 327 148 2010's 427 1,854 491 84 200 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  2. California - San Joaquin Basin Onshore Dry Natural Gas Reserves Revision

    Energy Information Administration (EIA) (indexed site)

    Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) California - San Joaquin Basin Onshore Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 122 290 521 1980's 696 110 178 137 299 297 134 246 163 185 1990's 136 165 138 71 76 80 174 318 491 398 2000's 629 125 146 263 389 685 112 296 239 180 2010's 488 1,444 379 223 579 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  3. California - San Joaquin Basin Onshore Dry Natural Gas Reserves Sales

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Sales (Billion Cubic Feet) California - San Joaquin Basin Onshore Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 51 6 46 33 123 200 169 158 1 4 2010's 2 45 284 35 1,083 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas

  4. California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved

    Energy Information Administration (EIA) (indexed site)

    Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 77 1980's 81 57 124 117 105 120 109 107 101 95 1990's 86 75 83 85 75 80 80 82 58 60 2000's 64 52 68 78 95 112 100 103 97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 155 1980's 148 189 157 169 199 181 174 147 141 112 1990's 116 140 128 102 92 91 75 57 50 41 2000's 79 93 87 86 76 84 87 99 86 78

  6. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, New Field Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 3 36 23 9 5 12 2 1 8 13 1990's 2 2 23 15 0 0 0 0 0 0 2000's 5 0 0 5 0 0 0 0 0 1 2010's 1 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  7. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 6 34 4 29 14 1 0 0 4 8 1990's 31 11 9 14 8 15 17 9 1 3 2000's 5 2 5 0 5 3 1 1 7 0 2010's 0 0 9 0 0 - = No Data

  8. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 63 16 36 4 109 239 47 234 23 25 2010's 0 44 93 0 164 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  9. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -33 1980's 18 28 128 7 62 -82 0 -47 45 -29 1990's 0 59 -5 59 50 31 -107 -21 -1 28 2000's 72 9 34 -21 45 -3 -11 28 3 1 2010's -3 -12 58 -20 19 - = No Data Reported; -- = Not

  10. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 40 1980's 60 63 85 117 91 215 58 24 29 22 1990's 53 7 21 36 58 18 3 11 4 3 2000's 19 123 10 36 17 84 165 13 7 4 2010's 0 1 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not

  11. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 102 1980's 70 194 160 94 196 118 217 87 112 74 1990's 82 52 113 83 73 65 39 22 99 174 2000's 38 42 58 27 62 60 49 180 128 59 2010's 84 31 120 73 70 - = No Data Reported;

  12. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 100 1980's 68 67 104 64 205 257 87 54 57 58 1990's 41 97 81 37 44 27 82 38 72 72 2000's 369 78 61 65 83 65 65 80 111 96 2010's 47 116 84 115 112 - = No Data Reported; -- =

  13. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 4 5 47 15 115 211 152 165 1 0 2010's 2 47 303 0 164 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  14. California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved

    Energy Information Administration (EIA) (indexed site)

    Reserves (Million Barrels) Proved Reserves (Million Barrels) California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2,095 2010's 2,037 1,950 1,893 1,813 1,838 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil

  15. What is Clean Cities?; Clean Cities Fact Sheet (September 2008...

    Energy Saver

    is Clean Cities?; Clean Cities Fact Sheet (September 2008 Update) What is Clean Cities?; Clean Cities Fact Sheet (September 2008 Update) Fact sheet describes the Clean Cities ...

  16. Clean Cities: Ann Arbor Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Clean Cities Coalition in April 2015. She served as Clean Cities intern for both the Detroit and Ann Arbor Clean Cities Coalitions from the fall 2013 through the winter 2015 and...

  17. West Valley Demonstration Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    West Valley Demonstration Project West Valley Demonstration Project West Valley Demonstration Project Aerial View West Valley Demonstration Project Aerial View The West Valley ...

  18. Clean Cities: Maine Clean Communities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Maine Clean Communities Coalition The Maine Clean Communities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use...

  19. Clean Cities: Southern Colorado Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Colorado Clean Cities coalition Contact Information Kyle Lisek 303-847-0271 klisek@lungs.org Coalition Website Clean Cities Coordinator Kyle Lisek Kyle Lisek is coordinator of...

  20. Clean Cities: Denver Metro Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Metro Clean Cities coalition Contact Information Tyler Svitak 303-847-0281 tsvitak@lungs.org Coalition Website Clean Cities Coordinator Tyler Svitak Photo of Tyler Svitak...

  1. Clean Cities: North Dakota Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center

    Clean Cities. Moffitt is the communications director for the Clean Fuel & Vehicle Technology program of the American Lung Association of the Upper Midwest. He joined the...

  2. Melton Valley Watershed

    Energy.gov [DOE]

    This document explains the cleanup activities and any use limitations for the land surrounding the Melton Valley Watershed.

  3. California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas,

    Energy Information Administration (EIA) (indexed site)

    Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,253 1980's 2,713 2,664 2,465 2,408 2,270 2,074 2,006 2,033 1,947 1,927 1990's 1,874 1,818 1,738 1,676 1,386 1,339 1,304 1,494 1,571 1,685 2000's 1,665 1,463 1,400 1,365

  4. California - San Joaquin Basin Onshore Dry Natural Gas Expected Future

    Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Expected Future Production (Billion Cubic Feet) California - San Joaquin Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,784 3,960 3,941 1980's 4,344 4,163 3,901 3,819 3,685 3,574 3,277 3,102 2,912 2,784 1990's 2,670 2,614 2,415 2,327 2,044 1,920 1,768 1,912 1,945 1,951 2000's 2,331 2,232 2,102 2,013 2,185 2,694 2,345 2,309 2,128 2,469 2010's

  5. California - San Joaquin Basin Onshore Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,037 1980's 4,434 4,230 4,058 3,964 3,808 3,716 3,404 3,229 3,033 2,899 1990's 2,775 2,703 2,511 2,425 2,130 2,018 1,864 2,012 2,016 2,021 2000's 2,413 2,298 2,190 2,116 2,306

  6. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Proved Reserves (Billion Cubic Feet) Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,784 1980's 1,721 1,566 1,593 1,556 1,538 1,642 1,398 1,196 1,086 972 1990's 901 885 773 749 744 679 560 518 445 336 2000's 748 836 790 751 757 790 769 681 617 607 2010's 498 506 269 245

  7. Chicago Clean Air, Clean Water Project: Environmental Monitoring...

    Office of Scientific and Technical Information (OSTI)

    Chicago Clean Air, Clean Water Project: Environmental Monitoring for a Healthy, Sustainable Urban Future Citation Details In-Document Search Title: Chicago Clean Air, Clean Water ...

  8. Clean Energy Policy Analysis: Impact Analysis of Potential Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative Clean Energy Policy Analysis: Impact Analysis of ...

  9. Computeer-based decision support tools for evaluation of actions affecting flow and water quality in the San Joaquin Basin

    SciTech Connect

    Quinn, N.W.T.

    1993-01-01

    This document is a preliminary effort to draw together some of the important simulation models that are available to Reclamation or that have been developed by Reclamation since 1987. This document has also attempted to lay out a framework by which these models might be used both for the purposes for which they were originally intended and to support the analysis of other issues that relate to the hydrology and to salt and water quality management within the San Joaquin Valley. To be successful as components of a larger Decision Support System the models should to be linked together using custom designed interfaces that permit data sharing between models and that are easy to use. Several initiatives are currently underway within Reclamation to develop GIS - based and graphics - based decision support systems to improve the general level of understanding of the models currently in use, to standardize the methodology used in making planning and operations studies and to permit improved data analysis, interpretation and display. The decision support systems should allow greater participation in the planning process, allow the analysis of innovative actions that are currently difficult to study with present models and should lead to better integrated and more comprehensive plans and policy decisions in future years.

  10. Clean Cities: Denver Metro Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Metro Clean Cities coalition Contact Information Tyler Svitak 303-847-0281 tsvitak@lungs.org Janna West-Heiss 303-847-0276 jwheiss@lungs.org Coalition Website Clean Cities...

  11. Clean Cities: Wisconsin Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    as co-director for South Shore Clean Cities of Northern Indiana from 2005-2011. Her dedication to the Clean Cities' mission extends north to Wisconsin where she has served as...

  12. Clean coal

    SciTech Connect

    Liang-Shih Fan; Fanxing Li

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  13. ANTELOPE VALLEY SOLAR RANCH | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH PROJECT SUMMARY In September 2011, the Department of Energy issued a $646 million loan guarantee to finance Antelope Valley Solar Ranch 1, a 242-MW photovoltaic (PV) solar generation project.

  14. CALIFORNIA VALLEY SOLAR RANCH | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH PROJECT SUMMARY In September 2011, the Department of Energy issued a $1.2 billion loan guarantee to finance California Valley Solar Ranch, a 250-MW photovoltaic (PV)

  15. Categorical Exclusion Determinations: West Valley Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Valley Demonstration Project Categorical Exclusion Determinations: West Valley Demonstration Project Categorical Exclusion Determinations issued by West Valley Demonstration ...

  16. Missouri Clean Energy District

    Energy.gov [DOE]

    In July 2010 Missouri enacted the Property Assessed Clean Energy Act, which led to the creation of the statewide Missouri Clean Energy District (MCED) in January 2011.

  17. NCAT Harvesting Clean Energy

    Energy.gov [DOE]

    The National Center for Appropriate Technology (NCAT) is hosting the 14th Annual Harvesting Clean Energy Conference to help advance rural economic development through clean energy development and...

  18. CT Clean Energy Communities

    Energy.gov [DOE]

    The Clean Energy Communities program, offered by the Clean Energy Finance & Investment Authority and the Connecticut Energy Efficiency Fund, offers incentives for communities that pledge their...

  19. Reservoir geology of Landslide field, southern San Joaquin basin, California

    SciTech Connect

    Carr, T.R.; Tucker, R.D.; Singleton, M.T. )

    1991-02-01

    The Landslide field, which is located on the southern margin of the San Joaquin basin, was discovered in 1985 and consists of 13 producers and six injectors. Cumulative production as of mid-1990 was approximately 10 million bbl of oil with an average daily production of 4700 BOPD. Production is from a series of late Miocene turbidite sands (Stevens Sand) that were deposited as a small constructional submarine fan (less than 2 mi in diameter). Based on interpretation of wireline logs and engineering data, deposition of the fan and of individual lobes within the fan was strongly influenced by preexisting paleotopography and small syndepositional slump features. Based on mapping of individual depositional units and stratigraphic dipmeter analysis, transport direction of the sand was to the north-north across these paleotopographic breaks in slope. Dipmeter data and pressure data from individual sands are especially useful for recognition and mapping of individual flow units between well bores. Detailed engineering, geophysical and geological studies have increased our understanding of the dimensions, continuity, geometry, and inherent reservoir properties of the individual flow units within the reservoir. Based on the results of these studies a series of water isolation workovers and extension wells were proposed and successfully undertaken. This work has increased recoverable reserves and arrested the rapid production decline.

  20. Pay for Clean Energy

    Energy.gov [DOE]

    Transitioning to a clean energy economy requires innovative financing solutions that enable state, local, and tribal governments to invest in clean energy technologies. However, the clean energy puzzle can be daunting, especially when it comes to paying for clean energy efforts. The resources available here aim to provide an overview of financing for state, local, and tribal governments who are designing and implementing clean energy financing programs.

  1. Workers Access Cell in First Human Entry in 20 Years at EM's West Valley

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Site | Department of Energy Access Cell in First Human Entry in 20 Years at EM's West Valley Site Workers Access Cell in First Human Entry in 20 Years at EM's West Valley Site June 30, 2016 - 12:50pm Addthis WEST VALLEY, N.Y. - It has been 20 years since a human has been allowed in the Vitrification Cell at EM's West Valley Demonstration Project (WVDP), where past operations involved solidifying liquid high-level radioactive waste. WVDP workers are cleaning up the cell in the Vitrification

  2. More Than 350 Now at Work Building CA Valley Solar Plant | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Than 350 Now at Work Building CA Valley Solar Plant More Than 350 Now at Work Building CA Valley Solar Plant February 27, 2012 - 12:13pm Addthis The California Valley Solar Ranch facility is creating clean energy jobs in San Luis Obispo County, California. Sonia Taylor Loan Programs Office What are the key facts? About 350 skilled workers are busy constructing the 250-megawatt California Valley Solar Ranch. The facility is expected to avoid over 425,000 metric tons of carbon dioxide

  3. Clean Cities: Los Angeles Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    took on the role of Clean Cities Coordinator. His major job duties focus on mobile source air pollution reduction programs. He has managed the City's Interdepartmental Alternative...

  4. Clean Cities: Norwich Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    administering and reporting on various programs and grant awards, including the Connecticut Clean Fuels Program and the recent Congestion Mitigation and Air Quality (CMAQ)...

  5. California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected

    Energy Information Administration (EIA) (indexed site)

    Future Production (Million Barrels) San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 74 1980's 74 51 118 111 100 115 104 102 96 91 1990's 82 71 79 81 71 77 77 79 57 59 2000's 63 51 68 78 94 110 100 103 97 113 2010's 98 78 77 85 96

  6. Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds) Clean Energy Finance Guide (Chapter 5: Basic Concepts for ...

  7. Clean Energy Policy Analysis: Impact Analysis of Potential Clean...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    7891 April 2010 Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative S. Busche and E. Doris National ...

  8. Fluvial-deltaic heavy oil reservoir, San Joaquin basin

    SciTech Connect

    Miller, D.D.; McPherson, J.G.; Covington, T.E.

    1989-03-01

    Unconsolidated arkosic sands deposited in a fluvial-deltaic geologic setting comprise the heavy oil (13/degree/ API gravity) reservoir at South Belridge field. The field is located along the western side of the San Joaquin basin in Kern County, California. More than 6000 closely spaced and shallow wells are the key to producing the estimated 1 billion bbl of ultimate recoverable oil production. Thousands of layered and laterally discontinuous reservoir sands produce from the Pleistocene Tulare Formation. The small scale of reservoir geometries is exploited by a high well density, required for optimal heavy oil production. Wells are typically spaced 200-500 ft (66-164 m) apart and drilled to 1000 ft (328 m) deep in the 14-mi/sup 2/ (36-km/sup 2/) producing area. Successful in-situ combustion, cyclic steaming, and steamflood projects have benefited from the shallow-depth, thick, layered sands, which exhibit excellent reservoir quality. The fundamental criterion for finding another South Belridge field is to realize the extraordinary development potential of shallow, heavy oil reservoirs, even when an unspectacular discovery well is drilled. The trap is a combination of structural and stratigraphic mechanisms plus influence from unconventional fluid-level and tar-seal traps. The depositional model is interpreted as a braid delta sequence that prograded from the nearby basin-margin highlands. A detailed fluvial-deltaic sedimentologic model establishes close correlation between depositional lithofacies, reservoir geometries, reservoir quality, and heavy oil producibility. Typical porosity is 35% and permeability is 3000 md.

  9. Bioenergy & Clean Cities

    Energy.gov [DOE]

    DOE's Bioenergy Technologies Office and the Clean Cities program regularly conduct a joint Web conference for state energy office representatives and Clean Cities coordinators. The Web conferences...

  10. Clean Cities: Coalition Contacts

    Alternative Fuels and Advanced Vehicles Data Center

    Ficicchia Empire Clean Cities Northeast 212-839-7728 Christina Ficicchia See Bio 55 Water St, 9th Fl New York, NY 10041 Website New York David Keefe Genesee Region Clean...

  11. Clean Cities Program Contacts

    SciTech Connect

    2015-07-31

    Contact information for the U.S. Department of Energy's Clean Cities program staff and for the coordinators of the nearly 100 local Clean Cities coalitions across the country.

  12. What Is Clean Cities?

    SciTech Connect

    Not Available

    2007-08-01

    This Clean Cities Program fact sheet describes the purpose and scope of this DOE program. Clean Cities facilitates the use of alternative and advanced fuels and vehicles to displace petroleum in the transportation sector.

  13. Clean the Past

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Clean the Past Image of MDA B excavation with text overlay of 'How does LANL protect human ... Clean the Past Home Google Earth Tour: Environmental Cleanup Protections: Cleanup What ...

  14. Surprise Valley water geochmical data

    DOE Data Explorer

    Nicolas Spycher

    2015-04-13

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  15. Surprise Valley water geochmical data

    DOE Data Explorer

    Nicolas Spycher

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  16. What We Clean Up & Why

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Environmental Stewardship Environmental Cleanup What We Clean Up & Why What We Clean Up & Why We clean up legacy waste sites and contaminated areas for return to the public. ...

  17. Clean Sierra Club Combined

    Energy Saver

    Clean Cities Coalition Regions Clean Cities Coalition Regions Nearly 100 Clean Cities coalitions work to reduce petroleum use in communities across the country. Led by Clean Cities coordinators, coalitions are composed of businesses, fuel providers, vehicle fleets, state and local government agencies, and community organizations. These stakeholders come together to share information and resources, educate the public, help craft public policy, and collaborate on projects that reduce petroleum

  18. What Is Clean Cities?

    SciTech Connect

    Not Available

    2008-04-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  19. What is Clean Cities?

    SciTech Connect

    Not Available

    2008-09-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  20. Calif--San Joaquin Basin onsh Shale Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Calif--San Joaquin Basin onsh Shale Production (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production

  1. Calif--San Joaquin Basin onsh Shale Proved Reserves Acquisitions (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Acquisitions (Billion Cubic Feet) Calif--San Joaquin Basin onsh Shale Proved Reserves Acquisitions (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Reserves Acquisitions

  2. Calif--San Joaquin Basin onsh Shale Proved Reserves Adjustments (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Adjustments (Billion Cubic Feet) Calif--San Joaquin Basin onsh Shale Proved Reserves Adjustments (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Reserves Adjustments

  3. Calif--San Joaquin Basin onsh Shale Proved Reserves Extensions (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Extensions (Billion Cubic Feet) Calif--San Joaquin Basin onsh Shale Proved Reserves Extensions (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Reserves Extensions

  4. Calif--San Joaquin Basin onsh Shale Proved Reserves Sales (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Sales (Billion Cubic Feet) Calif--San Joaquin Basin onsh Shale Proved Reserves Sales (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Reserves Sales

  5. Union Valley | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Union Valley Union Valley This document discusses Union Valley. Topics include: * The area's safety * Any use limitations for the area * History and cleanup background for this area * How DOE's cleanup program addressed the problem Union Valley (809.31 KB) More Documents & Publications Melton Valley Watershed Groundwater Contamination and Treatment at Department of Energy Sites Groundwater Contamination and Treatment at Department of Energy Sites - 2008

  6. Small Businesses Helping Drive Economy: Clean Energy, Clean Sites |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Businesses Helping Drive Economy: Clean Energy, Clean Sites Small Businesses Helping Drive Economy: Clean Energy, Clean Sites A memo on small businesses helping drive the economy: clean energy and clean sites. Small Businesses Helping Drive Economy: Clean Energy, Clean Sites (257.52 KB) More Documents & Publications Small_Business_Memo_Mar2010.pdf Federal Incentives for Wind Power Deployment Remarks by David Sandalow, Assistant Secretary of Energy for Policy and

  7. NV PFA - Steptoe Valley

    SciTech Connect

    Jim Faulds

    2015-10-29

    All datasets and products specific to the Steptoe Valley model area. Includes a packed ArcMap project (.mpk), individually zipped shapefiles, and a file geodatabase for the northern Steptoe Valley area; a GeoSoft Oasis montaj project containing GM-SYS 2D gravity profiles along the trace of our seismic reflection lines; a 3D model in EarthVision; spreadsheet of links to published maps; and spreadsheets of well data.

  8. Clean Cities: Long Beach Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center

    15 years. Tedtaotao was appointed co-coordinator of Long Beach Clean Cities in January, 2014. LA County Public Works 2275 Alcazar St Los Angeles, CA 90033 Search Coalitions Search...

  9. Clean Cities: Clean Cities-Georgia

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Atlanta was designated as the first Clean Cities coalition in the nation at the Georgia Dome in 1993. Prior to being elected as the coalition's executive director, Francis served...

  10. South Carolina Clean Energy Summit

    Energy.gov [DOE]

    The South Carolina Clean Energy Business Alliance will host the fourth annual Clean Energy Summit. Learn more. 

  11. All Valley Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Solar Jump to: navigation, search Logo: All Valley Solar Name: All Valley Solar Address: 6851 Cahuenga Park Trail Place: Los Angeles, California Region: Southern CA Area...

  12. Bolton Valley Resort | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bolton Valley Resort Jump to: navigation, search Name Bolton Valley Resort Facility Bolton Valley Resort Sector Wind energy Facility Type Small Scale Wind Facility Status In...

  13. Hyder Valley Aquaculture Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Hyder Valley Aquaculture Low Temperature Geothermal Facility Facility Hyder Valley Sector...

  14. Site Programs & Cooperative Agreements: West Valley Demonstration...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Site Programs & Cooperative Agreements: West Valley Demonstration Project West Valley Demonstration Project The Seneca Nation of Indians has ...

  15. ,"California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    Energy Information Administration (EIA) (indexed site)

    San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release

  16. Clean Energy Investment Center and Private Sector Talk Innovation and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Investment in Smart Grid and Energy Storage at the 3rd LINKS Event on Sand Hill Road - the Center of Investment in Silicon Valley | Department of Energy and Private Sector Talk Innovation and Investment in Smart Grid and Energy Storage at the 3rd LINKS Event on Sand Hill Road - the Center of Investment in Silicon Valley Clean Energy Investment Center and Private Sector Talk Innovation and Investment in Smart Grid and Energy Storage at the 3rd LINKS Event on Sand Hill Road - the Center of

  17. Scotts Valley Band of Pomo Indians: Scotts Valley Energy Office...

    Energy.gov [DOE] (indexed site)

    ... The goal of this project is to develop a Scotts Valley Energy Development Office (SVEDO). Scotts Valley Energy Office and Human Capacity Project SUMMARY Two Key Elements of SVEDO ...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Alternative Fuel and Advanced Vehicle Rebate - San Joaquin Valley The San Joaquin Valley Air Pollution Control District (SJVAPCD) administers the Drive Clean! Rebate Program, which provides rebates for the purchase or lease of eligible new vehicles, including qualified natural gas, hydrogen fuel cell, propane, zero emission motorcycles, battery electric, neighborhood electric, and plug-in electric vehicles. The program offers rebates of up to $3,000, which are available on a first-come,

  19. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Policy Options for the Hawaii Clean Energy Initiative | Department of Energy Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative This report provides detailed analyses of the following policies to determine the impact they may have on ratepayers, businesses, and the state in terms of energy

  20. Rare earth element content of thermal fluids from Surprise Valley, California

    SciTech Connect

    Andrew Fowler

    2015-09-23

    Rare earth element measurements for thermal fluids from Surprise Valley, California. Samples were collected in acid washed HDPE bottles and acidified with concentrated trace element clean (Fisher Scientific) nitric acid. Samples were pre-concentratated by a factor of approximately 10 using chelating resin with and IDA functional group and measured on magnetic sector ICP-MS. Samples include Seyferth Hot Springs, Surprise Valley Resort Mineral Well, Leonard's Hot Spring, and Lake City Mud Volcano Boiling Spring.

  1. Blue Valley Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    References: Blue Valley Energy Web Site1 On Jan 1st 2008, Valley Geothermal and Blue Sky Energy Solutions merged to form Blue Valley Energy LLC. Valley Geothermal, led by Monte...

  2. Drought resilience of the California Central Valley surface-groundwater-conveyance system

    SciTech Connect

    Miller, N.L.; Dale, L.L.; Brush, C.; Vicuna, S.; Kadir, T.N.; Dogrul, E.C.; Chung, F.I.

    2009-05-15

    A series of drought simulations were performed for the California Central Valley using computer applications developed by the California Department of Water Resources and historical datasets representing a range of droughts from mild to severe for time periods lasting up to 60 years. Land use, agricultural cropping patterns, and water demand were held fixed at the 2003 level and water supply was decreased by amounts ranging between 25 and 50%, representing light to severe drought types. Impacts were examined for four hydrologic subbasins, the Sacramento Basin, the San Joaquin Basin, the Tulare Basin, and the Eastside Drainage. Results suggest the greatest impacts are in the San Joaquin and Tulare Basins, regions that are heavily irrigated and are presently overdrafted in most years. Regional surface water diversions decrease by as much as 70%. Stream-to-aquifer flows and aquifer storage declines were proportional to drought severity. Most significant was the decline in ground water head for the severe drought cases, where results suggest that under these scenarios the water table is unlikely to recover within the 30-year model-simulated future. However, the overall response to such droughts is not as severe as anticipated and the Sacramento Basin may act as ground-water insurance to sustain California during extended dry periods.

  3. Geological aspects of drilling horizontal wells in steam flood reservoirs, west side, southern San Joaquin Valley, California

    SciTech Connect

    Crough, D.D.; Holman, M.L.; Sande, J.J. )

    1994-04-01

    Shell Western E P Inc. has drilled 11 horizontal wells in four mature steam floods in the Coalinga, South Belridge, and Midway-Sunset fields. Two medium radius wells are producing from the Pliocene Etchegoin Formation in Coalinga. One medium radius well is producing from the Pleistocene Tulare Formation in South Belridge field. Three short radius and five medium radius wells are producing from the upper Miocene, Sub-Hoyt and Potter sands in Midway-Sunset field. Horizontal wells at the base of these reservoirs and/or structurally downdip near the oil-water contact are ideally suited to take advantage of the gravity drainage production mechanism. Reservoir studies and production experience have shown these horizontal wells should increase reserves, improve recovery efficiency, improve the oil-steam ratio, and improve project profitability. Geological considerations of targeting the wells vary between fields because of the different depositional environments and resulting reservoir characteristics. The thin sands and semicontinuous shales in the Tulare Formation and the Etchegoin Formation require strict structural control on the top and base of the target sand. In the Sub-Hoyt and Potter sands, irregularities of the oil-water contact and sand and shale discontinuities must be understood. Logging and measurement while drilling provide geosteering capability in medium radius wells. Teamwork between all engineering disciplines and drilling and producing operations has been critical to horizontal well success.

  4. Clean Cities Program Contacts

    Alternative Fuels and Advanced Vehicles Data Center

    Clean Cities is funded and managed by the U.S. Department of Energy. Regional managers ... 412-386-7334 cleancities.energy.gov VEHICLE TECHNOLOGIES OFFICE DOE...

  5. Clean Energy Development Fund

    Energy.gov [DOE]

    Vermont's Clean Energy Development Fund (CEDF) was established in 2005 to promote the development and deployment of cost-effective and environmentally sustainable electric power and thermal...

  6. What is Clean Cities?

    SciTech Connect

    Not Available

    2008-01-01

    Fact sheet describes the Clean Cities program, outlines its resources, and lists the contact information for its almost 90 coalition coordinators.

  7. Clean Cities & Transportation Tools

    Energy.gov [DOE]

    This presentation, presented on July 28, 2010, was on the DOE Clean Cities program to promote the use of alternative fuels and reduce petroleum consumption.

  8. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 September 2000 ...

  9. AMF Deployment, Ganges Valley, India

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    India Ganges Valley Deployment AMF Home Ganges Valley Home Data Plots and Baseline Instruments Campaign Images Experiment Planning GVAX Full Proposal Abstract and Related Campaigns Science Plan Field Campaign Report Outreach GVAX Backgrounder (PDF, 1.4MB) News Education Flyer (PDF, 2.1MB) AMF Poster, 2011 Images Contacts V. Rao Kotamarthi AMF Deployment, Ganges Valley, India GVAX will take place in the Ganges Valley region of India, gathering cloud and aerosol data. Location: 29° 21'

  10. Elk Valley Rancheria- 2010 Project

    Energy.gov [DOE]

    Elk Valley Rancheria will perform a comprehensive Energy Efficiency and Alternatives Study for tribal properties on the Rancheria.

  11. Bethel Valley Watershed | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bethel Valley Watershed Bethel Valley Watershed This document discusses the Bethel Valley Watershed. Topics include: * The area's safety * Any use limitations for the area * History and cleanup background for this area * How DOE's cleanup program addressed the problem Bethel Valley Watershed (377.2 KB) More Documents & Publications Bear Creek Valley Watershed Oak Ridge National Laboratory Cleanup Melton Valley Watershed

  12. Calif--San Joaquin Basin onsh Shale Proved Reserves Revision Decreases

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Decreases (Billion Cubic Feet) Calif--San Joaquin Basin onsh Shale Proved Reserves Revision Decreases (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Reserves Revision Decreases

  13. Calif--San Joaquin Basin onsh Shale Proved Reserves Revision Increases

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Increases (Billion Cubic Feet) Calif--San Joaquin Basin onsh Shale Proved Reserves Revision Increases (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Reserves Revision Increases

  14. Clean Energy Manufacturing Initiative

    SciTech Connect

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  15. 2013 Second Quarter Clean Energy/Clean Transportation Jobs Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Enivronmental Entrepreneurs (E2) Clean Energy/Clean Transportation Jobs Report tracks clean energy job announcements from companies, elected officials, the media and other sources, to show how how...

  16. 5 Super-Sized Solar Projects Transforming the Clean Energy Landscape |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Super-Sized Solar Projects Transforming the Clean Energy Landscape 5 Super-Sized Solar Projects Transforming the Clean Energy Landscape April 8, 2013 - 4:00pm Addthis The California Valley Solar Ranch has a capacity of 250 MW -- enough energy to power the equivalent of every home in San Luis Obispo County. | Photo courtesy of SunPower. The California Valley Solar Ranch has a capacity of 250 MW -- enough energy to power the equivalent of every home in San Luis Obispo

  17. Hawai'i Makes Progress Toward Clean Energy Goals with Energy Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Assistance | Department of Energy Hawai'i Makes Progress Toward Clean Energy Goals with Energy Department Assistance Hawai'i Makes Progress Toward Clean Energy Goals with Energy Department Assistance July 29, 2014 - 4:50pm Addthis Set in the Waianae Valley of Oahu, Kaupuni Village is the first net-zero energy affordable housing community in Hawaii.| Photo by Ryan Siphers / Group 70, NREL 20155 Set in the Waianae Valley of Oahu, Kaupuni Village is the first net-zero energy affordable housing

  18. Clean Cities: Alamo Area Clean Cities (San Antonio) coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Alamo Area Clean Cities (San Antonio) Coalition The Alamo Area Clean Cities (San Antonio) coalition works with vehicle fleets, fuel providers, community leaders, and other...

  19. Clean Cities: Yellowstone-Teton Clean Energy coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Yellowstone-Teton Clean Energy Coalition The Yellowstone-Teton Clean Energy coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce...

  20. Clean Cities: Lone Star Clean Fuels Alliance (Central Texas)...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lone Star Clean Fuels Alliance (Central Texas) Coalition The Lone Star Clean Fuels Alliance (Central Texas) coalition works with vehicle fleets, fuel providers, community leaders,...

  1. Clean Cities: Connecticut Southwestern Area Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Connecticut Southwestern Area Clean Cities Coalition The Connecticut Southwestern Area Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and...

  2. Clean Cities: Capitol Clean Cities of Connecticut coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Capitol Clean Cities of Connecticut Coalition The Capitol Clean Cities of Connecticut coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders...

  3. Keeping condensers clean

    SciTech Connect

    Wicker, K.

    2006-04-15

    The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

  4. Cleaning method and apparatus

    DOEpatents

    Jackson, Darryl D. (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM)

    1983-01-01

    A new automatable cleaning apparatus which makes use of a method of very thoroughly and quickly cleaning a gauze electrode used in chemical analyses is given. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg. plutonium sample was removed in less than 3 minutes, using only about 60 ml. of rinse solution and two main rinse steps.

  5. Cleaning method and apparatus

    DOEpatents

    Jackson, D.D.; Hollen, R.M.

    1981-02-27

    A method of very thoroughly and quikcly cleaning a guaze electrode used in chemical analyses is given, as well as an automobile cleaning apparatus which makes use of the method. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg plutonium sample was removed in less than 3 minutes, using only about 60 ml of rinse solution and two main rinse steps.

  6. Clean Currents | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Currents Jump to: navigation, search Logo: Clean Currents Name: Clean Currents Address: 155 Gibbs St. Suite 425 Place: Rockville, Maryland Zip: 20850 Sector: Wind energy...

  7. Clean Fractionation - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Clean ... Using a single-phase mixture digestion process followed by a phase separation, Clean ...

  8. Supercomputing Our Way to a Clean Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Supercomputing Our Way to a Clean Energy Future Supercomputing Our Way to a Clean Energy Future August 6, 2012 - 2:34pm Addthis Using computer modeling technology from Lawrence Livermore National Laboratory (LLNL), truck manufacturer Navistar is able to improve vehicle fuel efficiency and durability without the expense of wind tunnel testing. | Photo courtesy of LLNL Livermore Valley Open Campus. Using computer modeling technology from Lawrence Livermore National Laboratory (LLNL), truck

  9. Ganges Valley Aerosol Experiment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ganges Valley Aerosol Experiment In northeastern India, the fertile land around the Ganges River supports several hundred million people. This river, the largest in India, is fed by monsoon rains and runoff from the nearby Himalayan Mountains. Through an intergovernmental agreement with India, the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed its portable laboratory, the ARM Mobile Facility (AMF), to Nainital, India, in June 2011. During

  10. MONUMENT VALLEY, ARIZONA

    Office of Legacy Management (LM)

    VALLEY, ARIZONA Sampled August 1997 DATA PACKAGE CONTENTS This data package includes the following information: Item No. Descriotion of Contents 1. Site Sampling Lead Summary 2. Data Package Assessment, which includes the following: a. Field procedures verification checklist b. Confirmation that chain-of-custody was maintained. c. Confirmation that holding time requirements were met. d. Evaluation of the adequacy of the QC sample results. Data Assessment Summary, which describes problems

  11. Clean Energy Works

    Energy.gov [DOE]

    Through Clean Energy Works, homeowners can finance up to $30,000 at a fixed interest rate for home energy efficiency retrofits for a variety of measures. Customers have varying lender and loan op...

  12. Clean Energy Fund (CEF)

    Energy.gov [DOE]

    On January 2016, the New York Public Service Commission (PUC) approved $5 billion Clean Energy Fund (CEF) as a successor to the New York’s Energy Efficiency Portfolio Standard (EEPS) and Renewable...

  13. Enhanced Chemical Cleaning

    SciTech Connect

    Spires, Renee H.

    2010-11-01

    Renee Spires, Project Manager at Savannah River Remediation, opens Session 3 (Accelerated Waste Retrieval and Closure: Key Technologies) at the 2010 EM Waste Processing Technical Exchange with a talk on enhanced chemical cleaning.

  14. Clean Energy Procurement

    Office of Energy Efficiency and Renewable Energy (EERE)

    Subsequently, in 2009, the state embarked upon an initiative with the University System of Maryland, termed "Clean Energy Horizons," to contract for renewable energy through long-term power...

  15. Clean Energy Ministerial

    Energy.gov [DOE]

    The United States will host the seventh Clean Energy Ministerial (CEM7) in San Francisco, California, on June 1–2, 2016. The annual meeting of energy ministers and other high-level delegates from...

  16. Clean Coal Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

  17. #CleanTechNow

    SciTech Connect

    Moniz, Ernest

    2013-09-17

    Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

  18. #CleanTechNow

    ScienceCinema

    Moniz, Ernest

    2016-07-12

    Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

  19. Clean Tech Now | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now America's energy landscape is undergoing a dramatic transformation. According to a new Energy Department report, falling costs for four clean energy technologies -- land-based wind power, solar panels, electric cars and LED lighting -- have led to a surge in demand and deployment. The numbers tell an exciting story: America is experiencing a

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Electric Vehicle Supply Equipment (EVSE) Incentives - San Joaquin Valley The San Joaquin Valley Air Pollution Control District (SJVAPCD) administers the Charge Up Program, which ...

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley The San Joaquin Valley Air Pollution Control District (SJVAPCD) contributed funds to the California Hybrid and ...

  2. Concept Paper for Real-Time Temperature and Water QualityManagement for San Joaquin River Riparian Habitat Restoration

    SciTech Connect

    Quinn, Nigel W.T.

    2004-12-20

    The San Joaquin River Riparian Habitat Restoration Program (SJRRP) has recognized the potential importance of real-time monitoring and management to the success of the San Joaquin River (SJR) restoration endeavor. The first step to realizing making real-time management a reality on the middle San Joaquin River between Friant Dam and the Merced River will be the installation and operation of a network of permanent telemetered gauging stations that will allow optimization of reservoir releases made specifically for fish water temperature management. Given the limited reservoir storage volume available to the SJJRP, this functionality will allow the development of an adaptive management program, similar in concept to the VAMP though with different objectives. The virtue of this approach is that as management of the middle SJR becomes more routine, additional sensors can be added to the sensor network, initially deployed, to continue to improve conditions for anadromous fish.

  3. What is Clean Cities? (Brochure)

    SciTech Connect

    Not Available

    2011-03-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 87 coalitions.

  4. Clean Energy Works Oregon (CEWO)

    Energy.gov [DOE]

    Presents Clean Energy Works Oregon's program background and the four easy steps to lender selection.

  5. Revolutionizing Clean Energy Technology with Advanced Composites...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Revolutionizing Clean Energy Technology with Advanced Composites Revolutionizing Clean Energy Technology with Advanced Composites Addthis

  6. Case Study - Sioux Valley Energy

    Energy.gov [DOE] (indexed site)

    This detailed billing cannot be done with conventional meters. Critical Peak Pricing Lowers Peak Demands and Electric Bills in South Dakota and Minnesota Sioux Valley Energy (SVE) ...

  7. Pennsylvania Nuclear Profile - Beaver Valley

    Energy Information Administration (EIA) (indexed site)

    Beaver Valley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  8. ,"CA, San Joaquin Basin Onshore Crude Oil plus Lease Condensate Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","CA, San Joaquin Basin Onshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release

  9. ,"CA, San Joaquin Basin Onshore Dry Natural Gas Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","CA, San Joaquin Basin Onshore Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  10. ,"CA, San Joaquin Basin Onshore Proved Nonproducing Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","CA, San Joaquin Basin Onshore Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  11. Calif--San Joaquin Basin Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update

    Reservoirs (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 740 321 2000's 234 233 111 110 158 238 228 168 117 146 2010's 210 163 226 214 216 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  12. Calif--San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Reserves

    Energy Information Administration (EIA) (indexed site)

    in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Calif--San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 59 89 244 108 2000's 13 73 13 18 342 681 350 426 107 90 2010's 106 54 45 35 18 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate,

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves Adjustments (Million Barrels) Adjustments (Million Barrels) Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate, Proved Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 1 0 -1 0 11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  14. Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate,

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves Decreases (Million Barrels) Decreases (Million Barrels) Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate, Proved Reserves Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease

  15. Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate,

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves Increases (Million Barrels) Increases (Million Barrels) Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate, Proved Reserves Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 1 0 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease

  16. Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate,

    Energy Information Administration (EIA) (indexed site)

    Reserves Based Production (Million Barrels) Reserves Based Production (Million Barrels) Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 1 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  17. Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate,

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Million Barrels) in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Lease Condensate CA, San Joaquin

  18. Calif--San Joaquin Basin Onshore Natural Gas Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Calif--San Joaquin Basin Onshore Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 87 190 364 181 2000's 225 373 250 264 557 901 624 599 233 401 2010's 359 319 81 96 55 - = No Data Reported; -- = Not Applicable;

  19. Calif--San Joaquin Basin Onshore Nonassociated Natural Gas, Reserves in

    Energy Information Administration (EIA) (indexed site)

    Nonproducing Reservoirs, Wet (Billion Cubic Feet) Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Calif--San Joaquin Basin Onshore Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 28 101 120 73 2000's 212 301 237 246 215 220 274 173 126 311 2010's 253 265 36 61 37 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  20. California - San Joaquin Basin Onshore Dry Natural Gas Reserves New Field

    Energy Information Administration (EIA) (indexed site)

    Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) California - San Joaquin Basin Onshore Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 31 25 12 1980's 3 41 22 8 19 12 2 1 10 13 1990's 2 1 22 14 0 0 0 0 0 0 2000's 7 0 0 5 0 0 0 0 0 1 2010's 1 0 4 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 740 321 2000's 234 233 111 110 158 238 228 168 117 146 2010's 210 163 226 214 216 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  2. ,"Calif--San Joaquin Basin onsh Shale Proved Reserves (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    onsh Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Calif--San Joaquin Basin onsh Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  3. ,"California - San Joaquin Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  4. Valley Forge Corporate Center

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    55 Jefferson Ave. Valley Forge Corporate Center Norristown, PA 19403-2497 Pauline Foley Assistant General Counsel 610.666.8248 | Fax - 610.666.8211 foleyp@pjm.com October 30, 2013 Via Electronic Mail: juliea.smith@hq.doe.gov Christopher.lawrence@hq.doe.gov Julie A. Smith Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585 Re: Department of Energy - Improving Performance of Federal Permitting and

  5. Clean Coal Power Initiative

    SciTech Connect

    Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

    2006-03-31

    This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

  6. Great Valley Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Ethanol LLC Jump to: navigation, search Name: Great Valley Ethanol LLC Place: Bakersfield, California Product: Developing a 63m gallon ethanol plant in Hanford, CA...

  7. Platte Valley Fuel Ethanol | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Fuel Ethanol Jump to: navigation, search Name: Platte Valley Fuel Ethanol Place: Central City, Nebraska Product: Bioethanol producer using corn as feedstock References:...

  8. Dixie Valley Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Dixie Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1...

  9. Chuckawalla Valley State Prison | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Chuckawalla Valley State Prison Jump to: navigation, search Name: Chuckawalla Valley State Prison Place: Blythe, California Zip: 92226 Sector: Solar Product: Prison located in...

  10. Dakota Valley Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Dakota Valley Wind Project Facility Dakota Valley Sector Wind energy Facility Type Community Wind Location SD Coordinates 42.548355, -96.524841...

  11. Smoky Valley Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Smoky Valley Wind Project Facility Smoky Valley Sector Wind energy Facility Type Community Wind Location KS Coordinates 38.578766, -97.683563...

  12. Tippecanoe Valley School Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Facility Status In Service Owner Tippecanoe Valley School Corp Developer Performance Services Energy Purchaser Tippecanoe Valley School Corp Location Akron IN...

  13. River Valley Technology Center | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Technology Center Jump to: navigation, search Name: River Valley Technology Center Place: United States Sector: Services Product: General Financial & Legal Services (...

  14. Thanksgiving Goodwill: West Valley Demonstration Project Food...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive...

  15. Anderson Valley Brewing Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Brewing Company Jump to: navigation, search Name: Anderson Valley Brewing Company Place: Mendocino Country, California Product: A microbrewery. The brewery is known for...

  16. Tees Valley Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tees Valley Biofuels Jump to: navigation, search Name: Tees Valley Biofuels Place: United Kingdom Sector: Biofuels Product: Company set up by North East Biofuels to establish an...

  17. Independent Activity Report, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    West Valley Demonstration Project - July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West...

  18. Pumpernickel Valley Geothermal Project Thermal Gradient Wells...

    OpenEI (Open Energy Information) [EERE & EIA]

    the geothermal activity in the valley are two areas with hot springs, seepages, and wet groundvegetation anomalies near the Pumpernickel Valley fault, which indicate that the...

  19. Golden Valley Wind Park | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Park Jump to: navigation, search Name Golden Valley Wind Park Facility Golden Valley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  20. Enterprise Assessments Review, West Valley Demonstration Project...

    Energy Saver

    West Valley Demonstration Project. The onsite review was conducted during May 19-22 and June 9-13, 2014. Enterprise Assessments Review, West Valley Demonstration Project - ...

  1. Enterprise Assessments Review, West Valley Demonstration Project...

    Energy.gov [DOE] (indexed site)

    management program at the West Valley Demonstration Project (WVDP) was conducted prior to ... Assessments Review, West Valley Demonstration Project - December 2014 (245.41 KB) ...

  2. West Valley Demonstration Project | Department of Energy

    Energy.gov [DOE] (indexed site)

    West Valley Demonstration Project compliance agreements, along with summaries of the agreements, can be viewed here. West Valley Demonstration Project Administrative Consent Order, ...

  3. Imperial Valley Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resource Area in Southern California's Imperial Valley. The combined capacity at Imperial Valley is approximately 327 net megawatts. Photo of the Leathers geothermal power plant

  4. Aire Valley Environmental | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Aire Valley Environmental Jump to: navigation, search Name: Aire Valley Environmental Place: United Kingdom Product: Leeds-based waste-to-energy project developer. References: Aire...

  5. Whitewater Valley Rural EMC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Rural EMC Jump to: navigation, search Name: Whitewater Valley Rural EMC Address: P.O. Box 349 Place: Liberty, Indiana Zip: 47353 Sector: Transmission Phone Number: (765)...

  6. Hoopa Valley Tribe- 1994 Project

    Energy.gov [DOE]

    The Hoopa Valley Tribe is located in a northern California valley about 45 miles from the nearest city. The tribe is located in remote and mountainous area. The tribe was experiencing high energy costs to operate its community swimming pool due to the equipment's age, inefficient design, and the lack of a pool cover.

  7. Precision cleaning apparatus and method

    DOEpatents

    Schneider, Thomas W.; Frye, Gregory C.; Martin, Stephen J.

    1998-01-01

    A precision cleaning apparatus and method. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece.

  8. Precision cleaning apparatus and method

    DOEpatents

    Schneider, T.W.; Frye, G.C.; Martin, S.J.

    1998-01-13

    A precision cleaning apparatus and method are disclosed. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece. 11 figs.

  9. Clean Cities Tools

    SciTech Connect

    2014-12-19

    The U.S. Department of Energy's Clean Cities offers a large collection of Web-based tools on the Alternative Fuels Data Center. These calculators, interactive maps, and data searches can assist fleets, fuels providers, and other transportation decision makers in their efforts to reduce petroleum use.

  10. What is Clean Cities? Clean Cities, March 2010 (Brochure)

    SciTech Connect

    Not Available

    2010-03-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  11. What Is Clean Cities? Clean Cities, November 2009 (Revised) (Brochure)

    SciTech Connect

    Not Available

    2009-11-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  12. Clean Energy Materials EERE's Clean Energy Manufacturing Initiative Launches

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sparking a Revolution in Clean Energy Materials EERE's Clean Energy Manufacturing Initiative Launches Energy Materials Network Volume 2, No. 1, January/February 2016 What's Happening @ EERE 2 A Message from Dave............................................ 3 ENERGY MATERIALS NETWORK Accelerating Materials Innovation & Advanced Manufacturing .......................................................... 4 Sparking a Revolution in Clean Energy Materials

  13. Twenty Years of Clean Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Twenty Years of Clean Energy For more information contact: George Douglas (303) 275-4096 ... the floors of U.S. forests is converted into clean-burning ethanol to power cars. ...

  14. Leaf Clean Energy Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean Energy Company Jump to: navigation, search Logo: Leaf Clean Energy Company Name: Leaf Clean Energy Company Place: London, United Kingdom Website: www.leafcleanenergy.com...

  15. Category:CLEAN Webinar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    CLEAN Webinar Jump to: navigation, search This page contains webinars hosted by the Coordinated Low Emissions Assistance Network (CLEAN). Pages in category "CLEAN Webinar" The...

  16. Clean Economy Network Foundation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean Economy Network Foundation Jump to: navigation, search Logo: Clean Economy Network Foundation Name: Clean Economy Network Foundation Address: 1301 Pennsylvania Ave NW, Suite...

  17. clean energy | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation...

  18. Clean Energy Solutions Center | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Center Jump to: navigation, search Logo: Clean Energy Solutions Center Name Clean Energy Solutions Center AgencyCompany Organization Clean Energy Ministerial Sector Energy Focus...

  19. The Clean Energy Fund | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean Energy Fund Jump to: navigation, search Name: The Clean Energy Fund Place: Santa Monica, California Zip: 90403 Product: The Clean Energy Fund hopes to begin investing in...

  20. Turkey Clean Energy Partnership | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Turkey Clean Energy Partnership Jump to: navigation, search Logo: Turkey Clean Energy Partnership Name Turkey Clean Energy Partnership AgencyCompany Organization Argonne National...

  1. About the Clean Energy Manufacturing Initiative | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    About the Clean Energy Manufacturing Initiative About the Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative (CEMI) is a U.S. Department of Energy ...

  2. Sustainable development with clean coal

    SciTech Connect

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  3. WEST VALLEY DEVELOPMENT PROJECT WEST VALLEY, NEW YORK NEWS MEDIA...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of high-level waste (HLW) that had been generated by commercial reprocessing of spent nuclear fuel at the Western New York Nuclear Service Center in West Valley, New ...

  4. Tennessee Valley and Eastern Kentucky Wind Working Group

    SciTech Connect

    Katie Stokes

    2012-05-03

    In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations, local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.

  5. Healy Clean Coal Project

    SciTech Connect

    1997-12-31

    The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

  6. Clean fractionation of biomass

    SciTech Connect

    Not Available

    1995-01-01

    The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The AF program is conducting ongoing research on a clean fractionation process. This project is designed to convert biomass into materials that can be used for chemical processes and products. Clean fractionation separates a single feedstock into individual components cellulose, hemicellulose, and lignin.

  7. Clean room wiping cloths

    SciTech Connect

    Harding, W.B.

    1981-01-01

    The suitability of various fabrics for use as clean room wiping cloths was investigated. These fabrics included knit polyester, knit nylon, urethane foam, woven cotton, nonwoven polyester, nonwoven rayon, nonwoven polyethylene and polypropylene, and woven nylon. These materials were tested for detachable lint and fibers, deterioration, and oil content which could leave contaminating films on wiped surfaces. Well-laundered nylon and polyester cloths knitted from filamentary yarn, with hems, were found to be suitable. (LCL)

  8. Clean Energy Project

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Vehicle Buyer's Guide Clean Cities Biodiesel Ethanol Flex-Fuel Hybrid Electric Plug-In Hybrid All-Electric Hydrogen Fuel Cell Propane Natural Gas Disclaimers This report was prepared as an account of work sponsored by an agency of the United States govern- ment. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any

  9. Bear Creek Valley Watershed | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bear Creek Valley Watershed Bear Creek Valley Watershed This document discusses the Bear Creek Valley Watershed. Topics include: * The area's safety * Any use limitations for the area * History and cleanup background for this area * How DOE's cleanup program addressed the problem Bear Creek Valley Watershed fact sheet (814.29 KB) More Documents & Publications Melton Valley Watershed Upper East Fork Poplar Creek Cleanup Progress Report - 2010

  10. Valley Electric Association- Net Metering

    Energy.gov [DOE]

    The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

  11. Swauk Valley | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Swauk Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner McKinstry Developer McKinstry Location Ellensburg WA Coordinates 47.14163,...

  12. Dixie Valley Bottoming Binary Cycle

    Energy.gov [DOE]

    Project objective: Prove the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from low-temperature brine at the Dixie Valley Geothermal Power Plant.

  13. Gas cleaning system and method

    DOEpatents

    Newby, Richard Allen

    2006-06-06

    A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.

  14. Case Study - Sioux Valley Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sioux Valley Energy SVE's smart meters report consumption levels every 30 minutes, which enables SVE to bill customers for critical peak events that occur on particular days and during particular time periods. This detailed billing cannot be done with conventional meters. Critical Peak Pricing Lowers Peak Demands and Electric Bills in South Dakota and Minnesota Sioux Valley Energy (SVE) is an electric cooperative serving approximately 21,000 customers in seven counties in South Dakota and

  15. DOE - Fossil Energy: Clean Coal Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2-Clean Coal Technology An Energy Lesson Cleaning Up Coal The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada ...

  16. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect

    Not Available

    2011-03-01

    Describes Clean Cities' National Clean Fleets Partnership, an initiative that helps large private fleets reduce petroleum use.

  17. INFOGRAPHIC | Made in America: Clean Energy Jobs

    Energy.gov [DOE]

    As the clean energy economy grows -- thousands of clean energy job opportunities are being created all across the country.

  18. Clean Energy Manufacturing Innovation Institute for Composites...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures ...

  19. Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate,

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves (Million Barrels) (Million Barrels) Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3 1980's 7 6 6 6 5 5 5 5 5 4 1990's 4 4 4 4 4 3 3 3 1 1 2000's 0 1 0 0 1 2 0 0 0 0 2010's 1 1 1 1 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  20. Boulder Valley School District (Colorado) Power Purchase Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School ...

  1. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Gas Recovery Biomass Facility Jump to: navigation, search Name Greene Valley Gas Recovery Biomass Facility Facility Greene Valley Gas Recovery Sector Biomass Facility Type...

  2. Kittitas Valley Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Wind Power Project Jump to: navigation, search Name Kittitas Valley Wind Power Project Facility Kittitas Valley Wind Power Project Sector Wind energy Facility Type...

  3. Valley Center Municipal Water District | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Center Municipal Water District Jump to: navigation, search Name: Valley Center Municipal Water District Place: Valley Center, California Zip: 92082 Product: VCMWD is the...

  4. Minnkota Power Cooperative Wind Turbine (Valley City) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley City) Jump to: navigation, search Name Minnkota Power Cooperative Wind Turbine (Valley City) Facility Minnkota Power Cooperative Wind Turbine (Valley City) Sector Wind...

  5. Bureau Valley School District Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley School District Wind Farm Jump to: navigation, search Name Bureau Valley School District Wind Farm Facility Bureau Valley School District Sector Wind energy Facility Type...

  6. South Valley Archived Soil & Groundwater Master Reports | Department...

    Energy.gov [DOE] (indexed site)

    South Valley Archived Soil & Groundwater Master Reports South Valley - South Valley Plume (16.5 KB) More Documents & Publications Slick Rock Archived Soil & Groundwater Master ...

  7. Fish Lake Valley Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Geothermal Area (Redirected from Fish Lake Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Fish Lake Valley Geothermal Area Contents 1...

  8. ClEAN ENERGy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    25 ClEAN ENERGy Relations between the Corps and Southeastern have not always been cordial. The droughts of the late 1980s put pressure on both organizations as well as our preference customers. I came to the realization that we could no longer litigate and legislate; we must negotiate and cooperate. - AdmiNistrAtor JohN A. mcAllister, Jr. (1989-1995) 1 PARTNERS Advancing In November 1989, a new administrator arrived in Elberton to lead SEPA. John A. McAllister, Jr., "Johnny," was a

  9. Clean Energy Solutions Center: Assisting Countries with Clean Energy Policy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    - Continuum Magazine | NREL A photo of colorful, light- colored buildings in Ghana. Solutions Center assistance will help develop policies to support renewable energy deployment in Ghana. Clean Energy Solutions Center: Assisting Countries with Clean Energy Policy NREL helps developing countries combat barriers to pave the way for policies and programs that advance clean energy technology deployment. Many countries are looking to grow their renewable energy and energy efficiency portfolios to

  10. Clean Cities: Northeast Ohio Clean Cities coalition (Cleveland...

    Alternative Fuels and Advanced Vehicles Data Center

    Vehicles Data Center. Cleveland Car Dealership Working Toward a More Sustainable Future Text version Search Coalitions Search for another coalition Northeast Ohio Clean...

  11. Clean Cities: San Diego Regional Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Kevin Wood Kevin Wood is an associate program manager for transportation at the California Center for Sustainable Energy. He joined the San Diego Regional Clean Cities...

  12. Clean Cities: Greater Lansing Area Clean Cities coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Calnin has worked with the Clean Cities initiative since 2007, having supported the Detroit Area coalition as well as the Greater Lansing Area coalition. With a background that...

  13. Joaquin Correa

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Knierim, Marcin Zemla, Michael Joo, David Larson, Roseann Csencsits, Bahram Parvin, ... Amita Gorur, Mitalee Desai, Manfred Auer, W.J. Costerton, J. Berleman, Trent Northen, D. ...

  14. Joaquin Correa

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    at the center. His interests are Burst processingData streaming, Automated data logistics, Image ProcessingComputer vision and effective technology transfer for science and...

  15. Monument Valley Open House | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Monument Valley Open House Monument Valley Open House July 18, 2016 - 12:22pm Addthis What does this project do? Goal 6. Engage the public, governments, and interested parties Monument Valley Open House 01.jpg An open house was held at Monument Valley High School in Utah. The U.S. Department of Energy Office of Legacy Management (LM) hosted the Uranium Issues Open House on Saturday, April 9, 2016, at Monument Valley High School in Monument Valley, Utah. Multiple federal agencies and their Navajo

  16. International Clean Energy Coalition

    SciTech Connect

    Erin Skootsky; Matt Gardner; Bevan Flansburgh

    2010-09-28

    In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

  17. Clean fractionation of biomass

    SciTech Connect

    1995-09-01

    The US DOE Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R&D) that uses green feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. A consortium of five DOE national laboratories has been formed with the objectives of providing industry with a broad range of expertise and helping to lower the risk of new process development through federal cost sharing. The AF program is conducting ongoing research on a clean fractionation process, designed to convert biomass into materials that can be used for chemical processes and products. The focus of the clean fractionation research is to demonstrate to industry that one technology can successfully separate all types of feedstocks into predictable types of chemical intermediates.

  18. Advancing Women in Clean Energy

    Energy.gov [DOE]

    As part of the Clean Energy Ministerial, C3E and its ambassadors have made it their mission to advance the leadership of women in clean energy around the world. In this series, we will leverage the experience and wisdom of some of the amazing C3E ambassadors who will share advice or suggestions that may be helpful for women seeking to advance their careers in clean energy.

  19. NREL: Technology Deployment - Clean Cities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Clean Cities NREL assists the U.S. Department of Energy's Clean Cities program in supporting local actions to reduce petroleum use in transportation by providing technical assistance, educational and outreach publications, and coordinator support. Clean Cities is a national network of nearly 100 coalitions that bring together stakeholders in the public and private sectors to deploy alternative and renewable fuels, advanced vehicles, fuel economy improvements, idle-reduction measures, and new

  20. Clean Vita | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Provider of products and services to the building trade. Involved in a distribution joint venture with Solco International. References: Clean Vita1 This article is a stub....

  1. Clean coal technologies market potential

    SciTech Connect

    Drazga, B.

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  2. CLEAN Reports | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    methodologies and tools International Assistance for Low-Emission Development Planning: CLEAN Inventory of Activities and Tools-Preliminary Trends National Renewable Energy...

  3. Clean Markets | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Markets Jump to: navigation, search Name: Clean Markets Place: Philadelphia, Pennsylvania Zip: 19118 Sector: Services Product: Philadelphia-based provider of market development...

  4. Clean Air Act, Section 309

    Energy Saver

    CLEAN AIR ACT 309* 7609. Policy review (a) The Administrator shall review and comment in writing on the environmental impact of any matter relating to duties and ...

  5. Self-Cleaning CSP Collectors

    Energy.gov [DOE]

    This fact sheet details the efforts of a Boston University-led team which is working on a DOE SunShot Initative project. The concentrated solar power industry needs an automated, efficient cleaning process that requires neither water nor moving parts to keep the solar collectors clean for maximum reflectance and energy output. This project team is working to develop a transparent electrodynamic screen as a self-cleaning technology for solar concentrators; cleaning is achieved without water, moving parts, or manual labor. Because of these features, it has a strong potential for worldwide deployment.

  6. EPA Clean Power Plan Seminar

    Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is hosting an informational seminar addressing the opportunities and challenges presented by EPA's Clean Power Plan.

  7. Clean Cities Around the World

    SciTech Connect

    Not Available

    2005-01-01

    This 2-page fact sheet provides general information regarding Clean Cities International, including background, successful activities, importance of partnerships, accomplishments, and plans.

  8. Clean Cities Around the World

    SciTech Connect

    Not Available

    2005-11-01

    This fact sheet provides an update of Clean Cities International news, including successful activities, notable accomplishments, and plans for the future. It also includes background information.

  9. Connecting with Clean Tech CEO's

    Office of Energy Efficiency and Renewable Energy (EERE)

    Findings of CEO Roundtable discussions about how to drive economic development and job growth of the clean tech sector within the Sacramento Region.

  10. Residential Clean Energy Grant Program

    Energy.gov [DOE]

    Maryland's Residential Clean Energy Grant Program, administered by the Maryland Energy Administration (MEA), provides financial incentives to homeowners that install solar water-heating, solar...

  11. Local Option- Clean Energy Financing

    Energy.gov [DOE]

    Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money through their local government to pay for energy improvements. The amount borrowed is typically...

  12. Hawaii Clean Energy Final PEIS

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A 1 2 Public Notices 3 Notices about the Draft Programmatic EIS Appendix A Hawai i Clean Energy Final PEIS A-1 September 2015 DOE/EIS-0459 The following Notice of Availability appeared in the Federal Register on April 18, 2014. Appendix A Hawai i Clean Energy Final PEIS A-2 September 2015 DOE/EIS-0459 Appendix A Hawai i Clean Energy Final PEIS A-3 September 2015 DOE/EIS-0459 DOE-Hawaii placed the following advertisement in The Garden Island on May 5 and 9, 2014. Appendix A Hawai i Clean Energy

  13. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOEpatents

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1996-05-07

    The present invention is a tetrahydrofurfuryl alcohol and limonene or terpineol cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  14. Limonene and tetrahydrofurfurly alcohol cleaning agent

    DOEpatents

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  15. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOEpatents

    Bohnert, G.W.; Carter, R.D.; Hand, T.E.; Powers, M.T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  16. Lower Rio Grande Valley transboundary air pollution project (TAPP). Project report 1996--1997

    SciTech Connect

    Mukerjee, S.; Shadwick, D.S.; Dean, K.E.; Carmichael, L.Y.; Bowser, J.J.

    1999-04-01

    The Lower Rio Grande Valley Transboundary Air Pollution Project (TAPP) was a US-Mexico Border XXI project to find out if air pollutants were moving across the border from Mexico into the Lower Rio Grande Valley of Texas and to see what levels of air pollutants were present. Ambient measurements and meteorology were collected data for a year (March 1996-March 1997) at three fixed sites in and near Brownsville, Texas very close to the US-Mexico border on a continuous and 24-h internal basis. Overall levels of air pollution were similar to or lower than other areas in Texas and elsewhere. Based on wind sector analyses, transport of air pollution across the border did not appear to adversely impact air quality on the US side of the Valley. Southeasterly winds from the Gulf of Mexico were largely responsible for the clean air conditions.

  17. DOE Awards Contract for the West Valley Demonstration Project...

    Office of Environmental Management (EM)

    the West Valley Demonstration Project Probabilistic Performance Assessment DOE Awards Contract for the West Valley Demonstration Project Probabilistic Performance Assessment ...

  18. West Valley Demonstration Project Phase I Decommissioning - Facility...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement The Department of Energy, West Valley Demonstration Project ...

  19. City of Sunset Valley- PV Rebate Program

    Energy.gov [DOE]

    The Sunset Valley rebate is $1.00 per watt (W) up to 3,000 W. In order to qualify for the Sunset Valley rebate, the system must first qualify for an Austin Energy rebate. In addition, the system...

  20. Achieving 70% Clean Energy by 2030 in Hawai'i | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Achieving 70% Clean Energy by 2030 in Hawai'i Achieving 70% Clean Energy by 2030 in Hawai'i Wind turbines at Hawaii Renewable Development, located on the Northern tip of Hawaii at Upolu Point. Wind turbines at Hawaii Renewable Development, located on the Northern tip of Hawaii at Upolu Point. The project utilizes 16 Vestas V-47 660kW turbines, spread over approximately 250 acres. | Photo from Hawaiian Electric Light Company, NREL 14697 Set in the Waianae Valley of Oahu, Kaupuni Village is the

  1. Monument Valley, Arizona, Processing Site Fact Sheet

    Office of Legacy Management (LM)

    Monument Valley, Arizona, Processing Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site at Monument Valley, Arizona. This site is managed by the U.S. Department of Energy Office of Legacy Management. Site Description and History The Monument Valley processing site is located on the Navajo Nation in northeastern Arizona, approximately 15 miles south of Mexican Hat, Utah, on the west side of Cane Valley. A uranium-ore

  2. ANTELOPE VALLEY SOLAR RANCH | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ANTELOPE VALLEY SOLAR RANCH ANTELOPE VALLEY SOLAR RANCH DOE-LPO_Project-Posters_PV_AVSR.pdf (633.27 KB) More Documents & Publications CRESCENT DUNES ANTELOPE VALLEY SOLAR RANCH Powering New Markets: Utility-scale Photovoltaic Solar Hearing Before the House Natural Resources Subcommittee on Oversight and Investigations

  3. CALIFORNIA VALLEY SOLAR RANCH | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH DOE-LPO_Project-Posters_PV_CVSR.pdf (898.61 KB) More Documents & Publications EA-1840: Finding of No Significant Impact EA-1840: Final Environmental Assessment California Valley Solar Ranch Biological Assessment

  4. The Clean Air Mercury Rule

    SciTech Connect

    Michael Rossler

    2005-07-01

    Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

  5. Commercialization of clean coal technologies

    SciTech Connect

    Bharucha, N.

    1994-12-31

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  6. Clean Energy Business Plan Competition

    ScienceCinema

    Maxted, Sara Jane; Lojewski, Brandon; Scherson, Yaniv;

    2013-05-29

    Top Students Pitch Clean Energy Business Plans The six regional finalists of the National Clean Energy Business Plan Competition pitched their business plans to a panel of judges June 13 in Washington, D.C. The expert judges announced NuMat Technologies from Northwestern University as the grand prize winner.

  7. Clean Energy Business Plan Competition

    SciTech Connect

    Maxted, Sara Jane; Lojewski, Brandon; Scherson, Yaniv

    2012-01-01

    Top Students Pitch Clean Energy Business Plans The six regional finalists of the National Clean Energy Business Plan Competition pitched their business plans to a panel of judges June 13 in Washington, D.C. The expert judges announced NuMat Technologies from Northwestern University as the grand prize winner.

  8. clean energy manufacturing | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. Clean Energy Manufacturing Initiative: http://www1.eere.energy.gov/energymanufacturing

  9. High Efficiency, Clean Combustion

    SciTech Connect

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous

  10. Predictions of long-term behavior of a large-volume pilot test for CO2 geological storage in a saline formation in the Central Valley, California

    SciTech Connect

    Doughty, Christine; Myer, Larry R.; Oldenburg, Curtis M.

    2008-11-01

    The long-term behavior of a CO{sub 2} plume injected into a deep saline formation is investigated, focusing on mechanisms that lead to plume stabilization. Key measures are plume migration distance and the time evolution of CO{sub 2} phase-partitioning, which are examined by developing a numerical model of the subsurface at a proposed power plant with CO{sub 2} capture in the San Joaquin Valley, California, where a large-volume pilot test of CO{sub 2} injection will be conducted. The numerical model simulates a four-year CO{sub 2} injection period and the subsequent evolution of the CO{sub 2} plume until it stabilizes. Sensitivity studies are carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual gas saturation.

  11. Hoopa Valley Tribe- 1995 Project

    Energy.gov [DOE]

    The Hoopa Valley Tribe is located in remote area about 45 miles from the nearest city. There is not much to keep the youth busy. The tribe purchased a 3,672-square-foot metal building and dedicated it to be used as a youth center.

  12. Hoopa Valley Tribe- 2006 Project

    Energy.gov [DOE]

    The Hoopa Valley Tribe will assess the feasibility of smaller-scale hydroelectric facilities (between 100 KW and 5 MW). The feasibility study will focus on analyzing, qualifying, and quantifying the opportunity for the tribe to develop, own and operate hydroelectric plants on tribal lands, either for direct use by the tribe, or for selling power.

  13. Healy Clean Coal Project: A DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2003-09-01

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to provide the energy marketplace with advanced, more efficient, and environmentally responsible coal utilization options by conducting demonstrations of new technologies. These demonstration projects are intended to establish the commercial feasibility of promising advanced coal technologies that have been developed to a level at which they are ready for demonstration testing under commercial conditions. This document serves as a DOE post-project assessment (PPA) of the Healy Clean Coal Project (HCCP), selected under Round III of the CCT Program, and described in a Report to Congress (U.S. Department of Energy, 1991). The desire to demonstrate an innovative power plant that integrates an advanced slagging combustor, a heat recovery system, and both high- and low-temperature emissions control processes prompted the Alaska Industrial Development and Export Authority (AIDEA) to submit a proposal for this project. In April 1991, AIDEA entered into a cooperative agreement with DOE to conduct this project. Other team members included Golden Valley Electric Association (GVEA), host and operator; Usibelli Coal Mine, Inc., coal supplier; TRW, Inc., Space & Technology Division, combustor technology provider; Stone & Webster Engineering Corp. (S&W), engineer; Babcock & Wilcox Company (which acquired the assets of Joy Environmental Technologies, Inc.), supplier of the spray dryer absorber technology; and Steigers Corporation, provider of environmental and permitting support. Foster Wheeler Energy Corporation supplied the boiler. GVEA provided oversight of the design and provided operators during demonstration testing. The project was sited adjacent to GVEA's Healy Unit No. 1 in Healy, Alaska. The objective of this CCT project was to demonstrate the ability of the TRW Clean Coal Combustion System to operate on a blend of run-of-mine (ROM) coal and waste coal, while meeting strict

  14. Clean Metal Casting

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  15. Clean Energy Solutions Centers Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Solutions Centers Fact Sheet Clean Energy Solutions Centers Fact Sheet A fact sheet describing the mission of the Clean Energy Solution Center. Clean Energy Solutions ...

  16. E5 Clean Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    E5 Clean Energy Jump to: navigation, search Name: e5 Clean Energy Place: Agoura Hills, California Zip: 91301 Sector: Solar Product: Sells solar energy systems. References: e5 Clean...

  17. Degreasing and cleaning superconducting RF Niobium cavities

    SciTech Connect

    Rauchmiller, Michael; Kellett, Ron; /Fermilab

    2011-09-01

    The purpose and scope of this report is to detail the steps necessary for degreasing and cleaning of superconducting RF Niobium cavities in the A0 clean room. It lists the required equipment and the cleaning procedure.

  18. Clean Energy Fuels | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation...

  19. CleanTech Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    CleanTech Biofuels Jump to: navigation, search Name: CleanTech Biofuels Place: St. Louis, Missouri Zip: 63130 Sector: Biofuels Product: CleanTech Biofuels holds exclusive licenses...

  20. Clean Fleets Announcement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Domain | Clean Fleets Announcement 4 of 14 4 of 14 Clean Fleets Announcement 4 of 14 Martha Johnson, General Services Administrator, speaks at a Clean Fleets event held at the...

  1. Reevaluation of Stevens sand potential - Maricopa depocenter, southern San Joaquin basin, California

    SciTech Connect

    Kolb, M.M.; Parks, S.L. )

    1991-02-01

    During the upper Miocene in the Southern San Joaquin basin surrounding highlands contributed coarse material to a deep marine basin dominated by fine grained silicious bioclastic deposition. these coarse deposits became reservoirs isolated within the silicious Antelope Shale Member of the Monterey Formation. In the southern Maricopa depocenter these Stevens sands are productive at Yowlumne, Landslide, Aqueduct, Rio Viejo, San Emidio Nose, Paloma, and Midway-Sunset fields, and are major exploration targets in surrounding areas. In the ARCO Fee lands area of the southern Maricopa depocenter, Stevens sands occur as rapidly thickening lens-shaped bodies that formed as channel, levee, and lobe deposits of deep-marine fan systems. These fans were fed from a southerly source, with apparent transport in a north-northwesterly direction. Sands deflect gently around present-day structural highs indicating that growth of structures influenced depositional patterns. Correlations reveal two major fan depositional intervals bounded by regional N, O, and P chert markers. Each interval contains numerous individual fan deposits, with many lobes and channels recognizable on three-dimensional seismic data. In addition to these basinal sand plays presently being evaluated, ARCO is pursuing a relatively new trend on Fee lands along the southern basin margin, where correlation to mountain data reveals Stevens sands trend into the steeply dipping beds of the mountain front. This area, the upturned Stevens,' has large reserve potential and producing analogies at Metson, Leutholtz, Los Lobos, and Pleito Ranch fields.

  2. Effects of supplemental feeding on survivorship, reproduction, and dispersal in San Joaquin kit foxes

    SciTech Connect

    Not Available

    1993-02-01

    Previous field studies at the Naval Petroleum Reserves in California indicated that a decline in tie population size of the endangered San Joaquin kit fox might be linked to declining prey abundance. To evaluate whether kit fox populations we limited by food resources; survival probabilities, sources of mortality, reproductive success, and dispersal rates were compared between foxes with access to supplemental food and foxes without access to supplemental food (controls). Of foxes born in 1988, the probabilities of supplementary fed foxes surviving to age one and age two were higher than corresponding probabilities of control foxes. Survival probabilities of fed foxes from the 1988 cohort also were higher than the average survival probabilities of foxes born in the previous eight years. Most foxes that died during their first year of life died in June, July, or August. Monthly probabilities of survival were higher for fed pups than control pups curing the months of July and August of 1988. Survival probabilities of fed foxes originally r captured as adults and fed foxes born in 1989 were not significantly different than survival probabilities of corresponding control groups. Most foxes for which a cause of death could be determined were lolled by predators. Average dispersal distances were not significantly different between fed and control groups but the two longest dispersal distances were made by control foxes. These results indicate that food availability affects survival, reproduction, and dispersal by kit foxes and provides evidence that kit fox populations may at times be limited by food abundance.

  3. FEDERAL FINANCING PROGRAMS for CLEAN ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FEDERAL FINANCING PROGRAMS for CLEAN ENERGY FEDERAL FINANCING PROGRAMS FOR CLEAN ENERGY * 2016 | INSIDE COVER THIS PAGE INTENTIONALLY LEFT BLANK FOR PRINTING CONTENTS Foreword 3 Acknowledgements 5 Indexes of Federal Financing Programs for Clean Energy 6 * Federal Financing Programs for Clean Energy by Administering Agency * Federal Financing Programs for Clean Energy by Program Type Profiles of Federal Financing Programs 11 for Clean Energy by Agency * United States Department of Energy (DOE) *

  4. Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge

    Office of Energy Efficiency and Renewable Energy (EERE)

    Student team from Michigan State University takes top honors at the Eastern Midwest regional competition of the Energy Department’s National Clean Energy Business Plan Competition for its advanced turbomachinery system for geothermal power plants.

  5. Clean Cities: Eastern Pennsylvania Alliance for Clean Transportation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    resides. In 2006, Bandiero was elected to the Board of Directors of the Greater Philadelphia Clean Cities (GPCC) Coalition, where he served for over 2-12 years. In 2009, he...

  6. METHOD OF CLEANING METAL SURFACES

    DOEpatents

    Winkler, H.W.; Morfitt, J.W.; Little, T.H.

    1959-05-19

    Cleaning fluids for removing deposits from metal surfaces are described. The cleaning agents of the invention consist of aqueous nitric acid and an amhydrous nitrate salt of a metal which is lower in the electromotive series than the element of the deposit to be removed. In general, the salt content of thc cleaning agents ranged from 10 to 90%, preferably from 10 to 40% by weight; and the balance of the composition comprises nitric acid of any strength from extremely dilute up to concentrated strength.

  7. Dry-cleaning of graphene

    SciTech Connect

    Algara-Siller, Gerardo; Lehtinen, Ossi; Kaiser, Ute; Turchanin, Andrey

    2014-04-14

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

  8. Clean Power Research | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Clean Power Research Place: Napa, California Product: California-based clean energy consulting and research company. Coordinates: 38.298855, -122.285194 Show...

  9. Hudson Clean Energy Partners | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean Energy Partners Jump to: navigation, search Name: Hudson Clean Energy Partners Place: Teaneck, New Jersey Zip: 7666 Product: New Jersey-based private equity fund manager...

  10. Evergreen Clean Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean Energy Jump to: navigation, search Name: Evergreen Clean Energy Place: Provo, Utah Zip: 84604 Sector: Geothermal energy Product: Utah-based private equity fund targeting...

  11. Connecticut Clean Energy Fund | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Connecticut Clean Energy Fund Jump to: navigation, search Name: Connecticut Clean Energy Fund Address: 200 Corporate Place Place: Rocky Hill, Connecticut Zip: 06067 Region:...

  12. Clean Pacific Ventures | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ventures Jump to: navigation, search Logo: Clean Pacific Ventures Name: Clean Pacific Ventures Address: 425 California Street, Suite 2450 Place: San Francisco, California Zip:...

  13. Clean Diesel Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean Diesel Technologies Retrieved from "http:en.openei.orgwindex.php?titleCleanDieselTechnologies&oldid768455" Categories: Organizations Energy Efficiency...

  14. Suncatcher Clean Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Suncatcher Clean Energy Jump to: navigation, search Name: Suncatcher Clean Energy Place: Corinth, New Jersey Zip: 5039 Sector: Renewable Energy Product: Sun Catcher, is dedicated...

  15. Clean Energy Incubator | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Incubator Jump to: navigation, search Name: Clean Energy Incubator Place: Austin, Texas Zip: Texas 78759 Sector: Renewable Energy Product: The Clean Energy Incubator is a program...

  16. Clean Energy Group Virginia | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean Energy Group Virginia Jump to: navigation, search Name: Clean Energy Group (Virginia) Place: Reston, Virginia Zip: VA 20191 Product: Virginia-based state regional office of...

  17. Austin Clean Energy Incubator | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Incubator Jump to: navigation, search Logo: Austin Clean Energy Incubator Name: Austin Clean Energy Incubator Address: 3925 West Braker Lane Place: Austin, Texas Zip: 78759 Region:...

  18. Clean Edge Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Edge Inc Jump to: navigation, search Logo: Clean Edge Inc Name: Clean Edge Inc Place: Portland, Oregon Zip: 97213 Region: Pacific Northwest Area Website: www.cleanedge.com...

  19. FE Clean Energy Group | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    FE Clean Energy Group Jump to: navigation, search Name: FE Clean Energy Group Place: Darien, Connecticut Zip: 6820 Sector: Efficiency Product: A Private Equity Fund Manager which...

  20. American Clean Coal Fuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    American Clean Coal Fuels Retrieved from "http:en.openei.orgwindex.php?titleAmericanCleanCoalFuels&oldid768408" Categories: Organizations Energy Generation Organizations...

  1. Clean Energy Portfolio Goal | Department of Energy

    Energy.gov [DOE] (indexed site)

    Renewables Portfolio Standard Summary In May 2011, Indiana enacted SB 251, creating the Clean Energy Portfolio Standard (CPS). The program sets a voluntary goal of 10% clean...

  2. Clean Energy Economy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Portal Linkedin.jpg CleanTech Cleantech Venture Capital Global Renewable Energy Network (GReEN) MIT Club of Northern California CleanTech Renewable Energy Business...

  3. New England Clean Fuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    New England Clean Fuels Place: MA, Massachusetts Zip: 2420 Product: New England Clean Fuels, Inc (NECF) is a startup based on the concept of using photosynthetic microorganisms as...

  4. DOE - NNSA/NFO -- Operation Clean Desert

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ZONE > Operation Clean Desert NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Operation Clean Desert FUN FOR ALL AGES Dr. Proton Graphic Adam - Smiling Operation ...

  5. Clean Economy Network | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Network Jump to: navigation, search Name: Clean Economy Network Place: Washington, Washington, DC Zip: 20004 Product: Washingt (DC-based advocacy group focused on clean energy and...

  6. FE Clean Coal News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electricity from Innovative DOE-Supported Clean Coal Project An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned...

  7. SciTech Connect: "clean coal"

    Office of Scientific and Technical Information (OSTI)

    clean coal" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "clean coal" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  8. Clean Cites Now, Vol. 11, No. 4

    SciTech Connect

    Not Available

    2007-10-01

    Clean Cities Now is the official publication of the Clean Cities program. It features articles on alternative fuels and vehicles, idle reduction, fuel economy, and hybrid vehicles.

  9. Clean Energy Manufacturing Initiative Southeast Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Manufacturing Initiative Southeast Regional Summit Clean Energy Manufacturing Initiative Southeast Regional Summit July 9, 2015 8:30AM to 6:00PM EDT Renaissance...

  10. #CleanTechNow | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    #CleanTechNow #CleanTechNow Addthis Speakers Secretary Ernest Moniz Duration :44 Topic Commercial Lighting Alternative Fuel Vehicles Solar Wind

  11. Share Your Clean Energy Economy Story

    Energy.gov [DOE]

    How did you get involved in the Clean Energy Economy? Help other people learn the opportunities available in the clean energy sector by sharing your own story below.

  12. National Clean Energy Business Plan Competition | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Competition National Clean Energy Business Plan Competition The National Clean Energy Business Plan Competition inspired nearly 300 university teams across the country to create ...

  13. Clean Energy Manufacturing Funding Opportunities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Funding Opportunities Clean Energy Manufacturing Funding Opportunities To accomplish the goals of the Clean Energy Manufacturing Initiative (CEMI), the U.S. Department of Energy ...

  14. FEDERAL FINANCING PROGRAMS for CLEAN ENERGY

    Energy.gov [DOE] (indexed site)

    FEDERAL FINANCING PROGRAMS for CLEAN ENERGY FEDERAL FINANCING PROGRAMS FOR CLEAN ENERGY * 2016 | INSIDE COVER THIS PAGE INTENTIONALLY LEFT BLANK FOR PRINTING CONTENTS Foreword 3 ...

  15. Clean Transportation Education Project | Department of Energy

    Energy.gov [DOE] (indexed site)

    Clean Cities Education & Outreach Activities Vehicle Technologies Office Merit Review 2014: Alternative Fuels Implementation Team (AFIT) for North Carolina Puget Sound Clean Cities ...

  16. clean energy manufacturing | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy ...

  17. Clean Energy Manufacturing Initiative | Department of Energy

    Energy.gov [DOE] (indexed site)

    Dave Danielson for an unforgettable dialogue on advances and obstacles in clean energy ... Read more Leadership Perspectives: The Opportunity for Clean Energy Manufacturing ...

  18. clean cities | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Clean Cities (Technology Integration, Outreach and Deployment) Clean Cities advances the nation's economic, environmental, and energy security by supporting local actions to reduce ...

  19. Property Assessed Clean Energy Financing

    Office of Energy Efficiency and Renewable Energy (EERE)

    The District of Columbia offers a commercial Property Assessed Clean Energy (PACE) program. PACE financing allows commercial and mulitfamily property owners in the district to borrow money to pay...

  20. Alternative and Clean Energy Program

    Energy.gov [DOE]

    NOTE: It is important to note that some applicants are only eligible to apply under some aspects of the program. Political subdivisions are only permitted to apply for loans or grants for Clean ...

  1. Energy 101: Clean Energy Manufacturing

    SciTech Connect

    2015-07-09

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  2. Energy 101: Clean Energy Manufacturing

    Energy.gov [DOE]

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  3. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Manufacturing Initiative (CEMI) is a U.S. Department of Energy (DOE)- wide commitment to innovation and breaking down market barriers in order to enhance U.S. manufacturing competitiveness while advancing the nation's energy goals. As part of its mission, CEMI builds partnerships around strategic priorities to increase U.S. clean energy manufacturing competitiveness. This requires an "all-hands-on-deck" approach that involves the nation's private and public sectors,

  4. Clean Energy Solutions Center (Presentation)

    SciTech Connect

    Reategui, S.

    2012-07-01

    The Clean Energy Ministerial launched the Clean Energy Solutions Center in April, 2011 for major economy countries, led by Australia and U.S. with other CEM partners. Partnership with UN-Energy is extending scope to support all developing countries: 1. Enhance resources on policies relating to energy access, small to medium enterprises (SMEs), and financing programs; 2. Offer expert policy assistance to all countries; 3. Expand peer to peer learning, training, and deployment and policy data for developing countries.

  5. ,"CA, San Joaquin Basin Onshore Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","CA, San Joaquin Basin Onshore Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release

  6. ,"CA, San Joaquin Basin Onshore Lease Condensate Proved Reserves, Reserve Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","CA, San Joaquin Basin Onshore Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next

  7. ,"CA, San Joaquin Basin Onshore Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","CA, San Joaquin Basin Onshore Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015"

  8. ,"CA, San Joaquin Basin Onshore Shale Gas Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","CA, San Joaquin Basin Onshore Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2011" ,"Release Date:","11/19/2015" ,"Next Release

  9. ,"Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    Energy Information Administration (EIA) (indexed site)

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  10. ,"Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  11. ,"California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    Energy Information Administration (EIA) (indexed site)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  12. ,"California - San Joaquin Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  13. ,"California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015"

  14. Clean Energy Application Center

    SciTech Connect

    Freihaut, Jim

    2013-09-30

    The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive

  15. Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California

    SciTech Connect

    Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.; Fringer, Oliver B.; Monismith, Stephen G.

    2014-12-17

    In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Doppler Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.

  16. Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California

    DOE PAGES [OSTI]

    Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.; Fringer, Oliver B.; Monismith, Stephen G.

    2014-12-17

    In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less

  17. Clean Energy and Bond Finance Initiative

    Energy.gov [DOE]

    Provides information on Clean Energy and Bond Finance Initiative (CE+BFI). CE+BFI brings together public infrastructure finance agencies, clean energy public fund managers and institutional investors across the country to explore how to raise capital at scale for clean energy development through bond financing. Author: Clean Energy and Bond Finance Initiative

  18. Clean Cities Now, Vol. 10, No. 4

    SciTech Connect

    Not Available

    2006-10-01

    Official Publication of Clean Cities and the Alternative Fuels Data Center (Newsletter) volume 10, number 4

  19. Advancing Clean Energy Technology (Fact Sheet)

    SciTech Connect

    Not Available

    2010-07-01

    DOE/EERE Solar Energy Technologies Program Fact Sheet - Advancing Clean Energy Technology, May 2010.

  20. Clean Energy Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency

  1. What is Clean Cities? May 2011 (Brochure)

    SciTech Connect

    Not Available

    2011-05-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 87 coalitions.

  2. Clean coal technologies: A business report

    SciTech Connect

    Not Available

    1993-01-01

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base.

  3. James Valley Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    James Valley Ethanol LLC Place: Gronton, South Dakota Zip: 57445 Product: Farmers owned cooperative that built and operates an ethanol production facility. Coordinates: 29.72369,...

  4. Silicon Valley Biodiesel Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biodiesel Inc Jump to: navigation, search Name: Silicon Valley Biodiesel Inc. Place: Sunnyvale, California Zip: CA 94086 Product: Manufactures biodiesel for the local diesel fuel...

  5. Poudre Valley REA- Commercial Lighting Rebate Program

    Energy.gov [DOE]

    Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers a variety of lighting rebates to commercial customers. Rebates are available on commercial lighting...

  6. Dixie Valley Geothermal Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    n":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Nevada County Churchill County, NV Geothermal Area Dixie Valley Geothermal Area Geothermal Region Central...

  7. Dixie Valley Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 U.S. Department...

  8. Golden Valley Electric Association - Residential Energy Efficiency...

    Energy.gov [DOE] (indexed site)

    30 Timer Controlling Exterior Vehicle Plug-In Outlet: 20 Switch Controlling Exterior Vehicle Plug-In Outlet: 10 Summary Golden Valley Electric Association's (GVEA) Builder...

  9. Magnetotellurics At Dixie Valley Geothermal Area (Iovenitti,...

    OpenEI (Open Energy Information) [EERE & EIA]

    H. Ibser, Jennifer Lewicki, B. Mack. Kennedy, Michael Swyer (2013) Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Phil...

  10. Tennessee Valley Authority | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Authority Jump to: navigation, search Name: Tennessee Valley Authority Place: Tennessee Phone Number: (865) 632-2101 Website: www.tva.gov Twitter: @tvanewsroom Facebook: https:...

  11. Squirrel Mountain Valley, California: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Squirrel Mountain Valley, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.6232866, -118.4098058 Show Map Loading map......

  12. Minnesota Valley Electric Coop | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    https:www.facebook.compagesMinnesota-Valley-Electric-Cooperative212971310374 Outage Hotline: 1-800-232-2328 Outage Map: outage.mvec.net References: EIA Form EIA-861...

  13. Hydrologic Monitoring Summary Long Valley Caldera, California...

    OpenEI (Open Energy Information) [EERE & EIA]

    Summary Long Valley Caldera, California Abstract Abstract unavailable. Author Michael L. Sorey Published ORMAT internal report, 2010 DOI Not Provided Check for DOI...

  14. West Valley Demonstration Project Administrative Consent Order...

    Office of Environmental Management (EM)

    West Valley Demonstration Project (WVDP) Adminstrative Consent Order, August 27, 1996 State New York Agreement Type Consent Order Legal Driver(s) FFCAct Scope Summary Establish ...

  15. Workplace Charging Challenge Partner: Organic Valley | Department...

    Office of Environmental Management (EM)

    Organic Valley believes that the installation of plug-in electric vehicle charging stations coupled with their use of renewable energy demonstrates their commitment to this goal. ...

  16. West Valley Demonstration Project Waste Management Environmental...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Waste Management Environmental Impact Statement ... June 7, 2006 WVDP Waste Management US - Supplement Analysis Table of Contents 1.0 PURPOSE ...

  17. Valley Electric Association- Solar Water Heating Program

    Energy.gov [DOE]

    Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

  18. Clean Energy Manufacturing Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reports Clean Energy Manufacturing Reports The Clean Energy Manufacturing Initiative develops competitiveness analysis and strategies that inform R&D investments and other efforts needed to address key barriers to growing U.S. clean energy manufacturing competitiveness. This unprecedented competitiveness analysis evaluates the costs of producing clean energy products in the U.S. compared to competitor nations to understand factory location decisions and identify key drivers to U.S. clean

  19. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center

    April 2009 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT APRIL 2009 Page 2 WELCOME! Welcome to the April 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between April 1, 2009 and April 15, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities

  20. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center

    January 2009 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JANUARY 2009 Page 2 WELCOME! Welcome to the January 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between January 12, 2009 and January 30, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities

  1. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center

    Clean Cities Alternative Fuel Price Report July 2009 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JULY 2009 WELCOME! Welcome to the July 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between July 20, 2009 and July 31, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders.

  2. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center

    July 2008 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JULY 2008 Page 2 WELCOME! Welcome to the July 2008 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between July 21, 2008 and July 31, 2008 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders.

  3. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center

    October 2008 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT OCTOBER 2008 Page 2 WELCOME! Welcome to the October 2008 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between October 2, 2008 and October 16, 2008 from Clean Cities Coordinators, fuel providers, and other Clean Cities

  4. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center

    9 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT OCTOBER 2009 Page 2 WELCOME! Welcome to the October 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between October 16, 2009 and October 26, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities

  5. Small Businesses Helping Drive Economy: Clean Energy, Clean Sites

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Small Businesses Helping Drive Economy: Clean Energy, Clean Sites "We should start where most new jobs do - in small businesses, companies that begin when an entrepreneur takes a chance on a dream, or a worker decides its time she became her own boss." --- President Obama, State of the Union Address, January 27, 2010 "Jobs will be our number one focus in 2010. And we're going to start where most new jobs do - with small businesses." --- President Obama, Nashua, New

  6. American Ref-Fuel of Delaware Valley Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ref-Fuel of Delaware Valley Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Delaware Valley Biomass Facility Facility American Ref-Fuel of Delaware Valley...

  7. Dixie Valley, Nevada: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    article is a stub. You can help OpenEI by expanding it. Dixie Valley is a city in Churchill County, Nevada. Energy Generation Facilities in Dixie Valley, Nevada Dixie Valley...

  8. Poudre Valley R E A, Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Poudre Valley R E A, Inc Jump to: navigation, search Name: Poudre Valley R E A, Inc Place: Colorado Website: www.pvrea.com Twitter: @PoudreValleyREA Facebook: https:...

  9. Solar Goes Big: Launching the California Valley Solar Ranch ...

    Energy Saver

    Goes Big: Launching the California Valley Solar Ranch Solar Goes Big: Launching the California Valley Solar Ranch October 31, 2013 - 4:14pm Addthis The California Valley Solar ...

  10. Clean Coal Diesel Demonstration Project

    SciTech Connect

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  11. Monument Valley Phytoremediation Pilot Study:

    Office of Legacy Management (LM)

    1.8 U.S. Department of Energy UMTRA Ground Water Project Monument Valley Ground Water Remediation Work Plan: Native Plant Farming and Phytoremediation Pilot Study August 1998 Prepared for U.S. Department of Energy Albuquerque Operations Office Grand Junction Office Prepared by MACTEC Environmental Restoration Services, LLC Grand Junction, Colorado Project Number UGW-511-0015-10-000 Document Number U0029501 Work Performed under DOE Contract No. DE-AC13-96GJ87335 Note: Some of the section page

  12. Santa Clara Valley Transportation Authority and San Mateo County...

    Office of Environmental Management (EM)

    Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results Santa Clara Valley Transportation Authority and San ...

  13. Lichuan City Yujiang River Valley Hydro Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Lichuan City Yujiang River Valley Hydro Co Ltd Jump to: navigation, search Name: Lichuan City Yujiang River Valley Hydro Co., Ltd. Place: Hubei Province, China Zip: 445400 Sector:...

  14. Langel Valley Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Langel Valley Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Langel Valley Space Heating Low Temperature Geothermal Facility Facility Langel...

  15. Surprise Valley Hospital Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Surprise Valley Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Surprise Valley Hospital Space Heating Low Temperature Geothermal...

  16. Hydroprobe At Gabbs Valley Area (DOE GTP) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hydroprobe At Gabbs Valley Area (DOE GTP) Exploration Activity...

  17. Owens Corning and Silicon Valley Power Partner to Make Energy...

    Energy.gov [DOE] (indexed site)

    DOE energy assessments and Silicon Valley Power utility incentives to save 252,000 annually through plant-wide improvements. Owens Corning and Silicon Valley Power Partner to ...

  18. Micro-Earthquake At Dixie Valley Geothermal Area (Katz & J.,...

    OpenEI (Open Energy Information) [EERE & EIA]

    Dixie Valley Geothermal Area (Katz & J., 1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Dixie Valley Geothermal Area...

  19. City of Water Valley, Mississippi (Utility Company) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley, Mississippi (Utility Company) Jump to: navigation, search Name: City of Water Valley Place: Mississippi Phone Number: (662) 473-3243 Outage Hotline: (662) 473-3243...

  20. Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990...

    OpenEI (Open Energy Information) [EERE & EIA]

    Rose Valley Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990)...

  1. Long Valley Caldera Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Long Valley Caldera Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Long Valley Caldera Geothermal Area Contents 1 Area Overview 2 History and...

  2. Santa Clara Valley Transportation Authority and San Mateo County...

    Office of Environmental Management (EM)

    Santa Clara Valley Transportation Authority and San Mateo County Transit District Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell ...

  3. Smith Creek Valley Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Smith Creek Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Smith Creek Valley Geothermal Area Contents 1 Area Overview 2 History and...

  4. Single-valley engineering in graphene superlattices (Journal...

    Office of Scientific and Technical Information (OSTI)

    Single-valley engineering in graphene superlattices This content will become publicly available on June 14, 2016 Title: Single-valley engineering in graphene superlattices Authors: ...

  5. Rock Sampling At Long Valley Caldera Geothermal Area (Goff, Et...

    OpenEI (Open Energy Information) [EERE & EIA]

    Long Valley Caldera Geothermal Area (Goff, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Long Valley Caldera...

  6. Pressure Temperature Log At Fish Lake Valley Area (DOE GTP) ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Fish Lake Valley Area (DOE GTP)...

  7. Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Fish Lake Valley Area (DOE GTP) Exploration...

  8. Static Temperature Survey At Fish Lake Valley Area (Deymonaz...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Fish Lake Valley Area...

  9. Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

  10. Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

  11. Compound and Elemental Analysis At Fish Lake Valley Area (DOE...

    OpenEI (Open Energy Information) [EERE & EIA]

    ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area...

  12. Geographic Information System At Fish Lake Valley Area (Deymonaz...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Fish Lake Valley...

  13. Fish Lake Valley Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Fish Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure...

  14. Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal...

  15. Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fish Lake Valley...

  16. Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Fish Lake Valley...

  17. Valley Fish Farms Aquaculture Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Valley Fish Farms Aquaculture Low Temperature Geothermal Facility Facility Valley Fish...

  18. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    OpenEI (Open Energy Information) [EERE & EIA]

    Long Valley Caldera Geothermal Area (Conservation, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Long Valley...

  19. Contract Awarded for West Valley Demonstration Project Data Management...

    Office of Environmental Management (EM)

    Contract Awarded for West Valley Demonstration Project Data Management System, Technical Services Contract Awarded for West Valley Demonstration Project Data Management System, ...

  20. Enforcement Letter, West Valley Nuclear Services- March 30, 1998

    Energy.gov [DOE]

    Issued to West Valley Nuclear Services related to Hazard Analysis, Design Review, Work Control Implementation, and a Contamination Event at the West Valley Demonstration Project

  1. Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Author Gabriel L. Plank Published Journal Geothermal Resources Council Transactions, 1995 DOI Not...

  2. Hydrology of the Geothermal System in Long Valley Caldera, California...

    OpenEI (Open Energy Information) [EERE & EIA]

    System in Long Valley Caldera, California Abstract Abstract unavailable. Author Michael L. Sorey Published Unpublished report for the Long Valley Hydrologic Advisory Committee,...

  3. Soil Sampling At Dixie Valley Geothermal Area (Nash & D., 1997...

    OpenEI (Open Energy Information) [EERE & EIA]

    Dixie Valley Geothermal Area (Nash & D., 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Dixie Valley Geothermal Area...

  4. DOE Issues RFP for West Valley Demonstration Project Probabilistic...

    Energy Saver

    RFP for West Valley Demonstration Project Probabilistic Performance Assessment DOE Issues RFP for West Valley Demonstration Project Probabilistic Performance Assessment April 2, ...

  5. DOE - Office of Legacy Management -- West Valley Demonstration...

    Office of Legacy Management (LM)

    Valley Demonstration Project - NY 23 FUSRAP Considered Sites Site: West Valley Demonstration Project (NY.23) Designated Name: Alternate Name: Location: Evaluation Year: Site ...

  6. Enterprise Assessments Review of the West Valley Demonstration...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Site Fire Protection Program - March 2016 Enterprise Assessments Review of the West Valley Demonstration Project Site Fire Protection Program - ...

  7. West Valley Demonstration Project: A Short History and Status...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Project: A Short History and Status West Valley Demonstration Project: A Short History and ... 2013 in Buffalo, NY. West Valley Demonstration Project: A Short History and Status ...

  8. FTCP Site Specific Information - West Valley Demonstration Project...

    Energy Saver

    West Valley Demonstration Project FTCP Site Specific Information - West Valley Demonstration Project Annual Workforce Analysis and Staffing Plan Report Calendar Year 2012

  9. Compound and Elemental Analysis At Little Valley Area (Wood,...

    OpenEI (Open Energy Information) [EERE & EIA]

    Little Valley Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Little Valley Area (Wood,...

  10. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect

    Allwine, K.J.

    1992-01-01

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ``ventilation rate`` of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  11. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect

    Allwine, K.J.

    1992-01-01

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ventilation rate'' of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  12. Secretary Chu Announces Initiatives to Promote Clean Energy at First Clean

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Ministerial | Department of Energy Initiatives to Promote Clean Energy at First Clean Energy Ministerial Secretary Chu Announces Initiatives to Promote Clean Energy at First Clean Energy Ministerial July 20, 2010 - 12:00am Addthis Washington, D.C. - At the world's first Clean Energy Ministerial, U.S. Energy Secretary Steven Chu today announced that the United States is helping launch more than 10 international clean energy initiatives. These initiatives will cut energy waste; help

  13. Clean Coal Technology Demonstration Program

    Energy.gov [DOE]

    The Office of Fossil Energy’s Clean Coal Technology Demonstration Program (1986-1993) laid the foundation for effective technologies now in use that have helped significantly lower emissions of sulfur dioxide (SO2), nitrogen oxides (NOx) and airborne particulates (PM10).

  14. Clean Energy Infrastructure Educational Initiative

    SciTech Connect

    Hallinan, Kevin; Menart, James; Gilbert, Robert

    2012-08-31

    The Clean Energy Infrastructure Educational Initiative represents a collaborative effort by the University of Dayton, Wright State University and Sinclair Community College. This effort above all aimed to establish energy related programs at each of the universities while also providing outreach to the local, state-wide, and national communities. At the University of Dayton, the grant has aimed at: solidfying a newly created Master's program in Renewable and Clean Energy; helping to establish and staff a regional sustainability organization for SW Ohio. As well, as the prime grantee, the University of Dayton was responsible for insuring curricular sharing between WSU and the University of Dayton. Finally, the grant, through its support of graduate students, and through cooperation with the largest utilities in SW Ohio enabled a region-wide evaluation of over 10,000 commercial building buildings in order to identify the priority buildings in the region for energy reduction. In each, the grant has achieved success. The main focus of Wright State was to continue the development of graduate education in renewable and clean energy. Wright State has done this in a number of ways. First and foremost this was done by continuing the development of the new Renewable and Clean Energy Master's Degree program at Wright State . Development tasks included: continuing development of courses for the Renewable and Clean Energy Master's Degree, increasing the student enrollment, and increasing renewable and clean energy research work. The grant has enabled development and/or improvement of 7 courses. Collectively, the University of Dayton and WSU offer perhaps the most comprehensive list of courses in the renewable and clean energy area in the country. Because of this development, enrollment at WSU has increased from 4 students to 23. Secondly, the grant has helped to support student research aimed in the renewable and clean energy program. The grant helped to solidify new research

  15. FEDERAL FINANCING PROGRAMS FOR CLEAN ENERGY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FEDERAL FINANCING PROGRAMS FOR CLEAN ENERGY FEDERAL FINANCING PROGRAMS FOR CLEAN ENERGY Federal Financing Programs for Clean Energy.pdf (2.55 MB) More Documents & Publications FEDERAL FINANCING PROGRAMS FOR CLEAN ENERGY Federal Financing Programs for Clean Energy Guide to Federal Financing for Energy Efficiency and Clean Energy Deployment Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment

  16. CleanLaunch | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Logo: CleanLaunch Name: CleanLaunch Address: 7706 Martin Luther King Blvd Place: Denver, Colorado Zip: 80238 Region: Rockies Area Number of Employees: 1-10...

  17. Indiana Clean Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean Energy Jump to: navigation, search Name: Indiana Clean Energy Place: Frankfort, Indiana Zip: IN 46041 Product: Indiana-based company that will develop a 80m gallon biodiesel...

  18. clean-tech | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    - 13:42 How cleantech-as-a-service will drive renewable energy adoption 2015 adoption Big Data clean tech clean-tech cleantech cleantech forum cleantech-as-a-service cloud...

  19. clean tech | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    - 13:42 How cleantech-as-a-service will drive renewable energy adoption 2015 adoption Big Data clean tech clean-tech cleantech cleantech forum cleantech-as-a-service cloud...

  20. Clean Cities Now Vol. 16.1

    SciTech Connect

    2012-05-01

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.

  1. Clean Cities Now Vol. 17, No. 1

    SciTech Connect

    2013-05-24

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.

  2. Al Corn Clean Fuel | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Corn Clean Fuel Jump to: navigation, search Name: Al-Corn Clean Fuel Place: Claremont, North Dakota Product: Al-Corn is an ethanol plant located in Claremont, North Dakota, which...

  3. OpenEI Community - clean energy

    OpenEI (Open Energy Information) [EERE & EIA]

    +0000 Dc 1057 at http:en.openei.orgcommunity GE, Clean Energy Fuels Partner to Expand Natural Gas Highway http:en.openei.orgcommunityblogge-clean-energy-fuels-partner-expa...

  4. Clean Water Act | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Clean Water ActLegal Abstract The Clean Water Act (CWA) establishes the basic structure for...

  5. ITEP Clean Power Plan and Tribes Training

    Energy.gov [DOE]

    The Institute of Environmental Professionals (ITEP) is hosting a Clean Power Plan and Tribes training provides detailed information for tribes to understand the Clean Power Plan and how it applies to their tribal lands.

  6. CleanTX Foundation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is a stub. You can help OpenEI by expanding it. CleanTX Foundation is a policy organization located in Austin, Texas. References About CleanTX Foundation Retrieved from...

  7. CleanTech Boston | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    This article is a stub. You can help OpenEI by expanding it. CleanTech Boston is an organization based in Boston, Massachusetts. References "CleanTechBoston.com" Retrieved from...

  8. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides contact information for program staff of the U.S. Department of Energy's Clean Cities program, as well as contact information for the nearly 100 local Clean Cities coalitions across the country.

  9. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect

    Not Available

    2013-12-01

    Contact information for the U.S. Department of Energy's Clean Cities program staff and for the coordinators of the nearly 100 local Clean Cities coalitions across the country.

  10. Initiative for Clean Energy | Photosynthetic Antenna Research...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Initiative for Clean Energy July 25, 2012 Initiative for Clean Energy Engineers at Washington University will work on low-cost solar cells and systems, while other partners will be...

  11. Clean Air Trade Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    a company specialising in CER purchase as well as project development and investment in clean energy. References: Clean Air Trade Inc1 This article is a stub. You can help OpenEI...

  12. Access to Clean Water | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Clean Water Innovations Click to email this to a friend (Opens in new window) Share on ... What Works: Mark Little on Clean Water Innovations Mark Little, director of GE Global ...

  13. Public-Private Partnerships for Clean Energy Manufacturing Fact...

    Energy Saver

    Public-Private Partnerships for Clean Energy Manufacturing Fact Sheet Public-Private Partnerships for Clean Energy Manufacturing Fact Sheet Public-Private Partnerships for Clean ...

  14. Guide to Federal Financing for Energy Efficiency and Clean Energy...

    Energy Saver

    Home About the State & Local Solution Center Develop a Clean Energy Strategy Design and Implement Clean Energy Programs Pay for Clean Energy Efforts Access and Use Energy Data...

  15. Clean-Energy-Solutions-Centers-Fact-Sheet.pdf | Department of...

    Energy.gov [DOE] (indexed site)

    Clean-Energy-Solutions-Centers-Fact-Sheet.pdf More Documents & Publications Clean Energy Solutions Centers Fact Sheet Clean Energy Ministerial Press Fact Sheet SLED-Fact-Sheet.pdf...

  16. New Jersey's Clean Energy Program | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean Energy Program Jump to: navigation, search Logo: New Jersey's Clean Energy Program Name: New Jersey's Clean Energy Program Address: 44 South Clinton Avenue Place: Trenton,...

  17. Microsoft Word - EIR SOP Updated 101110 frank clean | Department...

    Energy Saver

    Word - EIR SOP Updated 101110 frank clean Microsoft Word - EIR SOP Updated 101110 frank clean Microsoft Word - EIR SOP Updated 101110 frank clean More Documents & Publications EIR...

  18. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plains and Eastern Clean Line Transmission Line: Comment from Change.org Plains and Eastern Clean Line Transmission Line: Comment from Mr. Leftwich Plains and Eastern Clean Line ...

  19. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plains and Eastern Clean Line Transmission Line: Comment from Fallon Sanford Plains and Eastern Clean Line Transmission Line: Comment from Mr. Leftwich Plains and Eastern Clean ...

  20. Primer on Clean Energy Lending: The Major Components and Options...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Primer on Clean Energy Lending: The Major Components and Options Primer on Clean Energy Lending: The Major Components and Options PDF icon Chapter 1: Primer on Clean Energy...

  1. NREL State Clean Energy Policies Analysis Project (SCEPA) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    NREL State Clean Energy Policies Analysis Project (SCEPA) (Redirected from State Clean Energy Policies Analysis Project (SCEPA)) Jump to: navigation, search Name NREL State Clean...

  2. Design and Implement Clean Energy Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Design and Implement Clean Energy Programs Design and Implement Clean Energy Programs DICEPedit.png State and local governments are uniquely positioned to advance clean energy...

  3. EESTech Aryan Clean Coal Technologies JV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EESTech Aryan Clean Coal Technologies JV Jump to: navigation, search Name: EESTech & Aryan Clean Coal Technologies JV Place: India Product: India-based JV formed to develop clean...

  4. Advanced High Efficiency Clean Diesel Combustion with Low Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion ...

  5. Clean Energy Solutions Centers Fact Sheet | Department of Energy

    Energy.gov [DOE] (indexed site)

    A fact sheet describing the mission of the Clean Energy Solution Center. Clean Energy Solutions Centers Fact Sheet More Documents & Publications Clean-Energy-Solutions-Centers-Fact...

  6. Clean Energy Works Oregon (CEWO) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Works Oregon's program background and the four easy steps to lender selection. Clean Energy Works Oregon More Documents & Publications Clean Energy Works Oregon (CEWO)...

  7. Reduce Risk, Increase Clean Energy: How States and Cities are...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    manages the Clean Energy States Alliance, a coalition of state and municipal clean energy funds. ... But their issuances were primarily related to clean and waste water projects, and ...

  8. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Line: Arkansas and Oklahoma Plains and Eastern Clean Line Transmission Line: Comment from Block Plains and Eastern Clean Line: Arkansas and Oklahoma Comment submitted on ...

  9. Pay for Clean Energy Efforts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pay for Clean Energy Efforts Pay for Clean Energy Efforts PCEE.png Transitioning to a clean energy economy requires innovative financing solutions that enable state, local, and...

  10. Clean and Renewable Energy | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean and Renewable Energy Home > Clean and Renewable Energy > Posts by term > Clean and Renewable Energy Content Group Activity By term Q & A Feeds Term: energy secretary Type...

  11. Clean and Renewable Energy | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean and Renewable Energy Home > Clean and Renewable Energy > Posts by term > Clean and Renewable Energy Content Group Activity By term Q & A Feeds Term: Sunshot Initiative Type...

  12. Clean and Renewable Energy | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean and Renewable Energy Home > Clean and Renewable Energy > Posts by term > Clean and Renewable Energy Content Group Activity By term Q & A Feeds Term: Innovation Type Term...

  13. Clean and Renewable Energy | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean and Renewable Energy Home > Clean and Renewable Energy > Posts by term > Clean and Renewable Energy Content Group Activity By term Q & A Feeds Term: Partnerships Type Term...

  14. Clean and Renewable Energy | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Clean and Renewable Energy Home > Clean and Renewable Energy > Posts by term > Clean and Renewable Energy Content Group Activity By term Q & A Feeds Term: Transportation Type Term...

  15. CLEAN-Low Emission Development Planning Webinar | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    (CLEAN), National Renewable Energy Laboratory Resource Type: Webinar, Training materials, Lessons learnedbest practices Website: en.openei.orgwikiCLEAN References: CLEAN...

  16. Clean Energy Lending From the Financial Institution Perspective...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Lending From the Financial Institution Perspective (Chapter 8 of the Clean Energy Finance Guide, 3rd Edition) Clean Energy Lending From the Financial Institution ...

  17. Hawaii Clean Energy Initiative (HCEI) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hawaii Clean Energy Initiative (HCEI) Hawaii Clean Energy Initiative (HCEI) The Hawaii Clean Energy Initiative (HCEI) is an unprecedented effort to transform the entire Hawaii ...

  18. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plains and Eastern Clean Line Transmission Line: Comment from Mr. Dyer Plains and Eastern Clean Line Transmission Line: Comment from Sheila Beck Plains and Eastern Clean Line ...

  19. Pay for Clean Energy Efforts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pay for Clean Energy Efforts Pay for Clean Energy Efforts PCEE.png Transitioning to a clean energy economy requires innovative financing solutions that enable state, local, and ...

  20. RAD CON Team is Highly Trained to Clean EM's West Valley Site...

    Energy Saver

    Commercial nuclear fuel reprocessing ceased in the building in 1972. Workers vitrified the waste resulting from operations from 1996 to 2002 and placed it into 275 10-foot-tall ...