National Library of Energy BETA

Sample records for ipp ontario lfgte

  1. IPPs in Brazil

    SciTech Connect

    Alqueres, J.L.

    1995-01-01

    Brazil offers a viable opportunity for independent power producers (IPPs). Four areas of the Brazilian power sector may be the potential starting points for an independent power industry. Recent legislation also has opened the doors for IPP activity by allowing companies to form consortia to generate power for their own needs. Another recent decree formed the basis for a grid system to which generators can sell power. This also has laid the groundwork for more clearly defined wheeling charges.

  2. Gunung-Salak IPP | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    IPP General Information Name Gunung-Salak IPP Facility Power Plant Sector Geothermal energy Location Information Coordinates -6.7417712439046, 106.64665174641 Loading map......

  3. A model for IPP sales to electric utilities

    SciTech Connect

    Norman, G.L.; Anderson, R.W.

    1996-11-01

    This paper shows several constraints that an unregulated plant would encounter. Florida Power Corporation has built a plant that has the characteristics of an IPP operating in the future deregulated electricity market. This plant, the University of Florida Cogeneration Plant undergoes the same conditions experienced in an IPP selling energy to the electric utilities when its contractual electric customer was unable to take the energy. It is a model of the future deregulated IPP.

  4. Congested site challenges designers of refinery IPP plant

    SciTech Connect

    Collins, S.

    1993-09-01

    This article describes a new IPP plant which has successfully met the challenges of an extremely congested site--including overcoming physical space constraints, meeting low air-emissions regulations, and minimizing water consumption--located next to a busy highway and near a major airport. The 650-MW Linden cogeneration plant is located on a 13.5-acre plot within the confines of Bayway Refinery Co's facility near Newark, NJ. Since starting operation one year ago, the plant has been reliably supplying steam for the refinery's process heating and mechanical drive needs and efficiently generating steam and electricity with minimal environmental impact. To achieve these goals, designers chose a combined-cycle configuration/generators, five supplementary-fired heat-recovery steam generators (HRSGs), and three 90-MW steam turbine/generators. Thus far, the facility has operated with an average availability above 90%.

  5. Ontario: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Companies in Ontario CarbonFree Technology ClimateCHECK Energy Incentives for Ontario Air Pollution - Local Air Quality (Ontario, Canada) Alternative Renewable Fuels 'Plus'...

  6. Ontario: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    and Development Fund (Ontario, Canada) Climate Action Plan (Ontario, Canada) Combined Heat and Power Standard Offer Program (Ontario, Canada) Community Energy Partnerships...

  7. Bavarian LFGTE Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleBavarianLFGTEBiomassFacility&oldid397173" Feedback Contact needs updating Image needs updating...

  8. EA-290 Ontario Power Generation, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ontario Power Generation, Inc. EA-290 Ontario Power Generation, Inc. Order authorizing Ontario Power Generation, Inc. to export electric energy to Canada PDF icon EA-290 Ontario ...

  9. THE MC AND A COUNCIL AT SSC RF - IPPE AS A COORDINATING BODY FOR SYSTEM SUSTAINABILITY.

    SciTech Connect

    FISHBONE,L.VALENTE,J.HANLEY,T.HIRSCHI,E.J.RUSS,P.SCHERER-KATZ,C.

    2004-07-18

    The State Scientific Center of the Russian Federation--Institute of Physics and Power Engineering's (SSC RF-IPPE) practice of nuclear material control and accounting (MC&A) has undergone significant changes during the period of cooperation with U.S. national laboratories from 1995 to the present. These changes corresponded with general changes of the Russian system of state control and accounting of nuclear materials resulting from the new Concept of the System for State Regulating and Control of Nuclear Materials (1996) and further regulatory documents, which were developed and implemented to take into account international experience in the MC&A [1]. During the upgrades phase of Russian-U.S. cooperation, an MC&A laboratory was specially created within the SSC RF IPPE for the purpose of guiding the creation of the upgraded MC&A system, coordinating the activities of all units involved in the creation of this system, and implementing a unified technical policy during the transition period. After five years of operation of the MC&A laboratory and the implementation of new components for the upgraded MC&A system, it was decided that a greater degree of attention must be paid to the MC&A system's operation in addition to the coordination activities carried out by the MC&A laboratory. To meet this need, an organization for operation of the nuclear material (NM) control and accounting system was created as part of the Division of NM Transportation and Storage. It was also recognized that a new mechanism was required for effective coordination of MC&A activities in IPPE, including the implementation of a unified MC&A policy in methodological, technical and practical areas. This mechanism should allow the IPPE management to gain an objective evaluation of the MC&A system status and provide leading specialists with objective recommendations on maintenance of MC&A system and on basic directions for further improvements. Preliminary discussions indicated that such a

  10. Arnprior, Ontario: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Arnprior, Ontario: Energy Resources Jump to: navigation, search Name Arnprior, Ontario Equivalent URI DBpedia GeoNames ID 5887214 Coordinates 45.433333, -76.366667 Show Map...

  11. Arnprior, Ontario: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    (Redirected from Arnprior, Ontario, Canada) Jump to: navigation, search Name Arnprior, Ontario Equivalent URI DBpedia GeoNames ID 5887214 Coordinates 45.433333, -76.366667 Show...

  12. Trailblazing IPPs

    SciTech Connect

    Burr, M.T.; Anderson, J.L.; Hennagir, T.

    1996-04-01

    Financing of new power plants during the period of 1995 through 1996 is discussed in this article. Developers and financial executives were interviewed and major financial details are summarized for six international private power projects. The projects outlined are: Birecik hydropower project, Turkey; Mindanao I geothermal project, Philippines; Nejapa power project, El Salvador; Lalpir power project, Pakistan; Hainan Island power project, People`s Republic of China; Gardanne-Provence circulating fluidized bed boiler retrofit, France.

  13. PP-54 Ontario Hydro Electric Power Commission | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Ontario Hydro Electric Power Commission PP-54 Ontario Hydro Electric Power Commission Presidential Permit authorizing Ontario Hydro Electric Power Commission to construct, ...

  14. EA-290-B Ontario Power Generation, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    -B Ontario Power Generation, Inc. EA-290-B Ontario Power Generation, Inc. Order authorizing Ontario Power Generation, Inc. to export electric energy to Canada PDF icon EA-290-B ...

  15. EA-290-A Ontario Power Generation, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    -A Ontario Power Generation, Inc. EA-290-A Ontario Power Generation, Inc. Order authorizing Ontario Power Generation, Inc. to export electric energy to Canada PDF icon EA-290-A ...

  16. Oakville, Ontario: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oakville, Ontario: Energy Resources (Redirected from Oakville, Canada) Jump to: navigation, search Equivalent URI DBpedia GeoNames ID 6092122 Coordinates 43.45011, -79.68292...

  17. Ontario, Ohio: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ontario, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7595012, -82.5901725 Show Map Loading map... "minzoom":false,"mappingservice"...

  18. Toronto, Ontario: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Toronto, Ontario: Energy Resources Jump to: navigation, search Equivalent URI DBpedia GeoNames ID 6167865 Coordinates 43.70011, -79.4163 Show Map Loading map......

  19. Ontario, California: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ontario, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0633443, -117.6508876 Show Map Loading map... "minzoom":false,"mappings...

  20. Beam Homogeneity Dependence on the Magnetic Filter Field at the IPP Test Facility MANITU

    SciTech Connect

    Franzen, P.; Fantz, U.

    2011-09-26

    The homogeneity of the extracted current density from the large RF driven negative hydrogen ion sources of the ITER neutral beam system is a critical issue for the transmission of the negative ion beam through the accelerator and the beamline components. As a first test, the beam homogeneity at the IPP long pulse test facility MANITU is measured by means of the divergence and the stripping profiles obtained with a spatially resolved Doppler-shift spectroscopy system. Since MANITU is typically operating below the optimum perveance, an increase in the divergence corresponds to a lower local extracted negative ion current density if the extraction voltage is constant. The beam H{sub {alpha}} Doppler-shift spectroscopy is a rather simple tool, as no absolute calibration - both for the wavelength and the emission - is necessary. Even no relative calibration of the different used lines of sight is necessary for divergence and stripping profiles as these quantities can be obtained by the line broadening of the Doppler-shifted peak and the ratio of the integral of the stripping peak to the integral of the Doppler-shifted peak, respectively. The paper describes the H{sub {alpha}} MANITU Doppler-shift spectroscopy system which is now operating routinely and the evaluation methods of the divergence and the stripping profiles. Beam homogeneity measurements are presented for different extraction areas and magnetic filter field configurations both for Hydrogen and Deuterium operation; the results are compared with homogeneity measurements of the source plasma. The stripping loss measurements are compared with model calculations.

  1. FinalReport for completed IPP-0110 and 0110A Projects:"High Energy Ion Technology of Interfacial Thin Film Coatings for Electronic, Optical and Industrial Applications"

    SciTech Connect

    Brown, Ian

    2009-09-01

    The DOE-supported IPP (Initiatives for Proliferation Prevention) Project, IPP-0110, and its accompanying 'add-on project' IPP-0110A, entitled 'High Energy Ion Technology of Interfacial Thin Film Coatings for Electronic, Optical and Industrial Applications' was a collaborative project involving the Lawrence Berkeley National Laboratory (LBNL) as the U.S. DOE lab; the US surface modification company, Phygen, Inc., as the US private company involved; and the High Current Electronics Institute (HCEI) of the Russian Academy of Sciences, Tomsk, Siberia, Russia, as the NIS Institute involved. Regular scientific research progress meetings were held to which personnel came from all participating partners. The meetings were held mostly at the Phygen facilities in Minneapolis, Minnesota (with Phygen as host) with meetings also held at Tomsk, Russia (HCEI as host), and at Berkeley, California (LBNL as host) In this way, good exposure of all researchers to the various different laboratories involved was attained. This report contains the Final Reports (final deliverables) from the Russian Institute, HCEI. The first part is that for IPP-0110A (the 'main part' of the overall project) and the second part is that for the add-on project IPP-0110A. These reports are detailed, and contain all aspects of all the research carried out. The project was successful in that all deliverables as specified in the proposals were successfully developed, tested, and delivered to Phygen. All of the plasma hardware was designed, made and tested at HCEI, and the performance was excellent. Some of the machine and performance parameters were certainly of 'world class'. The goals and requirements of the IPP Project were well satisfied. I would like to express my gratitude to the DOE IPP program for support of this project throughout its entire duration, and for the unparalleled opportunity thereby provided for all of the diverse participants in the project to join in this collaborative research. The

  2. Team Ontario 2009 Solar Decathlon House

    Office of Energy Efficiency and Renewable Energy (EERE)

    This photograph features Team Ontario/BC's solar-powered house that glows at night during the Lighting Design contest at the U.S. Department of Energy Solar Decathlon on the National Mall. Team...

  3. EA-290-C Ontario Power Generation Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    C Ontario Power Generation Inc. EA-290-C Ontario Power Generation Inc. Order authorizing OPG to export electric energy to Canada. EA-290-C OPG.pdf (757.43 KB) More Documents & Publications Application to Export Electric Energy OE Docket No. EA-290-C Ontario Power Generation

  4. Ontario, New York: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ontario, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.2208968, -77.2830421 Show Map Loading map... "minzoom":false,"mappingserv...

  5. Ontario Renewable Energy Atlas (Canada) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Renewable Energy Atlas (Canada) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Ontario Renewable Energy Atlas (Canada) Focus Area: Renewable Energy Topics: Potentials &...

  6. MHK Projects/Cornwall Ontario River Energy CORE | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Cornwall Ontario River Energy CORE < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3",...

  7. Application to Export Electric Energy OE Docket No. EA-290-B Ontario Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Generation, Inc. | Department of Energy B Ontario Power Generation, Inc. Application to Export Electric Energy OE Docket No. EA-290-B Ontario Power Generation, Inc. Application from Ontario Power Generation, Inc. to export electric energy to Canada Application to Export Electric Energy OE Docket No. EA-290-B Ontario Power Generation, Inc. (2.44 MB) More Documents & Publications EA-290-B Ontario Power Generation, Inc. EA-290 Ontario Power Generation, Inc. EA-290-A

  8. Implementing New Methods of Laser Marking of Items in the Nuclear Material Control and Accountability System at SSC RF-IPPE: An Automated Laser Marking System

    SciTech Connect

    Regoushevsky, V I; Tambovtsev, S D; Dvukhsherstnov, V G; Efimenko, V F; Ilyantsev, A I; Russ III, G P

    2009-05-18

    For over ten years SSC RF-IPPE, together with the US DOE National Laboratories, has been working on implementing automated control and accountability methods for nuclear materials and other items. Initial efforts to use adhesive bar codes or ones printed (painted) onto metal revealed that these methods were inconvenient and lacked durability under operational conditions. For NM disk applications in critical stands, there is the additional requirement that labels not affect the neutron characteristics of the critical assembly. This is particularly true for the many stainless-steel clad disks containing highly enriched uranium (HEU) and plutonium that are used at SSC RF-IPPE for modeling nuclear power reactors. In search of an alternate method for labeling these disks, we tested several technological options, including laser marking and two-dimensional codes. As a result, the method of laser coloring was chosen in combination with Data Matrix ECC200 symbology. To implement laser marking procedures for the HEU disks and meet all the nuclear material (NM) handling standards and rules, IPPE staff, with U.S. technical and financial support, implemented an automated laser marking system; there are also specially developed procedures for NM movements during laser marking. For the laser marking station, a Zenith 10F system by Telesis Technologies (10 watt Ytterbium Fiber Laser and Merlin software) is used. The presentation includes a flowchart for the automated system and a list of specially developed procedures with comments. Among other things, approaches are discussed for human-factor considerations. To date, markings have been applied to numerous steel-clad HEU disks, and the work continues. In the future this method is expected to be applied to other MC&A items.

  9. The main directions in technology investigation of soid oxide fuel cell in Russian Federal Research Center Institute of Physics & Power Engineering (IPPE)

    SciTech Connect

    Ievleva, J.I.; Kolesnikov, V.P.; Mezhertisky, G.S.

    1996-04-01

    The main direction of science investigations for creation of efficient solid oxide fuel cells (SOFC) in IPPE are considered in this work. The development program of planar SOFC with thin-film electrolyte is shown. General design schemes of experimental SOFC units are presented. The flow design schemes of processes for initial materials and electrodes fabrication are shown. The results of investigations for creation thin-film solid oxide electrolyte at porous cathode by magnetron sputtering from complex metal target in oxidative environment are presented.

  10. Genomics at the Ontario Institute for Cancer Research

    SciTech Connect

    Ali, Johar

    2010-06-02

    Johar Ali of the Ontario Institute for Cancer Research discusses genomics and next-gen applications at the OICR on June 2, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  11. Application to Export Electric Energy OE Docket No. EA-290-C Ontario Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Generation Inc. | Department of Energy C Ontario Power Generation Inc. Application to Export Electric Energy OE Docket No. EA-290-C Ontario Power Generation Inc. Application from OPG to export electric energy to Canada. EA-290-C OPG.pdf (405.6 KB) More Documents & Publications EA-290-C Ontario Power Generation Inc. Application to Export Electric Energy OE Docket No. EA-290-B Ontario Power Generation, Inc. EA-290

  12. Fate of hazardous waste derived organic compounds in Lake Ontario

    SciTech Connect

    Jaffe, R.; Hites, R.A.

    1986-03-01

    Dated sediment cores from Lake Ontario's four sedimentation basins and sedentary fish from tributaries and embayments were analyzed by gas chromatographic, methane-enhanced, negative ion mass spectrometry for a group of fluorinated aromatic compounds. The historical record of these chemicals in Lake Ontario sediments agrees well with the use of the Hyde Park dump in the city of Niagara Falls, NY. These compounds first appeared in sediments in 1958 and rapidly increased until 1970. These dates coincide with the onset of dumping at Hyde Park and remedial action undertaken when this dump was closed, respectively. Chemicals introduced into Lake Ontario by the Niagara River distribute throughout the lake rapidly and uniformly and accumulate in sedentary fish taken from remote locations in the lake. 24 references, 9 figures, 4 tables.

  13. Ontario Hydro -- Recent advances in fossil environmental management and control

    SciTech Connect

    Seckington, B.R.

    1997-12-31

    This paper provides a brief overview of various recent environmental activities within the Fossil Business Unit of Ontario Hydro, specifically those related to air emissions and acid rain. This includes: (1) an overview of involvement with current and anticipated Federal and Ontario Provincial regulatory positions and directions; (2) a brief synopsis of environmental installations of FGD at Lambton GS and Low NO{sub x} burners at Lambton and Nanticoke; (3) development of market mechanisms; and (4) R and D activities related to impact assessment and control technology.

  14. Export demand response in the Ontario electricity market

    SciTech Connect

    Peerbocus, Nash; Melino, Angelo

    2007-11-15

    Export responses to unanticipated price shocks can be a key contributing factor to the rapid mean reversion of electricity prices. The authors use event analysis - a technique more familiar from financial applications - to demonstrate how hourly export transactions respond to negative supply shocks in the Ontario electricity market. (author)

  15. Application to Export Electric Energy OE Docket No. EA-290-B Ontario Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Generation: Federal Register Notice Volume 76, No. 41 - Mar. 2, 2011 | Department of Energy Generation: Federal Register Notice Volume 76, No. 41 - Mar. 2, 2011 Application to Export Electric Energy OE Docket No. EA-290-B Ontario Power Generation: Federal Register Notice Volume 76, No. 41 - Mar. 2, 2011 Application from Ontario Power Generation to export electric energy to Canada. Federal Register Notice Vol 76 No 41 EA-290-B Ontario Power Generation (50.83 KB) More Documents &

  16. Ontario Power Generation Motion to Intervene & Comments in FE Docket No. 99-1

    Energy.gov [DOE]

    Ontario Power Generation hereby moves to intervene in, and comments on, the DOE's proposed open access requirements for International Electric Transmission Facilities.

  17. AmeriFlux CA-TP4 Ontario - Turkey Point 1939 Plantation White Pine

    SciTech Connect

    Arain, M. Altaf

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-TP4 Ontario - Turkey Point 1939 Plantation White Pine. Site Description - White pine plantation established in 1939 over sandy abandoned land

  18. AmeriFlux CA-TP2 Ontario - Turkey Point 1989 Plantation White Pine

    DOE Data Explorer

    Arain, M. Altaf [McMaster University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-TP2 Ontario - Turkey Point 1989 Plantation White Pine. Site Description - Plantation established in 1989 over sandy agriculture land

  19. AmeriFlux CA-TP3 Ontario - Turkey Point 1974 Plantation White Pine

    SciTech Connect

    Arain, M. Altaf

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-TP3 Ontario - Turkey Point 1974 Plantation White Pine. Site Description - White pine plantation established in 1974 over sandy abandoned land

  20. Ontario hydro integrated programs for plant design and construction

    SciTech Connect

    Oreskovich, J.P.; Somerville, R.L.

    1987-01-01

    Integrated programs for plant design and construction (IPPDC) is a 5-yr program at Ontario Hydro to optimize engineering and construction productivity through better use of computer technology. The proportion of computer programs operating with data derived from an integrated common data base is very low. IPPDC, on the other hand, is greatly concerned with this common data base. The goals of the IPPDC include improvement of the information flow for a project, minimization of site-discovered interferences, and compression of the entire project life cycle through the intelligent use of computer technology. This program focuses on the development of an integrated data base for plant design software systems to service a multi discipline engineering environment as required by a large-scale megaproject. To achieve the goals of IPPDC, there are three basic elements of computer technology that must be in place before a totally integrated data base system can be achieved: (1) data management; (2) networking; and (3) three-dimensional modeling.

  1. Application to Export Electric Energy OE Docket No. EA-290-C Ontario Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Generation, Inc.: Federal Register Notice, Volume 80, No. 245 - Dec. 22, 2015 | Department of Energy 0-C Ontario Power Generation, Inc.: Federal Register Notice, Volume 80, No. 245 - Dec. 22, 2015 Application to Export Electric Energy OE Docket No. EA-290-C Ontario Power Generation, Inc.: Federal Register Notice, Volume 80, No. 245 - Dec. 22, 2015 Application from OPG to export electric energy to Canada. Federal Register Notice. EA-290-C OPG (CN).pdf (196.96 KB) More Documents &

  2. AmeriFlux CA-TP1 Ontario - Turkey Point 2002 Plantation White Pine

    SciTech Connect

    Arain, M. Altaf

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-TP1 Ontario - Turkey Point 2002 Plantation White Pine. Site Description - Plantation established in 2002 on a former sandy agricultural field, which was abandoned three years prior to planting

  3. IPP RH-TRU Waste Study - Summary

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Summary This study was prepared by the Department in fulfillment of a congressional mandate specified in Public Law 102-579, referred to as the Waste Isolation Pilot Plant Land Withdrawal Act. In addition, the Department considers the preparation of the study to be a prudent element in the compliance certification process for the Waste Isolation Pilot Plant (WIPP). The study includes an analysis of the impact of remote-handled Transuranic waste on the performance assessment of the WIPP and a

  4. ƒUPON COMMENCING public forum on Wednesday, Septembre 28, 2005 at Toronto, Ontario at 8:30 am

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Competition and Reliability In North American Electrical Markets technical Workshop Toronto, Ontario, CANADA September 28, 2005 Competition and Reliability in North American Electricity Markets Technical Workshop Sponsored by Canada-U.S. Power Outage Task Force September 28, 2005 Toronto Congress Centre, Pierre Berton Room 650 Dixon Road, Toronto, Ontario, CANADA This publication is the recorded verbatim transcript and, as such, is taped and transcribed in either of the official languages,

  5. What gets better results? Markets or central planning? The case of Ontario

    SciTech Connect

    2008-10-15

    Ontario has evolved into a hybrid state with new regulatory oversight, a central planning agency, and a wholesale market operator; politically, there is no appetite for markets since the province abandoned competition and privatization in 2002. The structure is briefly described and charted. The current plan calls for the province's reliance on renewable resources to increase by 90 percent over the next 20 years. This mandate is not costless and carries some risks.

  6. Lost Economies of Integration and the Costs of Creating Markets in Electricity Restructuring: Evidence from Ontario

    SciTech Connect

    Houldin, Russell William

    2005-10-01

    The public good nature of bulk grid electricity leads to a twist on the economic debate about oligopoly and economies of scale and scope. In contestability theory, the introduction of 'competitive conditions' aims to reduce oligopoly rents; in the case of Ontario, it seems that the attempt to create a 'competitive market' has created new opportunities for rent accrual. That suggests that a return to a more integrated system might be the best course of action.

  7. AmeriFlux CA-Gro Ontario - Groundhog River, Boreal Mixedwood Forest.

    DOE Data Explorer

    McCaughey, Harry [Queen's University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-Gro Ontario - Groundhog River, Boreal Mixedwood Forest.. Site Description - Groundhog River (FCRN or CCP site "ON-OMW") is situated in a typical boreal mixedwood forest in northeastern Ontario (48.217 degrees north and 82.156 degrees west) about 80 km southwest of Timmins in Reeves Twp. near the Groundhog River. Rowe (1972) places the site in the Missinaibi-Cabonga Section of the Boreal Forest Region. In terms of ecoregion and ecozone, the site is in the Lake Timiskaming Lowlands of the Boreal Shield. The forest developed after high-grade logging in the 1930's. The average age in 2013 is estimated at beteen 75 and 80 years. The forest is dominated by five species characteristic of Ontario boreal mixedwoods: trembling aspen (Populus tremuloides Michx.), black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench.) Voss.), white birch (Betula papyrifera Marsh.), and balsam fir (Abies balsamea (L.) Mill.). The surficial geology is a lacustrine deposit of varved or massive clays, silts and silty sands. The soil is an orthic gleysol with a soil moisture regime classified as fresh to very fresh. Plonski (1974) rates it as a site class 1. The topography is simple and flat with an overall elevation of 340 m ASL.

  8. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    SciTech Connect

    Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

  9. Lake sediment records of industrialization in the Sudbury area of Ontario, Canada

    SciTech Connect

    Huhn, F.J.

    1985-01-01

    The smelting of nickel and copper sulfide ores has drastically modified the original landscape around Sudbury, Ontario. A record of this impact exists in the sediments of local lakes. Changes in the annual fallout of heavy metals, identifiable smoke particulates, and pollen grains reflect the changes that occurred in the sedimentation rate and the vegetation. A year by year chronology for the last 300 years was provided by meromictic lake sediments containing countable seasonal laminations, obtained by a freezing technique that kept the sediments and sediment/water interface undisturbed. Results indicate that: correspondences of vegetation changes, and sedimentation rates with metal residues and smoke particulates in the sediments, and with published smelter records are good; annual laminations in meromictic lakes provided an excellent chronology, as checked against known dates for settlement and the onset of smelting; identifiable smoke particulates provided a good record of smelter activity, and were also a check on metal residue mobility in the sediments.

  10. Protecting Lake Ontario - Treating Wastewater from the Remediated Low-Level Radioactive Waste Management Facility - 13227

    SciTech Connect

    Freihammer, Till; Chaput, Barb; Vandergaast, Gary; Arey, Jimi

    2013-07-01

    The Port Granby Project is part of the larger Port Hope Area Initiative, a community-based program for the development and implementation of a safe, local, long-term management solution for historic low level radioactive waste (LLRW) and marginally contaminated soils (MCS). The Port Granby Project involves the relocation and remediation of up to 0.45 million cubic metres of such waste from the current Port Granby Waste Management Facility located in the Municipality of Clarington, Ontario, adjacent to the shoreline of Lake Ontario. The waste material will be transferred to a new suitably engineered Long-Term Waste Management Facility (LTWMF) to be located inland approximately 700 m from the existing site. The development of the LTWMF will include construction and commissioning of a new Wastewater Treatment Plant (WWTP) designed to treat wastewater consisting of contaminated surface run off and leachate generated during the site remediation process at the Port Granby Waste Management Facility as well as long-term leachate generated at the new LTWMF. Numerous factors will influence the variable wastewater flow rates and influent loads to the new WWTP during remediation. The treatment processes will be comprised of equalization to minimize impacts from hydraulic peaks, fine screening, membrane bioreactor technology, and reverse osmosis. The residuals treatment will comprise of lime precipitation, thickening, dewatering, evaporation and drying. The distribution of the concentration of uranium and radium - 226 over the various process streams in the WWTP was estimated. This information was used to assess potential worker exposure to radioactivity in the various process areas. A mass balance approach was used to assess the distribution of uranium and radium - 226, by applying individual contaminant removal rates for each process element of the WTP, based on pilot scale results and experience-based assumptions. The mass balance calculations were repeated for various flow

  11. Embryotoxicity of extracts from Lake Ontario rainbow trout (Oncorhynchus mykiss) to Japanese medaka (Oryzias latipes)

    SciTech Connect

    Harris, G.E.; Metcalfe, T.L.; Metcalfe, C.D. . Environmental and Resources Studies Program); Huestis, S.Y. )

    1994-09-01

    Various preparative techniques were used to extract nonpolar organic compounds from the muscle tissue of Lake Ontario rainbow trout (Oncorhynchus mykiss). In this extract, PCBs and organochlorine compounds were detected in nanogram-per-milliliter quantities, and polychlorinated dibenzo-p-dioxins and dibenzofurans were detected in picogram-per-milliliter quantities. The extract and various subfractions of the extract were tested for embryotoxicity in a bioassay with embryos of Japanese medaka (Oryzias latipes). The whole extract was embryotoxic to medaka, as were an extract fraction containing PCBs (fraction A) and extract fractions containing nonpolar organochlorine compounds (fractions B and C). When subfractions prepared from fraction A were tested for embryotoxicity, a subfraction containing non-ortho-substituted PCB congeners was embryo-toxic, whereas subfractions containing mono-ortho- and di-ortho-substituted PCB congeners were relatively nontoxic. Pathological lesions characteristic of exposure to planar halogenated aromatic hydrocarbons were observed only in embryos exposed to the non-ortho-PCB subfraction. The non-ortho-PCB subfraction of fraction A was more toxic than the original fraction A, which indicates that nontoxic PCBs reduce the toxicity of the non-ortho-PCBs through some unknown mechanism. This study indicates that organochlorine compounds and non-ortho-substituted PCBs have the potential to be embryotoxic to early life stages of Great lakes fish, but nontoxic contaminants can modify this toxic response. These data are relevant to the interpretation of correlations between embryo mortalities and concentrations of persistent organic contaminants in Great Lakes salmonids.

  12. AmeriFlux CA-TPD Ontario - Turkey Point Mature Deciduous

    SciTech Connect

    Arain, M. Altaf

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-TPD Ontario - Turkey Point Mature Deciduous. Site Description - The forest is approximately 90 years old. Naturally regenerated on sandy terrain and abandoned agricultural land. Predominantly hardwood species with a few scattered conifers. Site has been managed (thinned) in the past. It has a high biodiversity with 573 tree and plant species, 102 bird species, 23 mamal species and 22 reptile and amphibian species (SWALSREP Report, 1999). The dominant tree species is white oak (Quercus alba), with other scattered broadleaf Carolinian species including sugar and red maple (Acer saccharum, A. rubrum), American beech (Fagus grandifolia), black and red oak (Q. velutina, Q. rubra) and white ash (Fraxinus americana) . There are also scattered conifers, mostly white and red pine (Pinus strobes, P. resinosa), comprising about 5% of the trees. Average tree height is 25.7 m with a stand density of 504 ± 18 trees per hectare. Average tree diameter at breast height is 22.3 cm and basal area is 0.06 m2 or approximately 29 square meters per hectare.

  13. Immunomodulation in C57Bl/6 mice following consumption of halogenated aromatic hydrocarbon-contaminated coho salmon (Oncorhynchus kisutch) from Lake Ontario

    SciTech Connect

    Cleland, G.B.; McElroy, P.J.; Sonstegard, R.A. )

    1989-01-01

    This report describes studies designed to assess the immunomodulatory effects associated with the consumption of coho salmon containing halogenated aromatic hydrocarbons (HAHs) and other compounds naturally bioaccumulated from Lake Ontario. Diets containing 33% coho salmon from Lake Ontario or the Pacific Ocean were fed to juvenile C57Bl/6 mice for 2-4 mo. Following 60 d, the mice that consumed Lake Ontario salmon had reduced IgM, IgG, and IgA plaque-forming cell responses to sheep erythrocytes. No changes were observed in total numbers of spleen lymphocytes, total T-lymphocytes or T-lymphocyte subsets as determined by flow cytometry. Cellular immunity, assessed by the cytotoxic T-lymphocyte response to allogeneic tumor target cells, was not altered following dietary exposure to Lake Ontario coho salmon for 4 mo. The observed humoral immunomodulation correlated with elevated PCB levels in the Lake Ontario salmon diets. The levels of pollutants such as mercury, tin compounds and other metals, PCDDs, and PCDFs were not examined.

  14. Remediation of Centre Pier, Port Hope, Ontario: Historical, Logistical, Regulatory and Technical Challenges - 13118

    SciTech Connect

    Ferguson Jones, Andrea; Case, Glenn; Lawrence, Dave

    2013-07-01

    Centre Pier is a 3.9 ha property owned by the Commissioners of the Port Hope Harbour in the Municipality of Port Hope, Ontario, Canada. It is centrally located on the Port Hope waterfront and is bounded on the west by the Port Hope Harbour, on the east by the Ganaraska River, on the south by Lake Ontario, and on the north by a railway corridor. The property is currently leased by the Commissioners of the Port Hope Harbour to the Cameco Corporation which owns the four onsite building that are used as warehouse space for their uranium conversion facility located on the western side of the Harbour. Remediation of this site forms part of the Port Hope Project being undertaken by Atomic Energy of Canada Limited (AECL) and Public Works and Government Services Canada (PWGSC) as part of the Port Hope Area Initiative (PHAI). Soil impacts include radiological, metals and petroleum hydrocarbons resulting from long term historical industrial use. Radiological impacts in soil extend across most of the site primarily within the upper metre of fill. Metals-contaminated soil is present across the entire site in the underlying fill material. The metals-contaminated fill extends to a maximum depth of 2.0 m below grade at the north end of the site which is underlain by peat. However, the metals-contaminated soil could extend to the top of the bedrock on the remainder of the site. Based on the elevation of the bedrock in the adjacent river and Harbour Basin, the metals-contaminated soil may extend to a depth of 5.6 m or 6.5 m below existing grade. Petroleum-contaminated soil is present on the southeast side of the site, where a storage tank farm was previously located. Challenges include: - The complex history of the site both relating to site use and Pier construction. Pier development began in the 1800's and was undertaken by many different entities. Modifications and repairs were made over the years resulting in several different types of Pier walls and fill that must be considered

  15. Multicenter Collaborative Quality Assurance Program for the Province of Ontario, Canada: First-Year Results

    SciTech Connect

    Ltourneau, Daniel; Department of Radiation Oncology, University of Toronto, Toronto, Ontario ; McNiven, Andrea; Department of Radiation Oncology, University of Toronto, Toronto, Ontario ; Jaffray, David A.; Department of Radiation Oncology, University of Toronto, Toronto, Ontario; Department of Medical Biophysics, University of Toronto, Toronto, Ontario

    2013-05-01

    Purpose: The objective of this work was to develop a collaborative quality assurance (CQA) program to assess the performance of intensity modulated radiation therapy (IMRT) planning and delivery across the province of Ontario, Canada. Methods and Materials: The CQA program was designed to be a comprehensive end-to-end test that can be completed on multiple planning and delivery platforms. The first year of the program included a head-and-neck (H and N) planning exercise and on-site visit to acquire dosimetric measurements to assess planning and delivery performance. A single dosimeter was used at each institution, and the planned to measured dose agreement was evaluated for both the H and N plan and a standard plan (linear-accelerator specific) that was created to enable a direct comparison between centers with similar infrastructure. Results: CQA program feasibility was demonstrated through participation of all 13 radiation therapy centers in the province. Planning and delivery was completed on a variety of infrastructure (treatment planning systems and linear accelerators). The planning exercise was completed using both static gantry and rotational IMRT, and planned-to-delivered dose agreement (pass rates) for 3%/3-mm gamma evaluation were greater than 90% (92.6%-99.6%). Conclusions: All centers had acceptable results, but variation in planned to delivered dose agreement for the same planning and delivery platform was noted. The upper end of the range will provide an achievable target for other centers through continued quality improvement, aided by feedback provided by the program through the use of standard plans and simple test fields.

  16. The case for a cause-effect linkage between environmental contamination and development in eggs of the common snapping turtle (Chelydra S. serpentina) from Ontario, Canada

    SciTech Connect

    Bishop, C.A.; Brooks, R.J.; Carey, J.H.; Ng, P.; Norstrom, R.J.; Lean, D.R. )

    1991-08-01

    Concentrations of polychlorinated biphenyls (PCBs), dibenzo-p-dioxins, and dibenzofurans, organochlorine pesticides, and their metabolites were measured in eggs of the common snapping turtle (Chelydra s.serpentina) collected from four wetlands on the shorelines of Lakes Ontario, and Erie, and one control location in central Ontario, Canada. Snapping turtle eggs from these sites were also artificially incubated to determine hatching success, and incidence of deformities in embryo and hatchling turtles. The hypothesis that elevated incidences of egg death and/or deformities of hatchling turtles would occur in populations with high concentrations of organochlorine contaminants in eggs was tested. The results were elevated using epidemiological criteria. Unhatched eggs and deformities occurred at significantly higher rates in eggs from Lake Ontario wetlands. Two of three sites from Lake Ontario had substantially higher levels of PCBs, dioxins, and furans compared to eggs from Lake Erie and the control site. It could not be shown that contamination of eggs preceded the occurrence of poor development of eggs, although excellent hatching success and low numbers of deformities in eggs from the control site were considered representative of development in healthy eggs. The statistical association between contaminant levels in eggs and poor development of these eggs supported the hypothesis that eggs from sites with the greatest contamination had the highest rates of abnormalities. PCBs were the most strongly associated chemicals, although possible effects due to the presence of other chemicals in eggs was a confounding factor. The deformities and rates of unhatched eggs were similar to those occurring in other vertebrates collected from highly contaminated areas of the Great Lakes. 54 references.

  17. Household-level dynamics of food waste production and related beliefs, attitudes, and behaviours in Guelph, Ontario

    SciTech Connect

    Parizeau, Kate; Massow, Mike von; Martin, Ralph

    2015-01-15

    Highlights: • We combined household waste stream weights with survey data. • We examine relationships between waste and food-related practices and beliefs. • Families and large households produced more total waste, but less waste per capita. • Food awareness and waste awareness were related to reduced food waste. • Convenience lifestyles were differentially associated with food waste. - Abstract: It has been estimated that Canadians waste $27 billion of food annually, and that half of that waste occurs at the household level (Gooch et al., 2010). There are social, environmental, and economic implications for this scale of food waste, and source separation of organic waste is an increasingly common municipal intervention. There is relatively little research that assesses the dynamics of household food waste (particularly in Canada). The purpose of this study is to combine observations of organic, recyclable, and garbage waste production rates to survey results of food waste-related beliefs, attitudes, and behaviours at the household level in the mid-sized municipality of Guelph, Ontario. Waste weights and surveys were obtained from 68 households in the summer of 2013. The results of this study indicate multiple relationships between food waste production and household shopping practices, food preparation behaviours, household waste management practices, and food-related attitudes, beliefs, and lifestyles. Notably, we observed that food awareness, waste awareness, family lifestyles, and convenience lifestyles were related to food waste production. We conclude that it is important to understand the diversity of factors that can influence food wasting behaviours at the household level in order to design waste management systems and policies to reduce food waste.

  18. Chlorinated hydrocarbons in early life stages of the common snapping turtle (Chelydra serpentina serpentina) from a coastal wetland on Lake Ontario, Canada

    SciTech Connect

    Bishop, C.A.; Lean, D.R.S.; Carey, J.H.; Brooks, R.J.; Ng, P.

    1995-03-01

    To assess intra-clutch variation in contaminant concentrations in eggs, and to investigate the dynamics of chlorinated hydrocarbon accumulation in embryos of the common snapping turtle (Chelydra serpentina), concentrations of p,p{prime}-DDE, hexachlorobenzene, trans-nonachlor, cis-chlordane, and six PCB congeners were measured in eggs, embryos, and hatchlings. Samples were collected from Cootes Paradise, a wetland at the western end of Lake Ontario, Ontario, Canada. The intra-clutch variation in chlorinated hydrocarbon concentrations within four snapping turtle clutches was determined by analyzing the first, last, and middle five eggs oviposited in the nest. The first five eggs had the highest mean concentrations of all chlorinated hydrocarbons, wet weight, and egg diameter. On a lipid weight basis, the first five eggs contained the highest concentration of all compounds except total PCBs and cis-chlordane. The concentration of cis-chlordane was the only parameter measured that was significantly different among the three sets of eggs. At hatching, snapping turtles without yolk sacs contained from 55.2 to 90.5% of the absolute amount of organochlorine compounds measured in the egg at oviposition. Eighteen days after hatching, the body burden of PCBs and pesticides decreased to 45.3 to 62.2% of that in the fresh egg. The accumulation of organochlorine chemicals in embryonic turtles peaked at or just before hatching and then declined thereafter, which is consistent with trends reported in developing sea turtles, fish, and birds.

  19. Forest Genetics Ontario

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chippewa Indians A Climate Action Champion Community Tribal Leaders Forum Tribal Energy Systems: Climate Preparedness and Resiliency 4 March 2015 Thunder Valley Resort Kathleen Brosemer Environmental Program Manager A White House Initiative * To recognize communities that are leading in mitigation and adaptation to climate change. * 16 communities were selected * Cities, towns, and Tribes * San Francisco, Boston, Portland, Knoxville, Oberlin * Two Tribes: Blue Lake Rancheria, and the Sault

  20. Concentrations of metals in tissues of lowbush blueberry (Vaccinium angustifolium) near a copper-nickel smelter at Sudbury, Ontario, Canada: A factor analytic approach

    SciTech Connect

    Bagatto, G.; Shorthouse, J.D. ); Crowder, A.A. )

    1993-10-01

    Ecosystems damaged by emissions from the copper-nickel smelters of Inco and Falconbridge Ltd. near Sudbury, Ontario, Canada have provided a unique opportunity to study the effects of metal particulates and sulphur dioxide fumigations on plant and animal communities. The most infamous terrain in the Sudbury region is nearest the smelters (two active and one closed), where nearly all vegetation has been destroyed and soils eroded and contaminated. However, over all the past twenty years, some species of plants have developed a tolerance to polluted soils and some denuded lands have been naturally and artificially revegetated. Furthermore, a series of unique anthropogenic forests have developed away from the smelters. Several studies on the accumulation of metals in plant tissues indicate the levels of metals are usually highest closest to the smelters. Consequently, several studies have reported high correlations between plant concentrations of certain metals with distance from the source of pollution. However, tissue metal burdens are not always correlated with distance from the emission source, suggesting that other biological and physico-chemical factors may influence tissue metal burdens in the Sudbury habitat. The present study provides information on the metal burdens in another plant, lowbush blueberry, growing both near and away from the smelters. This study assesses the apparent influence of the Sudbury smelting operations on plant tissue burdens of five additional elements, along with copper and nickel, by using a factor analytic approach. This approach will allow determination of underlying factors which govern tissue metal burdens in a polluted environment and helps to refine the future direction of research in the Sudbury ecosystem. 12 refs., 2 tabs.

  1. Microsoft Word - Final Draft FY-13 LWRS IPP R1 Clean Angie KAM...

    Energy.gov [DOE] (indexed site)

    means the prudent use of resources - in this case, our nation's commercial nuclear power plants. Sustainability is defined as the ability to maintain safe and economic...

  2. Outside the rate-base umbrella: can IPPs play the coal game?

    SciTech Connect

    Blankinship, S.

    2005-07-01

    The high cost of coal plants has generally limited their development to US utilities with large rate-base markets. Will rising natural gas prices spark coal plant development by non-rate-base energy providers? The article looks at this possibility. It reports opinions of many industry professionals. 1 photo.

  3. Complete genome sequence of Eggerthella lenta type strain (IPP VPI 0255T)

    SciTech Connect

    Saunders, Elizabeth H; Pukall, Rudiger; Birte, Abt; Lapidus, Alla L.; Glavina Del Rio, Tijana; Copeland, A; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Ivanova, N; Mavromatis, K; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Chain, Patrick S. G.; Meincke, Linda; Sims, David; Brettin, Tom; Detter, J. Chris; Goker, Markus; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Han, Cliff

    2009-01-01

    Eggerthella lenta (Eggerth 1935) Wade et al. 1999, emended W rdemann et al. 2009 is the type species of the genus Eggerthella, which belongs to the actinobacterial family Coriobacteriaceae. E. lenta is a Gram-positive, non-motile, non-sporulating pathogenic bacterium that can cause severe bacteremia. The strain described in this study has been isolated from a rectal tumor in 1935. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the genus Eggerthella, and the 3,632,260 bp long single replicon genome with its 3123 protein-coding and 58 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  4. An Investigation into the Transportation of Irradiated Uranium/Aluminum Targets from a Foreign Nuclear Reactor to the Chalk River Laboratories Site in Ontario, Canada - 12249

    SciTech Connect

    Clough, Malcolm; Jackson, Austin

    2012-07-01

    This investigation required the selection of a suitable cask and development of a device to hold and transport irradiated targets from a foreign nuclear reactor to the Chalk River Laboratories in Ontario, Canada. The main challenge was to design and validate a target holder to protect the irradiated HEU-Al target pencils during transit. Each of the targets was estimated to have an initial decay heat of 118 W prior to transit. As the targets have little thermal mass the potential for high temperature damage and possibly melting was high. Thus, the primary design objective was to conceive a target holder to dissipate heat from the targets. Other design requirements included securing the targets during transportation and providing a simple means to load and unload the targets while submerged five metres under water. A unique target holder (patent pending) was designed and manufactured together with special purpose experimental apparatus including a representative cask. Aluminum dummy targets were fabricated to accept cartridge heaters, to simulate decay heat. Thermocouples were used to measure the temperature of the test targets and selected areas within the target holder and test cask. After obtaining test results, calculations were performed to compensate for differences between experimental and real life conditions. Taking compensation into consideration the maximum target temperature reached was 231 deg. C which was below the designated maximum of 250 deg. C. The design of the aluminum target holder also allowed generous clearance to insert and unload the targets. This clearance was designed to close up as the target holder is placed into the cavity of the transport cask. Springs served to retain and restrain the targets from movement during transportation as well as to facilitate conductive heat transfer. The target holder met the design requirements and as such provided data supporting the feasibility of transporting targets over a relatively long period of time

  5. Final Report for completed IPP Project:"Development of Plasma Ablation for Soft Tissue and Bone Surgery"

    SciTech Connect

    Brown, Ian

    2009-09-01

    ArthroCare is a medical device company that develops, manufactures, and markets an advanced surgical tool, a plasma electro-surgical system for cutting and removing tissue. The hand-held electrical discharge device produces plasma in a biocompatible conductive fluid and tissue to which it is applied during surgery. Its products allow surgeons to operate with increased precision and accuracy, limiting damage to surrounding tissue thereby reducing pain and speeding recovery for the patient. In the past, the design of ArthfoCare's plasma wands has been an empirical undertaking. One goal of this R&D program was to put the phenomena involved on a sound scientific footing, allowing optimization of existing plasma based electro-surgery system technology, and the design and manufacture of new and improved kinds of scalpels, in particular for the surgical cutting of bone. Another important related goal of the program was to develop, through an experimental approach, new plasma wand approaches to the cutting ('shaving') of hard bone tissue. The goals of the CRADA were accomplished - computer models were used to predict important parameters of the plasma discharge and the bone environment, and several different approaches to bone-shaving were developed and demonstrated. The primary goal of the project was to develop and demonstrate an atmospheric-pressure plasma tool that is suitable for surgical use for shaving bone in humans. This goal was accomplished, in fact with several different alternative plasma approaches. High bone ablation speeds were measured. The use of probes ('plasma wand' - the surgical tool) with moving active electrodes was also explored, and there are advantages to this method. Another important feature is that the newly-exposed bone surface have only a very thin necrosis layer; this feature was demonstrated. This CRADA has greatly advanced our understanding of bone removal by atmospheric pressure plasmas in liquid, and puts ArthroCare in a good position to develop the techniques for commercial (surgical) application.

  6. Ottawa, Ontario: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Equivalent URI DBpedia GeoNames ID 6094817 Coordinates 45.423494, -75.697933 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":...

  7. EA-290_Ontario_Power.pdf

    Energy Saver

  8. UPS Ontario - Las Vegas LNG Corridor Extension Project: Bridging...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. tiarravt047saito2010p...

  9. UPS Ontario - Las Vegas LNG Corridor Extension Project: Bridging...

    Energy.gov [DOE] (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt047tisaito2011p .pdf (308.85

  10. UPS Ontario - Las Vegas LNG Corridor Extension Project: Bridging...

    Energy.gov [DOE] (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt047tiwatkins2012o.pdf (567.34

  11. EVG USAIX, Svergreen chalk River Liaison Office Ontario, Canada

    Office of Legacy Management (LM)

    ... Office requests that no restricted data be submitted to ttrir;...', station. : ... Schenectady, N. y. 3-6611 Ext. 25'1 sVANPAH Rim OPJZATIOK ----zm- USA%, Sav,annah River ...

  12. Ontario County, New York: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    New York Naples, New York Phelps, New York Richmond, New York Rushville, New York Seneca, New York Shortsville, New York South Bristol, New York Victor, New York West...

  13. Contaminated groundwater characterization at the Chalk River Laboratories, Ontario, Canada

    SciTech Connect

    Schilk, A.J.; Robertson, D.E.; Thomas, C.W.; Lepel, E.A.; Champ, D.R.; Killey, R.W.D.; Young, J.L.; Cooper, E.L.

    1993-03-01

    The licensing requirements for the disposal of low-level radioactive waste (10 CFR 61) specify the performance objectives and technical requisites for federal and commercial land disposal facilities, the ultimate goal of which is to contain the buried wastes so that the general population is adequately protected from harmful exposure to any released radioactive materials. A major concern in the operation of existing and projected waste disposal sites is subterranean radionuclide transport by saturated or unsaturated flow, which could lead to the contamination of groundwater systems as well as uptake by the surrounding biosphere, thereby directly exposing the general public to such materials. Radionuclide transport in groundwater has been observed at numerous commercial and federal waste disposal sites [including several locations within the waste management area of Chalk River Laboratories (CRL)], yet the physico-chemical processes that lead to such migration are still not completely understood. In an attempt to assist in the characterization of these processes, an intensive study was initiated at CRL to identify and quantify the mobile radionuclide species originating from three separate disposal sites: (a) the Chemical Pit, which has received aqueous wastes containing various radioisotopes, acids, alkalis, complexing agents and salts since 1956, (b) the Reactor Pit, which has received low-level aqueous wastes from a reactor rod storage bay since 1956, and (c) the Waste Management Area C, a thirty-year-old series of trenches that contains contaminated solid wastes from CRL and various regional medical facilities. Water samples were drawn downgradient from each of the above sites and passed through a series of filters and ion-exchange resins to retain any particulate and dissolved or colloidal radionuclide species, which were subsequently identified and quantified via radiochemical separations and gamma spectroscopy. These groundwaters were also analyzed for anions, trace metals, Eh, pH, alkalinity and dissolved oxygen.

  14. Table 1. 2014 Summary statistics

    Energy Information Administration (EIA) (indexed site)

    " Electric utilities",23050,8 " IPP & CHP",8903,11 "Net generation (megawatthours)",149340447,6 " Electric utilities",112340555,3 " IPP & CHP",36999892,10 "Emissions (thousand ...

  15. Copper and lead levels in crops and soils of the Holland Marsh Area-Ontario

    SciTech Connect

    Czuba, M.; Hutchinson, T.C.

    1980-01-01

    A study was made of the occurrence, distribution, and concentrations of the heavy metals copper (Cu) and lead (Pb) in the soils and crops of the important horticultural area north of Toronto known as the Holland Marsh. The soils are deep organic mucks (> 85% organic matter), derived by the drainage of black marshland soils, which has been carried out over the past 40 years. A comparison is made between the Pb and Cu concentrations in undrained, uncultivated areas of the marsh and in the intensively used horticultural area. Analyses show a marked accumulation of Cu in surface layers of cultivated soils, with a mean surface concentration of 130 ppM, declining to 20 ppM at a 32-cm depth. Undrained (virgin) soils of the same marshes had < 20 ppM at all depths. Lead concentrations also declined through the profile, from concentrations of 22 to 10 ppM. In comparison, undrained areas had elevated Pb levels. Cultivation appeared to have increased Cu, but lowered Pb in the marsh. Copper and lead levels found in the crops were generally higher in the young spring vegetables than in the mature fall ones. Leafy crops, especially lettuce (Lactuca L.) and celery (Apium graveolens), accumulated higher Pb levels in their foliage compared with levels in root crops. Cultivation procedures, including past pesticide applications and fertilizer additions, appeared to be principal sources of Cu. Mobility from the soil and into the plant for these elements in the marsh muck soils is discussed.

  16. UPS Ontario- Las Vegas LNG Corridor Extension Project: Bridging the Gap

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  17. UPS Ontario- Las Vegas LNG Corridor Extension Project: Bridging the Gap

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  18. UPS Ontario- Las Vegas LNG Corridor Extension Project: Bridging the Gap

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. The Ontario Hydro dry irradiated fuel storage program and concrete integrated container demonstration

    SciTech Connect

    Armstrong, P.J.; Grande, L. )

    1990-05-01

    The practicality of loading irradiated fuel into a concrete cask underwater in an existing pool facility has been successfully demonstrated. The cask holds about 7.7 metric-tons-uranium. Special design features allow the cask to be used for dry storage, for transportation, and for disposal without re-handling the fuel. The cask, called the concrete integrated container, or CIC, has been developed. This paper describes the loading, monitoring, and IAEA-based transportation certification of testing of the CIC.

  20. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Coal Net summer capacity (megawatts) 8,325 38 Electric utilities 7,296 31 IPP & CHP 1,029 44 Net generation (megawatthours) 43,784,526 33 Electric utilities 40,741,425 28 IPP & CHP ...

  1. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    9 Electric utilities 11,134 26 IPP & CHP 20,372 6 Net generation (megawatthours) 134,476,405 8 Electric utilities 43,290,512 25 IPP & CHP 91,185,893 7 Emissions Sulfur dioxide ...

  2. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    6 Electric utilities 10,989 27 IPP & CHP 29,416 5 Net generation (megawatthours) 137,122,202 7 Electric utilities 34,082 31 IPP & CHP 103,039,347 5 Emissions Sulfur dioxide ...

  3. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    10 Electric utilities 27,376 5 IPP & CHP 3,573 26 Net generation (megawatthours) 116,334,363 11 Electric utilities 102,294,256 5 IPP & CHP 14,040,107 24 Emissions Sulfur Dioxide ...

  4. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    8 Electric utilities 23,050 8 IPP & CHP 8,903 11 Net generation (megawatthours) 149,340,447 6 Electric utilities 112,340,555 3 IPP & CHP 36,999,892 10 Emissions Sulfur dioxide ...

  5. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    21 Electric utilities 19,473 15 IPP & CHP 1,405 40 Net generation (megawatthours) 90,896,435 17 Electric utilities 90,133,403 10 IPP & CHP 763,032 49 Emissions Sulfur dioxide ...

  6. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Natural gas Net summer capacity (megawatts) 2,464 48 Electric utilities 2,313 39 IPP & CHP 151 50 Net generation (megawatthours) 6,042,830 50 Electric utilities 5,509,991 40 IPP & CHP ...

  7. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    24 Electric utilities 12,655 20 IPP & CHP 3,852 25 Net generation (megawatthours) 56,853,282 28 Electric utilities 43,021,954 27 IPP & CHP 13,831,328 25 Emissions Sulfur dioxide ...

  8. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    4,470 43 Electric utilities 10 49 IPP & CHP 4,460 20 Net generation (megawatthours) 13,248,710 44 Electric utilities 523 49 IPP & CHP 13,248,187 27 Emissions Sulfur dioxide ...

  9. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Coal Net summer capacity (megawatts) 6,330 41 Electric utilities 3,209 38 IPP & CHP 3,121 30 Net generation (megawatthours) 30,257,616 41 Electric utilities 12,329,411 35 IPP & CHP ...

  10. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    8,732 36 Electric utilities 7,913 30 IPP & CHP 819 46 Net generation (megawatthours) 39,431,291 34 Electric utilities 36,560,960 30 IPP & CHP 2,870,331 45 Emissions Sulfur dioxide ...

  11. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    19,399 22 Electric utilities 544 43 IPP & CHP 18,852 7 Net generation (megawatthours) 68,051,086 23 Electric utilities -117,003 50 IPP & CHP 68,168,089 7 Emissions Sulfur dioxide ...

  12. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    20 Electric utilities 20,490 14 IPP & CHP 508 47 Net generation (megawatthours) 79,506,886 20 Electric utilities 76,986,629 13 IPP & CHP 2,520,257 47 Emissions Sulfur dioxide ...

  13. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    3 Electric utilities 51,775 1 IPP & CHP 7,665 15 Net generation (megawatthours) 230,015,937 2 Electric utilities 211,970,587 1 IPP & CHP 18,045,350 15 Emissions Sulfur dioxide ...

  14. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    42,723 5 Electric utilities 39 48 IPP & CHP 42,685 3 Net generation (megawatthours) 221,058,365 3 Electric utilities 90,994 44 IPP & CHP 220,967,371 2 Emissions Sulfur dioxide ...

  15. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    29 Electric utilities 10,204 28 IPP & CHP 4,729 18 Net generation (megawatthours) 53,847,386 30 Electric utilities 43,239,615 26 IPP & CHP 10,607,771 30 Emissions Sulfur dioxide ...

  16. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    3,086 46 Electric utilities 102 46 IPP & CHP 2,984 31 Net generation (megawatthours) 7,703,584 47 Electric utilities 49,050 46 IPP & CHP 7,654,534 35 Emissions Sulfur dioxide ...

  17. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    1,810 49 Electric utilities 8 50 IPP & CHP 1,803 38 Net generation (megawatthours) 6,281,748 49 Electric utilities 10,670 48 IPP & CHP 6,271,078 36 Emissions Sulfur dioxide ...

  18. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    2,672 47 Electric utilities 1,732 40 IPP & CHP 939 45 Net generation (megawatthours) 10,204,158 46 Electric utilities 5,517,389 39 IPP & CHP 4,686,769 40 Emissions Sulfur dioxide ...

  19. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    27 Electric utilities 11,175 25 IPP & CHP 4,709 19 Net generation (megawatthours) 60,119,907 26 Electric utilities 44,565,239 24 IPP & CHP 15,554,668 21 Emissions Sulfur dioxide ...

  20. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    2 Electric utilities 28,201 4 IPP & CHP 46,446 2 Net generation (megawatthours) 198,807,622 5 Electric utilities 71,037,135 14 IPP & CHP 127,770,487 4 Emissions Sulfur dioxide ...

  1. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Coal Net summer capacity (megawatts) 8,458 37 Electric utilities 7,233 32 IPP & CHP 1,225 43 Net generation (megawatthours) 49,696,183 32 Electric utilities 45,068,982 23 IPP & CHP ...

  2. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    34 Electric utilities 8,480 29 IPP & CHP 2,006 35 Net generation (megawatthours) 36,000,537 37 Electric utilities 27,758,728 33 IPP & CHP 8,241,809 33 Emissions Sulfur dioxide ...

  3. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    1 Electric utilities 29,113 2 IPP & CHP 83,800 1 Net generation (megawatthours) 437,629,668 1 Electric utilities 94,974,953 7 IPP & CHP 342,654,715 1 Emissions Sulfur Dioxide ...

  4. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    13 Electric utilities 21,311 11 IPP & CHP 6,938 17 Net generation (megawatthours) 112,257,187 13 Electric utilities 94,847,135 8 IPP & CHP 17,410,053 19 Emissions Sulfur dioxide ...

  5. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    25 Electric utilities 11,981 21 IPP & CHP 4,295 21 Net generation (megawatthours) 81,059,577 19 Electric utilities 63,331,833 15 IPP & CHP 17,727,743 17 Emissions Sulfur Dioxide ...

  6. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    13,128 32 Electric utilities 971 42 IPP & CHP 12,157 9 Net generation (megawatthours) 31,118,591 40 Electric utilities 679,986 43 IPP & CHP 30,438,606 12 Emissions Sulfur dioxide ...

  7. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Coal Net summer capacity (megawatts) 8,072 39 Electric utilities 6,094 33 IPP & CHP 1,978 37 Net generation (megawatthours) 32,306,210 39 Electric utilities 26,422,867 34 IPP & CHP ...

  8. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    12,264 33 Electric utilities 85 47 IPP & CHP 12,179 8 Net generation (megawatthours) 37,833,652 35 Electric utilities 20,260 47 IPP & CHP 37,813,392 9 Emissions Sulfur dioxide ...

  9. Letter to Eduard Smetanin, dated March 2, 2007: Final CRADA report.

    SciTech Connect

    Ehst, D. A.; Nuclear Engineering Division

    2007-03-02

    The IPP/DOE program office has finished its evaluation of the alpha-emitting isotope work with Kurchatov Institute and IPPE, and they have made an important decision about the future of this work. IPP/DOE has directed us to re-program the work and add more funds, so the emphasis will be on production of Th228. By making this re-direction of the isotope work, IPPE will see several important benefits: (a) the payments will be made faster to IPPE by using the ISTC Agreement; (b) a larger amount of money will be paid to IPPE; and (c) a profitable future business opportunity for IPPE is more probable.

  10. EIS-0079: 300-kV International Submarine Transmission Line- Erie, Pennsylvania to Nanticoke, Ontario, Canada General Public Utilities Corporation

    Energy.gov [DOE]

    The U.S. Department of Energy Office of Energy Emergency Operations developed this statement to assess the potential environmental and socioeconomic impacts of the construction and operation of 44 miles of cable between the Erie West Substation and the Canadian border.

  11. Zinc, iron, manganese, and magnesium accumulation in crayfish populations near copper-nickel smelters at Sudbury, Ontario, Canada

    SciTech Connect

    Bagatto, G.; Alikhan, M.A.

    1987-06-01

    The Sudbury basin has been subjected to extreme ecological disturbances from logging, mining and smelting activities. Elevated concentrations of copper, cadmium, and nickel have been reported in crayfish populations close to the Sudbury smelting works. The present study compares concentrations of zinc (Zn), iron (Fe), manganese (Mn) and magnesium (Mg) in freshwater crayfish at selected distances of the habitat from the emission source. These metals were selected since they are known to be emitted in moderately high quantities into the Sudbury environment as byproduct of the smelting process. Various tissue concentrations in crayfish were also examined to determined specific tissue sites for these accumulations.

  12. Copper, cadmium, and nickel accumulation in crayfish populations near copper-nickel smelters at Sudbury, Ontario, Canada

    SciTech Connect

    Bagatto, G.; Aikhan, M.A.

    1987-03-01

    The Sudbury basin, an elliptical 646 square mile depression containing a number of freshwater reservoirs, has been subjected to extreme ecological disturbances from logging, mining and smelting activities. The purpose of the present study was to compare tissue concentration of copper, cadmium and nickel in freshwater crayfish at selected distances of the habitat from the emission source. Various tissue concentrations in crayfish from the sites were also examined to determine if particular body tissues were specific sites for metal accumulation.

  13. Abundance and distribution of lichens found in the reclaimed areas of the nickel and copper mining region of Sudbury, Ontario

    SciTech Connect

    Wainio, S.; Beckett, P.J.

    1998-12-31

    The Sudbury Land Reclamation Program has been operating since 1978 and has treated about 25% of the heavily stressed land near the base mining and smelting complexes. Over 3 million trees have been planted into 4000 ha of land treated with limestone, fertilizer and a grass-legume mixture. In the subsequent years over 25 species of lichen has invaded the ground in the developing open woodland ecosystem. The most numerous lichens are members of the Cladonia (Pixie Cup) group but Reindeer lichens (Cladina spp) also occur. The pattern of invasion has similarities to that observed in other disturbed ecosystems (cutting or burning in forests, or abandoned farmland). Lichens on reclaimed land show above normal amounts of nickel and copper but contain lesser amounts than lichens growing in adjacent unreclaimed areas.

  14. BUNCOMBE COUNTY WASTEWATER PRE-TREATMENT AND LANDFILL GAS TO ENERGY PROJECT

    SciTech Connect

    Jon Creighton

    2012-03-13

    The objective of this project was to construct a landfill gas-to-energy (LFGTE) facility that generates a renewable energy source utilizing landfill gas to power a 1.4MW generator, while at the same time reducing the amount of leachate hauled offsite for treatment. The project included an enhanced gas collection and control system, gas conditioning equipment, and a 1.4 MW generator set. The production of cleaner renewable energy will help offset the carbon footprint of other energy sources that are currently utilized.

  15. Comparison of slope stability in two Brazilian municipal landfills

    SciTech Connect

    Gharabaghi, B. Singh, M.K.; Inkratas, C. Fleming, I.R. McBean, E.

    2008-07-01

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use 'generic' published shear strength envelopes for municipal waste. Application of the slope stability

  16. Touryan Elected Chairman

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Touryan Elected Chairman of Proliferation Prevention Advisory Board For information contact: e:mail: Public Affairs Golden, Colo., Feb. 6, 1998 — Ken Touryan of the U.S Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) was elected chairman of the Inter-Laboratory Advisory Board for the Initiatives for Proliferation Prevention (IPP). As chairman, Touryan will coordinate IPP activities for all 10 DOE national laboratories and the Kansas City Plant. DOE initiated the IPP

  17. Russian/DOE Visit

    National Nuclear Security Administration (NNSA)

    and Training Center (RMTC) The RMTC, located at the Institute of Physics and Power Engineering (IPPE) in Obninsk, Russia has been designated to: * Provide nuclear...

  18. Definitions - IJK

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Protection from, or compensation for, damage, loss, or injury. independent power producer (IPP) A non-utility producer of electricity that operates one or more...

  19. Solar Power Partners Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Mill Valley, California Zip: 94941 Sector: Solar Product: Mill Valley-based independent power producer (IPP) focused on solar projects in the US References: Solar Power Partners...

  20. Jordan-World Bank Climate Projects | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    The first component of the project is development of a promotional wind Independent Power Producer (IPP) power plant. This component involve the following sub-components: (a)...

  1. Generation and Transmission Maximization Model | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    its limited energy and transmission resources, but also firm contracts, independent power producer (IPP) agreements, and bulk power transaction opportunities on the spot...

  2. Microsoft Word - Prelim Needs Assessment v 13 for publics.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Council's adequacy standard procedure, each utility is allotted a share of Independent Power Producer (IPP) generation, seasonal imports from out-of-the-region, and non-firm...

  3. Algeria-NREL Energy Activities | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    for developing a national subsidy program to encourage IPP generation under a new law and structure established for promotion of alternative energy technologies. Assessment...

  4. Short-Term Energy Outlook - U.S. Energy Information Administration...

    Annual Energy Outlook

    Data Figures Tables Custom Table Builder Real Prices Viewer Forecast Changes (PDF) Special ... Power Producer (IPP) consumption. c Renewable energy includes minor components of ...

  5. Secretary Moniz's Remarks at the Powering Africa Summit in Washington...

    Energy.gov [DOE] (indexed site)

    ... This has helped move forward several specific projects. Some of the examples: Ethiopia's first-ever IPP; the gigawatt Corbetti geothermalpower plant; a 300-megawatt new power ...

  6. Energy Secretary Abraham Announces Nuclear Nonproliferation Effort...

    National Nuclear Security Administration (NNSA)

    its nuclear program and joined the Non- Proliferation Treaty as a non-nuclear state. ... DOENNSA has committed 1.2 million in Initiatives for Proliferation Prevention (IPP) ...

  7. Embryonic catalase protects against ethanol embryopathies in...

    Office of Scientific and Technical Information (OSTI)

    ... of Toronto, Toronto, Ontario (Canada) Division of Biomolecular Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario (Canada) (Canada) Publication Date: ...

  8. Application to Export Electric Energy OE Docket No. EA-290-B...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Generation, Inc. Application to Export Electric Energy OE Docket No. EA-290-B Ontario Power Generation, Inc. Application from Ontario Power Generation, Inc. to export electric...

  9. DNFSB Recommendation 94-1 Hanford Site Integrated Stabilization Management Plan. Volume 1

    SciTech Connect

    Gerber, E.W.

    1995-10-01

    The US Department of Energy (DOE) has developed an Integrated Program Plan (IPP) to address concerns identified in Defense Nuclear Facilities Safety Board Recommendation 94-1. The IPP describes the actions that DOE plans to implement at its various sites to convert excess fissile materials to forms or conditions suitable for safe interim storage. The baseline IPP was issued as DOE`s Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 Implementation Plan (IP), which was transmitted to the DNFSB on February 28, 1995. The IPP is being further developed to include complex-wide requirements for research and development and a long-range facility requirements section. The planned additions to the baseline IPP are being developed based on a systems engineering approach that integrates facilities and capabilities at the various DOE sites and focuses on attaining safe interim storage with minimum safety risks and environmental impacts. Each affected DOE site has developed a Site Integrated Stabilization Management Plan (SISMP) to identify individual site plans to implement the DNFSB Recommendation 94-1 and to provide a basis for formulating planned additions to the IPP. The SISMPs were developed based on the objectives, requirements, and commitments identified in the baseline DNFSB Recommendation 94-1 IPP. The SISMPs will be periodically updated to reflect improved integration between DOE sites as identified during the IPP systems engineering evaluations.

  10. Solarnorth '81 by Tymura Solardesigns: diverse residential, commercial and industrial projects at and above the 48th parallel in Ontario, Canada

    SciTech Connect

    Tymura, E.J.

    1981-01-01

    Solar Energy Heating Applications are On the Rise in and above the Northwestern City of Thunder Bay, on the northern shore of Lake Superior. Unique in their diversifications, the architectural commissions range from pure passive residential design thru hybrid systems; residential Greenhouse-Solarium active swimming pool and commercial hotel pool to inexpensive hybrid system for Canada's First Commercial Solar Lumber Drying Kiln; as well as combined earth sheltered with solar system design for a dormitory complex and shopping center. By May 1981, 7 buildings designed by Tymura Solardesigns in the Thunder Bay area will have been subjected to the Extreme Canadian climate (10,500/sup 0/F degree days, yearly temperature maximums from -41/sup 0/F to 90/sup 0/F, and solar fractions vary from 50% to 75%, with economic payback periods ranging between 7 and 10 years.

  11. The intermountain power project commissioning - Subsynchronous torsional interaction tests

    SciTech Connect

    Wu, C.T.; Peterson, K.J. ); Pinko, R.J.; Kankam, M.D.; Baker, D.H. )

    1988-10-01

    Subsyncronous torsional vibration as a result of electrochemical interaction between the HVDC controls and a turbine-generator was first discovered during the commissioning of the Square Butte Project in 1977. The level of interaction between the HVDC controls and the turbine-generator depends on several interacting factors: the characteristic torsional frequencies of the turbine-generator, the bandwidth of the HVDC controls and the relative strength of the connecting ac system. For the Intermountain Power Project (IPP), early analysis of these interacting factors indicated that there exist definite potential for subsynchronous oscillation to occur. The calculated torsional frequencies of the IPP units showed that the first mode frequency is 14.0 Hz and is within the typical bandwidth of an HVDC control which is between 10-20 Hz. The HVDC controls, therefore, can influence the torsional stability of the IPP units. Further, the IPP turbine-generators are required to operate isolated on the HVDC rectifier terminal, with no other interconnecting ac network. This ''radial'' mode of operation will result in maximum interaction between the converter station and the IPP units. It became obvious that special measure must be implemented in the design of the IPP HVDC control system to modify its typical characteristics to avoid the occurrence of the subsynchronous oscillation. This paper presents the results of the subsynchronous torsional interaction (SSTI) tests that were performed during the commissioning of the IPP Unit 1 and the HVDC Transmission system.

  12. Coordinating the competitors

    SciTech Connect

    Paynter, T. )

    1990-11-01

    Independent power production would provide an opportunity for investors who wished to take risks: they would be free to reap great profits if their IPP were exceptionally low-cost; but they would also risk bankruptcy if their IPP proved uncompetitive. However, independent power producers cannot operate independently. On the contrary, their operations must be continuously coordinated with each other and with utility-owned generators, in order to provide reliable power at least cost. To make IPPs a viable alternative to utility-owned generation, the apparently inconsistent requirements of independent ownership and coordinated operation must be reconciled. 1 tab.

  13. WIPP Update 7_29_14

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2 9, 2014 Shaft inspections performed weekly In a ccordance w ith M ine S afety a nd H ealth A dministration r equirements, W IPP e mployees c ontinue t o p erform inspections o f...

  14. PPPL engineers complete the design of Wendelstein 7-X scraper...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    finished designing a novel component for the Wendelstein 7-X (W7-X) stellarator, which recently opened at the Max Planck Institute of Plasma Physics (IPP) in Griefswald, Germany. ...

  15. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    No. NM4890139088-TSDF, Part 4, Section 4.6.1.2. * Waste Isolation Pilot Plant Geotechnical Analysis Report for July 2012- June 2013, DOEIW IPP-13-3501 , Volumes 1 and 2...

  16. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Next, we expressed a fusion protein of IPP isomerase and the phosphatase (Idi1NudB) along with a reductase (NemA) to diversify production to 3-methyl-2-buten-1-ol and ...

  17. Initiatives for proliferation prevention program : goals, projects, and opportunities

    SciTech Connect

    Hemberger, P. H.

    2001-01-01

    The mission of the U.S. Department of Energy Initiatives for Proliferation Prevention (IPP) Program is to identify and create commercial opportunities for former weapons scientists currently or formerly involved with weapons of mass destruction in the Former Soviet Union (FSU). IPP was first authorized in Fiscal Year 1994 under Section 575 of Public Law 103-87. IPP currently sponsors 164 projects in Russian at 64 institutes; 16 projects in the Ukraine at 14 institutes; 14 projects in Kazakhstan at 10 institutes; and one project in Belarus. To date, the IPP program has engaged over 10,000 experts in the areas of nuclear, chemical, and biological weapons and missile development at more than 170 institutes in Russia, Kazakhstan, Ukraine, and Belarus.

  18. Notices

    Energy Saver

    ... the vicinity of the IPP, Millard County, Utah to the vicinity of Apex on Interstate 15, northeast of Las Vegas, Nevada. Region IV (Southern Nevada-Apex to the Marketplace Hub). ...

  19. Mr. John E. Kieling, Chief Hazardous ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Building 1 Santa Fe, New Mexico 87505-6303 Subject: Panel 6 Closure and Final Waste ... Waste Disposa l Uni t Panel 6 at the Waste Isolation Pilot Plant (W IPP) facility. ...

  20. Microsoft Word - WIPP9000.docx

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    88221 Fo WIPP r October 7 (WIPP) rec arking an cold war. nt mileston RU waste PP team ha ctive of the pment, wh PP at abou aste Treatm half of the IPP has re RU waste s Environm...

  1. DNFSB recommendation 94-1 Hanford site integrated stabilization management plan - VOLUMES 1-3

    SciTech Connect

    Gerber, E.W.

    1996-09-23

    The US Department of Energy (DOE) has developed an Integrated Program Plan (IPP) to address concerns identified in Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. The IPP describes the actions that DOE plans to implement at its various sites to convert excess fissile materials to forms or conditions suitable for safe interim storage. The baseline IPP was issued as DOE's DNFSB Recommendation 94-1 Implementation Plan (IP), which was transmitted to the DNFSB on February 28, 1995. The IPP was subsequently supplemented with an Integrated Facilities Plan and a Research and Development Plan, which further develop complex-wide research and development and long-range facility requirements and plans. These additions to the baseline IPP were developed based on a systems engineering approach that integrated facilities and capabilities at the various DOE sites and focused on attaining safe interim storage with minimum safety risks and environmental impacts. Each affected DOE site has developed a Site Integrated Stabilization Management Plan (SISMP) to identify individual site plans to implement the DNFSB Recommendation 94-1 IPP. The SISMPs were developed based on the objectives, requirements, and commitments identified in the DNFSB Recommendation 94-1 IP. The SISMPs supported formulation of the initial versions of the Integrated Facilities Plan and the Research and Development Plan. The SISMPs are periodically updated to reflect improved integration between DOE sites as identified during the IPP systems engineering evaluations. This document constitutes the Hanford SISMP. This document includes the planned work scope, costs and schedules for activities at the Hanford site to implement the DNFSB Recommendation 94-1 IPP.

  2. Initiatives for proliferation prevention

    SciTech Connect

    1997-04-01

    Preventing the proliferation of weapons of mass destruction is a central part of US national security policy. A principal instrument of the Department of Energy`s (DOE`s) program for securing weapons of mass destruction technology and expertise and removing incentives for scientists, engineers and technicians in the newly independent states (NIS) of the former Soviet Union to go to rogue countries or assist terrorist groups is the Initiatives for Proliferation Prevention (IPP). IPP was initiated pursuant to the 1994 Foreign Operations Appropriations Act. IPP is a nonproliferation program with a commercialization strategy. IPP seeks to enhance US national security and to achieve nonproliferation objectives by engaging scientists, engineers and technicians from former NIS weapons institutes; redirecting their activities in cooperatively-developed, commercially viable non-weapons related projects. These projects lead to commercial and economic benefits for both the NIS and the US IPP projects are funded in Russian, Ukraine, Kazakhstan and Belarus. This booklet offers an overview of the IPP program as well as a sampling of some of the projects which are currently underway.

  3. Light-trapping in perovskite solar cells (Journal Article) |...

    Office of Scientific and Technical Information (OSTI)

    George St., Toronto, Ontario, M5S 1A7, Canada, Institute of High Performance Computing, ... George St., Toronto, Ontario, M5S 1A7, Canada, School of Information and Communication ...

  4. Gander Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gander Energy Jump to: navigation, search Name: Gander Energy Place: Ontario, Canada Zip: M1R 2T6 Sector: Solar Product: Ontario based solar power project developer. References:...

  5. Generation PV Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PV Inc Jump to: navigation, search Name: Generation PV Inc. Place: Markham, Ontario, Canada Zip: L6E 1A9 Sector: Wind energy Product: Ontario-based Generation PV distributes and...

  6. Northgrid Solar Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Inc Jump to: navigation, search Name: Northgrid Solar Inc. Place: Markham, Ontario, Canada Zip: L6E 1A9 Sector: Services, Solar Product: String representation "Ontario-based N...

  7. Pure Energy Visions | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Visions Jump to: navigation, search Name: Pure Energy Visions Place: Ontario, Ontario, Canada Zip: L4B 1C3 Product: Develops and commercializes advanced battery and direct methanol...

  8. EnerWorks Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Inc Place: Ontario, Canada Zip: NOL 1GO Sector: Solar Product: Ontario-based solar water heating system manufacturer and installer. References: EnerWorks Inc1 This article...

  9. Graphene Nanosheets and Shear Flow Induced Crystallization in Isotactic Polypropylene Nanocomposites

    SciTech Connect

    Z Xu; C Chen; Y Wang; H Tang; Z Li; B Hsiao

    2011-12-31

    Combined effects of graphene nanosheets (GNSs) and shear flow on the crystallization behavior of isotactic polypropylene (iPP) were investigated by in-situ synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. For crystallization under quiescent condition (at 145 C), the half-crystallization time (t{sub 1/2}) of nanocomposites containing 0.05 and 0.1 wt % GNSs was reduced to at least 50% compared to that of neat iPP, indicating the high nucleation ability of GNSs. The crystallization rate of iPP was directly proportional to the GNS content. Under a relatively weak shear flow (at a rate of 20 s{sup -1} for 5 s duration) and a low degree of supercooling, the neat iPP exhibited an isotropic structure due to the relaxation of row nuclei. However, visible antisotropic crystals appeared in sheared iPP/GNSs nanocomposites, indicating that GNSs induced a network structure hindering the mobility of iPP chains and allowing the survival of oriented row nuclei for a long period of time. The presence of GNSs clearly enhanced the effects of shear-induced nucleation as well as orientation of iPP crystals. Two kinds of nucleating origins coexisted in the sheared nanocomposite melt: heterogeneous nucleating sites initiated by GNSs and homogeneous nucleating sites (row nuclei) induced by shear. The difference of t{sub 1/2} of nanocomposites with and without shear was significantly larger than that of neat iPP. The presence of GNSs and shear flow exhibited a synergistic interaction on promoting crystallization kinetics of iPP, although the effect of GNS concentration was not apparent. From WAXD results of isothermal and nonisothermal crystallization of sheared iPP, it was found that the appearance of {beta}-crystals depended on the preservation of row nuclei, where the {alpha}-crystals were predominant in the iPP/GNSs nanocomposites, indicating that GNSs could directly induce {alpha}-crystals of iPP.

  10. Property:Incentive/AddlPlaceStates | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Development Fund (Kentucky) + Kentucky + Alternative Energy Zone (Ohio) + Ohio + Alternative Renewable Fuels 'Plus' Research and Development Fund (Ontario, Canada) +...

  11. CENNATEK | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Address: 1086 Modeland Road, Bldg. 1010 Place: Sarnia, Ontario, Canada Sector: Bioenergy, Biofuels, Biomass, Efficiency, Renewable Energy, Services Phone Number:...

  12. O:\ELECTRIC\DETROIT\PP-230-2_ord.PDF

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    On April 1, 1999, Ontario Hydro, the provincial utility of Canada's Province of Ontario, by operation of Canadian law, transferred all of its ownership and management interests in the interconnection facilities at the Michigan-Ontario border to a successor corporation, the Ontario Hydro Services Company ("OHSC"). OHSC is now known as "Hydro One". 2 The authority to grant Presidential permits for the construction, operation, maintenance, or connection of electric transmission

  13. WIPP Update 3_30_14

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    M arch 3 0, 2 014 There i s n ot a W IPP R ecovery update t oday. P lease g o t o t he W IPP R ecovery w eb p age a t www.wipp.energy.gov f or i nformation o n r ecovery a ctivities. Community Meetings Scheduled April 3 - C arlsbad M ayor D ale J anway a nd D OE w ill c o---host a T own H all m eeting T hursday, A pril 3 , featuring u pdates o n W IPP r ecovery a ctivities. The t own h all m eetings a re h eld a t 5 :30 p .m. e very T hursday a t t he C arlsbad C ity C ouncil C hambers, 1 01 N.

  14. Suppressing the Skin-Core Structure of Injection-Molded Isotactic Polypropylene via Combination of an in situ Microfibrillar Network and an Interfacial Compatibilizer

    SciTech Connect

    X Yi; C Chen; G Zhong; L Xu; J Tang; X Ji; B Hsiao; Z Li

    2011-12-31

    Injection-molded semicrystalline polymer parts generally exhibited a so-called skin-core structure basically as a result of the large gradients of temperature, shear rate, stress, and pressure fields created by the boundary conditions of injection molding. Suppression of the skin-core structure is a long-term practical challenge. In the current work, the skin-core structure of the conventional injection-molded isotactic polypropylene (iPP) was largely relieved by the cooperative effects of an in situ microfibrillar network and interfacial compatibilizer. The in situ poly(ethylene terephthalate) microfibrils of 1-8 {micro}m in diameter and large aspect ratios of above 40 tended to entangle with each other to generate a microfibrillar network in the iPP melt. During injection molding, the iPP molecules experienced confined flow in the microchannels or pores formed by the microfibrillar network, which could redistribute and homogenize the flow field of polymer melt. Addition of the compatibilizer, glycidyl methacrylate-grafted iPP, restrained the molecular orientation but facilitated preservation of oriented molecules due to the chemical bonds at the interface between PET microfibrils and iPP. The cooperative effects of in situ microfibrillar network and interfacial compatibilizer led to almost the same molecular orientation across the whole thickness of the injection-molded parts. Additionally, the content of {beta} crystals in different layers of injection-molded iPP parts depended on the combined effects of the molecular orientation, the amount of oriented crystals, and the crystallization time between 105 and 140 C. The presence of the interfacial compatibilizer facilitated formation of the {beta} crystals because of preservation of the oriented molecules.

  15. Use of a polishing scrubber with a fluid bed boiler

    SciTech Connect

    Toher, J.G.

    1996-12-31

    Once viewed as {open_quotes}competitive{close_quotes} technologies, the circulating dry scrubber (CDS){reg_sign} and circulating fluid bed (CFB) boiler are being used together to achieve enhanced performance with lower overall costs. The need to understand the synergy between these two technologies is driven by deregulation of the power industry and the 1990 Clean Air Act Amendments. Deregulation of power production in the US has spurred the growth of Independent Power Producers (IPP) who are responding to Industry`s demand for lower cost fuels, and close attention to annual operating costs. Utilities have to provide {open_quotes}open{close_quotes} access to their transmission lines allowing various IPP`s to connect with the end user. Industrial users can now choose from one of several sources of electricity with prices per kilowatt hour that are much lower than what they are currently being charged. The race is on to reduce power production costs and fuel can be the key in many cases. IPP`s and industry are banding together in very logical ways that can benefit both. Industry`s byproducts with heating value can be sold {open_quotes}over the fence{close_quotes} to an IPP who provides the industry with low cost steam and or electricity in return. However, many alternative lower cost fuels also have a higher emissions potential for criteria pollutants such a SO{sub 2}, NO{sub X}, particulate, or other emissions such as VOC`s and mercury which are more recently receiving attention. Cost effective management of these environmental issues must be an integral part of the project planning process. Three such cases are examined that involve the use of CFB`s with the CDS{reg_sign} as a polishing scrubber for SO{sub 2}. The first two cases involve repowering of existing facilities with petroleum coke as the fuel. The last case involves a new facility powered with low sulfur coal.

  16. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Alabama Table 1. 2014 Summary statistics (Alabama) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 31,953 8 Electric utilities 23,050 8 IPP & CHP 8,903 11 Net generation (megawatthours) 149,340,447 6 Electric utilities 112,340,555 3 IPP & CHP 36,999,892 10 Emissions Sulfur dioxide (short tons) 152,225 8 Nitrogen oxide (short tons) 61,909 13 Carbon dioxide (thousand metric tons) 67,635 10 Sulfur dioxide (lbs/MWh) 2.0 19 Nitrogen oxide (lbs/MWh) 0.8 38

  17. Table 1. 2014 Summary statistics

    Energy Information Administration (EIA) (indexed site)

    Alaska" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",2464,48 " Electric utilities",2313,39 " IPP & CHP",151,50 "Net generation (megawatthours)",6042830,50 " Electric utilities",5509991,40 " IPP & CHP",532839,50 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",4129,43 " Nitrogen

  18. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Connecticut Electricity Profile 2014 Table 1. 2014 Summary statistics (Connecticut) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 8,832 35 Electric utilities 161 45 IPP & CHP 8,671 12 Net generation (megawatthours) 33,676,980 38 Electric utilities 54,693 45 IPP & CHP 33,622,288 11 Emissions Sulfur dioxide (short tons) 1,897 47 Nitrogen oxide (short tons) 8,910 45 Carbon dioxide (thousand metric tons) 7,959 41 Sulfur dioxide (lbs/MWh) 0.1 46 Nitrogen oxide

  19. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    District of Columbia Electricity Profile 2014 Table 1. 2014 Summary statistics (District of Columbia) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 9 51 Electric utilities IPP & CHP 9 51 Net generation (megawatthours) 67,612 51 Electric utilities IPP & CHP 67,612 51 Emissions Sulfur dioxide (short tons) 0 51 Nitrogen oxide (short tons) 147 51 Carbon dioxide (thousand metric tons) 48 50 Sulfur dioxide (lbs/MWh) 0.0 51 Nitrogen oxide (lbs/MWh) 4.3 3

  20. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Georgia Electricity Profile 2014 Table 1. 2014 Summary statistics (Georgia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 38,250 7 Electric utilities 28,873 3 IPP & CHP 9,377 10 Net generation (megawatthours) 125,837,224 10 Electric utilities 109,523,336 4 IPP & CHP 16,313,888 20 Emissions Sulfur dioxide (short tons) 105,998 11 Nitrogen oxide (short tons) 58,144 14 Carbon dioxide (thousand metric tons) 62,516 12 Sulfur dioxide (lbs/MWh) 1.7 24 Nitrogen oxide

  1. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Idaho Electricity Profile 2014 Table 1. 2014 Summary statistics (Idaho) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,944 42 Electric utilities 3,413 37 IPP & CHP 1,531 39 Net generation (megawatthours) 15,184,417 43 Electric utilities 9,628,016 37 IPP & CHP 5,556,400 39 Emissions Sulfur dioxide (short tons) 5,777 42 Nitrogen oxide (short tons) 20,301 37 Carbon dioxide (thousand metric tons) 1,492 49 Sulfur dioxide (lbs/MWh) 0.8 36 Nitrogen oxide

  2. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Illinois Electricity Profile 2014 Table 1. 2014 Summary statistics (Illinois) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 44,727 4 Electric utilities 5,263 35 IPP & CHP 39,464 4 Net generation (megawatthours) 202,143,878 4 Electric utilities 10,457,398 36 IPP & CHP 191,686,480 3 Emissions Sulfur dioxide (short tons) 187,536 6 Nitrogen oxide (short tons) 58,076 15 Carbon dioxide (thousand metric tons) 96,624 6 Sulfur dioxide (lbs/MWh) 1.9 20 Nitrogen

  3. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Indiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Indiana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 27,499 14 Electric utilities 23,319 7 IPP & CHP 4,180 23 Net generation (megawatthours) 115,395,392 12 Electric utilities 100,983,285 6 IPP & CHP 14,412,107 22 Emissions Sulfur dioxide (short tons) 332,396 3 Nitrogen oxide (short tons) 133,412 3 Carbon dioxide (thousand metric tons) 103,391 3 Sulfur dioxide (lbs/MWh) 5.8 1 Nitrogen oxide

  4. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Kansas Electricity Profile 2014 Table 1. 2014 Summary statistics (Kansas) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,227 31 Electric utilities 11,468 24 IPP & CHP 2,759 33 Net generation (megawatthours) 49,728,363 31 Electric utilities 39,669,629 29 IPP & CHP 10,058,734 31 Emissions Sulfur dioxide (short tons) 31,550 29 Nitrogen oxide (short tons) 29,014 29 Carbon dioxide (thousand metric tons) 31,794 29 Sulfur dioxide (lbs/MWh) 1.3 29 Nitrogen oxide

  5. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Louisiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Louisiana) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 26,657 15 Electric utilities 18,120 16 IPP & CHP 8,537 13 Net generation (megawatthours) 104,229,402 15 Electric utilities 58,518,271 17 IPP & CHP 45,711,131 8 Emissions Sulfur dioxide (short tons) 96,240 14 Nitrogen oxide (short tons) 83,112 8 Carbon dioxide (thousand metric tons) 57,137 15 Sulfur dioxide (lbs/MWh) 1.8 21

  6. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Michigan Electricity Profile 2014 Table 1. 2014 Summary statistics (Michigan) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,435 12 Electric utilities 22,260 9 IPP & CHP 8,175 14 Net generation (megawatthours) 106,816,991 14 Electric utilities 84,075,322 12 IPP & CHP 22,741,669 13 Emissions Sulfur dioxide (short tons) 173,521 7 Nitrogen oxide (short tons) 77,950 9 Carbon dioxide (thousand metric tons) 64,062 11 Sulfur dioxide (lbs/MWh) 3.2 7 Nitrogen oxide

  7. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Minnesota Electricity Profile 2014 Table 1. 2014 Summary statistics (Minnesota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 15,621 28 Electric utilities 11,557 22 IPP & CHP 4,064 24 Net generation (megawatthours) 56,998,330 27 Electric utilities 45,963,271 22 IPP & CHP 11,035,059 29 Emissions Sulfur dioxide (short tons) 39,272 27 Nitrogen oxide (short tons) 38,373 28 Carbon dioxide (thousand metric tons) 32,399 28 Sulfur dioxide (lbs/MWh) 1.4 27 Nitrogen

  8. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Hampshire Electricity Profile 2013 Table 1. 2013 Summary statistics (New Hampshire) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 4,413 44 Electric utilities 1,121 41 IPP & CHP 3,292 30 Net generation (megawatthours) 19,778,520 42 Electric utilities 2,266,903 41 IPP & CHP 17,511,617 20 Emissions Sulfur dioxide (short tons) 3,733 44 Nitrogen oxide (short tons) 5,057 47 Carbon dioxide (thousand metric tons) 3,447 46 Sulfur dioxide (lbs/MWh) 0.4 45 Nitrogen

  9. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Oklahoma Electricity Profile 2014 Table 1. 2014 Summary statistics (Oklahoma) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 24,048 17 Electric utilities 17,045 17 IPP & CHP 7,003 16 Net generation (megawatthours) 70,155,504 22 Electric utilities 48,096,026 19 IPP & CHP 22,059,478 14 Emissions Sulfur dioxide 78,556 18 Nitrogen oxide 44,874 23 Carbon dioxide (thousand metric tons) 43,994 18 Sulfur dioxide (lbs/MWh) 2.2 17 Nitrogen oxide (lbs/MWh) 1.3 26

  10. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    South Dakota Electricity Profile 2014 Table 1. 2014 Summary statistics (South Dakota) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 3,948 45 Electric utilities 3,450 36 IPP & CHP 499 48 Net generation (megawatthours) 10,995,240 45 Electric utilities 9,344,872 38 IPP & CHP 1,650,368 48 Emissions Sulfur dioxide (short tons) 13,852 35 Nitrogen oxide (short tons) 10,638 44 Carbon dioxide (thousand metric tons) 3,093 47 Sulfur dioxide (lbs/MWh) 2.5 15

  11. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Vermont Electricity Profile 2014 Table 1. 2014 Summary statistics (Vermont) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 650 50 Electric utilities 337 44 IPP & CHP 313 49 Net generation (megawatthours) 7,031,394 48 Electric utilities 868,079 42 IPP & CHP 6,163,315 37 Emissions Sulfur Dioxide (short tons) 71 50 Nitrogen Oxide (short tons) 737 50 Carbon Dioxide (thousand metric tons) 14 51 Sulfur Dioxide (lbs/MWh) 0.0 50 Nitrogen Oxide (lbs/MWh) 0.2 51

  12. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Virginia Electricity Profile 2014 Table 1. 2014 Summary statistics (Virginia) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 26,292 16 Electric utilities 22,062 10 IPP & CHP 4,231 22 Net generation (megawatthours) 77,137,438 21 Electric utilities 62,966,914 16 IPP & CHP 14,170,524 23 Emissions Sulfur Dioxide (short tons) 68,550 20 Nitrogen Oxide (short tons) 40,656 26 Carbon Dioxide (thousand metric tons) 33,295 25 Sulfur Dioxide (lbs/MWh) 1.8 23 Nitrogen

  13. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    Wisconsin Electricity Profile 2014 Table 1. 2014 Summary statistics (Wisconsin) Item Value Rank Primary Energy Source Coal Net summer capacity (megawatts) 17,166 23 Electric utilities 14,377 18 IPP & CHP 2,788 32 Net generation (megawatthours) 61,064,796 25 Electric utilities 47,301,782 20 IPP & CHP 13,763,014 26 Emissions Sulfur Dioxide (short tons) 81,239 17 Nitrogen Oxide (short tons) 39,597 27 Carbon Dioxide (thousand metric tons) 43,750 19 Sulfur Dioxide (lbs/MWh) 2.7 12 Nitrogen

  14. EIA - State Electricity Profiles

    Energy Information Administration (EIA) (indexed site)

    United States Electricity Profile 2014 Table 1. 2014 Summary statistics (United States) Item Value Primary energy source Coal Net summer capacity (megawatts) 1,068,422 Electric utilities 616,632 IPP & CHP 451,791 Net generation (megawatthours) 4,093,606,005 Electric utilities 2,382,473,495 IPP & CHP 1,711,132,510 Emissions Sulfur Dioxide (short tons) 3,842,005 Nitrogen Oxide (short tons) 2,400,375 Carbon Dioxide (thousand metric tons) 2,160,342 Sulfur Dioxide (lbs/MWh) 1.9 Nitrogen Oxide

  15. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Oklahoma" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",24048,17 " Electric Utilities",17045,17 " IPP & CHP",7003,16 "Net generation (megawatthours)",70155504,22 " Electric Utilities",48096026,19 " IPP & CHP",22059478,14 "Emissions (thousand metric tons)",, " Sulfur Dioxide (short tons)",78556,18 " Nitrogen

  16. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Dakota" "Item","Value","Rank" "Primary energy source","Hydroelectric", "Net summer capacity (megawatts)",3948,45 " Electric Utilities",3450,36 " IPP & CHP",499,48 "Net generation (megawatthours)",10995240,45 " Electric Utilities",9344872,38 " IPP & CHP",1650368,48 "Emissions (thousand metric tons)",, " Sulfur Dioxide (short tons)",13852,35 " Nitrogen

  17. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Washington" "Item","Value","Rank" "Primary energy source","Hydroelectric", "Net summer capacity (megawatts)",30949,10 " Electric Utilities",27376,5 " IPP & CHP",3573,26 "Net generation (megawatthours)",116334363,11 " Electric Utilities",102294256,5 " IPP & CHP",14040107,24 "Emissions (thousand metric tons)",, " Sulfur Dioxide (short tons)",13716,36 "

  18. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Wisconsin" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",17166,23 " Electric Utilities",14377,18 " IPP & CHP",2788,32 "Net generation (megawatthours)",61064796,25 " Electric Utilities",47301782,20 " IPP & CHP",13763014,26 "Emissions (thousand metric tons)",, " Sulfur Dioxide (short tons)",81239,17 " Nitrogen

  19. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Arizona" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",28249,13 " Electric utilities",21311,11 " IPP & CHP",6938,17 "Net generation (megawatthours)",112257187,13 " Electric utilities",94847135,8 " IPP & CHP",17410053,19 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",22597,32 " Nitrogen

  20. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    California" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",74646,2 " Electric utilities",28201,4 " IPP & CHP",46446,2 "Net generation (megawatthours)",198807622,5 " Electric utilities",71037135,14 " IPP & CHP",127770487,4 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",3102,46 "

  1. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Colorado" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",14933,29 " Electric utilities",10204,28 " IPP & CHP",4729,18 "Net generation (megawatthours)",53847386,30 " Electric utilities",43239615,26 " IPP & CHP",10607771,30 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",28453,30 " Nitrogen

  2. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Connecticut" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",8832,35 " Electric utilities",161,45 " IPP & CHP",8671,12 "Net generation (megawatthours)",33676980,38 " Electric utilities",54693,45 " IPP & CHP",33622288,11 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",1897,47 " Nitrogen

  3. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Delaware" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",3086,46 " Electric utilities",102,46 " IPP & CHP",2984,31 "Net generation (megawatthours)",7703584,47 " Electric utilities",49050,46 " IPP & CHP",7654534,35 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",824,48 " Nitrogen

  4. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    District of Columbia" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",9,51 " Electric utilities",, " IPP & CHP",9,51 "Net generation (megawatthours)",67612,51 " Electric utilities",, " IPP & CHP",67612,51 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",0,51 " Nitrogen oxide (short

  5. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Florida" "Item","Value","Rank" "Primary energy source","Natural Gas", "Net summer capacity (megawatts)",59440,3 " Electric utilities",51775,1 " IPP & CHP",7665,15 "Net generation (megawatthours)",230015937,2 " Electric utilities",211970587,1 " IPP & CHP",18045350,15 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",126600,10 "

  6. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Georgia" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",38250,7 " Electric utilities",28873,3 " IPP & CHP",9377,10 "Net generation (megawatthours)",125837224,10 " Electric utilities",109523336,4 " IPP & CHP",16313888,20 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",105998,11 " Nitrogen

  7. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Hawaii" "Item","Value","Rank" "Primary energy source","Petroleum", "Net summer capacity (megawatts)",2672,47 " Electric utilities",1732,40 " IPP & CHP",939,45 "Net generation (megawatthours)",10204158,46 " Electric utilities",5517389,39 " IPP & CHP",4686769,40 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",21670,33 " Nitrogen

  8. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Idaho" "Item","Value","Rank" "Primary energy source","Hydroelectric", "Net summer capacity (megawatts)",4944,42 " Electric utilities",3413,37 " IPP & CHP",1531,39 "Net generation (megawatthours)",15184417,43 " Electric utilities",9628016,37 " IPP & CHP",5556400,39 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",5777,42 " Nitrogen

  9. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Illinois" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",44727,4 " Electric utilities",5263,35 " IPP & CHP",39464,4 "Net generation (megawatthours)",202143878,4 " Electric utilities",10457398,36 " IPP & CHP",191686480,3 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",187536,6 " Nitrogen

  10. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Indiana" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",27499,14 " Electric utilities",23319,7 " IPP & CHP",4180,23 "Net generation (megawatthours)",115395392,12 " Electric utilities",100983285,6 " IPP & CHP",14412107,22 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",332396,3 " Nitrogen

  11. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Iowa" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",16507,24 " Electric utilities",12655,20 " IPP & CHP",3852,25 "Net generation (megawatthours)",56853282,28 " Electric utilities",43021954,27 " IPP & CHP",13831328,25 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",74422,19 " Nitrogen oxide

  12. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Kansas" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",14227,31 " Electric utilities",11468,24 " IPP & CHP",2759,33 "Net generation (megawatthours)",49728363,31 " Electric utilities",39669629,29 " IPP & CHP",10058734,31 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",31550,29 " Nitrogen

  13. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Kentucky" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",20878,21 " Electric utilities",19473,15 " IPP & CHP",1405,40 "Net generation (megawatthours)",90896435,17 " Electric utilities",90133403,10 " IPP & CHP",763032,49 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",204873,5 " Nitrogen

  14. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Louisiana" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",26657,15 " Electric utilities",18120,16 " IPP & CHP",8537,13 "Net generation (megawatthours)",104229402,15 " Electric utilities",58518271,17 " IPP & CHP",45711131,8 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",96240,14 "

  15. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Maine" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",4470,43 " Electric utilities",10,49 " IPP & CHP",4460,20 "Net generation (megawatthours)",13248710,44 " Electric utilities",523,49 " IPP & CHP",13248187,27 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",10990,38 " Nitrogen oxide

  16. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Maryland" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",12264,33 " Electric utilities",85,47 " IPP & CHP",12179,8 "Net generation (megawatthours)",37833652,35 " Electric utilities",20260,47 " IPP & CHP",37813392,9 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",41370,26 " Nitrogen oxide

  17. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Massachusetts" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",13128,32 " Electric utilities",971,42 " IPP & CHP",12157,9 "Net generation (megawatthours)",31118591,40 " Electric utilities",679986,43 " IPP & CHP",30438606,12 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",6748,41 "

  18. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Michigan" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",30435,12 " Electric utilities",22260,9 " IPP & CHP",8175,14 "Net generation (megawatthours)",106816991,14 " Electric utilities",84075322,12 " IPP & CHP",22741669,13 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",173521,7 " Nitrogen

  19. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Minnesota" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",15621,28 " Electric utilities",11557,22 " IPP & CHP",4064,24 "Net generation (megawatthours)",56998330,27 " Electric utilities",45963271,22 " IPP & CHP",11035059,29 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",39272,27 " Nitrogen

  20. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Mississippi" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",16090,26 " Electric utilities",13494,19 " IPP & CHP",2597,34 "Net generation (megawatthours)",55127092,29 " Electric utilities",47084382,21 " IPP & CHP",8042710,34 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",101093,13 "

  1. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Missouri" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",21790,19 " Electric utilities",20538,13 " IPP & CHP",1252,42 "Net generation (megawatthours)",87834468,18 " Electric utilities",85271253,11 " IPP & CHP",2563215,46 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",149842,9 " Nitrogen

  2. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Montana" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",6330,41 " Electric utilities",3209,38 " IPP & CHP",3121,30 "Net generation (megawatthours)",30257616,41 " Electric utilities",12329411,35 " IPP & CHP",17928205,16 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",14426,34 " Nitrogen

  3. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Nebraska" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",8732,36 " Electric utilities",7913,30 " IPP & CHP",819,46 "Net generation (megawatthours)",39431291,34 " Electric utilities",36560960,30 " IPP & CHP",2870331,45 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",63994,22 " Nitrogen oxide

  4. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Nevada" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",10485,34 " Electric utilities",8480,29 " IPP & CHP",2006,35 "Net generation (megawatthours)",36000537,37 " Electric utilities",27758728,33 " IPP & CHP",8241809,33 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",10229,40 "

  5. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Hampshire" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",4418,44 " Electric utilities",1121,41 " IPP & CHP",3297,28 "Net generation (megawatthours)",19538395,42 " Electric utilities",2085585,41 " IPP & CHP",17452810,18 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",3107,45 " Nitrogen

  6. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Jersey" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",19399,22 " Electric utilities",544,43 " IPP & CHP",18854,7 "Net generation (megawatthours)",68051086,23 " Electric utilities",-117003,50 " IPP & CHP",68168089,7 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",3369,44 " Nitrogen oxide

  7. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Mexico" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",8072,39 " Electric utilities",6094,33 " IPP & CHP",1978,37 "Net generation (megawatthours)",32306210,39 " Electric utilities",26422867,34 " IPP & CHP",5883343,38 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",12064,37 " Nitrogen oxide

  8. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    York" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",40404,6 " Electric utilities",10989,27 " IPP & CHP",29416,5 "Net generation (megawatthours)",137122202,7 " Electric utilities",34082856,31 " IPP & CHP",103039347,5 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",31878,28 " Nitrogen

  9. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Carolina" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",30498,11 " Electric utilities",26941,6 " IPP & CHP",3557,27 "Net generation (megawatthours)",128143588,9 " Electric utilities",119432144,2 " IPP & CHP",8711444,32 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",64168,21 " Nitrogen

  10. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Dakota" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",6790,40 " Electric utilities",5516,34 " IPP & CHP",1274,41 "Net generation (megawatthours)",36462508,36 " Electric utilities",32088446,32 " IPP & CHP",4374062,42 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",52716,23 " Nitrogen oxide

  11. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Ohio" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",31507,9 " Electric utilities",11134,26 " IPP & CHP",20372,6 "Net generation (megawatthours)",134476405,8 " Electric utilities",43290512,25 " IPP & CHP",91185893,6 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",355108,1 " Nitrogen oxide

  12. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Oregon" "Item","Value","Rank" "Primary energy source","Hydroelectric", "Net summer capacity (megawatts)",15884,27 " Electric utilities",11175,25 " IPP & CHP",4709,19 "Net generation (megawatthours)",60119907,26 " Electric utilities",44565239,24 " IPP & CHP",15554668,21 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",10595,39 "

  13. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Pennsylvania" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",42723,5 " Electric utilities",39,48 " IPP & CHP",42685,3 "Net generation (megawatthours)",221058365,3 " Electric utilities",90994,44 " IPP & CHP",220967371,2 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",297598,4 " Nitrogen

  14. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Rhode Island" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",1810,49 " Electric utilities",8,50 " IPP & CHP",1803,38 "Net generation (megawatthours)",6281748,49 " Electric utilities",10670,48 " IPP & CHP",6271078,36 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",100,49 " Nitrogen

  15. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    South Carolina" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",22824,18 " Electric utilities",20836,12 " IPP & CHP",1988,36 "Net generation (megawatthours)",97158465,16 " Electric utilities",93547004,9 " IPP & CHP",3611461,43 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",43659,25 "

  16. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Tennessee" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",20998,20 " Electric utilities",20490,14 " IPP & CHP",508,47 "Net generation (megawatthours)",79506886,20 " Electric utilities",76986629,13 " IPP & CHP",2520257,47 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",89357,16 " Nitrogen

  17. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Texas" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",112914,1 " Electric utilities",29113,2 " IPP & CHP",83800,1 "Net generation (megawatthours)",437629668,1 " Electric utilities",94974953,7 " IPP & CHP",342654715,1 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",349245,2 " Nitrogen

  18. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Utah" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",8325,38 " Electric utilities",7296,31 " IPP & CHP",1029,44 "Net generation (megawatthours)",43784526,33 " Electric utilities",40741425,28 " IPP & CHP",3043101,44 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",23646,31 " Nitrogen oxide

  19. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Vermont" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",650,50 " Electric utilities",337,44 " IPP & CHP",313,49 "Net generation (megawatthours)",7031394,48 " Electric utilities",868079,42 " IPP & CHP",6163315,37 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",70,50 " Nitrogen oxide

  20. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Virginia" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",26292,16 " Electric utilities",22062,10 " IPP & CHP",4231,22 "Net generation (megawatthours)",77137438,21 " Electric utilities",62966914,16 " IPP & CHP",14170524,23 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",68550,20 "

  1. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    West Virginia" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",16276,25 " Electric utilities",11981,21 " IPP & CHP",4295,21 "Net generation (megawatthours)",81059577,19 " Electric utilities",63331833,15 " IPP & CHP",17727743,17 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",102406,12 "

  2. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    Wyoming" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",8458,37 " Electric utilities",7233,32 " IPP & CHP",1225,43 "Net generation (megawatthours)",49696183,32 " Electric utilities",45068982,23 " IPP & CHP",4627201,41 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",45704,24 " Nitrogen oxide

  3. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    Energy Information Administration (EIA) (indexed site)

    United States" "Item","Value" "Primary energy source","Coal" "Net summer capacity (megawatts)",1068422 " Electric utilities",616632 " IPP & CHP",451791 "Net generation (megawatthours)",4093606005 " Electric utilities",2382473495 " IPP & CHP",1711132510 "Emissions (thousand metric tons)", " Sulfur dioxide (short tons)",3842005 " Nitrogen oxide (short

  4. Table 1. 2014 Summary statistics

    Energy Information Administration (EIA) (indexed site)

    Arkansas" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",14754,30 " Electric utilities",11526,23 " IPP & CHP",3227,29 "Net generation (megawatthours)",61592137,24 " Electric utilities",48752895,18 " IPP & CHP",12839241,28 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",89528,15 " Nitrogen

  5. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Arizona Electricity Profile 2014 Table 1. 2014 Summary statistics (Arizona) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 28,249 13 Electric utilities 21,311 11 IPP & CHP 6,938 17 Net generation (megawatthours) 112,257,187 13 Electric utilities 94,847,135 8 IPP & CHP 17,410,053 19 Emissions Sulfur dioxide (short tons) 22,597 32 Nitrogen oxide (short tons) 56,726 17 Carbon dioxide (thousand metric tons) 53,684 16 Sulfur dioxide (lbs/MWh) 0.4 41 Nitrogen oxide

  6. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    California Electricity Profile 2014 Table 1. 2014 Summary statistics (California) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 74,646 2 Electric utilities 28,201 4 IPP & CHP 46,446 2 Net generation (megawatthours) 198,807,622 5 Electric utilities 71,037,135 14 IPP & CHP 127,770,487 4 Emissions Sulfur dioxide (short tons) 3,102 46 Nitrogen oxide (short tons) 98,348 5 Carbon dioxide (thousand metric tons) 57,223 14 Sulfur dioxide (lbs/MWh) 0.0 49

  7. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Colorado Electricity Profile 2014 Table 1. 2014 Summary statistics (Colorado) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,933 29 Electric utilities 10,204 28 IPP & CHP 4,729 18 Net generation (megawatthours) 53,847,386 30 Electric utilities 43,239,615 26 IPP & CHP 10,607,771 30 Emissions Sulfur dioxide (short tons) 28,453 30 Nitrogen oxide (short tons) 44,349 24 Carbon dioxide (thousand metric tons) 38,474 22 Sulfur dioxide (lbs/MWh) 1.1 32 Nitrogen

  8. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Connecticut Electricity Profile 2014 Table 1. 2014 Summary statistics (Connecticut) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 8,832 35 Electric utilities 161 45 IPP & CHP 8,671 12 Net generation (megawatthours) 33,676,980 38 Electric utilities 54,693 45 IPP & CHP 33,622,288 11 Emissions Sulfur dioxide (short tons) 1,897 47 Nitrogen oxide (short tons) 8,910 45 Carbon dioxide (thousand metric tons) 7,959 41 Sulfur dioxide (lbs/MWh) 0.1 46 Nitrogen oxide

  9. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Delaware Electricity Profile 2014 Table 1. 2014 Summary statistics (Delaware) Item Value U.S. rank Primary energy source Natural gas Net summer capacity (megawatts) 3,086 46 Electric utilities 102 46 IPP & CHP 2,984 31 Net generation (megawatthours) 7,703,584 47 Electric utilities 49,050 46 IPP & CHP 7,654,534 35 Emissions Sulfur dioxide (short tons) 824 48 Nitrogen oxide (short tons) 2,836 48 Carbon dioxide (thousand metric tons) 4,276 43 Sulfur dioxide (lbs/MWh) 0.2 45 Nitrogen oxide

  10. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    District of Columbia Electricity Profile 2014 Table 1. 2014 Summary statistics (District of Columbia) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 9 51 Electric utilities IPP & CHP 9 51 Net generation (megawatthours) 67,612 51 Electric utilities IPP & CHP 67,612 51 Emissions Sulfur dioxide (short tons) 0 51 Nitrogen oxide (short tons) 147 51 Carbon dioxide (thousand metric tons) 48 50 Sulfur dioxide (lbs/MWh) 0.0 51 Nitrogen oxide (lbs/MWh) 4.3 3

  11. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Florida Electricity Profile 2014 Table 1. 2014 Summary statistics (Florida) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 59,440 3 Electric utilities 51,775 1 IPP & CHP 7,665 15 Net generation (megawatthours) 230,015,937 2 Electric utilities 211,970,587 1 IPP & CHP 18,045,350 15 Emissions Sulfur dioxide (short tons) 126,600 10 Nitrogen oxide (short tons) 91,356 6 Carbon dioxide (thousand metric tons) 111,549 2 Sulfur dioxide (lbs/MWh) 1.1 30 Nitrogen

  12. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Georgia Electricity Profile 2014 Table 1. 2014 Summary statistics (Georgia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 38,250 7 Electric utilities 28,873 3 IPP & CHP 9,377 10 Net generation (megawatthours) 125,837,224 10 Electric utilities 109,523,336 4 IPP & CHP 16,313,888 20 Emissions Sulfur dioxide (short tons) 105,998 11 Nitrogen oxide (short tons) 58,144 14 Carbon dioxide (thousand metric tons) 62,516 12 Sulfur dioxide (lbs/MWh) 1.7 24 Nitrogen oxide

  13. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Hawaii Electricity Profile 2014 Table 1. 2014 Summary statistics (Hawaii) Item Value Rank Primary energy source Petroleum Net summer capacity (megawatts) 2,672 47 Electric utilities 1,732 40 IPP & CHP 939 45 Net generation (megawatthours) 10,204,158 46 Electric utilities 5,517,389 39 IPP & CHP 4,686,769 40 Emissions Sulfur dioxide (short tons) 21,670 33 Nitrogen oxide (short tons) 26,928 31 Carbon dioxide (thousand metric tons) 7,313 42 Sulfur dioxide (lbs/MWh) 4.2 4 Nitrogen oxide

  14. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Idaho Electricity Profile 2014 Table 1. 2014 Summary statistics (Idaho) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,944 42 Electric utilities 3,413 37 IPP & CHP 1,531 39 Net generation (megawatthours) 15,184,417 43 Electric utilities 9,628,016 37 IPP & CHP 5,556,400 39 Emissions Sulfur dioxide (short tons) 5,777 42 Nitrogen oxide (short tons) 20,301 37 Carbon dioxide (thousand metric tons) 1,492 49 Sulfur dioxide (lbs/MWh) 0.8 36 Nitrogen oxide

  15. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Illinois Electricity Profile 2014 Table 1. 2014 Summary statistics (Illinois) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 44,727 4 Electric utilities 5,263 35 IPP & CHP 39,464 4 Net generation (megawatthours) 202,143,878 4 Electric utilities 10,457,398 36 IPP & CHP 191,686,480 3 Emissions Sulfur dioxide (short tons) 187,536 6 Nitrogen oxide (short tons) 58,076 15 Carbon dioxide (thousand metric tons) 96,624 6 Sulfur dioxide (lbs/MWh) 1.9 20 Nitrogen

  16. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Indiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Indiana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 27,499 14 Electric utilities 23,319 7 IPP & CHP 4,180 23 Net generation (megawatthours) 115,395,392 12 Electric utilities 100,983,285 6 IPP & CHP 14,412,107 22 Emissions Sulfur dioxide (short tons) 332,396 3 Nitrogen oxide (short tons) 133,412 3 Carbon dioxide (thousand metric tons) 103,391 3 Sulfur dioxide (lbs/MWh) 5.8 1 Nitrogen oxide

  17. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Iowa Electricity Profile 2014 Table 1. 2014 Summary statistics (Iowa) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,507 24 Electric utilities 12,655 20 IPP & CHP 3,852 25 Net generation (megawatthours) 56,853,282 28 Electric utilities 43,021,954 27 IPP & CHP 13,831,328 25 Emissions Sulfur dioxide (short tons) 74,422 19 Nitrogen oxide (short tons) 41,793 25 Carbon dioxide (thousand metric tons) 39,312 21 Sulfur dioxide (lbs/MWh) 2.6 13 Nitrogen oxide

  18. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Kansas Electricity Profile 2014 Table 1. 2014 Summary statistics (Kansas) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,227 31 Electric utilities 11,468 24 IPP & CHP 2,759 33 Net generation (megawatthours) 49,728,363 31 Electric utilities 39,669,629 29 IPP & CHP 10,058,734 31 Emissions Sulfur dioxide (short tons) 31,550 29 Nitrogen oxide (short tons) 29,014 29 Carbon dioxide (thousand metric tons) 31,794 29 Sulfur dioxide (lbs/MWh) 1.3 29 Nitrogen oxide

  19. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Kentucky Electricity Profile 2014 Table 1. 2014 Summary statistics (Kentucky) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 20,878 21 Electric utilities 19,473 15 IPP & CHP 1,405 40 Net generation (megawatthours) 90,896,435 17 Electric utilities 90,133,403 10 IPP & CHP 763,032 49 Emissions Sulfur dioxide (short tons) 204,873 5 Nitrogen oxide (short tons) 89,253 7 Carbon dioxide (thousand metric tons) 85,795 7 Sulfur dioxide (lbs/MWh) 4.5 3 Nitrogen oxide

  20. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Louisiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Louisiana) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 26,657 15 Electric utilities 18,120 16 IPP & CHP 8,537 13 Net generation (megawatthours) 104,229,402 15 Electric utilities 58,518,271 17 IPP & CHP 45,711,131 8 Emissions Sulfur dioxide (short tons) 96,240 14 Nitrogen oxide (short tons) 83,112 8 Carbon dioxide (thousand metric tons) 57,137 15 Sulfur dioxide (lbs/MWh) 1.8 21

  1. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Maine Electricity Profile 2014 Table 1. 2014 Summary statistics (Maine) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 4,470 43 Electric utilities 10 49 IPP & CHP 4,460 20 Net generation (megawatthours) 13,248,710 44 Electric utilities 523 49 IPP & CHP 13,248,187 27 Emissions Sulfur dioxide (short tons) 10,990 38 Nitrogen oxide (short tons) 8,622 46 Carbon dioxide (thousand metric tons) 3,298 46 Sulfur dioxide (lbs/MWh) 1.7 25 Nitrogen oxide (lbs/MWh)

  2. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Maryland Electricity Profile 2014 Table 1. 2014 Summary statistics (Maryland) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 12,264 33 Electric utilities 85 47 IPP & CHP 12,179 8 Net generation (megawatthours) 37,833,652 35 Electric utilities 20,260 47 IPP & CHP 37,813,392 9 Emissions Sulfur dioxide (short tons) 41,370 26 Nitrogen oxide (short tons) 20,626 35 Carbon dioxide (thousand metric tons) 20,414 34 Sulfur dioxide (lbs/MWh) 2.2 18 Nitrogen oxide

  3. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Massachusetts Electricity Profile 2014 Table 1. 2014 Summary statistics (Massachusetts) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 13,128 32 Electric utilities 971 42 IPP & CHP 12,157 9 Net generation (megawatthours) 31,118,591 40 Electric utilities 679,986 43 IPP & CHP 30,438,606 12 Emissions Sulfur dioxide (short tons) 6,748 41 Nitrogen oxide (short tons) 13,831 43 Carbon dioxide (thousand metric tons) 12,231 39 Sulfur dioxide (lbs/MWh) 0.4 40

  4. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Michigan Electricity Profile 2014 Table 1. 2014 Summary statistics (Michigan) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,435 12 Electric utilities 22,260 9 IPP & CHP 8,175 14 Net generation (megawatthours) 106,816,991 14 Electric utilities 84,075,322 12 IPP & CHP 22,741,669 13 Emissions Sulfur dioxide (short tons) 173,521 7 Nitrogen oxide (short tons) 77,950 9 Carbon dioxide (thousand metric tons) 64,062 11 Sulfur dioxide (lbs/MWh) 3.2 7 Nitrogen oxide

  5. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Minnesota Electricity Profile 2014 Table 1. 2014 Summary statistics (Minnesota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 15,621 28 Electric utilities 11,557 22 IPP & CHP 4,064 24 Net generation (megawatthours) 56,998,330 27 Electric utilities 45,963,271 22 IPP & CHP 11,035,059 29 Emissions Sulfur dioxide (short tons) 39,272 27 Nitrogen oxide (short tons) 38,373 28 Carbon dioxide (thousand metric tons) 32,399 28 Sulfur dioxide (lbs/MWh) 1.4 27 Nitrogen

  6. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Mississippi Electricity Profile 2014 Table 1. 2014 Summary statistics (Mississippi) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 16,090 26 Electric utilities 13,494 19 IPP & CHP 2,597 34 Net generation (megawatthours) 55,127,092 29 Electric utilities 47,084,382 21 IPP & CHP 8,042,710 34 Emissions Sulfur dioxide (short tons) 101,093 13 Nitrogen oxide (short tons) 23,993 32 Carbon dioxide (thousand metric tons) 24,037 33 Sulfur dioxide (lbs/MWh) 3.7 5

  7. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Missouri Electricity Profile 2014 Table 1. 2014 Summary statistics (Missouri) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,790 19 Electric utilities 20,538 13 IPP & CHP 1,252 42 Net generation (megawatthours) 87,834,468 18 Electric utilities 85,271,253 11 IPP & CHP 2,563,215 46 Emissions Sulfur dioxide (short tons) 149,842 9 Nitrogen oxide (short tons) 77,749 10 Carbon dioxide (thousand metric tons) 75,735 8 Sulfur dioxide (lbs/MWh) 3.4 6 Nitrogen oxide

  8. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Montana Electricity Profile 2014 Table 1. 2014 Summary statistics (Montana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,330 41 Electric utilities 3,209 38 IPP & CHP 3,121 30 Net generation (megawatthours) 30,257,616 41 Electric utilities 12,329,411 35 IPP & CHP 17,928,205 16 Emissions Sulfur dioxide (short tons) 14,426 34 Nitrogen oxide (short tons) 20,538 36 Carbon dioxide (thousand metric tons) 17,678 36 Sulfur dioxide (lbs/MWh) 1.0 34 Nitrogen oxide

  9. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Nebraska Electricity Profile 2014 Table 1. 2014 Summary statistics (Nebraska) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,732 36 Electric utilities 7,913 30 IPP & CHP 819 46 Net generation (megawatthours) 39,431,291 34 Electric utilities 36,560,960 30 IPP & CHP 2,870,331 45 Emissions Sulfur dioxide (short tons) 63,994 22 Nitrogen oxide (short tons) 27,045 30 Carbon dioxide (thousand metric tons) 26,348 31 Sulfur dioxide (lbs/MWh) 3.2 8 Nitrogen oxide

  10. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Nevada Electricity Profile 2014 Table 1. 2014 Summary statistics (Nevada) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 10,485 34 Electric utilities 8,480 29 IPP & CHP 2,006 35 Net generation (megawatthours) 36,000,537 37 Electric utilities 27,758,728 33 IPP & CHP 8,241,809 33 Emissions Sulfur dioxide (short tons) 10,229 40 Nitrogen oxide (short tons) 18,606 39 Carbon dioxide (thousand metric tons) 16,222 37 Sulfur dioxide (lbs/MWh) 0.4 38 Nitrogen

  11. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Hampshire Electricity Profile 2013 Table 1. 2013 Summary statistics (New Hampshire) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 4,413 44 Electric utilities 1,121 41 IPP & CHP 3,292 30 Net generation (megawatthours) 19,778,520 42 Electric utilities 2,266,903 41 IPP & CHP 17,511,617 20 Emissions Sulfur dioxide (short tons) 3,733 44 Nitrogen oxide (short tons) 5,057 47 Carbon dioxide (thousand metric tons) 3,447 46 Sulfur dioxide (lbs/MWh) 0.4 45 Nitrogen

  12. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Jersey Electricity Profile 2014 Table 1. 2014 Summary statistics (New Jersey) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 19,399 22 Electric utilities 544 43 IPP & CHP 18,852 7 Net generation (megawatthours) 68,051,086 23 Electric utilities -117,003 50 IPP & CHP 68,168,089 7 Emissions Sulfur dioxide (short tons) 3,369 44 Nitrogen oxide (short tons) 15,615 41 Carbon dioxide (thousand metric tons) 17,905 35 Sulfur dioxide (lbs/MWh) 0.1 47 Nitrogen oxide

  13. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Mexico Electricity Profile 2014 Table 1. 2014 Summary statistics (New Mexico) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 8,072 39 Electric utilities 6,094 33 IPP & CHP 1,978 37 Net generation (megawatthours) 32,306,210 39 Electric utilities 26,422,867 34 IPP & CHP 5,883,343 38 Emissions Sulfur dioxide (short tons) 12,064 37 Nitrogen oxide (short tons) 46,192 22 Carbon dioxide (thousand metric tons) 24,712 32 Sulfur dioxide (lbs/MWh) 0.7 37 Nitrogen

  14. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    York Electricity Profile 2014 Table 1. 2014 Summary statistics (New York) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 40,404 6 Electric utilities 10,989 27 IPP & CHP 29,416 5 Net generation (megawatthours) 137,122,202 7 Electric utilities 34,082 31 IPP & CHP 103,039,347 5 Emissions Sulfur dioxide (short tons) 31,878 28 Nitrogen oxide (short tons) 46,971 21 Carbon dioxide (thousand metric tons) 33,240 26 Sulfur dioxide (lbs/MWh) 0.5 39 Nitrogen oxide

  15. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (North Carolina) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,048 12 Electric utilities 26,706 6 IPP & CHP 3,342 29 Net generation (megawatthours) 125,936,293 9 Electric utilities 116,317,050 2 IPP & CHP 9,619,243 31 Emissions Sulfur dioxide (short tons) 71,293 20 Nitrogen oxide (short tons) 62,397 12 Carbon dioxide (thousand metric tons) 56,940 14 Sulfur dioxide (lbs/MWh) 1.1 32 Nitrogen

  16. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (North Dakota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,566 40 Electric utilities 5,292 34 IPP & CHP 1,274 41 Net generation (megawatthours) 35,021,673 39 Electric utilities 31,044,374 32 IPP & CHP 3,977,299 42 Emissions Sulfur dioxide (short tons) 56,854 23 Nitrogen oxide (short tons) 48,454 22 Carbon dioxide (thousand metric tons) 30,274 28 Sulfur dioxide (lbs/MWh) 3.2 11 Nitrogen oxide

  17. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Ohio Electricity Profile 2014 Table 1. 2014 Summary statistics (Ohio) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 31,507 9 Electric utilities 11,134 26 IPP & CHP 20,372 6 Net generation (megawatthours) 134,476,405 8 Electric utilities 43,290,512 25 IPP & CHP 91,185,893 7 Emissions Sulfur dioxide (short tons) 355,108 1 Nitrogen oxide (short tons) 105,688 4 Carbon dioxide (thousand metrictons) 98,650 5 Sulfur dioxide (lbs/MWh) 5.3 2 Nitrogen oxide (lbs/MWh)

  18. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Oklahoma Electricity Profile 2014 Table 1. 2014 Summary statistics (Oklahoma) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 24,048 17 Electric utilities 17,045 17 IPP & CHP 7,003 16 Net generation (megawatthours) 70,155,504 22 Electric utilities 48,096,026 19 IPP & CHP 22,059,478 14 Emissions Sulfur dioxide 78,556 18 Nitrogen oxide 44,874 23 Carbon dioxide (thousand metric tons) 43,994 18 Sulfur dioxide (lbs/MWh) 2.2 17 Nitrogen oxide (lbs/MWh) 1.3 26

  19. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Oregon Electricity Profile 2014 Table 1. 2014 Summary statistics (Oregon) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 15,884 27 Electric utilities 11,175 25 IPP & CHP 4,709 19 Net generation (megawatthours) 60,119,907 26 Electric utilities 44,565,239 24 IPP & CHP 15,554,668 21 Emissions Sulfur dioxide (short tons) 10,595 39 Nitrogen oxide (short tons) 14,313 42 Carbon dioxide (thousand metric tons) 8,334 40 Sulfur dioxide (lbs/MWh) 0.4 42 Nitrogen

  20. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Pennsylvania Electricity Profile 2014 Table 1. 2014 Summary statistics (Pennsylvania) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 42,723 5 Electric utilities 39 48 IPP & CHP 42,685 3 Net generation (megawatthours) 221,058,365 3 Electric utilities 90,994 44 IPP & CHP 220,967,371 2 Emissions Sulfur dioxide (short tons) 297,598 4 Nitrogen oxide (short tons) 141,486 2 Carbon dioxide (thousand metric tons) 101,361 4 Sulfur dioxide (lbs/MWh) 2.7 11 Nitrogen oxide

  1. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Rhode Island Electricity Profile 2014 Table 1. 2014 Summary statistics (Rhode Island) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 1,810 49 Electric utilities 8 50 IPP & CHP 1,803 38 Net generation (megawatthours) 6,281,748 49 Electric utilities 10,670 48 IPP & CHP 6,271,078 36 Emissions Sulfur dioxide (short tons) 100 49 Nitrogen oxide (short tons) 1,224 49 Carbon dioxide (thousand metric tons) 2,566 48 Sulfur dioxide (lbs/MWh) 0.0 48 Nitrogen oxide

  2. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Carolina Electricity Profile 2014 Table 1. 2014 Summary statistics (South Carolina) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 22,824 18 Electric utilities 20,836 12 IPP & CHP 1,988 36 Net generation (megawatthours) 97,158,465 16 Electric utilities 93,547,004 9 IPP & CHP 3,611,461 43 Emissions Sulfur dioxide (short tons) 43,659 25 Nitrogen oxide (short tons) 21,592 34 Carbon dioxide (thousand metric tons) 33,083 27 Sulfur dioxide (lbs/MWh) 0.9 35

  3. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    South Dakota Electricity Profile 2014 Table 1. 2014 Summary statistics (South Dakota) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 3,948 45 Electric utilities 3,450 36 IPP & CHP 499 48 Net generation (megawatthours) 10,995,240 45 Electric utilities 9,344,872 38 IPP & CHP 1,650,368 48 Emissions Sulfur dioxide (short tons) 13,852 35 Nitrogen oxide (short tons) 10,638 44 Carbon dioxide (thousand metric tons) 3,093 47 Sulfur dioxide (lbs/MWh) 2.5 15

  4. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Tennessee Electricity Profile 2014 Table 1. 2014 Summary statistics (Tennessee) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 20,998 20 Electric utilities 20,490 14 IPP & CHP 508 47 Net generation (megawatthours) 79,506,886 20 Electric utilities 76,986,629 13 IPP & CHP 2,520,257 47 Emissions Sulfur dioxide (short tons) 89,357 16 Nitrogen oxide (short tons) 23,913 33 Carbon dioxide (thousand metric tons) 41,405 20 Sulfur dioxide (lbs/MWh) 2.2 16 Nitrogen oxide

  5. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Texas Electricity Profile 2014 Table 1. 2014 Summary statistics (Texas) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 112,914 1 Electric utilities 29,113 2 IPP & CHP 83,800 1 Net generation (megawatthours) 437,629,668 1 Electric utilities 94,974,953 7 IPP & CHP 342,654,715 1 Emissions Sulfur Dioxide (short tons) 349,245 2 Nitrogen Oxide short tons) 229,580 1 Carbon Dioxide (thousand metric tons) 254,488 1 Sulfur Dioxide (lbs/MWh) 1.6 26 Nitrogen Oxide

  6. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    United States Electricity Profile 2014 Table 1. 2014 Summary statistics (United States) Item Value Primary energy source Coal Net summer capacity (megawatts) 1,068,422 Electric utilities 616,632 IPP & CHP 451,791 Net generation (megawatthours) 4,093,606,005 Electric utilities 2,382,473,495 IPP & CHP 1,711,132,510 Emissions Sulfur Dioxide (short tons) 3,842,005 Nitrogen Oxide (short tons) 2,400,375 Carbon Dioxide (thousand metric tons) 2,160,342 Sulfur Dioxide (lbs/MWh) 1.9 Nitrogen Oxide

  7. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Vermont Electricity Profile 2014 Table 1. 2014 Summary statistics (Vermont) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 650 50 Electric utilities 337 44 IPP & CHP 313 49 Net generation (megawatthours) 7,031,394 48 Electric utilities 868,079 42 IPP & CHP 6,163,315 37 Emissions Sulfur Dioxide (short tons) 71 50 Nitrogen Oxide (short tons) 737 50 Carbon Dioxide (thousand metric tons) 14 51 Sulfur Dioxide (lbs/MWh) 0.0 50 Nitrogen Oxide (lbs/MWh) 0.2 51

  8. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Virginia Electricity Profile 2014 Table 1. 2014 Summary statistics (Virginia) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 26,292 16 Electric utilities 22,062 10 IPP & CHP 4,231 22 Net generation (megawatthours) 77,137,438 21 Electric utilities 62,966,914 16 IPP & CHP 14,170,524 23 Emissions Sulfur Dioxide (short tons) 68,550 20 Nitrogen Oxide (short tons) 40,656 26 Carbon Dioxide (thousand metric tons) 33,295 25 Sulfur Dioxide (lbs/MWh) 1.8 23 Nitrogen

  9. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Washington Electricity Profile 2014 Table 1. 2014 Summary statistics (Washington) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 30,949 10 Electric utilities 27,376 5 IPP & CHP 3,573 26 Net generation (megawatthours) 116,334,363 11 Electric utilities 102,294,256 5 IPP & CHP 14,040,107 24 Emissions Sulfur Dioxide (short tons) 13,716 36 Nitrogen Oxide (short tons) 18,316 40 Carbon Dioxide (thousand metric tons) 12,427 398 Sulfur Dioxide (lbs/MWh) 0.2 44

  10. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    West Virginia Electricity Profile 2014 Table 1. 2014 Summary statistics (West Virginia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,276 25 Electric utilities 11,981 21 IPP & CHP 4,295 21 Net generation (megawatthours) 81,059,577 19 Electric utilities 63,331,833 15 IPP & CHP 17,727,743 17 Emissions Sulfur Dioxide (short tons) 102,406 12 Nitrogen Oxide (short tons) 72,995 11 Carbon Dioxide (thousand metric tons) 73,606 9 Sulfur Dioxide (lbs/MWh) 2.5 14

  11. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Wisconsin Electricity Profile 2014 Table 1. 2014 Summary statistics (Wisconsin) Item Value Rank Primary Energy Source Coal Net summer capacity (megawatts) 17,166 23 Electric utilities 14,377 18 IPP & CHP 2,788 32 Net generation (megawatthours) 61,064,796 25 Electric utilities 47,301,782 20 IPP & CHP 13,763,014 26 Emissions Sulfur Dioxide (short tons) 81,239 17 Nitrogen Oxide (short tons) 39,597 27 Carbon Dioxide (thousand metric tons) 43,750 19 Sulfur Dioxide (lbs/MWh) 2.7 12 Nitrogen

  12. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update

    Wyoming Electricity Profile 2014 Table 1. 2014 Summary statistics (Wyoming) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,458 37 Electric utilities 7,233 32 IPP & CHP 1,225 43 Net generation (megawatthours) 49,696,183 32 Electric utilities 45,068,982 23 IPP & CHP 4,627,201 41 Emissions Sulfur Dioxide (short tons) 45,704 24 Nitrogen Oxide (short tons) 49,638 18 Carbon Dioxide (thousand metric tons) 47,337 17 Sulfur Dioxide (lbs/MWh) 1.8 22 Nitrogen Oxide

  13. Building America Technology Solutions for New and Existing Homes: Cladding

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Attachment Over Mineral Fiber Insulation Board - Ontario, Canada | Department of Energy Cladding Attachment Over Mineral Fiber Insulation Board - Ontario, Canada Building America Technology Solutions for New and Existing Homes: Cladding Attachment Over Mineral Fiber Insulation Board - Ontario, Canada This case study describes a high performance enclosure retrofit package that uses mineral fiber insulation board and describes retrofit assembly and details for wood frame roof and walls and for

  14. Solar Roofing Systems Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Inc Place: Aurora, Ontario, Canada Zip: L4G 3S8 Product: Manufactures and develops photovoltaic roofing and portable products. References: Solar Roofing Systems Inc1 This...

  15. Microsoft PowerPoint - FNEI Presentation to US Dept of Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    installed diesel generators. * Transferred to Catholic Mission mid 1960's * Distribution system extended to community residents early 1970's and operated by Ontario Hydro * Low ...

  16. Orion Bus Industries | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bus Industries Jump to: navigation, search Name: Orion Bus Industries Place: Ontario, Canada Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

  17. Pod Generating Group | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Group Jump to: navigation, search Name: Pod Generating Group Place: Sault Ste Marie, Ontario, Canada Zip: P6A 2G4 Sector: Solar Product: Canadian developer of...

  18. International Council for Local Environmental Initiatives | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Initiatives, headquartered in Toronto, Ontario, is an international association of local governments, along with national and regional governments, focused on sustainable...

  19. Property:Incentive/InActDt | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2019 + Agricultural Biomass and Landfill Diversion Incentive (Texas) + 31 August 2019 + Alternative Renewable Fuels 'Plus' Research and Development Fund (Ontario, Canada) + 2008...

  20. Malheur County, Oregon: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hot Springs Geothermal Power Plant Places in Malheur County, Oregon Adrian, Oregon Jordan Valley, Oregon Nyssa, Oregon Ontario, Oregon Vale, Oregon Retrieved from "http:...

  1. week0729

    Gasoline and Diesel Fuel Update

    ... Similar to the United States, storage facilities in eastern Canada (located in Ontario) ... Nuclear Shut Down: Northeast Utilities shut down its Connecticut Yankee nuclear generating ...

  2. Northern Biodiesel | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Northern Biodiesel Place: Ontario, New York Product: Biodiesel producer. Coordinates: 34.06457, -117.647809 Show Map Loading map... "minzoom":false,"mappingservice":"googlemap...

  3. Fermilab | Newsroom | Press Releases | May 2, 2013: New dark...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    experiments running in the SNOLAB underground science laboratory, located in Ontario, Canada. Scientists run dark-matter experiments underground to shield them from a...

  4. EVIDENCE FOR AN FU ORIONIS-LIKE OUTBURST FROM A CLASSICAL T TAURI...

    Office of Scientific and Technical Information (OSTI)

    and Astrophysics, University of Toronto, 50 St. George Street, Toronto, M5S 3H4 Ontario (Canada) Caltech Optical Observatories, California Institute of Technology, Pasadena,...

  5. Microsoft Word - Table 1 POEE-Trasporters Rev 8-27-12.docx

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ontario (Ojibway) Panhandle Eastern Pipeline Union Gas Limited Douglas, Arizona Naco, Sonora El Paso Natural Gas Company PEMEX Pipeline Eagle Pass, Texas Piedras Negras, Coahuila...

  6. Microsoft Word - Instructions for Sample Monthly Report Forms...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ontario (Ojibway) Panhandle Eastern Pipeline Union Gas Limited Douglas, Arizona Naco, Sonora El Paso Natural Gas Company PEMEX Pipeline West Texas Gas, Inc. PEMEX Pipeline Eagle...

  7. Hanford Hoisting and Rigging Manual - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to use and reproduce portions of standards relating to crane operation and safety. ... from the Mobile Crane Manual by courtesy of Construction Safety Association of Ontario. ...

  8. Application to Export Electric Energy OE Docket No. EA-290-C...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Application to Export Electric Energy OE Docket No. EA-290-B Ontario Power Generation: Federal Register Notice Volume 76, No. 41 - Mar. 2, 2011 Electricity Advisory Committee ...

  9. DOE-STD-1090-2007; Hoisting and Rigging Standard (Formerly Hoisting...

    Energy Saver

    ... Devices" Construction Safety Association (CSA) of Ontario "The Rigging Handbook" Society ... and illustrations was obtained from CSA and SAE. Applicable sections of 29 CFR ...

  10. DOE-STD-1090-2004; Hoisting and Rigging (Formerly Hoisting and...

    Energy.gov [DOE] (indexed site)

    ... Trucks" Construction Safety Association (CSA) of Ontario "The Rigging Handbook" Society ... and illustrations was obtained from CSA and SAE. Applicable sections of 29 CFR ...

  11. Browse by Discipline -- E-print Network Subject Pathways: Computer...

    Office of Scientific and Technical Information (OSTI)

    ... University of South Carolina, Lancaster Yip, Aaron Nung Kwan (Aaron Nung Kwan ... University of Western Ontario Yu, Qinglin Roger (Qinglin Roger Yu) - Mathematics and ...

  12. Scalable, High-Speed Measurement-Based Quantum Computer Using...

    Office of Scientific and Technical Information (OSTI)

    Authors: Stock, Rene ; James, Daniel F. V. 1 + Show Author Affiliations Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7 (Canada) Publication Date: ...

  13. Realistic vs sudden turn-on of natural incoherent light: Coherences...

    Office of Scientific and Technical Information (OSTI)

    Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6 (Canada) Publication ...

  14. Robust optimization methods for cardiac sparing in tangential...

    Office of Scientific and Technical Information (OSTI)

    ... Mechanical and Industrial Engineering Department, University of Toronto, Toronto, Ontario M5S 3G8 (Canada) Radiation Medicine Program, UHN Princess Margaret Cancer Centre, Toronto, ...

  15. Ecosystem Solar Electric Corp aka Solar MW Energy Inc | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Electric Corp aka Solar MW Energy Inc Jump to: navigation, search Name: Ecosystem Solar Electric Corp, aka Solar MW Energy Inc Place: Ontario, California Zip: 91761 Product:...

  16. Where are They Now? In Search of Former Solar Decathlon Houses...

    Energy Saver

    Olympic Dreams for the Solar Decathlon: Zero energy West House, inspired by 2009 Team OntarioBC, was ... have reduced our carbon footprint through repurposed and recycled materials. ...

  17. High Penetration of Photovoltaic (PV) Systems into the Distribution Grid, Workshop Report, February 24-25, 2009

    SciTech Connect

    Not Available

    2009-06-01

    Outcomes from the EERE Solar Energy Technologies Program workshop on high penetration of photovoltaic (PV) systems into the distribution grid, Feb. 24-25, 2009, Ontario, Calif.

  18. Bosch Solar Sustainable Energy Technologies JV | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sustainable Energy Technologies JV Jump to: navigation, search Name: Bosch Solar & Sustainable Energy Technologies JV Place: Ontario, Canada Product: Canada-based JV to distribute...

  19. Meikle Automation Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Meikle Automation Inc Jump to: navigation, search Name: Meikle Automation Inc Place: Kitchener, Ontario, Canada Zip: N2E 3Z5 Product: Canadian manufacturer of automation systems...

  20. Microsoft Word - NURETH14-353.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Toronto, Ontario, Canada, September 25-30, 2011 2 The CASL project connects fundamental research and technology development through an integrated effort of participating...

  1. Supan Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Supan Technologies Place: Ontario, Canada Zip: K1C 2W6 Product: Manufactures chemical etching stations, wafer transfer equipment and turnkey PV cell and module production lines....

  2. Race to Zero 2015 Systems Integration Excellence Award Winners...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Science, Toronto, Ontario, Canada The TownHauZ - Invent the Future (presentation) Virginia Tech, Blacksburg, VA Redbird Red Team Presentation (9.03 MB) Heritage Homes Presentation ...

  3. Department of Energy Announces Advanced Vehicle Technology Competition...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... of Washington (Seattle, WA) University of Waterloo (Waterloo, Ontario, Canada) Virginia Tech (Blacksburg, VA) Wayne State University (Detroit, MI) These teams will explore a ...

  4. Energy Department Announces Winners of 2015 Race to Zero Student...

    Energy.gov [DOE] (indexed site)

    ... Georgia Institute of Technology, Atlanta, Georgia Ryerson University-Team DAS Haus, Toronto, Ontario, Canada University of California, Berkeley, Berkeley, California Virginia Tech, ...

  5. A method for online verification of adapted fields using an independen...

    Office of Scientific and Technical Information (OSTI)

    Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9 (Canada) (Canada) Department of Radiation Therapy, Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ...

  6. capture quantum correlations Qasimi, Asma Al-; James, Daniel...

    Office of Scientific and Technical Information (OSTI)

    University of Toronto, Toronto, Ontario M5S 1A7 (Canada) 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ALGORITHMS; CAPTURE; ENTROPY; MIXED STATES; PURE STATES; QUANTUM...

  7. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    of Physics University of Toronto Toronto Ontario M5S A7 Canada CLASSICAL AND QUANTUM MECHANICS GENERAL PHYSICS CALCIUM IONS INFORMATION THEORY MULTI PHOTON PROCESSES...

  8. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Control University of Toronto Toronto Ontario M5S A7 Canada CLASSICAL AND QUANTUM MECHANICS GENERAL PHYSICS ALGORITHMS CAPTURE ENTROPY MIXED STATES PURE STATES QUANTUM...

  9. Scalable, High-Speed Measurement-Based Quantum Computer Using...

    Office of Scientific and Technical Information (OSTI)

    University of Toronto, Toronto, Ontario M5S 1A7 (Canada) 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CALCIUM IONS; INFORMATION THEORY; MULTI-PHOTON PROCESSES;...

  10. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    of Toronto St George Street Toronto Ontario M5S A7 Canada CLASSICAL AND QUANTUM MECHANICS GENERAL PHYSICS ATOMIC AND MOLECULAR PHYSICS DENSITY MATRIX HAMILTONIANS QUANTUM...

  11. Meehan s Industrial | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Meehan s Industrial Jump to: navigation, search Name: Meehan's Industrial Place: Milton, Ontario, Canada Zip: L9T 5C1 Product: Meehan's Industrial is a manufacturer, project...

  12. SSC HHV Solar Technologies JV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies JV Place: Ontario, Canada Sector: Solar Product: Canada-based thin film solar panel manufacturing facility. References: SSC & HHV Solar Technologies JV1 This...

  13. ClimateCHECK | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    136 Clarence Street Place: Ottawa, Ontario Zip: K1N 5P8 Sector: Carbon, Efficiency, Services Product: web software Year Founded: 2007 Phone Number: 6132418000 Website:...

  14. Brookfield Renewable Power Corp formerly Brascan Power Corp ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Brookfield Renewable Power Corp formerly Brascan Power Corp Jump to: navigation, search Name: Brookfield Renewable Power Corp (formerly Brascan Power Corp) Place: Toronto, Ontario,...

  15. Reionization histories of Milky Way mass halos (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, Stanford University, Stanford, CA 94305 (United States) CITA, University of Toronto, Toronto, Ontario ...

  16. 1

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    K. Khlopenkov Canada Centre for Remote Sensing, NRCan Ottawa, Ontario Z. Li Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland...

  17. Linamar Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Corporation Jump to: navigation, search Name: Linamar Corporation Place: Ontario, Canada Zip: N1H 1C5 Product: String representation "Linamar Corpora ... ration markets." is...

  18. Rumble Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Rumble Energy Jump to: navigation, search Name: Rumble Energy Place: Toronto, Ontario, Canada Product: Toronto-based Rumble Energy is a small scale PV system installer that focuses...

  19. AWSL The Remington Group JV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    JV Jump to: navigation, search Name: AWSL & The Remington Group JV Place: Ontario, Canada Sector: Solar Product: Canada-based JV to install rooftop solar panels. References:...

  20. Constellation Energy Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Constellation Energy Corp. Place: Toronto, Ontario, Canada Sector: Renewable Energy Product: A Toronto-based subsidiary of EnerAsia Renewable...

  1. Timminco Limited | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Limited Jump to: navigation, search Name: Timminco Limited Place: Toronto, Ontario, Canada Zip: M5H 1J9 Product: Canadian manufacturer of magnesium and silicon; operates its...

  2. Everbrite Industries Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Everbrite Industries Inc. Place: Toronto, Ontario, Canada Zip: M1R 2T6 Sector: Solar Product: Everbrite Industries is an electrical contractor...

  3. MHK Technologies/Kinetic Hydropower System KHPS | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Project(s) where this technology is utilized *MHK ProjectsRoosevelt Island Tidal Energy RITE *MHK ProjectsCornwall Ontario River Energy CORE Technology Resource Click here...

  4. WIPP Update 4_22_14

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2, 2 014 WIPP's w aste d isposal p anels As e ntries i nto W IPP's u nderground c ontinue, i t i s h elpful t o u nderstand t he l ayout o f t he u nderground facility. C urrently, ...

  5. WIPP Update 3 28 14

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    8, 2 014 Aerosol T est f or H EPA F ilters C omplete An i n---service t est o f W IPP's h ... f rom t he H EPA filter u nits, a nd t o a dd a n a dditional l evel o f d etection. ...

  6. CX-001149: Categorical Exclusion Determination

    Energy.gov [DOE]

    Liquefied Natural Gas Dispenser Installation at Ontario, California AirportCX(s) Applied: A1, A9, B2.2, B2.5, B3.6, B5.1Date: 03/09/2010Location(s): Ontario, CaliforniaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  7. DNFSB recommendation 94-1 Hanford site integrated stabilization management plan

    SciTech Connect

    McCormack, R.L.

    1997-05-07

    In May 1994, the Defense Nuclear Facilities Safety Board (DNFSB) issued DNFSB Recommendation 94-1 (Conway 1994), which identified concerns related to US Department of Energy (DOE) management of legacy fissile materials remaining from past defense production activities. The DNFSB expressed concern about the existing storage conditions for these materials and the slow pace at which the conditions were being remediated. The DNFSB also expressed its belief that additional delays in stabilizing these fissile materials would be accompanied by further deterioration of safety and unnecessary increased risks to workers and the public. In February 1995, DOE issued the DNFSB Recommendation 94-1 Implementation Plan (O`Leary 1995) to address the concerns identified in DNFSB Recommendation 94-1. The Implementation Plan (IP) identifies several DOE commitments to achieve safe interim storage for the legacy fissile materials, and constitutes DOE`s baseline DNFSB Recommendation 94-1 Integrated Program Plan (IPP). The IPP describes the actions DOE plans to implement within the DOE complex to convert its excess fissile materials to forms or conditions suitable for safe interim storage. The IPP was subsequently supplemented with an Integrated Facilities Plan and a Research and Development Plan, which further develop complex-wide research and development and long-range facility requirements and plans. The additions to the baseline IPP were developed based on a systems engineering approach that integrated facilities and capabilities at the various DOE sites and focused on attaining safe interim storage with minimum safety risks and environmental impacts. Each affected DOE site has developed a Site Integrated Stabilization Management Plan (SISMP) to identify individual site plans to implement the DNFSB Recommendation 94-1 IPP. The SISMPs were developed based on the objectives, requirements, and commitments identified in the DNFSB Recommendation 94-1 IP. The SISMPs also supported

  8. Livingston Parish Landfill Methane Recovery Project (Feasibility Study)

    SciTech Connect

    White, Steven

    2012-11-15

    The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report

  9. The application of nuclear power and propulsion for space exploration missions

    SciTech Connect

    Zubrin, R.M.; Sulmeisters, T.K. )

    1992-07-01

    An approach to integrating nuclear technology into space exploration missions is advanced that is based on conditioning nuclear technology to be broadly applicable across the existing mission set. Two similar baselines are presented for small nuclear thermal rocket (NTR) engines for exploration missions. Small NTR engines are also examined in terms of their use in manned Mars missions, and the Integrated Power and Propulsion Stage (IPPS) is illustrated for providing electric power and direct thermal thrust for a variety of missions. An IPPS is proposed for use in the Titan IV launch, earth orbital missions, and for applications such as instrument delivery and exploration missions. The paper concludes the review of NTR engine technology possibilities by suggesting that the keys to integrating NTR engines are versatility and synergism. 8 refs.

  10. Source Term Analysis for the WIPP Release Quantity 5-28-14

    Office of Environmental Management (EM)

    Source T erm A nalysis f or t he W IPP R elease Q uantity Jeff W hicker, M att G riffin, C hristine B ullock, M ichael M cNaughton, W illiam E isele ( Bill), M urray M oore The c alculations b elow p rovide a n i nitial r ough o rder o f m agnitude e stimate o f t he a irborne r elease quantity i n P anel 7 , R oom 7 , a t t he W IPP s ite s tarting a bout F ebruary 1 4, 2 014. F urther, w e p rovide a n initial a ssessment o f t he p ossibility f or l eakage f rom m ore t han o ne d rum u sing

  11. Fast deterministic switching in orthogonal spin torque devices via the control of the relative spin polarizations

    SciTech Connect

    Park, Junbo; Buhrman, R. A.; Ralph, D. C.; Kavli Institute at Cornell, Ithaca, New York 14853

    2013-12-16

    We model 100 ps pulse switching dynamics of orthogonal spin transfer (OST) devices that employ an out-of-plane polarizer and an in-plane polarizer. Simulation results indicate that increasing the spin polarization ratio, C{sub P}?=?P{sub IPP}/P{sub OPP}, results in deterministic switching of the free layer without over-rotation (360 rotation). By using spin torque asymmetry to realize an enhanced effective P{sub IPP}, we experimentally demonstrate this behavior in OST devices in parallel to anti-parallel switching. Modeling predicts that decreasing the effective demagnetization field can substantially reduce the minimum C{sub P} required to attain deterministic switching, while retaining low critical switching current, I{sub p}???500??A.

  12. Ways to improve the efficiency and reliability of radio frequency driven negative ion sources for fusion

    SciTech Connect

    Kraus, W.; Briefi, S.; Fantz, U.; Gutmann, P.; Doerfler, J.

    2014-02-15

    Large RF driven negative hydrogen ion sources are being developed at IPP Garching for the future neutral beam injection system of ITER. The overall power efficiency of these sources is low, because for the RF power supply self-excited generators are utilized and the plasma is generated in small cylindrical sources (“drivers”) and expands into the source main volume. At IPP experiments to reduce the primary power and the RF power required for the plasma production are performed in two ways: The oscillator generator of the prototype source has been replaced by a transistorized RF transmitter and two alternative driver concepts, a spiral coil, in which the field is concentrated by ferrites, which omits the losses by plasma expansion and a helicon source are being tested.

  13. WIPP Update 8_15_14

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A ugust 1 5, 2014 Town H all v ideo, a dditional p hotos o f S ecretary's v isit p osted Energy S ecretary E rnest M oniz, S enator T om U dall, S enator M artin H einrich, C ongressman S teve P earce, a nd N ew Mexico E nvironment S ecretary R yan F lynn v isited C arlsbad e arlier t his w eek, p articipating i n a t own h all m eeting and a n a ll---employee m eeting a t t he W IPP s ite. T hey a lso t oured t he a bove g round p ortions o f t he W IPP f acility. Photos a nd a l ink t o a v

  14. Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)

    Energy Information Administration (EIA) (indexed site)

    1 : U.S. Energy Markets Summary Either scripts and active content are not permitted to run or Adobe Flash Player version ${version_major}.${version_minor}.${version_revision} or greater is not installed. Get Adobe Flash Player a Includes lease condensate. b Total consumption includes Independent Power Producer (IPP) consumption. c Renewable energy includes minor components of non-marketed renewable energy that is neither bought nor sold, either directly or indirectly, as inputs to marketed

  15. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    7 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant Project 2014 Waste Minimization Report, Permit Number NM4890139088-TSDF Dear Mr. Kieling: The purpose of this letter is to provide you with the Waste Isolation Pilot Plant {WIPP) Project 2014 Waste Minimization Report. This report, required by and prepared in accordance with the W IPP Hazardous Waste Facility Permit Part 2,

  16. Microsoft PowerPoint - Triay 4-28-10 EM SSAB Chairs (4-22-10...

    Office of Environmental Management (EM)

    ... SLAC 4,883 7,925 4,600 4,600 3,526 W IPP 240,591 172,375 224,981 234,981 225,000 W est Valley 68,300 73,875 59,933 59,933 60,000 Other 38,631 - 12,551 16,551 6,375 Program ...

  17. Time-domain dynamic opto-rheology study of polymer films using step-scan FTIR time-resolved spectroscopy (S{sup 2}FTIR TRS)

    SciTech Connect

    Wang, H.; Palmer, R.A.; Manning, C.J.; Schoonover, J.R.

    1998-07-01

    Step-scan Fourier transform infrared spectroscopy in conjunction with impulse stress on polymer films has been used to monitor dynamic rheological responses in real time. A novel piezo-electrically-driven polymer microrheometer was employed to apply repetitive impulses to the polymer sample while time-domain spectra were recorded. Recent results include the study of both semi-crystalline polymers such as isotactic polypropylene (iPP) and elastomers such as Estane polyester/polyurethane copolymer and Kraton tri-block copolymer. The spectral changes of iPP are consistent with frequency-domain results. For iPP at room temperature, large differences in the response times of different absorption bands are not seen. However, the orientation response of the CH{sub 3} rocking mode is slightly slower than the responses of the backbone modes. To the authors` knowledge, this is the first reported successful step-scan FTIR time-domain dynamic polymer opto-rheology experiment. The advantages of the time-domain experiment over the frequency-domain experiment are also discussed briefly. This technique appears to be applicable to a variety of polymer samples, and examples from additional results are illustrated.

  18. Mixing of Isotactic and Syndiotactic Polypropylenes in the Melt

    SciTech Connect

    CLANCY,THOMAS C.; PUTZ,MATHIAS; WEINHOLD,JEFFREY D.; CURRO,JOHN G.; MATTICE,WAYNE L.

    2000-07-14

    The miscibility of polypropylene (PP) melts in which the chains differ only in stereochemical composition has been investigated by two different procedures. One approach used detailed local information from a Monte Carlo simulation of a single chain, and the other approach takes this information from a rotational isomeric state model devised decades ago, for another purpose. The first approach uses PRISM theory to deduce the intermolecular packing in the polymer blend, while the second approach uses a Monte Carlo simulation of a coarse-grained representation of independent chains, expressed on a high-coordination lattice. Both approaches find a positive energy change upon mixing isotactic PP (iPP) and syndiotactic polypropylene (sPP) chains in the melt. This conclusion is qualitatively consistent with observations published recently by Muelhaupt and coworkers. The size of the energy chain on mixing is smaller in the MC/PRISM approach than in the RIS/MC simulation, with the smaller energy change being in better agreement with the experiment. The RIS/MC simulation finds no demixing for iPP and atactic polypropylene (aPP) in the melt, consistent with several experimental observations in the literature. The demixing of the iPP/sPP blend may arise from attractive interactions in the sPP melt that are disrupted when the sPP chains are diluted with aPP or iPP chains.

  19. New Mexicans` perceptions of Los Alamos National Laboratory. Final report

    SciTech Connect

    1994-09-01

    Since May, 1990, the Institute for Public Policy (IPP) has published Quarterly Profiles (QPs) of New Mexico`s citizenry. Each QP has focused on a different issue, but they have all asked a set of standard items, including questions about the public`s perceptions of the Los Alamos National Laboratories (LANL). Each year, the IPP has used the University of New Mexico`s Survey Research Center to conduct a telephone survey of a representative random sample of New Mexicans, and respondents were asked whether they had favorable or unfavorable views of LANL and the degree to which they perceived LANL as an environmentally responsible institution. As a result of this sustained research effort, the IPP now has a collection of fifteen consecutive QPs. With an aggregate sample size of over 8800, we are now able to make precise statistical inferences with greater confidence than was possible when using individual QP samples. Such an extremely large sample mitigates two kinds of common survey research problems.

  20. Gas turbine CHP leads Italy`s energy drive

    SciTech Connect

    Jeffs, E.

    1995-11-01

    When Italy abandoned its nuclear power program, it was the signal for the electricity market to open to industrial CHP and independent power production. This move raised energy efficiency and cut pollution, as a prelude to the privatization of the electric utility system. The Privatization of ENEL, the National Electricity Authority, is expected to happen next year, but not before a significant component of independent power generation is already in place. ENEL itself was only created in 1963 and some of the former power companies have reemerged as the leading IPP`s. Although combined cycle and IPP capacity is only 5000 MW, it is expected to increase to 15,000 MW by the year 2000. In abandoning nuclear power, Italy may have given up on an unquestionably clean thermal energy source, but an intensive drive into private power with combined cycle, repowering, and industrial CHP schemes is achieving some worthwhile improvements in energy efficiency, and a cleaner environment than what went before. 3 figs., 1 tab.

  1. In-country and lending institution environmental requirements for thermal power plants in the Philippines and India

    SciTech Connect

    Lehman, A.T.; Khanna, R.

    1996-11-01

    Diverse environmental reviews and approvals are required by both Government and non-government organizations (NGOs) for licensing or permitting of major thermal power plants in Asia; specifically, India and Philippines. The number and type of approvals required for a specific project vary depending on site characteristics, fuel source, project-specific design and operating parameters as well as type of project financing. A model 400 MW coal-fired project located in Asia is presented to illustrate the various lender and host country environmental guidelines. A case study of the environmental reviews and approvals for Ogden Quezon Power, Inc. Project (Quezon Province, Republic of the Philippines) is also included. A list of acronyms is provided at the paper`s end. As independent power project (IPP) developers seek financing for these capital-intensive infrastructure projects, a number of international finance/lending institutions are likely to become involved. Each lender considers different environmental aspects of a project. This paper compares relevant environmental requirements of various lenders which finance IPPs and their interest in a project`s environmental review. Finally, the authors of this paper believe that the environmental review process can bring together many parties involved with IPP development, including local and central governments, non government organizations, various lenders (such as multilateral and export credit agencies) as well as project proponents. Environmental review provides input opportunity for interested and affected parties. Airing environmental issues in open forums such as public hearings or meetings helps ensure projects are not evaluated without public input.

  2. Morgan Solar Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Toronto, Ontario, Canada Zip: M6J 1C5 Product: Canadian VC-backed concentrating photovoltaic (CPV) technology developer. Coordinates: 43.64856, -79.385324 Show Map Loading...

  3. Cyrium Technologies Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Place: Ottowa, Ontario, Canada Zip: K1A 0R6 Product: Canadian manufacturer of GaAs photovoltaic (PV) cells for terrestrial and space use. Coordinates: 38.554325, -121.784714...

  4. transport Lau, Hoi-Kwan; James, Daniel F. V. [Department of Physics...

    Office of Scientific and Technical Information (OSTI)

    Stark effect in rapid ion transport Lau, Hoi-Kwan; James, Daniel F. V. Department of Physics, University of Toronto, 60 Saint George Street, Toronto, M5S 1A7 Ontario (Canada) 71...

  5. Hamiltonian model Gamel, Omar; James, Daniel F. V. [Department...

    Office of Scientific and Technical Information (OSTI)

    of the effective Hamiltonian model Gamel, Omar; James, Daniel F. V. Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7 (Canada) 71...

  6. CarbonFree Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    CarbonFree Technology Jump to: navigation, search Logo: CarbonFree Technology Name: CarbonFree Technology Address: 22 St. Clair Ave. E., Suite 1103 Place: Toronto, Ontario Country:...

  7. Calendar | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    ICCE 2015: 4th International Conference & Exhibition on Clean Energy Location: Ottawa, Ontario, Canada (http:icce2015.iaemm.com) Groups: Clean and Renewable Energy 1 of 11...

  8. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Centre for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 1A7 (Canada)","2011-03-15T04:00:00Z",21537374,"10.1103PHYSREVA.83.032101",,,"Jo...

  9. Fermilab | Newsroom | Press Releases | May 2, 2013: COUPP-60...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    seen in the COUPP-60 detector, located a mile and a half underground at SNOLAB in Ontario, Canada. The bubble appears as a black semi-circle on the lower left-hand side of the...

  10. ChemCam contributions to the Lunar and Planetary Science Conference...

    Office of Scientific and Technical Information (OSTI)

    Paris-Sud CEA NASA Ames UNM PSI CNES BAERI IRAPCNRS Delaware State U. LANL Mt. Holyoke College Caltech CSA U. Western Ontario Oregon State U. University of Michigan MPS ANU Malin ...

  11. Application to Export Electric Energy OE Docket No. EA-290-B...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    76, No. 41 - Mar. 2, 2011 Application to Export Electric Energy OE Docket No. EA-290-B Ontario Power Generation: Federal Register Notice Volume 76, No. 41 - Mar. 2, 2011 ...

  12. Mapping quadrupole collectivity in the Cd isotopes: The breakdown...

    Office of Scientific and Technical Information (OSTI)

    Department of Physics, University of Guelph, Guelph, Ontario, N1G2W1 (Canada) (Canada) Department of Astronomy and Physics, Saint Mary's University, Halifax, Nova Scotia, B3H3C3 ...

  13. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Doncheski, Michael A. (1) Fleming, Sean Physics Department, University of Toronto, Toronto, Ontario, Canada M5S 1A7 (Canada) (1) Labun, Ou Z. (1) Leibovich, Adam (1) MCKENNA,SEAN ...

  14. Decoherence and dephasing errors caused by the dc Stark effect...

    Office of Scientific and Technical Information (OSTI)

    Department of Physics, University of Toronto, 60 Saint George Street, Toronto, M5S 1A7 Ontario (Canada) Publication Date: 2011-06-15 OSTI Identifier: 21550080 Resource Type: ...

  15. Comparison of the attempts of quantum discord and quantum entanglement...

    Office of Scientific and Technical Information (OSTI)

    Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 1A7 (Canada) Publication Date: 2011-03-15 OSTI Identifier: ...

  16. Time-averaged quantum dynamics and the validity of the effective...

    Office of Scientific and Technical Information (OSTI)

    Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7 (Canada) Publication Date: 2010-11-15 OSTI Identifier: 21528563 Resource Type: Journal ...

  17. The Ho-Ni-Ge system: Isothermal section and new rare-earth nickel...

    Office of Scientific and Technical Information (OSTI)

    ... Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada) Institute SPIN-CNR and Dipartimento di Chimica e Chimica Industriale, Universit di ...

  18. chang(2)-99.PDF

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Cloud and Radiation Quantities Using ScaRaB Visible and Shortwave Measurements F.-L. Chang, Z. Li, and A. P. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada...

  19. Harbec Plastics: 750kW CHP Application - Project Profile | Department...

    Energy.gov [DOE] (indexed site)

    750kW combined heat and power (CHP) project in Ontario, New York to improve plant-wide energy performance. Harbec Plastics: 750kW CHP Application - Project Profile ...

  20. Wayne County, New York: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Macedon, New York Marion, New York Newark, New York Ontario, New York Palmyra, New York Red Creek, New York Rose, New York Savannah, New York Sodus Point, New York Sodus, New York...

  1. Axion Battery Products Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Axion Battery Products Inc Jump to: navigation, search Name: Axion Battery Products Inc Place: Woodbridge, Ontario, Canada Zip: L4L 5Y9 Product: Subsidiary of Axion Power...

  2. Symmetry plays a key role in the erasing of patterned surface...

    Office of Scientific and Technical Information (OSTI)

    75005 Paris (France) Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada) (France) Publication Date: 2015-08-03 OSTI Identifier: ...

  3. MEMORANDUM TO: FILE

    Office of Legacy Management (LM)

    ... -7405 Y en&-318, W -7405 eng-252., V-26-021 eng14: and iV-26-021 eng-21' with Eldorado Mining and Befining, Ltd. (1) Work was performed at Port Hope, Ontario, Canada, where the ...

  4. Spheral Solar Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Place: Cambridge, Ontario, Canada Zip: N3E 1A9 Sector: Solar Product: Developing a manufacturing process for silicon solar cells in the form of silicon spheres bonded to aluminium...

  5. Eyelit Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Mississauga, Ontario, Canada Zip: L4Z 3P8 Product: Provides management software for manufacturing lines. Has at least one contract with an undisclosed CIGS PV developer, in August...

  6. DOE FILE NO.

    Office of Legacy Management (LM)

    Atomic Energy Commission were stored and processed at the Lake Ontario Ordnance Works (now known as the Niagara Falls Storage Site (NFSS) and associated off-site properties) in ...

  7. OZZ Solar Inc Sky Ozz International | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    OZZ Solar Inc Sky Ozz International Jump to: navigation, search Name: OZZ Solar Inc. (Sky Ozz International) Place: Concord, Ontario, Canada Zip: L4K 4R1 Sector: Solar Product:...

  8. Weidmuller | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Weidmuller Place: Markham, Ontario, Canada Zip: L3R 5H6 Sector: Solar, Wind energy Product: String representation "Canada-based Ma ... wind turbines." is too long....

  9. Natural Resources Canada | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Canada Jump to: navigation, search Logo: Natural Resources Canada Name: Natural Resources Canada Address: 580 Booth Place: Ottawa, Ontario Zip: K1A 0E4 Number of Employees:...

  10. Spectra Nova Technologies Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name: Spectra Nova Technologies Inc. Place: Ottawa, Ontario, Canada Zip: K2E 7J5 Sector: Solar Product: A Canadian based technology company, active in...

  11. University of Waterloo UW | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name: University of Waterloo (UW) Place: Waterloo, Ontario, Canada Zip: N2L 3G1 Product: Research-intensive university that has received grants to pursue...

  12. Taransys Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Taransys Inc Jump to: navigation, search Name: Taransys Inc. Place: Ottawa, Ontario, Canada Zip: K2K 2E2 Product: The company specialises in gallium nitride technologies, focussing...

  13. Novagen Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Novagen Solar Jump to: navigation, search Name: Novagen Solar Place: Toronto, Ontario, Canada Zip: M8X 2Y8 Product: Marketer and distributor of PV products based in Toronto....

  14. Helios Energy Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Inc Jump to: navigation, search Name: Helios Energy Inc. Place: Toronto, Ontario, Canada Zip: M6G 1S4 Sector: Solar Product: Toronto-based solar power project developer....

  15. RESCo Energy Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Inc Jump to: navigation, search Name: RESCo Energy Inc Place: Toronto, Ontario, Canada Zip: M5X 1C1 Sector: Buildings Product: RESCo specializes in turn-key on-site clean...

  16. Conserval aka SolarWall | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Conserval (aka SolarWall) Place: Toronto, Ontario, Canada Zip: M3J2N5 Sector: Solar Product: Makes solar passive heating and cooling products,...

  17. Pure Energies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energies Jump to: navigation, search Name: Pure Energies Place: Toronto, Ontario, Canada Zip: ON M5X1C7 Sector: Solar Product: Canada-based residential rooftop solar system...

  18. 6N Silicon Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Inc Jump to: navigation, search Name: 6N Silicon Inc Place: Mississauga, Ontario, Canada Zip: L5T 1E6 Sector: Solar Product: Canadian manufactuer of upgraded metallurgical...

  19. Schneider Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Jump to: navigation, search Name: Schneider Power Place: Toronto, Ontario, Canada Zip: M5V 2P2 Sector: Renewable Energy, Wind energy Product: Canada-based electricity energy...

  20. Plan B Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    B Energy Jump to: navigation, search Name: Plan B Energy Place: Suite 402, Ontario, Canada Zip: M4P 0A3 Product: Toronto-based PV project developer. References: Plan B Energy1...

  1. The Remington Group Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Inc Jump to: navigation, search Name: The Remington Group Inc Place: Vaughan, Ontario, Canada Zip: L4K 1Y2 Product: Canada-based real estate developer. Coordinates: 32.80683,...

  2. Blue Peter Project Group Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name: Blue Peter Project Group Inc Place: Oakville, Ontario, Canada Zip: L6M 2B8 Sector: Solar Product: Alternative energy project developer in Canada,...

  3. Viva Solar Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Inc Jump to: navigation, search Name: Viva Solar Inc Place: Thornhill, Ontario, Canada Zip: L3T 7R9 Product: Manufactures monocrystalline cells and modules, and products...

  4. Arise Technologies Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Arise Technologies Corp Place: Kitchener, Ontario, Canada Zip: N2E 3B3 Product: Canada-based manufacturer of proprietary "thin-film on silicon...

  5. Canadian Solar Inc CSI | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Canadian Solar Inc (CSI) Place: Kitchener, Ontario, Canada Zip: N2K 3S2 Sector: Solar Product: Canada-incorporated, China-based manufacturer of...

  6. Futrex Energy Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Inc Jump to: navigation, search Name: Futrex Energy Inc Place: Okaville, Ontario, Canada Zip: L6J0A2 Product: A clean tech energy research and business development company....

  7. Phoenix Canada Oil Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Canada Oil Company Place: Toronto, Ontario, Canada Zip: M5J 1S9 Sector: Hydro, Hydrogen, Solar Product: Oil and gas exploration company, with a US division, Phoenix...

  8. BPA-2014-01924-FOIA Response

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nordmin Engineering Ltd. Attn: Harold Harkonen, P. Eng., Consulting Specialist 160 Logan Avenue Thunder Bay, Ontario Canada P7A6R1 Mr. Harkonen: We have received your request...

  9. DOE - Fossil Energy:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MN, and to export the same volume at Baudette, MN. Gas will supply papermill at Fort Frances, Ontario. 1264 FE97-26-NG (1 FE 71,390) 031997 Progas U.S.A., Inc. 2-year,...

  10. Li-Z

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Analysis of Cloud Spectral Radiance/Irradiance at the Surface and Top-of-the-Atmosphere from Modeling and Observations Z. Li and A. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada M. Cribb Intermap Technologies Ltd. Ottawa, Ontario, Canada Introduction In view of some reported discrepancies concerning cloud parameter retrievals and cloud absorption (Stephens and Tsay 1990; Li et al. 1999; Rossow and Schiffer 1999) it is useful to compare cloud spectral signatures derived

  11. li(1)-98.pdf

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    23 Radiative Forcing by Smoke Aerosols Determined from Satellite and Surface Measurements Z. Li Canada Centre for Remote Sensing Ottawa, Ontario, Canada L. Kou Intermap Technologies Ottawa, Ontario, Canada Introduction As a potential offsetting agent to the greenhouse effect, aerosols are receiving increasing attention in the atmospheric science community. Notwithstanding, our knowledge of the impact of aerosols on radiation and climate is rather poor and falls well behind that of the greenhouse

  12. li(2)-98.pdf

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    7 A Consistency Analysis of ARESE Measurements Regarding Cloud Absorption Z. Li and A. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada H. W. Barker Atmospheric Environment Service Downsview, Ontario, Canada G. L. Stephens and P. Partain Colorado State University Fort Collins, Colorado P. Minnis NASA-Langley Research Center Hampton, Virginia Introduction In an attempt to resolve the recent debate over the cloud absorption anomaly, the U.S. Department of Energy sponsored a

  13. barker-99.PDF

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Overlapping Cloud: What Radars Give and What Models Require H. W. Barker Atmospheric Environment Service Ontario, Canada E. E. Clothiaux, T. P. Ackerman, and R. T. Marchand The Pennsylvania State University University Park, Pennsylvania Z. Li Canada Centre for Remote Sensing Ottawa, Ontario, Canada Q. Fu Dalhousie University Halifx, Nova Scotia, Canada Introduction Large-scale models (LSMs) of earth's atmosphere parameterize clouds and radiative transfer for domains measuring thousands of square

  14. Building America Case Study:Cladding Attachment Over Mineral Fiber Insulation Board (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cladding Attachment Over Mineral Fiber Insulation Board Ontario, Canada PROJECT INFORMATION Project Name: Climate-Exposed Long- Term Testing of Mineral Fiber Insulation Board Under Cladding Attachment Load Location: Ontario, Canada Partners: Building Science Laboratories, buildingsciencelabs.com Building Science Corporation, buildingscience.com Building Component: Above-grade frame wall Application: Both new construction and retrofit; wood-framed buildings Year Tested: 2012-2013 Applicable

  15. Toxic effects in C57B1/6 and DBA/2 mice following consumption of halogenated aromatic hydrocarbon-contaminated Great Lakes coho salmon (Oncorhynchus kisutch Walbaum)

    SciTech Connect

    Cleland, G.B.; Leatherland, J.F.; Sonstegard, R.A.

    1987-11-01

    Diets containing coho salmon (Oncorhynchus kisutch Walbaum) from the Pacific Ocean or from Lakes Erie, Michigan, and Ontario (containing a gradation from low to high of halogenated aromatic hydrocarbons, (HAHs)) were fed to C57B1/6 and DBA/2 mice. Following a 4-month dietary exposure to Lake Ontario salmon, both strains of mice demonstrated hepatomegaly. The ethoxyresorufin-O-deethylase (ERR) enzyme levels were elevated in livers of C57B1/6 mice fed diets of salmon from all of the Great Lakes studied, with exceptionally high levels detected in C57B1/6 mice fed Lake Ontario salmon. Induction of ERR enzyme levels was detected in DBA/2 mice only following dietary exposure to Lake Ontario salmon. Serum levels of L-thyroxine (T4) and triiodo-L-thryonine (T3) were suppressed in C57B1/6 mice following consumption of Lake Ontario coho salmon, but T3 and T4 levels remained unchanged in DBA/2 mice. In general, pathobiological effects correlated with both dietary HAH exposure level and Ah receptor status.

  16. A Population-Based Study of the Fractionation of Postlumpectomy Breast Radiation Therapy

    SciTech Connect

    Ashworth, Allison; Cancer Center of Southeastern Ontario, Kingston, Ontario ; Kong, Weidong; Whelan, Timothy; Mackillop, William J.

    2013-05-01

    Purpose: The optimal fractionation schedule of post lumpectomy radiation therapy remains controversial. The objective of this study was to describe the fractionation of post-lumpectomy radiation therapy (RT) in Ontario, before and after the seminal Ontario Clinical Oncology Group (OCOG) trial, which showed the equivalence of 16- and 25-fraction schedules. Methods and Materials: This was a retrospective cohort study conducted by linking electronic treatment records to a population-based cancer registry. The study population included all patients who underwent lumpectomy for invasive breast cancer in Ontario, Canada, between 1984 and 2008. Results: Over the study period, 41,747 breast cancer patients received post lumpectomy radiation therapy to the breast only. Both 16- and 25-fraction schedules were commonly used throughout the study period. In the early 1980s, shorter fractionation schedules were used in >80% of cases. Between 1985 and 1995, the proportion of patients treated with shorter fractionation decreased to 48%. After completion of the OCOG trial, shorter fractionation schemes were once again widely adopted across Ontario, and are currently used in about 71% of cases; however, large intercenter variations in fractionation persisted. Conclusions: The use of shorter schedules of post lumpectomy RT in Ontario increased after completion of the OCOG trial, but the trial had a less normative effect on practice than expected.

  17. Turn emergency generators into dollars

    SciTech Connect

    Sheahen, T.P.; Stegen, G.R.

    1997-10-01

    The concept of distributed, dispatchable power generation is essentially the reverse of interruptible service. It can be understood by regarding both power and money as vectors: when the direction of the power flow switches, so does the direction of the money flow. At a signal given by the utility, a factory activates its emergency generating system and briefly becomes an independent power producer (IPP), feeding power into a local region of the grid. Upon receipt of another signal, it retires from that role. It may, however, continue to generate power for its own use.

  18. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 2

    SciTech Connect

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01

    In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  19. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 1

    SciTech Connect

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01

    In July, 1994, a team of materials specialists from Sandia and U S Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  20. Modeling of a negative ion source. I. Gas kinetics and dynamics in the expansion region

    SciTech Connect

    Taccogna, F.; Schneider, R.; Longo, S.; Capitelli, M.

    2007-07-15

    The vibrational population distribution of the electronic ground state of H{sub 2} in the expansion region of a negative ion source is investigated using a kinetic Monte Carlo model. Operative conditions are referred to the inductively coupled plasma radio frequency negative ion source developed at IPP-Garching. The different excitation and relaxation processes are discussed, both bulk and surface contributions. In particular, due to the relatively high plasma density, the relevant role of direct low energy electron-impact excitation, surface Auger neutralization, and vibration-translation deactivation are recovered. Results of the present model will be used as input data for the neutral source model in the extraction region.

  1. Possibility of nuclear pumped laser experiment using low enriched uranium

    SciTech Connect

    Obara, Toru; Takezawa, Hiroki [Center for Research into Innovative Nuclear Energy Systems Tokyo Institute of Technology 2-12-1-N1-19, Ookayama Meguro-ku, Tokyo 152-8550 (Japan)

    2012-06-06

    Possibility to perform experiments for nuclear pumped laser oscillation by using low enriched uranium is investigated. Kinetic analyses are performed for two types of reactor design, one is using highly enriched uranium and the other is using low enriched uranium. The reactor design is based on the experiment reactor in IPPE. The results show the oscillation of nuclear pumped laser in the case of low enriched uranium reactor is also possible. The use of low enriched uranium in the experiment will make experiment easier.

  2. Micro-size gas turbines create market opportunities

    SciTech Connect

    Scott, W.G.

    1997-09-01

    Power plants in the 25 to 250 kW-size range will enable utilities, IPPs and ESCOs to provide economic power for a variety of applications. Small, low-cost, highly efficient gas turbines provide the utility industry with a four-generation technology that features numerous benefits and potential applications. These include firm power to isolated communities, commercial centers and industries; peak shaving for utility systems to reduce the incremental cost of additional loads; peak shaving for large commercial and industrial establishments to reduce demand charges, as well as standby, emergency power and uninterruptible power supply (UPS).

  3. CX-005978: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    78: Categorical Exclusion Determination CX-005978: Categorical Exclusion Determination Calisolar 16,000 Metric Ton Upgraded Metallurgical-grade Silicon Manufacturing Facility CX(s) Applied: B1.31 Date: 05/23/2011 Location(s): Ontario, Ohio Office(s): Loan Guarantee Program Office The Department of Energy's proposed action is to issue a loan guarantee to Calisolar Incorporated, to retrofit an existing facility at 2525 West Fourth Street in Ontario, Ohio, that would be used to produce 16,000

  4. Copper, nickel, and iron in plumage of three upland gamebird species from non-contaminated environments

    SciTech Connect

    Parker, G.H.

    1985-12-01

    High levels of atmospheric contamination and particulate fallout characterizing the Industrial Basin of the copper-nickel smelting operations at Sudbury, Ontario, were shown to be reflected in the feather chemistry of resident ruffed grouse populations. Of considerable concern, however, is the paucity of information on background concentrations of elemental metals that could be considered normal for non-contaminated environments. The present report examines concentrations of copper, nickel and iron in the plumage of three tetraonid species collected from remote and undisturbed areas in Northern Ontario and Quebec.

  5. The commercialization of magnetohydrodynamic electric power plants

    SciTech Connect

    Weinstein, R.E.

    1993-12-31

    The successful development of Magnetohydrodynamics (MHD) will provide an ultra clean, highly efficient alternative to other methods of coal-fired electric Power generation. A development path that could bring coal-fired MHD electric power plants to competitive commercial status is described in this paper. The paper discusses the scale-ups, the timing, and technical hurdles that face this technology as it progresses from its present status of small-scale demonstrations and begins its competition for electric utility acceptance. Coal-fired MHD power has at least four major markets: (1) New utility generation. (2) Utility retrofit/repowering applications. (3) New independent power production (IPP). (4) Large industrial cogeneration application. Of these, the largest market for MHD is expected to be the new electric utility/IPP generation market, those new units required to supply growth in power demand and to replace retired capacity. This market sector is the focus of this discussion. This paper describes the commercial pressures and inertias that motivate the entry of any new technology into the generation supply market. It then shows a development path that could bring coal-fired MHD electric power plants to competitive commercial status in the electric power industry.

  6. Generation and Transmission Maximization Model

    Energy Science and Technology Software Center

    2001-04-05

    GTMax was developed to study complex marketing and system operational issues facing electric utility power systems. The model maximizes the value of the electric system taking into account not only a single system''s limited energy and transmission resources but also firm contracts, independent power producer (IPP) agreements, and bulk power transaction opportunities on the spot market. GTMax maximizes net revenues of power systems by finding a solution that increases income while keeping expenses at amore » minimum. It does this while ensuring that market transactions and system operations are within the physical and institutional limitations of the power system. When multiple systems are simulated, GTMax identifies utilities that can successfully compete on the market by tracking hourly energy transactions, costs, and revenues. Some limitations that are modeled are power plant seasonal capabilities and terms specified in firm and IPP contracts. GTMax also considers detaile operational limitations such as power plant ramp rates and hydropower reservoir constraints.« less

  7. The development of the radio frequency driven negative ion source for neutral beam injectors (invited)

    SciTech Connect

    Kraus, W.; Fantz, U.; Franzen, P.; Froeschle, M.; Heinemann, B.; Riedl, R.; Wuenderlich, D.

    2012-02-15

    Large and powerful negative hydrogen ion sources are required for the neutral beam injection (NBI) systems of future fusion devices. Simplicity and maintenance-free operation favors RF sources, which are developed intensively at the Max-Planck-Institut fuer Plasmaphysik (IPP) since many years. The negative hydrogen ions are generated by caesium-enhanced surface conversion of atoms and positive ions on the plasma grid surface. With a small scale prototype the required high ion current density and the low fraction of co-extracted electrons at low pressure as well as stable pulses up to 1 h could be demonstrated. The modular design allows extension to large source dimensions. This has led to the decision to choose RF sources for the NBI of the international fusion reactor, ITER. As an intermediate step towards the full size ITER source at IPP, the development will be continued with a half-size source on the new ELISE testbed. This will enable to gain experience for the first time with negative hydrogen ion beams from RF sources of these dimensions.

  8. Melting processes of oligomeric α and β isotactic polypropylene crystals at ultrafast heating rates

    SciTech Connect

    Ji, Xiaojing; He, Xuehao E-mail: scjiang@tju.edu.cn; Jiang, Shichun E-mail: scjiang@tju.edu.cn

    2014-02-07

    The melting behaviors of α (stable) and β (metastable) isotactic polypropylene (iPP) crystals at ultrafast heating rates are simulated with atomistic molecular dynamics method. Quantitative information about the melting processes of α- and β-iPP crystals at atomistic level is achieved. The result shows that the melting process starts from the interfaces of lamellar crystal through random dislocation of iPP chains along the perpendicular direction of lamellar crystal structure. In the melting process, the lamellar crystal gradually expands but the corresponding thickness decreases. The analysis shows that the system expansion lags behind the crystallinity decreasing and the lagging extents for α- and β-iPP are significantly different. The apparent melting points of α- and β-iPP crystals rise with the increase of the heating rate and lamellar crystal thickness. The apparent melting point of α-iPP crystal is always higher than that of β-iPP at differently heating rates. Applying the Gibbs-Thomson rule and the scaling property of the melting kinetics, the equilibrium melting points of perfect α- and β-iPP crystals are finally predicted and it shows a good agreement with experimental result.

  9. Trends in independent power production

    SciTech Connect

    1995-12-01

    A 33-person panel recently convened by Future Technology Surveys, Inc., identified a series of the most important IPP trends to have occurred int the past five years, and forecast what will happen in this volatile market over the next five years. The survey was designed to present viewpoints of experts in the United States and was intentionally not international in scope. The most important trends from 1989--1994 are ranked in order of importance as: global market; retail wheeling/open access; exempt wholesale generators (EWGs); Energy Policy Act 1992; increased competition; transmission (better access and policy changes); consolidation of industry; bulk power marketing and sales; open competitive bidding; and almost exclusive shift to large gas projects. There is shift in emphasis, and the introduction of new trends, in IPP executive prediction for the future (1995--1999). Their views, in order of importance, are: retail wheeling; increased globalization; consolidation of industry; competition and direct competition with utilities; open access transmission; restructuring of entire power utility industry; deregulation; electricity as a commodity; and unbundling of integrated monopolies.

  10. CX-000363: Categorical Exclusion Determination

    Energy.gov [DOE]

    United Parcel Service (UPS) Ontario-Las Vegas Liquified Natural Gas CorridorCX(s) Applied: A9Date: 12/11/2009Location(s): Diamond Bar, CaliforniaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  11. 09-008 FOIA Response.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    9, 2008 In reply refer to: DK-7 Mr. Wei Xu UWO 33-463 Platts Ln London, Ontario CANADA N6G3H2 RE: FOIA 09-008 Dear Mr. Xu: This letter is a final response to your request for...

  12. Tritium R&D at AECL Selected Topics

    Office of Environmental Management (EM)

    Tritium R&D at AECL Selected Topics Tritium Focus Group Meeting, Savannah River Site 2014 April 22-24 Hugh Boniface Chalk River Laboratories, Ontario, CANADA Outline of Presentation * Introduction & Background * Tritium Facilities: Laboratories, old and new * Tritium Separations: CECE process * Tritium Properties: Materials * Tritium Exploitation: Batteries, Helium-3 * Other work: Education, environment, biology, fusion, hydrogen UNRESTRICTED / ILLIMITÉ 2 Background UNRESTRICTED /

  13. CX-006900: Categorical Exclusion Determination

    Energy.gov [DOE]

    Industrial Scale-Up of Low-Cost Zero-Emissions Magnesium by Metal Oxygen Separation Technologies ElectrolysisCX(s) Applied: B3.6Date: 09/29/2011Location(s): Kingston, Ontario, Canada, Other LocationOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  14. Pawnee Nation Energy Option Analyses

    SciTech Connect

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-21

    Pawnee Nation of Oklahoma Energy Option Analyses In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Description of Activities Performed The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Findings and Recommendations Due to a lack of financial incentives for renewable energy, particularly at the state level, combined mediocre renewable energy resources, renewable energy development opportunities are limited for Pawnee Nation. However, near-term potential exists for development of solar hot water at the gym, and an exterior wood-fired boiler system at the tribe’s main administrative building. Pawnee Nation should also explore options for developing LFGTE resources in collaboration with the City of Pawnee. Significant potential may also exist for development of bio-energy resources within the next decade. Pawnee Nation representatives should closely monitor

  15. Pawnee Nation Energy Option Analyses

    SciTech Connect

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-31

    introduced two model energy codes Pawnee Nation should consider for adoption. Summary of Current and Expected Future Electricity Usage The research team provided a summary overview of electricity usage patterns in current buildings and included discussion of known plans for new construction. Utility Options Review Pawnee Nation electric utility options were analyzed through a four-phase process, which included: 1) summarizing the relevant utility background information; 2) gathering relevant utility assessment data; 3) developing a set of realistic Pawnee electric utility service options, and 4) analyzing the various Pawnee electric utility service options for the Pawnee Energy Team’s consideration. III. Findings and Recommendations Due to a lack of financial incentives for renewable energy, particularly at the state level, combined mediocre renewable energy resources, renewable energy development opportunities are limited for Pawnee Nation. However, near-term potential exists for development of solar hot water at the gym, and an exterior wood-fired boiler system at the tribe’s main administrative building. Pawnee Nation should also explore options for developing LFGTE resources in collaboration with the City of Pawnee. Significant potential may also exist for development of bio-energy resources within the next decade. Pawnee Nation representatives should closely monitor market developments in the bio-energy industry, establish contacts with research institutions with which the tribe could potentially partner in grant-funded research initiatives. In addition, a substantial effort by the Kaw and Cherokee tribes is underway to pursue wind development at the Chilocco School Site in northern Oklahoma where Pawnee is a joint landowner. Pawnee Nation representatives should become actively involved in these development discussions and should explore the potential for joint investment in wind development at the Chilocco site.

  16. High Density Fuel Development for Research Reactors

    SciTech Connect

    Daniel Wachs; Dennis Keiser; Mitchell Meyer; Douglas Burkes; Curtis Clark; Glenn Moore; Jan-Fong Jue; Totju Totev; Gerard Hofman; Tom Wiencek; Yeon So Kim; Jim Snelgrove

    2007-09-01

    An international effort to develop, qualify, and license high and very high density fuels has been underway for several years within the framework of multi-national RERTR programs. The current development status is the result of significant contributions from many laboratories, specifically CNEA in Argentina, AECL in Canada, CEA in France, TUM in Germany, KAERI in Korea, VNIIM, RDIPE, IPPE, NCCP and RIARR in Russia, INL, ANL and Y-12 in USA. These programs are mainly engaged with UMo dispersion fuels with densities from 6 to 8 gU/cm3 (high density fuel) and UMo monolithic fuel with density as high as 16 gU/cm3 (very high density fuel). This paper, mainly focused on the French & US programs, gives the status of high density UMo fuel development and perspectives on their qualification.

  17. DNFSB recommendation 94-1 Hanford site integrated stabilization management plan - Volumes 1-3

    SciTech Connect

    Gerber, E.W.

    1996-09-30

    The Hanford Site Integrated Stabilization Management Plan (SISMP) was developed in support of the US Department of Energy's (DOE) Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 Integrated Program Plan (IPP). Volume 1 of the SISMP identifies the technical scope and costs associated with Hanford Site plans to resolve concerns identified in DNFSB Recommendation 94-1. Volume 2 of the SISMP provides the Resource Loaded Integrated Schedules for Spent Nuclear Fuel Project and Plutonium Finishing Plant activities identified in Volume 1 of the SISMP. Volume 3 of the SISMP identifies the 35 Plutonium Environmental, Safety, and Health Vulnerabilities. The vulnerabilities range from institutional problems to specific hardware problems. Many of the identified vulnerabilities will be corrected through the stabilization and packaging activities required by the DNFSB Recommendation 94-1 Implementation Plan, the remainder will be corrected as a part of the plutonium handling facilities transition (deactivation) to the Environmental Restoration Program.

  18. Development of Laser Ultrasonic Device for Residual Stress Measurement in Welded Structures

    SciTech Connect

    Subudhi, Manomohan

    2009-03-31

    A CRADA project was performed between BNL and SpectraQuest, Inc. of Richmond, Virginia under the auspices of IPP with the DOE support. The purpose was to jointly support Prokhorov General Physics Institute (GPI), Russian Academy of Sciences of Russia to develop a prototype Laser Ultrasonic Impact Testing (LUIT) device which could be commercialized and marketed. The device is based on laser-generated ultrasonic waves and can be used for measuring residual stresses in welded structures using a nondestructive technique. The work was performed from October 1, 2003 to September 30, 2009. The project resulted in development and validation of a prototype LUIT device. GPI - BNL SpectraQuest partnership developed the LUIT device to the point where it could be commercialized and marketed for the special applications in the manufacturing field.

  19. Analysis of dc harmonics using the three-pulse model for the intermountain power project HVDC transmission

    SciTech Connect

    Dickmander, D.L.; Peterson, K.J.

    1989-04-01

    The harmonic analysis of the dc-side of an HVDC line transmission requires realistic models of the converters, the dc line, and other relevant equipment. These models must include all important paths for harmonic current, and appropriate sources of harmonic voltage generation. The classical converter modeling technique has been demonstrated to be insufficient in field measurements and analysis of the harmonic spectra found on recent HVDC line transmission. For this reason, a new model of the converter bridge which takes into account the major stray capacitances in the converter (the three-pulse model) has been developed, and is described in detail elsewhere. This paper presents comparisons between the classical and three-pulse calculations for the Intermountain Power Project (IPP) HVDC transmission. The calculation results from the three-pulse model agree favorably with the harmonics found in field measurements.

  20. WIPP Update 4_01_14

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    , 2 014 Delay i n D elivery o f P rotective E quipment P ostpones P ersonnel R e---Entry Today's s cheduled p ersonnel r e---entry t o t he W IPP u nderground was p ostponed d ue t o a delivery d elay of the lapel m onitors w orkers w ould w ear o n t heir o uter c lothing t o d etect r adiation. Safety requirements for r e---entry w ork r equire t his t ype o f p ersonal p rotective e quipment a nd e ntry w ill b e postponed u ntil t hey a rrive. Community M eetings S cheduled April 3 --- C

  1. WIPP Update 4_23_14

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3, 2 014 Re---entry t eams a ccess R oom 7 WIPP e mployees r e---entered R oom 7 o f P anel 7 t oday i n a n a ttempt t o d etermine t he location a nd source o f t he F ebruary 1 4 r adiological r elease i n t he u nderground f acility. R oom 7 i s w here t he most recent contact---handled transuranic w aste d isposal a ctivities o ccurred, m aking i t t he m ost l ikely location of t he e vent. The d ay b egan w ith t wo a dvance support t eams e ntering t he W IPP u nderground f acility t o e

  2. WIPP Update 5_12_14

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2, 2 014 Latest u nderground e ntry r eveals m ore i nformation a bout e vent Workers e ntered t he W IPP u nderground f acility a gain o n S aturday t o f urther i nvestigate Room 7 o f Panel 7 , t he s uspected scene f or t he F ebruary 1 4 r adiological e vent. Using a p ortable c amera o n a n e xtender, w orkers w ere a ble t o t ake p ictures o ver t he t op o f s tacked waste c ontainers. T he p hotographs s howed e vidence o f m elted p lastic a nd r ubber o n 5 5---gallon d rums and s

  3. WIPP Update 5_21_14

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2 1, 2 014 WIPP R eviewing N MED A dministrative O rder Yesterday, t he N ew M exico E nvironment D epartment issued an A dministrative O rder r equiring t he Waste I solation P ilot P lant t o d evelop a n itrate s alt b earing w aste c ontainer i solation plan f or t he expedited c losure o f Panel 6 a nd Room 7 o f Panel 7 . T he D epartment i s c ommitted t o p rotecting t he health a nd s afety o f o ur w orkers a t W IPP, t he p ublic a nd t he e nvironment a s w e w ork t o u nderstand t

  4. WIPP Update 7_18_14

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    J uly 1 8, 2014 WIPP t o r educe t ransportation c ontract d rivers Visionary S olutions, a c arrier c ontracted t o t ransport w aste t o W IPP, w ill r educe i ts d river t eams a s a r esult o f t he February e vents t hat s uspended w aste d isposal o perations a t t he f acility. T he t emporary h alt i n s hipments t o WIPP h as s ignificantly r educed t he n eed f or t ransportation s ervices i n t he n ear---term. In a nticipation o f t he d ecline i n s hipments, t he C arlsbad F ield O

  5. Host cells and methods for producing 3-methyl-2-buten-1-ol, 3-methyl-3-buten-1-ol, and 3-methyl-butan-1-ol

    DOEpatents

    Chou, Howard H.; Keasling, Jay D.

    2011-07-26

    The invention provides for a method for producing a 5-carbon alcohol in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses a first enzyme capable of catalyzing the dephosphorylation of an isopentenyl pyrophosphate (IPP) or dimethylallyl diphosphate (DMAPP), such as a Bacillus subtilis phosphatase (YhfR), under a suitable condition so that 5-carbon alcohol is 3-methyl-2-buten-1-ol and/or 3-methyl-3-buten-1-ol is produced. Optionally, the host cell may further comprise a second enzyme capable of reducing a 3-methyl-2-buten-1-ol to 3-methyl-butan-1-ol, such as a reductase.

  6. On fast reactor kinetics studies

    SciTech Connect

    Seleznev, E. F.; Belov, A. A.; Matveenko, I. P.; Zhukov, A. M.; Raskach, K. F.

    2012-07-01

    The results and the program of fast reactor core time and space kinetics experiments performed and planned to be performed at the IPPE critical facility is presented. The TIMER code was taken as computation support of the experimental work, which allows transient equations to be solved in 3-D geometry with multi-group diffusion approximation. The number of delayed neutron groups varies from 6 to 8. The code implements the solution of both transient neutron transfer problems: a direct one, where neutron flux density and its derivatives, such as reactor power, etc, are determined at each time step, and an inverse one for the point kinetics equation form, where such a parameter as reactivity is determined with a well-known reactor power time variation function. (authors)

  7. U.S. Department of Energy's initiatives for proliferation prevention program: solidification technologies for radioactive waste treatment in Russia

    SciTech Connect

    Pokhitonov, Y.; Kelley, D.

    2008-07-01

    Large amounts of liquid radioactive waste have existed in the U.S. and Russia since the 1950's as a result of the Cold War. Comprehensive action to treat and dispose of waste products has been lacking due to insufficient funding, ineffective technologies or no proven technologies, low priority by governments among others. Today the U.S. and Russian governments seek new, more reliable methods to treat liquid waste, in particular the legacy waste streams. A primary objective of waste generators and regulators is to find economical and proven technologies that can provide long-term stability for repository storage. In 2001, the V.G. Khlopin Radium Institute (Khlopin), St. Petersburg, Russia, and Pacific Nuclear Solutions (PNS), Indianapolis, Indiana, began extensive research and test programs to determine the validity of polymer technology for the absorption and immobilization of standard and complex waste streams. Over 60 liquid compositions have been tested including extensive irradiation tests to verify polymer stability and possible degradation. With conclusive scientific evidence of the polymer's effectiveness in treating liquid waste, both parties have decided to enter the Russian market and offer the solidification technology to nuclear sites for waste treatment and disposal. In conjunction with these efforts, the U.S. Department of Energy (DOE) will join Khlopin and PNS to explore opportunities for direct application of the polymers at predetermined sites and to conduct research for new product development. Under DOE's 'Initiatives for Proliferation Prevention'(IPP) program, funding will be provided to the Russian participants over a three year period to implement the program plan. This paper will present details of U.S. DOE's IPP program, the project structure and its objectives both short and long-term, training programs for scientists, polymer tests and applications for LLW, ILW and HLW, and new product development initiatives. (authors)

  8. Middle East fuel supply & gas exports for power generation

    SciTech Connect

    Mitchell, G.K.; Newendorp, T.

    1995-12-31

    The Middle East countries that border on, or are near, the Persian Gulf hold over 65% of the world`s estimated proven crude oil reserves and 32% of the world`s estimated proven natural gas reserves. In fact, approximately 5% of the world`s total proven gas reserves are located in Qatar`s offshore North Field. This large natural gas/condensate field is currently under development to supply three LNG export projects, as well as a sub-sea pipeline proposal to export gas to Pakistan. The Middle East will continue to be a major source of crude oil and oil products to world petroleum markets, including fuel for existing and future base load, intermediate cycling and peaking electric generation plants. In addition, as the Persian Gulf countries turn their attention to exploiting their natural gas resources, the fast-growing need for electricity in the Asia-Pacific and east Africa areas offers a potential market for both pipeline and LNG export opportunities to fuel high efficiency, gas-fired combustion turbine power plants. Mr. Mitchell`s portion of this paper will discuss the background, status and timing of several Middle Eastern gas export projects that have been proposed. These large gas export projects are difficult and costly to develop and finance. Consequently, any IPP developers that are considering gas-fired projects which require Mid-East LNG as a fuel source, should understand the numerous sources and timing to securing project debt, loan terms and conditions, and, restrictions/credit rating issues associated with securing financing for these gas export projects. Mr. Newendorp`s section of the paper will cover the financing aspects of these projects, providing IPP developers with additional considerations in selecting the primary fuel supply for an Asian-Pacific or east African electric generation project.

  9. Metabolic engineering for the high-yield production of isoprenoid-based C5 alcohols in E. coli

    DOE PAGES [OSTI]

    George, Kevin W.; Thompson, Mitchell G.; Kang, Aram; Baidoo, Edward; Wang, George; Chan, Leanne Jade G.; Adams, Paul D.; Petzold, Christopher J.; Keasling, Jay D.; Soon Lee, Taek

    2015-06-08

    Branched five carbon (C5) alcohols are attractive targets for microbial production due to their desirable fuel properties and importance as platform chemicals. In this study, we engineered a heterologous isoprenoid pathway in E. coli for the high-yield production of 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol, and 3-methyl-1-butanol, three C5 alcohols that serve as potential biofuels. We first constructed a pathway for 3-methyl-3-buten-1-ol, where metabolite profiling identified NudB, a promiscuous phosphatase, as a likely pathway bottleneck. We achieved a 60% increase in the yield of 3-methyl-3-buten-1-ol by engineering the Shine-Dalgarno sequence of nudB, which increased protein levels by 9-fold and reduced isopentenyl diphosphate (IPP) accumulationmore » by 4-fold. To further optimize the pathway, we adjusted mevalonate kinase (MK) expression and investigated MK enzymes from alternative microbes such as Methanosarcina mazei. Next, we expressed a fusion protein of IPP isomerase and the phosphatase (Idi1~NudB) along with a reductase (NemA) to diversify production to 3-methyl-2-buten-1-ol and 3-methyl-1-butanol. Lastly, we used an oleyl alcohol overlay to improve alcohol recovery, achieving final titers of 2.23 g/L of 3-methyl-3-buten-1-ol (~70% of pathway-dependent theoretical yield), 150 mg/L of 3-methyl-2-buten-1-ol, and 300 mg/L of 3-methyl-1-butanol.« less

  10. Metabolic engineering for the high-yield production of isoprenoid-based C5 alcohols in E. coli

    SciTech Connect

    George, Kevin W.; Thompson, Mitchell G.; Kang, Aram; Baidoo, Edward; Wang, George; Chan, Leanne Jade G.; Adams, Paul D.; Petzold, Christopher J.; Keasling, Jay D.; Soon Lee, Taek

    2015-06-08

    Branched five carbon (C5) alcohols are attractive targets for microbial production due to their desirable fuel properties and importance as platform chemicals. In this study, we engineered a heterologous isoprenoid pathway in E. coli for the high-yield production of 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol, and 3-methyl-1-butanol, three C5 alcohols that serve as potential biofuels. We first constructed a pathway for 3-methyl-3-buten-1-ol, where metabolite profiling identified NudB, a promiscuous phosphatase, as a likely pathway bottleneck. We achieved a 60% increase in the yield of 3-methyl-3-buten-1-ol by engineering the Shine-Dalgarno sequence of nudB, which increased protein levels by 9-fold and reduced isopentenyl diphosphate (IPP) accumulation by 4-fold. To further optimize the pathway, we adjusted mevalonate kinase (MK) expression and investigated MK enzymes from alternative microbes such as Methanosarcina mazei. Next, we expressed a fusion protein of IPP isomerase and the phosphatase (Idi1~NudB) along with a reductase (NemA) to diversify production to 3-methyl-2-buten-1-ol and 3-methyl-1-butanol. Lastly, we used an oleyl alcohol overlay to improve alcohol recovery, achieving final titers of 2.23 g/L of 3-methyl-3-buten-1-ol (~70% of pathway-dependent theoretical yield), 150 mg/L of 3-methyl-2-buten-1-ol, and 300 mg/L of 3-methyl-1-butanol.

  11. Race to Zero 2015 Design Excellence Award Winner Presentations | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Design Excellence Award Winner Presentations Race to Zero 2015 Design Excellence Award Winner Presentations View the presentations for the 2015 Race to Zero Design Excellence Award winners. H4: Heritage Homes - Heritage Homes Penn State University, State College, PA Independence Heights Net Zero Ready Home - Prairie View A&M Prairie View A&M University, Prairie View, TX Provenance Lane - Provenance Lane Ryerson University Dept. of Architectural Science, Toronto, Ontario,

  12. Race to Zero 2015 Systems Integration Excellence Award Winners | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 2015 Systems Integration Excellence Award Winners Race to Zero 2015 Systems Integration Excellence Award Winners View the 2015 Systems Integration Excellence Award winner presentations. Habitat for Humanity Net Zero Energy Home - Redbird Red Team Illinois State University, Normal, IL H4: Heritage Homes - Heritage Homes Penn State University, State College, PA Ø-Zone Residence - Ø-Zone Ryerson University Dept. of Architectural Science, Toronto, Ontario, Canada The TownHauZ -

  13. QER- Comment of Canadian Hydrogen and Fuel Cell Association

    Office of Energy Efficiency and Renewable Energy (EERE)

    Dear Sir/Madam, The Canadian Hydrogen and Fuel Cell Association (CHFCA) was pleased to participate in the September 18, 2014 special dialogue on the Quadrennial Energy Review (QER) that was held in Ottawa, Ontario, Canada. At this time, we understand the QER is seeking to provide a multiyear roadmap that focuses on energy infrastructure with specific attention on the transmission, storage and distribution (TS&D) systems that make up North America’s oil, gas and electricity infrastructure.

  14. Thermal-hydraulic interfacing code modules for CANDU reactors

    SciTech Connect

    Liu, W.S.; Gold, M.; Sills, H.

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  15. Pinpointing the cause of an outage for something as complex and interconnected as the high voltage transmission system is a ve

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ellen P. Vancko evancko@nerc.com Electric System Update: Sunday August 17, 2003, 5:00 p.m. The electric transmission system is now operating reliably. All electric power transmission lines that were removed from service during the blackout on August 14, 2003, have been returned to service with one exception. The lines between Michigan and Ontario remain out of service due to operational security reasons; however, they are expected to be returned to service later this evening. Most of the

  16. Electric System Update: Sunday August 17, 2003 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    System Update: Sunday August 17, 2003 Electric System Update: Sunday August 17, 2003 The electric transmission system is now operating reliably. All electric power transmission lines that were removed from service during the blackout on August 14, 2003, have been returned to service with one exception. The lines between Michigan and Ontario remain out of service due to operational security reasons; however, they are expected to be returned to service later this evening. Electric System Update:

  17. wong-99.PDF

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Alternative Method of Obtaining Direct Aerosol Radiative Forcing From Satellite Observations J. Wong and Z. Li Canada Centre for Remote Sensing Natural Resources Canada Ottawa, Ontario, Canada Introduction Direct aerosol radiative forcing (ARF) is important in understanding the impact of aerosols on earth's climate (Schimel et al. 1996). Global distribution of ARF is usually determined by first inverting satellite measurements to obtain aerosol properties such as optical depths, size

  18. Surface Spectral Albedo Intensive Operational Period at the ARM SGP Site in august 2002: Results, Analysis, and Future Plans

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Spectral Albedo Intensive Operational Period at the ARM SGP Site in August 2002: Results, Analysis, and Future Plans A. P. Trishchenko and Y. Luo Canada Centre for Remote Sensing Ottawa, Ontario, Canada M. C. Cribb and Z. Li University of Maryland College Park, Maryland K. Hamm University of Oklahoma Norman, Oklahoma Introduction A surface spectral albedo Intensive Operational Period (IOP) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site was conducted during August

  19. SEP CASE STUDY WEBINAR: HARBEC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Webinars » SEP CASE STUDY WEBINAR: HARBEC SEP CASE STUDY WEBINAR: HARBEC sep_logo_borderless.jpg DESCRIPTION This Measurement and Verification Case Study webinar is the second in a series of case study webinars to highlight the successes of facilities that have achieved Superior Energy Performance (SEP) program certification. This webinar highlights the success of HARBEC Inc.'s Ontario, NY facility in achieving Platinum-level SEP certification in November 2013 and improving their facility

  20. SEP and ISO 50001 at 3M Canada's Brockville Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and ISO 50001 at 3M Canada's Brockville Plant SEP and ISO 50001 at 3M Canada's Brockville Plant Superior Energy Performance logo This presentation by 3M Canada discusses their successes implementing an ISO 50001 Energy Management System and participating in the Superior Energy Performance® (SEP(tm)) program at their Brockville, Ontario Tape Manufacturing facility. SEP and ISO 50001 at 3M Canada's Brockville Plant, 2014 (2.54 MB) More Documents & Publications Energy Efficiency: A Competitive

  1. A GCM Parameterization of Ice Particle Mean Effective Sizes for High Latitude Cirrus Clouds and It's Comparison with Mid-Latitude Parmaterization

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    GCM Parameterization of Ice Particle Mean Effective Sizes for High Latitude Cirrus Clouds and It's Comparison with Mid-Latitude Parameterization F. S. Boudala Department of Oceanography Dalhousie University Halifax, Nova Scotia, Canada Q. Fu Department of Atmospheric Sciences University of Washington Seattle, Washington G. A. Issac Meteorological Service of Canada Toronto, Ontario, Canada Introduction Single-scattering properties of ice clouds depend on both ice water content (IWC) and effective

  2. fu(2)-98.pdf

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    7 A Study of Atmospheric Absorption of Solar Radiation Using Cloud Fields Derived from a Cloud Resolving Model Q. Fu and M. C. Cribb Department of Oceanography Dalhousie University Halifax, Nova Scotia, Canada H. W. Barker Atmospheric Environment Service Downsview, Ontario, Canada S. K. Krueger Department of Meteorology University of Utah Salt Lake City, Utah Introduction A three-dimensional (3-D) broadband solar radiative transfer scheme is formulated by integrating a Monte Carlo photon

  3. partain-98.pdf

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    5 An Intercomparison of Solar Radiative Transfer Algorithms P. Partain and G. L. Stephens Department of Atmospheric Sciences Colorado State University Fort Collins, Colorado H. W. Barker Atmospheric Environment Service of Canada Downsview, Ontario, Canada G. Potter Lawrence Livermore National Laboratory Berkeley, California Introduction The Intercomparison of Radiation Codes in Climate Models (ICRCCM) was a successful radiative transfer model intercomparison program that was performed under the

  4. trishchenko-98.pdf

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1 A Synergetic Study of Solar Fluxes and Aerosol Properties Under Clear-Sky Conditions A. Trishchenko and Z. Li Canada Center for Remote Sensing Ottawa, Ontario, Canada Introduction Several recent studies indicate that our ability to model the transfer of solar flux in the clear atmosphere is still fraught with significant uncertainties (Arking 1996; Charlock and Alberta 1996; Kato et al. 1997; Li et al. 1997; Halthore et. al 1997). The treatment of aerosol is often considered as a more likely

  5. trishchenko-99.PDF

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Shortwave Cloud Radiative Forcing: Magnitude, Biases, and Uncertainties A. P. Trishchenko and Z. Li Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction Cloud radiative forcing (CRF) has been employed widely in studying the effects of cloud on the earth's radiation budget. By its definition, CRF denotes the influence of cloud only on radiative fluxes. However, in practice, observational determination of CRF is fraught with uncertainties due to variations in many factors other

  6. PowerPoint Presentation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    with stopped beams Beam Target Product Jason Clark ATLAS 25 th Anniversary Celebration October 22, 2010 The first move of the Canadian Penning Trap (CPT) mass spectrometer Constructed at Chalk River Labs, Ontario, Canada Moved to the ATLAS facility in 1997 The early days of the CPT at ATLAS Gas Catcher Development Window Cone Cone Body He gas To RFQ cooler RF (cone) RF (body) Ion guide / buncher * Ion cooler divided by apertures into 3 sections * Permits a differentially pumped system to remove

  7. barker-98.pdf

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    7 A Multilayer, 1-D Solar Radiative Transfer Algorithm that Accounts for Subgrid-Scale Cloud Variability H. W. Barker Atmospheric Environmental Service Downsview, Ontario, Canada L. Oreopoulos NASA-Goddard Space Flight Center Greenbelt, Maryland Abstract A multi-layer, one-dimensional (1-D) solar radiative transfer algorithm that accounts for subgrid-scale cloud variability is presented. This algorithm was implemented in the National Center for Atmospheric Research (NCAR)-Community Climate Model

  8. Microsoft Word - trishchenko-2.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Dynamics of the Surface Albedo Over the ARM SGP Area During Spring 2003 Aerosol IOP A. P.Trishchenko, Y. Luo, K. Khlopenkov, Canada Centre for Remote Sensing Ottawa, Ontario, Canada Z. Li University of Maryland College Park, Maryland Introduction The systematic measurements of surface albedo properties were conducted over an extended area around the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) site as a part of the ARM Aerosol Intensive Observational Period (IOP)

  9. ITC Filing of Operational Protocols - August 9, 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ITC Filing of Operational Protocols - August 9, 2011 ITC Filing of Operational Protocols - August 9, 2011 These supplemental comments complete ITC's response to the comments filed in this proceeding in March, 2009 by the Midwest Independent Transmission System Operator, Inc., and the Independent Electricity System Operator of Ontario. The operational agreements required to complete ITC's application in this case are attached to the supplemental comments, and ITC respectfully requests that the

  10. Trishchenko(1)-AP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Inter-Comparisons of Global Surface Albedo and SW Radiation Budgets from Multiple Satellite Missions and Modeling A. P. Trishchenko and Z. Li Canada Centre for Remote Sensing Ottawa, Ontario, Canada Abstract This study focuses on analysis of shortwave (SW) broadband (BB) satellite observed by scanning radiometers and their inter-comparison with the results of global circulation modeling. Top of the atmosphere (TOA) SW radiation budget datasets are available from multiple satellite missions such

  11. Monitoring of Unvented Roofs with Diffusion Vents and Interior Vapor

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Control in a Cold Climate | Department of Energy Monitoring of Unvented Roofs with Diffusion Vents and Interior Vapor Control in a Cold Climate Monitoring of Unvented Roofs with Diffusion Vents and Interior Vapor Control in a Cold Climate Lead Performer: Building Science Corporation - Westford, MA Partners: -- Dupont - Wilmington, DE -- Owens Corning - Toledo, OH -- Cosella-Dörken - Beamsville, Ontario, Canada -- K. Hovnanian Homes - Red Bank, NJ DOE Total Funding: $430,000 Cost Share:

  12. Nissan: Automaker improves energy performance 7.2% with a four-month payback using Superior Energy Performance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    energy.gov/betterbuildings/superior-energy-performance Case Study May 2015 HARBEC-a Specialty Plastics Manufacturer-Improves Energy Performance 16.5% with SEP HARBEC, Inc. worked with the U.S. Department of Energy (DOE) Advanced Manufacturing Office to successfully implement an energy management system (EnMS) that meets all requirements of ISO 50001 1 and Superior Energy Performance® (SEP TM ). HARBEC's implementation of the EnMS at its small plastics manufacturing facility in Ontario, New

  13. Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Mesurements

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements Z. Li, M. C. Cribb, and F.-L. Chang Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland A. P. Trishchenko and Y. Luo Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction Radiation measurements have been widely employed for evaluating cloud parameterization schemes and model simulation results. As the most comprehensive program aiming to improve cloud

  14. Asymmetry in the Diurnal Cycle of Atmospheric Downwelling Radiation at the ARM SGP CF Site Over 1995-2001 Period

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Asymmetry in the Diurnal Cycle of Atmospheric Downwelling Radiation at the ARM SGP CF Site Over 1995-2001 Period A. P. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction The shape of the diurnal cycle of atmospheric downwelling radiation is an important climatic feature of cloud-radiation interactions and atmospheric properties. Adequate characterization of this diurnal cycle is critical for accurate determination of monthly and seasonal radiation budgets from a

  15. Atmospheric Correction of Satellite Signal in Solar Domain: Impact of Improved Molecular Spectroscopy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Atmospheric Correction of Satellite Signal in Solar Domain: Impact of Improved Molecular Spectroscopy A. P. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada B. Hwang Intermap Technologies Corp. Calgary, Canada Z. Li University of Maryland and The Earth System Science Interdisciplinary Center College Park, Maryland Introduction Atmospheric correction of satellite measurements is a major step in the retrieval of surface reflective properties. It involves removing the effect of

  16. Assessing the Benefits of On-Site Combined Heat and Power During the August

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    14, 2003, Blackout, June 2004 | Department of Energy Assessing the Benefits of On-Site Combined Heat and Power During the August 14, 2003, Blackout, June 2004 Assessing the Benefits of On-Site Combined Heat and Power During the August 14, 2003, Blackout, June 2004 On August 14, 2003, large portions of the Midwest and Northeast United States and Ontario, Canada, experienced an electric power outage. This study focused on identifying facilities located in the August 2003 blackout area (United

  17. Chapter 14: Chiller Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures: September 2011 … May 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4: Chiller Evaluation Protocol The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Created as part of subcontract with period of performance September 2011 - December 2014 Alex Tiessen, Posterity Group Ottawa, Ontario NREL Technical Monitor: Charles Kurnik Subcontract Report NREL/SR-7A40-62431 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance

  18. Chapter 16: Retrocommissioning Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures: September 2011 … May 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6: Retrocommissioning Evaluation Protocol The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Created as part of subcontract with period of performance September 2011 - December 2014 Alex Tiessen, Posterity Group Ottawa, Ontario NREL Technical Monitor: Charles Kurnik Subcontract Report NREL/SR-7A40-62430 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the

  19. Heavy-Duty Natural Gas Drayage Truck Replacement Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Natural Gas Drayage Truck Replacement Program Heavy-Duty Natural Gas Drayage Truck Replacement Program 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt045_ti_white_2012_o.pdf (517.25 KB) More Documents & Publications Heavy-Duty Natural Gas Drayage Truck Replacement Program Heavy-Duty Natural Gas Drayage Truck Replacement Program UPS Ontario - Las Vegas LNG Corridor Extension Project: Bridging the G

  20. CIMEL Measurements of Zenith Radiances at the ARM SGP Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    CIMEL Measurements of Zenith Radiances at the ARM SGP Site W. J. Wiscombe National Aeronautics and Space Administration Goddard Space Flight Center Climate and Radiation Branch Greenbelt, Maryland A. Marshak and K. Evans Joint Center for Earth Systems Technology University of Maryland Baltimore, Maryland Y. Knyazikhin Department of Geography Boston University Boston, Massachusetts H. W. Barker Environment Canada Downsview, Ontario, Canada C. F. Pavloski Department of Meteorology Pennsylvania

  1. Chang-F-L

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Effect of Droplet Size Distribution on the Determination of Cloud Droplet Effective Radius F.-L. Chang and Z. Li ESSIC/Department of Meteorology University of Maryland College Park, Maryland F.-L. Chang Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction Cloud microphysical processes can provide links between cloud radiative effect and hydrological cycle and create several feedback mechanisms linking clouds and climate. For instance, the aerosols can affect the climate through

  2. Characterization of Surface Albedo Over the ARM SGP CART and the NSA

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Characterization of Surface Albedo Over the ARM SGP CART and the NSA Z. Li and M. C. Cribb Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland A. P. Trishchenko and Y. Luo Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction Surface albedo is needed for satellite remote sensing of the surface radiation budget and for climate modelling. Determination of areal-mean surface albedo is challenging. Over the Southern Great Plains (SGP) site, a

  3. Impact of Concomitant Chemotherapy on Outcomes of Radiation Therapy for Head-and-Neck Cancer: A Population-Based Study

    SciTech Connect

    Gupta, Shlok; Kong, Weidong; Booth, Christopher M.; Mackillop, William J.

    2014-01-01

    Purpose: Clinical trials have shown that the addition of chemotherapy to radiation therapy (RT) improves survival in advanced head-and-neck cancer. The objective of this study was to describe the effectiveness of concomitant chemoradiation therapy (C-CRT) in routine practice. Methods and Materials: This was a population-based cohort study. Electronic records of treatment from all provincial cancer centers were linked to a population--based cancer registry to describe the adoption of C-CRT for head-and-neck cancer patients in Ontario, Canada. The study population was then divided into pre- and postadoption cohorts, and their outcomes were compared. Results: Between 1992 and 2008, 18,867 patients had diagnoses of head-and-neck cancer in Ontario, of whom 7866 (41.7%) were treated with primary RT. The proportion of primary RT cases that received C-CRT increased from 2.2% in the preadoption cohort (1992-1998) to 39.3% in the postadoption cohort (2003-2008). Five-year survival among all primary RT cases increased from 43.6% in the preadoption cohort to 51.8% in the postadoption cohort (P<.001). Over the same period, treatment-related hospital admissions increased significantly, but there was no significant increase in treatment-related deaths. Conclusions: C-CRT was widely adopted in Ontario after 2003, and its adoption was temporally associated with an improvement in survival.

  4. Estimating potential photovoltaic yield with r.sun and the open source Geographical Resources Analysis Support System

    SciTech Connect

    Nguyen, H.T.; Pearce, J.M.

    2010-05-15

    The package r.sun within the open source Geographical Resources Analysis Support System (GRASS) can be used to compute insolation including temporal and spatial variation of albedo and solar photovoltaic yield. A complete algorithm is presented covering the steps of data acquisition and preprocessing to post-simulation whereby candidate lands for incoming solar farms projects are identified. The optimal resolution to acquire reliable solar energy outputs to be integrated into PV system design software was determined to be 1 square km. A case study using the algorithm developed here was performed on a North American region encompassing fourteen counties in South-eastern Ontario. It was confirmed for the case study that Ontario has a large potential for solar electricity. This region is found to possess over 935,000 acres appropriate for solar farm development, which could provide 90 GW of PV. This is nearly 60% of Ontario's projected peak electricity demand in 2025. The algorithm developed and tested in this paper can be generalized to any region in the world in order to foster the most environmentally-responsible development of large-scale solar farms. (author)

  5. INTEGRATED SYSTEM TO CONTROL PRIMARY PM 2.5 FROM ELECTRIC POWER PLANTS

    SciTech Connect

    Unknown

    2001-12-01

    Mercury measurements were made by Southern Research Institute and conformed to the Ontario Hydro Method. EPA's current Reference Method 29A is for total mercury, whereas the Ontario Hydro procedure is capable of identifying the composition and species of the total mercury. One of the disadvantages of the Ontario Hydro Method is that it requires several weeks to complete the full analysis due to its extensive laboratory procedures. Mercury measurements were also obtained with a PS Analytical Continuous Emission Monitor (CEM) owned by the U.S. EPA and contributed to this project by EPA's fine particulate group in Research Triangle Park. The PSA CEM functions on the principle of atomic fluorescence and is capable of measuring trace concentrations of mercury in water or air. The instrument was setup to monitor elemental and total mercury at the dry scrubber inlet and ElectroCore outlet. Each cycle required about 20 minutes to complete. Thus, the monitoring was not in ''real time'' in a strict sense, but did provide mercury tracking in continual batch processing. Particulate measurements were determined by EPA Method 5 as well as with a P5A continuous monitor. The P5A is on loan to the project through EPA and SRI. Calibration factors for the device were provided by SRI. All particulate data was analyzed and interpreted by LSR Technologies, with technical input from Armstrong Environmental and SRI.

  6. Conceptual Design, Implementation and Commissioning of Data Acquisition and Control System for Negative Ion Source at IPR

    SciTech Connect

    Soni, Jignesh; Gahlaut, A.; Bansal, G.; Parmar, K. G.; Pandya, K.; Chakraborty, A.; Yadav, Ratnakar; Singh, M. J.; Bandyopadhyay, M.

    2011-09-26

    Negative ion Experimental facility has been setup at IPR. The facility consists of a RF based negative ion source (ROBIN)--procured under a license agreement with IPP Garching, as a replica of BATMAN, presently operating in IPP, 100 kW 1 MHz RF generators and a set of low and high voltage power supplies, vacuum system and diagnostics. 35 keV 10A H- beam is expected from this setup. Automated successful operation of the system requires an advanced, rugged, time proven and flexible control system. Further the data generated in the experimental phase needs to be acquired, monitored and analyzed to verify and judge the system performance. In the present test bed, this is done using a combination of PLC based control system and a PXI based data acquisition system. The control system consists of three different Siemens PLC systems viz. (1) S-7 400 PLC as a Master Control, (2) S-7 300 PLC for Vacuum system control and (3) C-7 PLC for RF generator control. Master control PLC directly controls all the subsystems except the Vacuum system and RF generator. The Vacuum system and RF generator have their own dedicated PLCs (S-7 300 and C-7 respectively). Further, these two PLC systems work as a slave for the Master control PLC system. Communication between PLC S-7 400, S-7 300 and central control room computer is done through Industrial Ethernet (IE). Control program and GUI are developed in Siemens Step-7 PLC programming software and Wincc SCADA software, respectively. There are approximately 150 analog and 200 digital control and monitoring signals required to perform complete closed loop control of the system. Since the source floats at high potential ({approx}35 kV); a combination of galvanic and fiber optic isolation has been implemented. PXI based Data Acquisition system (DAS) is a combination of PXI RT (Real time) system, front end signal conditioning electronics, host system and DAQ program. All the acquisition signals coming from various sub-systems are connected and

  7. Size scaling of negative hydrogen ion sources for fusion

    SciTech Connect

    Fantz, U. Franzen, P.; Kraus, W.; Schiesko, L.; Wimmer, C.; Wünderlich, D.

    2015-04-08

    The RF-driven negative hydrogen ion source (H{sup −}, D{sup −}) for the international fusion experiment ITER has a width of 0.9 m and a height of 1.9 m and is based on a ⅛ scale prototype source being in operation at the IPP test facilities BATMAN and MANITU for many years. Among the challenges to meet the required parameters in a caesiated source at a source pressure of 0.3 Pa or less is the challenge in size scaling of a factor of eight. As an intermediate step a ½ scale ITER source went into operation at the IPP test facility ELISE with the first plasma in February 2013. The experience and results gained so far at ELISE allowed a size scaling study from the prototype source towards the ITER relevant size at ELISE, in which operational issues, physical aspects and the source performance is addressed, highlighting differences as well as similarities. The most ITER relevant results are: low pressure operation down to 0.2 Pa is possible without problems; the magnetic filter field created by a current in the plasma grid is sufficient to reduce the electron temperature below the target value of 1 eV and to reduce together with the bias applied between the differently shaped bias plate and the plasma grid the amount of co-extracted electrons. An asymmetry of the co-extracted electron currents in the two grid segments is measured, varying strongly with filter field and bias. Contrary to the prototype source, a dedicated plasma drift in vertical direction is not observed. As in the prototype source, the performance in deuterium is limited by the amount of co-extracted electrons in short as well as in long pulse operation. Caesium conditioning is much harder in deuterium than in hydrogen for which fast and reproducible conditioning is achieved. First estimates reveal a caesium consumption comparable to the one in the prototype source despite the large size.

  8. Slide 1

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    evidence of ice particle shattering by OAP-2DC Environment Canada Alexei Korolev, Walter Strapp Environment Canada, Toronto, Ontario, Canada Ed Emery NASA, Cleveland, OH, USA Objective: To estimate the effect of airborne probe inlets on the accuracy of ice particle measurements FSSP, CPI, CAPS, SID Sample volume OAP-2DC, OAP-2DP, HVPS, CIP Sample volume Cox Wind Tunnel OAP-2DC arm D ~ 2.5cm TAS ~ 70m/s How can shattering events be identified from measurements? OAP-2DP (200µm pixel resolution)

  9. Niagara Air Quality Survey Report, 1987: Occidental Chemical Corporation, Niagara Falls, New York, USA, non-aqueous phase liquid (NAPL) incineration test. Report no. ARB-166-87-AR/SP

    SciTech Connect

    Bell, R.W.; DeBrou, G.

    1988-01-01

    An ambient air quality survey was conducted in the Niagara Falls area of Ontario from October 8-12, 1987 to provide on-site real-time screening for selected polychlorinated biphenyl congeners and other chlorinated organics at times when the Occidental Chemical Corporation was conducting tests at its liquid hazardous waste incineration facility in Niagara Falls, N.Y. During the incineration tests, the winds were such that the gaseous emissions from the Occidental facility were carried into the U.S. Since the monitoring units were restricted to the Canadian side of the Niagara River, only upwind air quality parameters could be measured.

  10. Environmental surveillance plan for the Department of Energy's Niagara Falls Storage Site (NFSS), Lewiston, New York

    SciTech Connect

    Englert, J.P.; Hinnefeld, S.L.

    1981-09-09

    The Niagara Falls Storage Site (NFSS) is a United States Department of Energy owned facility used for the storage of low-level radioactive residues. The site occupies 190 acres of the former Lake Ontario Ordnance Works and is located in the Niagara County town of Lewiston, in western New York State. The city of Niagara Falls is approximately eight (8) miles south of the NFSS. The purpose of this report is to describe environmental monitoring programs presently operated by NLO, and to suggest programs and revisions which should be implemented as a result of NLO's remedial actions at the NFSS.

  11. SREL Reprint #3315

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    5 Genus-wide microsatellite primers for the goldenrods (Solidago: Asteraceae) James B. Beck1, John C. Semple2, Justin M. Brull1, Stacey L. Lance3, Mai M. Phillips4, Sara B. Hoot5, and Gretchen A. Meyer6 1Department of Biological Sciences, Wichita State University, 537 Hubbard Hall, Wichita, Kansas 67260 USA 2Department of Biology, University of Waterloo, Waterloo, Ontario NL2 3G1, Canada 3Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina 29802 USA 4Conservation and

  12. Particle denuded zones in alumina reinforced aluminum matrix composite weldments

    SciTech Connect

    Chidambaram, A.; Bhole, S.D.

    1996-08-01

    The Welding Institute of Canada (WIC), Ontario, has been studying the weldability of different DURALCAN MMC`s. Research on alumina reinforced (20 vol.%) 6061 Al alloy GTA welds showed satisfactory tensile and yield strengths (0.2% Proof Stress) but the welds failed to pass the bend test requirements with fracture taking place in the relatively brittle heat affected zone (HAZ). Further, the welds were characterized by a region which was devoid of reinforcement particles adjacent to the fusion lines. The present study was undertaken to try and explain the formation of this particle denuded zone (PDZ) at the fusion lines.

  13. Implementation of the Port Hope Area Initiative Biophysical and Socioeconomic Environmental Assessment Follow-up Programs - 13209

    SciTech Connect

    Baba, Nina; Friedmann, Karyn; Groulx, Charles

    2013-07-01

    The Port Hope Initiative (PHAI) involves the cleanup of historic low-level radioactive waste in various locations throughout the communities of Port Hope and Clarington, Ontario, as well as the construction of two engineered aboveground mounds for safe long-term management. The PHAI is comprised of two major projects - the Port Hope Project and the Port Granby Project. An Environmental Assessment (EA) was undertaken for each project and as a result EA Follow-up Programs were developed and are being implemented addressing both biophysical and socioeconomic aspects. This paper provides insight on elements of the EA Follow-up Program development, and its implementation. (authors)

  14. DOE - Office of Legacy Management -- Niagara Falls Storage Site NY - NY 17

    Office of Legacy Management (LM)

    Considered Sites > Niagara Falls Storage Site NY - NY 17 FUSRAP Considered Sites Niagara Falls Storage Site, NY Alternate Name(s): Lake Ontario Ordnance Works (LOOW) Niagara Falls Storage Site (NFSS) DOE-Niagara Falls Storage Site NY.17-1 NY.17-3 Location: Lewiston, New York NY.17-5 Historical Operations: Stored, shipped, and buried radioactive equipment and waste for MED and AEC containing uranium, radium, and thorium. Contains Interim Waste Containment Structure. NY.17-1 NY.17-2 NY.17-14

  15. Harry Potter, Oxford and Nuclear Energy | Department of Energy

    Energy.gov [DOE] (indexed site)

    Energy case study profiles Harbec Plastics' 750kW combined heat and power (CHP) project in Ontario, New York to improve plant-wide energy performance. Harbec Plastics: 750kW CHP Application - Project Profile (February 2006) (240.72 KB) More Documents & Publications SEP CASE STUDY WEBINAR: HARBEC SLIDES HARBEC, Inc. Case Study for Superior Energy Performance Harbec: A Fifteen Year Journey to the Beginning

    5 Year Pursuit of Sustainable Manufacturing Energy Summit 2014 Niagara Falls, On.

  16. Copper uptake and regulation in a copper-tolerant decapod Cambarus bartoni (Fabricius)

    SciTech Connect

    Zia, S.; Alikhan, M.A.

    1989-01-01

    Large amounts of acid forming sulfur dioxide, and heavy metals including copper, are continuously being released into the environment by mining and smelting operation at Sudbury, Ontario, Canada. Consequently, a number of lakes in this region have become acidic and metal stressed. In the current study the uptake and accumulation of copper by various tissues of a copper-tolerant crayfish, Cambarus bartoni, were monitored in the laboratory to ascertain the dynamic nature (i.e., the pattern in time) of responses of crayfish to increased levels of these two metals in the water.

  17. Nickel uptake and regulation in a copper-tolerant decapod, Cambarus bartoni (Fabricius)

    SciTech Connect

    Alikhan, M.A.; Zia, S.

    1989-01-01

    Large amounts of acid forming sulfur dioxide, and heavy metals including nickel are continuously being released into the environment by mining and smelting operations at Sudbury, Ontario, Canada. As a consequence, a number of lakes in this region has become acidic and metal stressed. In the current study the uptake and accumulation of nickel by various tissues of a copper-tolerant crayfish, Cambarus bartoni (Decapod, Crustacea), was monitored for 4 wk in the laboratory to ascertain the dynamic nature (i.e., the pattern in time) of the response of the crayfish to increased levels of this relatively less metabolically essential but toxic metal in the aquatic environment.

  18. Polycyclic aromatic hydrocarbons (PAHs): a possible cause of lung cancer mortality among nickel/copper smelter and refinery workers

    SciTech Connect

    Verma, D.K.; Julian, J.A.; Roberts, R.S.; Muir, D.C.; Jadon, N.; Shaw, D.S. )

    1992-05-01

    A retrospective industrial hygiene investigation was undertaken to explain the cause of a statistically significant excess lung cancer mortality observed in a subset of a large cohort of nickel workers involved in mining, smelting, and refining of nickel and copper in Ontario. The focus of this paper is to demonstrate how an industrial hygiene follow-up assessment of an epidemiologic finding can help to identify a likely cause. Polycyclic aromatic hydrocarbons (PAHs) alone or in association with particulate and gaseous contaminants (e.g., SO2) were likely the causative agents of the excess lung cancer observed among the lead welders, cranemen, and arc furnace workers of the copper refinery.

  19. Experiment operations plan for the MT-4 experiment in the NRU reactor. [PWR

    SciTech Connect

    Russcher, G.E.; Wilson, C.L.; Parchen, L.J.; Marshall, R.K.; Hesson, G.M.; Webb, B.J.; Freshley, M.D.

    1983-06-01

    A series of thermal-hydraulic and cladding materials deformation experiments were conducted using light-water reactor fuel bundles as part of the Pacific Northwest Laboratory Loss-of-Coolant Accident (LOCA) Simulation Program. This report is the formal operations plan for MT-4 - the fourth materials deformation experiment conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. A major objective of MT-4 was to simulate a pressurized water reactor LOCA that could induce fuel rod cladding deformation and rupture due to a short-term adiabatic transient and a peak fuel cladding temperature of 1200K (1700/sup 0/F).

  20. niagarastoragesite

    Office of Legacy Management (LM)

    Description and History The Niagara Falls Storage Site, New York, is a 191-acre site located on Pletcher Road in the towns of Lewiston and Porter, Niagara County, in northwestern New York. It is approximately 10 miles north of the city of Niagara Falls and 19 miles northwest of Buffalo, New York. The site is a remnant of the U.S. Army's 7,500-acre Lake Ontario Ordnance Works. The property includes a 10-acre interim waste containment structure (IWCS) for radioactive waste and residues, which is

  1. Section 78

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ' " 0 & $T a ' 1&"&T (-10 km) 2 (-100 km) 2 Session Papers 341 (1) (2) On the Interpretation of Shortwave Albedo-Transmittance Plots H. W. Barker Atmospheric Environment Service of Canada Downsview, Ontario, Canada Z. Li Canada Centre for Remote Sensing Ottawa, Canada Abstract The coefficients of linear regression lines fit to 1D model values of broadband surface absorptance T and top-of- atmosphere albedo " indicate the impact of clouds on atmo- spheric absorptance a.

  2. Microsoft Word - test2015_race_to_zero_team_template

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DAS HAUS THE CORNER HOUSE Project Summary DAS HAUS' Corner House project is located in Toronto, Ontario, Canada. The building is a three storey residential structure with three units. The ground floor unit is designed to accommodate various potential occupancies: residential, retail, café, or office, with the majority of our analysis focused on a café occupancy. The other two units each occupy a half of the second and third storeys. The goal of this strategy is to provide energy efficient

  3. Motion to intervene of Consumers Energy Company. FE Docket No. 99-1 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy intervene of Consumers Energy Company. FE Docket No. 99-1 Motion to intervene of Consumers Energy Company. FE Docket No. 99-1 CECo is a public utility rendering electric service to over 1.5 million residential, commercial, and industrial customers in the lower peninsula of the state of Michigan. Motion to intervene of Consumers Energy Company. FE Docket No. 99-1 (167.66 KB) More Documents & Publications Ontario Power Generation Motion to Intervene & Comments in

  4. Responses by CPower, Inc. to DOE RFI | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Responses by CPower, Inc. to DOE RFI Responses by CPower, Inc. to DOE RFI CPower is one of the world's largest providers of demand-side management services to end-users in the United States and beyond. We believe we are the largest non-utility aggregator of short-notice demand response (under ten-minutes) in the world, and we provide short-notice demand response services in the broadest possible array of geographies (in every available region of the United States, and in Ontario, the United

  5. Experience with SF/sub 6/ Gas-insulated substations and proposals for improved reliability

    SciTech Connect

    Lindsay, C.; Hick, M.

    1984-09-01

    Ontario Hydro has had four or more years of service experience with four gas-insulated substations (GIS) rated at 500 kV and 230 kV and 80 kA. Initially, the stations were fraught with problems, due mainly to the equipment being prototype. Most of the problems have now been corrected and the reliability and maintainability of the stations are satisfactory, comparable to the rest of the system. A number of proposals are made to improve the reliability of future GIS.

  6. Solar Two technology for Mexico

    SciTech Connect

    KOLB,GREGORY J.; STRACHAN,JOHN W.; GASCO,CLAUDIO ESTRADA

    2000-03-02

    Solar power towers, based on molten salt technology, have been the subject of extensive research and development since the late 1970s. In the mid 1980s, small experimental plants were successfully fielded in the USA and France that demonstrated the feasibility of the concept at a 1 to 2 MW{sub e} scale. Systems analyses indicate this technology will be cost competitive with coal-fired power plants after scaling-up plant size to the 100 to 200 MW{sub e} range. To help bridge the scale-up gap, a 10 MW{sub e} demonstration project known as Solar Two, was successfully operated in California, USA from 1996 to 1999. The next logical step could be to scale-up further and develop a 30 MW{sub e} project within the country of Mexico. The plant could be built by an IPP industrial consortium consisting of USA's Boeing and Bechtel Corporations, combined with Mexican industrial and financial partners. Plausible technical and financial characteristics of such a ``Solar-Two-type'' Mexican project are discussed in this paper.

  7. Electric industry restructuring in Massachusetts

    SciTech Connect

    Wadsworth, J.W.

    1998-07-01

    A law restructuring the electric utility industry in Massachusetts became effective on November 25, 1997. The law will break up the existing utility monopolies into separate generation, distribution and transmission entities, and it will allow non-utility generators access to the retail end user market. The law contains many compromises aimed at protecting consumers, ensuring savings, protecting employees and protecting the environment. While it appears that the legislation recognizes the sanctity of independent power producer contracts with utilities, it attempts to provide both carrots and sticks to the utilities and the IPP generators to encourage renegotiations and buy-down of the contracts. Waste-to-energy contracts are technically exempted from some of the obligations to remediate. Waste-to-energy facilities are classified as renewable energy sources which may have positive effects on the value to waste-to-energy derived power. On November 25, 1997, the law restructuring the electric utility industry in Massachusetts became effective. The law will have two primary effects: (1) break up the existing utility monopolies into separate generation, distribution and transmission entities, and (2) allow non-utility generators access to the retail end-user market.

  8. BFS, a Legacy to the International Reactor Physics, Criticality Safety, and Nuclear Data Communities

    SciTech Connect

    J. Blair Briggs; Anatoly Tsibulya; Yevgeniy Rozhikhin

    2012-03-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. Data provided by these two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades The Russian Federation has been a major contributor to both projects with the Institute of Physics and Power Engineering (IPPE) as the major contributor from the Russian Federation. Included in the benchmark specifications from the BFS facilities are 34 critical configurations from BFS-49, 61, 62, 73, 79, 81, 97, 99, and 101; spectral characteristics measurements from BFS-31, 42, 57, 59, 61, 62, 73, 97, 99, and 101; reactivity effects measurements from BFS-62-3A; reactivity coefficients and kinetics measurements from BFS-73; and reaction rate measurements from BFS-42, 61, 62, 73, 97, 99, and 101.

  9. Optimizing hourly hydro operations at the Salt Lake City Area integrated projects

    SciTech Connect

    Veselka, T.D.; Hamilton, S.; McCoy, J.

    1995-06-01

    The Salt Lake City Area (SLCA) office of the Western Area Power Administration (Western) is responsible for marketing the capacity and energy generated by the Colorado Storage, Collbran, and Rio Grande hydropower projects. These federal resources are collectively called the Salt Lake City Area Integrated Projects (SLCA/IP). In recent years, stringent operational limitations have been placed on several of these hydropower plants including the Glen Canyon Dam, which accounts for approximately 80% of the SLCA/IP resources. Operational limitations on SLCA/IP hydropower plants continue to evolve as a result of decisions currently being made in the Glen Canyon Dam Environmental Impact Statement (EIS) and the Power Marketing EIS. To analyze a broad range of issues associated with many possible future operational restrictions, Argonne National Laboratory (ANL), with technical assistance from Western has developed the Hydro LP (Linear Program) Model. This model simulates hourly operations at SLCA/IP hydropower plants for weekly periods with the objective of maximizing Western`s net revenues. The model considers hydropower operations for the purpose of serving SLCA firm loads, loads for special projects, Inland Power Pool (IPP) spinning reserve requirements, and Western`s purchasing programs. The model estimates hourly SLCA/IP generation and spot market activities. For this paper, hourly SLCA/IP hydropower plant generation is simulated under three operational scenarios and three hydropower conditions. For each scenario an estimate of Western`s net revenue is computed.

  10. Optimizing hourly hydro operations at the Salt Lake City Area Integrated Projects

    SciTech Connect

    Veselka, T.D.; Hamilton, S.; McCoy, J.

    1995-10-01

    The Salt Lake City Area (SLCA) office of the Western Area Power Administration (Western) is responsible for marketing the capacity and energy generated by the Colorado River Storage, Collbran, and Rio Grande hydropower projects. These federal resources are collectively called the Salt Lake City Area Integrated Projects (SLCA/IP). In recent years, stringent operational limitations have been placed on several of these hydropower plants including the Glen Canyon Dam, which accounts for approximately 80% of the SLCA/IP resources. Operational limitations on SLCA/IP hydropower plants continue to evolve as a result of decisions currently being made in the Glen Canyon Dam Environmental Impact Statement (EIS) and the Power Marketing EIS. The Hydro LP (Linear Program) model, which was developed by Argonne National Laboratory (ANL), was used to analyze a broad range of issues associated with many possible future operational restrictions at SLCA/IP power plants. With technical assistance from Western, the Hydro LP model was configured to simulate hourly power plant operations for weekly periods with the objective of maximizing Western`s net revenues. The model considers hydropower operations for the purpose of serving SLCA firm loads, loads for special projects, Inland Power Pool (IPP) operating reserve requirements, and Western`s purchasing programs. The model estimates hourly SLCA/IP generation and spot market activities. For this paper, hourly SLCA/IP hydropower plant generation was simulated under three operational scenarios and three hydropower conditions. For each scenario an estimate of Western`s net revenue was computed.

  11. Experiences with energy prices in a deregulated market

    SciTech Connect

    Rebellon, P.

    1999-11-01

    The energy market was deregulated in Colombia back in 1994. Since then, an increasing share of energy has been traded at prices dictated essentially by market considerations, not always coherent with sound technical and commercial practices. This paper is based on the author`s experiences with the negotiation of a number of contracts for energy purchase between 1994 and 1997. It starts with a brief presentation of the Colombian power system, the key players and the structure of energy prices before the market was deregulated. An overview of the conditions that led to power shortages in 1992 is included. The document continues with the description of the operation of the Colombian deregulated energy market, as well as the available contracts and energy transactions. Then, the evolution of the energy bid prices submitted by different generating companies during the period 1994--1997 is developed in detail. The final part of the paper discusses the effects of the energy prices in the operation of the system; the financial impact for IPPs; the economic signals given to the market; and the overall performance of the national power system.

  12. LNG links remote supplies and markets

    SciTech Connect

    Avidan, A.A.; Gardner, R.E.; Nelson, D.; Borrelli, E.N.; Rethore, T.J.

    1997-06-02

    Liquefied natural gas (LNG) has established a niche for itself by matching remote gas supplies to markets that both lacked indigenous gas reserves and felt threatened in the aftermath of the energy crises of the 1970s and 1980s. It has provided a cost-effective energy source for these markets, while also offering an environmentally friendly fuel long before that was fashionable. The introduction of natural-gas use via LNG in the early years (mostly into France and Japan) has also allowed LNG to play a major role in developing gas infrastructure. Today, natural gas, often supplied as LNG, is particularly well-suited for use in the combined cycle technology used in independent power generation projects (IPPs). Today, LNG players cannot simply focus on monetizing gas resources. Instead, they must adapt their projects to meet the needs of changing markets. The impact of these changes on the LNG industry has been felt throughout the value chain from finding and producing gas, gas treatment, liquefaction, transport as a liquid, receiving terminals and regasification, and finally, to consumption by power producers, industrial users, and households. These factors have influenced the evolution of the LNG industry and have implications for the future of LNG, particularly in the context of worldwide natural gas.

  13. Frequency hopping millimeter-wave reflectometry in ASDEX upgrade

    SciTech Connect

    Cupido, L.; Graca, S.; Conway, G. D.; Manso, M.; Serra, F.

    2006-10-15

    Millimeter-wave reflectometers for performing density fluctuations have traditionally used either tunable fixed frequency (heterodyne and homodyne) systems or multichannel fixed frequency arrangements. Only recently novel systems were brought into operation with the ability to hop from one frequency to another over a large bandwidth, during each plasma discharge, while retaining the quality of fixed frequency phase locked sources. The new broadband fast hopping millimeter-wave reflectometer incorporates frequency synthesizers for both plasma signal and local oscillators, and the receivers are heterodyne producing full phase/amplitude outputs. Two identical systems were recently installed in (ASDEX upgrade tokamak - IPP-MPG Germany) covering the Q band (33-50 GHz) and the V band (50-75 GHz). In the present article the system is described and the particular implementation on ASDEX, using monostatic antenna system, is presented showing the possibility of correlation studies in fully optimized antenna scenarios. With both Q and V channels in operation it was possible to devise several operation schemes that are described here and a result showing the radial localization of magnetohydrodynamic activity is also presented.

  14. 2011 Release of the Evaluated Nuclear Data Library (ENDL2011.0)

    SciTech Connect

    Brown, D. A.; Beck, B.; Descalles, M. A.; Escher, J. E.; Hoffman, R.; Mattoon, C. M.; Navratil, P.; Nobre, G. A.; Ormand, W. E.; Summers, N. C.; Thompson, I. J.; Vogt, R.; Barnowski, R.

    2015-05-12

    LLNL’s Computational Nuclear Physics Group and Nuclear Theory and Modeling Group have collaborated to produce the last of three major releases of LLNL’s evaluated nuclear database, ENDL2011. ENDL2011 is designed to support LLNL’s current and future nuclear data needs by providing the best nuclear data available to our programmatic customers. This library contains many new evaluations for radiochemical diagnostics, structural materials, and thermonuclear reactions. We have made an effort to eliminate all holes in reaction networks, allowing in-line isotopic creation and depletion calculations. We have striven to keep ENDL2011 at the leading edge of nuclear data library development by reviewing and incorporating new evaluations as they are made available to the nuclear data community. Finally, this release is our most highly tested release as we have strengthened our already rigorous testing regime by adding tests against IPPE Activation Ratio Measurements, many more new critical assemblies and a more complete set of classified testing (to be detailed separately).

  15. Study of volume and surface effects in pure hydrogen discharges

    SciTech Connect

    Taccogna, F.; Schneider, R.; Fantz, U.; Longo, S.; Capitelli, M.

    2007-08-10

    The work concerns the simulation of negative ion formation and acceleration in a radio-frequency discharge for neutral beam injection system for ITER, with particular emphasis on the IPP negative ion source. To generate intense beams of negative ions and to optimize the negative ion source, understanding of transport properties of negative ions H- is indispensable. To study this effect, we have developed a 1D(z)-3V Particle-in-Cell electrostatic model of the production and extraction regions. The motion of charged particles (e, H+, H{sub 2}{sup +} and H-) in their self-consistent electric field and of neutral particles (H(n=1,2,3) and H2(X{sup 1}{sigma}{sub g}{sup +}, {nu}=0,...,14)) is simulated. Surface and volumetric processes involving plasma and neutral systems have been included by using different Monte Carlo Collision methods. Comparisons between numerical and experimental results have been done in order to validate the code.

  16. A wire calorimeter for the SPIDER beam: Experimental tests and feasibility study

    SciTech Connect

    Pasqualotto, R. Serianni, G.; Veltri, P.; Cervaro, V.; Fasolo, D.; Mario, I.; Zanini, M.

    2015-04-08

    To study and optimize negative ion production and acceleration, in view of the use of neutral beam injectors in the ITER project, the SPIDER test facility (particle energy 100keV; beam current 50A, distributed over 1280 beamlets) is under construction in Padova, with the aim of testing beam characteristics and to verify the source proper operation, by means of several diagnostic systems. An array of tungsten wires, directly exposed to the beam and consequently heated to high temperature, is used in similar experiments at IPP-Garching to study the beam optics, which is one of the most important issues, in a qualitative way. The present contribution gives a description of an experimental investigation of the behavior of tungsten wires under high heat loads in vacuum. Samples of tungsten wires are heated by electrical currents and the emitted light is measured by a camera in the 400-1100nm wavelength range, which is proposed as a calibration tool. Simultaneously, the voltage applied to the wire is measured to study the dependency of emissivity on temperature. The feasibility study of a wire calorimeter for SPIDER is finally proposed; to this purpose, the expected behaviour of tungsten with the two-dimensional beam profile in SPIDER is numerically addressed.

  17. From a fuel supplier to an active participant: Shell's view of the opportunities offered by a changing power market

    SciTech Connect

    Nyhan, J.

    1998-07-01

    In the last 10 years, the power generation market has seen radical changes. The coming years will see yet more change. Although the pace of change may be uneven across Europe, it is clear that the old reference points for the power generation market are no longer valid. Along with other market players, Shell has re-evaluated the role it wishes to play in the power generation market. Although it has long operated large generation capacity on its own sites, Shell's role has been that of a fuel supplier to monopoly power generation and distribution organizations, which were largely state controlled . Privatization and liberalization have been followed by changing market structures tending to push risk towards the producer. This evolution presents challenges for the normal IPP structure, where market risk is transferred and offers an opportunity for the active participation of the fuel supplier in meeting these challenges. In 1996, Shell decided to embrace the changes in power generation market. Already, significant steps have been taken in markets in Asia, Latin America and in Europe. The differing requirements of each of these markets means there are no standard solutions and requires Shell to devise flexible frameworks which meet the customer's needs. Shell is bringing its significant strengths to the power generation market and looks forward to participating on a world wide scale in the industry at this exciting phase in its development.

  18. A collisional radiative model for caesium and its application to an RF source for negative hydrogen ions

    SciTech Connect

    Wnderlich, D. Wimmer, C.; Friedl, R.

    2015-04-08

    A collisional radiative (CR) model for caesium atoms in low-temperature, low-pressure hydrogen-caesium plasmas is introduced. This model includes the caesium ground state, 14 excited states, the singly charged caesium ion and the negative hydrogen ion. The reaction probabilities needed as input are based on data from the literature, using some scaling and extrapolations. Additionally, new cross sections for electron collision ionization and three-body recombination have been calculated. The relevance of mutual neutralization of positive caesium ions and negative hydrogen ions is highlighted: depending on the densities of the involved particle species, this excitation channel can have a significant influence on the population densities of excited states in the caesium atom. This strong influence is successfully verified by optical emission spectroscopy measurements performed at the IPP prototype negative hydrogen ion source for ITER NBI. As a consequence, population models for caesium in electronegative low-temperature, low-pressure hydrogen-caesium plasmas need to take into account the mutual neutralization process. The present CR model is an example for such models and represents an important prerequisite for deducing the total caesium density in surface production based negative hydrogen ion sources.

  19. Cesium Delivery System for Negative Ion Source at IPR

    SciTech Connect

    Bansal, G.; Pandya, K.; Soni, J.; Gahlaut, A.; Parmar, K. G. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat, 382 428 (India); Bandyopadhyay, M.; Chakraborty, A.; Singh, M. J. [ITER- India, Institute for Plasma Research, A-29, Sector 25, GIDC, Gandhinagar, Gujarat (India)

    2011-09-26

    The technique of surface production of negative ions using cesium, Cs, has been efficiently exploited over the years for producing negative ion beams with increased current densities from negative ion sources used on neutral beam lines. Deposition of Cs on the source walls and the plasma grid lowers the work function and therefore enables a higher yield of H{sup -}, when hydrogen particles (H and/or H{sub x}{sup +}) strike these surfaces.A single driver RF based (100 kW, 1 MHz) negative ion source test bed, ROBIN, is being set up at IPR under a technical collaboration between IPR and IPP, Germany. The optimization of the Cs oven design to be used on this facility as well as multidriver sources is underway. The characterization experiments of such a Cs delivery system with a 1 g Cs inventory have been carried out using surface ionization technique. The experiments have been carried by delivering Cs into a vacuum chamber without plasma. The linear motion of the surface ionization detector, SID, attached with a linear motion feedthrough allows measuring the angular distribution of the Cs coming out of the oven. Based on the experimental results, a Cs oven for ROBIN has been proposed. The Cs oven design and experimental results of the prototype Cs oven are reported and discussed in the paper.

  20. Particle-Surface Interaction Databases in ALADDIN Format

    DOE Data Explorer

    These databases are listed as recommended resources by CFADC. They represent older data and are not necessarily DOE-originated or funded. However, they are cited in the DOE Data Explorer because of their availability through a DOE Data Center. The citations for these databases are: 1) Energy Dependence of Ion-Induced Sputtering Yields of Monatomic Solids in the Low Energy Region. N. Matsunami, Y. Yamamura, N. Itoh, H. Tawara, T. Kawamura. Report IPPJ-AM-52, Institute of Plasma Physics (National Institute for Fusion Science), Nagoya, Japan (1987); 2) Energy Dependence of the Yields of Ion-Induced Sputtering of Monatomic Solids. N. Maksunami, Y. Yamaura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawer, K. Morita, R. Strimizu, H. Tawara. Report IPPJ-AM-32, Institute of Plasma Physics (National Institute for Fusion Science), Nagoya, Japan (1988); 3) Particle Reflection from Surfaces - A Recommended Data Base. E. W. Thomas, R. K. Janev and J. J. Smith. Report IAEA INDC(NDS)-249, July 1991; 4) Sputtering Data. W. Eckstein, C. Garcia-Rosales, J. Roth and W. Ottenberger. Max-Plank-Institute fur Plasmaphysik Report IPP9/82 (1993); 5) An Evaluated Database for Sputtering. E. W. Thomas, R. K. Janev, J. Botero, J. J. Smith and Y. Qiu. Report IAEA INDC(NDS)-287 (1993).