National Library of Energy BETA

Sample records for infographic turning bacteria

  1. FORGE Phase Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FORGE Phase Infographic FORGE Phase Infographic FORGE Phase Infographic More Documents & Publications Multimedia FORGE Infographic FORGE Phase Infographic EERE Strategic Plan Infographic

  2. BioenergizeME Infographic Challenge Infographic Guide | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Infographic Guide BioenergizeME Infographic Challenge Infographic Guide Infographic Guide for the BioenergizeME Infographic Challenge. bioenergizeme_infographic_guide_2017.pdf (2.14 MB) More Documents & Publications BioenergizeME Infographic Challenge Toolkit BioenergizeME Infographic Challenge Rubric Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge

  3. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol This...

  4. BIOENERGIZEME INFOGRAPHIC CHALLENGE: BIOfuel

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Broad Run HS in Ashburn, VA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  5. EERE Strategic Plan Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications BioenergizeME Infographic Challenge Infographic Guide BioenergizeME Infographic Challenge Toolkit BioenergizeME Infographic Challenge Social Media ...

  6. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Bessie's Biofuel

    Energy.gov [DOE]

    This infographic was created by students from Smithtown HS East in St. James, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  7. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Bioenergy History

    Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  8. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biofuel Acts

    Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  9. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Environmental Impacts

    Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  10. BioenergizeME Infographic Challenge: Understanding America's...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Design a creative and innovative BioenergizeME infographic Submit to OPERATION BioenergizeME. Share your infographic with your social media networks. Promoting the infographics on ...

  11. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Photosynthesis: Plants Making Fuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel

  12. 2016 Bioenergizeme Infographic Challenge: Renewable Alternatives...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Alternatives: Cellulosic Ethanol 2016 Bioenergizeme Infographic Challenge: Renewable Alternatives: Cellulosic Ethanol 2016 Bioenergizeme Infographic Challenge: Renewable ...

  13. INFOGRAPHIC: Wind Energy in America | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    INFOGRAPHIC: Wind Energy in America INFOGRAPHIC: Wind Energy in America Addthis 1 of 6 This infographic details key findings from the 2011 Wind Market Report. | Infographic by ...

  14. INFOGRAPHIC: The Fuel Cell Electric Vehicle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    INFOGRAPHIC: The Fuel Cell Electric Vehicle INFOGRAPHIC: The Fuel Cell Electric Vehicle INFOGRAPHIC: The Fuel Cell Electric Vehicle This infographic shows how fuel cell electric ...

  15. BioenergizeME Infographic Challenge Map | Department of Energy

    Energy Savers

    Then click "View Infographic" to access the infographic's Web page. Click the black ... Then click "View Infographic" to access the infographic's Web page. Click the black ...

  16. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Tertiary Treatment

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Nikola Tesla STEM High School in Redmond, WA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  17. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol

    Energy.gov [DOE]

    This infographic was created by students from Williamsburg HS for Architecture and Design in Brooklyn, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The...

  18. 2016 Bioenergizeme Infographic Challenge: Bioenergy

    Energy.gov [DOE]

    This infographic was created by students from General Douglas MacArthur High School in Levittown, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  19. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Algae Biofuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel

  20. 2016 Bioenergizeme Infographic Challenge: Transportation Sustainability

    Energy.gov [DOE]

    This infographic was created by students from Denmark-Olar High School in Denmark, SC, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  1. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biomass Reduces Carbon Dioxide

    Energy.gov [DOE]

    This infographic was created by students from Sparks HS in Sparks, NV, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  2. 2016 Bioenergizeme Infographic Challenge: Roads to Success

    Energy.gov [DOE]

    This infographic was created by students from Denmark-Olar High in Denmark , SC, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  3. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Careers in Bioenergy

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  4. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Bioenergy Career: Plant Operator

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  5. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Bioenergy Through Time

    Energy.gov [DOE]

    This infographic was created by students from Robinson HS in Tampa, FL, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  6. BIOENERGIZEME INFOGRAPHIC CHALLENGE: History of Bioenergy

    Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  7. BIOENERGIZEME INFOGRAPHIC CHALLENGE: History of Biomass

    Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  8. BIOENERGIZEME INFOGRAPHIC CHALLENGE: The History of Biomass

    Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  9. BIOENERGIZEME INFOGRAPHIC CHALLENGE: History of Biomass

    Energy.gov [DOE]

    This infographic was created by students from Broad Run HS in Ashburn, VA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  10. BIOENERGIZEME INFOGRAPHIC CHALLENGE: History of Bioenergy

    Energy.gov [DOE]

    This infographic was created by students from Troy High School in Troy, MI, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  11. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Energy from Biomass

    Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  12. BIOENERGIZEME INFOGRAPHIC CHALLENGE: What is Biomass?

    Energy.gov [DOE]

    This infographic was created by students from Sparks HS in Sparks, NV, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  13. BIOENERGIZEME INFOGRAPHIC CHALLENGE: What is Biogas?

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Sparks HS in Sparks, NV, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  14. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Why is it important?

    Energy.gov [DOE]

    This infographic was created by students from The Preuss School in La Jolla, CA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  15. 2016 Bioenergizeme Infographic Challenge: Sustainable Transportation

    Energy.gov [DOE]

    This infographic was created by students from Dwight-Englewood School in Englewood, NJ, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  16. 2016 Bioenergizeme Infographic Challenge: Space Algae

    Energy.gov [DOE]

    This infographic was created by students from Cascade High School in Everett, WA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  17. 2016 Bioenergizeme Infographic Challenge: Algae Biofuel

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Sparks High School in Sparks, NV, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  18. 2016 Bioenergizeme Infographic Challenge: Transportation Sustainability

    Energy.gov [DOE]

    This infographic was created by students from Dwight-Englewood School in Englewood, NJ, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  19. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Workforce and Education

    Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  20. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biofuels Sustainable Transportation

    Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  1. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Iowa Ethanol Production

    Energy.gov [DOE]

    This infographic was created by students from Sparks HS in Sparks, NV, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  2. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Bioenergy News Today

    Energy.gov [DOE]

    This infographic was created by students from The Preuss School in La Jolla, CA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  3. BIOENERGIZEME INFOGRAPHIC CHALLENGE: From Fields to Fuel

    Energy.gov [DOE]

    This infographic was created by students from Smithtown HS East in St. James, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  4. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Photosynthesis: Plants Making Fuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel

  5. EGS Infographic | Department of Energy

    Energy.gov (indexed) [DOE]

    EGS Infographic.pdf (18.09 MB) More Documents & Publications Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California Enhanced Geothermal System (EGS) ...

  6. Energy Saver 101: Water Heating Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Saver 101: Water Heating Infographic Energy Saver 101: Water Heating Infographic Looking for ways to save money on water heating? Energy Saver 101: Water Heating infographic ...

  7. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biomass: Types/Characteristics |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Biomass: Types/Characteristics BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biomass: Types/Characteristics BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biomass: Types/Characteristics This infographic was created by students from Albany Academies and Academy of the Holy Names in Albany, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge encourages young people to improve their foundational understanding of bioenergy,

  8. BioenergizeME Infographic Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Education & Workforce Development » BioenergizeME Infographic Challenge BioenergizeME Infographic Challenge BioenergizeME Infographic Challenge: Cellulosic Ethanol BioenergizeME Infographic Challenge: Cellulosic Ethanol BioenergizeME Spring 2016 Infographic Challenge Winner Read more BioenergizeME Infographic Challenge: Algae as a Biofuel BioenergizeME Infographic Challenge: Algae as a Biofuel BioenergizeME Spring 2016 Infographic Challenge First Runner Up Read more BioenergizeME

  9. BioenergizeME Infographic Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Education & Workforce Development » BioenergizeME Infographic Challenge BioenergizeME Infographic Challenge BioenergizeME Infographic Challenge: Cellulosic Ethanol BioenergizeME Infographic Challenge: Cellulosic Ethanol BioenergizeME Spring 2016 Infographic Challenge Winner Read more BioenergizeME Infographic Challenge: Algae as a Biofuel BioenergizeME Infographic Challenge: Algae as a Biofuel BioenergizeME Spring 2016 Infographic Challenge First Runner Up Read more BioenergizeME

  10. 2016 Bioenergizeme Infographic Challenge: Education in Bioenergy

    Energy.gov [DOE]

    This infographic was created by students from Smithtown High School East in St. James, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  11. INFOGRAPHIC: Offshore Wind Outlook | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    INFOGRAPHIC: Offshore Wind Outlook INFOGRAPHIC: Offshore Wind Outlook December 12, 2012 - 2:15pm Addthis According to a new report commissioned by the Energy Department, a U.S. ...

  12. BioenergizeME Infographic Challenge: Understanding America's...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research a BioenergizeME topic Design a creative and innovative BioenergizeME infographic Submit to OPERATION BioenergizeME. Share your infographic with your social media networks. ...

  13. 2016 Bioenergizeme Infographic Challenge: Cellulosic Ethanol

    Energy.gov [DOE]

    This infographic was created by students from Smithtown High School East in St. James, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  14. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biofuels vs Fossil Fuels

    Energy.gov [DOE]

    This infographic was created by students from North Caddo Magnet High School in Vivian, LA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  15. 2016 Bioenergizeme Infographic Challenge: Energy From Biomass

    Energy.gov [DOE]

    This infographic was created by students from Smithtown High School East in St. James, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  16. 2016 Bioenergizeme Infographic Challenge: History of Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from General Douglas MacArthur High School in Levittown, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  17. INFOGRAPHIC: Understanding the Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    INFOGRAPHIC: Understanding the Grid INFOGRAPHIC: Understanding the Grid November 17, 2014 - 2:05pm Addthis Our #GridWeek infographic shows how electricity is generated, transmitted and distributed for use in our homes. | Graphic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department. Our #GridWeek infographic shows how electricity is generated, transmitted and distributed for use in our homes. | Graphic by Sarah Gerrity, Energy Department. Sarah Gerrity Sarah

  18. BioenergizeME Infographic Challenge Rubric | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rubric BioenergizeME Infographic Challenge Rubric Rubric for the BioenergizeME Infographic Challenge. bioenergizeme_rubric.png (840.38 KB) More Documents & Publications Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge BioenergizeME Infographic Challenge Timeline BioenergizeME Infographic Challenge Toolkit

  19. BioenergizeME Infographic Challenge Social Media Guide | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Social Media Guide BioenergizeME Infographic Challenge Social Media Guide Social Media Guide for the BioenergizeME Infographic Challenge. bioenergizeme_social_media_guide.pdf (1.07 MB) More Documents & Publications BioenergizeME Infographic Challenge Timeline BioenergizeME Infographic Challenge Toolkit BioenergizeME Infographic Challenge Flyer

  20. BioenergizeME Infographic Challenge Timeline | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Timeline BioenergizeME Infographic Challenge Timeline Timeline for the BioenergizeME Infographic Challenge. bioenergizeme_timeline_2017.pdf (1012.54 KB) More Documents & Publications BioenergizeME Infographic Challenge Toolkit BioenergizeME Infographic Challenge Social Media Guide BioenergizeME Infographic Challenge Rubric

  1. 2016 Bioenergizeme Infographic Challenge: Hemp as an Alternative to Plastic

    Energy.gov [DOE]

    This infographic was created by students from Cascade High School in Everett, WA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  2. 2016 Bioenergizeme Infographic Challenge: Biofuels Hit the Road

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from High Tech Early College in Denver, CO, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  3. 2016 Bioenergizeme Infographic Challenge: US Energy Consumption By Source

    Energy.gov [DOE]

    This infographic was created by students from High Tech Early College in Denver, CO, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  4. BIOENERGIZEME INFOGRAPHIC CHALLENGE: History of Bioenergy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy History of Bioenergy BIOENERGIZEME INFOGRAPHIC CHALLENGE: History of Bioenergy BIOENERGIZEME INFOGRAPHIC CHALLENGE: History of Bioenergy This infographic was created by students from Nikola Tesla STEM High School in Redmond, WA

  5. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Environmental impacts of Bio energy

    Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  6. 2016 Bioenergizeme Infographic Challenge: Biobutanol- A Better Bio-Alternative

    Energy.gov [DOE]

    This infographic was created by students from Sparks High School in Sparks, NV, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  7. Solar Decathlon 2013 Infographic: The Path to a Brighter Future...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Infographic: The Path to a Brighter Future Solar Decathlon 2013 Infographic: The Path to a Brighter Future September 13, 2013 - 11:50am Addthis Our latest infographic -- Solar...

  8. 2016 Bioenergizeme Infographic Challenge: The History of Ethanol |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy The History of Ethanol 2016 Bioenergizeme Infographic Challenge: The History of Ethanol 2016 Bioenergizeme Infographic Challenge: The History of Ethanol This infographic was created by students from Smithtown High School East in St. James, NY

  9. 2016 Bioenergizeme Infographic Challenge: History in the Making

    Energy.gov [DOE]

    This infographic was created by students from Denmark-Olar High in Denmark , SC, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  10. BIOENERGIZEME INFOGRAPHIC CHALLENGE: From Fish Food to Fuel

    Energy.gov [DOE]

    This infographic was created by students from LISD TECH Center in Adrian, MI, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  11. 2016 Bioenergizeme Infographic Challenge: Oil Consumption vs Ethanol

    Energy.gov [DOE]

    This infographic was created by students from Sparks High School in Sparks, NV, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  12. 2016 Bioenergizeme Infographic Challenge: Use of Fossil Fuels & Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from High Tech Early College in Denver, CO, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  13. 2016 Bioenergizeme Infographic Challenge: Biofuel Jobs and Education

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Sparks High School in Sparks, NV, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  14. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Corn to Ethanol the Process

    Energy.gov [DOE]

    This infographic was created by students from Broad Run HS in Ashburn, VA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  15. BIOENERGIZEME INFOGRAPHIC CHALLENGE: A "Biomassive" Innovation: Fueling Life in Appalachia

    Energy.gov [DOE]

    This infographic was created by students from Belfry School in Belfry, KY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  16. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Travel to the Future with Bioenergy

    Energy.gov [DOE]

    This infographic was created by students from Smithtown HS East in St. James, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  17. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Effects of Bioenergy on the Environment

    Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  18. BioenergizeME Infographic Challenge Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Map BioenergizeME Infographic Challenge Map X BioenergizeME Map Explore the BioenergizeME Infographic Challenge Map to view infographics submitted by student teams from across the country! Click the colored markers to see details about infographics. Then click "View Infographic" to access the infographic's Web page. Click the black markers to learn more about U.S. integrated biorefinery projects that have received funding from the Bioenergy Technologies Office. Get Started The

  19. City Energy Profiles and Action Toolbox Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    City Energy Profiles and Action Toolbox Infographic City Energy Profiles and Action Toolbox Infographic City Energy Profiles and Action Toolbox Infographic This Cities Leading Through Energy Analysis and Planning (Cities-LEAP) City Energy Profiles and Action Toolbox infographic describes the data available in the city energy profiles tool and the city action toolbox. Download this infographic. More Documents & Publications Cities Leading Through Energy Analysis and Planning Infographic

  20. 2016 Bioenergizeme Infographic Challenge: Algae as a Biofuel | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Algae as a Biofuel 2016 Bioenergizeme Infographic Challenge: Algae as a Biofuel 2016 Bioenergizeme Infographic Challenge: Algae as a Biofuel

  1. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Algae: for a Cleaner and Greener Tomorrow BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner and Greener Tomorrow BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner ...

  2. 2016 Bioenergizeme Infographic Challenge: Energy Crops: The Future...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Crops: The Future of Bioenergy Feedstocks 2016 Bioenergizeme Infographic Challenge: Energy Crops: The Future of Bioenergy Feedstocks 2016 Bioenergizeme Infographic ...

  3. 2016 Bioenergizeme Infographic Challenge: The Algae's Always Greener |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy The Algae's Always Greener 2016 Bioenergizeme Infographic Challenge: The Algae's Always Greener 2016 Bioenergizeme Infographic Challenge: The Algae's Always Greener

  4. INFOGRAPHIC: Wide Bandgap Semiconductors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    INFOGRAPHIC: Wide Bandgap Semiconductors INFOGRAPHIC: Wide Bandgap Semiconductors January 21, 2014 - 12:44pm Addthis INFOGRAPHIC: Wide Bandgap Semiconductors MORE RESOURCES Watch the video on WBG semiconductors Read the Advanced Manufacturing Office fact sheet on WBG semiconductors Subscribe to Advanced Manufacturing Office news updates Learn about the Clean Energy Manufacturing Initiative For decades, power electronics - or tiny pieces of equipment such as inverters and rectifiers made of

  5. 2016 Bioenergizeme Infographic Challenge: Algae Biofuels, Exploring...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Algae Biofuels, Exploring the Energy of Tomorrow Today 2016 Bioenergizeme Infographic Challenge: Algae Biofuels, Exploring the Energy of Tomorrow Today 2016 Bioenergizeme ...

  6. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Environmental Benefits of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Environmental Benefits of Bioenergy Corn Can Save the Earth BIOENERGIZEME INFOGRAPHIC CHALLENGE: Environmental Benefits of Bioenergy Corn Can Save the Earth BIOENERGIZEME ...

  7. INFOGRAPHIC: Understanding the Grid | Department of Energy

    Energy.gov (indexed) [DOE]

    in the infographic above, our power grid is a network of power plants, substations, transformers, wires, sensors and poles that carry electricity sometimes hundreds of miles to be...

  8. BioenergizeME Infographic Challenge: Understanding America's...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Infographic Challenge Understanding America's Bioenergy Choices Bioenergy is derived from organic matter to produce renewable fuels, products, and power. This national...

  9. BioenergizeME Infographic Challenge Timeline | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Timeline BioenergizeME Infographic Challenge Timeline BioenergizeME 2017 Timeline.JPG

  10. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biosolids to Biofuels | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Biosolids to Biofuels BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biosolids to Biofuels BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biosolids to Biofuels This infographic was created by students from Nikola Tesla STEM High School in Redmond, WA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge encourages young people to improve their foundational understanding of bioenergy, which is a broad and complex topic. The ideas expressed

  11. BIOENERGIZEME INFOGRAPHIC CHALLENGE: One Man's Yardwaste is Another Man's

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy (BioHydrogen) | Department of Energy One Man's Yardwaste is Another Man's Energy (BioHydrogen) BIOENERGIZEME INFOGRAPHIC CHALLENGE: One Man's Yardwaste is Another Man's Energy (BioHydrogen) BIOENERGIZEME INFOGRAPHIC CHALLENGE: One Man's Yardwaste is Another Man's Energy (BioHydrogen) This infographic was created by students from Nikola Tesla STEM High School in Redmond, WA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic

  12. 2016 BioenergizeME Infographic Challenge Winners Crowned | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 2016 BioenergizeME Infographic Challenge Winners Crowned 2016 BioenergizeME Infographic Challenge Winners Crowned May 25, 2016 - 2:38pm Addthis 2016 BioenergizeME Infographic Challenge Winners Crowned The winner of the 2016 BioenergizeME Infographic Challenge was announced during a special awards ceremony on May 11, 2016, by Dr. Jonathan Male, Director of the Bioenergy Technologies Office (BETO). The winning infographic entitled "Cellulosic Ethanol: Fueling the Future," was

  13. BioenergizeME Infographic Challenge Toolkit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Toolkit BioenergizeME Infographic Challenge Toolkit Toolkit for the BioenergizeME Infographic Challenge. bioenergizeme_toolkit_2017.pdf (7.21 MB) More Documents & Publications Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge BioenergizeME Infographic Challenge Timeline Webinar: BioenergizeME Office Hours Webinar: Biomass Basics Return to BioenergizeME Infographic Challenge

  14. 2016 Bioenergizeme Infographic Challenge: Biofuels vs Fossil Fuels |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Biofuels vs Fossil Fuels 2016 Bioenergizeme Infographic Challenge: Biofuels vs Fossil Fuels 2016 Bioenergizeme Infographic Challenge: Biofuels vs Fossil Fuels This infographic was created by students from General Douglas MacArthur High School in Levittown, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge encourages young people to improve their foundational understanding of bioenergy, which is a

  15. Understanding Energy Use in Cities Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Understanding Energy Use in Cities Infographic Understanding Energy Use in Cities Infographic Understanding Energy Use in Cities Infographic This Cities Leading through Energy Analysis and Planning (Cities-LEAP) infographic describes the key points from the report, City-Level Energy Decision Making: Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities. Download this infographic. Read the Report Photo of the estimating the national carbon abatement report. Read Estimating

  16. BioenergizeME Infographic Guide

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ŏ - 30 million retired Christma s trees could produce 68 million gallons of green gasoline . - 68 million gallons of green gasoline could take you from New York to Los Angeles 700,000 times. 3 DESIGN Now it's time to bring everything together in one cohesive design. Create the layout, and choose a color scheme. Bring your sketches to life with hand-drawn or digital illustrations and icons. Be sure to use a consistent design style throughout the infographic. 1 RESEARCH 5 STEPS FOR BUILDING AN

  17. INFOGRAPHIC: Carbon Capture 101 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Carbon Capture 101 INFOGRAPHIC: Carbon Capture 101 January 7, 2016 - 11:34am Addthis Carbon capture is an important part of the Energy Department's Fossil Energy research and development efforts, but it can be hard to understand. This infographic breaks it down for you. | Infographic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department. Carbon capture is an important part of the Energy Department's Fossil Energy research and development efforts, but it can be

  18. BioenergizeME Infographic Challenge Flyer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Flyer BioenergizeME Infographic Challenge Flyer Flyers for the BioenergizeME Infographic Challenge can be downloaded in three sizes: 3.5"x5", 8.5"x11", and 11"x16" 2017_bioenergizeme_flyer_3.5x5.pdf (66.49 KB) 2017_bioenergizeme_flyer_8.5x11.pdf (83.36 KB) 2017_bioenergizeme_flyer_11x17.pdf (82.95 KB) More Documents & Publications BioenergizeME Infographic Challenge Toolkit BioenergizeME Infographic Challenge Infographic Guide BioenergizeME Infographic Challenge

  19. Energy Saver 101: Water Heating Infographic

    Energy.gov [DOE]

    Looking for ways to save money on water heating? Energy Saver 101: Water Heating infographic lays out evergything you need to know about water heating and shares ways to save energy and money.

  20. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Imagine Renewable Fuel

    Energy.gov [DOE]

    This infographic was created by students from Clean Technologies and Sustainable Industries Early College High School in Ballston Spa, NY, as part of the U.S. Department of Energy-BioenergizeME...

  1. BIOENERGIZEME INFOGRAPHIC CHALLENGE: A "Biomassive" Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The ideas expressed in these infographics reflect where students are in the learning process and do not necessarily reflect the state of knowledge of the U.S. Department of Energy ...

  2. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner and Greener

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tomorrow | Department of Energy Algae: for a Cleaner and Greener Tomorrow BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner and Greener Tomorrow BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner and Greener Tomorrow

  3. 2016 Bioenergizeme Infographic Challenge: Fossil Fuels vs Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Smithtown High School East in St. James, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  4. 2016 Bioenergizeme Infographic Challenge: Sustainable Lignin-Based Methanol

    Energy.gov [DOE]

    This infographic was created by students from High Tech High North County in San Marcos, CA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  5. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Oil Future of the World

    Energy.gov [DOE]

    This infographic was created by students from Miami Palmetto Senior High School in Pinecrest, FL, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  6. 2016 Bioenergizeme Infographic Challenge: Renewable Alternatives: Cellulosic Ethanol

    Energy.gov [DOE]

    This infographic was created by students from General Douglas MacArthur High School in Levittown, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  7. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Bioenergy: Creating Biofuels from Biomass

    Energy.gov [DOE]

    This infographic was created by students from North Caddo Magnet High School in Vivian, LA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  8. Winning Infographics Depict Future of Geothermal Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Winning Infographics Depict Future of Geothermal Energy Winning Infographics Depict Future of Geothermal Energy August 10, 2016 - 2:10pm Addthis These infographics, created by teams of high school and university students from across the country for the Geothermal Design Challenge, highlight the importance of geothermal energy for achieving a cleaner, greener energy future. These infographics, created by teams of high school and university students from across the country for the

  9. Energy Saver 101 Infographic: Home Energy Audits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Audits Energy Saver 101 Infographic: Home Energy Audits August 15, 2013 - 3:19pm Addthis New Energy Saver 101 infographic breaks down a home energy audit, explaining what energy auditors look for and the special tools they use to determine where a home is wasting energy. | Infographic by Sarah Gerrity, Energy Department. New Energy Saver 101 infographic breaks down a home energy audit, explaining what energy auditors look for and the special tools they use to determine where a home is

  10. Biogas Opportunities Roadmap Progress Report Infographic | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Biogas Opportunities Roadmap Progress Report Infographic Biogas Opportunities Roadmap Progress Report Infographic biogas_opportunites_roadmap_progress_report_infographic.pdf (707.86 KB) More Documents & Publications Biogas Opportunities Roadmap Progress Report Biogas and Fuel Cells Workshop Summary Report: Proceedings from the Biogas and Fuel Cells Workshop, Golden, Colorado, June 11-13, 2012 Biogas Opportunities Roadmap

  11. BioenergizeME Infographic Challenge Annual Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Annual Update BioenergizeME Infographic Challenge Annual Update Annual Update for the BioenergizeME Infographic Challenge. bioenergizeme_annual_update_2017.pdf (1.13 MB) More Documents & Publications BioenergizeME Infographic Challenge Toolkit Webinar: BioenergizeME Office Hours Webinar: Biomass Basics BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom

  12. INFOGRAPHIC: The Road to Fuel Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Road to Fuel Efficiency INFOGRAPHIC: The Road to Fuel Efficiency November 27, 2012 - 11:01am Addthis This infographic takes a look at fuel economy standards and how recent improvements in these standards will benefit consumers and the U.S. economy. | Infographic by <a href="/node/379579">Sarah Gerrity</a>. This infographic takes a look at fuel economy standards and how recent improvements in these standards will benefit consumers and the U.S. economy. | Infographic by

  13. INFOGRAPHIC: Wind Energy in America | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    INFOGRAPHIC: Wind Energy in America INFOGRAPHIC: Wind Energy in America August 14, 2012 - 9:21am Addthis This infographic details key findings from the Energy Department’s <a href="http://www1.eere.energy.gov/wind/resources.html">2011 Wind Technologies Market Report </a> -- which underscores the dramatic growth of the U.S. wind industry. | Infographic by <a href="/node/379579">Sarah Gerrity</a>. This infographic details key findings from the

  14. Infographic: Where in Space is the Energy Department? | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Infographic: Where in Space is the Energy Department? Infographic: Where in Space is the Energy Department? June 9, 2015 - 2:54pm Addthis In the infographic above, learn about the space missions, past and present, where technology from the Energy Department and its National Labs has made discovery possible.| Infographic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department. Editor's Note 10/31/16: This infographic has been updated to reflect current

  15. Energy Saver 101 Infographic: Home Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cooling Energy Saver 101 Infographic: Home Cooling June 13, 2014 - 5:10pm Addthis Just in time for summer, our new Energy Saver 101 infographic covers everything you need to know about home cooling. Download a <a href="/node/920771">high-resolution version</a> of the home cooling infographic. | Infographic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department. Just in time for summer, our new Energy Saver 101 infographic covers everything you

  16. Energy Saver 101 Infographic: Landscaping | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Landscaping Energy Saver 101 Infographic: Landscaping April 3, 2014 - 4:04pm Addthis Our new Energy Saver 101 infographic highlights everything you need to know to landscape for energy savings. Download a <a href="/node/898361">high resolution version</a> of the infographic or individual sections. | Infographic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department. Our new Energy Saver 101 infographic highlights everything you need to know to

  17. Turning Bacteria into Fuel: Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: ASU is engineering a type of photosynthetic bacteria that efficiently produce fatty acidsa fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acidsoverriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASUs approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.

  18. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Comparison of Bio-fuels to Other Commonly Used Forms of Energy

    Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  19. 2016 Bioenergizeme Infographic Challenge: Energy Crops: The Future of Bioenergy Feedstocks

    Energy.gov [DOE]

    This infographic was created by students from Franklin High School in Franklin, MA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  20. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Powering the World One Poop at a Time

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Genesee Career Institute in Flint, MI, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  1. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Environmental Benefits of Bioenergy Corn Can Save the Earth

    Energy.gov [DOE]

    This infographic was created by students from Smithtown HS East in St. James, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  2. BioenergizeME Infographic Challenge Registration

    Energy.gov [DOE]

    Complete the registration form to register for the 2016 BioenergizeME Infographic Challenge. We encourage you to register early to help us in planning for a timely review. The registration period closes on Feb. 4, 2016, at 5 p.m. Central Time.

  3. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Seward HS in Seward, AK, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge encourages young people to improve their foundational understanding of bioenergy, which is a broad and complex topic. The ideas expressed in these infographics reflect where students are in the learning process and do not necessarily reflect the state of knowledge of the U.S. Department of Energy or other experts in the bioenergy

  4. BioenergizeME Infographic Challenge Winners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Winners BioenergizeME Infographic Challenge Winners BioenergizeME Spring 2015 Infographic Challenge Award Ceremomy at Bioenergy 2015. BioenergizeME Spring 2015 Infographic Challenge Award Ceremomy at Bioenergy 2015. Spring 2016 Challenge Winners: Winning Team, Director's Prize for Excellence in Content, Design, and Social Media Promotion: Cellulosic Ethanol: The Fuel of the Future-Smithtown High School East in St. James, New York First Runner Up: Algae as a Biofuel-Smithtown High School East in

  5. Cities Leading Through Energy Analysis and Planning Infographic |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Cities Leading Through Energy Analysis and Planning Infographic Cities Leading Through Energy Analysis and Planning Infographic The Cities Leading through Energy Analysis and Planning (Cities-LEAP) project delivers standardized, localized energy data and analysis that enables cities to lead clean energy innovation and integrate strategic energy analysis into decision making. Two Cities-LEAP infographics catalog the programs and tools currently supporting local

  6. Winning BioenergizeME Infographic Challenge Students Recognized in

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Washington, D.C. | Department of Energy Winning BioenergizeME Infographic Challenge Students Recognized in Washington, D.C. Winning BioenergizeME Infographic Challenge Students Recognized in Washington, D.C. August 5, 2016 - 10:00am Addthis 2016 BioenergizeME Infographic Challenge Winning Team: (From left to right) Maria Zeitlin (advisor), Lexington Zografakis, Sydney Bracht, and Sidney Davis were recognized by Jonathan Male, Director of the Bioenergy Technologies Office. The team and their

  7. Enhanced Geothermal System (EGS) Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enhanced Geothermal System (EGS) Infographic Enhanced Geothermal System (EGS) Infographic Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California The EGS infographic provides an overview of this burgeoning technology that could access an enormous, domestic, clean energy resource predicted at more than 100 GW in the United States alone, according to an MIT study. To take advantage of this vast

  8. Energy Saver 101 Infographic: Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heating Energy Saver 101 Infographic: Home Heating December 16, 2013 - 10:48am Addthis Our new Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your system and proper maintenance. Download a <a href="/node/784286">high-resolution version</a> of the infographic or individual sections. | Infographic by <a

  9. 2016 Bioenergizeme Infographic Challenge: Algae Biofuels, Exploring the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy of Tomorrow Today | Department of Energy Algae Biofuels, Exploring the Energy of Tomorrow Today 2016 Bioenergizeme Infographic Challenge: Algae Biofuels, Exploring the Energy of Tomorrow Today 2016 Bioenergizeme Infographic Challenge: Algae Biofuels, Exploring the Energy of Tomorrow Today

  10. Solar Decathlon 2013 Infographic: The Path to a Brighter Future |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Infographic: The Path to a Brighter Future Solar Decathlon 2013 Infographic: The Path to a Brighter Future September 13, 2013 - 11:50am Addthis Our latest infographic -- Solar Decathlon 2013: The Path to a Brighter Future -- takes a look at the teams competing in this year’s competition and highlights innovative design features in each of the teams’ houses. Not featured in the "Meet the Teams" section, Team Texas will also compete at Solar Decathlon

  11. Energy Saver 101: Home Cooling Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Saver 101: Home Cooling Infographic Energy Saver 101: Home Cooling Infographic While home cooling only accounts for 6 percent of the average home's energy use, it can lead to high energy bills during the warm months. This summer, don't let your energy bills go through the roof. Our Energy Saver 101 infographic covers everything you need to know about home cooling -- from how an air conditioner works and the different types of systems on the market to proper maintenance and energy-saving

  12. INFOGRAPHIC: Everything You Need to Know About Supercomputers | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Everything You Need to Know About Supercomputers INFOGRAPHIC: Everything You Need to Know About Supercomputers November 18, 2015 - 5:37pm Addthis Infographic by <a href="/node/1332956">Carly Wilkins</a> and <a href="/node/379579">Sarah Gerrity</a>. Infographic by Carly Wilkins and Sarah Gerrity. Pat Adams Pat Adams Digital Content Specialist, Office of Public Affairs What are the key facts? National Labs are home to some of the most

  13. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Bio-Fuel at Farms

    Energy.gov [DOE]

    This infographic was created by students from Clean Technologies and Sustainable Industries Early College High School in Ballston Spa, NY, as part of the U.S. Department of Energy-BioenergizeME...

  14. INFOGRAPHIC | Made in America: Clean Energy Jobs | Department...

    Energy.gov (indexed) [DOE]

    Breaking down the latest Clean Energy Roundup from the Environmental Entrepreneurs. More details here. | Infographic by Sarah...

  15. BIOENERGIZEME INFOGRAPHIC CHALLENGE: One Man's Yardwaste is Another...

    Energy.gov (indexed) [DOE]

    One Man's Yardwaste is Another Man's Energy (BioHydrogen) This infographic was created by students from Nikola Tesla STEM High School in Redmond, WA, as part of the U.S. Department ...

  16. Energy Saver 101 Infographic: Home Energy Audits | Department...

    Energy.gov (indexed) [DOE]

    New Energy Saver 101 infographic breaks down a home energy audit, explaining what energy auditors look for and the special tools they use to determine where a home is wasting...

  17. 2016 Bioenergizeme Infographic Challenge: Job Opportunities in Bioenergy

    Energy.gov [DOE]

    This infographic was created by students from Clean Technologies and Sustainable Industries Early College High School in Malta, NY, as part of the U.S. Department of Energy-BioenergizeME...

  18. BIOENERGIZEME INFOGRAPHIC CHALLENGE: A History of Bio-Fuel

    Energy.gov [DOE]

    This infographic was created by students from Clean Technologies and Sustainable Industries Early College High School in Ballston Spa, NY, as part of the U.S. Department of Energy-BioenergizeME...

  19. INFOGRAPHIC: Let's Get to Work on Solar Soft Costs | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Let's Get to Work on Solar Soft Costs INFOGRAPHIC: Let's Get to Work on Solar Soft Costs December 2, 2013 - 1:00pm Addthis Learn how soft costs are contributing to the price of ...

  20. INFOGRAPHIC: Everything You Need to Know About Supercomputers

    Office of Energy Efficiency and Renewable Energy (EERE)

    In our newest infographic, we explain some of the complex terms associated with the speed, storage and processing on supercomputers; the game changing work being done with them; and the top 8 supercomputers that call the National Labs home.

  1. 2016 Bioenergizeme Infographic Challenge: The Miracles of Biomass

    Energy.gov [DOE]

    This infographic was created by students from Clean Technologies and Sustainable Industries Early College High School in Malta, NY, as part of the U.S. Department of Energy-BioenergizeME...

  2. BioenergizeME Infographic Challenge: Understanding America's Bioenergy Choices

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Understanding America's Bioenergy Choices Bioenergy is derived from organic matter to produce renewable fuels, products, and power. This national challenge aims to inspire students to explore America's bioenergy choices and share what they learn with others. The Energy Department is challenging high school-aged students to investigate a bioenergy topic and design an infographic that illustrates their research. � For more information, please visit energy.gov/eere/bioenergy/infographic-challenge

  3. Infographics from the 2014 National Geothermal Student Competition |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Infographics from the 2014 National Geothermal Student Competition Infographics from the 2014 National Geothermal Student Competition Phil Ulibarri of Truckee Meadows Community College in Reno earned first place in the Geo Energy is Beautiful contest in 2014. Phil Ulibarri of Truckee Meadows Community College in Reno earned first place in the Geo Energy is Beautiful contest in 2014. With the theme of GeoEnergy is Beautiful, the Energy Department's National Geothermal

  4. 2016 Bioenergizeme Infographic Challenge: From Feedstock to Fuel Pump: Careers in the Biofuel Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Williamsburg High School for Architecture and Design in Brooklyn, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The...

  5. 2016 Bioenergizeme Infographic Challenge: Environmental Impacts of Bioenergy vs Fossil Energy

    Energy.gov [DOE]

    This infographic was created by students from Smithtown High School East in St. James, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  6. Turning Bacteria into Biofuel: Development of an Integrated Microbial Electrocatalytic (MEC) System for Liquid Biofuel Production from CO2

    SciTech Connect (OSTI)

    2010-08-01

    Electrofuels Project: LBNL is improving the natural ability of a common soil bacteria called Ralstonia eutropha to use hydrogen and carbon dioxide for biofuel production. First, LBNL is genetically modifying the bacteria to produce biofuel at higher concentrations. Then, LBNL is using renewable electricity obtained from solar, wind, or wave power to produce high amounts of hydrogen in the presence of the bacteria—increasing the organism’s access to its energy source and improving the efficiency of the biofuel-creation process. Finally, LBNL is tethering electrocatalysts to the bacteria’s surface which will further accelerate the rate at which the organism creates biofuel. LBNL is also developing a chemical method to transform the biofuel that the bacteria produce into ready-to-use jet fuel.

  7. INFOGRAPHIC: Better Buildings Leading to Big Energy Savings | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Better Buildings Leading to Big Energy Savings INFOGRAPHIC: Better Buildings Leading to Big Energy Savings May 11, 2016 - 12:35pm Addthis Better Buildings partners have saved more than $1.3 billion on energy costs. Our new infographic explains how Better Buildings works and why it’s important. | Graphic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department Better Buildings partners have saved more than $1.3 billion on energy costs. Our new

  8. INFOGRAPHIC: How Appliance Standards Help Consumers Save Big | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Appliance Standards Help Consumers Save Big INFOGRAPHIC: How Appliance Standards Help Consumers Save Big December 14, 2015 - 3:10pm Addthis FACT: Consumers are saving more than $62 billion a year as a result of the Energy Department's Appliance and Equipment Standards Program. | Infographic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department FACT: Consumers are saving more than $62 billion a year as a result of the Energy Department's Appliance and

  9. The Facts on Gas Prices: Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    on Gas Prices: Infographic The Facts on Gas Prices: Infographic March 13, 2012 - 4:19pm Addthis Domestic oil production has climbed every year since President Obama took office, and our dependence on foreign oil is at its lowest level since the 1990s. | Graphic courtesy of the <a href="http://www.whitehouse.gov/energy/gasprices">White House</a> Domestic oil production has climbed every year since President Obama took office, and our dependence on foreign oil is at its

  10. INFOGRAPHIC: How SuperTruck is Making Heavy Duty Vehicles More Efficient |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy How SuperTruck is Making Heavy Duty Vehicles More Efficient INFOGRAPHIC: How SuperTruck is Making Heavy Duty Vehicles More Efficient March 1, 2016 - 10:45am Addthis Our latest infographic explains how heavy-duty trucks are more getting more sustainable thanks to the Energy Department's SuperTruck initiative. | Infographic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department. Our latest infographic explains how heavy-duty trucks are more

  11. BioenergizeME Infographic Challenge: Understanding America's Bioenergy Choices

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    produce renewable fuels, products, and power. This national challenge aims to inspire students to explore America's bioenergy choices and share what they learn with others. The Energy Department challenges you to investigate a bioenergy topic and design an infographic that illustrates your research. Register by February 3, 2017, at 5:00 p.m. central time. Follow us on #BioenergizeME. Questions? Email BioenergizeME@ee.doe.gov For more information, please visit

  12. BioenergizeME Infographic Challenge: Understanding America's Bioenergy Choices

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    produce renewable fuels, products, and power. This national challenge aims to inspire students to explore America's bioenergy choices and share what they learn with others. The Energy Department challenges you to investigate a bioenergy topic and design an infographic that illustrates your research. Register by February 3, 2017, at 5:00 p.m. central time. Follow us on #BioenergizeME. Questions? Email BioenergizeME@ee.doe.gov For more information, please visit

  13. Picture of the Week: Gamma-ray bursts, infographic

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Gamma-ray bursts: infographic Gamma-ray bursts (GRBs) are the most powerful explosions in the universe. With the help of sophisticated instruments such as the ground based RAPTOR robotic observatory system in New Mexico and the High Altitude Water Chernekov (HAWC) Gamma Ray Observatory in Mexico, scientists at Los Alamos National Lab and around the world are working to understand the ongoing mysteries relating to their physics and origins. Gamma Ray Bursts Click the image to see a larger view.

  14. BioenergizeME Office Hours Webinar: Must-Know Tips for the 2016 BioenergizeME Infographic Challenge

    Energy.gov [DOE]

    Infographics are a useful visual tool for explaining complex information, numbers, or data quickly and effectively. However, you do not need to be an experienced graphic designer to make an eye-catching infographic. To assist student teams with the 2016 BioenergizeME Infographic Challenge, this webinar will highlight strategies for designing engaging infographics and will provide creative approaches that can bring attention to your infographic and motivate others to share it across their social media networks. The webinar will also include lessons learned from previous challenges and tips from last year’s winning team. The U.S. Department of Energy (DOE) BioenergizeME Infographic Challenge engages 9th–12th-grade high school teams to research one of four cross-curricular bioenergy topics and design an infographic to share what they have learned. This webinar is part of the BioenergizeME Office Hours webinar series developed by the DOE Bioenergy Technologies Office.

  15. Energy Department Turns Up the Heat and Power on Industrial Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency | Department of Energy Turns Up the Heat and Power on Industrial Energy Efficiency Energy Department Turns Up the Heat and Power on Industrial Energy Efficiency March 13, 2013 - 12:19pm Addthis Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by Sarah Gerrity, Energy Department. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower

  16. INFOGRAPHIC: How Do We Know Iran Isn't Building a Nuclear Bomb? |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Do We Know Iran Isn't Building a Nuclear Bomb? INFOGRAPHIC: How Do We Know Iran Isn't Building a Nuclear Bomb? February 2, 2016 - 12:00pm Addthis Infographic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department. Infographic by Carly Wilkins, Energy Department. Pat Adams Pat Adams Digital Content Specialist, Office of Public Affairs Carly Wilkins Carly Wilkins Multimedia Designer The Iran Deal puts in place unprecedented monitoring and

  17. New Infographic and Projects to Keep Your Energy Bills Out of...

    Energy.gov (indexed) [DOE]

    New Energy Saver 101 infographic lays out the different types of water heaters on the market and will help you figure out how to select the best model for your home. Download a...

  18. BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) BioenergizeME Infographic Challenge is an engaging way for students to explore topics in bioenergy and share what they have learned with others across the nation. In this challenge, high school-aged teams (grades 9–12) will use technology to research, interpret, apply, and then design an infographic that responds to one of four cross-curricular bioenergy topics. To make the challenge easier and more effective, this webinar is designed to guide interested students, teachers, and other educators through the submission process and highlight the resources that are available on the BioenergizeME Infographic Challenge website. These resources will assist students with researching their selected topics, developing their infographics, and designing effective social media campaigns. This webinar is part of the BioenergizeME Office Hours webinar series developed by the DOE Bioenergy Technologies Office.

  19. Grades 9-12: Join the BioenergizeME Infographic Challenge!

    Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is hosting the BioenergizeME Infographic Challenge to engage 9th–12th grade students in learning about bioenergy and educating their peers. In this...

  20. Winning Team Announced for 2015 BioenergizeME Infographic Challenge Pilot

    Office of Energy Efficiency and Renewable Energy (EERE)

    Bioenergy Technologies Office (BETO) Director Jonathan Male announced the winner and finalists of the 2015 BioenergizeME Infographic Challenge Pilot in a special webinar awards ceremony on June 3, 2015.

  1. 2016 Bioenergizeme Infographic Challenge: Biofuel: Making Sustainable Fuels Through Organic Materials

    Energy.gov [DOE]

    This infographic was created by students from Clean Technologies and Sustainable Industries Early College High School in Malta, NY, as part of the U.S. Department of Energy-BioenergizeME...

  2. Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) BioenergizeME Infographic Challenge is an engaging way for students to explore topics in bioenergy and share what they have learned with others across the nation. In this challenge, high school-aged teams (grades 9–12) will use technology to research, interpret, apply, and then design an infographic that responds to one of four cross-curricular bioenergy topics. To make the challenge easier and more effective, this webinar is designed to guide interested students, teachers, and other educators through the submission process and highlight the resources that are available on the BioenergizeME Infographic Challenge website. These resources will assist students with researching their selected topics, developing their infographics, and designing effective social media campaigns. This webinar is part of the BioenergizeME Office Hours webinar series developed by the DOE Bioenergy Technologies Office.

  3. BioenergizeME Office Hours: Guide to the 2016 BioenergizeME Infographic Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    October 15, 2015 BioenergizeME Office Hours Guide to the 2016 BioenergizeME Infographic Challenge Shannon Zaret Communications Specialist, The Hannon Group Contractor to the U.S. Department of Energy's Bioenergy Technologies Office 2 | Bioenergy Technologies Office | Bioenergy Technologies Office Agenda * Overview * Research Topic Areas And Prompts * Research Resources * Infographic Resources * Rubric * Social Media Campaign * Awards * Registration * Resources for Educators * Questions 3 |

  4. BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge

    Energy.gov [DOE]

    The U.S. Department of Energy's Bioenergy Technologies Office (BETO) is hosting the Guide to the 2016 BioenergizeME Infographic Challenge webinar on Oct. 15, 2015, from 4 p.m. to 4:45 p.m. Eastern...

  5. Students Recognized in Washington, D.C. for their Winning Bioenergy Infographic

    Energy.gov [DOE]

    A team of five freshmen from Williamsburg High School for Architecture and Design in Brooklyn, New York—designed an infographic on the benefits of cellulosic ethanol and were invited as guests to the eight annual conference, Bioenergy 2015, in Washington, D.C.

  6. FORGE Infographic

    Education Teach & Learn

    Energy Department geothermal portfolio, strategic thrust of Geothermal Technologies Office, enhanced geothermal systems.

  7. The neutrino turns 60

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The neutrino turns 60 The neutrino turns 60 Although neutrinos are extremely abundant, it took 26 years for scientists to confirm their existence. In the 60 years since the neutrino's discovery, we've slowly learned about this intriguing particle. June 20, 2016 Although neutrinos are extremely abundant, it took 26 years for scientists to confirm their existence. In the 60 years since the neutrino's discovery, we've slowly learned about this intriguing particle. Artwork by Sandbox Studio, Chicago

  8. Turning fungus into fuel

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Turning fungus into fuel Turning fungus into fuel A spidery fungus with a voracious appetite for military uniforms and canvas tents could hold the key to improvements in the production of biofuels. May 4, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National

  9. Diamond turning of glass

    SciTech Connect (OSTI)

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  10. Tune Evaluation From Phased BPM Turn-By-Turn Data

    SciTech Connect (OSTI)

    Alexahin, Y.; Gianfelice-Wendt, E.; Marsh, W.; /Fermilab

    2010-05-18

    In fast ramping synchrotrons like the Fermilab Booster the conventional methods of betatron tune evaluation from the turn-by-turn data may not work due to rapid changes of the tunes (sometimes in a course of a few dozens of turns) and a high level of noise. We propose a technique based on phasing of signals from a large number of BPMs which significantly increases the signal to noise ratio. Implementation of the method in the Fermilab Booster control system is described and some measurement results are presented.

  11. Turning collectors for solar radiation

    DOE Patents [OSTI]

    Barak, Amitzur Z.

    1976-01-01

    A device is provided for turning a solar collector about the polar axis so that the collector is directed toward the sun as the sun tracks the sky each day. It includes two heat-expansive elements and a shadow plate. In the morning a first expansive element is heated, expands to turn the collector to face the sun, while the second expansive element is shaded by the plate. In the afternoon the second element is heated, expands to turn the collector to face the sun, while the first is shaded by the plate.

  12. MHD plant turn down considerations

    SciTech Connect (OSTI)

    Lineberry, J.T.; Chapman, J.N.

    1991-01-01

    The topic of part load operation of the MHD power plant is assessed. Current and future planned MHD research is reviewed in terms of addressing topping and bottoming cycle integration needs. The response of the MHD generator to turn up and down scenarios is reviewed. The concept of turning the MHD power to met changes in plant load is discussed. The need for new ideas and focused research to study MHD plant integration and problems of plant turn down and up is cited. 7 refs., 5 figs., 1 tab.

  13. Turning windows into solar generators

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    August 8, 2016 Turning windows into solar generators UbiQD founder and President Hunter McDaniel shows quantum dots dissolved in a liquid solution that absorbs ultraviolet light ...

  14. Diamond turning machine controller implementation

    SciTech Connect (OSTI)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.; Fornaro, R.J.

    1988-12-01

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, the control computer hardware and software, are discussed in detail below.

  15. Turning points in reactor design

    SciTech Connect (OSTI)

    Beckjord, E.S.

    1995-09-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems.

  16. Diamond turning of thermoplastic polymers

    SciTech Connect (OSTI)

    Smith, E.; Scattergood, R.O.

    1988-12-01

    Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.

  17. Turning windows into solar generators

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transitions | Department of Energy Ideas into Impact: The Energy Department's Office of Technology Transitions Turning Ideas into Impact: The Energy Department's Office of Technology Transitions December 8, 2015 - 9:05am Addthis Find out how we connect scientists with innovators and entrepreneurs, like the company who used the National Labs’ supercomputing power to model aerodynamics of long-haul trucks to improve efficiency. | Image by Oak Ridge National Laboratory Find out how we

  18. ARM - VAP Product - 10rlprofdep1turn

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    rlprofdep1turn Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1027252 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Example 10rlprofdep1turn Data Plot Example 10rlprofdep1turn data plot VAP Output : 10RLPROFDEP1TURN 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm Active

  19. ARM - VAP Product - 10rlprofmr1turn

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    rlprofmr1turn Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1027254 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Example 10rlprofmr1turn Data Plot Example 10rlprofmr1turn data plot VAP Output : 10RLPROFMR1TURN Raman LIDAR (RL): water vapor mixing ratio and relative humidity profiles, along with PWV Active Dates 1998.03.01 - 2015.09.23

  20. ARM - VAP Product - 10rlprofbe1turn

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    turn Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1027251 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Example 10rlprofbe1turn Data Plot Example 10rlprofbe1turn data plot VAP Output : 10RLPROFBE1TURN Raman LIDAR (RL): Best-estimate state of the atmos. profiles from RL & AERI+GOES retrievals Active Dates 1998.03.01 - 2004.01.06 Originating

  1. Bacteria isolated from amoebae/bacteria consortium

    DOE Patents [OSTI]

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  2. Bacteria isolated from amoebae/bacteria consortium

    DOE Patents [OSTI]

    Tyndall, R.L.

    1995-05-30

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  3. Turning Grass into Gas for Less

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    like this switchgrass could be turned into biofuels, rather than using corn or other food crops. Pull up to the pump these days and chances are your gas will be laced with...

  4. ARM - VAP Product - rlprofmerge1turn

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productsrlprofrlprofmerge1turn Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1027756 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : RLPROFMERGE1TURN Merged analog and photon counting profiles used as input for other RLPROF VAPs Active Dates 2004.10.01 - 2015.10.03 Originating VAP Process Raman LIDAR Vertical Profiles : RLPROF

  5. Solar Decathlon Turns Ten | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turns Ten Solar Decathlon Turns Ten September 28, 2012 - 2:22pm Addthis For the past 10 years, the Solar Decathlon has educated consumers about affordable clean energy products that save energy and money, and provided hands-on training for jobs in the clean energy economy. | Photo courtesy of Stefano Paltera, U.S. Department of Energy Solar Decathlon. For the past 10 years, the Solar Decathlon has educated consumers about affordable clean energy products that save energy and money, and provided

  6. ARM - VAP Product - 10srlprofmr1turn

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    srlprofmr1turn Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1027724 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : 10SRLPROFMR1TURN Raman LIDAR (RL): 10-sec water vapor mixing ratio andrelative humidity profiles , along with PWV Active Dates 2004.10.01 - 2015.09.23 Originating VAP Process Raman LIDAR Vertical Profiles : RLPROF

  7. ARM - VAP Product - 2rlprofdep1turn

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productsrlprof2rlprofdep1turn Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1027735 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : 2RLPROFDEP1TURN 2-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths Active Dates 2004.10.01 - 2015.09.25 Originating VAP Process Raman LIDAR Vertical Profiles :

  8. ARM - VAP Product - aerosolbe1turn

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productsaerosolbeaerosolbe1turn Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1095310 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : AEROSOLBE1TURN Aerosol Best Estimate, from 1st Turner algorithm Active Dates 2001.01.01 - 2016.09.30 Originating VAP Process Aerosol Best Estimate : AEROSOLBE Measurements Only measurements considered

  9. Silicon Carbide Emitter Turn-Off Thyristor

    DOE PAGES-Beta [OSTI]

    Wang, Jun; Wang, Gangyao; Li, Jun; Huang, Alex Q.; Melcher, Jerry; Atcitty, Stan

    2008-01-01

    A novel MOS-conmore » trolled SiC thyristor device, the SiC emitter turn-off thyristor (ETO) is a promising technology for future high-voltage switching applications because it integrates the excellent current conduction capability of a SiC thyristor with a simple MOS-control interface. Through unity-gain turn-off, the SiC ETO also achieves excellent Safe Operation Area (SOA) and faster switching speeds than silicon ETOs. The world's first 4.5-kV SiC ETO prototype shows a forward voltage drop of 4.26 V at 26.5  A / cm 2 current density at room and elevated temperatures. Tested in an inductive circuit with a 2.5 kV DC link voltage and a 9.56-A load current, the SiC ETO shows a fast turn-off time of 1.63 microseconds and a low 9.88 mJ turn-off energy. The low switching loss indicates that the SiC ETO could operate at about 4 kHz if 100  W / cm 2 conduction and the 100  W / cm 2 turn-off losses can be removed by the thermal management system. This frequency capability is about 4 times higher than 4.5-kV-class silicon power devices. The preliminary demonstration shows that the SiC ETO is a promising candidate for high-frequency, high-voltage power conversion applications, and additional developments to optimize the device for higher voltage (>5 kV) and higher frequency (10 kHz) are needed.« less

  10. Pumpkin Power: Turning Food Waste into Energy | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pumpkin Power: Turning Food Waste into Energy Pumpkin Power: Turning Food Waste into Energy November 1, 2013 - 1:28pm Addthis Pumpkin Power: Turning Food Waste into Energy Matthew...

  11. Measurement of tool forces in diamond turning

    SciTech Connect (OSTI)

    Drescher, J.; Dow, T.A.

    1988-12-01

    A dynamometer has been designed and built to measure forces in diamond turning. The design includes a 3-component, piezoelectric transducer. Initial experiments with this dynamometer system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Many cutting experiments have been conducted on OFHC Copper and 6061-T6 Aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool forces. Velocity has been determined to have negligible effects between 4 and 21 m/s. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a simple model may not be sufficient to describe the forces produced in the diamond turning process.

  12. When Green Turns to Gold | Photosynthetic Antenna Research Center

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    When Green Turns to Gold May 6, 2014 When Green Turns to Gold PARC Certificate Graduate Harry Bolson explains the importance of LEED Certification at WUSTL

  13. Science on the Hill: Turning windows into solar panels

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Science on the Hill: Turning windows into solar panels Turning windows into solar panels Working with quantum dots, researchers achieve a breakthrough in solar-concentrating ...

  14. DOE Turns 25 | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Turns 25 DOE Turns 25 Washington, DC The Department of Energy marked the 25th anniversary of its establishment in 1977

  15. Corning and Kroger turn whey to yeast

    SciTech Connect (OSTI)

    Not Available

    1981-11-16

    It is reported that Corning and Kroger intend to build a 35,000 sq. ft. plant in Winchester, Ky., that will turn whey into bakers' yeast. The plant will convert whey from Kroger's dairies into bakers' yeast, supplying about 60% of the yeast needed for nine Kroger bakeries. It will also produce syrups and whey protein concentrate for use in other food processing activities. In addition to making useful products, the project will convert the whey to glucose and galactose. The protein component of the whey will be concentrated and used in various foods and feeds.

  16. Illinois Turning Landfill Trash into Future Cash

    Office of Energy Efficiency and Renewable Energy (EERE)

    Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the electricity could reach $1 million annually.

  17. Science on the Hill: Turning windows into solar panels

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Science on the Hill: Turning windows into solar panels Turning windows into solar panels Working with quantum dots, researchers achieve a breakthrough in solar-concentrating technology that can turn windows into electric generators. February 7, 2016 solar panel windows The luminescent solar concentrator could turn any window into a daytime power source. Science on the Hill: Turning windows into solar panels Sunlight is abundant, free and for all practical purposes, eternal. Harvesting that light

  18. Hard turning micro-machine tool

    DOE Patents [OSTI]

    DeVor, Richard E; Adair, Kurt; Kapoor, Shiv G

    2013-10-22

    A micro-scale apparatus for supporting a tool for hard turning comprises a base, a pivot coupled to the base, an actuator coupled to the base, and at least one member coupled to the actuator at one end and rotatably coupled to the pivot at another end. A tool mount is disposed on the at least one member. The at least one member defines a first lever arm between the pivot and the tool mount, and a second lever arm between the pivot and the actuator. The first lever arm has a length that is less than a length of the second lever arm. The actuator moves the tool mount along an arc.

  19. Turning Algae into Energy in New Mexico

    SciTech Connect (OSTI)

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2013-07-29

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  20. Turning Algae into Energy in New Mexico

    ScienceCinema (OSTI)

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2014-06-24

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  1. Alternative Fuels Data Center: Rio Rico Fire District Turns Grease...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Rio Rico Fire District Turns Grease Into Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Rio Rico Fire District Turns Grease Into Biodiesel on Facebook Tweet ...

  2. Alternative Fuels Data Center: Central Ohio Turns Trash Into...

    Alternative Fuels and Advanced Vehicles Data Center

    Central Ohio Turns Trash Into Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Central Ohio Turns Trash Into Natural Gas on Facebook Tweet about Alternative ...

  3. EECBG Success Story: How Chula Vista, California is Turning Cooking...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chula Vista, California is Turning Cooking Oil Into Savings EECBG Success Story: How Chula Vista, California is Turning Cooking Oil Into Savings January 19, 2011 - 1:21pm Addthis...

  4. NM company wants to turn your windows into solar panels

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NM company wants to turn your windows into solar panels NM company wants to turn your windows into solar panels "There's an opportunity to generate electricity and power buildings ...

  5. Scientists Accidentally Turned CO2 Into Ethanol | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Scientists Accidentally Turned CO2 Into Ethanol Scientists Accidentally Turned CO2 Into Ethanol October 21, 2016 - 2:35pm Addthis SCIENTISTS WANT TO TURN YOUR CARBON EMISSIONS INTO FUEL. They're getting better results than expected. In a new twist for waste-to-fuel technology, scientists at the Department of Energy's Oak Ridge National Laboratory (ORNL) have developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol.

  6. Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements

    SciTech Connect (OSTI)

    Petrenko, A.V.; Valishev, A.A.; Lebedev, V.A.; /Fermilab

    2011-09-01

    Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA) technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM) as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.

  7. When to Turn Off Your Lights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electricity & Fuel » Lighting » When to Turn Off Your Lights When to Turn Off Your Lights The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. The cost effectiveness of when to turn off lights depends on the type of bulb and the

  8. BioenergizeME Infographic Guide

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pull together a list of thought-provoking facts that you think are important. Make sure to use credible sources, such as those found in the Library of Congress Resource Library. 30 ...

  9. real-estate-infographic-final

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    households with solar energy systems in the U.S. is expected to surpass 1,000,000 this year. ... Elevate Energy (445k): Training for real estate pros, home appraisers, and appraiser ...

  10. Alternative Fuels Data Center: City of Cincinnati Turns Sustainable Fleet

    Alternative Fuels and Advanced Vehicles Data Center

    Plan into On-Road Reality City of Cincinnati Turns Sustainable Fleet Plan into On-Road Reality to someone by E-mail Share Alternative Fuels Data Center: City of Cincinnati Turns Sustainable Fleet Plan into On-Road Reality on Facebook Tweet about Alternative Fuels Data Center: City of Cincinnati Turns Sustainable Fleet Plan into On-Road Reality on Twitter Bookmark Alternative Fuels Data Center: City of Cincinnati Turns Sustainable Fleet Plan into On-Road Reality on Google Bookmark Alternative

  11. PPPL featured as DOE celebrates turning 35 | Princeton Plasma...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    featured as DOE celebrates turning 35 October 5, 2012 Tweet Widget Google Plus One Share on Facebook 35 Years at the Department of Energy (Flickr Photostream)...

  12. Turning Bayesian model averaging into Bayesian model combination...

    Office of Scientific and Technical Information (OSTI)

    Title: Turning Bayesian model averaging into Bayesian model combination Authors: Carroll, James 1 ; Monteith, Kristine 2 ; Seppi, Kevin 2 ; Martinez, Tony 2 + Show Author ...

  13. TurningPoint Evaluation Results | Department of Energy

    Office of Environmental Management (EM)

    Results. PDF icon TurningPoint Evaluation Results More Documents & Publications NTSF 2014 Meeting Agenda NTSF Activities and Accomplishments NTSF Spring 2014 Preliminary Agenda...

  14. Carbon Capture Turned Upside Down: High-Temperature Adsorption...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Carbon Capture Turned Upside Down: High-Temperature Adsorption & Low-Temperature Desorption (HALD) Previous Next List Joos, Lennart; Lejaeghere, Kurt; Huck, Johanna M.; Van...

  15. EECBG Success Story: Georgia County Turning Industrial and Farm...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Georgia County Turning Industrial and Farm Waste Into Big Energy Savings EECBG Success ... Learn more. Addthis Related Articles EECBG Success Story: County Aims to Save with ...

  16. Turn Motors Off When Not in Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turn Motors Off When Not in Use Turn Motors Off When Not in Use Motors do not use energy when turned off. Reducing motor operating time by just 10% usually saves more energy than replacing a standard efficiency motor with a premium efficiency motor. This tip sheet discusses pros and cons of repeated motor starts and stops and provides suggested actions. Motor Systems Tip Sheet #10 Turn Motors Off When Not in Use (November 2012) (458 KB) More Documents & Publications Improving Motor and Drive

  17. NREL: Technology Deployment - More Than 70 Countries Turn to...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    More Than 70 Countries Turn to the Clean Energy Solutions Center for Policy Assistance News Solutions Center Announces Collaboration with R20 Regions of Climate Action Clean Energy ...

  18. ARM - VAP Product - aerich1nf1turn

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productsaerinfaerich1nf1turn Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1027272 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : AERICH1NF1TURN AERI ch. 1

  19. ARM - VAP Product - aerich2nf1turn

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Productsaerinfaerich2nf1turn Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1027273 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : AERICH2NF1TURN AERI ch. 2

  20. Turn-by-Turn and Bunch-by-Bunch Transverse Profiles of a Single Bunch in a Full Ring

    SciTech Connect (OSTI)

    Kraus, R.; Fisher, A.S.; /SLAC

    2005-12-15

    The apparatus described in this paper can image the evolution of the transverse profile of a single bunch, isolated from a full PEP-II ring of 1500 bunches. Using this apparatus there are two methods of single bunch imaging; bunch-by-bunch beam profiling can image every bunch in the ring a single bunch at a time with the images of sequential bunches being in order, allowing one to see variations in beam size along a train. Turn-by-turn beam profiling images a single bunch on each successive turn it makes around the ring. This method will be useful in determining the effect that an injected bunch has on a stable bunch as the oscillations of the injected bunch damp out. Turn-by-turn imaging of the synchrotron light uses a system of lenses and mirrors to image many turns of both the major and minor axis of a single bunch across the photocathode of a gateable camera. The bunch-by-bunch method is simpler: because of a focusing mirror used in porting the light from the ring, the synchrotron light from the orbiting electrons becomes an image at a certain distance from the mirror; and since the camera does not use a lens, the photocathode is set exactly at this image distance. Bunch-by-bunch profiling has shown that in the Low Energy Ring (LER) horizontal bunch size decreases along a train. Turn-by-turn profiling has been able to image 100 turns of a single bunch on one exposure of the camera. The turn-by-turn setup has also been able to image 50 turns of the minor axis showing part of the damping process of an oscillating injected charge during a LER fill. The goal is to image the damping of oscillations of injected charge for 100 turns of both the major and minor axis throughout the damping process during trickle injection. With some changes to the apparatus this goal is within reach and will make turn-by-turn imaging a very useful tool in beam diagnostics.

  1. LX-17 Corner-Turning and Reactive Flow Failure

    SciTech Connect (OSTI)

    Souers, P C; Andreski, H; Cook III, C F; Garza, R; Pastrone, R; Phillips, D; Roeske, F; Vitello, P; Molitoris, J

    2004-03-11

    We have performed a series of highly-instrumented experiments examining corner-turning of detonation. A TATB booster is inset 15 mm into LX-17 (92.5% TATB, 7.5% kel-F) so that the detonation must turn a right angle around an air well. An optical pin located at the edge of the TATB gives the start time of the corner-turn. The breakout time on the side and back edges is measured with streak cameras. Three high-resolution X-ray images were taken on each experiment to examine the details of the detonation. We have concluded that the detonation cannot turn the corner and subsequently fails, but the shock wave continues to propagate in the unreacted explosive, leaving behind a dead zone. The detonation front farther out from the corner slowly turns and eventually reaches the air well edge 180{sup o} from its original direction. The dead zone is stable and persists 7.7 {micro}s after the corner-turn, although it has drifted into the original air well area. Our regular reactive flow computer models sometimes show temporary failure but they recover quickly and are unable to model the dead zones. We present a failure model that cuts off the reaction rate below certain detonation velocities and reproduces the qualitative features of the corner-turning failure.

  2. NM company wants to turn your windows into solar panels

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NM company wants to turn your windows into solar panels NM company wants to turn your windows into solar panels "There's an opportunity to generate electricity and power buildings with their windows" August 1, 2016 The UbiQD Team The UbiQD team celebrates the opening of its new quantum dot manufacturing facility in Los Alamos July 29. Contact Hunter McDaniel UbiQD Email UbiQD LLC, a quantum dot company, says it can turn windows into solar generators. "There's an opportunity to

  3. Diamond turning of Si and Ge single crystals

    SciTech Connect (OSTI)

    Blake, P.; Scattergood, R.O.

    1988-12-01

    Single-point diamond turning studies have been completed on Si and Ge crystals. A new process model was developed for diamond turning which is based on a critical depth of cut for plastic flow-to-brittle fracture transitions. This concept, when combined with the actual machining geometry for single-point turning, predicts that {open_quotes}ductile{close_quotes} machining is a combined action of plasticity and fracture. Interrupted cutting experiments also provide a meant to directly measure the critical depth parameter for given machining conditions.

  4. Observation of diamond turned OFHC copper using Scanning Tunneling Microscopy

    SciTech Connect (OSTI)

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    1988-12-01

    Diamond turned OFHC copper samples have been observed within the past few months using the Scanning Tunneling Microscope. Initial results have shown evidence of artifacts which may be used to better understand the diamond turning process. The STM`s high resolution capability and three dimensional data representation allows observation and study of surface features unobtainable with conventional profilometry systems. Also, the STM offers a better quantitative means by which to analyze surface structures than the SEM. This paper discusses findings on several diamond turned OFHC copper samples having different cutting conditions. Each sample has been cross referenced using STM and SEM.

  5. When to Turn Off Your Lights | Department of Energy

    Energy.gov (indexed) [DOE]

    are not already factored into the rate. LED Lighting The operating life of a light emitting diode (LED) is unaffected by turning it on and off. While lifetime is reduced for...

  6. To the Cloud! Apidae Helps Modelers Turn Information into Knowledge |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy To the Cloud! Apidae Helps Modelers Turn Information into Knowledge To the Cloud! Apidae Helps Modelers Turn Information into Knowledge October 26, 2015 - 2:41pm Addthis Apidae is a collection of cloud-based simulation and data analysis tools that help modelers better understand their models. Image credit: BUILDlab. Apidae is a collection of cloud-based simulation and data analysis tools that help modelers better understand their models. Image credit: BUILDlab. Apidae

  7. As summer turns to fall, a new school year begins

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    As summer turns to fall, a new school year begins Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:November 2, 2016 all issues All Issues » submit As summer turns to fall, a new school year begins Welcome to the back-to-school issue of Community Connections August 1, 2013 Kurt Steinhaus, Director of the Community Programs Office Kurt Steinhaus, Director of the Community Programs Office Contact Community Programs Office Director Kurt

  8. Desert scientists turn to rainforest for climate answers

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Desert scientists turn to rainforest for climate answers Desert scientists turn to rainforest for climate answers Work in Brazil's Amazon Basin should improve climate prediction. May 30, 2014 Curiosity zaps Mars for vital signs: ChemCam, designed by Lab team, looks for elements such as carbon, nitrogen, and oxygen, all of which are crucial for life. Heath-Powers: Los Alamos scientist Heath Powers, foreground, and on-site technician Vagner Castro work on field equipment for measuring carbon

  9. Potential of Diazorphic, Endophytic Bacteria Associated with...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Potential of Diazorphic, Endophytic Bacteria Associated with Sugarcane for Energycane Production Potential of Diazorphic, Endophytic Bacteria Associated with Sugarcane for Energycane ...

  10. Functionalized Polyacrylamide Monolith for Rapid Bacteria Pathogen...

    Office of Scientific and Technical Information (OSTI)

    for Rapid Bacteria Pathogen Detection in Human Blood. Citation Details In-Document Search Title: Functionalized Polyacrylamide Monolith for Rapid Bacteria Pathogen ...

  11. Employees turn student | Y-12 National Security Complex

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Employees turn student Employees turn student Posted: April 19, 2013 - 1:05pm Y-12 offered classes at UT back in 1954. Read more At every stage of its development - from the initial floating of ideas to the realization of those ideas - the University of Tennessee's new Engineering Management graduate program seems a perfect example of the possibilities created by Y-12 and UT's formal partnership. "Through the leadership of Dr. Rupy Sawhney, we started out with an initiative in Industrial

  12. Turning Bayesian model averaging into Bayesian model combination

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Turning Bayesian model averaging into Bayesian model combination Citation Details In-Document Search Title: Turning Bayesian model averaging into Bayesian model combination Authors: Carroll, James [1] ; Monteith, Kristine [2] ; Seppi, Kevin [2] ; Martinez, Tony [2] + Show Author Affiliations Los Alamos National Laboratory BYU Publication Date: 2011-07-28 OSTI Identifier: 1084524 Report Number(s): LA-UR-11-04419; LA-UR-11-4419 DOE Contract Number: AC52-06NA25396

  13. Nuclear Navy Turns 50 | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Navy Turns 50 Nuclear Navy Turns 50 Washington, DC Crew members of the U.S.S. Enterprise, the first nuclear-powered aircraft carrier, spell out NR-50! To commemorate the 50th anniversary of the Nuclear Navy. Admiral Hyman G. Rickover formed the Nuclear Power Branch within the Navy's Bureau of Ships in August 1948. The Office of Naval Reactors is an integrated organization of DOE and the Department of Navy. The Enterprise's eight A2W nuclear reactors were developed by Bettis Laboratory, with the

  14. Simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    SciTech Connect (OSTI)

    Yang, Xi; Huang, Xiaobiao

    2015-11-10

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. Furthermore, the fitting results are used for lattice correction. Our method has been successfully demonstrated on the NSLS-II storage ring.

  15. Materials Preparation Center turns 35 | The Ames Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Preparation Center turns 35 Jacob Fischer, undergraduate research assistant, prepares the injection casting system for operation. The injection casting system is used to study the solidification behavior of alloys by rapidly solidifying ingots with diameters on the order of 1-2mm. After 35 years of producing research and developmental quantities of metals for internal Ames Laboratory, university, industry, and government facilities, the Materials Preparation Center (MPC) has developed

  16. Analysis of the influence of tool dynamics in diamond turning

    SciTech Connect (OSTI)

    Fawcett, S.C.; Luttrell, D.E.; Keltie, R.F.

    1988-12-01

    This report describes the progress in defining the role of machine and interface dynamics on the surface finish in diamond turning. It contains a review of literature from conventional and diamond machining processes relating tool dynamics, material interactions and tool wear to surface finish. Data from experimental measurements of tool/work piece interface dynamics are presented as well as machine dynamics for the DTM at the Center.

  17. Turning Ideas into Impact: The Energy Department's Office of Technology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transitions | Department of Energy Ideas into Impact: The Energy Department's Office of Technology Transitions Turning Ideas into Impact: The Energy Department's Office of Technology Transitions December 8, 2015 - 9:05am Addthis Find out how we connect scientists with innovators and entrepreneurs, like the company who used the National Labs’ supercomputing power to model aerodynamics of long-haul trucks to improve efficiency. | Image by Oak Ridge National Laboratory Find out how we

  18. Turning Leftover Trees into Biogasoline | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Leftover Trees into Biogasoline Turning Leftover Trees into Biogasoline June 7, 2010 - 11:00am Addthis Researchers at Virginia Tech are working to show how biogasoline could potentially be created in existing petroleum refineries, instead of at new biorefineries as shown here. | File illustration Researchers at Virginia Tech are working to show how biogasoline could potentially be created in existing petroleum refineries, instead of at new biorefineries as shown here. | File illustration Joshua

  19. Problem Turned Into Performance for Solar Cells | U.S. DOE Office...

    Office of Science (SC) [DOE]

    Problem Turned Into Performance for Solar Cells Basic Energy Sciences (BES) BES Home About ... Problem Turned Into Performance for Solar Cells Boundaries between crystalline grains - ...

  20. Meet a Machine: ATLAS turns NNSA operators into heavylifting heroes |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) ATLAS turns NNSA operators into heavylifting heroes Thursday, July 14, 2016 - 10:27am The United States doesn't explosively test nuclear weapons, but NNSA is still charged with making sure the U.S. nuclear arsenal is safe and secure, and effective. This is why the U.S. nuclear security enterprise is home to the most brilliant minds and cutting-edge technologies for extreme physics and energy science. Learn about one of the members of NNSA's

  1. Re-engineering bacteria for ethanol production

    DOE Patents [OSTI]

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  2. Engineering Biofuels from Photosynthetic Bacteria | Argonne National

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Laboratory Engineering Biofuels from Photosynthetic Bacteria Technology available for licensing: Using photosynthetic bacteria to produce biofuels. 30-70% of the fuel's waste can be used to create other fuel sources Combines both engineered and natural photosynthetic mechanisms to generate the fuel PDF icon biofuels_from_bacteria

  3. Utilizing Bacteria for Sustainable Manufacturing of Low-Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Utilizing Bacteria for Sustainable Manufacturing of Low-Cost Nanoparticles Utilizing Bacteria for Sustainable Manufacturing of Low-Cost Nanoparticles Utilizing Bacteria for ...

  4. Alternative Fuels Data Center: DeKalb County Turns Trash to Gas

    Alternative Fuels and Advanced Vehicles Data Center

    DeKalb County Turns Trash to Gas to someone by E-mail Share Alternative Fuels Data Center: DeKalb County Turns Trash to Gas on Facebook Tweet about Alternative Fuels Data Center: DeKalb County Turns Trash to Gas on Twitter Bookmark Alternative Fuels Data Center: DeKalb County Turns Trash to Gas on Google Bookmark Alternative Fuels Data Center: DeKalb County Turns Trash to Gas on Delicious Rank Alternative Fuels Data Center: DeKalb County Turns Trash to Gas on Digg Find More places to share

  5. Computational modeling of drug-resistant bacteria. Final report

    SciTech Connect (OSTI)

    MacDougall, Preston

    2015-03-12

    Initial proposal summary: The evolution of antibiotic-resistant mutants among bacteria (superbugs) is a persistent and growing threat to public health. In many ways, we are engaged in a war with these microorganisms, where the corresponding arms race involves chemical weapons and biological targets. Just as advances in microelectronics, imaging technology and feature recognition software have turned conventional munitions into smart bombs, the long-term objectives of this proposal are to develop highly effective antibiotics using next-generation biomolecular modeling capabilities in tandem with novel subatomic feature detection software. Using model compounds and targets, our design methodology will be validated with correspondingly ultra-high resolution structure-determination methods at premier DOE facilities (single-crystal X-ray diffraction at Argonne National Laboratory, and neutron diffraction at Oak Ridge National Laboratory). The objectives and accomplishments are summarized.

  6. Biogas Opportunities Roadmap Progress Report Infographic

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    United States Department of Agriculture (USDA), Department of Energy (DOE), and Environmental Protection Agency (EPA), created the Biogas Opportunities Roadmap as a response to the White House Climate Action Plan's directive to develop an interagency strategy to reduce methane emissions. Together, the Agencies along with industry partners have formed an Interagency Working Group to help expand the biogas industry. Strategically deployed biogas systems o er the nation a cost-e ective and

  7. Revolution Now- Infographic and Cost Reduction Graph

    Office of Environmental Management (EM)

    s s t MILLION DOLLAR LISTING - DISTRIBUTED SOLAR PV The millionth di tribu ed photovoltaic sy tem was in talled early in 2016 SHINING BRIGHT ON A-TYPES - LEDS Total A-Type LED bulb ...

  8. INFOGRAPHIC: Carbon Capture 101 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Specialist, Office of Public Affairs Carly Wilkins Carly Wilkins Multimedia Designer Power plants are vital to modern life. They produce the energy we need to light our homes,...

  9. Property:InfographicType | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Crucial Areas Planning System + Map + CHAT: Crucial Habitat Assessment Tools + Map + Casa DiabloLong Valley Caldera Area, Mono County + Map + E EFSEC Generalized Siting...

  10. Biogas Opportunities Roadmap Progress Report Infographic

    Energy.gov (indexed) [DOE]

    Protection Agency (EPA), created the Biogas Opportunities Roadmap as a response to ... partners have formed an Interagency Working Group to help expand the biogas industry. ...

  11. Revolution Now- Infographic and Cost Reduction Graph

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    s s t MILLION DOLLAR LISTING - DISTRIBUTED SOLAR PV The millionth di tribu ed photovoltaic sy tem was in talled early in 2016 SHINING BRIGHT ON A-TYPES - LEDS Total A-Type LED bulb installations surpassed 200 million in 2015, more than doubling since the previous year HOLD ON TO YOUR HATS - LAND-BASED WIND Wind accounted for 41% of all new generation capacity installed in the US in 2015 CRUISE CONTROL - EVS Over 490,000 EVs have been sold through August of 2016 IT JUST KEEPS GETTING BIGGER -

  12. Infographic: The Fuel Cell Electric Vehicle (FCEV)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    combustion Runs Quietly from the tailpipe Emits Only Water * natural gas * water (electrolysis) * biomass * waste products Uses Domestic Fuel Reduces Greenhouse Gas Emissions 50% ...

  13. geothermal infographic 7.14.2014

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... The illustration below is based on the Blue Lagoon Spa in Reykjavik, Iceland. Pictured in the background is the Svartsengi Geothermal Power Plant. There are 2 different ways ...

  14. BioenergizeME Infographic Challenge: Understanding America's...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bioenergy is derived from organic matter to produce renewable fuels, products, and power. This national challenge aims to inspire students to explore America's bioenergy choices ...

  15. INFOGRAPHIC | Made in America: Clean Energy Jobs

    Energy.gov [DOE]

    As the clean energy economy grows -- thousands of clean energy job opportunities are being created all across the country.

  16. America's Clean, Efficient Fleets: An Infographic | Department...

    Office of Environmental Management (EM)

    Energy.gov will be hosting a Live Twitter Q&A on the National Clean Fleets Partnership with Mark Smith, Vehicle Technologies Deployment Manager for the Energy Department's national ...

  17. Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

    SciTech Connect (OSTI)

    2010-07-15

    Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

  18. Los Alamos turns its nuclear weapons power to war on cancer

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Los Alamos turns its nuclear weapons power to war on cancer Los Alamos turns its nuclear weapons power to war on cancer Los Alamos Physicist Eva Birnbaum shows how the laboratory ...

  19. Energy Innovation Hubs and the Quest to Turn Sunlight Into Fuel...

    Energy Savers

    Innovation Hubs and the Quest to Turn Sunlight Into Fuel Energy Innovation Hubs and the Quest to Turn Sunlight Into Fuel July 22, 2010 - 12:01pm Addthis Daniel B. Poneman Daniel B. ...

  20. AutoGrid - Turning Big Data Into Power with the Energy Data Platform and Apps

    SciTech Connect (OSTI)

    Narayan, Amit; Dresselhuys, Eric; Kulp, Yann; Buseman, Greg; Piette, Mary Ann; Tang, Andrew; Dailey, Karla; Knudsen, Chris

    2014-03-25

    AutoGrid personnel discuss how they are turning big data into power with the energy data platform and apps.

  1. Property Transfer or Turn In Form, HQ F 1400.18 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Property Transfer or Turn In Form, HQ F 1400.18 Property Transfer or Turn In Form, HQ F 1400.18 Property Transfer or Turn In Form, HQ F 1400.18 Property Transfer or Turn In Form, HQ F 1400.18 (63.58 KB) More Documents & Publications DOE HQ F 1400.18 DOE F 1400.8 DOE HQ F 580

  2. Transformation of gram positive bacteria by sonoporation

    DOE Patents [OSTI]

    Yang, Yunfeng; Li, Yongchao

    2014-03-11

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  3. Proposed plant will turn wood residues into synfuel

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    A group of entrepreneurs plan to have a plant operating in Burney, CA. The projected facility will produce an estimated 21,000 gallons of oil per day, converting about 300 tons of raw material. Converting cellulose into synthetic fuel is superior to alcohol production. The process yields approximately 84 gallons of synthetic fuel per ton of raw material. The entire LHG (liquid hydrogen gas) patented facility is self-sufficient and releases only carbon dioxide into the atmosphere. Synfuel production is a three-phase process. First, butyl alcohol (butanol) and acetone are produced from a portion of the raw material. This is facilitated by adding to the raw material a bacteria culture. The planned facility in Burney will have thirty-five 2100 gallon fermentation tanks and will produce 1.25 million gallons of butanol. Next, organic material is blended with water and is pumped into patented LHG catalytic converters, charged with carbon monoxide gas as a catalyst and then heated to 350 degrees C at 2000 to 5000 psi. Here, the organic material is converted to No. 4 oil with bituminous tar as a residue. A patented gasifier system produces the carbon monoxide catalyst plus COH (carbon hydroxide) gas. The COH is used to power a gas turbine driving a 100 kW generator and a central hydraulic pump. The facility, which will be energy self-sufficient, will have approximately 50 kW of excess power to sell to the local utility power grid. Finally, the No. 4 oil, butanol and liquified COH gas are blended to produce any grade fuel oil or a gasoline substitute of very high octane.

  4. Spectroscopic diagnostics for bacteria in biologic sample

    DOE Patents [OSTI]

    El-Sayed, Mostafa A.; El-Sayed, Ivan H.

    2002-01-01

    A method to analyze and diagnose specific bacteria in a biologic sample using spectroscopy is disclosed. The method includes obtaining the spectra of a biologic sample of a non-infected patient for use as a reference, subtracting the reference from the spectra of an infected sample, and comparing the fingerprint regions of the resulting differential spectrum with reference spectra of bacteria in saline. Using this diagnostic technique, specific bacteria can be identified sooner and without culturing, bacteria-specific antibiotics can be prescribed sooner, resulting in decreased likelihood of antibiotic resistance and an overall reduction of medical costs.

  5. Method of dispersing a hydrocarbon using bacteria

    DOE Patents [OSTI]

    Tyndall, Richard L.

    1996-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  6. Method of dispersing a hydrocarbon using bacteria

    DOE Patents [OSTI]

    Tyndall, R.L.

    1996-09-24

    A new protozoan derived microbial consortia and method for their isolation are provided. The isolated consortia and bacteria are useful for treating wastes such as trichloroethylene and trinitrotoluene. The isolated consortia, bacteria, and dispersants are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  7. Hydrogen metabolism of photosynthetic bacteria and algae

    SciTech Connect (OSTI)

    Kumazawa, S.; Mitsui, A.

    1982-01-01

    The metabolism, metabolic pathways and biochemistry of hydrogen in photosynthetic bacteria and algae are reviewed. Detailed information on the occurrence and measurement of hydrogenase activity is presented. Hydrogen production rates for different species of algae and bacteria are presented. 173 references, 1 figure, 7 tables.

  8. Chemotactic selection of pollutant degrading soil bacteria

    DOE Patents [OSTI]

    Hazen, T.C.

    1991-03-04

    A method is described for identifying soil microbial strains which may be bacterial degraders of pollutants. This method includes: Placing a concentration of a pollutant in a substantially closed container; placing the container in a sample of soil for a period of time ranging from one minute to several hours; retrieving the container and collecting its contents; microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to innoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  9. Los Alamos turns its nuclear weapons power to war on cancer

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Los Alamos turns its nuclear weapons power to war on cancer Los Alamos turns its nuclear weapons power to war on cancer Los Alamos Physicist Eva Birnbaum shows how the laboratory is manufacturing a radioactive treatment that targets tumors, without killing the surrounding healthy tissue. December 20, 2015 Los Alamos physicist Eva Birnbaum Los Alamos physicist Eva Birnbaum Los Alamos turns its nuclear weapons power to war on cancer NBC News got exclusive access to Los Alamos National Laboratory

  10. DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for

    National Nuclear Security Administration (NNSA)

    Civilian Reactors | National Nuclear Security Administration | (NNSA) Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for Civilian Reactors DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for Civi Washington, DC Secretary Abraham announced that DOE will dispose of 34 metric tons of surplus weapons grade plutonium by turning the material into mixed oxide fuel (MOX) for use in nuclear reactors. The decision follows an exhaustive Administration review

  11. Efficiency of static core turn-off in a system-on-a-chip with variation

    DOE Patents [OSTI]

    Cher, Chen-Yong; Coteus, Paul W; Gara, Alan; Kursun, Eren; Paulsen, David P; Schuelke, Brian A; Sheets, II, John E; Tian, Shurong

    2013-10-29

    A processor-implemented method for improving efficiency of a static core turn-off in a multi-core processor with variation, the method comprising: conducting via a simulation a turn-off analysis of the multi-core processor at the multi-core processor's design stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's design stage includes a first output corresponding to a first multi-core processor core to turn off; conducting a turn-off analysis of the multi-core processor at the multi-core processor's testing stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's testing stage includes a second output corresponding to a second multi-core processor core to turn off; comparing the first output and the second output to determine if the first output is referring to the same core to turn off as the second output; outputting a third output corresponding to the first multi-core processor core if the first output and the second output are both referring to the same core to turn off.

  12. Fact #732: June 18, 2012 Days to Turn Trend by Vehicle Class | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 2: June 18, 2012 Days to Turn Trend by Vehicle Class Fact #732: June 18, 2012 Days to Turn Trend by Vehicle Class "Days to turn" is an automotive industry term that refers to the number of days that vehicles stay in dealer inventories before they are sold (i.e., the time a vehicle stays on the dealer's lot). There are many factors that influence this number including fuel prices, the economy, and supply disruptions. The figure below shows that the days to turn by vehicle

  13. Turn Down the Heat: Why a 4C Warmer World Must Be Avoided ...

    Open Energy Information (Open El) [EERE & EIA]

    sitesdefaultfilesTurnDowntheheatWhy Transport Toolkit Region(s): Global This report provides a snapshot of recent scientific literature and new analyses of...

  14. Biofuels from Solar Energy and Bacteria: Electrofuels Via Direct Electron Transfer from Electrodes to Microbes

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: UMass is feeding renewable electricity to bacteria to provide the microorganisms with the energy they need to turn carbon dioxide (CO2) directly into liquid fuels. UMass’ energy-to-fuels conversion process is anticipated to be more efficient than current biofuels approaches in part because this process will leverage the high efficiency of photovoltaics to convert solar energy into electricity. UMass is using bacteria already known to produce biofuel from electric current and CO2 and working to increase the amount of electric current those microorganisms will accept and use for biofuels production. In collaboration with scientists at University of California, San Diego, the UMass team is also investigating the use of hydrogen sulfide as a source of energy to power biofuel production.

  15. Copy of Synthetic Biology of Novel Thermophilic Bacteria for...

    Office of Scientific and Technical Information (OSTI)

    Copy of Synthetic Biology of Novel Thermophilic Bacteria for Enhanced Production of ... Title: Copy of Synthetic Biology of Novel Thermophilic Bacteria for Enhanced Production of ...

  16. Discovery of functional toxin/antitoxin systems in bacteria by...

    Office of Scientific and Technical Information (OSTI)

    ...antitoxin systems in bacteria by shotgun cloning Citation Details In-Document Search Title: Discovery of functional toxinantitoxin systems in bacteria by shotgun cloning ...

  17. Bacteria increase arid-land soil surface temperature through...

    Office of Scientific and Technical Information (OSTI)

    Bacteria increase arid-land soil surface temperature through the production of sunscreens Prev Next Title: Bacteria increase arid-land soil surface temperature through the ...

  18. Xylan utilization in human gut commensal bacteria is orchestrated...

    Office of Scientific and Technical Information (OSTI)

    Xylan utilization in human gut commensal bacteria is orchestrated by unique modular ... Title: Xylan utilization in human gut commensal bacteria is orchestrated by unique modular ...

  19. Estimating Bacteria Emissions from Inversion of Atmospheric Transport...

    Office of Scientific and Technical Information (OSTI)

    Bacteria Emissions from Inversion of Atmospheric Transport: Sensitivity to Modelled Particle Characteristics Citation Details In-Document Search Title: Estimating Bacteria ...

  20. Methane and Methanotrophic Bacteria as a Biotechnological Platform...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Methane and Methanotrophic Bacteria as a Biotechnological Platform Methane and Methanotrophic Bacteria as a Biotechnological Platform Breakout Session 2-B: NewEmerging Pathways ...

  1. How Bacteria Make Magnets | The Ames Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    How Bacteria Make Magnets For a number of animals, including birds, fish and mammals, there is evidence that magnets are used for orientation. However, little is known about how...

  2. Comparative genomics of the lactic acid bacteria

    SciTech Connect (OSTI)

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J. -H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O'Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.

    2006-06-01

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  3. Methods for dispersing hydrocarbons using autoclaved bacteria

    DOE Patents [OSTI]

    Tyndall, Richard L.

    1996-01-01

    A method of dispersing a hydrocarbon includes the steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; autoclaving the bacterium to derive a dispersant solution therefrom; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; and autoclaving the bacterium to derive a dispersant solution therefrom.

  4. Methods for dispersing hydrocarbons using autoclaved bacteria

    DOE Patents [OSTI]

    Tyndall, R.L.

    1996-11-26

    A method of dispersing a hydrocarbon includes the following steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; autoclaving the bacterium to derive a dispersant solution; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; and autoclaving the bacterium to derive a dispersant solution.

  5. Fuel from Bacteria: Bioconversion of Carbon Dioxide to Biofuels by Facultatively Autotrophic Hydrogen Bacteria

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Ohio State is genetically modifying bacteria to efficiently convert carbon dioxide directly into butanol, an alcohol that can be used directly as a fuel blend or converted to a hydrocarbon, which closely resembles a gasoline. Bacteria are typically capable of producing a certain amount of butanol before it becomes too toxic for the bacteria to survive. Ohio State is engineering a new strain of the bacteria that could produce up to 50% more butanol before it becomes too toxic for the bacteria to survive. Finding a way to produce more butanol more efficiently would significantly cut down on biofuel production costs and help make butanol cost competitive with gasoline. Ohio State is also engineering large tanks, or bioreactors, to grow the biofuel-producing bacteria in, and they are developing ways to efficiently recover biofuel from the tanks.

  6. Chemotactic selection of pollutant degrading soil bacteria

    DOE Patents [OSTI]

    Hazen, Terry C.

    1994-01-01

    A method for identifying soil microbial strains which may be bacterial degraders of pollutants comprising the steps of placing a concentration of a pollutant in a substantially closed container, placing the container in a sample of soil for a period of time ranging from one minute to several hours, retrieving the container, collecting the contents of the container, and microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to inoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  7. A New Leaf: Scientists Turn Carbon Dioxide Back Into Fuel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy A New Leaf: Scientists Turn Carbon Dioxide Back Into Fuel A New Leaf: Scientists Turn Carbon Dioxide Back Into Fuel August 18, 2016 - 3:41pm Addthis Plants capture CO2 and convert it into sugars that store energy. | Public Domain photo. Plants capture CO2 and convert it into sugars that store energy. | Public Domain photo. Jared Sagoff Argonne National Laboratory Can we turn carbon dioxide into fuel, rather than a pollutant? A group of researchers asked that question and found a way

  8. EERE Success Story-Uncle Sam Turns to SAM for Solar Modeling | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Uncle Sam Turns to SAM for Solar Modeling EERE Success Story-Uncle Sam Turns to SAM for Solar Modeling July 9, 2015 - 11:15am Addthis EERE Success Story—Uncle Sam Turns to SAM for Solar Modeling When it comes to making performance predictions and cost-of-energy estimates for grid-connected power projects, you can trust SAM to make it happen. SAM, or the System Advisor Model, is a performance and financial analysis tool funded by the SunShot Initiative that was built based on

  9. Functional Encyclopedia of Bacteria and Archaea

    SciTech Connect (OSTI)

    Blow, M. J.; Deutschbauer, A. M.; Hoover, C. A.; Lamson, J.; Lamson, J.; Price, M. N.; Waters, J.; Wetmore, K. M.; Bristow, J.; Arkin, A. P.

    2013-03-20

    Bacteria and Archaea exhibit a huge diversity of metabolic capabilities with fundamental importance in the environment, and potential applications in biotechnology. However, the genetic bases of these capabilities remain unclear due largely to an absence of technologies that link DNA sequence to molecular function. To address this challenge, we are developing a pipeline for high throughput annotation of gene function using mutagenesis, growth assays and DNA sequencing. By applying this pipeline to annotate gene function in 50 diverse microbes we hope to discover thousands of new gene functions and produce a proof of principle `Functional Encyclopedia of Bacteria and Archaea?.

  10. Georgia County Turning Industrial and Farm Waste Into Big Energy Savings

    Energy.gov [DOE]

    Thanks to a Department of Energy Recovery Act grant, Gwinnett County, Georgia is taking some of the grossest stuff on earth and turning it into some of the greenest stuff on earth.

  11. Method And Apparatus For Reducing Sample Dispersion In Turns And Junctions Of Micro-Channel Systems

    DOE Patents [OSTI]

    Griffiths, Stewart K. , Nilson, Robert H.

    2004-05-11

    What is disclosed pertains to improvement in the performance of microchannel devices by providing turns, wyes, tees, and other junctions that produce little dispersion of a sample as it traverses the turn or junction. The reduced dispersion results from contraction and expansion regions that reduce the cross-sectional area over some portion of the turn or junction. By carefully designing the geometries of these regions, sample dispersion in turns and junctions is reduced to levels comparable to the effects of ordinary diffusion. The low dispersion features are particularly suited for microfluidic devices and systems using either electromotive force, pressure, or combinations thereof as the principle of fluid transport. Such microfluidic devices and systems are useful for separation of components, sample transport, reaction, mixing, dilution or synthesis, or combinations thereof.

  12. EERE Success Story-Uncle Sam Turns to SAM for Solar Modeling...

    Office of Environmental Management (EM)

    Addthis EERE Success StoryUncle Sam Turns to SAM for Solar Modeling When it comes to making performance predictions and cost-of-energy estimates for grid-connected power ...

  13. Nashville Turns an Eyesore into an Energy-Efficient Asset | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Nashville Turns an Eyesore into an Energy-Efficient Asset Nashville Turns an Eyesore into an Energy-Efficient Asset September 19, 2012 - 10:43am Addthis The completed Nashville Bridge Company's building (called NABRICO for short) includes a geothermal heat pump system to keep public energy costs low. | Photo courtesy of David Powell, AIA. The completed Nashville Bridge Company's building (called NABRICO for short) includes a geothermal heat pump system to keep public energy costs low.

  14. Turn Motors Off When Not in Use - Motor Tip Sheet #10

    SciTech Connect (OSTI)

    2008-07-01

    Motors use no energy when turned off. Reducing motor operating time by just 10% usually saves more energy than replacing a standard efficiency motor with a NEMA Premium® efficiency motor. In fact, given that 97% of the life cycle cost of purchasing and operating a motor is energy-related, turning a motor off 10% of the time could reduce energy costs enough to purchase three new motors.

  15. EECBG Success Story: Nashville Turns an Eyesore into an Energy-Efficient

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Asset | Department of Energy Nashville Turns an Eyesore into an Energy-Efficient Asset EECBG Success Story: Nashville Turns an Eyesore into an Energy-Efficient Asset September 19, 2012 - 10:43am Addthis The completed Nashville Bridge Company's building includes a geothermal heat pump system to keep public energy costs low. | Photo courtesy of David Powell, AIA. The completed Nashville Bridge Company's building includes a geothermal heat pump system to keep public energy costs low. | Photo

  16. Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Game | Department of Energy Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game February 9, 2011 - 1:40pm Addthis Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy How does it work? Vegetative and agricultural waste reacts with oxygen to produce synthesis

  17. Turning Down the Heat on Carbon | U.S. DOE Office of Science (SC)

    Office of Science (SC) [DOE]

    Turning Down the Heat on Carbon Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 11.01.12 Turning Down the Heat on Carbon Unusual reaction eschews

  18. How Miami, Florida is Turning Waste Into Cash | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Miami, Florida is Turning Waste Into Cash How Miami, Florida is Turning Waste Into Cash April 7, 2011 - 3:43pm Addthis Miami-Dade officials talk about using EECBG grant funds for their Methane Sequestration Project. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this project do? Methane gas captured from a landfill will provide 30 percent of the electricity used at an adjacent wastewater plant. The project will upgrade and expand the existing

  19. Method and apparatus for reducing sample dispersion in turns and junctions of microchannel systems

    DOE Patents [OSTI]

    Griffiths, Stewart K.; Nilson, Robert H.

    2001-01-01

    The performance of microchannel devices is improved by providing turns, wyes, tees, and other junctions that produce little dispersions of a sample as it traverses the turn or junction. The reduced dispersion results from contraction and expansion regions that reduce the cross-sectional area over some portion of the turn or junction. By carefully designing the geometries of these regions, sample dispersion in turns and junctions is reduced to levels comparable to the effects of ordinary diffusion. A numerical algorithm was employed to evolve low-dispersion geometries by computing the electric or pressure field within candidate configurations, sample transport through the turn or junction, and the overall effective dispersion. These devices should greatly increase flexibility in the design of microchannel devices by permitting the use of turns and junctions that do not induce large sample dispersion. In particular, the ability to fold electrophoretic and electrochrornatographic separation columns will allow dramatic improvements in the miniaturization of these devices. The low-lispersion devices are particularly suited to electrochromatographic and electrophoretic separations, as well as pressure-driven chromatographic separation. They are further applicable to microfluidic systems employing either electroosrnotic or pressure-driven flows for sample transport, reaction, mixing, dilution or synthesis.

  20. Full-turn symplectic map from a generator in a Fourier-spline basis

    SciTech Connect (OSTI)

    Berg, J.S.; Warnock, R.L.; Ruth, R.D.; Forest, E.

    1993-04-01

    Given an arbitrary symplectic tracking code, one can construct a full-turn symplectic map that approximates the result of the code to high accuracy. The map is defined implicitly by a mixed-variable generating function. The implicit definition is no great drawback in practice, thanks to an efficient use of Newton`s method to solve for the explicit map at each iteration. The generator is represented by a Fourier series in angle variables, with coefficients given as B-spline functions of action variables. It is constructed by using results of single-turn tracking from many initial conditions. The method has been appliedto a realistic model of the SSC in three degrees of freedom. Orbits can be mapped symplectically for 10{sup 7} turns on an IBM RS6000 model 320 workstation, in a run of about one day.

  1. Chemotactic selection of pollutant degrading soil bacteria (Patent...

    Office of Scientific and Technical Information (OSTI)

    RADIATION SOURCES; BACTERIA; EVALUATION; POLLUTANTS; BIODEGRADATION; SOILS; NUTRIENTS; COLONY FORMATION; INVENTIONS; SOIL CHEMISTRY; MINERALIZATION; LAND POLLUTION 540120; 053003; ...

  2. Engineering Biofuels from Photosynthetic Bacteria - Energy Innovation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Engineering Biofuels from Photosynthetic Bacteria Argonne National Laboratory Contact ANL About This Technology <em>Schematic of the overall approach including the invented method for production of co-factors and anchors as biofuel precursors.</em> Schematic of the overall approach including the invented method for production of co-factors and anchors as biofuel precursors. Technology Marketing

  3. BPA Turns 75: A Look Back and a Look Ahead | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BPA Turns 75: A Look Back and a Look Ahead BPA Turns 75: A Look Back and a Look Ahead September 28, 2012 - 11:59am Addthis To commemorate what BPA considers a 75-year partnership with the Columbia River, which is the cornerstone of BPA's relationship with the people and utilities of the Northwest, BPA releases the first video of a series detailing its history. Teresa Waugh Public Affairs Specialist, Bonneville Power Administration What is BPA? BPA markets wholesale electrical power from 31

  4. Geek-Up[08.20.10] -- Turning Trash Bags into Battery Anodes and Researching

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Gut Microbiome | Department of Energy 8.20.10] -- Turning Trash Bags into Battery Anodes and Researching the Gut Microbiome Geek-Up[08.20.10] -- Turning Trash Bags into Battery Anodes and Researching the Gut Microbiome August 20, 2010 - 5:18pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What are the key facts? An Argonne Scholar has figured out a way to convert grocery bags into carbon nanotubes that can be

  5. Commercial Ethanol Turns Dross to Dollars for Rural Iowans | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Commercial Ethanol Turns Dross to Dollars for Rural Iowans Commercial Ethanol Turns Dross to Dollars for Rural Iowans September 28, 2011 - 3:23pm Addthis American farmers harvest 80 million acres of corn each autumn. The corn stover usually left on a hewn field can be processed into a renewable transportation fuel called bioethanol. | Image courtesy of POET American farmers harvest 80 million acres of corn each autumn. The corn stover usually left on a hewn field can be processed into

  6. Turning the lights on & speeding up science | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Turning the lights on & speeding up science Back to the OSTI News Listing for 2006 What if electricity had been discovered 20 years earlier? While we don't know how large the economic or scientific impact might have been of turning the lights on for an additional generation, OSTI operates as if the benefits would have been significant. Everything that OSTI does is geared to speeding up the diffusion of scientific knowledge and to accelerate

  7. Bacteria-Mineral Interactions on the Surfaces of Metal-Resistant Bacteria

    SciTech Connect (OSTI)

    Malkin, A J

    2010-03-24

    The extraordinary ability of indigenous microorganisms, like metal-resistant bacteria, for biotransformation of toxic compounds is of considerable interest for the emerging area of environmental bioremediation. However, the underlying mechanisms by which metal-resistant bacteria transform toxic compounds are currently unknown and await elucidation. The project's objective was to study stress-induced responses of metal-resistant bacteria to environmental changes and chemical stimulants. This project involved a multi-institutional collaboration of our LLNL group with the group of Dr. H.-Y. Holman (Lawrence Berkeley National Laboratory). In this project, we have utilized metal-resistant bacteria Arthrobacter oxydans as a model bacterial system. We have utilized atomic force microscopy (AFM) to visualize for the first time at the nanometer scale formation of stress-induced structures on bacterial surfaces in response to Cr (VI) exposure. We have demonstrated that structure, assembly, and composition of these stress-induced structures are dependent on Cr (VI) concentrations. Our AFM observations of the appearance and development of stress-induced layers on the surfaces of Arthrobacter oxydans bacteria exposed to Cr (VI) were confirmed by Dr. Holman's biochemical, electron microscopy, and synchrotron infrared spectromicroscopy studies. In general, in vitro imaging of live microbial and cellular systems represents one of the most challenging issues in application of AFM. Various approaches for immobilization of bacteria on the substrate for in vitro imaging were tested in this project. Imaging of live bacteria was achieved, however further optimization of experimental methods are needed for high-resolution visualization of the cellular environmental structural dynamics by AFM. This project enhanced the current insight into molecular architecture, structural and environmental variability of bacterial systems. The project partially funded research for two book chapters (1

  8. Turning a hazardous waste lagoon into reclaimed land for wildlife management: A case study

    SciTech Connect (OSTI)

    Leong, A.K.

    1996-12-31

    Brownfields are turning back to green. This paper presents a case study of a former dump site for hazardous waste that has been remediated and will be developed into an enhanced wildlife management habitat. This successful remediation case combined various investigations, remedial designs, risk assessments, ecological studies, and engineering practices. 3 refs., 1 fig., 1 tab.

  9. LX-17 and ufTATB Data for Corner-Turning, Failure and Detonation

    SciTech Connect (OSTI)

    Souers, P C; Lauderbach, L; Garza, R; Vitello, P; Hare, D E

    2010-02-03

    Data is presented for the size (diameter) effect for ambient and cold confined LX-17, unconfined ambient LX-17, and confined ambient ultrafine TATB. Ambient, cold and hot double cylinder corner-turning data for LX-17, PBX 9502 and ufTATB is presented. Transverse air gap crossing in ambient LX-17 is studied with time delays given for detonations that cross.

  10. Detection of phenols using engineered bacteria

    DOE Patents [OSTI]

    Wise, Arlene A.; Kuske, Cheryl R.; Terwilliger, Thomas C.

    2004-08-10

    Detection of phenols using engineered bacteria. A biosensor can be created by placing a reporter gene under control of an inducible promoter. The reporter gene produces a signal when a cognate transcriptional activator senses the inducing chemical. Creation of bacterial biosensors is currently restricted by limited knowledge of the genetic systems of bacteria that catabolize xenobiotics. By using mutagenic PCR to change the chemical specificity of the Pseudomonas species CF600 DmpR protein, the potential for engineering novel biosensors for detection of phenols has been demonstrated. DmpR, a well-characterized transcriptional activator of the P. CF600's dmp operon mediates growth on simple phenols. Transcription from Po, the promoter heading the dmp operon, is activated when the sensor domain of DmpR interacts with phenol and mono-substituted phenols. By altering the sensor domain of the DmpR, a group of DmpR derivatives that activate transcription of a Po-lacZ fusion in response to eight of the EPA's eleven priority pollutant phenols has been created. The assays and the sensor domain mutations that alter the chemical specificity of DmpR is described.

  11. Detection of phenols using engineered bacteria

    DOE Patents [OSTI]

    Wise, Arlene A.; Kuske, Cheryl R.; Terwilliger, Thomas C.

    2007-12-04

    Detection of phenols using engineered bacteria. A biosensor can be created by placing a reporter gene under control of an inducible promoter. The reporter gene produces a signal when a cognate transcriptional activator senses the inducing chemical. Creation of bacterial biosensors is currently restricted by limited knowledge of the genetic systems of bacteria that catabolize xenobiotics. By using mutagenic PCR to change the chemical specificity of the Pseudomonas species CF600 DmpR protein, the potential for engineering novel biosensors for detection of phenols has been demonstrated. DmpR, a well-characterized transcriptional activator of the P. CF600's dmp operon mediates growth on simple phenols. Transcription from Po, the promoter heading the dmp operon, is activated when the sensor domain of DmpR interacts with phenol and mono-substituted phenols. By altering the sensor domain of the DmpR, a group of DmpR derivatives that activate transcription of a Po-lacZ fusion in response to eight of the EPA's eleven priority pollutant phenols has been created. The assays and the sensor domain mutations that alter the chemical specificity of DmpR is described.

  12. Turning Waste Heat into Power: Ener-G-Rotors and the Entrepreneurial Mentorship Program

    Energy.gov [DOE]

    If you’ve ever driven by an industrial plant, you’ve probably noticed big white plumes rising from the tops of the facilities. While it might look like smoke or pollution at first glance, most of the time those white plumes are comprised of steam and heat, or what Ener-G-Rotors CEO Michael Newell calls waste heat. Mike and the researchers of Ener-G-Rotors are finding ways to use this escaped steam and turn it into energy.

  13. NREL's Multi-Junction Solar Cells Teach Scientists How to Turn Plants into

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Powerhouses - News Releases | NREL NREL's Multi-Junction Solar Cells Teach Scientists How to Turn Plants into Powerhouses May 12, 2011 Plants can overcome their evolutionary legacies to become much better at using biological photosynthesis to produce energy, the kind of energy that can power vehicles in the near future, an all-star collection of biologists, physicists, photochemists, and solar scientists has found. A U.S. Department of Energy (DOE) workshop that drew a prestigious collection

  14. Forest Service Turns to NREL for Help Fighting Fires More Sustainably -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Forest Products (2010 MECS) Forest Products (2010 MECS) Manufacturing Energy and Carbon Footprint for Forest Products Sector (NAICS 321, 322) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Forest Products (127.9 KB) More Documents & Publications MECS 2006 - Forest Products Cement (2010 MECS) Transportation News Feature | NREL

    Forest Service Turns to NREL

  15. Fabrication of large radii toroidal surfaces by single point diamond turning

    SciTech Connect (OSTI)

    Cunningham, J.P.; Marlar, T.A.; Miller, A.C.; Paterson, R. L.

    1995-12-31

    An unconventional machining technique has been developed for producing relatively large radii quasi-toroidal surfaces which could not normally be produced by conventional diamond turning technology. The maximum radial swing capacity of a diamond turning lathe is the limiting factor for the rotational radius of any toroid. A typical diamond turned toroidal surface is produced when a part is rotated about the spindle axis while the diamond tool contours the surface with any curved path. Toric surfaces sliced horizontally, have been used in laser resonator cavities. This paper will address the fabrication of a special case of toroids where a rotating tool path is a circle whose center is offset from the rotational axis of the toroid by a distance greater than the minor radius of the tool path. The quasi-toroidal surfaces produced by this technique approximate all asymmetrical combinations of concave/convex section of a torus. Other machine configurations have been reported which offer alternative approaches to the fabrication of concave asymmetric aspheric surfaces. Prototypes of unique lenses each having two quasi-toroidal surfaces were fabricated in the Ultraprecision Manufacturing Technology Center at form key components of a scanned laser focusing system. As an example of the problem faced, the specifications for one of the surfaces was equivalent to a section of a torus with a two meter diameter hole. The lenses were fabricated on a Nanoform 600 diamond turning lathe. This is a numerically controlled two axis T-base lathe with an air bearing spindle and oil hydrostatic slides. The maximum radial swing for this machine is approximately 0.3 meters.

  16. A new leaf: Scientists turn carbon dioxide back into fuel | Argonne

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    National Laboratory Argonne postdoctoral researcher Cong Liu and chemists Larry Curtiss and Peter Zapol discuss their recent research results on converting carbon dioxide into usable fuel. Photo by Wes Agresta. Argonne postdoctoral researcher Cong Liu and chemists Larry Curtiss and Peter Zapol discuss their recent research results on converting carbon dioxide into usable fuel. Photo by Wes Agresta. A new leaf: Scientists turn carbon dioxide back into fuel July 29, 2016 Tweet EmailPrint As

  17. Turning the Manhattan Project into a National Park | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Manhattan Project into a National Park Turning the Manhattan Project into a National Park February 23, 2015 - 3:43pm Addthis This photo shows the B Reactor -- the world’s first large-scale plutonium production reactor -- in Hanford, Washington, part of the Manhattan Project National Park. | Photo courtesy of the Energy Department. This photo shows the B Reactor -- the world's first large-scale plutonium production reactor -- in Hanford, Washington, part of the Manhattan Project National

  18. When Metal Organic Frameworks Turn into One-Dimensional Magnets | U.S. DOE

    Office of Science (SC) [DOE]

    Office of Science (SC) When Metal Organic Frameworks Turn into One-Dimensional Magnets Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 10.01.14

  19. How to Turn Carbon into A Magnet? X-rays and Protons Give the Answer!

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    to Turn Carbon into A Magnet? X-rays and Protons Give the Answer! Since antiquity, magnetism has appeared to be a trick performed only by iron, nickel, cobalt and a handful of rare alloys. But now the exclusive club of magnetic elements officially has a new member: carbon. Using a proton beam and advanced x-ray techniques, researchers at the Department of Energy's Stanford Linear Accelerator Center (SLAC) in collaboration with colleagues from the University of Leipzig and Lawrence Berkeley

  20. Savannah River Site's H Canyon Turns 60 Years Old | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Site's H Canyon Turns 60 Years Old Tuesday, August 25, 2015 - 2:32pm The H Canyon Facility at the Savannah River Site (SRS) recently celebrated 60 years of service to the United States; first in producing nuclear materials in support of our nation's defense weapons programs and later, after the Cold War, helping to disposition and stabilize nuclear materials and spent nuclear fuel from legacy cleanup, and both foreign and domestic research reactors. "H

  1. Methane and Methanotrophic Bacteria as a Biotechnological Platform |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Methane and Methanotrophic Bacteria as a Biotechnological Platform Methane and Methanotrophic Bacteria as a Biotechnological Platform Breakout Session 2-B: New/Emerging Pathways Methane and Methanotrophic Bacteria as a Biotechnological Platform Dr. Lori Giver, Vice President of Biological Engineering, Calysta Energy, Inc. giver_bioenergy_2015.pdf (1.68 MB) More Documents & Publications CX-100166 Categorical Exclusion Determination Biobased Chemicals Landscape in

  2. SOME BACTERIA ARE ESPECIALLY TOUGH. For billions of

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    SOME BACTERIA ARE ESPECIALLY TOUGH. For billions of years, bacteria have evolved numerous mechanisms to protect themselves from toxic chemicals in their environment-some of which we humans now use as antibiotics. Applying their time-tested methods of thwarting chemical threats, these hardy microbes are responsible for nearly two million antibiotic- resistant infections annually in the United States. Bacteria have developed many types of defenses. Like layering for winter, some microbes wear

  3. Genetic Tools for Environmental Bacteria are Needed to Understand How

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Bacteria Benefit Plants | Argonne National Laboratory Genetic Tools for Environmental Bacteria are Needed to Understand How Bacteria Benefit Plants November 22, 2016 12:30PM to 1:30PM Presenter Philippe Noirot (BIO) Location Building 203 Type Seminar Series LDRD Seminar Series Abstract: Plant-associated microbes, which constitute the plant microbiome, have marked effects on plant biology, including detrimental (pathogens) and beneficial (plant-growth promotion) effects. Beneficial microbes

  4. Utilizing Bacteria for Sustainable Manufacturing of Low-Cost Nanoparticles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Utilizing Bacteria for Sustainable Manufacturing of Low-Cost Nanoparticles Utilizing Bacteria for Sustainable Manufacturing of Low-Cost Nanoparticles Utilizing Bacteria for Sustainable Manufacturing of Low Cost Nanoparticles - Chad Duty, Oak Ridge National Laboratory (1.94 MB) More Documents & Publications Sustainable Nanomaterials Workshop Integrating Environmental, Safety, and Quality Management System Audits Performance Analysis of Air-Source Variable Speed Heat

  5. Field experiences in on-line bacteria monitoring

    SciTech Connect (OSTI)

    Smart, J.; Pickthall, T.; Wright, T.G.

    1996-08-01

    The results of field testing for bacteria and related corrosion are presented for three crude oil and one gas pipeline. Large numbers of bacteria were usually found in the crude oil pipelines, but large bacteria populations did not result in accelerated corrosion in these lines. Crude oil pipeline corrosion was found to be most rapid in sediment deposits, which consisted of oil wet corrosion products, paraffins, and water. Both bacteria populations and corrosion rates were low in the gas pipeline studied, due to a high residual di-amine corrosion inhibitor content in the pipeline water.

  6. Argonne scientists use bacteria to power simple machines | Argonne...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    University and placed in the solution along with the common aerobic bacteria Bacillus subtilis. Andrey Sokolov of Princeton University and Igor Aronson from Argonne, along...

  7. Bacteria mix it up at the microscopic level | Argonne National...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    of Technology and now postdoctoral researcher at Princeton University, piled Bacillus subtillis bacteria into thin films to decode the physics that govern how they move....

  8. Rapid quantification of mutant fitness in diverse bacteria by...

    Office of Scientific and Technical Information (OSTI)

    Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons Citation Details In-Document Search Title: Rapid quantification of mutant...

  9. Antenna organization in green photosynthetic bacteria

    SciTech Connect (OSTI)

    Blankenship, R.E.

    1987-01-01

    This project is concerned with the structure and function of the unique antenna system found in the green photosynthetic bacteria. The antenna system in these organisms is contained within a vesicle known as a chlorosome, which is attached to the cytoplasmic side of the cell membrane. Additional antenna pigments and reaction centers are contained in integral membrane proteins. Energy absorbed by the bacteriochlorophyll c (BChl c) pigments in the chlorosome is transferred via a baseplate'' array of BChl a antenna pigments into the membrane and to the reaction center. A schematic model of chlorosome structure is shown. This project is aimed at increasing our understanding of the organization of the pigments in the chlorosome and how the antenna system functions.

  10. Biochemistry and physiology of anaerobic bacteria

    SciTech Connect (OSTI)

    2000-05-18

    We welcome you to The Power of Anaerobes. This conference serves two purposes. One is to celebrate the life of Harry D. Peck, Jr.,who was born May 18, 1927 and would have celebrated his 73rd birthday at this conference. He died November 20, 1998. The second is to gather investigators to exchange views within the realm of anaerobic microbiology, an area in which tremendous progress has been seen during recent years. It is sufficient to mention discoveries of a new form of life (the archaea), hyper or extreme thermophiles, thermophilic alkaliphiles and anaerobic fungi. With these discoveries has come a new realization about physiological and metabolic properties of microorganisms, and this in turn has demonstrated their importance for the development, maintenance and sustenance of life on Earth.

  11. Forest Service Turns to NREL for Help Fighting Fires More Sustainably |

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Community | NREL Forest Service Turns to NREL for Help Fighting Fires More Sustainably November 4, 2016 A woman stands amid charred vegetation. NREL engineer Alicen Kandt stands in a burn area on South Table Mountain in Golden, Colorado. She has been working with the U.S. Forest Service to audit fire camps. Photo by Dennis Schroeder The forest was on fire, but Alicen Kandt didn't see what she had expected. "This was my first time visiting a fire. I had visions of myself being surrounded

  12. The Betz Prairie Turns 40: Lessons Learned and What You Didn't Know About Current

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Betz Prairie Turns 40: Lessons Learned and What You Didn't Know About Current Ecological Land Management at Fermilab Ryan E. Campbell Fermilab September 30, 2015 4:00 p.m. Fermilab is a 6,800 acre US Department of Energy physics laboratory located 35 miles west of Chicago. Amongst the accelerators are over 2,500 acres of grasslands, woodlands and wetlands. Fermilab is where Dr. Robert F. Betz began his large-scale prairie reconstruction project in 1975. This case study will present lessons

  13. Method of separating bacteria from free living amoebae

    DOE Patents [OSTI]

    Tyndall, Richard L.

    1994-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  14. Potential of Diazorphic, Endophytic Bacteria Associated with Sugarcane for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energycane Production | Department of Energy Potential of Diazorphic, Endophytic Bacteria Associated with Sugarcane for Energycane Production Potential of Diazorphic, Endophytic Bacteria Associated with Sugarcane for Energycane Production This presentation by Michal Gisham was given at the Symbiosis Conference. symbiosis_conference_grisham.pdf (5.18 MB) More Documents & Publications Symbiosis Biofeedstock Conference: Expanding Commercialization of Mutualistic Microbes to Increase

  15. Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging

    DOE Patents [OSTI]

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Wind, Robert A.

    2009-05-19

    Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.

  16. SNS 2.1K Cold Box Turn-down Studies

    SciTech Connect (OSTI)

    F. Casagrande; P.A. Gurd; D.R. Hatfield; M.P. Howell; W.H. Strong; D. Arenius; J. Creel; V. Ganni; P. Knudsen

    2006-06-26

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is nearing completion. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 watt cryogenic refrigeration system. The 2.1K cold box consists of four stages of centrifugal compressors with LN2-cooled variable speed electric motors and magnetic bearings. The cryogenic system successfully supported the Linac beam commissioning at both 4.2K and 2.1K and has been fully operational since June 2005. This paper describes the control principles utilized and the experimental results obtained for the SNS cold compressors turn-down capability to about 30% of the design flow, and possible limitation of the frequency dependent power factor of the cold compressor electric motors, which was measured for the first time during commissioning. These results helped to support the operation of the Linac over a very broad and stable cold compressor operating flow range (refrigeration capacity) and pressure. This in turn helped to optimize the cryogenic system operating parameters, minimizing the utilities and improving the system reliability and availability.

  17. Metal Cycling by Bacteria: Moving Electrons Around

    SciTech Connect (OSTI)

    Nealson, Ken

    2009-07-06

    About 20 years ago, Shewanella oneidensis MR-1 was isolated from a manganese-rich lack in upstate New York, and subsequently shown to utilize solid forms of oxidized manganese or iron as an electron acceptor. Recent studies of metal-reducing bacterial have unveiled a number of unexpected properties of microbes that have enlarged our view of microbes and their role(s) in natural ecosystems. For example, the processes of metal reduction themselves are fundamental to the carbon cycle in many lakes and sediments, where iron and manganese account for the major portion of organic carbon oxidation in many sediments. On more modest spatial scales, iron and manganese reduction can be linked to the oxidation of a wide variety of carbon compounds, many of them recalcitrant and/or toxic. One remarkable property of metal reducers is their ability to reduce solid, often highly crystalline substrates such as iron and manganese oxides and oxyhydroxides. It is now clear that this is done via the utilization of enzymes located on the outer wall of the bacteria - enzymes that apparently interact directly with these solid substrates. Molecular and genomic studies combined have revealed the genes and protoeins responsible for these activities, and many facets of the regulation. This talk focuses on the general features and properties of these remarkable organisms that seem to communicate via electron transfer across a wide variety of soluable, insoluable, and even "inert" substrates, and the way that these processes may be mechanistically linked.

  18. Metal Cycling by Bacteria: Moving Electrons Around

    ScienceCinema (OSTI)

    Nealson, Ken

    2016-07-12

    About 20 years ago, Shewanella oneidensis MR-1 was isolated from a manganese-rich lack in upstate New York, and subsequently shown to utilize solid forms of oxidized manganese or iron as an electron acceptor. Recent studies of metal-reducing bacterial have unveiled a number of unexpected properties of microbes that have enlarged our view of microbes and their role(s) in natural ecosystems. For example, the processes of metal reduction themselves are fundamental to the carbon cycle in many lakes and sediments, where iron and manganese account for the major portion of organic carbon oxidation in many sediments. On more modest spatial scales, iron and manganese reduction can be linked to the oxidation of a wide variety of carbon compounds, many of them recalcitrant and/or toxic. One remarkable property of metal reducers is their ability to reduce solid, often highly crystalline substrates such as iron and manganese oxides and oxyhydroxides. It is now clear that this is done via the utilization of enzymes located on the outer wall of the bacteria - enzymes that apparently interact directly with these solid substrates. Molecular and genomic studies combined have revealed the genes and protoeins responsible for these activities, and many facets of the regulation. This talk focuses on the general features and properties of these remarkable organisms that seem to communicate via electron transfer across a wide variety of soluable, insoluable, and even "inert" substrates, and the way that these processes may be mechanistically linked.

  19. Monitoring sulfide and sulfate-reducing bacteria

    SciTech Connect (OSTI)

    Tanner, R.S.

    1995-12-31

    Simple yet precise and accurate methods for monitoring sulfate-reducing bacteria (SRB) and sulfide remain useful for the study of bacterial souring and corrosion. Test kits are available to measure sulfide in field samples. A more precise methylene blue sulfide assay for both field and laboratory studies is described here. Improved media, compared to that in API RP-38, for enumeration of SRB have been formulated. One of these, API-RST, contained cysteine (1.1 mM) as a reducing agent, which may be a confounding source of sulfide. While cysteine was required for rapid enumeration of SRB from environmental samples, the concentration of cysteine in medium could be reduced to 0.4 mM. It was also determined that elevated levels of yeast extract (>1 g/liter) could interfere with enumeration of SRB from environmental samples. The API-RST medium was modified to a RST-11 medium. Other changes in medium composition, in addition to reduction of cysteine, included reduction of the concentration of phosphate from 3.4 mM to 2.2 mM, reduction of the concentration of ferrous iron from 0.8 mM to 0.5 mM and preparation of a stock mineral solution to ease medium preparation. SRB from environmental samples could be enumerated in a week in this medium.

  20. U.S. Virgin Islands Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ...em> U.S. Virgin Islands Clears the Way for Unprecedented Levels of Solar Energy USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy ...

  1. Energy Saver 101 Infographic: Home Heating | Department of Energy

    Energy.gov (indexed) [DOE]

    Office of Public Affairs Space heating is likely the largest energy expense in your home, accounting for about 45 percent of the average American family's energy bills. That...

  2. Energy Saver 101 Infographic: Home Cooling | Department of Energy

    Energy.gov (indexed) [DOE]

    to heat up and temperatures rise, many of us are cranking up the air conditioners to stay cool. It should come as no surprise then that air conditioners use about 5 percent of...

  3. BioenergizeME Infographic Challenge 2016 Annual Update

    Energy.gov (indexed) [DOE]

    ... TOPIC AREA 3 - SCIENCE AND TECHNOLOGY Possible subject headingskey words: photosynthesis; energy from biomass; cellulosic ethanol; pyrolysis oil, gasification; algae biofuel 1. ...

  4. INFOGRAPHIC: The Road to Fuel Efficiency | Department of Energy

    Energy.gov (indexed) [DOE]

    money at the pump, all while reducing our dependence on foreign oil and growing the U.S. economy. Learn more in the 54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles blog...

  5. Energy Saver 101 Infographic: Home Energy Audits | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Considering new energy-efficient windows? Before making individual efficiency upgrades, it's important to know how your home uses energy. A home energy audit is the first step to ...

  6. U.S. Virgin Islands Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A 448-kW PV system installed at the Cyril E. King Airport on St. Thomas in April 2011. Photo by Adam Warren, NREL 18953 U.S. Virgin Islands Establishes Interconnection ...

  7. Energy Saver 101: Home Cooling Infographic | Department of Energy

    Energy.gov (indexed) [DOE]

    While home cooling only accounts for 6 percent of the average home's energy use, it can lead to high energy bills during the warm months. This summer, don't let your energy bills...

  8. Winning Team Announced for 2015 BioenergizeME Infographic Challenge...

    Office of Environmental Management (EM)

    up: "Algae Biofuel" by a team also from Smithtown High School-chosen for visual appeal fitting to the subject area, eye-catching subheadings, and good use of peer-reviewed sources. ...

  9. BioenergizeME Infographic Challenge: Frequently Asked Questions...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of information, such as those in the Library of Congress Resource Library and research ... Finalists will be invited to attend a virtual awards ceremony where the grand prize winner ...

  10. Infographics from the 2014 National Geothermal Student Competition...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    With the theme of GeoEnergy is Beautiful, the Energy Department's National Geothermal Student Competition in 2014 centered around public awareness. Student teams were asked to ...

  11. A NEW CONCEPTUAL DESIGN OF THE SNS FULL TURN FAST EXTRACTION KICKER POWER SUPPLY SYSTEM.

    SciTech Connect (OSTI)

    ZHANG,W.; SANDBERG,J.; TSOUPAS,N.; MI,J.; LAMBIASE,R.; PAI,C.; TUOZZOLO,J.; NEHRING,T.; WARBURTON,D.

    2001-06-18

    The new conceptual design of full turn fast extraction kicker power supply system of the Spallation Neutron Source main ring will be presented in this paper. In this design, the extraction kicker power modulators will be located outside of the tunnel, as requested by the SNS Project. Its purpose is to minimize the components inside of the synchrotron tunnel. The high voltage modulator will use Blumlein pulser and hollow-anode thyratron structure, a parallel termination resistor and two transmission cables. Main advantages include: flexible system configuration for unipolar single drive or push-pull double drive of the kicker magnets, lower charging voltage, lower beam impedance, lower number of high voltage cables, and large design margin for implementation and future upgrade.

  12. REDUCTIONS WITHOUT REGRET: AVOIDING WRONG TURNS, ROACH MOTELS, AND BOX CANYONS

    SciTech Connect (OSTI)

    Swegle, J.; Tincher, D.

    2013-09-11

    This is the third of three papers (in addition to an introductory summary) aimed at providing a framework for evaluating future reductions or modifications of the U.S. nuclear force, first by considering previous instances in which nuclear-force capabilities were eliminated; second by looking forward into at least the foreseeable future at the features of global and regional deterrence (recognizing that new weapon systems currently projected will have expected lifetimes stretching beyond our ability to predict the future); and third by providing examples of past or possible undesirable outcomes in the shaping of the future nuclear force, as well as some closing thoughts for the future. In this paper, we provide one example each of our judgments on what constitutes a box canyon, a roach motel, and a wrong turn: � Wrong Turn: The Reliable Replacement Warhead � Roach Motel: SRAM T vs the B61 � A Possible Box Canyon: A Low-Yield Version of the W76 SLBM Warhead Recognizing that new nuclear missions or weapons are not demanded by current circumstances � a development path that yields future capabilities similar to those of today, which are adequate if not always ideal, and a broader national-security strategy that supports nonproliferation and arms control by reducing the role for, and numbers, of nuclear weapons � we briefly consider alternate, less desirable futures, and their possible effect on the complex problem of regional deterrence. In this regard, we discuss the issues posed by, and possible responses to, three example regional deterrence challenges: in-country defensive use of nuclear weapons by an adversary; reassurance of U.S. allies with limited strategic depth threatened by an emergent nuclear power; and extraterritorial, non-strategic offensive use of nuclear weapons by an adversary in support of limited military objectives against a U.S. ally.

  13. Combined features in the primordial spectra induced by a sudden turn in two-field DBI inflation

    SciTech Connect (OSTI)

    Mizuno, Shuntaro; Saito, Ryo; Langlois, David E-mail: rsaito@apc.univ-paris7.fr

    2014-11-01

    We investigate the features generated by a sharp turn along the inflationary trajectory in a two-field model of Dirac-Born-Infeld inflation, where one of the fields is heavy. Distinct features are generated by two different effects: the mixing of the light and heavy modes during the turn, on the one hand, and the resonance between the oscillations along the heavy direction after the turn, on the other hand. Contrary to models with standard kinetic terms, the resonance effect is not strongly suppressed because the action contains derivative interactions. Working in the potential basis, we study the oscillations after the turn and compute the amplitude of the mixing and resonance features in the power spectrum, as well as in the bispectrum for the latter effect. We find that the amplitudes and positions of these combined features obey specific consistency relations, which could be confronted with cosmological data.

  14. Multiple Species of Bacteria Convert Elemental Mercury to Toxic...

    Office of Science (SC) [DOE]

    Researchers are studying how bacteria transform mercury into a toxic form in the environment that can accumulate in the food web, posing a threat to wildlife and people. The ...

  15. Utilizing Bacteria for Sustainable Manufacturing of Low-Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bacteria for Sustainable Manufacturing of Low-Cost Nanoparticles Chad Duty, Ph.D. Technical Lead Additive Manufacturing Roll-to-Roll Processing June 26, 2012 2 Managed by ...

  16. Small Talk: Cell-to-Cell Communication in Bacteria

    ScienceCinema (OSTI)

    Bassler, Bonnie [Princeton University, Princeton, New Jersey, United States

    2016-07-12

    Cell-cell communication in bacteria involves the production, release, and subsequent detection of chemical signaling molecules called autoinducers. This process, called quorum sensing, allows bacteria to regulate gene expression on a population-wide scale. Processes controlled by quorum sensing are usually ones that are unproductive when undertaken by an individual bacterium but become effective when undertaken by the group. For example, quorum sensing controls bioluminescence, secretion of virulence factors, biofilm formation, sporulation, and the exchange of DNA. Thus, quorum sensing is a mechanism that allows bacteria to function as multi-cellular organisms. Bacteria make, detect, and integrate information from multiple autoinducers, some of which are used exclusively for intra-species communication while others enable communication between species. Research is now focused on the development of therapies that interfere with quorum sensing to control bacterial virulence.

  17. Hydrogen (H2) Production by Anoxygenic Purple Nonsulfur Bacteria |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Anoxygenic Purple Nonsulfur Bacteria Hydrogen (H2) Production by Anoxygenic Purple Nonsulfur Bacteria Presentation by Jake McKinlay, Indiana University, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. bio_h2_workshop_mckinlay.pdf (95.15 KB) More Documents & Publications 2013 Biological Hydrogen Production Workshop Summary Report Savannah River National Laboratory (SRNL)

  18. Material and method for promoting the growth of anaerobic bacteria

    DOE Patents [OSTI]

    Adler, H.I.

    1984-10-09

    A material and method is disclosed for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10 to about 60 C until the dissolved oxygen is removed. No Drawings

  19. Material and method for promoting the growth of anaerobic bacteria

    DOE Patents [OSTI]

    Adler, Howard I.

    1984-01-01

    A material and method for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10.degree. to about 60.degree. C. until the dissolved oxygen is removed.

  20. Air Gaps, Size Effect, and Corner-Turning in Ambient LX-17

    SciTech Connect (OSTI)

    Souers, P C; Hernandez, A; Cabacungan, C; Fried, L; Garza, R; Glaesemann, K; Lauderbach, L; Liao, S; Vitello, P

    2008-02-05

    Various ambient measurements are presented for LX-17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner-turn has been measured with an LX-07 booster, and the dead-zone results are comparable to the previous TATB-boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel-backed samples are faster than the Lucite-backed samples by 0.6 {micro}s. Bare LX-07 and LX-17 of 12.7 mm-radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred or not. The LX-07 crossed at 10 mm with a slight time delay. Steady state LX-17 crossed at 3.5 mm gap but failed to cross at 4.0 mm. LX-17 with a 12.7 mm run after the booster crossed a 1.5 mm gap but failed to cross 2.5 mm. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in 0 reactive flow JWL++ and Linked Cheetah V4, mostly at 4 zones/mm. Tarantula has four pressure regions: off, initiation, failure and detonation. The physical basis of the input parameters is considered.

  1. ION MANIPULATIONS IN STRUCTURES FOR LOSSLESS ION MANIPULATIONS (SLIM): COMPUTATIONAL EVALUATION OF A 90o TURN AND A SWITCH

    SciTech Connect (OSTI)

    Garimella, Venkata BS; Ibrahim, Yehia M.; Webb, Ian K.; Ipsen, Andreas B.; Chen, Tsung-Chi; Tolmachev, Aleksey V.; Baker, Erin Shammel; Anderson, Gordon A.; Smith, Richard D.

    2015-08-19

    The process of redirecting ions through 90o turns and ‘tee’ switches utilizing Structures for Lossless Ion Manipulations (SLIM) was evaluated using theoretical and simulation methods at 4 Torr pressure. SIMION simulations were used to optimize and evaluate conditions for performing turns without loss of signal intensity or ion mobility resolving power. Fundamental considerations indicated that the “race track” effect during ion turns may incur only small losses to the ion mobility resolving power at 4 Torr pressure for the typical plume widths predicted in an optimized SLIM ‘tee’ switch design. The dynamic switching of ions into orthogonal channels was also evaluated using SIMION ion trajectory simulations, and achieved similar performance. Simulation results were in close agreement with experimental results and were used to refine SLIM designs and applied potentials for their use.

  2. Ion manipulations in structures for lossless ion manipulations (SLIM): computational evaluation of a 90° turn and a switch

    SciTech Connect (OSTI)

    Garimella, Sandilya V. B.; Ibrahim, Yehia. M.; Webb, Ian K.; Ipsen, Andreas B.; Chen, Tsung-Chi; Tolmachev, Aleksey V.; Baker, Erin S.; Anderson, Gordon A.; Smith, Richard D.

    2015-08-19

    The process of redirecting ions through 90° turns and ‘tee’ switches utilizing Structures for Lossless Ion Manipulations (SLIM) was evaluated using theoretical and simulation methods at 4 Torr pressure. SIMION simulations were used to optimize and evaluate conditions for performing turns without loss of signal intensity or ion mobility resolving power. Fundamental considerations indicated that the “race track” effect during ion turns may incur only small losses to the ion mobility resolving power at 4 Torr pressure for the typical plume widths predicted in an optimized SLIM ‘tee’ switch design. The dynamic switching of ions into orthogonal channels was also evaluated using SIMION ion trajectory simulations, and achieved similar performance. Simulation results were in close agreement with experimental results and were used to refine SLIM designs and applied potentials for their use.

  3. Ion manipulations in structures for lossless ion manipulations (SLIM): computational evaluation of a 90° turn and a switch

    DOE PAGES-Beta [OSTI]

    Garimella, Sandilya V. B.; Ibrahim, Yehia. M.; Webb, Ian K.; Ipsen, Andreas B.; Chen, Tsung-Chi; Tolmachev, Aleksey V.; Baker, Erin S.; Anderson, Gordon A.; Smith, Richard D.

    2015-08-19

    The process of redirecting ions through 90° turns and ‘tee’ switches utilizing Structures for Lossless Ion Manipulations (SLIM) was evaluated using theoretical and simulation methods at 4 Torr pressure. SIMION simulations were used to optimize and evaluate conditions for performing turns without loss of signal intensity or ion mobility resolving power. Fundamental considerations indicated that the “race track” effect during ion turns may incur only small losses to the ion mobility resolving power at 4 Torr pressure for the typical plume widths predicted in an optimized SLIM ‘tee’ switch design. The dynamic switching of ions into orthogonal channels was alsomore » evaluated using SIMION ion trajectory simulations, and achieved similar performance. Simulation results were in close agreement with experimental results and were used to refine SLIM designs and applied potentials for their use.« less

  4. Turning point temperature and competition between relativistic and ponderomotive effects in self-focusing of laser beam in plasma

    SciTech Connect (OSTI)

    Bokaei, B.; Niknam, A. R.; Jafari Milani, M. R.

    2013-10-15

    The propagation characters of Gaussian laser beam in collisionless plasma are investigated by considering the ponderomotive and relativistic nonlinearities. The second-order differential equation of dimensionless beam width parameter is solved numerically, taking into account the effect of electron temperature. The results show that the ponderomotive force does not facilitate the relativistic self-focusing in all intensity ranges. In fact, there exists a certain intensity value that, if below this value, the ponderomotive nonlinearity can contribute to the relativistic self-focusing, or obstruct it, if above. It is also indicated that there is a temperature interval in which self-focusing can occur, while the beam diverges outside of this region. In addition, the results represent the existence of a “turning point temperature” in the mentioned interval that the self-focusing has the strongest power. The value of the turning point is dependent on laser intensity in which higher intensities result in higher turning point.

  5. Air Gaps, Size Effect, and Corner-Turning in Ambient LX-17

    SciTech Connect (OSTI)

    Souers, P C; Hernandez, A; Cabacungen, C; Fried, L; Garza, R; Glaesemann, K; Lauderbach, L; Liao, S; Vitello, P

    2007-05-30

    Various ambient measurements are presented for LX-17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner-turn has been measured with an LX-07 booster, and the dead-zone results are comparable to the previous TATB-boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel-backed samples are faster than the Lucite-backed samples by 0.6 {micro}s. Bare LX-07 and LX-17 of 12.7 mm-radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred or not. The LX-07 crossed at 10 mm with a slight time delay. Steady state LX-17 crossed at 3.5 mm gap but failed to cross at 4.0 mm. LX-17 with a 12.7 mm run after the booster crossed a 1.5 mm gap but failed to cross 2.5 mm. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in the Linked Cheetah V4.0 reactive flow code at 4 zones/mm. Tarantula has four pressure regions: off, initiation, failure and detonation. A report card of 25 tests run with the same settings on LX-17 is shown, possibly the most extensive simultaneous calibration yet tried with an explosive. The physical basis of some of the input parameters is considered.

  6. Bacteria transport through porous media. Annual report, December 31, 1984

    SciTech Connect (OSTI)

    Yen, T.F.

    1986-09-01

    The following five chapters in this report have been processed separately for inclusion in the Energy Data Base: (1) theoretical model of convective diffusion of motile and non-motile bacteria toward solid surfaces; (2) interfacial electrochemistry of oxide surfaces in oil-bearing sands and sandstones; (3) effects of sodium pyrophosphate additive on the ''huff and puff''/nutrient flooding MEOR process; (4) interaction of Escherichia coli B, B/4, and bacteriophage T4D with Berea sandstone rock in relation to enhanced oil recovery; and (5) transport of bacteria in porous media and its significance in microbial enhanced oil recovery.

  7. Hairlike appendages on ultra-small bacteria cell

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Hairlike appendages on ultra-small bacteria cell Click to share on Facebook (Opens in new window) Click to share on Twitter (Opens in new window) Click to share on Reddit (Opens in new window) Click to share on Pinterest (Opens in new window) Cryo-transmission electron microscopy captured numerous hairlike appendages radiating from the surface of this ultra-small bacteria cell. The scientists theorize the pili-like structures enable the cell to connect with other microbes and obtain life-giving

  8. Method for establishing the presence of salmonella bacteria in eggs

    DOE Patents [OSTI]

    Johnston, Roger G.; Sinha, Dipen N.

    1995-01-01

    Measurement of the acoustical resonances in eggs is shown to provide a rapid, noninvasive technique for establishing the presence of Salmonella bacteria. The technique is also sensitive to yolk puncture, shell cracks, and may be sensitive to other yolk properties and to egg freshness. Remote characterization, potentially useful for characterizing large numbers of eggs, has been demonstrated.

  9. Methods for targetted mutagenesis in gram-positive bacteria

    DOE Patents [OSTI]

    Yang, Yunfeng

    2014-05-27

    The present invention provides a method of targeted mutagenesis in Gram-positive bacteria. In particular, the present invention provides a method that effectively integrates a suicide integrative vector into a target gene in the chromosome of a Gram-positive bacterium, resulting in inactivation of the target gene.

  10. Characteristics of the three-half-turn-antenna-driven RF discharge in the Uragan-3M torsatron

    SciTech Connect (OSTI)

    Grigor’eva, L. I.; Chechkin, V. V. Moiseenko, V. E.; Grekov, D. L.; Pavlichenko, R. O.; Lozin, A. V.; Tarasov, I. K.; Kulaga, A. Ye.; Zamanov, N. V.; Tretiak, K. K.; Kozulya, M. M.; Beletskii, A. A.; Kasilov, A. A.; Mironov, Yu. K.; Romanov, V. S.; Voitsenya, V. S.

    2015-12-15

    In the ℓ = 3 Uragan-3M torsatron hydrogen plasma is produced by RF fields in the Alfvén range of frequencies (ω ≤ ω{sub ci}). The initial (target) plasma with the line-averaged density of units 10{sup 12} cm{sup −3} is produced by a frame antenna with a broad spectrum of generated parallel wavenumbers. After this, to heat the plasma and bring its density to ∼10{sup 13} cm{sup –3}, another, shorter wavelength three-half-turn antenna with large transverse currents is used. The behavior of the density, electron temperature, and loss of the plasma supported by the three-half-turn antenna is studied depending on the RF power fed to the antenna and initial values of the density and electron temperature supplied by the frame antenna.

  11. Turning off the heat. Why America must double energy efficiency to save money and reduce global warming

    SciTech Connect (OSTI)

    Casten, T.R.

    1998-12-31

    Turning Off the Heat targets a main source of overuse of fossil fuels--the energy producers themselves who, through their government-approved monopolies have led to energy inefficiency and needless pollution. A leading authority with 20 years of experience in the development and operation of energy conversions in the development and operation of energy conversions, Thomas R. Casten clearly explains that the US and other nations of the world can, and must, double the efficiency of energy utilities. This efficiency improvement will lead to a reduction of electric prices by 30 to 40% and cut carbon dioxide emissions (a greenhouse gas) in half. Two-thirds of the fuel used to make US Electricity is wasted, resulting in higher energy prices and excess pollution. If market forces are unleased and monopolies ended, competition will save money and fuel, Casten says. Turning Off the Heat is an essential volume for policy-makers, legislators, leaders in industry, environmentalists, and concerned citizens.

  12. 275px-Lap_1%2C_Turn_1_Canada_2008_0.jpg | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information 275px-Lap_1%2C_Turn_1_Canada_2008_0.jpg

  13. A vast collection of microbial genes that are toxic to bacteria...

    Office of Scientific and Technical Information (OSTI)

    A vast collection of microbial genes that are toxic to bacteria Citation Details In-Document Search Title: A vast collection of microbial genes that are toxic to bacteria In the ...

  14. Toxin-eating bacteria and bioremediation (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Toxin-eating bacteria and bioremediation Citation Details In-Document Search Title: Toxin-eating bacteria and bioremediation Methods are provided for reducing a level of one or ...

  15. Methods for Engineering Sulfate Reducing Bacteria of the Genus Desulfovibrio

    SciTech Connect (OSTI)

    Chhabra, Swapnil R; Keller, Kimberly L.; Wall, Judy D.

    2011-03-15

    Sulfate reducing bacteria are physiologically important given their nearly ubiquitous presence and have important applications in the areas of bioremediation and bioenergy. This chapter provides details on the steps used for homologous-recombination mediated chromosomal manipulation of Desulfovibrio vulgaris Hildenborough, a well-studied sulfate reducer. More specifically, we focus on the implementation of a 'parts' based approach for suicide vector assembly, important aspects of anaerobic culturing, choices for antibiotic selection, electroporation-based DNA transformation, as well as tools for screening and verifying genetically modified constructs. These methods, which in principle may be extended to other sulfate-reducing bacteria, are applicable for functional genomics investigations, as well as metabolic engineering manipulations.

  16. Methane and Methanotrophic Bacteria as a Biotechnological Platform

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Methanotrophic Bacteria as a Biotechnological Platform Lori Giver, VP Biological Engineering, June 24, 2015 Calysta overview 2 Menlo Park, CA London, UK Stavanger, NO Singapore, SG / Bintulu, MY * Founded in May, 2011; Acquired BioProtein A/S in 2014. * Core IP and expertise in gas fermentation, bioengineering, and product development. Our Mission Building a highly profitable company producing food, chemicals, and fuels from methane: a sustainable, abundant resource that does not compete

  17. A novel transcriptional regulator of L-arabinose utilization in human gut bacteria

    SciTech Connect (OSTI)

    Chang, Changsoo; Tesar, Christine; Li, Xiaoqing; Kim, Youngchang; Rodionov, Dmitry A.; Joachimiak, Andrzej

    2015-10-04

    We report that carbohydrate metabolism plays a crucial role in the ecophysiology of human gut microbiota. Mechanisms of transcriptional regulation of sugar catabolism in commensal and prevalent human gut bacteria such as Bacteroides thetaiotaomicron remain mostly unknown. By a combination of bioinformatics and experimental approaches, we have identified an NrtR family transcription factor (BT0354 in B. thetaiotaomicron, BtAraR) as a novel regulator controlling the arabinose utilization genes. L-arabinose was confirmed to be a negative effector of BtAraR. We have solved the crystal structures of the apo and L-arabinose-bound BtAraR proteins, as well as the complex of apo-protein with a specific DNA operator. BtAraR forms a homodimer with each subunit comprised of the ligand-binding Nudix hydrolase-like domain and the DNA-binding winged-helix-turn-helix (wHTH) domain. We have identified the residues involved in binding of L-arabinose and recognition of DNA. The majority of these residues are well conserved in the AraR orthologs in Bacteroidetes. In the structure of the BtAraR–DNA complex, we found the unique interaction of arginine intercalating its guanidinum moiety into the base pair stacking of B-DNA. L-arabinose binding induces movement of wHTH domains, resulting in a conformation unsuitable for DNA binding. Furthermore, our analysis facilitates reconstruction of the metabolic and regulatory networks involved in carbohydrate utilization in human gut Bacteroides.

  18. A novel transcriptional regulator of L-arabinose utilization in human gut bacteria

    DOE PAGES-Beta [OSTI]

    Chang, Changsoo; Tesar, Christine; Li, Xiaoqing; Kim, Youngchang; Rodionov, Dmitry A.; Joachimiak, Andrzej

    2015-10-04

    We report that carbohydrate metabolism plays a crucial role in the ecophysiology of human gut microbiota. Mechanisms of transcriptional regulation of sugar catabolism in commensal and prevalent human gut bacteria such as Bacteroides thetaiotaomicron remain mostly unknown. By a combination of bioinformatics and experimental approaches, we have identified an NrtR family transcription factor (BT0354 in B. thetaiotaomicron, BtAraR) as a novel regulator controlling the arabinose utilization genes. L-arabinose was confirmed to be a negative effector of BtAraR. We have solved the crystal structures of the apo and L-arabinose-bound BtAraR proteins, as well as the complex of apo-protein with a specificmore » DNA operator. BtAraR forms a homodimer with each subunit comprised of the ligand-binding Nudix hydrolase-like domain and the DNA-binding winged-helix-turn-helix (wHTH) domain. We have identified the residues involved in binding of L-arabinose and recognition of DNA. The majority of these residues are well conserved in the AraR orthologs in Bacteroidetes. In the structure of the BtAraR–DNA complex, we found the unique interaction of arginine intercalating its guanidinum moiety into the base pair stacking of B-DNA. L-arabinose binding induces movement of wHTH domains, resulting in a conformation unsuitable for DNA binding. Furthermore, our analysis facilitates reconstruction of the metabolic and regulatory networks involved in carbohydrate utilization in human gut Bacteroides.« less

  19. Apparatus and method for the desulfurization of petroleum by bacteria

    DOE Patents [OSTI]

    Lizama, H.M.; Scott, T.C.; Scott, C.D.

    1995-10-17

    A method is described for treating petroleum with anaerobic microorganisms acting as biocatalysts that can remove sulfur atoms from hydrocarbon molecules, under anaerobic conditions, and then convert the sulfur atoms to hydrogen sulfide. The microorganisms utilized are from the family known as the ``Sulfate Reducing Bacteria``. These bacteria generate metabolic energy from the oxidation of organic compounds, but use oxidized forms of sulfur as an electron acceptor. Because the biocatalyst is present in the form of bacteria in an aqueous suspension, whereas the reacting substrate consists of hydrocarbon molecules in an organic phase, the actual desulfurization reaction takes place at the aqueous-organic interphase. To ensure adequate interfacial contacting and mass transfer, a biphasic electrostatic bioreactor system is utilized. The bioreactor is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the sulfur. High-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the sulfur to produce hydrogen sulfide which is then removed from the bioreactor. The organic liquid, now free of the sulfur, is ready for immediate use or further processing. 5 figs.

  20. Apparatus and method for the desulfurization of petroleum by bacteria

    DOE Patents [OSTI]

    Lizama, Hector M.; Scott, Timothy C.; Scott, Charles D.

    1995-01-01

    A method for treating petroleum with anaerobic microorganisms acting as biocatalysts that can remove sulfur atoms from hydrocarbon molecules, under anaerobic conditions, and then convert the sulfur atoms to hydrogen sulfide. The microorganisms utilized are from the family known as the "Sulfate Reducing Bacteria." These bacteria generate metabolic energy from the oxidation of organic compounds, but use oxidized forms of sulfur as an electron acceptor. Because the biocatalyst is present in the form of bacteria in an aqueous suspension, whereas the reacting substrate consists of hydrocarbon molecules in an organic phase, the actual desulfurization reaction takes place at the aqueous-organic interphase. To ensure adequate interfacial contacting and mass transfer, a biphasic electrostatic bioreactor system is utilized. The bioreactor is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the sulfur. High-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the sulfur to produce hydrogen sulfide which is then removed from the bioreactor. The organic liquid, now free of the sulfur, is ready for immediate use or further processing.

  1. Expansion of the Genomic Encyclopedia of Bacteria and Archaea

    SciTech Connect (OSTI)

    Rinke, Christian; Sczyrba, Alex; Malfatti, Stephanie; Lee, Janye; Cheng, Jan-Fang; Stepanauskas, Ramunas; Eisen, Jonathan A.; Hallam, Steven; Inskeep, William P.; Hedlund, Brian P.; Sievert, Stefan M.; Liu, Wen-Tso; Tsiamis, George; Hugenholtz, Philip; Woyke, Tanja

    2011-03-20

    To date the vast majority of bacterial and archaeal genomes sequenced are of rather limited phylogenetic diversity as they were chosen based on their physiology and/ or medical importance. The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project (Wu et al. 2009) is aimed to systematically filling the gaps of the tree of life with phylogenetically diverse reference genomes. However more than 99percent of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes of these largely mysterious species. These limitations gave rise to the GEBA uncultured project. Here we propose to use single cell genomics to massively expand the Genomic Encyclopedia of Bacteria and Archaea by targeting 80 single cell representatives of uncultured candidate phyla which have no or very few cultured representatives. Generating these reference genomes of uncultured microbes will dramatically increase the discovery rate of novel protein families and biological functions, shed light on the numerous underrepresented phyla that likely play important roles in the environment, and will assist in improving the reconstruction of the evolutionary history of Bacteria and Archaea. Moreover, these data will improve our ability to interpret metagenomics sequence data from diverse environments, which will be of tremendous value for microbial ecology and evolutionary studies to come.

  2. Expansion of the Genomic Encyclopedia of Bacteria and Archaea

    SciTech Connect (OSTI)

    Rinke, Christian; Sczyrba, Alex; Malfatti, Stephanie; Lee, Janey; Cheng, Jan-Fang; Stepanauskas, Ramunas; Eisen, Jonathan A.; Hallam, Steven; Inskeep, William P.; Hedlund, Brian P.; Sievert, Stefan M.; Liu, Wen-Tso; Tsiamis, George; Hugenholtz, Philip; Woyke, Tanja

    2011-06-02

    To date the vast majority of bacterial and archaeal genomes sequenced are of rather limited phylogenetic diversity as they were chosen based on their physiology and/ or medical importance. The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project (Wu et al. 2009) is aimed at systematically filling the gaps of the tree of life with phylogenetically diverse reference genomes. However more than 99 percent of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes of these largely mysterious species. These limitations gave rise to the GEBA uncultured project. Here we propose to use single cell genomics to massively expand the Genomic Encyclopedia of Bacteria and Archaea by targeting 80 single cell representatives of uncultured candidate phyla which have no or very few cultured representatives. Generating these reference genomes of uncultured microbes will dramatically increase the discovery rate of novel protein families and biological functions, shed light on the numerous underrepresented phyla that likely play important roles in the environment, and will assist in improving the reconstruction of the evolutionary history of Bacteria and Archaea. Moreover, these data will improve our ability to interpret metagenomics sequence data from diverse environments, which will be of tremendous value for microbial ecology and evolutionary studies to come.

  3. Bioenergy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    BioenergizeME Infographic Challenge BioenergizeME Infographic Challenge BioenergizeME Infographic Challenge: Cellulosic Ethanol BioenergizeME Infographic Challenge: Cellulosic Ethanol BioenergizeME Spring 2016 Infographic Challenge Winner Read more BioenergizeME Infographic Challenge: Algae as a Biofuel BioenergizeME Infographic Challenge: Algae as a Biofuel BioenergizeME Spring 2016 Infographic Challenge First Runner Up Read more BioenergizeME Infographic Challenge: Energy from Biomass

  4. The Dimensions and Number of Turns for the Tracker Solenoids As-Built compared to the Original Magnet Design

    SciTech Connect (OSTI)

    Green, Michael A; Virostek, Steve P

    2008-06-18

    The two tracker solenoids for MICE [1]-[3] as-built are different from the original design proposed by Wang NMR [4]. The Wang NMR design is in turn different from the magnet design proposed in the original MICE tracker magnet specification [5]. The two tracker solenoids where fabricated with niobium titanium conductor supplied to LBNL by Luvata under a specification written by LBNL [6]. This report compares the as-built tracker solenoids to the original Wang NMR design [4]. The as-built solenoid coils are thicker by 5 to 8 percent than called for the original design. This means that the current center is moved outward from 0.2 to 0.5 percent. In both tracker magnets, the thickness of end coil 2 was increased by 2-layers over the original design [5]. Thus, the current center for end coil 2 was moved outward by 0.7 percent. The number of turns per layer was underestimated in the original design from 2 to 4 percent. As a result, the current in each of the five tracker solenoid coils must be increased. In turn, the two as built tracker solenoids are compared to each other. In the ways that matter, the two tracker solenoids are nearly identical to each other. The largest difference between the two magnets that matters is a 0.05 percent change in the current in the center coil of the three coil set that forms the spectrometer solenoid. Since this is the largest variation that matters, it can be concluded that coils M1, coils M2, and the spectrometer solenoid can be connected in series without affecting the beam dynamics of MICE. This includes the two tuned end coils as well. The position of the coils within the cryostats vacuum vessel appears to be acceptable.

  5. Fuel from Bacteria, CO2, Water, and Solar Energy: Engineering a Bacterial Reverse Fuel Cell

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Harvard is engineering a self-contained, scalable Electrofuels production system that can directly generate liquid fuels from bacteria, carbon dioxide (CO2), water, and sunlight. Harvard is genetically engineering bacteria called Shewanella, so the bacteria can sit directly on electrical conductors and absorb electrical current. This current, which is powered by solar panels, gives the bacteria the energy they need to process CO2 into liquid fuels. The Harvard team pumps this CO2 into the system, in addition to water and other nutrients needed to grow the bacteria. Harvard is also engineering the bacteria to produce fuel molecules that have properties similar to gasoline or diesel fuelmaking them easier to incorporate into the existing fuel infrastructure. These molecules are designed to spontaneously separate from the water-based culture that the bacteria live in and to be used directly as fuel without further chemical processing once theyre pumped out of the tank.

  6. Office of Fossil Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Office of Fossil Energy INFOGRAPHIC: Carbon Capture 101 INFOGRAPHIC: Carbon Capture 101 Want to know how carbon capture works? This infographic breaks it down for you Read more ...

  7. Elimination of mercury and organomercurials by nitrogen-fixing bacteria

    SciTech Connect (OSTI)

    Ghosh, S.; Sadhukhan, P.C.; Ghosh, D.K.

    1997-06-01

    Bacteria isolated from mercury-polluted environments are often resistant to mercuric ions (Hg{sup 2+}) and organomercurials. Plasmids determining mercury resistance have been well characterized in gram-negative system. However, in Staphylococcus aureus mercury resistance has been found to be chromosomally determined. The known mechanism of bacterial Hg{sup 2+}-resistance is detoxification of the toxic Hg{sup 2+} by its enzymatic transformation by mercuric reductase to Hg (o). Organomercurial lyase mediates the degradation of organomercurial compounds to Hg{sup 2+}. Mercury and organomercurial resistances have been studied in different bacterial genera. There is little information on Hg-resistance in N{sub 2}-fixing soil bacteria, however, in many developing countries, including India, mercury pollution is still a problem because Hg-based pesticides and fungicides are still used routinely as seed-dressers in agriculture to control soil-borne and seed-borne fungal diseases. Volatilization of Hg from laboratory media by mercury-resistant bacteria containing low levels of mercury has been reported by several workers. It is interesting to note that N{sub 2}-fixing, Hg-resistant soil isolates could volatilize Hg from medium containing very high amounts of HgCl{sub 2}. In the present paper we report the volatilization patterns of five N{sub 2}-fixing bacterial strains, the effect of different inducers on mercuric reductase, and the pattern of substrate utilization by organomercurial lyase. In the presence of a low concentration of HgCl{sub 2}. enzymatic detoxification is sufficient to combat the adverse situation created by the presence of Hg{sup 2+} ions. In the presence of a high concentration of HgCl{sub 2}, intracellular sequestration by Hg{sup 2+} binding components may play an additional role in counteracting Hg-toxicity.

  8. Development of luminescent bacteria as tracers for geological reservoir characterization

    SciTech Connect (OSTI)

    King, J.W.

    1991-01-01

    This research project resulted from recognizing the problem of being unable to accurately distinguish communication between wells in producing oil zones which may or may not be continuous. Such a determination is necessary when considering Enhanced Oil Recovery (EOR) whether it is water flooding, carbon dioxide, or other methods which increase the sweep efficiency. Various kinds of chemical tracers are available, but they are expensive and many might be considered hazardous for underground aquifers. Other biological tracers are available, but have never been developed for oil reservoir conditions. Bioluminescent bacteria seemed an obvious candidate because they thrive in saline waters (usually 3% salt) which have been contaminated by oil spills.

  9. Genetics of Bacteria That Oxidize On-Carbon Compounds

    SciTech Connect (OSTI)

    Hanson, Richard S.

    2001-01-01

    Facultative methanol oxidizing bacteria contain large amounts of methanol dehydrogenase which is expressed only in the presence of methanol. This technical report describes two-two component regulatory systems encoding histidine kinases and response regulators and another response regulator all of which are required for the expression of mxaF, the open reading frame encoding methanol dehydrogenase. The response regulators bind to sequences upstream of the mxaF when phosphoryled in a reaction catalyzed by the histidine kinases. The binding of the response regulators is required for the transcription of mxaF.

  10. Hydrogen (H2) Production by Anoxygenic Purple Nonsulfur Bacteria

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    produc8on by anoxygenic purple nonsulfur bacteria James 'Jake' McKinlay Assistant Professor, Biology Indiana University, Bloomington 4 N 2 + + 2NH 3 Purple n on---sulfur b acteria produce H 2 via n itrogenase biosynthe8c precursors and CO 2 central organic 'waste' metabolism compounds H + e --- Nitrogenase H 2 ATP Light (cyclic) energy photophosphoryla/on N 2 + 8H + + 8e - + 16ATP à H 2 + 2NH 4 + 8H + + 8e - + 16ATP à 4H 2 This is mode of photosynthesis does not produce oxygen Current

  11. Biofuels from Bacteria, Electricity, and CO2: Biofuels from CO2 Using Ammonia or Iron-Oxidizing Bacteria in Reverse Microbial Fuel Cells

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Electrofuels Project: Columbia University is using carbon dioxide (CO2) from ambient air, ammoniaan abundant and affordable chemical, and a bacteria called N. europaea to produce liquid fuel. The Columbia University team is feeding the ammonia and CO2 into an engineered tank where the bacteria live. The bacteria capture the energy from ammonia and then use that energy to convert CO2 into a liquid fuel. When the bacteria use up all the ammonia, renewable electricity can regenerate it and pump it back into the systemcreating a continuous fuel-creation cycle. In addition, Columbia University is also working with the bacteria A. ferrooxidans to capture and use energy from ferrous iron to produce liquid fuels from CO2.

  12. Pathway of Fermentative Hydrogen Production by Sulfate-reducing Bacteria

    SciTech Connect (OSTI)

    Wall, Judy D.

    2015-02-16

    Biofuels are a promising source of sustainable energy. Such biofuels are intermediate products of microbial metabolism of renewable substrates, in particular, plant biomass. Not only are alcohols and solvents produced in this degradative process but energy-rich hydrogen as well. Non photosynthetic microbial hydrogen generation from compounds other than sugars has not been fully explored. We propose to examine the capacity of the abundant soil anaerobes, sulfate-reducing bacteria, for hydrogen generation from organic acids. These apparently simple pathways have yet to be clearly established. Information obtained may facilitate the exploitation of other microbes not yet readily examined by molecular tools. Identification of the flexibility of the metabolic processes to channel reductant to hydrogen will be useful in consideration of practical applications. Because the tools for genetic and molecular manipulation of sulfate-reducing bacteria of the genus Desulfovibrio are developed, our efforts will focus on two strains, D. vulgaris Hildenborough and Desulfovibrio G20.Therefore total metabolism, flux through the pathways, and regulation are likely to be limiting factors which we can elucidate in the following experiments.

  13. The neutrino turns 60

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A fusion-powered rocket to deflect deadly comets A fusion-powered rocket to deflect deadly comets Glen Wurden, a plasma physicist at Los Alamos has conceived a comet-buster that ...

  14. Turning on LAMP

    SciTech Connect (OSTI)

    Bostedt, Christoph

    2014-06-30

    Christoph Bostedt, a senior staff scientist at SLAC's Linac Coherent Light Source X-ray laser, provides a sneak peek of a powerful new instrument, called LAMP, that is now available for experiments that probe the atomic and molecular realm. LAMP replaces and updates the first instrument at LCLS, dubbed CAMP, which will be installed at an X-ray laser in Germany.

  15. Right Turn on Red!

    Energy.gov [DOE]

    Read about a great example of how state and local governments can learn from each other – and how a very simple policy change can produce huge benefits for the country, helping us all save money by saving energy.

  16. The neutrino turns 60

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A fusion-powered rocket to deflect deadly comets A fusion-powered rocket to deflect deadly comets Glen Wurden, a plasma physicist at Los Alamos has conceived a comet-buster that would work like this: Harnessing the tremendous energy of fusion, the process in which two atomic nuclei collide to form a new nucleus, could propel a rocket to more than 100 kilometers per second. June 27, 2016 Glen Wurden, a plasma physicist at Los Alamos has conceived a comet-buster that would work like this:

  17. Turn Hoang Nguyen

    Office of Scientific and Technical Information (OSTI)

    ... The synthetic route (Figure 7) was based on the biosynthetic pathway. The key feature of ... an increase in activity by a magnitude of four as compared to its tetracyclic derivative. ...

  18. Turning on LAMP

    ScienceCinema (OSTI)

    Bostedt, Christoph

    2014-07-16

    Christoph Bostedt, a senior staff scientist at SLAC's Linac Coherent Light Source X-ray laser, provides a sneak peek of a powerful new instrument, called LAMP, that is now available for experiments that probe the atomic and molecular realm. LAMP replaces and updates the first instrument at LCLS, dubbed CAMP, which will be installed at an X-ray laser in Germany.

  19. The Turn-on of LCLS: the X-Ray Free Electron Laser at SLAC ( Keynote - 2011 JGI User Meeting)

    ScienceCinema (OSTI)

    Drell, Persis [SLAC Director

    2016-07-12

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. SLAC National Laboratory Director Persis Drell gives a keynote talk on "The Turn-on of LCLS: the X-Ray Free-Electron Laser at SLAC" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011

  20. Business Case Analysis for Replacing the Mazak 30Y Mill-Turn Machine in SM-39. Summary

    SciTech Connect (OSTI)

    Booth, Steven Richard; Dinehart, Timothy Grant; Benson, Faith Ann

    2015-03-19

    Business case studies are being looked at to support procurement of new machines and capital equipment in the SM-39 and TA-03-0102 machine shops. The first effort conducted economic analysis of replacing the Mazak 30Y Mill-Turn Machine located in SM-39. To determine the value of switching machinery, a baseline scenario was compared with a future scenario where new machinery was purchased and installed. The conditions under the two scenarios were defined via interviews with subject matter experts in terms of one-time and periodic costs. The results of the analysis were compiled in a life-cycle cost/benefit table. The costs of procuring, installing, and maintaining a new machine were balanced against the costs avoided by replacing older machinery. Productivity savings were included as a measure to show the costs avoided by being able to produce parts at a quicker and more efficient pace.

  1. High speed measurements of neutral beam turn-on and impact of beam modulation on measurements of ion density

    SciTech Connect (OSTI)

    Grierson, B. A. Grisham, L.; Burrell, K. H.; Crowley, B.; Scoville, J. T.

    2014-10-15

    Modulation of neutral beams on tokamaks is performed routinely, enabling background rejection for active spectroscopic diagnostics, and control of injected power and torque. We find that there exists an anomalous initial transient in the beam neutrals delivered to the tokamak that is not accounted for by the accelerator voltage and power supply current. Measurements of the charge-exchange and beam photoemission on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] at high speed (200 ?s) reveal that the energy of the beam neutrals is constant, but the density of beam neutrals displays dramatic variation in the first 23 ms following beam turn-on. The impact of this beam density variation on inferred ion densities and impurity transport is presented, with suggested means to correct for the anomalous transient.

  2. The Turn-on of LCLS: the X-Ray Free Electron Laser at SLAC ( Keynote - 2011 JGI User Meeting)

    SciTech Connect (OSTI)

    Drell, Persis [SLAC Director] [SLAC Director

    2011-03-22

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. SLAC National Laboratory Director Persis Drell gives a keynote talk on "The Turn-on of LCLS: the X-Ray Free-Electron Laser at SLAC" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011

  3. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system

    SciTech Connect (OSTI)

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    2015-11-19

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database in which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the

  4. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system

    DOE PAGES-Beta [OSTI]

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    2015-11-19

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the

  5. Process for generation of hydrogen gas from various feedstocks using thermophilic bacteria

    DOE Patents [OSTI]

    Ooteghem, Suellen Van

    2005-09-13

    A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45.degree. C. for a time sufficient to allow the bacteria to metabolize the feedstock.

  6. Selection against spurious promoter motifs correlates withtranslational efficiency across bacteria

    SciTech Connect (OSTI)

    Froula, Jeffrey L.; Francino, M. Pilar

    2007-05-01

    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the -10 promoter motifs that bind the {sigma}{sup 70} subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of -10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, -10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also implies that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria.

  7. Clay enhancement of methane, low molecular weight hydrocarbon and halocarbon conversion by methanotrophic bacteria

    DOE Patents [OSTI]

    Apel, William A.; Dugan, Patrick R.

    1995-01-01

    An apparatus and method for increasing the rate of oxidation of toxic vapors by methanotrophic bacteria. The toxic vapors of interest are methane and trichloroethylene. The apparatus includes a gas phase bioreactor within a closed loop pumping system or a single pass system. The methanotrophic bacteria include Methylomonas methanica, Methylosinus trichosporium, and uncharacterized environmental enrichments.

  8. Clay enhancement of methane, low molecular weight hydrocarbon and halocarbon conversion by methanotrophic bacteria

    DOE Patents [OSTI]

    Apel, William A.; Dugan, Patrick R.

    1995-04-04

    An apparatus and method for increasing the rate of oxidation of toxic vapors by methanotrophic bacteria. The toxic vapors of interest are methane and trichloroethylene. The apparatus includes a gas phase bioreactor within a closed loop pumping system or a single pass system. The methanotrophic bacteria include Methylomonas methanica, Methylosinus trichosporium, and uncharacterized environmental enrichments.

  9. Production of ethanol from lignocellulosic materials using thermophilic bacteria

    SciTech Connect (OSTI)

    Lynd, L.R.

    1987-01-01

    The production of ethanol from lignocellulosic materials, e.g. wood, agricultural residues, and municipal solid wastes, is considered. The conversion of these materials to ethanol in the US could annually yield approximately 430 million tons ethanol, or about 9.8 quads, within the next 20 years. Thermophilic bacteria have advantages over yeasts for ethanol production because various species produce an active cellulase enzyme and utilize pentose sugars. However thermophiles have lower ethanol tolerance and usually lower ethanol yields. The potential of thermophilic ethanol production from hardwood chips is examined in detail. It is concluded that if high ethanol yield can be achieved this process could have economics competitive with either ethanol production from corn via yeast or synthetic production from ethylene. Low ethanol tolerance is not a major problem provided concentrations {ge} 1.5% are produced, ethanol is continuously removed from the fermentor, and IHOSR/extractive distillation is employed. Research was undertaken aimed at closing the gap between the attractive potential of thermophiles for ethanol production, and that which is possible based on present knowledge, which is not practical. Major topics were the activity of Clostridium thermocellum cellulase on pretreated mixed hardwood and Avicel in vivo, continuous culture of C. thermocellum on pretreated mixed hardwood and Avicel, and the continuous culture of Clostridium thermosaccharolyticum at high xylose concentrations in the presence and absence of ethanol removal.

  10. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus

    DOE PAGES-Beta [OSTI]

    Labbe, Jessy L.; Weston, David J.; Dunkirk, Nora; Pelletier, Dale A.; Tuskan, Gerald A.

    2014-10-24

    Mycorrhiza helper bacteria (MHB) are known to increase host root colonization by mycorrhizal fungi but the molecular mechanisms and potential tripartite trophic interactions are poorly understood. Through an effort to study Populus microbiome, we isolated 21 Pseudomonas strains from native Populus deltoides roots. These bacterial isolates were characterized and screened for MHB effectiveness on the Populus-Laccaria system. Two other Pseudomonas strains (i.e., Pf-5 and BBc6R8) from existing collections were also included as reference in the screening process. We analyzed Laccaria bicolor S238N growth rate, mycelial architecture and transcriptional changes induced by the contrasting Pseudomonas strains (i.e., inhibitory, neutral and beneficial).more » We characterized 17 out of the 21 Pseudomonas strains from the Populus rhizosphere with positive effects on L. bicolor S238N growth, as well as on Populus root architecture and colonization by L. bicolor S238N across three Populus species. Four of seven reporter genes, Tra1, Tectonin2, Gcn5 and Cipc1, thought to be specific to the interaction with strain BBc6R8, were induced or repressed while interacting with six (i.e., GM17, GM33, GM41, GM48, Pf-5 and BBc6R8) of the tested Pseudomonas strains. GM41 promoted the highest roots colonization across three Populus species but most notably in P. deltoides, which is otherwise, poorly colonized by L. bicolor. Here we report novel MHB strains isolated from native Populus that improve roots colonization. This tripartite relationship could be exploited in nursery production for target Populus species/genotypes as a means of improving establishment and survival in marginal lands.« less

  11. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus

    SciTech Connect (OSTI)

    Labbe, Jessy L.; Weston, David J.; Dunkirk, Nora; Pelletier, Dale A.; Tuskan, Gerald A.

    2014-10-24

    Mycorrhiza helper bacteria (MHB) are known to increase host root colonization by mycorrhizal fungi but the molecular mechanisms and potential tripartite trophic interactions are poorly understood. Through an effort to study Populus microbiome, we isolated 21 Pseudomonas strains from native Populus deltoides roots. These bacterial isolates were characterized and screened for MHB effectiveness on the Populus-Laccaria system. Two other Pseudomonas strains (i.e., Pf-5 and BBc6R8) from existing collections were also included as reference in the screening process. We analyzed Laccaria bicolor S238N growth rate, mycelial architecture and transcriptional changes induced by the contrasting Pseudomonas strains (i.e., inhibitory, neutral and beneficial). We characterized 17 out of the 21 Pseudomonas strains from the Populus rhizosphere with positive effects on L. bicolor S238N growth, as well as on Populus root architecture and colonization by L. bicolor S238N across three Populus species. Four of seven reporter genes, Tra1, Tectonin2, Gcn5 and Cipc1, thought to be specific to the interaction with strain BBc6R8, were induced or repressed while interacting with six (i.e., GM17, GM33, GM41, GM48, Pf-5 and BBc6R8) of the tested Pseudomonas strains. GM41 promoted the highest roots colonization across three Populus species but most notably in P. deltoides, which is otherwise, poorly colonized by L. bicolor. Here we report novel MHB strains isolated from native Populus that improve roots colonization. This tripartite relationship could be exploited in nursery production for target Populus species/genotypes as a means of improving establishment and survival in marginal lands.

  12. Turn-Key” Open Source Software Solutions for Energy Management of Small to Medium Sized Buildings (DE-FOA-0000822)

    Energy.gov [DOE]

    Closed Total DOE Funding: $3 million This FOA seeks to develop a “turn key” Building Automation System using Open-Source software and architecture specifically tailored to small and medium buildings to advance opportunities for energy efficiency in this sector.

  13. Geek-Up[09.24.10] -- Magical BEANs, Combating Bacteria's Resistance...

    Energy Savers

    and the ChemCam's Journey to Mars Geek-Up09.24.10 -- Magical BEANs, Combating Bacteria's Resistance to Antibiotics and the ChemCam's Journey to Mars September 24, 2010 - 5:19pm ...

  14. Geek-Up[12.03.2010]: Halomonadaceae Bacteria and the Return of Quark Gluon Plasma

    Office of Energy Efficiency and Renewable Energy (EERE)

    The toxic element arsenic sustains growth of a bacteria instead of phosphorus and CERN's Collider gives researchers a look into the matter that may have existed in the very first moments of the universe.

  15. Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America

    Energy.gov [DOE]

    Researchers at the Energy Department's Joint BioEnergy Institute (JBEI) have engineered the first strains of the bacteria to digest switchgrass biomass and synthesize its sugars into all three types of transportation fuels -- gasoline, diesel and jet fuels.

  16. Amoebae/bacteria consortia and uses for degrading wastes and contaminants

    DOE Patents [OSTI]

    Tyndall, Richard L.

    1996-01-01

    A method of altering trinitrotoluene includes the steps of: providing an amoeba/bacteria consortium, particularly ATCC 40908 or a mutant thereof possessing all the identifying characteristics thereof; and contacting the consortium with trinitrotoluene to alter the trinitrotoluene.

  17. Purple Bacteria Develops Its Own Form of Sunscreen | U.S. DOE Office of

    Office of Science (SC) [DOE]

    Science (SC) Purple Bacteria Develops Its Own Form of "Sunscreen" Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications History Contact BES Home 05.03.12 Purple Bacteria Develops Its Own Form of "Sunscreen" Print Text Size: A A A FeedbackShare Page Scientific Achievement Found that specific pigments in the light harvesting complex of a photosynthetic bacterium act primarily to protect the

  18. Liquid Fuel From Renewable Electricity and Bacteria: Electro-Autotrophic Synthesis of Higher Alcohols

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: UCLA is utilizing renewable electricity to power direct liquid fuel production in genetically engineered Ralstonia eutropha bacteria. UCLA is using renewable electricity to convert carbon dioxide into formic acid, a liquid soluble compound that delivers both carbon and energy to the bacteria. The bacteriaare genetically engineered to convert the formic acid into liquid fuelin this case alcohols such as butanol. The electricity required for the process can be generated from sunlight, wind, or other renewable energy sources. In fact, UCLAs electricity-to-fuel system could be a more efficient way to utilize these renewable energy sources considering the energy density of liquid fuel is much higher than the energy density of other renewable energy storage options, such as batteries.

  19. New Infographic and Projects to Keep Your Energy Bills Out of...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    answer your questions about ways to save money and incorporate renewable energy into your ... instructions to water heating improvements that will save you energy and money. ...

  20. INFOGRAPHIC: How Do We Know Iran's Paths to a Nuclear Bomb are Blocked?

    Energy.gov [DOE]

    Learn about the monitoring and verification measures the IAEA uses to ensure Iran complies with the Iran Deal.

  1. Genetically Modified Bacteria for Fuel Production: Development of Rhodobacteria as a Versatile Platform for Fuels Production

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Penn State is genetically engineering bacteria called Rhodobacter to use electricity or electrically generated hydrogen to convert carbon dioxide into liquid fuels. Penn State is taking genes from oil-producing algae called Botryococcus braunii and putting them into Rhodobacter to produce hydrocarbon molecules, which closely resemble gasoline. Penn State is developing engineered tanks to support microbial fuel production and determining the most economical way to feed the electricity or hydrogen to the bacteria, including using renewable sources of power like solar energy.

  2. Geek-Up[09.24.10] -- Magical BEANs, Combating Bacteria's Resistance to

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Antibiotics and the ChemCam's Journey to Mars | Department of Energy 9.24.10] -- Magical BEANs, Combating Bacteria's Resistance to Antibiotics and the ChemCam's Journey to Mars Geek-Up[09.24.10] -- Magical BEANs, Combating Bacteria's Resistance to Antibiotics and the ChemCam's Journey to Mars September 24, 2010 - 5:19pm Addthis Check out the ChemCam close-up, which will reveal which elements are present in Mars' rocks and soils. Elizabeth Meckes Elizabeth Meckes Director of User Experience

  3. THE OLD, SUPER-METAL-RICH OPEN CLUSTER, NGC 6791ELEMENTAL ABUNDANCES IN TURN-OFF STARS FROM KECK/HIRES SPECTRA

    SciTech Connect (OSTI)

    Merchant Boesgaard, Ann; Lum, Michael G.; Deliyannis, Constantine P. E-mail: mikelum@ifa.hawaii.edu

    2015-02-01

    The study of star clusters has advanced our understanding of stellar evolution, Galactic chemical evolution, and nucleosynthesis. Here we investigate the composition of turn-off stars in the intriguing open cluster, NGC 6791, which is old, but super-metal-rich with high-resolution (R= 46,000) Keck/HIRES spectra. We find [Fe/H]= +0.300.02 from measurements of some 40 unblended, unsaturated lines of both Fe I and Fe II in eight turn-off stars. Our O abundances come from the O I triplet near 7774 and we perform a differential analysis relative to the Sun from our Lunar spectrum also obtained with Keck/HIRES. The O results are corrected for small nLTE effects. We find consistent ratios of [O/Fe]{sub n} with a mean of 0.060.02. This is low with respect to field stars that are also both old and metal-rich and continue the trend of decreasing [O/Fe] with increasing [Fe/H]. The small range in our oxygen abundances is consistent with a single population of stars. Our results for the alpha elements [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe] are near solar and compare well with those of the old, metal-rich field stars. The two Fe-peak elements, Cr and Ni, are consistent with Fe. These turn-off-star abundances provide benchmark abundances to investigate whether there are any observable abundance differences with the giants that might arise from nuclear-burning and dredge-up processes. Determinations of upper limits were found for Li by spectrum synthesis and are consistent with the upper limits in similar stars in the relatively old, super-metal-rich cluster NGC 6253. Our results support the prediction from standard theory that higher-metallicity stars deplete more Li. Probably no stars in NGC 6791 have retained their initial Li.

  4. Development of a phase-sensitive Fourier domain optical coherence tomography system to measure mouse organ of Corti vibrations in two cochlear turns

    SciTech Connect (OSTI)

    Ramamoorthy, Sripriya; Zhang, Yuan; Jacques, Steven; Petrie, Tracy; Wang, Ruikang; Nuttall, Alfred L.

    2015-12-31

    In this study, we have developed a phase-sensitive Fourier-domain optical coherence tomography system to simultaneously measure the in vivo inner ear vibrations in the hook area and second turn of the mouse cochlea. This technical development will enable measurement of intra-cochlear distortion products at ideal locations such as the distortion product generation site and reflection site. This information is necessary to un-mix the complex mixture of intra-cochlear waves comprising the DPOAE and thus leads to the non-invasive identification of the local region of cochlear damage.

  5. Genomics Encyclopedia of Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB): a resource for microsymbiont genomes (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect (OSTI)

    Reeve, Wayne

    2013-03-01

    Wayne Reeve of Murdoch University on "Genomics Encyclopedia of Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB): a resource for microsymbiont genomes" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  6. Methanobactin: a copper binding compound having antibiotic and antioxidant activity isolated from methanotrophic bacteria

    DOE Patents [OSTI]

    DiSpirito, Alan A.; Zahn, James A.; Graham, David W.; Kim, Hyung J.; Alterman, Michail; Larive, Cynthia

    2007-04-03

    A means and method for treating bacterial infection, providing antioxidant activity, and chelating copper using a copper binding compound produced by methanotrophic bacteria is described. The compound, known as methanobactin, is the first of a new class of antibiotics having gram-positive activity. Methanobactin has been sequenced, and its structural formula determined.

  7. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    DOE PAGES-Beta [OSTI]

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; Perez-Gonzalez, Teresa; Faivre, Damien; Trubitsyn, Denis; Bazylinski, Dennis A.; Prozorov, Tanya

    2014-10-31

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip windowmore » surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria.« less

  8. Biomanufacturing and self-propulsion dynamics of nanoscale bacteria-enabled autonomous delivery systems

    SciTech Connect (OSTI)

    Traore, Mahama A.; Behkam, Bahareh; Damico, Carmen M.

    2014-10-27

    Flagellated bacteria have superb self-propulsion capabilities and are able to effectively move through highly viscous fluid and semi-solid (porous) environments. This innate aptitude has been harvested for whole-cell actuation of bio-hybrid microrobotic systems with applications in directed transport and microassembly. In this work, we present the biomanufacturing of Nanoscale Bacteria-Enabled Autonomous Delivery Systems (NanoBEADS) by controlled self-assembly and investigate the role of nanoparticle load on the dynamics of their self-propulsion in aqueous environments. Each NanoBEADS agent is comprised of spherical polystyrene nanoparticles assembled onto the body of a flagellated Escherichia coli bacterium. We demonstrate that the NanoBEADS assembly configuration is strongly dependent upon the nanoparticles to bacteria ratio. Furthermore, we characterized the stochastic motion of the NanoBEADS as a function of the quantity and size of the nanoparticle load and computationally analyzed the effect of the nanoparticle load on the experienced drag force. We report that the average NanoBEADS swimming speed is reduced to 65% of the free-swimming bacteria speed (31 μm/s) at the highest possible load. NanoBEADS can be utilized as single agents or in a collaborative swarm in order to carry out specific tasks in a wide range of applications ranging from drug delivery to whole cell biosensing.

  9. Amoebae/bacteria consortia and uses for degrading wastes and contaminants

    DOE Patents [OSTI]

    Tyndall, R.L.

    1996-05-21

    A method is disclosed of altering trinitrotoluene. The steps include the following: providing an amoeba/bacteria consortium, particularly ATCC 40908 or a mutant which possesses all the identifying characteristics thereof; and contacting the consortium with trinitrotoluene to alter the trinitrotoluene.

  10. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    SciTech Connect (OSTI)

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; Perez-Gonzalez, Teresa; Faivre, Damien; Trubitsyn, Denis; Bazylinski, Dennis A.; Prozorov, Tanya

    2014-10-31

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip window surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria.

  11. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons

    DOE PAGES-Beta [OSTI]

    Wetmore, Kelly M.; Price, Morgan N.; Waters, Robert J.; Lamson, Jacob S.; He, Jennifer; Hoover, Cindi A.; Blow, Matthew J.; Bristow, James; Butland, Gareth; Arkin, Adam P.; et al

    2015-05-12

    Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to identify phenotypes and functions for the majority of genes in diverse bacteria. Here, we present a method, random bar code transposon-site sequencing (RB-TnSeq), which increases the throughput of mutant fitness profiling by incorporating random DNA bar codes into Tn5 and mariner transposons and by using bar code sequencing (BarSeq) to assay mutant fitness. RB-TnSeq can be used with anymore » transposon, and TnSeq is performed once per organism instead of once per sample. Each BarSeq assay requires only a simple PCR, and 48 to 96 samples can be sequenced on one lane of an Illumina HiSeq system. We demonstrate the reproducibility and biological significance of RB-TnSeq with Escherichia coli, Phaeobacter inhibens, Pseudomonas stutzeri, Shewanella amazonensis, and Shewanella oneidensis. To demonstrate the increased throughput of RB-TnSeq, we performed 387 successful genome-wide mutant fitness assays representing 130 different bacterium-carbon source combinations and identified 5,196 genes with significant phenotypes across the five bacteria. In P. inhibens, we used our mutant fitness data to identify genes important for the utilization of diverse carbon substrates, including a putative D-mannose isomerase that is required for mannitol catabolism. RB-TnSeq will enable the cost-effective functional annotation of diverse bacteria using mutant fitness profiling. A large challenge in microbiology is the functional assessment of the millions of uncharacterized genes identified by genome sequencing. Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach to assign phenotypes and functions to genes. However, the current strategies for TnSeq are

  12. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons

    SciTech Connect (OSTI)

    Wetmore, Kelly M.; Price, Morgan N.; Waters, Robert J.; Lamson, Jacob S.; He, Jennifer; Hoover, Cindi A.; Blow, Matthew J.; Bristow, James; Butland, Gareth; Arkin, Adam P.; Deutschbauer, Adam

    2015-05-12

    Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to identify phenotypes and functions for the majority of genes in diverse bacteria. Here, we present a method, random bar code transposon-site sequencing (RB-TnSeq), which increases the throughput of mutant fitness profiling by incorporating random DNA bar codes into Tn5 and mariner transposons and by using bar code sequencing (BarSeq) to assay mutant fitness. RB-TnSeq can be used with any transposon, and TnSeq is performed once per organism instead of once per sample. Each BarSeq assay requires only a simple PCR, and 48 to 96 samples can be sequenced on one lane of an Illumina HiSeq system. We demonstrate the reproducibility and biological significance of RB-TnSeq with Escherichia coli, Phaeobacter inhibens, Pseudomonas stutzeri, Shewanella amazonensis, and Shewanella oneidensis. To demonstrate the increased throughput of RB-TnSeq, we performed 387 successful genome-wide mutant fitness assays representing 130 different bacterium-carbon source combinations and identified 5,196 genes with significant phenotypes across the five bacteria. In P. inhibens, we used our mutant fitness data to identify genes important for the utilization of diverse carbon substrates, including a putative D-mannose isomerase that is required for mannitol catabolism. RB-TnSeq will enable the cost-effective functional annotation of diverse bacteria using mutant fitness profiling. A large challenge in microbiology is the functional assessment of the millions of uncharacterized genes identified by genome sequencing. Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach to assign phenotypes and functions to genes

  13. Turn emergency generators into dollars

    SciTech Connect (OSTI)

    Sheahen, T.P.; Stegen, G.R.

    1997-10-01

    The concept of distributed, dispatchable power generation is essentially the reverse of interruptible service. It can be understood by regarding both power and money as vectors: when the direction of the power flow switches, so does the direction of the money flow. At a signal given by the utility, a factory activates its emergency generating system and briefly becomes an independent power producer (IPP), feeding power into a local region of the grid. Upon receipt of another signal, it retires from that role. It may, however, continue to generate power for its own use.

  14. Turning nuclear waste into glass

    SciTech Connect (OSTI)

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  15. TurningPoint Evaluation Results

    Office of Environmental Management (EM)

    Energy Tuesday Talk: Secretary Chu Answers Your Questions LIVE Tuesday Talk: Secretary Chu Answers Your Questions LIVE November 30, 2010 - 12:02pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Later today Secretary Chu will be answering your questions as a part of the White House's Tuesday Talk series. The discussion will be broadcast live starting at 1:15 EST and will build off of the Secretary's speech at the National Press Club yesterday, which

  16. Big wheels keep on turning

    SciTech Connect (OSTI)

    Casteel, K.

    2008-05-15

    Although the structure of the market for bucketwheel and bucket chain based equipment has changed over the years, design advances have enabled the technology to retain a significant place in the production and distribution of coal and minerals. 4 photos.

  17. Industry turns its attention south

    SciTech Connect (OSTI)

    Marhefka, D.

    1997-08-01

    The paper discusses the outlook for the gas and oil industries in the Former Soviet Union and Eastern Europe. Significant foreign investment continues to elude Russia`s oil and gas industry, so the Caspian nations of Kazakhstan and Azerbaijan are picking up the slack, welcoming the flow of foreign capital to their energy projects. Separate evaluations are given for Russia, Azerbaijan, Kazakhstan, Turkmenistan, Ukraine, Armenia, Belarus, Georgia, Lithuania, Latvia, Estonia, Moldova, Tajikstan, Uzbekistan, Albania, Bulgaria, Croatia, Czech Republic, Hungary, Poland, Romania, Slovakia, Slovenia, and Serbia.

  18. Silicon Solar Cell Turns 50

    SciTech Connect (OSTI)

    Perlin, J.

    2004-08-01

    This short brochure describes a milestone in solar (or photovoltaic, PV) research-namely, the 50th anniversary of the invention of the first viable silicon solar cell by three researchers at Bell Laboratories.

  19. Technique development for uiper critical field studies of SmFeAs(O,F) in the 300T single turn system

    SciTech Connect (OSTI)

    Mcdonald, Ross D [Los Alamos National Laboratory; Balakirev, F. F. [Los Alamos National Laboratory; Altarawneh, M. M. [Los Alamos National Laboratory; Betts, J [Los Alamos National Laboratory; Mielke, C. H. [Los Alamos National Laboratory; Moll, Philip Jw [ETH ZURICH; Zhigadlo, N D [ETH ZURICH; Karpinski, J [ETH ZURICH; Batlogg, B. [ETH ZURICH

    2011-01-14

    In high temperature superconductors, such as the most recent class of iron pnictides, extremely high upper critical fields H{sub c2} are common. The determination of H{sub c2}(T) is crucial to understand the detailed nature of the superconductor, in particular H{sub c2}(T = 0K) is of great interest. It is not only related to fundamental properties of the system, it is furthermore of great importance for materials science, as it is the ultimate limit of applicability of this superconductor in high field applications. However, this important quantity can only be estimated by extrapolation, as H{sub c2}(T = 0K) well exceeds hundreds of Tesla in optimally doped SillFeAs(O,F). We are developing methods to measure Ha(T) in direct transport in the extreme magnetic fields generated by the LANL single turn magnet.

  20. What Employees Need (and Want) to Hear When Justifying the Suspension of a Regulated Metals Plan for the Processing of Drums Containing Metal Turnings

    SciTech Connect (OSTI)

    Todd Potts, T.; Hylko, J.M.

    2008-07-01

    A Regulated Metals Plan (RMP) was implemented for outdoor work activities involving the removal and disposition of approximately 4,000 deteriorated waste drums containing 236 metric tonnes (260 tons) of lead turnings from various, unspecified machine shop facilities at the Paducah Gaseous Diffusion Plant. Until exposure monitoring could prove otherwise, the work area established for processing the drums was conservatively defined as a Lead Regulated Area (LRA) subject to the Occupational Safety and Health Administration's Lead Standard found in Title 29 of the Code of Federal Regulations, Part 1910.1025. The vast majority of the analytical results for the industrial hygiene breathing zone samples collected and tested for arsenic, beryllium, cadmium, chromium, lead, nickel, selenium, silver, and thallium using the National Institute for Occupational Safety and Health's analytical method 7300 were equivalent to the laboratory detection limits for each analyte. All results were less than 6% of their respective Permissible Exposure Limits (PEL), except for one nickel result that was approximately 17% of its PEL. The results provided justification to eventually down-post the LRA to existing employee protection requirements. In addition to removing the deteriorated drums and accompanying debris, the success of this project was quantified in terms of zero recordable injuries. The primary contributor in achieving this success was the sharing and communication of information between management, safety, and the field teams. Specifically, this was what the employees needed (and wanted) to hear when justifying the suspension of the RMP for the processing of drums containing metal turnings. Daily briefings on the status of the project and field monitoring results were just as important as maintaining budget and schedule milestones. Also, the Environmental, Safety and Health organization maintained its presence by continuing to monitor evolving field conditions to ensure the

  1. Biofuel from Bacteria and Sunlight: Shewanella as an Ideal Platform for Producing Hydrocarbons

    SciTech Connect (OSTI)

    None

    2010-01-01

    Broad Funding Opportunity Announcement Project: The University of Minnesota is developing clean-burning, liquid hydrocarbon fuels from bacteria. The University is finding ways to continuously harvest hydrocarbons from a type of bacteria called Shewanella by using a photosynthetic organism to constantly feed Shewanella the sugar it needs for energy and hydrocarbon production. The two organisms live and work together as a system. Using Shewanella to produce hydrocarbon fuels offers several advantages over traditional biofuel production methods. First, it eliminates many of the time-consuming and costly steps involved in growing plants and harvesting biomass. Second, hydrocarbon biofuels resemble current petroleum-based fuels and would therefore require few changes to the existing fuel refining and distribution infrastructure in the U.S.

  2. Class D β-lactamases do exist in Gram-positive bacteria

    SciTech Connect (OSTI)

    Toth, Marta; Antunes, Nuno Tiago; Stewart, Nichole K.; Frase, Hilary; Bhattacharya, Monolekha; Smith, Clyde A.; Vakulenko, Sergei B.

    2015-11-09

    Production of β-lactamases of one of four molecular classes (A, B, C and D) is the major mechanism of bacterial resistance to β-lactams, the largest class of antibiotics, which have saved countless lives since their inception 70 years ago. Although several hundred efficient class D enzymes have been identified in Gram-negative pathogens over the last four decades, none have been reported in Gram-positive bacteria. Here we demonstrate that efficient class D β-lactamases capable of hydrolyzing a wide array of β-lactam substrates are widely disseminated in various species of environmental Gram-positive organisms. Class D enzymes of Gram-positive bacteria have a distinct structural architecture and employ a unique substrate-binding mode that is quite different from that of all currently known class A, C and D β-lactamases. In conclusion, these enzymes thus constitute a previously unknown reservoir of novel antibiotic-resistance enzymes.

  3. Pathway engineering and organism development for ethanol production from cellulosic biomass using thermophilic bacteria

    SciTech Connect (OSTI)

    Hogsett, D.A.L.; Klapatch, T.A.; Lynd, L.R.

    1995-12-01

    Thermophilic bacteria collectively exemplify organisms that produce both cellulose and ethanol while fermenting both the cellulose and hemicellulose components of biomass. As a result, thermophiles could be the basis for highly streamlined and cost-effective processes for production of renewable fuels and chemicals. Recent research results involving ethanol production from thermophilic bacteria will be presented, with a primary focus on work pursuant to molecularly-based pathway engineering to increase ethanol selectivity. Specifically, we will describe the restriction endonuclease systems operative in Clostridium thermocellum and C. thermosaccharolyticum, as well as efforts to document and improve transformation of these organisms and to clone key catabolic enzymes. In addition, selected results from fermentation studies will be presented as necessary in order to present a perspective on the status of thermophilic ethanol production.

  4. Stimulate Bacteria to Stop Chromium in Groundwater | U.S. DOE Office of

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Science (SC) Stimulate Bacteria to Stop Chromium in Groundwater Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC 20585

  5. Structure of the DUF2233 Domain in Bacteria and the Stuttering-associated

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    UCE Glycoprotein | Stanford Synchrotron Radiation Lightsource the DUF2233 Domain in Bacteria and the Stuttering-associated UCE Glycoprotein Wednesday, July 31, 2013 UCE figure DUF2233, a Domain of Unknown Function (DUF), is present in ~1200 bacterial and several viral and eukaryotic proteins. DUF2233 has been identified in proteins ranging in size from ~300-2000 residues. The 515 amino acid mammalian transmembrane glycoprotein α-N-acetylglucosamine-1-phosphodiester N-acetylglucosaminidase

  6. Potential of Diazorphic, Endophytic Bacteria Associated with Sugarcane for Energycane Production

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Diazorphic, Endophytic Bacteria Associated with Sugarcane for Energycane Production Michael P. Grisham, Anna L. Hale, and Paul M. White USDA - Agricultural Research Service Sugarcane Research Unit Houma, LA, U.S.A. Origin and Spread of Sugarcane 6000 BC Domestication of sugarcane in New Guinea 1000 BC Traders began spreading sugarcane westward 1493 Brought by Columbus to Hispaniola from Canary Islands 1500s Spanish and Portuguese explores bring sugarcane to Americas "Creole," a noble

  7. Scientists Rewrite Bacteria's Genetic Code | U.S. DOE Office of Science

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (SC) Scientists Rewrite Bacteria's Genetic Code Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  8. A Scanning Auger Microprobe analysis of corrosion products associated with sulfate reducing bacteria

    SciTech Connect (OSTI)

    Sadowski, R.A.; Chen, G.; Clayton, C.R.; Kearns, J.R.; Gillow, J.B.; Francis, A.J.

    1995-03-01

    A Scanning Auger Microprobe analysis was performed on the corrosion products of an austenitic AISI type 304 SS after a potentiostatic polarization of one volt for ten minutes in a modified Postgate`s C media containing sulfate reducing bacteria. The corrosion products were characterized and mapped in local regions where pitting was observed. A critical evaluation of the applicability of this technique for the examination of microbially influenced corrosion (MIC) is presented.

  9. Enhancing Plant Growth and Stress Tolerance through Use of Fungi and Bacteria that Comprise Plant Microbiomes

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    plant growth and stress tolerance through use of fungi and bacteria that comprise plant microbiomes Seminar June 20, 2013 DOE Symbiosis Conference, Cornell University Jim White Rutgers University New Brunswick, New Jersey Email: white@rci.rutgers.edu Hypothesis of microbiome functions! 1. Defensive properties (defense from biotic and abiotic stresses) 2. Nutritional properties (provide nutrients to support plant growth and development) Defensive Function of Microbiomes The endophyte is systemic

  10. Impact of elevated nitrate on sulfate-reducing bacteria: A comparative study of Desulfovibrio vulgaris

    SciTech Connect (OSTI)

    He, Q.; He, Z.; Joyner, D.C.; Joachimiak, M.; Price, M.N.; Yang, Z.K.; Yen, H.-C. B.; Hemme, C. L.; Chen, W.; Fields, M.; Stahl, D. A.; Keasling, J. D.; Keller, M.; Arkin, A. P.; Hazen, T. C.; Wall, J. D.; Zhou, J.

    2010-07-15

    Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation that significant growth inhibition was effected by 70 mM NaNO{sub 3} but not by 70 mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level.

  11. Cycling of DOC and DON by Novel Heterotrophic and Photoheterotrophic Bacteria in the Ocean: Final Report

    SciTech Connect (OSTI)

    Kirchman, David L

    2008-12-09

    The flux of dissolved organic matter (DOM) through aquatic bacterial communities is a major process in carbon cycling in the oceans and other aquatic systems. Our work addressed the general hypothesis that the phylogenetic make-up of bacterial communities and the abundances of key types of bacteria are important factors influencing the processing of DOM in aquatic ecosystems. Since most bacteria are not easily cultivated, the phylogenetic diversity of these microbes has to be assessed using culture-independent approaches. Even if the relevant bacteria were cultivated, their activity in the lab would likely differ from that under environmental conditions. This project found variation in DOM uptake by the major bacterial groups found in coastal waters. In brief, the data suggest substantial differences among groups in the use of high and molecular weight DOM components. It also made key discoveries about the role of light in affecting this uptake especially by cyanobacteria. In the North Atlantic Ocean, for example, over half of the light-stimulated uptake was by the coccoid cyanobacterium, Prochlorococcus, with the remaining uptake due to Synechococcus and other photoheterotrophic bacteria. The project also examined in detail the degradation of one organic matter component, chitin, which is often said to be the second most abundant compound in the biosphere. The findings of this project contribute to our understanding of DOM fluxes and microbial dynamics supported by those fluxes. It is possible that these findings will lead to improvements in models of the carbon cycle that have compartments for dissolved organic carbon (DOC), the largest pool of organic carbon in the oceans.

  12. Development of Microarrays-Based Metagenomics Technology for Monitoring Sulfate-Reducing Bacteria in Subsurface Environments

    SciTech Connect (OSTI)

    Cindy, Shi

    2015-07-17

    At the contaminated DOE sites, sulfate-reducing bacteria (SRB) are a significant population and play an important role in the microbial community during biostimulation for metal reduction. However, the diversity, structure and dynamics of SRB communities are poorly understood. Therefore, this project aims to use high throughput sequencing-based metagenomics technologies for characterizing the diversity, structure, functions, and activities of SRB communities by developing genomic and bioinformatics tools to link the SRB biodiversity with ecosystem functioning.

  13. Improved oil recovery using bacteria isolated from North Sea petroleum reservoirs

    SciTech Connect (OSTI)

    Davey, R.A.; Lappin-Scott, H.

    1995-12-31

    During secondary oil recovery, water is injected into the formation to sweep out the residual oil. The injected water, however, follows the path of least resistance through the high-permeability zones, leaving oil in the low-permeability zones. Selective plugging of these their zones would divert the waterflood to the residual oil and thus increase the life of the well. Bacteria have been suggested as an alternative plugging agent to the current method of polymer injection. Starved bacteria can penetrate deeply into rock formations where they attach to the rock surfaces, and given the right nutrients can grow and produce exo-polymer, reducing the permeability of these zones. The application of microbial enhanced oil recovery has only been applied to shallow, cool, onshore fields to date. This study has focused on the ability of bacteria to enhance oil recovery offshore in the North Sea, where the environment can be considered extreme. A screen of produced water from oil reservoirs (and other extreme subterranean environments) was undertaken, and two bacteria were chosen for further work. These two isolates were able to grow and survive in the presence of saline formation waters at a range of temperatures above 50{degrees}C as facultative anaerobes. When a solution of isolates was passed through sandpacks and nutrients were added, significant reductions in permeabilities were achieved. This was confirmed in Clashach sandstone at 255 bar, when a reduction of 88% in permeability was obtained. Both isolates can survive nutrient starvation, which may improve penetration through the reservoir. Thus, the isolates show potential for field trials in the North Sea as plugging agents.

  14. Bacteria Modified to Secrete Biologically Active Protein for Large-Scale

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Production - Energy Innovation Portal Bacteria Modified to Secrete Biologically Active Protein for Large-Scale Production Inventors: Sydnor Withers III, Miguel Dominguez, Matthew DeLisa, Charles Haitjema Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary E. coli is the most common prokaryote used to produce protein. The expressed protein generally accumulates in the cytoplasm. While this approach is useful for some proteins, not all

  15. Enrichment of Root Endophytic Bacteria from Populus deltoides and Single-Cell-Genomics Analysis

    DOE PAGES-Beta [OSTI]

    Utturkar, Sagar M.; Cude, W. Nathan; Robeson, Jr., Michael S.; Yang, Zamin Koo; Klingeman, Dawn Marie; Land, Miriam L.; Allman, Steve L.; Lu, Tse-Yuan S.; Brown, Steven D.; Schadt, Christopher Warren; et al

    2016-07-15

    Bacterial endophytes that colonize Populus trees contribute to nutrient acquisition, prime immunity responses, and directly or indirectly increase both above- and below-ground biomasses. Endophytes are embedded within plant material, so physical separation and isolation are difficult tasks. Application of culture-independent methods, such as metagenome or bacterial transcriptome sequencing, has been limited due to the predominance of DNA from the plant biomass. In this paper, we present a modified differential and density gradient centrifugation-based protocol for the separation of endophytic bacteria from Populus roots. This protocol achieved substantial reduction in contaminating plant DNA, allowed enrichment of endophytic bacteria away from themore » plant material, and enabled single-cell genomics analysis. Four single-cell genomes were selected for whole-genome amplification based on their rarity in the microbiome (potentially uncultured taxa) as well as their inferred abilities to form associations with plants. Bioinformatics analyses, including assembly, contamination removal, and completeness estimation, were performed to obtain single-amplified genomes (SAGs) of organisms from the phyla Armatimonadetes, Verrucomicrobia, and Planctomycetes, which were unrepresented in our previous cultivation efforts. Finally, comparative genomic analysis revealed unique characteristics of each SAG that could facilitate future cultivation efforts for these bacteria.« less

  16. Environmental diagnostic analysis of ground water bacteria and their involvement in utilization of aromatic compounds

    SciTech Connect (OSTI)

    Wear, J.E. Jr.

    1993-05-01

    The objective of this study was to examine the hypothesis that select functional groups of bacteria from pristine sites have an innate ability to degrade synthetic aromatics that often contaminate groundwater environments,due to exposure to naturally occurring recalcitrant aromatics in their environment. This study demonstrates that subsurface microbial communities are capable of utilizing lignin and humic acid breakdown products. Utilizers of these compounds were found to be present in most all the wells tested. Even the deepest aquifer tested had utilizers present for all six of the aromatics tested. Highest counts for the aromatics tested were observed with the naturally occurring breakdown products of either lignin or humic acid. Carboxylic acids were found to be an important sole carbon source for groundwater bacteria possibly explained by the fact that they are produced by the oxidative cleavage of aromatic ring structures. The carbohydrate sole carbon sources that demonstrated the greatest densities were ones commonly associated with humics. This study indicates that utilization of naturally occurring aromatic compounds in the subsurface is an important nutritional source for groundwater bacteria. In addition, it suggests that adaptation to naturally occurring recalcitrant substrates is the origin of degradative pathways for xenobiotic compounds with analogous structure. This work has important implications for in situ bioremediation as a method of environmental cleanup.

  17. Isolation of butyrate-utilizing bacteria from thermophilic and mesophilic methane-producing ecosystems

    SciTech Connect (OSTI)

    Henson, J.M.

    1983-01-01

    The ability of various ecosystems to convert butyrate to methane was studied in order to isolate the bacteria responsible for the conversion. When thermophilic digester sludge was enriched with butyrate, methane was produced without a lag period. Marine sediments enriched with butyrate required a 2-week incubation period before methanogenesis began. A thermophilic digester was studied in more detail and found by most-probable-number enumeration to have ca. 5 x 10/sup 6/ butyrate-utilizing bactera/ml of sludge. A thermophilic butyrate-utilizing bacterium was isolated in coculture with Methanobacterium thermoautotrophicum and a Methanosarcina sp. This bacterium was a gram-negative, slightly curved rod that occurred singly, was nonmotile, and did not appear to produce spores. The thermophilic digester was infused with butyrate at the rate of 10 ..mu..moles/ml of sludge per day. Biogas production increased by 150%, with the percentage of methane increasing from 58% to 68%. Acetate, propionate, and butyrate did not accumulate. Butyrate-utilizing enrichments from mesophilic ecosystems were used in obtaining cocultures of butyrate-utilizing bacteria. These cocultures served as inocula for attempts to isolate pure cultures of butyrate-utilizing bacteria by use of hydrogenase-containing membrane fragments of Escherichia coli. After a 3-week incubation period, colonies appeared only in inoculated tubes that contained membrane fragments and butyrate.

  18. Genetic manipulation of competition for nitrate between heterotrophic bacteria and diatoms

    DOE PAGES-Beta [OSTI]

    Diner, Rachel E.; Schwenck, Sarah M.; McCrow, John P.; Zheng, Hong; Allen, Andrew E.

    2016-06-09

    Diatoms are a dominant group of eukaryotic phytoplankton that contribute substantially to global primary production and the cycling of important elements such as carbon and nitrogen. Heterotrophic bacteria, including members of the gammaproteobacteria, are commonly associated with diatom populations and may rely on them for organic carbon while potentially competing with them for other essential nutrients. Considering that bacterioplankton drive oceanic release of CO2 (i.e., bacterial respiration) while diatoms drive ocean carbon sequestration vial the biological pump, the outcome of such competition could influence the direction and magnitude of carbon flux in the upper ocean. Nitrate availability is commonly amore » determining factor for the growth of diatom populations, particularly in coastal and upwelling regions. Diatoms as well as many bacterial species can utilize nitrate, however the ability of bacteria to compete for nitrate may be hindered by carbon limitation. Here we have developed a genetically tractable model system using the pennate diatom Phaeodactylurn tricomuturn and the widespread heterotrophic bacteria Alterornonas macleodii to examine carbon-nitrogen dynamics. While subsisting solely on P. tricomutum derived carbon. A. macleodii does not appear to be an effective competitor for nitrate, and may in fact benefit the diatom; particularly in stationary phase. However, allochthonous dissolved organic carbon addition in the form of pyruvate triggers A. macleodii proliferation and nitrate uptake, leading to reduced P. tricornutum growth. Nitrate reductase deficient mutants of A. macleodii (ΔnasA) do not exhibit such explosive growth and associated competitive ability in response to allochthonous carbon when nitrate is the sole nitrogen source, but could survive by utilizing solely P. tricomutum-derived nitrogen. Furthermore, allocthonous carbon addition enables wild-type A. macleodii to rescue nitrate reductase deficient P. tricomutum populations

  19. October 2013 News Blast

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    October 2013 Harvest Your Energy This Halloween, think of turning seasonal municipal solid waste (MSW) into energy as one very interesting "trick!" The Department of Energy's (DOE's) Bioenergy Technologies Office (BETO) wants to illustrate how common holiday waste can create a positive environmental impact. Earlier this month, BETO released a spooktastic infographic that demonstrates how waste materials like hay, pumpkins, candy, and autumn leaves can be used to generate both heat and

  20. Reprogramming Bacteria to Seek and Destroy Small Molecules (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema (OSTI)

    Gallivan, Justin [Emory University

    2016-07-12

    Justin Gallivan, of Emory University presents a talk titled "Reprogramming Bacteria to Seek and Destroy Small Molecules" at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif

  1. Reprogramming Bacteria to Seek and Destroy Small Molecules (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect (OSTI)

    Gallivan, Justin [Emory University] [Emory University

    2012-03-21

    Justin Gallivan, of Emory University presents a talk titled "Reprogramming Bacteria to Seek and Destroy Small Molecules" at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif

  2. The C-Terminal RpoN Domain of sigma54 Forms an unpredictedHelix-Turn-Helix Motif Similar to domains of sigma70

    SciTech Connect (OSTI)

    Doucleff, Michaeleen; Malak, Lawrence T.; Pelton, Jeffrey G.; Wemmer, David E.

    2005-11-01

    The ''{delta}'' subunit of prokaryotic RNA-polymerase allows gene-specific transcription initiation. Two {sigma} families have been identified, {sigma}{sup 70} and {sigma}{sup 54}, which use distinct mechanisms to initiate transcription and share no detectable sequence homology. Although the {sigma}{sup 70}-type factors have been well characterized structurally by x-ray crystallography, no high-resolution structural information is available for the {sigma}{sup 54}-type factors. Here we present the NMR derived structure of the C-terminal domain of {sigma}{sup 54} from Aquifex aeolicus. This domain (Thr323 to Gly389), which contains the highly conserved RpoN box sequence, consists of a poorly structured N-terminal tail followed by a three-helix bundle, which is surprisingly similar to domains of the {sigma}{sup 70}-type proteins. Residues of the RpoN box, which have previously been shown to be critical for DNA binding, form the second helix of an unpredicted helix-turn-helix motif. This structure's homology with other DNA binding proteins, combined with previous biochemical data, suggest how the C-terminal domain of {sigma}{sup 54} binds to DNA.

  3. BioenergizeME Virtual Science Fair: History of Biomass

    Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  4. MOLECULAR APPROACHES FOR IN SITU IDENTIFCIATION OF NITRATE UTILIZATION BY MARINE BACTERIA AND PHYTOPLANKTON

    SciTech Connect (OSTI)

    Frischer, Marc E.; Verity, Peter G.; Gilligan, Mathew R.; Bronk, Deborah A.; Zehr, Jonathan P.; Booth, Melissa G.

    2013-09-12

    Traditionally, the importance of inorganic nitrogen (N) for the nutrition and growth of marine phytoplankton has been recognized, while inorganic N utilization by bacteria has received less attention. Likewise, organic N has been thought to be important for heterotrophic organisms but not for phytoplankton. However, accumulating evidence suggests that bacteria compete with phytoplankton for nitrate (NO3-) and other N species. The consequences of this competition may have a profound effect on the flux of N, and therefore carbon (C), in ocean margins. Because it has been difficult to differentiate between N uptake by heterotrophic bacterioplankton versus autotrophic phytoplankton, the processes that control N utilization, and the consequences of these competitive interactions, have traditionally been difficult to study. Significant bacterial utilization of DIN may have a profound effect on the flux of N and C in the water column because sinks for dissolved N that do not incorporate inorganic C represent mechanisms that reduce the atmospheric CO2 drawdown via the ?biological pump? and limit the flux of POC from the euphotic zone. This project was active over the period of 1998-2007 with support from the DOE Biotechnology Investigations ? Ocean Margins Program (BI-OMP). Over this period we developed a tool kit of molecular methods (PCR, RT-PCR, Q-PCR, QRT-PCR, and TRFLP) and combined isotope mass spectrometry and flow-cytometric approaches that allow selective isolation, characterization, and study of the diversity and genetic expression (mRNA) of the structural gene responsible for the assimilation of NO3- by heterotrophic bacteria (nasA). As a result of these studies we discovered that bacteria capable of assimilating NO3- are ubiquitous in marine waters, that the nasA gene is expressed in these environments, that heterotrophic bacteria can account for a significant fraction of total DIN uptake in different ocean margin systems, that the expression of nasA is

  5. Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen

    SciTech Connect (OSTI)

    Hennebel, T.; Fitts, J.; Nevel, S. V.; Verschuere, S.; DeCorte, S.; DeGusseme, B.; Cuvelier, C.; vanderLelie, D.; Boon, N.; Verstraete, W.

    2011-05-17

    A new biological inspired method to produce nanopalladium is the precipitation of Pd on a bacterium, i.e., bio-Pd. This bio-Pd can be applied as catalyst in dehalogenation reactions. However, large amounts of hydrogen are required as electron donor in these reactions resulting in considerable costs. This study demonstrates how bacteria, cultivated under fermentative conditions, can be used to reductively precipitate bio-Pd catalysts and generate the electron donor hydrogen. In this way, one could avoid the costs coupled to hydrogen supply. The catalytic activities of Pd(0) nanoparticles produced by different strains of bacteria (bio-Pd) cultivated under fermentative conditions were compared in terms of their ability to dehalogenate the recalcitrant aqueous pollutants diatrizoate and trichloroethylene. While all of the fermentative bio-Pd preparations followed first order kinetics in the dehalogenation of diatrizoate, the catalytic activity differed systematically according to hydrogen production and starting Pd(II) concentration in solution. Batch reactors with nanoparticles formed by Citrobacter braakii showed the highest diatrizoate dehalogenation activity with first order constants of 0.45 {+-} 0.02 h{sup -1} and 5.58 {+-} 0.6 h{sup -1} in batches with initial concentrations of 10 and 50 mg L{sup -1} Pd, respectively. Nanoparticles on C. braakii, used in a membrane bioreactor treating influent containing 20 mg L{sup -1} diatrizoate, were capable of dehalogenating 22 mg diatrizoate mg{sup -1} Pd over a period of 19 days before bio-Pd catalytic activity was exhausted. This study demonstrates the possibility to use the combination of Pd(II), a carbon source and bacteria under fermentative conditions for the abatement of environmental halogenated contaminants.

  6. Exploration of Simple Analytical Approaches for Rapid Detection of Pathogenic Bacteria

    SciTech Connect (OSTI)

    Rahman, Salma

    2005-01-01

    Many of the current methods for pathogenic bacterial detection require long sample-preparation and analysis time, as well as complex instrumentation. This dissertation explores simple analytical approaches (e.g., flow cytometry and diffuse reflectance spectroscopy) that may be applied towards ideal requirements of a microbial detection system, through method and instrumentation development, and by the creation and characterization of immunosensing platforms. This dissertation is organized into six sections. In the general Introduction section a literature review on several of the key aspects of this work is presented. First, different approaches for detection of pathogenic bacteria will be reviewed, with a comparison of the relative strengths and weaknesses of each approach, A general overview regarding diffuse reflectance spectroscopy is then presented. Next, the structure and function of self-assembled monolayers (SAMs) formed from organosulfur molecules at gold and micrometer and sub-micrometer patterning of biomolecules using SAMs will be discussed. This section is followed by four research chapters, presented as separate manuscripts. Chapter 1 describes the efforts and challenges towards the creation of imunosensing platforms that exploit the flexibility and structural stability of SAMs of thiols at gold. 1H, 1H, 2H, 2H-perfluorodecyl-1-thiol SAM (PFDT) and dithio-bis(succinimidyl propionate)-(DSP)-derived SAMs were used to construct the platform. Chapter 2 describes the characterization of the PFDT- and DSP-derived SAMs, and the architectures formed when it is coupled to antibodies as well as target bacteria. These studies used infrared reflection spectroscopy (IRS), X-ray photoelectron spectroscopy (XPS), and electrochemical quartz crystal microbalance (EQCM), Chapter 3 presents a new sensitive, and portable diffuse reflection based technique for the rapid identification and quantification of pathogenic bacteria. Chapter 4 reports research efforts in the

  7. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells

    SciTech Connect (OSTI)

    Wu, Zhigang; Willing, Ben; Bjerketorp, Joakim; Jansson, Janet K.; Hjort, Klas

    2009-01-05

    We developed a new approach to separate bacteria from human blood cells based on soft inertial force induced migration with flow defined curved and focused sample flow inside a microfluidic device. This approach relies on a combination of an asymmetrical sheath flow and proper channel geometry to generate a soft inertial force on the sample fluid in the curved and focused sample flow segment to deflect larger particles away while the smaller ones are kept on or near the original flow streamline. The curved and focused sample flow and inertial effect were visualized and verified using a fluorescent dye primed in the device. First the particle behavior was studied in detail using 9.9 and 1.0 {micro}m particles with a polymer-based prototype. The prototype device is compact with an active size of 3 mm{sup 2}. The soft inertial effect and deflection distance were proportional to the fluid Reynolds number (Re) and particle Reynolds number (Re{sub p}), respectively. We successfully demonstrated separation of bacteria (Escherichia coli) from human red blood cells at high cell concentrations (above 10{sup 8}/mL), using a sample flow rate of up to 18 {micro}L/min. This resulted in at least a 300-fold enrichment of bacteria at a wide range of flow rates with a controlled flow spreading. The separated cells were proven to be viable. Proteins from fractions before and after cell separation were analyzed by gel electrophoresis and staining to verify the removal of red blood cell proteins from the bacterial cell fraction. This novel microfluidic process is robust, reproducible, simple to perform, and has a high throughput compared to other cell sorting systems. Microfluidic systems based on these principles could easily be manufactured for clinical laboratory and biomedical applications.

  8. Molecular Regulation of Photosynthetic Carbon Dioxide Fixation in Nonsulfur Purple Bacteria

    SciTech Connect (OSTI)

    Tabita, Fred Robert

    2015-12-01

    The overall objective of this project is to determine the mechanism by which a transcriptional activator protein affects CO2 fixation (cbb) gene expression in nonsulfur purple photosynthetic bacteria, with special emphasis to Rhodobacter sphaeroides and with comparison to Rhodopseudomonas palustris. These studies culminated in several publications which indicated that additional regulators interact with the master regulator CbbR in both R. sphaeroides and R. palustris. In addition, the interactive control of the carbon and nitrogen assimilatory pathways was studied and unique regulatory signals were discovered.

  9. Soft rot decay capabilities and interactions of fungi and bacteria from fumigated utility poles

    SciTech Connect (OSTI)

    Wang, C.J.K.; Worrall, J.J. . Coll. of Environmental Science and Forestry)

    1992-11-01

    The objectives were to (1) identify microfungi and bacterial associates isolated from fumigated southern pine poles from EPRI project RP 1471-72, (2) study the soft-rot capabilities of predominant fungi, and (3) study interactions among microorganisms in relation to wood decay. Methods for identification followed standard techniques using morphological and physiological criteria. Soft-rot by microfungi alone and with bacteria was determined as weight loss and anatomical examination of wood blocks using light microscopy and limited electron microscopy. Acinetobacter calcoaceticus was the predominant bacterium. Twenty-one species of microfungi were identified including four new species. A book entitled IDENTIFICATION MANUAL FOR FUNGI FROM UTILITY POLES IN THE EASTERN UNITED STATES was published. An improved soft-rot test was devised. Fifty-one of 84 species (60%) of microfungi from poles tested were soft-rot positive; that is much greater than previously reported. Three types of anatomical damage of wood of pine or birch caused by soft-rot fungi were described. Interaction tests showed that, in some cases, there was a strong synergism between bacteria and fungi in causing weight loss, but results were inconsistent. Although soft rot is often most apparent under conditions of very high moisture, intermediate moisture levels appear to be optimal, as with basidiomycete decayers.

  10. Soft rot decay capabilities and interactions of fungi and bacteria from fumigated utility poles. Final report

    SciTech Connect (OSTI)

    Wang, C.J.K.; Worrall, J.J.

    1992-11-01

    The objectives were to (1) identify microfungi and bacterial associates isolated from fumigated southern pine poles from EPRI project RP 1471-72, (2) study the soft-rot capabilities of predominant fungi, and (3) study interactions among microorganisms in relation to wood decay. Methods for identification followed standard techniques using morphological and physiological criteria. Soft-rot by microfungi alone and with bacteria was determined as weight loss and anatomical examination of wood blocks using light microscopy and limited electron microscopy. Acinetobacter calcoaceticus was the predominant bacterium. Twenty-one species of microfungi were identified including four new species. A book entitled IDENTIFICATION MANUAL FOR FUNGI FROM UTILITY POLES IN THE EASTERN UNITED STATES was published. An improved soft-rot test was devised. Fifty-one of 84 species (60%) of microfungi from poles tested were soft-rot positive; that is much greater than previously reported. Three types of anatomical damage of wood of pine or birch caused by soft-rot fungi were described. Interaction tests showed that, in some cases, there was a strong synergism between bacteria and fungi in causing weight loss, but results were inconsistent. Although soft rot is often most apparent under conditions of very high moisture, intermediate moisture levels appear to be optimal, as with basidiomycete decayers.

  11. Thiol-facilitated cell export and desorption of methylmercury by anaerobic bacteria

    SciTech Connect (OSTI)

    Lin, Hui; Lu, Xia; Liang, Liyuan; Gu, Baohua

    2015-09-04

    Neurotoxic methylmercury (MeHg), formed by anaerobic bacteria, is shown to be rapidly excreted from the cell, but the mechanism of this process is unclear. Using both Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132 strains, we investigated the factors affecting export and distribution of MeHg in mercury methylation and MeHg sorption-desorption assays. Thiols, such as cysteine, were found to greatly facilitate desorption and export of MeHg, particularly by PCA cells. However, in cysteine-free assays (4 h) >90% of the synthesized MeHg was associated with PCA, among which ~73% was sorbed on the cell surface and 19% remained inside the cells. In comparison, a majority of the MeHg (70%) was exported by ND132, leaving ~20% of the MeHg sorbed on the surface and 10% inside the cells. When MeHg was added directly to the cell suspensions, ND132 adsorbed much lower MeHg but took up more MeHg inside cells than PCA did. These results demonstrate that MeHg export is bacteria strain-specific, time dependent, and is influenced by thiols, implicating important roles of ligand complexation in facilitating MeHg production and mobilization in the environment.

  12. Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules

    DOE PAGES-Beta [OSTI]

    Jang, Gyoung Gug; Jacobs, Christopher B.; Gresback, Ryan G.; Ivanov, Ilia N.; Meyer, III, Harry M.; Kidder, Michelle; Joshi, Pooran C.; Jellison, Jr, Gerald Earle; Phelps, Tommy Joe; Graham, David E.; et al

    2014-11-10

    Bimodal sized elemental copper (Cu) nanoparticles (NPs) were synthesized from inexpensive oxidized copper salts by an extracellular metal-reduction process using anaerobic Thermoanaerobacter sp. X513 bacteria in aqueous solution. The bacteria nucleate NPs outside of the cell, and they control the Cu2+ reduction rate to form uniform crystallites with an average diameter of 1.75 0.46 m after 3-day incubation. To control the size and enhance air stability of Cu NPs, the reaction mixtures were supplemented with nitrilotriacetic acid as a chelator, and the surfactant capping agents oleic acid, oleylamine, ascorbic acid, or L-cysteine. Time-dependent UV-visible absorption measurements and XPS studies indicatedmore » well-suspended, bimodal colloidal Cu NPs (70 150 and 5 10 nm) with extended air-stability up to 300 min and stable Cu NP films surfaces with 14% oxidation after 20 days. FTIR spectroscopy suggested that these capping agents were effectively adsorbed on the NP surface providing oxidation resistance in aqueous and dry conditions. Compared to previously reported Cu NP syntheses, this biological process substantially reduced the requirement for hazardous organic solvents and chemical reducing agents, while reducing the levels of Cu oxide impurities in the product. This process was highly reproducible and scalable from 0.01 to 1-L batches.« less

  13. Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules

    SciTech Connect (OSTI)

    Jang, Gyoung Gug; Jacobs, Christopher B.; Gresback, Ryan G.; Ivanov, Ilia N.; Meyer, III, Harry M.; Kidder, Michelle; Joshi, Pooran C.; Jellison, Jr, Gerald Earle; Phelps, Tommy Joe; Graham, David E.; Moon, Ji Won

    2014-11-10

    Bimodal sized elemental copper (Cu) nanoparticles (NPs) were synthesized from inexpensive oxidized copper salts by an extracellular metal-reduction process using anaerobic Thermoanaerobacter sp. X513 bacteria in aqueous solution. The bacteria nucleate NPs outside of the cell, and they control the Cu2+ reduction rate to form uniform crystallites with an average diameter of 1.75 0.46 m after 3-day incubation. To control the size and enhance air stability of Cu NPs, the reaction mixtures were supplemented with nitrilotriacetic acid as a chelator, and the surfactant capping agents oleic acid, oleylamine, ascorbic acid, or L-cysteine. Time-dependent UV-visible absorption measurements and XPS studies indicated well-suspended, bimodal colloidal Cu NPs (70 150 and 5 10 nm) with extended air-stability up to 300 min and stable Cu NP films surfaces with 14% oxidation after 20 days. FTIR spectroscopy suggested that these capping agents were effectively adsorbed on the NP surface providing oxidation resistance in aqueous and dry conditions. Compared to previously reported Cu NP syntheses, this biological process substantially reduced the requirement for hazardous organic solvents and chemical reducing agents, while reducing the levels of Cu oxide impurities in the product. This process was highly reproducible and scalable from 0.01 to 1-L batches.

  14. Discovery of novel plant interaction determinants from the genomes of 163 root nodule bacteria

    DOE PAGES-Beta [OSTI]

    Seshadri, Rekha; Reeve, Wayne G.; Ardley, Julie K.; Tennessen, Kristin; Woyke, Tanja; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2015-11-20

    Root nodule bacteria (RNB) or “rhizobia” are a type of plant growth promoting bacteria, typified by their ability to fix nitrogen for their plant host, fixing nearly 65% of the nitrogen currently utilized in sustainable agricultural production of legume crops and pastures. In this study, we sequenced the genomes of 110 RNB from diverse hosts and biogeographical regions, and undertook a global exploration of all available RNB genera with the aim of identifying novel genetic determinants of symbiotic association and plant growth promotion. Specifically, we performed a subtractive comparative analysis with non-RNB genomes, employed relevant transcriptomic data, and leveraged phylogeneticmore » distribution patterns and sequence signatures based on known precepts of symbioticand host-microbe interactions. A total of 184 protein families were delineated, including known factors for nodulation and nitrogen fixation, and candidates with previously unexplored functions, for which a role in host-interaction, -regulation, biocontrol, and more, could be posited. Lastly, these analyses expand our knowledge of the RNB purview and provide novel targets for strain improvement in the ultimate quest to enhance plant productivity and agricultural sustainability.« less

  15. Lubricating bacteria model for the growth of bacterial colonies exposed to ultraviolet radiation

    SciTech Connect (OSTI)

    Zhang Shengli; Zhang Lei; Liang Run; Zhang Erhu; Liu Yachao; Zhao Shumin

    2005-11-01

    In this paper, we study the morphological transition of bacterial colonies exposed to ultraviolet radiation by modifying the bacteria model proposed by Delprato et al. Our model considers four factors: the lubricant fluid generated by bacterial colonies, a chemotaxis initiated by the ultraviolet radiation, the intensity of the ultraviolet radiation, and the bacteria's two-stage destruction rate with given radiation intensities. Using this modified model, we simulate the ringlike pattern formation of the bacterial colony exposed to uniform ultraviolet radiation. The following is shown. (1) Without the UV radiation the colony forms a disklike pattern and reaches a constant front velocity. (2) After the radiation is switched on, the bacterial population migrates to the edge of the colony and forms a ringlike pattern. As the intensity of the UV radiation is increased the ring forms faster and the outer velocity of the colony decreases. (3) For higher radiation intensities the total population decreases, while for lower intensities the total population increases initially at a small rate and then decreases. (4) After the UV radiation is switched off, the bacterial population grows both outward as well as into the inner region, and the colony's outer front velocity recovers to a constant value. All these results agree well with the experimental observations [Phys. Rev. Lett. 87, 158102 (2001)]. Along with the chemotaxis, we find that lubricant fluid and the two-stage destruction rate are critical to the dynamics of the growth of the bacterial colony when exposed to UV radiation, and these were not previously considered.

  16. Nitrous oxide production and methane oxidation by different ammonia-oxidizing bacteria

    SciTech Connect (OSTI)

    Jiang, Q.Q.; Bakken, L.R.

    1999-06-01

    Ammonia-oxidizing bacteria (AOB) are thought to contribute significantly to N{sub 2}O production and methane oxidation in soils. Most knowledge derives from experiments with Nitrosomonas europaea, which appears to be of minor importance in most soils compared to Nitrosospira spp. The authors have conducted a comparative study of levels of aerobic N{sub 2}O production in six phylogenetically different Nitrosospira strains newly isolated from soils and in two N. europaea and Nitrosospira multiformis type strains. The fraction of oxidized ammonium released as N{sub 2}O during aerobic growth was remarkably constant for all the Nitrosospira strains, irrespective of the substrate supply (urea versus ammonium), the pH, or substrate limitation. N. europaea and Nitrosospira multiformis released similar fractions of N{sub 2}O when they were supplied with ample amounts of substrates, but the fractions rose sharply when they were restricted by a low pH or substrate limitation. Phosphate buffer doubled the N{sub 2}O release for all types of AOB. No detectable oxidation of atmospheric methane was detected. Calculations based on detection limits as well as data in the literature on CH{sub 4} oxidation by AOB bacteria prove that none of the tested strains contribute significantly to the oxidation of atmospheric CH{sub 4} in soils.

  17. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    SciTech Connect (OSTI)

    Boopathy, R.; Kulpa, C.F.

    1994-06-01

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO{sub 2}. Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions.

  18. Discovery of novel plant interaction determinants from the genomes of 163 root nodule bacteria

    SciTech Connect (OSTI)

    Seshadri, Rekha; Reeve, Wayne G.; Ardley, Julie K.; Tennessen, Kristin; Woyke, Tanja; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2015-11-20

    Root nodule bacteria (RNB) or “rhizobia” are a type of plant growth promoting bacteria, typified by their ability to fix nitrogen for their plant host, fixing nearly 65% of the nitrogen currently utilized in sustainable agricultural production of legume crops and pastures. In this study, we sequenced the genomes of 110 RNB from diverse hosts and biogeographical regions, and undertook a global exploration of all available RNB genera with the aim of identifying novel genetic determinants of symbiotic association and plant growth promotion. Specifically, we performed a subtractive comparative analysis with non-RNB genomes, employed relevant transcriptomic data, and leveraged phylogenetic distribution patterns and sequence signatures based on known precepts of symbioticand host-microbe interactions. A total of 184 protein families were delineated, including known factors for nodulation and nitrogen fixation, and candidates with previously unexplored functions, for which a role in host-interaction, -regulation, biocontrol, and more, could be posited. Lastly, these analyses expand our knowledge of the RNB purview and provide novel targets for strain improvement in the ultimate quest to enhance plant productivity and agricultural sustainability.

  19. Class D β-lactamases do exist in Gram-positive bacteria

    DOE PAGES-Beta [OSTI]

    Toth, Marta; Antunes, Nuno Tiago; Stewart, Nichole K.; Frase, Hilary; Bhattacharya, Monolekha; Smith, Clyde A.; Vakulenko, Sergei B.

    2015-11-09

    Production of β-lactamases of one of four molecular classes (A, B, C and D) is the major mechanism of bacterial resistance to β-lactams, the largest class of antibiotics, which have saved countless lives since their inception 70 years ago. Although several hundred efficient class D enzymes have been identified in Gram-negative pathogens over the last four decades, none have been reported in Gram-positive bacteria. Here we demonstrate that efficient class D β-lactamases capable of hydrolyzing a wide array of β-lactam substrates are widely disseminated in various species of environmental Gram-positive organisms. Class D enzymes of Gram-positive bacteria have a distinctmore » structural architecture and employ a unique substrate-binding mode that is quite different from that of all currently known class A, C and D β-lactamases. In conclusion, these enzymes thus constitute a previously unknown reservoir of novel antibiotic-resistance enzymes.« less

  20. Thiol-facilitated cell export and desorption of methylmercury by anaerobic bacteria

    DOE PAGES-Beta [OSTI]

    Lin, Hui; Lu, Xia; Liang, Liyuan; Gu, Baohua

    2015-09-04

    Neurotoxic methylmercury (MeHg), formed by anaerobic bacteria, is shown to be rapidly excreted from the cell, but the mechanism of this process is unclear. Using both Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132 strains, we investigated the factors affecting export and distribution of MeHg in mercury methylation and MeHg sorption-desorption assays. Thiols, such as cysteine, were found to greatly facilitate desorption and export of MeHg, particularly by PCA cells. However, in cysteine-free assays (4 h) >90% of the synthesized MeHg was associated with PCA, among which ~73% was sorbed on the cell surface and 19% remained inside the cells. Inmore » comparison, a majority of the MeHg (70%) was exported by ND132, leaving ~20% of the MeHg sorbed on the surface and 10% inside the cells. When MeHg was added directly to the cell suspensions, ND132 adsorbed much lower MeHg but took up more MeHg inside cells than PCA did. These results demonstrate that MeHg export is bacteria strain-specific, time dependent, and is influenced by thiols, implicating important roles of ligand complexation in facilitating MeHg production and mobilization in the environment.« less

  1. Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules

    SciTech Connect (OSTI)

    Jang, Gyoung Gug; Jacobs, Christopher B; Gresback, Ryan G; Ivanov, Ilia N; Meyer III, Harry M; Kidder, Michelle; Joshi, Pooran C; Jellison Jr, Gerald Earle; Phelps, Tommy Joe; Graham, David E; Moon, Ji Won

    2015-01-01

    Bimodal sized elemental copper (Cu) nanoparticles (NPs) were synthesized from inexpensive oxidized copper salts by an extracellular metal-reduction process using anaerobic Thermoanaerobacter sp. X513 bacteria in aqueous solution. The bacteria nucleate NPs outside of the cell, and they control the Cu2+ reduction rate to form uniform crystallites with an average diameter of 1.75 0.46 m after 3-day incubation. To control the size and enhance air stability of Cu NPs, the reaction mixtures were supplemented with nitrilotriacetic acid as a chelator, and the surfactant capping agents oleic acid, oleylamine, ascorbic acid, or L-cysteine. Time-dependent UV-visible absorption measurements and XPS studies indicated well-suspended, bimodal colloidal Cu NPs (70 150 and 5 10 nm) with extended air-stability up to 300 min and stable Cu NP films surfaces with 14% oxidation after 20 days. FTIR spectroscopy suggested that these capping agents were effectively adsorbed on the NP surface providing oxidation resistance in aqueous and dry conditions. Compared to previously reported Cu NP syntheses, this biological process substantially reduced the requirement for hazardous organic solvents and chemical reducing agents, while reducing the levels of Cu oxide impurities in the product. This process was highly reproducible and scalable from 0.01 to 1-L batches.

  2. Bioenergy News | Department of Energy

    Energy.gov (indexed) [DOE]

    June 9, 2015 Cropped view of the winning infographic "Cellulosic Ethanol." Winning Team Announced for 2015 BioenergizeME Infographic Challenge Pilot Bioenergy Technologies Office...

  3. Multimedia | Department of Energy

    Office of Environmental Management (EM)

    Infographic EERE Annual Website Reports BioenergizeME Infographic Challenge Toolkit Stay Updated Sign up to receive updates on FORGE news and developments as we move into Phase...

  4. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Public Services Homes Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water...

  5. Information Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enhanced Geothermal Systems Fact Sheet Enhanced Geothermal Systems Infographic FORGE Informational Flyer Multimedia View and download recent infographics and additional visuals ...

  6. Mechanism of biocorrosion of low-alloy steel in a thionic bacteria medium

    SciTech Connect (OSTI)

    Baru, R.L.; Starosvetskaya, Z.O.; Timonin, V.A.

    1986-07-01

    This paper models the process of biocorrosion of Armco iron,low alloy steel 10KhSND (0.69 mass % Ni, 0.7 Cr, 0.55 Cu), and also alloys of Armco iron with chromium, copper, and nickel in concentrations corresponding to the level of their content in steel (of order 0.7%) in a medium of the thionic bacteria of the form Thiobacillus thiooxidans. Biocorrosion of metals inflicts losses on systems of water supply and recirculation in industrial plants, in the oil and gas industry, and in hydraulic structures. Investigations of the surface composition of the steel with the aid of a Cameca scanning electron microanalyzer and analysis of the corrosion products by the atomic absorption method revealed that, in contrast with the model, in the culture liquid the surface of steel 10KhSND and its corrosion products are depleted of nickel.

  7. Activated sludge as substrate for sulfate-reducing bacteria in acid mine drainage treatment

    SciTech Connect (OSTI)

    Al-Ani, W.A.G.; Henry, J.G.; Prasad, D.

    1996-11-01

    Acid mine drainage (AMD), characterized by high concentrations of sulfates and heavy metals and low pH, presents a potential hazard to the environment.Several treatment processes (chemical precipitation, ion exchange, reverse osmosis, electrodialysis and electrolytic recovery) are available, but these are often too expensive. Biological treatment of AMD, mediated by sulfate-reducing bacteria (SRB), seems promising. The objective of this study was to use activated sludge as a carbon source for the SRB and determine the most effective COD/sulfate ratio and hydraulic retention time (HRT) for reducing sulfate. Such information would be useful for the application of the proposed two-stage system to AMD treatment. Since the aim of this study was to obtain sulfate reduction and to avoid methane production, it was decided to operate the digesters initially at low COD/SO{sub 4}{sup 2{minus}} ratios of 1.0, 1.5, and 2.0.

  8. Structure, Function, and Regulation of Antenna Complexes of Green Photosynthetic Bacteria

    SciTech Connect (OSTI)

    Robert E. Blankenship

    2001-04-27

    This project is concerned with the structure and function of the chlorosome antennas found in green photosynthetic bacteria. Chlorosomes are ellipsoidal structures attached to the cytoplasmic side of the inner cell membrane. These antenna complexes provide a very large absorption cross section for light capture. Evidence is overwhelming that the chlorosome represents a very different type of antenna from that found in any other photosynthetic system yet studied. It is now clear that chlorosomes do not contain traditional pigment-proteins, in which the pigments bind to specific sites on proteins. Instead, the chlorosome pigments are organized in vivo into pigment oligomers in which direct pigment-pigment interactions are of dominant importance. Our group has used a multidisciplinary approach to investigate this unique system, including model systems, ultrafast spectroscopy, molecular biology, protein chemistry and X-ray crystallography.

  9. Detecting bacteria and Determining Their Susceptibility to Antibiotics by Stochastic Confinement in Nanoliter Droplets using Plug-Based Microfluidics

    SciTech Connect (OSTI)

    Boedicker, J.; Li, L; Kline, T; Ismagilov, R

    2008-01-01

    This article describes plug-based microfluidic technology that enables rapid detection and drug susceptibility screening of bacteria in samples, including complex biological matrices, without pre-incubation. Unlike conventional bacterial culture and detection methods, which rely on incubation of a sample to increase the concentration of bacteria to detectable levels, this method confines individual bacteria into droplets nanoliters in volume. When single cells are confined into plugs of small volume such that the loading is less than one bacterium per plug, the detection time is proportional to plug volume. Confinement increases cell density and allows released molecules to accumulate around the cell, eliminating the pre-incubation step and reducing the time required to detect the bacteria. We refer to this approach as stochastic confinement. Using the microfluidic hybrid method, this technology was used to determine the antibiogram - or chart of antibiotic sensitivity - of methicillin-resistant Staphylococcus aureus (MRSA) to many antibiotics in a single experiment and to measure the minimal inhibitory concentration (MIC) of the drug cefoxitin (CFX) against this strain. In addition, this technology was used to distinguish between sensitive and resistant strains of S. aureus in samples of human blood plasma. High-throughput microfluidic techniques combined with single-cell measurements also enable multiple tests to be performed simultaneously on a single sample containing bacteria. This technology may provide a method of rapid and effective patient-specific treatment of bacterial infections and could be extended to a variety of applications that require multiple functional tests of bacterial samples on reduced timescales.

  10. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    SciTech Connect (OSTI)

    Fiedler, Tomas; Salamon, Achim; Adam, Stefanie; Herzmann, Nicole; Taubenheim, Jan; Peters, Kirsten

    2013-11-01

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. LTA does not influence adipogenic or osteogenic differentiation of adMSC.

  11. Metabolic Engineering and Modeling of Metabolic Pathways to Improve Hydrogen Production by Photosynthetic Bacteria

    SciTech Connect (OSTI)

    Jiao, Y.; Navid, A.

    2014-12-19

    Rising energy demands and the imperative to reduce carbon dioxide (CO2) emissions are driving research on biofuels development. Hydrogen gas (H2) is one of the most promising biofuels and is seen as a future energy carrier by virtue of the fact that 1) it is renewable, 2) does not evolve the “greenhouse gas” CO2 in combustion, 3) liberates large amounts of energy per unit weight in combustion (having about 3 times the energy content of gasoline), and 4) is easily converted to electricity by fuel cells. Among the various bioenergy strategies, environmental groups and others say that the concept of the direct manufacture of alternative fuels, such as H2, by photosynthetic organisms is the only biofuel alternative without significant negative criticism [1]. Biological H2 production by photosynthetic microorganisms requires the use of a simple solar reactor such as a transparent closed box, with low energy requirements, and is considered as an attractive system to develop as a biocatalyst for H2 production [2]. Various purple bacteria including Rhodopseudomonas palustris, can utilize organic substrates as electron donors to produce H2 at the expense of solar energy. Because of the elimination of energy cost used for H2O oxidation and the prevention of the production of O2 that inhibits the H2-producing enzymes, the efficiency of light energy conversion to H2 by anoxygenic photosynthetic bacteria is in principle much higher than that by green algae or cyanobacteria, and is regarded as one of the most promising cultures for biological H2 production [3]. Here implemented a simple and relatively straightforward strategy for hydrogen production by photosynthetic microorganisms using sunlight, sulfur- or iron-based inorganic substrates, and CO2 as the feedstock. Carefully selected microorganisms with bioengineered beneficial

  12. Deep subsurface life from North Pond: Enrichment, isolation, characterization and genomes of heterotrophic bacteria

    DOE PAGES-Beta [OSTI]

    Russell, Joseph A.; Leon-Zayas, Rosa; Wrighton, Kelly; Biddle, Jennifer F.

    2016-05-10

    Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic watercolumn west of the Mid-Atlantic Ridge at 22° N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sedimentmore » column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. Furthermore, the cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface.« less

  13. Genotypic and phenotypic characterization of aerosolized bacteria collected from African dust events

    DOE PAGES-Beta [OSTI]

    Wilson, Christina A.; Brigmon, Robin L.; Yeager, Chris; Smith, Garriet W.; Polson, Shawn W.

    2013-07-31

    Twenty-one bacteria were isolated and characterized from air samples collected in Africa and the Caribbean by the United States Geological Survey (USGS). Isolates were selected based on preliminary characterization as possible pathogens. Identification of the bacterial isolates was 25 achieved using 16S rRNA gene sequence analysis, fatty acid methyl esters (FAMEs) profiling, the BIOLOG Microlog® System (carbon substrate assay), and repetitive extragenic palindromic (REP)-PCR analysis. The majority of isolates (18/21) were identified as species of the genus Bacillus. Three isolates were classified within the Bacillus cereus senso lato group, which includes Bacillus anthracis, Bacillus thuringiensis, and Bacillus cereus strains. Onemore » isolate was identified as a Staphylococcus sp., 30 most closely related to species (i.e Staphylococcus kloosii, Staphylococcus warneri) that are commonly associated with human or animal skin, but can also act as opportunistic pathogen. Another isolate was tentatively identified as Tsukamurella inchonensis, a known respiratory pathogen, and was resistant to the ten antibiotics tested including vancomycin.« less

  14. [Genetics in methylotrophic bacteria]. Progress report, July 1, 1992--June 30, 1995

    SciTech Connect (OSTI)

    1998-09-01

    The focus of this project has been to identify and characterize mox genes and other methylotrophy genes in both methane- and methanol-utilizing bacteria, and study expression of those genes. In the last three years of support, the project has focused on identifying methylotrophy genes and the regions involved in their expression for comparative purposes, and has begun the process of analyzing the genes involved in transcriptional regulation of the mox system in the strain for which the authors have the most information, M. extorquens AM1. In order to carry out comparative studies of the transcription of methylotrophy genes, they have cloned and characterized genes involved in methanol oxidation (mox genes) from two Type I methanotrophs, Methylobacter marinus A45 (formerly Methylomonas sp A45) and Methylobacter albus BG8 (formerly Methylomonas albus BG8). In both cases, the organization of the genes was found to be identical, and the transcriptional start sites upstream of the mxaF genes were mapped. Other methylotrophy genes have been cloned and characterized from these methanotrophs, including mxaAKL and fdh. The rest of this project has focused on the regulatory network for the mox system in M. extorquens AM1. The authors have sequenced two mox regulatory genes, mxbD and mxbM and they show identify with a specific group of sensor-kinase/response regulator pair systems.

  15. Structure, Function and Reconstitution of Antenna Complexes from Green Photosynthetic Bacteria

    SciTech Connect (OSTI)

    Robert E. Blankenship

    2005-08-10

    This project is concerned with the structure and function of the chlorosome antennas found in green photosynthetic bacteria. Chlorosomes are ellipsoidal structures attached to the cytoplasmic side of the inner cell membrane. These antenna complexes provide a very large absorption cross section for light capture. Evidence is overwhelming that the chlorosome represents a very different type of antenna from that found in any other photosynthetic system yet studied. It is now clear that chlorosomes do not contain traditional pigment-proteins, in which the pigments bind to specific sites on proteins. Instead, the chlorosome pigments are organized in vivo into pigment oligomers in which direct pigment-pigment interactions are of dominant importance. Our group has used a multidisciplinary approach to investigate this unique system, as well as the complexes that they directly interact with. Our work has included using model systems, numerous types of both steady-state and ultrafast spectroscopy, molecular biology, protein chemistry and X-ray crystallography. Details of our recent results using these approaches are given below and in the references. Numbers cited in the sections refer to DOE-sponsored publications that are listed below. Only publications dated 2001-2004 or later are included in this report. In addition to the primary literature reports, a comprehensive review of this area of research has been written as well as a commentary.

  16. Genotypic and phenotypic characterization of aerosolized bacteria collected from African dust events

    SciTech Connect (OSTI)

    Wilson, Christina A.; Brigmon, Robin L.; Yeager, Chris; Smith, Garriet W.; Polson, Shawn W.

    2013-07-31

    Twenty-one bacteria were isolated and characterized from air samples collected in Africa and the Caribbean by the United States Geological Survey (USGS). Isolates were selected based on preliminary characterization as possible pathogens. Identification of the bacterial isolates was 25 achieved using 16S rRNA gene sequence analysis, fatty acid methyl esters (FAMEs) profiling, the BIOLOG Microlog® System (carbon substrate assay), and repetitive extragenic palindromic (REP)-PCR analysis. The majority of isolates (18/21) were identified as species of the genus Bacillus. Three isolates were classified within the Bacillus cereus senso lato group, which includes Bacillus anthracis, Bacillus thuringiensis, and Bacillus cereus strains. One isolate was identified as a Staphylococcus sp., 30 most closely related to species (i.e Staphylococcus kloosii, Staphylococcus warneri) that are commonly associated with human or animal skin, but can also act as opportunistic pathogen. Another isolate was tentatively identified as Tsukamurella inchonensis, a known respiratory pathogen, and was resistant to the ten antibiotics tested including vancomycin.

  17. Alteration of Iron-Rich Lacustrine Sediments by Dissimilatory Iron-Reducing Bacteria

    SciTech Connect (OSTI)

    Crowe,S.; Roberts, J.; Weisener, C.; Fowle, D.

    2007-01-01

    The reduction of Fe during bacterial anaerobic respiration in sediments and soils not only causes the degradation of organic matter but also results in changes in mineralogy and the redistribution of many nutrients and trace metals. Understanding trace metal patterns in sedimentary rocks and predicting the fate of contaminants in the environment requires a detailed understanding of the mechanisms through which they are redistributed during Fe reduction. In this work, lacustrine sediments from Lake Matano in Indonesia were incubated in a minimal media with the dissimilatory iron reducing (DIR) bacterium Shewanella putrefaciens 200R. These sediments were reductively dissolved at rates slower than pure synthetic goethite despite the presence of an 'easily reducible' component, as defined by selective extractions. DIR of the lacustrine sediments resulted in the substrate-dependent production of abundant quantities of extracellular polymeric substances. Trace elements, including Ni, Co, P, Si, and As, were released from the sediments with progressive Fe reduction while Cr was sequestered. Much of the initial trace metal mobility can be attributed to the rapid reduction of a Mn-rich oxyhydroxide phase. The production of organo-Fe(III) reveals that DIR bacteria can generate significant metal complexation capacity. This work demonstrates that DIR induces the release of many elements associated with Fe-Mn oxyhydroxides, despite secondary mineralization.

  18. Conversion of cellulose to ethanol by mesophilic bacteria. Progress report, July 15, 1983-February 15, 1985

    SciTech Connect (OSTI)

    Canale-Parola, E.

    1985-03-15

    Highlights of accomplishments during the period from July 1983 to February 1985 are summarized. Research has dealt primarily with strains of obligately anaerobic, mesophilic cellulolytic bacteria that we isolated from various natural environments. Eight strains (referred to as C strains) were isolated from mud of freshwater environments. As described in the previous progress report, the C strains represented a species of Clostridium that was different from other described species. The C strains fermented cellulose with formation of ethanol. They differed from thermophilic cellulolytic clostridia (e.g. Clostridium thermocellum) not only in growth temperature range, but also because they fermented xylan and pentoses with formation of ethanol. This result indicated that these mesophilic clostridia can convert to ethanol both cellulosic and hemicellulosic components of biomass. In contrast, monocultures of Clostridium thermocellum ferment only the cellulosic component of biomass. Furthermore, cellulose was degraded by the C strains at a rate comparable to that of thermophilic cellulolytic clostridia. These observations indicated that the mesophilic cellulolytic isolates constituted potentially useful microorganisms for ethanol production from biomass.

  19. Size-dependent fluorescence of bioaerosols: Mathematical model using fluorescing and absorbing molecules in bacteria

    DOE PAGES-Beta [OSTI]

    Hill, Steven C.; Williamson, Chatt C.; Doughty, David C.; Pan, Yong-Le; Santarpia, Joshua L.; Hill, Hanna H.

    2015-02-02

    This paper uses a mathematical model of fluorescent biological particles composed of bacteria and/or proteins (mostly as in Hill et al., 2013 [23]) to investigate the size-dependence of the total fluorescence emitted in all directions. The model applies to particles which have negligible reabsorption of fluorescence within the particle. The specific particles modeled here are composed of ovalbumin and of a generic Bacillus. The particles need not be spherical, and in some cases need not be homogeneous. However, the results calculated in this paper are for spherical homogeneous particles. Light absorbing and fluorescing molecules included in the model are aminomore » acids, nucleic acids, and several coenzymes. Here the excitation wavelength is 266 nm. The emission range, 300 to 370 nm, encompasses the fluorescence of tryptophan. The fluorescence cross section (CF) is calculated and compared with one set of published measured values. We investigate power law (Ady) approximations to CF, where d is diameter, and A and y are parameters adjusted to fit the data, and examine how y varies with d and composition, including the fraction as water. The particle's fluorescence efficiency (QF=CF/geometric-cross-section) can be written for homogeneous particles as QabsRF, where Qabs is the absorption efficiency, and RF, the fraction of the absorbed light emitted as fluorescence, is independent of size and shape. When QF is plotted vs. mid or mi(mr-1)d, where m=mr+imi is the complex refractive index, the plots for different fractions of water in the particle tend to overlap.« less

  20. Size-dependent fluorescence of bioaerosols: Mathematical model using fluorescing and absorbing molecules in bacteria

    SciTech Connect (OSTI)

    Hill, Steven C.; Williamson, Chatt C.; Doughty, David C.; Pan, Yong-Le; Santarpia, Joshua L.; Hill, Hanna H.

    2015-02-02

    This paper uses a mathematical model of fluorescent biological particles composed of bacteria and/or proteins (mostly as in Hill et al., 2013 [23]) to investigate the size-dependence of the total fluorescence emitted in all directions. The model applies to particles which have negligible reabsorption of fluorescence within the particle. The specific particles modeled here are composed of ovalbumin and of a generic Bacillus. The particles need not be spherical, and in some cases need not be homogeneous. However, the results calculated in this paper are for spherical homogeneous particles. Light absorbing and fluorescing molecules included in the model are amino acids, nucleic acids, and several coenzymes. Here the excitation wavelength is 266 nm. The emission range, 300 to 370 nm, encompasses the fluorescence of tryptophan. The fluorescence cross section (CF) is calculated and compared with one set of published measured values. We investigate power law (Ady) approximations to CF, where d is diameter, and A and y are parameters adjusted to fit the data, and examine how y varies with d and composition, including the fraction as water. The particle's fluorescence efficiency (QF=CF/geometric-cross-section) can be written for homogeneous particles as QabsRF, where Qabs is the absorption efficiency, and RF, the fraction of the absorbed light emitted as fluorescence, is independent of size and shape. When QF is plotted vs. mid or mi(mr-1)d, where m=mr+imi is the complex refractive index, the plots for different fractions of water in the particle tend to overlap.