National Library of Energy BETA

Sample records for industrial facility activities

  1. Tuesday Webcast for Industry: Key Energy-Saving Activities for Smaller Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ADVANCED MANUFACTURING OFFICE Tuesday Webcast for Industry Key Energy-Saving Activities for Smaller Facilities Webcast Questions and Answers: January 10, 2012 Presenters: Tom Wenning, Technical Account Manager, Oak Ridge National Laboratory Richard D. Feustel, Corporate Energy Services Manager, Briggs & Stratton Corporation The U.S. Department of Energy's (DOE's) Office of Advanced Manufacturing Program (AMO) hosts a series of webcasts on the first Tuesday of every month from 2:00 p.m. to

  2. Ennis Laundry Industrial Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Ennis Laundry Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Ennis Laundry Industrial Low Temperature Geothermal Facility Facility Ennis Laundry...

  3. Superior Energy Performance Industrial Facility Best Practice...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Facility Best Practice Scorecard Superior Energy Performance Industrial Facility Best Practice Scorecard Superior Energy Performance logo Facilities seeking to use the ...

  4. Local Option- Industrial Facilities and Development Bonds

    Energy.gov [DOE]

    Under the Utah Industrial Facilities and Development Act, counties, municipalities, and state universities in Utah may issue Industrial Revenue Bonds (IRBs) or Industrial Development Bonds (IDBs)...

  5. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    SciTech Connect (OSTI)

    Beres, Christopher M.; Fort, E. Joseph; Boyle, James D.

    2013-07-01

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  6. Industrial Facility Combustion Energy Use

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McMillan, Colin

    2016-08-01

    Facility-level industrial combustion energy use is calculated from greenhouse gas emissions data reported by large emitters (>25,000 metric tons CO2e per year) under the U.S. EPA's Greenhouse Gas Reporting Program (GHGRP, https://www.epa.gov/ghgreporting). The calculation applies EPA default emissions factors to reported fuel use by fuel type. Additional facility information is included with calculated combustion energy values, such as industry type (six-digit NAICS code), location (lat, long, zip code, county, and state), combustion unit type, and combustion unit name. Further identification of combustion energy use is provided by calculating energy end use (e.g., conventional boiler use, co-generation/CHP use, process heating, other facility support) by manufacturing NAICS code. Manufacturing facilities are matched by their NAICS code and reported fuel type with the proportion of combustion fuel energy for each end use category identified in the 2010 Energy Information Administration Manufacturing Energy Consumption Survey (MECS, http://www.eia.gov/consumption/manufacturing/data/2010/). MECS data are adjusted to account for data that were withheld or whose end use was unspecified following the procedure described in Fox, Don B., Daniel Sutter, and Jefferson W. Tester. 2011. The Thermal Spectrum of Low-Temperature Energy Use in the United States, NY: Cornell Energy Institute.

  7. Oregon General Industrial Water Pollution Control Facilities...

    Open Energy Information (Open El) [EERE & EIA]

    General Industrial Water Pollution Control Facilities Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon General Industrial Water Pollution...

  8. LARGE INDUSTRIAL FACILITIES BY STATE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LARGE INDUSTRIAL FACILITIES BY STATE LARGE INDUSTRIAL FACILITIES BY STATE PDF icon Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy...

  9. Low Temperature Direct Use Industrial Geothermal Facilities ...

    Open Energy Information (Open El) [EERE & EIA]

    Low Temperature Direct Use Industrial Geothermal Facilities Jump to: navigation, search Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","SATELLITE","HYBR...

  10. EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412: ...

  11. Superior Energy Performance Industrial Facility Best Practice Scorecard |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Industrial Facility Best Practice Scorecard Superior Energy Performance Industrial Facility Best Practice Scorecard Superior Energy Performance logo Facilities seeking to use the Mature Energy Pathway to qualify for Superior Energy Performance® (SEP(tm)) certification will use the SEP Industrial Facility Best Practice Scorecard to assess the maturity of the facility's energy management system. This scorecard describes credits that can be earned by implementing energy

  12. EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    TX | Department of Energy 2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412: Notice of Intent to Prepare an Environmental Impact Statement Construction of the TX Energy, LLC, Industrial Gasification Facility near Beaumont, Texas

  13. SUPERIOR ENERGY PERFORMANCE INDUSTRIAL FACILITY BEST PRACTICE SCORECARD

    Energy.gov [DOE]

    Facilities seeking to use the Mature Energy Pathway to qualify for Superior Energy Performance (SEP)certification will use the SEP Industrial Facility Best Practice Scorecard to assess the...

  14. EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Moss Point, MS | Department of Energy 8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS Documents Available for Download November 12, 2009 EIS-0428: Notice of Intent to Prepare an Environmental Impact Statement Construction and Startup of the Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, Mississippi December 1, 2009 EIS-0428:

  15. EIS-0429: Indiana Gasification, LLC, Industrial Gasification Facility in

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rockport, IN and CO2 Pipeline | Department of Energy 9: Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, IN and CO2 Pipeline EIS-0429: Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, IN and CO2 Pipeline Documents Available for Download November 12, 2009 EIS-0429: Notice of Intent to Prepare an Environmental Impact Statement Construction and Startup of the Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, Indiana December

  16. Two Facilities, One Goal: Advancing America's Wind Industry | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Two Facilities, One Goal: Advancing America's Wind Industry Two Facilities, One Goal: Advancing America's Wind Industry November 27, 2013 - 1:35pm Addthis Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. | Photo courtesy of Clemson University Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. |

  17. LARGE INDUSTRIAL FACILITIES BY STATE | Department of Energy

    Energy.gov (indexed) [DOE]

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) More Documents ...

  18. Live from Greenbuild: From the Industrial Facilities Connect & Learn |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Live from Greenbuild: From the Industrial Facilities Connect & Learn Live from Greenbuild: From the Industrial Facilities Connect & Learn November 18, 2015 - 5:32pm Addthis By Monica Kanojia The industrial industry is filled with unique and dynamic projects with substantially high process loads and resource consumption. This sector faces a different set of challenges in attaining sustainably built campuses. Owners must address compliance, regulations and safety

  19. Mercury control challenge for industrial boiler MACT affected facilities

    SciTech Connect (OSTI)

    2009-09-15

    An industrial coal-fired boiler facility conducted a test program to evaluate the effectiveness of sorbent injection on mercury removal ahead of a fabric filter with an inlet flue gas temperature of 375{sup o}F. The results of the sorbent injection testing are essentially inconclusive relative to providing the facility with enough data upon which to base the design and implementation of permanent sorbent injection system(s). The mercury removal performance of the sorbents was significantly less than expected. The data suggests that 50 percent mercury removal across a baghouse with flue gas temperatures at or above 375{sup o}F and containing moderate levels of SO{sub 3} may be very difficult to achieve with activated carbon sorbent injection alone. The challenge many coal-fired industrial facilities may face is the implementation of additional measures beyond sorbent injection to achieve high levels of mercury removal that will likely be required by the upcoming new Industrial Boiler MACT rule. To counter the negative effects of high flue gas temperature on mercury removal with sorbents, it may be necessary to retrofit additional boiler heat transfer surface or spray cooling of the flue gas upstream of the baghouse. Furthermore, to counter the negative effect of moderate or high SO{sub 3} levels in the flue gas on mercury removal, it may be necessary to also inject sorbents, such as trona or hydrated lime, to reduce the SO{sub 3} concentrations in the flue gas. 2 refs., 1 tab.

  20. 2015 Energy Systems Integration Facility Annual Report Calls to Industry:

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Bring Us Your Challenges | Grid Modernization | NREL 2015 Energy Systems Integration Facility Annual Report Calls to Industry: Bring Us Your Challenges April 6, 2016 The 2015 Energy Systems Integration Facility Annual Report is now available for download. The Energy Systems Integration Facility (ESIF) is the nation's premier facility for research, development, and demonstration of the components and strategies needed to optimize our entire energy system. It was established in 2013 by the

  1. Independent Activity Report, Defense Nuclear Facilities Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October...

  2. Solar Energy Education. Industrial arts: student activities....

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Industrial arts: student activities. Field test edition Citation Details In-Document Search Title: Solar Energy Education. Industrial arts: student activities. Field test edition ...

  3. Industrial Activities at DOE: Efficiency, Manufacturing, Process...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D Overview of ...

  4. EIS-0007: Low Btu Coal Gasification Facility and Industrial Park

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this draft environmental impact statement that evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky. DOE cancelled this project after publication of the draft.

  5. Tuesday Webcast for Industry: Key Energy-Saving Projects for Smaller Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Key Energy-Saving Projects for Smaller Facilities January 10, 2012 Program Name or Ancillary Text eere.energy.gov Key Energy-Saving Activities for Small and Medium Sized Facilities Thomas Wenning Oak Ridge National Laboratory Tuesday Webcast for Industry January 10, 2012 3 | Advanced Manufacturing Office eere.energy.gov Percent of Total U.S. Manufacturing Energy Small 5% Mid-Size 37% Large 58% 0 50000 100000 150000 200000 250000 U.S. Manufacturing Plants: By Size Small Plants Mid-Size Plants

  6. RCRA Subtitle C TSD facilities and solvent recovery facilities: Section 313 of the Emergency Planning and Community Right-to-Know Act. Toxic chemical release inventory; Industry guidance

    SciTech Connect (OSTI)

    1999-01-01

    The purpose of this guidance document is to assist facilities in SIC code 4953 that are regulated under the Resource Conservation and Recovery Act (RCRA), Subtitle C and facilities in SIC code 7389 that are primarily engaged in solvent recovery services on a contract or fee basis. This document explains the EPCRA Section 313 and PPA Section 6607 reporting requirements (collectively referred to as the EPCRA Section 313) reporting requirements, and discusses specific release and other waste management activities encountered at many facilities in these industries. The objectives of this manual are to: clarify EPCRA Section 313 requirements for industry; increase the accuracy and completeness of the data being reported by RCRA Subtitle C TSD and solvent recovery facilities; and reduce the level of effort expended by those facilities that prepare an EPCRA Section 313 report.

  7. Waste handling activities in glovebox dismantling facility

    SciTech Connect (OSTI)

    Kitamura, Akihiro; Okada, Takashi; Kashiro, Kashio; Yoshino, Masanori; Hirano, Hiroshi

    2007-07-01

    The Glovebox Dismantling Facility is a facility to decontaminate and size-reduce after-service gloveboxes in the Plutonium Fuel Production Facility, Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency. The wastes generated from these dismantling activities are simultaneously handled and packaged into drums in a bag-out manner. For future waste treatment and disposal, these wastes are separated into material categories. In this paper, we present the basic steps and analyzed data for the waste handling activities. The data were collected from dismantling activities for three gloveboxes (Grinding Pellet Glovebox, Visual Inspection Glovebox, Outer-diameter Screening Glovebox) conducted from 2001-2004. We also describe both current and near-future improvements. (authors)

  8. Partnering with Industry to Advance Biofuels, NREL's Integrated Biorefinery Research Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility and its availability to biofuels' industry partners who want to operate, test, and develop biorefining technology and equipment.

  9. Energy management planning and control in a large industrial facility

    SciTech Connect (OSTI)

    Rood, L.; Korber, J.

    1995-06-01

    Eastman Kodak`s Kodak Park Manufacturing facility is a collection of hundreds of buildings and millions of square feet operated by dozens of semi-autonomous manufacturing units. The facility is served by a centralized Utilities system which cogenerates electricity and distributes steam, chilled water, compressed air, and several other services throughout the site. Energy management at Kodak Park has been active since the 70`s. In 1991, the Utilities Division took ownership of a site wide energy thrust to address capacity limitations of electric, compressed air and other services. Planning and organizing a program to meet Utilities Division goals in such a large complex site was a slightly daunting task. Tracking progress and keeping on schedule is also a challenge. The authors will describe innovative use of a project management software program called Open Plan{reg_sign} to accomplish much of the planning and control for this program. Open Plan{reg_sign} has been used since the initial planning to the current progress of about 50% completion of the program. Hundreds of activities performed by dozens of resource people are planned and tracked. Not only the usual cost and schedule information is reported, but also the schedule for savings in terms of kilowatt-hours, pounds of steam, etc. These savings schedules are very useful for tracking against energy goals and Utilities business planning. Motivation of the individual departments to participate in the program and collection of data from these departments will also be discussed.

  10. Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support the Lab's security mission

  11. Carbon Fiber Technology Facility Set To Scale Up Industry | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Educational institutions partner with the Carbon Fiber Technology Facility to develop the skilled workforce needed for widespread production of low-cost carbon fiber. Carbon fiber ...

  12. Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Price, Lynn

    2010-10-07

    Various studies in different countries have shown that significant energy-efficiency improvement opportunities exist in the industrial sector, many of which are cost-effective. These energy-efficiency options include both cross-cutting as well as sector-specific measures. However, industrial plants are not always aware of energy-efficiency improvement potentials. Conducting an energy audit is one of the first steps in identifying these potentials. Even so, many plants do not have the capacity to conduct an effective energy audit. In some countries, government policies and programs aim to assist industry to improve competitiveness through increased energy efficiency. However, usually only limited technical and financial resources for improving energy efficiency are available, especially for small and medium-sized enterprises. Information on energy auditing and practices should, therefore, be prepared and disseminated to industrial plants. This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and measuring energy use, analyzing energy bills, benchmarking, analyzing energy use patterns, identifying energy-efficiency opportunities, conducting cost-benefit analysis, preparing energy audit reports, and undertaking post-audit activities. The purpose of this guidebook is to assist energy auditors and engineers in the plant to conduct a well-structured and effective energy audit.

  13. NGNP Nuclear-Industrial Facility and Design Certification Boundaries White Paper

    SciTech Connect (OSTI)

    Thomas E. Hicks

    2011-07-01

    The Next Generation Nuclear Plant (NGNP) Project was initiated at Idaho National Laboratory by the U.S. Department of Energy pursuant to the 2005 Energy Policy Act and based on research and development activities supported by the Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of the high temperature gas-cooled reactor (HTGR) technology. The HTGR is helium cooled and graphite moderated and can operate at reactor outlet temperatures much higher than those of conventional light water reactor (LWR) technologies. Accordingly, it can be applied in many industrial applications as a substitute for burning fossil fuels, such as natural gas, in addition to producing electricity, which is the principal application of current LWRs. These varied industrial applications may involve a standard HTGR modular design using different Energy Conversion Systems. Additionally, some of these process heat applications will require process heat delivery systems to lie partially outside the HTGR operator’s facility.

  14. Review of 1989 international mineral industry activities

    SciTech Connect (OSTI)

    Kimbell, C.L. (US Bureau of Mines, Washington, DC (US))

    1990-07-01

    This article reviews global mineral industry activities for 1989. Production of coal, natural gas, and petroleum, as well as non-fuel minerals, is detailed regionally and for individual countries. The problems of changes in technology, economic and political systems are discussed where they have affected mineral production.

  15. Political Activity at DOE Facilities by DOE Contractors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Activity at DOE Facilities by DOE Contractors Political Activity at DOE Facilities by DOE Contractors The attached guidance is issued to Contracting Officers to remind them of restrictions on political activity by DOE contractors at the Department's facilities PF2011-02 Political Activity at DOE Facilities or by DOE Contractors, which now includes updated attachments (53.83 KB) PF2011-02a.pdf (17.3 KB) More Documents & Publications Microsoft Word - Political Activity and the

  16. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    SciTech Connect (OSTI)

    Frazier, T.P.

    1994-10-20

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans.

  17. Safeguards by design - industry engagement for new uranium enrichment facilities in the United States

    SciTech Connect (OSTI)

    Demuth, Scott F; Grice, Thomas; Lockwood, Dunbar

    2010-01-01

    The United States Department of Energy's (DOE's) Office of Nonproliferation and International Security (NA-24) has initiated a Safeguards by Design (SBD) effort to encourage the incorporation of international (IAEA) safeguards features early in the design phase of a new nuclear facility in order to avoid the need to redesign or retrofit the facility at a later date. The main goals of Safeguards by Design are to (1) make the implementation of international safeguards at new civil nuclear facilities more effective and efficient, (2) avoid costly and time-consuming re-design work or retrofits at such facilities and (3) design such facilities in a way that makes proliferation as technically difficult, as time-consuming, and as detectable as possible. The U.S. Nuclear Regulatory Commission (NRC) has recently hosted efforts to facilitate the use of Safeguards by Design for new uranium enrichment facilities currently being planned for construction in the U.S. While SBD is not a NRC requirement, the NRC is aiding the implementation of SBD by coordinating discussions between DOE's NA-24 and industry's facility design teams. More specifically, during their normal course of licensing discussions the NRC has offered industry the opportunity to engage with NA-24 regarding SBD.

  18. ORNL necessary and sufficient standards for environment, safety, and health. Final report of the Identification Team for other industrial, radiological, and non-radiological hazard facilities

    SciTech Connect (OSTI)

    1998-07-01

    This Necessary and Sufficient (N and S) set of standards is for Other Industrial, Radiological, and Non-Radiological Hazard Facilities at Oak Ridge National Laboratory (ORNL). These facility classifications are based on a laboratory-wide approach to classify facilities by hazard category. An analysis of the hazards associated with the facilities at ORNL was conducted in 1993. To identify standards appropriate for these Other Industrial, Radiological, and Non-Radiological Hazard Facilities, the activities conducted in these facilities were assessed, and the hazards associated with the activities were identified. A preliminary hazards list was distributed to all ORNL organizations. The hazards identified in prior hazard analyses are contained in the list, and a category of other was provided in each general hazard area. A workshop to assist organizations in properly completing the list was held. Completed hazard screening lists were compiled for each ORNL division, and a master list was compiled for all Other Industrial, Radiological Hazard, and Non-Radiological facilities and activities. The master list was compared against the results of prior hazard analyses by research and development and environment, safety, and health personnel to ensure completeness. This list, which served as a basis for identifying applicable environment, safety, and health standards, appears in Appendix A.

  19. Steam plant ash disposal facility and industrial landfill at the Y-12 Plant, Anderson County, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The US Department of Energy (DOE) is proposing to install a wet ash handling system to dewater bottom ash from the coal-fired steam plant at its Y-12 Plant and to construct a new landfill for disposal of industrial wastes, including the dewatered bottom ash. The DOE operates three major facilities on its Oak Ridge Reservation (ORR). Operation of these facilities results in the production of a variety of nonhazardous, nonradioactive solid wastes (approximately 300 m{sup 3} per day, compacted) including sanitary wastes, common industrial wastes and construction debris. At the current rate of use, this existing landfill will be filled within approximately 18 months, and more space is urgently needed. In an effort to alleviate this problem, DOE and WMD management propose to create additional landfill facilities at a nearby site. The potential environmental impacts associated with this proposed action are the subject of this environmental assessment (EA).

  20. Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Callaway, Duncan S.; Kiliccote, Sila

    2011-08-16

    Changes in the electricity consumption of commercial buildings and industrial facilities (C&I facilities) during Demand Response (DR) events are usually estimated using counterfactual baseline models. Model error makes it difficult to precisely quantify these changes in consumption and understand if C&I facilities exhibit event-to-event variability in their response to DR signals. This paper seeks to understand baseline model error and DR variability in C&I facilities facing dynamic electricity prices. Using a regression-based baseline model, we present a method to compute the error associated with estimates of several DR parameters. We also develop a metric to determine how much observed DR variability results from baseline model error rather than real variability in response. We analyze 38 C&I facilities participating in an automated DR program and find that DR parameter errors are large. Though some facilities exhibit real DR variability, most observed variability results from baseline model error. Therefore, facilities with variable DR parameters may actually respond consistently from event to event. Consequently, in DR programs in which repeatability is valued, individual buildings may be performing better than previously thought. In some cases, however, aggregations of C&I facilities exhibit real DR variability, which could create challenges for power system operation.

  1. Pennsylvania's Comprehensive, Statewide, Pro-Active Industrial Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency (E2) Program | Department of Energy Pennsylvania's Comprehensive, Statewide, Pro-Active Industrial Energy Efficiency (E2) Program Pennsylvania's Comprehensive, Statewide, Pro-Active Industrial Energy Efficiency (E2) Program Pennsylvania The U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program) has developed multiple resources and a best practices suite of tools to help industrial manufacturers reduce their energy

  2. Characterizing the Response of Commercial and Industrial Facilities to Dynamic Pricing Signals from the Utility

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Callaway, Duncan S.; Price, Phillip N.; Kiliccote, Sila

    2010-07-01

    We describe a method to generate statistical models of electricity demand from Commercial and Industrial (C&I) facilities including their response to dynamic pricing signals. Models are built with historical electricity demand data. A facility model is the sum of a baseline demand model and a residual demand model; the latter quantifies deviations from the baseline model due to dynamic pricing signals from the utility. Three regression-based baseline computation methods were developed and analyzed. All methods performed similarly. To understand the diversity of facility responses to dynamic pricing signals, we have characterized the response of 44 C&I facilities participating in a Demand Response (DR) program using dynamic pricing in California (Pacific Gas and Electric's Critical Peak Pricing Program). In most cases, facilities shed load during DR events but there is significant heterogeneity in facility responses. Modeling facility response to dynamic price signals is beneficial to the Independent System Operator for scheduling supply to meet demand, to the utility for improving dynamic pricing programs, and to the customer for minimizing energy costs.

  3. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    SciTech Connect (OSTI)

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  4. Summary Report on Industrial and Regulatory Engagement Activities |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Report on Industrial and Regulatory Engagement Activities Summary Report on Industrial and Regulatory Engagement Activities The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies pathway of the Light Water Reactor Sustainability(LWRS) Program conducts a vigorous engagement strategy with the U.S. nuclear power industry, including the nuclear operating companies, major support organizations, the Nuclear Regulatory Commission (NRC), and

  5. Active test of separation facility at Rokkasho reprocessing plant

    SciTech Connect (OSTI)

    Iseki, Tadahiro; Inaba, Makoto; Takahashi, Naoki

    2007-07-01

    During the second and third steps of Active Test at Rokkasho Reprocessing Plant (RRP), the performances of the Separation Facility have been checked; (A) diluent washing efficiency, (B) plutonium stripping efficiency, (C) decontamination factor of fission products and (D) plutonium and uranium leakage into raffinate and spent solvent. Test results were equivalent to or better than expected. (authors)

  6. Solar Energy Education. Industrial arts: student activities. Field test

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    edition (Technical Report) | SciTech Connect Industrial arts: student activities. Field test edition Citation Details In-Document Search Title: Solar Energy Education. Industrial arts: student activities. Field test edition × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in

  7. DOE/DHS INDUSTRIAL CONTROL SYSTEM CYBER SECURITY PROGRAMS: A MODEL FOR USE IN NUCLEAR FACILITY SAFEGUARDS AND SECURITY

    SciTech Connect (OSTI)

    Robert S. Anderson; Mark Schanfein; Trond Bjornard; Paul Moskowitz

    2011-07-01

    Many critical infrastructure sectors have been investigating cyber security issues for several years especially with the help of two primary government programs. The U.S. Department of Energy (DOE) National SCADA Test Bed and the U.S. Department of Homeland Security (DHS) Control Systems Security Program have both implemented activities aimed at securing the industrial control systems that operate the North American electric grid along with several other critical infrastructure sectors (ICS). These programs have spent the last seven years working with industry including asset owners, educational institutions, standards and regulating bodies, and control system vendors. The programs common mission is to provide outreach, identification of cyber vulnerabilities to ICS and mitigation strategies to enhance security postures. The success of these programs indicates that a similar approach can be successfully translated into other sectors including nuclear operations, safeguards, and security. The industry regulating bodies have included cyber security requirements and in some cases, have incorporated sets of standards with penalties for non-compliance such as the North American Electric Reliability Corporation Critical Infrastructure Protection standards. These DOE and DHS programs that address security improvements by both suppliers and end users provide an excellent model for nuclear facility personnel concerned with safeguards and security cyber vulnerabilities and countermeasures. It is not a stretch to imagine complete surreptitious collapse of protection against the removal of nuclear material or even initiation of a criticality event as witnessed at Three Mile Island or Chernobyl in a nuclear ICS inadequately protected against the cyber threat.

  8. Activation of Air and Utilities in the National Ignition Facility

    SciTech Connect (OSTI)

    Khater, H; Pohl, B; Brererton, S

    2010-04-08

    Detailed 3-D modeling of the NIF facility is developed to accurately simulate the radiation environment within the NIF. Neutrons streaming outside the NIF Target Chamber will activate the air present inside the Target Bay and the Ar gas inside the laser tubes. Smaller levels of activity are also generated in the Switchyard air and in the Ar portion of the SY laser beam path. The impact of neutron activation of utilities located inside the Target Bay is analyzed for variety of shot types. The impact of activating TB utilities on dose received by maintenance personnel post-shot is analyzed. The current NIF facility model includes all important features of the Target Chamber, shielding system, and building configuration. Flow of activated air from the Target Bay is controlled by the HVAC system. The amount of activated Target Bay air released through the stack is very small and does not pose significant hazard to personnel or the environment. Activation of Switchyard air is negligible. Activation of Target Bay utilities result in a manageable dose rate environment post high yield (20 MJ) shots. The levels of activation generated in air and utilities during D-D and THD shots are small and do not impact work planning post shots.

  9. MSGP Documents & Reports by Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Requirements The following records are available for each facility: Site specific Storm Water Pollution Prevention Plans (SWPPPs) for each industrial activity Reporting of visual...

  10. INDUSTRIAL CONTROL SYSTEM CYBER SECURITY: QUESTIONS AND ANSWERS RELEVANT TO NUCLEAR FACILITIES, SAFEGUARDS AND SECURITY

    SciTech Connect (OSTI)

    Robert S. Anderson; Mark Schanfein; Trond Bjornard; Paul Moskowitz

    2011-07-01

    Typical questions surrounding industrial control system (ICS) cyber security always lead back to: What could a cyber attack do to my system(s) and; how much should I worry about it? These two leading questions represent only a fraction of questions asked when discussing cyber security as it applies to any program, company, business, or organization. The intent of this paper is to open a dialog of important pertinent questions and answers that managers of nuclear facilities engaged in nuclear facility security and safeguards should examine, i.e., what questions should be asked; and how do the answers affect an organization's ability to effectively safeguard and secure nuclear material. When a cyber intrusion is reported, what does that mean? Can an intrusion be detected or go un-noticed? Are nuclear security or safeguards systems potentially vulnerable? What about the digital systems employed in process monitoring, and international safeguards? Organizations expend considerable efforts to ensure that their facilities can maintain continuity of operations against physical threats. However, cyber threats particularly on ICSs may not be well known or understood, and often do not receive adequate attention. With the disclosure of the Stuxnet virus that has recently attacked nuclear infrastructure, many organizations have recognized the need for an urgent interest in cyber attacks and defenses against them. Several questions arise including discussions about the insider threat, adequate cyber protections, program readiness, encryption, and many more. These questions, among others, are discussed so as to raise the awareness and shed light on ways to protect nuclear facilities and materials against such attacks.

  11. Integration of Environment, Safety, and Health into Facility Disposition Activities

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-05-01

    Volume One of this Standard has been revised to provide a Department of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities that involve work not done within a permanent structure. Methodologies provided in this Standard are intended to be compliant with Title 10 of the Code of Federal Regulations (CFR) Part 830, Nuclear Safety Management, Subpart B, Safety Basis Requirements. Volume Two contains the appendices that provide additional environment, safety and health (ES&H) information to complement Volume 1 of this Standard. Volume 2 of the Standard is much broader in scope than Volume 1 and satisfies several purposes. Integrated safety management expectations are provided in accordance with facility disposition requirements contained in DOE O 430.1B, Real Property Asset Management.

  12. Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Secure and Sustainable Energy Future Mission/Facilities Facilities Tara Camacho-Lopez 2016-04-06T18:06:13+00:00 National Solar Thermal Test Facility (NSTTF) facility_nsttf_slide NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants, which have three generic system architectures: line-focus (trough and continuous linear Fresnel reflector systems), point-focus central

  13. EIS-0412: Federal Loan Guarantee to Support Construction of the TX Energy LLC, Industrial Gasification Facility near Beaumont, Texas

    Energy.gov [DOE]

    The Department of Energy is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to TX Energy, LLC (TXE). TXE submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 (EPAct 2005) to support construction of the TXE industrial Gasification Facility near Beaumont, Texas.

  14. Steam plant ash disposal facility and industrial landfill at the Y-12 Plant, Anderson County, Tennessee. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The US Department of Energy (DOE) is proposing to install a wet ash handling system to dewater bottom ash from the coal-fired steam plant at its Y-12 Plant and to construct a new landfill for disposal of industrial wastes, including the dewatered bottom ash. The DOE operates three major facilities on its Oak Ridge Reservation (ORR). Operation of these facilities results in the production of a variety of nonhazardous, nonradioactive solid wastes (approximately 300 m{sup 3} per day, compacted) including sanitary wastes, common industrial wastes and construction debris. At the current rate of use, this existing landfill will be filled within approximately 18 months, and more space is urgently needed. In an effort to alleviate this problem, DOE and WMD management propose to create additional landfill facilities at a nearby site. The potential environmental impacts associated with this proposed action are the subject of this environmental assessment (EA).

  15. Political Activity at DOE Facilities and by DOE Contractors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Political Activity at DOE Facilities and by DOE Contractors Political Activity at DOE Facilities and by DOE Contractors The Policy Flash from October 5, 2011, serves to remind Contracting Officers of restrictions on political activity by DOE contractors at the Department facitilites, and it is available here. More Documents & Publications Political Activity Policy Flash Archive Search File Political Activity at DOE Facilities by DOE Contractors

  16. Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Facilities The the WTGa1 turbine (aka DOE/SNL #1) retuns to power as part of a final series of commissioning tests. Permalink Gallery First Power for SWiFT Turbine Achieved during Recommissioning Facilities, News, Renewable Energy, SWIFT, Wind Energy, Wind News First Power for SWiFT Turbine Achieved during Recommissioning The Department of Energy's Scaled Wind Farm Technology (SWiFT) Facility reached an exciting milestone with the return to power production of the WTGa1 turbine (aka DOE/SNL #1)

  17. Recent Gulf of Mexico pipeline activity reflects industry's recovery

    SciTech Connect (OSTI)

    True, W.R.

    1990-08-27

    Pipeline construction in the U.S. Gulf of Mexico has improved considerably in recent years, especially activity in shallow water (less than 300 ft). Construction for middle depths (300-600 ft) has been flat, while deepwater (600+ ft) projects have held firm or increased slightly. Overall pipeline mileage constructed in federal waters 1985-89 period showed a strengthening industry, especially during the 1988-89 period. These trends are evident from analyses of 5-year data. The author tracks comparisons between applications that were approved by the MMS during this period and projects that have been reported to the MMS as completed.

  18. INDUSTRIAL/MILITARY ACTIVITY-INITIATED ACCIDENT SCREENING ANALYSIS

    SciTech Connect (OSTI)

    D.A. Kalinich

    1999-09-27

    Impacts due to nearby installations and operations were determined in the Preliminary MGDS Hazards Analysis (CRWMS M&O 1996) to be potentially applicable to the proposed repository at Yucca Mountain. This determination was conservatively based on limited knowledge of the potential activities ongoing on or off the Nevada Test Site (NTS). It is intended that the Industrial/Military Activity-Initiated Accident Screening Analysis provided herein will meet the requirements of the ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987) in establishing whether this external event can be screened from further consideration or must be included as a design basis event (DBE) in the development of accident scenarios for the Monitored Geologic Repository (MGR). This analysis only considers issues related to preclosure radiological safety. Issues important to waste isolation as related to impact from nearby installations will be covered in the MGR performance assessment.

  19. 2015 Summary Report on Industrial and Regulatory Engagement Activities

    SciTech Connect (OSTI)

    Thomas, Kenneth David

    2015-09-01

    activities and future plans were made to Arizona Public Service, Exelon, Duke Energy, Pacific Gas & Electric, SCANA, Southern Nuclear, South Texas Project, STARS Alliance, Tennessee Valley Authority, and Xcel. Discussions were also held on the pathway goals and activities with major industry support organizations during FY 2102, including the Institute of Nuclear Power Operations (INPO), the Nuclear Information Technology Strategic Leadership (NITSL), the Nuclear Energy Institute (NEI), and the Electric Power Research Institute. The Advanced II&C Pathway work was presented at five major industry conferences and Informal discussions were held with key NRC managers at industry conferences. In addition, discussions were held with NRC senior managers on digital regulatory issues through participation on the NEI Digital I&C Working Group. Meetings were held with major industry suppliers and consultants, to explore opportunities for collaboration and to provide a means of pilot project technology transfer. In the international area, discussions were held with Electricite’ de France (EdF) concerning possible collaboration in the area NPP configuration control using intelligent wireless devices.

  20. A method for the assessment of site-specific economic impacts of commercial and industrial biomass energy facilities. A handbook and computer model

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    A handbook on ``A Method for the Assessment of Site-specific Econoomic Impacts of Industrial and Commercial Biomass Energy Facilities`` has been prepared by Resource Systems Group Inc. under contract to the Southeastern Regional Biomass Energy Program (SERBEP). The handbook includes a user-friendly Lotus 123 spreadsheet which calculates the economic impacts of biomass energy facilities. The analysis uses a hybrid approach, combining direct site-specific data provided by the user, with indirect impact multipliers from the US Forest Service IMPLAN input/output model for each state. Direct economic impacts are determined primarily from site-specific data and indirect impacts are determined from the IMPLAN multipliers. The economic impacts are given in terms of income, employment, and state and federal taxes generated directly by the specific facility and by the indirect economic activity associated with each project. A worksheet is provided which guides the user in identifying and entering the appropriate financial data on the plant to be evaluated. The WLAN multipliers for each state are included in a database within the program. The multipliers are applied automatically after the user has entered the site-specific data and the state in which the facility is located. Output from the analysis includes a summary of direct and indirect income, employment and taxes. Case studies of large and small wood energy facilities and an ethanol plant are provided as examples to demonstrate the method. Although the handbook and program are intended for use by those with no previous experience in economic impact analysis, suggestions are given for the more experienced user who may wish to modify the analysis techniques.

  1. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect (OSTI)

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  2. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio)

    SciTech Connect (OSTI)

    1995-11-01

    The report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume I is a description of the components and methodologies used in the risk assessment and provides a summary of the major results from the three components of the assessment.

  3. Status of Activities to Implement a Sustainable System of MC&A Equipment and Methodological Support at Rosatom Facilities

    SciTech Connect (OSTI)

    J.D. Sanders

    2010-07-01

    Under the U.S.-Russian Material Protection, Control and Accounting (MPC&A) Program, the Material Control and Accounting Measurements (MCAM) Project has supported a joint U.S.-Russian effort to coordinate improvements of the Russian MC&A measurement system. These efforts have resulted in the development of a MC&A Equipment and Methodological Support (MEMS) Strategic Plan (SP), developed by the Russian MEM Working Group. The MEMS SP covers implementation of MC&A measurement equipment, as well as the development, attestation and implementation of measurement methodologies and reference materials at the facility and industry levels. This paper provides an overview of the activities conducted under the MEMS SP, as well as a status on current efforts to develop reference materials, implement destructive and nondestructive assay measurement methodologies, and implement sample exchange, scrap and holdup measurement programs across Russian nuclear facilities.

  4. Preliminary Closure Plan for the Immobilized Low Activity Waste (ILAW) Disposal Facility

    SciTech Connect (OSTI)

    BURBANK, D.A.

    2000-08-31

    This document describes the preliminary plans for closure of the Immobilized Low-Activity Waste (ILAW) disposal facility to be built by the Office of River Protection at the Hanford site in southeastern Washington. The facility will provide near-surface disposal of up to 204,000 cubic meters of ILAW in engineered trenches with modified RCRA Subtitle C closure barriers.

  5. User Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    User Facilities User Facilities User facility agreements allow Los Alamos partners and other entities to conduct research at our unique facilities. In 2011, LANL hosted more than 1,200 users at CINT, LANSCE, and NHMFL. Users came from across the DOE complex, from international academia, and from industrial companies from 45 states across the U.S. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, LANL can implement user facility

  6. Equity Industrial Partners | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Equity Industrial Partners Jump to: navigation, search Name Equity Industrial Partners Facility Equity Industrial Partners Sector Wind energy Facility Type Community Wind Facility...

  7. Vit Plant receives and sets key air filtration equipment for Low Activity Waste Facility

    Energy.gov [DOE]

    WTP lifted a nearly 100-ton carbon bed absorber into the Low-Activity Waste Facility. This key piece of air-filtration equipment will remove mercury and acidic gases before air is channeled through...

  8. DOE Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities

    Energy.gov [DOE]

    The original release of DOE-STD-1120-98 provided integrated safety management guidance for enhancing worker, public, and environmental protection during all facility disposition activities.

  9. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  10. Facility Floorplan

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    facility floorplan Facility Floorplan

  11. The Remote Handled Immobilization Low Activity Waste Disposal Facility Environmental Permits & Approval Plan

    SciTech Connect (OSTI)

    DEFFENBAUGH, M.L.

    2000-08-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement or record of decision shall result in shutdown of an operational

  12. Activities to support the liquefied gaseous fuels spill test facility program. Final report

    SciTech Connect (OSTI)

    Sheesley, D.; King, S.B.; Routh, T.

    1997-03-01

    Approximately a hundred years ago the petrochemical industry was in its infancy, while the chemical industry was already well established. Today, both of these industries, which are almost indistinguishable, are a substantial part of the makeup of the U.S. economy and the lifestyle we enjoy. It is difficult to identify a single segment of our daily lives that isn`t affected by these industries and the products or services they make available for our use. Their survival and continued function in a competitive world market are necessary to maintain our current standard of living. The occurrence of accidents in these industries has two obvious effects: (1) the loss of product during the accident and future productivity because of loss of a portion of a facility or transport medium, and (2) the potential loss of life or injury to individuals, whether workers, emergency responders, or members of the general public. A great deal of work has been conducted at the Liquefied Gaseous Fuels Spill test Facility (LGFSTF) on hazardous spills. WRI has conducted accident investigations as well as provided information on the research results via the internet and bibliographies.

  13. The January 17, 1994 Northridge Earthquake: Effects on selected industrial facilities and lifelines

    SciTech Connect (OSTI)

    Eli, M.W.; Sommer, S.C.; Roche, T.R.; Merz, K.L.

    1995-02-01

    Revision 0 of this report is being published in February 1995 to closely mark the one-year anniversary of the Northridge Earthquake. A September 1994 Draft version of the report was reviewed by DOE and NRC, and many of the review comments are incorporated into Revision 0. While this revision of the report is not entirely complete, it is being made available for comment, review, and evaluation. Since the report was written by several authors, sections of the report have slightly different styles. Several sections of Revision 0 are not complete, but are planned to be completed in Revision 1. The primary unfinished section is Section 3.3 on Electric Power Transmission. Other sections of Revision 0, such as Section 4.5.2 on the Energy Technology Engineering Center and 3.2 on Electric Power Generation, will be enhanced with further detailed information as it becomes available. In addition, further data, including processed response spectra for investigated facilities and cataloging of relay performance, will be added to Revision 1 depending upon investigation support. While Revision 0 of this report is being published by LLNL, Revision 1 is planned to be published by EPRI. The anticipated release date for Revision 1 is December 1995. Unfortunately, the one-year anniversary of the Northridge Earthquake was also marked by the devastating Hyogo-Ken Nanbu (or Hanshin-Awaji) Earthquake in Kobe, Japan. As compared to the Northridge Earthquake, there were many more deaths, collapsed structures, destroyed lifelines, and fires following the Kobe Earthquake. Lessons from the Kobe Earthquake will both reemphasize topics discussed in this report and provide further issues to be addressed when designing and retrofitting structures, systems, and components for seismic strong motion.

  14. Active Test of Purification Facility at Rokkasho Reprocessing Plant

    SciTech Connect (OSTI)

    Iseki, Tadahiro; Tsujimura, Akino; Nitta, Takeshi; Matsuda, Takashi

    2007-07-01

    During the second and third steps of Active Test of the Plutonium Purification unit, the extraction and reextraction performances of pulsed columns and mixer-settlers have been checked. Plutonium losses into wastes have been also checked. As a result, it was confirmed that the expected performances had been achieved. (authors)

  15. Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992

    SciTech Connect (OSTI)

    Cantwell, K.; St. Pierre, M.

    1992-12-31

    SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included.

  16. Industrial Users

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Industrial Users The facility has been used for more than a decade by a virtual Who's Who of the semiconductor industry to simulate the potential failures posed by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User Information The Neutron and Nuclear Science (WNR) Facility welcomes proposals for beam time experiments from industry users. Proprietary and non-proprietary industrial

  17. Development of a Community Radiation Monitoring program near a nuclear industrial facility

    SciTech Connect (OSTI)

    Pauley, B.J.; Maxwell, D.R.

    1992-01-01

    The Community Radiation Monitoring (ComRad) program is a cooperative effort of the DOE, Rocky Flats Office (RFO), EG G, and surrounding communities. The intent of the ComRad program is to establish radiation and meteorological monitoring stations in the communities for their independent control and use. The primary objectives of the ComRad program are to provide (1) public education, (2) active participation of the public, and (3) better community relations. The ComRad program involves establishing new offsite environmental surveillance stations to be operated and managed by local community science teachers. The general public will be invited to inspect the air quality instrumentation and results displayed. The instrumentation for each station will include a gamma counter, weather station, high-volume (Hi-Vol) air sampler, and thermoluminescent dosimeter (TLD). The purpose of this paper is to describe the operation of the ComRad program emphasizing program objectives, organizational responsibility, participation by community technical representatives, station managers and alternate station managers training, and data dissemination to the public.

  18. RESEARCH AND DEVELOPMENT ACTIVITIES AT SAVANNAH RIVER SITE'S H CANYON FACILITY

    SciTech Connect (OSTI)

    Sexton, L.; Fuller, Kenneth

    2013-07-09

    The Savannah River Site's (SRS) H Canyon Facility is the only large scale, heavily shielded, nuclear chemical separations plant still in operation in the U.S. The facility's operations historically recovered uranium-235 (U-235) and neptunium-237 (Np-237) from aluminum-clad, enriched-uranium fuel tubes from Site nuclear reactors and other domestic and foreign research reactors. Today the facility, in conjunction with HB Line, is working to provide the initial feed material to the Mixed Oxide Facility also located on SRS. Many additional campaigns are also in the planning process. Furthermore, the facility has started to integrate collaborative research and development (R&D) projects into its schedule. H Canyon can serve as the appropriate testing location for many technologies focused on monitoring the back end of the fuel cycle, due to the nature of the facility and continued operation. H Canyon, in collaboration with the Savannah River National Laboratory (SRNL), has been working with several groups in the DOE complex to conduct testing demonstrations of novel technologies at the facility. The purpose of conducting these demonstrations at H Canyon will be to demonstrate the capabilities of the emerging technologies in an operational environment. This paper will summarize R&D testing activities currently taking place in H Canyon and discuss the possibilities for future collaborations.

  19. Research Facilities | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research Facilities Our state-of-the-art facilities are available to industry entrepreneurs, engineers, scientists, and universities for researching and developing their energy technologies. Our researchers and technicians who operate these labs and facilities are ready to work with you and share their expertise. Alphabetical Listings Laboratories Test and User Facilities Popular Facilities Energy Systems Integration Facility Integrated Biorefinery Research Facility Process Development

  20. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron Activated Shield Wall

    SciTech Connect (OSTI)

    Michael R. Kruzic

    2007-09-16

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facility Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D&D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D&D strategy is now being employed on the larger ''sister'' facility, Test Cell C.

  1. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 1. Executive summary

    SciTech Connect (OSTI)

    1997-05-01

    Contents: Introduction and Summary of Results; Facility Background; Facility Emissions; Atmospheric Dispersion and Deposition Modeling of Emissions; Human Health Risk Assessment; Screening Ecological Risk Assessment; Accident Analysis; Additional Analysis in Response to Peer Review Recommendations; References.

  2. Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D

    Energy.gov [DOE]

    Overview of industrial activities at DOE by Joe Cresko, EERE Advanced Manufacturing Office, at the EERE QC Workshop held December 9-10, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  3. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 2. Introduction

    SciTech Connect (OSTI)

    1997-05-01

    Contents: Overview; Facility Background; Risk Assessment History at WTI; Peer Review Comments and Key Assumptions; and References.

  4. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  5. Oregon Trail Mushrooms Industrial Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Mushrooms Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Trail Mushrooms Industrial Low Temperature Geothermal Facility Facility Oregon...

  6. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100

  7. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael Kruzic

    2007-09-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

  8. Conceptual design of a solar cogeneration facility industrial process heat. Final report, September 30, 1980-August 14, 1981

    SciTech Connect (OSTI)

    Joy, P.; Brzeczek, M.; Seilestad, H.; Silverman, C.; Yenetchi, G.

    1981-07-01

    The cogeneration facility systems specification is presented which defines the characteristics, and design and environmental requirements for the facility and the performance, characteristics and economic data for the solar additions as well as certain design data for the existing facility. Climatological data are presented for the site. A copy of the Pacific Gas and Electric Draft Power Sales Agreement is included. Collector operating and safety procedures are given.

  9. Industry decries sharp decline in U. S. offshore activity

    SciTech Connect (OSTI)

    Not Available

    1992-05-11

    Roadblocks to offshore activity in the U.S. drew much of the spotlight at the 24th Offshore Technology Conference last week in Houston. Among OTC highlights included in this paper are: Two panels reviewed how federal leasing moratoriums and regulatory restrictions are reining U.S. offshore development. Conoco Inc.'s manager of exploration and development in Russia detailed the allure of giant and supergiant fields in the Commonwealth of Independent States and reviewed the status of the company's efforts to negotiate E and D deals with Russian partners. Minerals Management Service officials reviewed environmental challenges facing operators on the U.S. Outer Continental Shelf and new MMS inspection strategies in the Gulf of Mexico. The 1992 OTC Distinguished Achievement Award for companies went to Brazil's Petroleo Brasileiro SA for deepwater development records set with the 3 Marlim well in the Campos basin off Brazil.

  10. Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Activities at DOE: Efficiency, Manufacturing, Process & Materials R&D Joe Cresko David Hardy Advanced Manufacturing Office Metrology Workshop December 9, 2013 NREL Industrial Energy Use 2 Source: Manufacturing Energy and Carbon Footprint, derived from 2006 MECS AMO programs target: * Research, Development and Demonstration of new, advanced processes and materials technologies that reduce energy consumption for manufactured products and enable life-cycle energy savings *

  11. Assessment of industrial activity in the utilization of biomass for energy

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    The objective of this report is to help focus the federal programs in biomass energy, by identifying the status and objectives of private sector activity in the biomass field as of mid-1979. In addition, the industry's perceptions of government activities are characterized. Findings and conclusions are based principally on confidential interviews with executives in 95 companies. These included forest products companies, agricultural products companies, equipment manufacturers, electric and gas utilities petroleum refiners and distributors, research and engineering firms, and trade organizations, as listed in Exhibit 1. Interview findings have been supplemented by research of recent literature. The study focused on four key questions: (1) what is the composition of the biomass industry; (2) what are the companies doing; (3) what are their objectives and strategies; and (4) what are the implications for government policy. This executive summary provides highlights of the key findings and conclusions. The summary discussion is presented in seven parts: (1) overview of the biomass field; (2) structure of the biomass industry today; (3) corporate activities in biomass-related areas; (4) motivations for these activities; (5) industry's outlook on the future for energy-from-biomass; (6) industry's view of government activities; and (7) implications for Federal policy.

  12. Active test of head-end facility at Rokkasho reprocessing plant

    SciTech Connect (OSTI)

    Yamamoto, Yoshiro; Tanaka, Satoshi; Kawabe, Shuji; Kamada, Yoshiaki

    2007-07-01

    During the first step, the second and the third step of Active Test (AT) at Rokkasho Reprocessing Plant (RRP), the performances of the Head-end Facility were checked, mainly for shearing and dissolution: shearing force and shearing time were the values as expected and concentration of U and Pu in dissolution solution were the values as expected. And safety requirement for acidity in dissolution solution was satisfied. (authors)

  13. Facility Representatives

    Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-03-01

    This standard, DOE-STD-1063, Facility Representatives, defines the duties, responsibilities and qualifications for Department of Energy (DOE) Facility Representatives, based on facility hazard classification; risks to workers, the public, and the environment; and the operational activity level. This standard provides the guidance necessary to ensure that DOE’s hazardous nuclear and non-nuclear facilities have sufficient staffing of technically qualified facility representatives (FRs) to provide day-to-day oversight of contractor operations.

  14. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    SciTech Connect (OSTI)

    Chang, Binbin Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorptiondesorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: Porous carbon spheres solid acid prepared by a facile chemical activation. It owns high surface area, superior porosity and uniform spherical morphology. It possesses high acidity and

  15. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 2: Appendices

    SciTech Connect (OSTI)

    1998-05-01

    This volume contains the appendices that provide additional environment, safety, and health (ES and H) information to complement Volume 1 of this Standard. Appendix A provides a set of candidate DOE ES and H directives and external regulations, organized by hazard types that may be used to identify potentially applicable directives to a specific facility disposition activity. Appendix B offers examples and lessons learned that illustrate implementation of ES and H approaches discussed in Section 3 of Volume 1. Appendix C contains ISMS performance expectations to guide a project team in developing and implementing an effective ISMS and in developing specific performance criteria for use in facility disposition. Appendix D provides guidance for identifying potential Applicable or Relevant and Appropriate Requirements (ARARs) when decommissioning facilities fall under the Comprehensive Environmental Response, Compensation, Liability Act (CERCLA) process. Appendix E discusses ES and H considerations for dispositioning facilities by privatization. Appendix F is an overview of the WSS process. Appendix G provides a copy of two DOE Office of Nuclear Safety Policy and Standards memoranda that form the bases for some of the guidance discussed within the Standard. Appendix H gives information on available hazard analysis techniques and references. Appendix I provides a supplemental discussion to Sections 3.3.4, Hazard Baseline Documentation, and 3.3.6, Environmental Permits. Appendix J presents a sample readiness evaluation checklist.

  16. Results of Active Test of Uranium-Plutonium Co-denitration Facility at Rokkasho Reprocessing Plant

    SciTech Connect (OSTI)

    Numao, Teruhiko; Nakayashiki, Hiroshi; Arai, Nobuyuki; Miura, Susumu; Takahashi, Yoshiharu; Nakamura, Hironobu; Tanaka, Izumi

    2007-07-01

    In the U-Pu co-denitration facility at Rokkasho Reprocessing Plant (RRP), Active Test which composes of 5 steps was performed by using uranium-plutonium nitrate solution that was extracted from spent fuels. During Active Test, two kinds of tests were performed in parallel. One was denitration performance test in denitration ovens, and expected results were successfully obtained. The other was validation and calibration of non-destructive assay (NDA) systems, and expected performances were obtained and their effectiveness as material accountancy and safeguards system was validated. (authors)

  17. Wind Manufacturing Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Facilities Wind Manufacturing Facilities Wind Manufacturing Facilities America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state

  18. Final Assessment: U.S. Virgin Islands Industrial Development Park and Adjacent Facilities Energy-Efficiency and Micro-Grid Infrastructure

    SciTech Connect (OSTI)

    Petersen, Joseph M.; Boyd, Paul A.; Dahowski, Robert T.; Parker, Graham B.

    2015-12-31

    The purpose of this assessment was to undertake an assessment and analysis of cost-effective options for energy-efficiency improvements and the deployment of a micro-grid to increase the energy resilience at the U.S. Virgin Islands Industrial Development Park (IDP) and adjacent facilities in St. Croix, Virgin Islands. The Economic Development Authority sought assistance from the U.S. Department of Energy to undertake this assessment undertaken by Pacific Northwest National Laboratory. The assessment included 18 buildings plus the perimeter security lighting at the Virgin Islands Bureau of Correctional Facility, four buildings plus exterior lighting at the IDP, and five buildings (one of which is to be constructed) at the Virgin Islands Police Department for a total of 27 buildings with a total of nearly 323,000 square feet.

  19. Annual Report To Congress. Department of Energy Activities Relating to the Defense Nuclear Facilities Safety Board, Calendar Year 2003

    SciTech Connect (OSTI)

    None, None

    2004-02-28

    The Department of Energy (Department) submits an Annual Report to Congress each year detailing the Departments activities relating to the Defense Nuclear Facilities Safety Board (Board), which provides advice and recommendations to the Secretary of Energy (Secretary) regarding public health and safety issues at the Departments defense nuclear facilities. In 2003, the Department continued ongoing activities to resolve issues identified by the Board in formal recommendations and correspondence, staff issue reports pertaining to Department facilities, and public meetings and briefings. Additionally, the Department is implementing several key safety initiatives to address and prevent safety issues: safety culture and review of the Columbia accident investigation; risk reduction through stabilization of excess nuclear materials; the Facility Representative Program; independent oversight and performance assurance; the Federal Technical Capability Program (FTCP); executive safety initiatives; and quality assurance activities. The following summarizes the key activities addressed in this Annual Report.

  20. In vivo Prompt Gamma Neutron Activation Analysis Facility for Total Body Nitrogen and Cd

    SciTech Connect (OSTI)

    Munive, Marco; Revilla, Angel; Solis, Jose L.

    2007-10-26

    A Prompt Gamma Neutron Activation Analysis (PGNAA) system has been designed and constructed to measure the total body nitrogen and Cd for in vivo studies. An aqueous solution of KNO{sub 3} was used as phantom for system calibration. The facility has been used to monitor total body nitrogen (TBN) of mice and found that is related to their diet. Some mice swallowed diluted water with Cl{sub 2}Cd, and the presence of Cd was detected in the animals. The minimum Cd concentration that the system can detect was 20 ppm.

  1. Public involvement in the regulatory activities regarding nuclear fuel cycle facilities: A case study

    SciTech Connect (OSTI)

    Austin, D.E.

    1995-12-01

    This paper reviews the involvement of a community-based organization in the activities of the Nuclear Regulatory Commission (NRC) regarding a uranium conversion facility that operated near Gore, Oklahoma from 1970 until 1992. Effective participation requires access to decision making. Access is a complex phenomenon that includes: (1) opportunity, both procedural and physical, (2) a common language, and (3) time and resources. The paper describes how both the community organization and the NRC responded to these requirements for access, the strategies that were most effective in securing meaningful public involvement in the decision making, and the impacts of that involvement on the organization.

  2. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1: Technical standard

    SciTech Connect (OSTI)

    1998-05-01

    This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities.

  3. Initial Activation and Operation of the Power Conditioning System for the National Ignition Facility

    SciTech Connect (OSTI)

    Newton, M A; Kamm, R E; Fulkerson, E S; Hulsey, S D; Lao, N; Parrish, G L; Pendleton, D L; Petersen, D E; Polk, M; Tuck, J M; Ullery, G T; Moore, W B

    2003-08-20

    The NIF Power Conditioning System (PCS) resides in four Capacitor Bays, supplying energy to the Master and Power Amplifiers which reside in the two adjacent laser bays. Each capacitor bay will initially house 48 individual power conditioning modules, shown in Figure 2, with space reserved for expansion to 54 modules. The National Ignition Facility (NIF) Power Conditioning System (PCS) is a modular capacitive energy storage system that will be capable of storing nearly 400 MJ of electrical energy and delivering that energy to the nearly 8000 flashlamps in the NIF laser. The first sixteen modules of the power conditioning system have been built, tested and installed. Activation of the first nine power conditioning modules has been completed and commissioning of the first ''bundle'' of laser beamlines has begun. This paper will provide an overview of the power conditioning system design and describe the status and results of initial testing and activation of the first ''bundle'' of power conditioning modules.

  4. Lawrence Berkeley National Laboratory Facilities Division- Optimizing Activity-level Work Planning and Control Lessons Learned

    Energy.gov [DOE]

    Presenter: Ken Fletcher, Deputy Division Director for Facilities, Lawrence Berkeley National Laboratory

  5. IFMIF - International Fusion Materials Irradiation Facility Conceptual Design Activity/Interim Report

    SciTech Connect (OSTI)

    Rennich, M.J.

    1995-12-01

    Environmental acceptability, safety, and economic viability win ultimately be the keys to the widespread introduction of fusion power. This will entail the development of radiation- resistant and low- activation materials. These low-activation materials must also survive exposure to damage from neutrons having an energy spectrum peaked near 14 MeV with annual radiation doses in the range of 20 displacements per atom (dpa). Testing of candidate materials, therefore, requires a high-flux source of high energy neutrons. The problem is that there is currently no high-flux source of neutrons in the energy range above a few MeV. The goal, is therefore, to provide an irradiation facility for use by fusion material scientists in the search for low-activation and damage-resistant materials. An accellerator-based neutron source has been established through a number of international studies and workshops` as an essential step for materials development and testing. The mission of the International Fusion Materials Irradiation Facility (IFMIF) is to provide an accelerator-based, deuterium-lithium (D-Li) neutron source to produce high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials up to about a full lifetime of anticipated use in fusion energy reactors. would also provide calibration and validation of data from fission reactor and other accelerator-based irradiation tests. It would generate material- specific activation and radiological properties data, and support the analysis of materials for use in safety, maintenance, recycling, decommissioning, and waste disposal systems.

  6. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 2. Introduction. Draft report

    SciTech Connect (OSTI)

    1995-11-01

    This volume provides a description of the facility, and its location and setting in the three-state area of Ohio, Pennsylvania, and West Virginia; an overview of previous risk assessments conducted by U.S. EPA for this site, including the preliminary assessment of inhalation exposure and the screening-level risk analyses of indirect exposure; and a summary of comments provided by the Peer Review Panel on the Project Plan.

  7. SPI Sonora Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Sonora Biomass Facility Jump to: navigation, search Name SPI Sonora Biomass Facility Facility SPI Sonora Sector Biomass Owner Sierra Pacific Industries Location Sonora, California...

  8. Solar production of industrial process steam. Phase III. Operation and evaluation of the Johnson and Johnson solar facility. Final report, January 1, 1980-March 31, 1981

    SciTech Connect (OSTI)

    Brink, D.F.; Kendall, J.M.; Youngblood, S.B.

    1981-03-01

    A solar facility that generates 177/sup 0/C (350/sup 0/F) process steam has been designed and constructed by Acurex Corporation and has operated for 1 yr supplying steam to the Johnson and Johnson manufacturing plant in Sherman, Texas. The facility consists of 1068 m/sup 2/ (11,520 ft/sup 2/) of parabolic trough concentrating collectors, a 18,900 1 (5000 gal) flash boiler, and an 18.6 kW (25 hp) circulating pump. In the first year of operation the system was available 97 percent of the days, and with sufficient solar radiation available it operated 70 percent of the days during this period. The measured data showed that the collector field operated at an efficiency of 25.4 percent for the year, and that at least 75 percent of the energy reaching the flash boiler was delivered to the plant as steam. A total of 309,510 kg (682,400 lb) of steam was produced by the solar facility for the first year. An analysis of the data showed that the delivered energy was within 90 to 100 percent of the predicted value. The successful completion of the first year of operation has demonstrated the technical feasibility of generating industrial process steam with solar energy.

  9. LWRS II&C Industry and Regulatory Engagement Activities for FY 11

    SciTech Connect (OSTI)

    Ken Thomas

    2011-09-01

    To ensure broad industry support and coordination for the Advanced Instrumentation, Information, and Controls (II&C) Systems Technologies research pathway, an engagement process will be continually pursued with nuclear asset owners, vendors, and suppliers, Nuclear Regulatory Commission (NRC), and the major industry support organizations of Electric Power Research Institute (EPRI), Institute of Nuclear Power Operations (INPO), and Nuclear Energy Institute (NEI). Nuclear asset owner engagement is a necessary and enabling activity to obtain data and accurate characterization of long-term operational challenges, assess the suitability of proposed research for addressing long-term needs, and gain access to data and representative infrastructure and expertise needed to ensure success of the proposed research and development (R&D) activities. Engagement with vendors and suppliers will ensure that vendor expectations and needs can be translated into requirements that can be met through technology commercialization.

  10. Fast Flux Test Facility project plan. Revision 2

    SciTech Connect (OSTI)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  11. IFMIF, International Fusion Materials Irradiation Facility conceptual design activity cost report

    SciTech Connect (OSTI)

    Rennich, M.J. [comp.

    1996-12-01

    This report documents the cost estimate for the International Fusion Materials Irradiation Facility (IFMIF) at the completion of the Conceptual Design Activity (CDA). The estimate corresponds to the design documented in the Final IFMIF CDA Report. In order to effectively involve all the collaborating parties in the development of the estimate, a preparatory meeting was held at Oak Ridge National Laboratory in March 1996 to jointly establish guidelines to insure that the estimate was uniformly prepared while still permitting each country to use customary costing techniques. These guidelines are described in Section 4. A preliminary cost estimate was issued in July 1996 based on the results of the Second Design Integration Meeting, May 20--27, 1996 at JAERI, Tokai, Japan. This document served as the basis for the final costing and review efforts culminating in a final review during the Third IFMIF Design Integration Meeting, October 14--25, 1996, ENEA, Frascati, Italy. The present estimate is a baseline cost estimate which does not apply to a specific site. A revised cost estimate will be prepared following the assignment of both the site and all the facility responsibilities.

  12. EIS-0428: Mississippi Gasification, LLC, Industrial Gasification...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS ...

  13. Humboldt Industrial Park Wind Farm | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Industrial Park Wind Farm Jump to: navigation, search Name Humboldt Industrial Park Wind Farm Facility Humboldt Industrial Park Sector Wind energy Facility Type Community Wind...

  14. Facile xenon capture and release at room temperature using a metal-organic framework: a comparison with activated charcoal

    SciTech Connect (OSTI)

    Thallapally, Praveen K.; Grate, Jay W.; Motkuri, Radha K.

    2012-01-11

    Two well known Metal organic frameworks (MOF-5, NiDOBDC) were synthesized and studied for facile xenon capture and separation. Our results indicate the NiDOBDC adsorbs significantly more xenon than MOF-5, releases it more readily than activated carbon, and is more selective for Xe over Kr than activated carbon.

  15. Decommissioning an Active Historical Reactor Facility at the Savannah River Site - 13453

    SciTech Connect (OSTI)

    Bergren, Christopher L.; Long, J. Tony; Blankenship, John K.; Adams, Karen M.

    2013-07-01

    The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, where Management and Operations are performed by Savannah River Nuclear Solutions (SRNS). In 2004, DOE recognized SRS as structure within the Cold War Historic District of national, state and local significance composed of the first generation of facilities constructed and operated from 1950 through 1989 to produce plutonium and tritium for our nation's defense. DOE agreed to manage the SRS 105-C Reactor Facility as a potentially historic property due to its significance in supporting the U.S. Cold War Mission and for potential for future interpretation. This reactor has five primary areas within it, including a Disassembly Basin (DB) that received irradiated materials from the reactor, cooled them and prepared the components for loading and transport to a Separation Canyon for processing. The 6,317 square meter area was divided into numerous work/storage areas. The walls between the individual basin compartments have narrow vertical openings called 'slots' that permit the transfer of material from one section to another. Data indicated there was over 830 curies of radioactivity associated with the basin sediments and approximately 9.1 M liters of contaminated water, not including a large quantity of activated reactor equipment, scrap metal, and debris on the basin floor. The need for an action was identified in 2010 to reduce risks to personnel in the facility and to eliminate the possible release of contaminants into the environment. The release of DB water could potentially migrate to the aquifer and contaminate groundwater. DOE, its regulators [U. S. Environmental Protection Agency (USEPA)-Region 4 and the South Carolina Department of Health and Environmental Control (SCDHEC)] and the SC Historical Preservation Office (SHPO) agreed/concurred to perform a non-time critical removal

  16. Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting- October 2012

    Energy.gov [DOE]

    Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility [HIAR-Y-12-2012-10-02

  17. Existing Facilities Rebate Program

    Energy.gov [DOE]

    The NYSERDA Existing Facilities program merges the former Peak Load Reduction and Enhanced Commercial and Industrial Performance programs. The new program offers a broad array of different...

  18. Presentations for Industry | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentations for Industry Presentations for Industry Learn energy-saving strategies from leading manufacturing companies and energy experts. The presentations are organized below by topic area. In addition, industrial energy managers, utilities, and energy management professionals can find no-cost software tools, training (including online training), and technical publications. For presentations from workshops on R&D and Facilities activities, please review the workshop materials. Energy

  19. Confusion reigns over industrial stormwater regulations

    SciTech Connect (OSTI)

    Bishop, J.

    1993-01-01

    More than five years after Congress mandated controls for industrial and municipal stormwater discharges, many in the regulated community remain unclear about how the rules apply to them. The regulations' progress since the 1987 CWA amendments opened the door for their development often has been shaky and marked by setbacks. According to a federal appeals court decision issued last summer, that struggle is likely to continue. Although the original stormwater rules issued by EPA in November 1990 appeared to focus on heavy manufacturing facilities, as well as municipalities, the appellate court cleared a path that could draw light industrial plants and small construction sites within the regulations' domain. The rules in dispute bring under their umbrella any stormwater discharges associated with industrial activity to surface waters or municipal storm sewer systems. However, the regulations distinguish between facilities engaged in heavy industry and light, or enclosed industrial facilities, based on the probability that stormwater discharges will be contaminated and require regulation.

  20. Facile synthesis of Ag–Cu{sub 2}O composites with enhanced photocatalytic activity

    SciTech Connect (OSTI)

    Yang, Jianbo; Li, Zhen; Zhao, Caixin; Wang, Yang; Liu, Xueqin

    2014-12-15

    Highlights: • Ag–Cu{sub 2}O nanocomposites were synthesized via awet-chemical precipitation route. • The growth temperature does not exceed 50 °C in any step of the synthesis. • Enhanced photocurrent of Ag–Cu{sub 2}O composites, compared to pure Cu{sub 2}O particles. • The photocatalytic property was studied upon simulated sunlight. • Enhanced photocatalytic property of Ag–Cu{sub 2}O composites, compared to pure Cu{sub 2}O particles. - Abstract: Silver–cuprous oxide (Ag–Cu{sub 2}O) microcomposites are successfully prepared by a facile low-cost solution method. The obtained materials were characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM), ultraviolet–visible (UV–vis) spectroscopy, X-ray photoelectron spectroscopy (XPS). Experiments demonstrated that the formation of Ag–Cu{sub 2}O microcomposites was significantly influenced by the concentration of AgNO{sub 3}, and with increasing the concentration of AgNO{sub 3}, the optical absorption of the composites becomes strong. The photocatalytic activity of the prepared Ag–Cu{sub 2}O composites was determined by measuring the degradation of methyl orange solution under visible light, to find out its potential application in waste water treatment. The results reveal that the photocurrent of the composite is about 4 times higher than that of pure Cu{sub 2}O and the visible light photocatalytic activity of the composite is enhanced greatly on degradation of methyl orange. The reason for improvement in photocatalytic activity of the Ag–Cu{sub 2}O composites was also discussed.

  1. Independent Oversight Activity Report, K-West Annex Facility- June 2013

    Energy.gov [DOE]

    Review of the Hanford Site K-West Annex Facility Layup Program for Construction Suspension/Delay [HIAR-Hanford-2013-06-10

  2. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    facility use by total visitor days and facility to track actual visitors and active user research computer accounts. Historical data show an apparent relationship between the...

  3. Optimize Deployment of Renewable Energy Technologies for Government Agencies, Industrial Facilities, and Military Installations: NREL Offers Proven Tools and Resources to Reduce Energy Use and Improve Efficiency (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    The National Renewable Energy Lab provides expertise, facilities, and technical assistance to campuses, facilities, and government agencies to apply renewable energy and energy efficiency technologies.

  4. Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Hazards Analysis Report for the Low-Activity Waste Facility Reagent Systems – July 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    Review of the Hanford Site Waste Treatment and Immobilization Plant Hazards Analysis Report for the Low-Activity Waste Facility Reagent Systems

  5. Independent Oversight Review of the Savannah River Field Office Tritium Facilities Radiological Controls Activity-Level Implementation, November 2013

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Independent Oversight Review of the Savannah River Field Office Tritium Facilities Radiological Controls Activity-Level Implementation May 2011 November 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0

  6. Assessment of Replicable Innovative Industrial Cogeneration Applicatio...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Replicable Innovative Industrial Cogeneration Applications, June 2001 Assessment of Replicable Innovative Industrial Cogeneration Applications, June 2001 U.S. industrial facilities ...

  7. A Methodology for Post Operational Clean Out of a Highly Active Facility Including Solids Behaviour - 12386

    SciTech Connect (OSTI)

    Edmondson, Michael J.; Ward, Tracy R.; Maxwell, Lisa J.

    2012-07-01

    The Highly Active Liquor Evaporation and Storage (HALES) plant at Sellafield handles acidic fission product containing liquor with typical activities of the order of 18x10{sup 9} Bq/ml. A strategy experimental feedback approach has been used to establish a wash regime for the Post Operational Clean Out (POCO) of the oldest storage tanks for this liquor. Two different wash reagents have been identified as being potentially suitable for removal of acid insoluble fission product precipitates. Ammonium carbamate and sodium carbonate yield similar products during the proposed wash cycle. The proposed wash reagents provide dissolution of caesium phosphomolybdate (CPM) and zirconium molybdate (ZM) solid phases but yields a fine, mobile precipitate of metal carbonates from the Highly Active Liquor (HAL) supernate. Addition of nitric acid to the wash effluent can cause CPM to precipitate where there is sufficient caesium and phosphorous available. Where they are not present (from ZM dissolution) the nitric acid addition initially produces a nitrate precipitate which then re-dissolves, along with the metal carbonates, to give a solid-free solution. The different behaviour of the two solids during the wash cycle has led to the proposal for an amended flowsheet. Additional studies on the potential to change the morphology of crystallising ZM have presented opportunities for changing the rheology of ZM sediments through doping with tellurium or particular organic acids. Two different wash reagents have been identified as being potentially suitable for the POCO of HALES Oldside HASTs. AC and SC both yield similar products during the proposed wash cycle. However, the different behaviour of the two principle HAL solids, CPM and ZM, during the wash cycle has led to the proposal for an amended flowsheet. Additional studies on the potential to change the morphology of crystallising ZM have presented opportunities for changing its rheology through doping with tellurium or certain

  8. Record of the facility deactivation, decommissioning, and material disposition (D and D) workshop: A new focus for technology development, opportunities for industry/government collaboration

    SciTech Connect (OSTI)

    Bedick, R.C.; Bossart, S.J.; Hart, P.W.

    1995-07-01

    This workshop was held at the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia, on July 11--12, 1995. The workshop sought to establish a foundation for continued dialogue between industry and the DOE to ensure that industry`s experiences, lessons learned, and recommendations are incorporated into D and D program policy, strategy, and plans. The mission of the D and D Focus Area is to develop improved technologies, processes and products, to characterize, deactivate, survey, maintain, decontaminate, dismantle, and dispose of DOE surplus structures, buildings, and contents. The target is a five-to-one return on investment through cost avoidance. The cornerstone of the D and D focus area activities is large-scale demonstration projects that actually decontaminate, decommission, and dispose of a building. The aim is to demonstrate innovative D and D technologies as part of an ongoing DOE D and D project. OTD would pay the incremental cost of demonstrating the innovative technologies. The goal is to have the first demonstration project completed within the next 2 years. The intent is to select projects, or a project, with visible impact so all of the stakeholders know that a building was removed, and demonstrate at a scale that is convincing to the customers in the EM program so they feel comfortable using it in subsequent D and D projects. The plan is to use a D and D integrating contractor who can then use the expertise in this project to use in jobs at other DOE sites.

  9. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    SciTech Connect (OSTI)

    P. Calderoni; P. Sharpe; M. Shimada

    2009-09-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  10. Office of Industrial Technologies research in progress

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

  11. NREL: Hydrogen and Fuel Cells Research - Research Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research Facilities Photo of person at work in laboratory setting. NREL researcher evaluates catalyst activity at the Electrochemical Characterization Laboratory. Photo by Dennis Schroeder, NREL NREL conducts hydrogen and fuel cell R&D at a variety of research facilities at our main 327-acre campus in Golden, Colorado, as well as the National Wind Technology Center near Boulder, Colorado. Industry, government, and university partners benefit from access to our state-of-the-art facilities and

  12. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 1998

    SciTech Connect (OSTI)

    1999-02-01

    This is the ninth Annual Report to the Congress describing Department of Energy (Department) activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of energy regarding public health and safety issues at the Department`s defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department`s defense nuclear facilities. The locations of the major Department facilities are provided. During 1998, Departmental activities resulted in the proposed closure of one Board recommendation. In addition, the Department has completed all implementation plan milestones associated with four other Board recommendations. Two new Board recommendations were received and accepted by the Department in 1998, and two new implementation plans are being developed to address these recommendations. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, a renewed effort to increase the technical capabilities of the federal workforce, and a revised plan for stabilizing excess nuclear materials to achieve significant risk reduction.

  13. The Case for the Application of Worldwide Marine Radioactivity Studies In the Search for Undeclared Facilities and Activities

    SciTech Connect (OSTI)

    Mark Schanfein

    2013-06-01

    Undeclared nuclear facilities unequivocally remain the most difficult safeguards challenge facing the International Atomic Energy Agency (IAEA). Recent cases of undeclared facilities revealed in Iran and Syria, which are NPT signatory States, show both the difficulty and the seriousness of this threat to nonproliferation. In the case of undeclared nuclear facilities, the most effective deterrent against proliferation is the application of Wide-Area Environmental Sampling (WAES); however, WAES is currently cost-prohibitive. As with any threat, the most effective countering strategy is a multifaceted approach. Some of the approaches applied by the IAEA include: open source analysis, satellite imagery, on-site environmental sampling, complementary access under the Additional Protocol (where in force), traditional safeguards inspections, and information provided by member States. These approaches, naturally, are focused on specific States. Are there other opportunities not currently within the IAEA purview to assess States that may provide another opportunity to detect clandestine facilities? In this paper, the author will make the case that the IAEA Department of Safeguards should explore the area of worldwide marine radioactivity studies as one possible opportunity. One such study was released by the IAEA Marine Environment Laboratory in January 2005. This technical document focused on 90Sr, 137Cs, and 239/240Pu. It is clearly a challenging area because of the many sources of anthropogenic radionuclides in the world’s oceans and seas including: nuclear weapons testing, reprocessing, accidents, waste dumping, and industrial and medical radioisotopes, whose distributions change based on oceanographic, geochemical, and biological processes, and their sources. It is additionally challenging where multiple States share oceans, seas, and rivers. But with the application of modern science, historical sampling to establish baselines, and a focus on the most relevant

  14. Fact Sheet for Industrial Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (TSP): This includes expansion and enhancement of traditional TSP services, including quick-response time and materials work, and BPA funding of scoping assessments, detailed...

  15. Industrial Facility Best Practice Scorecard

    Office of Environmental Management (EM)

    of Energy Induction Lighting: An Old Lighting Technology Made New Again Induction Lighting: An Old Lighting Technology Made New Again July 27, 2009 - 5:00am Addthis John Lippert Induction lighting is one of the best kept secrets in energy-efficient lighting. Simply stated, induction lighting is essentially a fluorescent light without electrodes or filaments, the items that frequently cause other bulbs to burn out quickly. Thus, many induction lighting units have an extremely long life of up

  16. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 3. Characterization of the nature and magnitude of emissions. Draft report

    SciTech Connect (OSTI)

    1995-11-01

    This report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume III of the report describes the methods used to estimate both stack and fugitive emission rates from the facility.

  17. Facilities Operations Specialist | Department of Energy

    Office of Environmental Management (EM)

    Announcement Number DOE-BPA-16-11659-DE Job Summary Ross Facilities Operations and Maintenance operates and maintains the office and light industrial facilities, buildings and...

  18. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications. Task 4 - Testing in Alstom's 15 MWth Boiler Simulation Facility

    SciTech Connect (OSTI)

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs; Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF); Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools; Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems; Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost; and, Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project is scheduled for completion by April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a matrix of

  19. ORAU South Campus Facility

    Energy.gov [DOE]

    This document explains the cleanup activities and any use limitations for the land surrounding the ORAU South Campus Facility.

  20. Facile route to hierarchical silver microstructures with high catalytic activity for the reduction of p-nitrophenol

    SciTech Connect (OSTI)

    Gu, Sasa; Wang, Wei Tan, Fatang; Gu, Jian; Qiao, Xueliang; Chen, Jianguo

    2014-01-01

    Graphical abstract: - Highlights: • A facile route was developed to prepare hierarchical silver microstructures. • The shape and size of secondary units can be tailed by varying reaction conditions. • Hierarchical silver microstructures have excellent catalytic activity. • The morphology and crystallinity of silver particles affect the catalytic activity. - Abstract: A facile, cost-effective and environmentally friendly route was developed to synthesize hierarchical silver microstructures consisting of different shaped secondary units through reducing concentrated silver nitrate with ascorbic acid in the absence of any surfactant. The as-obtained samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The investigation on the morphology evolution revealed that the molar ratio of ascorbic acid to silver nitrate was critical to control the shape of secondary structures. The length of plate-like secondary structures which composed hierarchical silver particles could be controlled by changing the reactant concentrations, and it had a key relationship with the catalytic activity for the reduction of p-nitrophenol by NaBH{sub 4}. The catalytic activity of these surfactant-free silver microstructures was about ten times higher than that of silver nanoparticles, and even comparable to that of gold nanoplates, which indicates that the as-obtained silver microstructures are very promising candidates for the catalytic reduction of p-nitrophenol due to the simple synthesis route and high catalytic activity.

  1. Identifying industrial best practices for the waste minimization of low-level radioactive materials

    SciTech Connect (OSTI)

    Levin, V.

    1996-04-01

    In US DOE, changing circumstances are affecting the management and disposal of solid, low-level radioactive waste (LLW). From 1977 to 1991, the nuclear power industry achieved major reductions in solid waste disposal, and DOE is interested in applying those practices to reduce solid waste at DOE facilities. Project focus was to identify and document commercial nuclear industry best practices for radiological control programs supporting routine operations, outages, and decontamination and decommissioning activities. The project team (DOE facility and nuclear power industry representatives) defined a Work Control Process Model, collected nuclear power industry Best Practices, and made recommendations to minimize LLW at DOE facilities.

  2. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, Calendar Year 1999

    SciTech Connect (OSTI)

    2000-02-01

    This is the tenth Annual Report to the Congress describing Department of Energy activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of Energy regarding public health and safety issues at the Department's defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department's defense nuclear facilities. During 1999, Departmental activities resulted in the closure of nine Board recommendations. In addition, the Department has completed all implementation plan milestones associated with three Board recommendations. One new Board recommendation was received and accepted by the Department in 1999, and a new implementation plan is being developed to address this recommendation. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, opening of a repository for long-term storage of transuranic wastes, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

  3. Passive and Active Radiation Measurements Capability at the INL Zero Power Physics Reactor (ZPPR) Facility

    SciTech Connect (OSTI)

    Robert Neibert; John Zabriskie; Collin Knight; James L. Jones

    2010-12-01

    The Zero Power Physics Reactor (ZPPR) facility is a Department of Energy facility located in the Idaho National Laboratorys (INL) Materials and Fuels Complex. It contains various nuclear and non-nuclear materials that are available to support many radiation measurement assessments. User-selected, single material, nuclear and non-nuclear materials can be readily utilized with ZPPR clamshell containers with almost no criticality concerns. If custom, multi-material configurations are desired, the ZPPR clamshell or an approved aluminum Inspection Object (IO) Box container may be utilized, yet each specific material configuration will require a criticality assessment. As an example of the specialized material configurations possible, the National Nuclear Security Agencys Office of Nuclear Verification (NNSA/NA 243) has sponsored the assembly of six material configurations. These are shown in the Appendixes and have been designated for semi-permanent storage that can be available to support various radiation measurement applications.

  4. CENTRAL STORAGE FACILITY PROJECT IN COLOMBIA TO PROVIDE THE SAFE STORAGE AND PROTECTION OF HIGH-ACTIVITY RADIOACTIVE SOURCES

    SciTech Connect (OSTI)

    Greenberg, Raymond; Wright, Kyle A.; McCaw, Erica E.; Vallejo, Jorge

    2009-10-07

    The Global Threat Reduction Initiative (GTRI) reduces and protects vulnerable nuclear and radiological material located at civilian sites worldwide. Internationally, over 40 countries are cooperating with GTRI to enhance the security of these materials. The GTRI program has worked successfully with foreign countries to remove and protect nuclear and radioactive materials, including orphaned and disused high-activity sources. GTRI began cooperation with the Republic of Colombia in April 2004. This cooperation has been a resounding success by securing forty high-risk sites, consolidating disused/orphan sources at an interim secure national storage facility, and developing a comprehensive approach to security, training, and sustainability. In 2005 the Colombian Ministry of Mines and Energy requested the Department of Energys support in the construction of a new Central Storage Facility (CSF). In December 2005, the Ministry selected to construct this facility at the Institute of Geology and Mining (Ingeominas) site in Bogota. This site already served as Colombias national repository, where disused sources were housed in various buildings around the complex. The CSF project was placed under contract in May 2006, but environmental issues and public protests, which led to a class action lawsuit against the Colombian Government, forced the Ministry to quickly suspend activities, thereby placing the project in jeopardy. Despite these challenges, however, the Ministry of Mines and Energy worked closely with public and environmental authorities to resolve these issues, and continued to be a strong advocate of the GTRI program. In June 2008, the Ministry of Mines and Energy was granted the construction and environmental licenses. As a result, construction immediately resumed and the CSF was completed by December 2008. A commissioning ceremony was held for the new facility in January 2009, which was attended by representatives from the Department of Energy, U.S. Embassy, and

  5. Federal agencies active in chemical industry-related research and development

    SciTech Connect (OSTI)

    1995-09-29

    The Energy Policy Act of 1992 calls for a program to further the commercialization of renewable energy and energy efficient technologies for the industrial sector.. The primary objective of the Office of Industrial Technologies Chemical Industry Team is to work in partnership with the US chemical industry to maximize economic, energy, and environmental benefits through research and development of innovative technologies. This document was developed to inventory organizations within the federal government on current chemical industry-related research and development. While an amount of funding or number of projects specifically relating to chemical industry research and development was not defined in all organizations, identified were about 60 distinct organizations representing 7 cabinet-level departments and 4 independent agencies, with research efforts exceeding $3.5 billion in fiscal year 1995. Effort were found to range from less than $500 thousand per year at the Departments of Agriculture and the Interior to over $100 million per year at the Departments of Commerce, Defense, Energy, and Health and Human Services and the National Aeronautics and Space Administration. The total number of projects in these programs exceeded 10,000. This document is complete to the extent that agencies volunteered information. Additions, corrections, and changes are encouraged and will be incorporated in future revisions.

  6. Using non-local databases for the environmental assessment of industrial activities: The case of Latin America

    SciTech Connect (OSTI)

    Osses de Eicker, Margarita; Hischier, Roland; Hurni, Hans; Zah, Rainer

    2010-04-15

    Nine non-local databases were evaluated with respect to their suitability for the environmental assessment of industrial activities in Latin America. Three assessment methods were considered, namely Life Cycle Assessment (LCA), Environmental Impact Assessment (EIA) and air emission inventories. The analysis focused on data availability in the databases and the applicability of their international data to Latin American industry. The study showed that the European EMEP/EEA Guidebook and the U.S. EPA AP-42 database are the most suitable ones for air emission inventories, whereas the LCI database Ecoinvent is the most suitable one for LCA and EIA. Due to the data coverage in the databases, air emission inventories are easier to develop than LCA or EIA, which require more comprehensive information. One strategy to overcome the limitations of non-local databases for Latin American industry is the combination of validated data from international databases with newly developed local datasets.

  7. Industrial Energy Efficiency Assessments

    Energy.gov (indexed) [DOE]

    Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility *

  8. Uranium industry annual 1997

    SciTech Connect (OSTI)

    1998-04-01

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  9. Review of international geothermal activities and assessment of US industry opportunities: Final report

    SciTech Connect (OSTI)

    Not Available

    1987-08-01

    This study was initiated to review and assess international developments in the geothermal energy field and to define business opportunities for the US geothermal industry. The report establishes data bases on the status of worldwide geothermal development and the competitiveness of US industry. Other factors identified include existing legislation, tax incentives, and government institutions or agencies and private sector organizations that promote geothermal exports. Based on the initial search of 177 countries and geographic entities, 71 countries and areas were selected as the most likely targets for the expansion of the geothermal industry internationally. The study then determined to what extent their geothermal resource had been developed, what countries had aided or participated in this development, and what plans existed for future development. Data on the energy, economic, and financial situations were gathered.

  10. Petrochemical industry standards activity aimed at improving the mechanical integrity of process piping

    SciTech Connect (OSTI)

    Reynolds, J.T.

    1996-07-01

    This paper will cover numerous changes being made to existing standards and several new standards being created, all focusing on increasing mechanical integrity of petrochemical industry process piping. Those new standards include ones for (1) Risk-Based Inspection (2) Fitness for Service Analysis, (3) Positive Material Identification, and (4) In-service Inspection and Maintenance for Process Piping. A progress report is included for the Process Industry Practices (PIP) being created to consolidate individual company piping standards into one consistent industry set. And finally, recent initiatives toward standards cooperation/coordination between the American Petroleum Institute(API), American Society of Mechanical Engineers (ASME), International Standards Organization (ISO) and National Board are highlighted.

  11. Review of international geothermal activities and assessment of US industry opportunities: Summary report

    SciTech Connect (OSTI)

    Not Available

    1987-08-01

    This report summarizes a study initiated to review and assess international developments in the geothermal energy field and to define business opportunities for the US geothermal industry. The report establishes data bases on the status of worldwide geothermal development and the competitiveness of US industry. Other factors identified include existing legislation, tax incentives, and government institutions or agencies and private sector organizations that promote geothermal exports. Based on the initial search of 177 countries and geographic entities, 71 countries and areas were selected as the most likely targets for the expansion of the geothermal industry internationally. The study then determined to what extent their geothermal resource had been developed, what countries had aided or participated in this development, and what plans existed for future development. Data on the energy, economic, and financial situations were gathered.

  12. NREL: Transportation Research - Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Facilities NREL conducts vehicles and fuels research in laboratories and test sites on its 327-acre main campus in Golden, Colorado, and at specialized facilities within the region. Industry, government, and university partners benefit from access to NREL equipment and facilities tailored to analyze a broad spectrum of energy-efficient vehicle and fuel technologies and innovations. NREL engineers and researchers work closely with a wide variety of partners to research and develop advanced

  13. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    SciTech Connect (OSTI)

    Pickett, W.W.

    1998-03-02

    This report outlines the design and total estimated cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW).

  14. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  15. DECOMMISSIONING OF SHIELDED FACILITIES AT WINFRITH USED FOR POST IRRADIATION EXAMINATION OF NUCLEAR FUELS & OTHER ACTIVE ITEMS

    SciTech Connect (OSTI)

    Miller, K.D.; Parkinson, S.J.; Cornell, R.M.; Staples, A.T.

    2003-02-27

    This paper describes the approaches used in the clearing, cleaning, decontamination and decommissioning of a very large suite of seven concrete shielded caves and other facilities used by UKAEA at Winfrith Technology Centre, England over a period of about 30 years for the postirradiation examination (PIE) of a wide range of nuclear fuels and other very active components. The basic construction of the facilities will first be described, setting the scene for the major challenges that 1970s' thinking posed for decommissioning engineers. The tendency then to use large and heavy items of equipment supported upon massive steel bench structures produced a series of major problems that had to be overcome. The means of solving these problems by utilization of relatively simple and inexpensive equipment will be described. Later, a further set of challenges was experienced to decontaminate the interior surfaces to allow man entries to be undertaken at acceptable dose rates. The paper will describe the types of tooling used and the range of complementary techniques that were employed to steadily reduce the dose rates down to acceptable levels. Some explanations will also be given for the creation of realistic dose budgets and the methods of recording and continuously assessing the progress against these budgets throughout the project. Some final considerations are given to the commercial approaches to be adopted throughout this major project by the decommissioning engineers. Particular emphasis will be given to the selection of equipment and techniques that are effective so that the whole process can be carried out in a cost-effective and timely manner. The paper also provides brief complementary information obtained during the decommissioning of a plutonium-contaminated facility used for a range of semi-experimental purposes in the late 1970s. The main objective here was to remove the alpha contamination in such a manner that the volume of Plutonium Contaminated Materials (P

  16. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 6. Screening ecological risk assessment (SERA). Draft report

    SciTech Connect (OSTI)

    1995-11-01

    This report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. The Screening Ecological Risk Assessment (SERA) is an analysis of the potential significance of risks to ecological receptors (e.g., plants, fish, wildlife) from exposure to facility emissions. The SERA was performed using conservative assumptions and approaches to determine if a further, more refined analysis is warranted. Volume VI describes in detail the methods used in the SERA and reports the results of the SERA in terms of site-specific risks to ecological receptors.

  17. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 7. Accident analysis: Selection and assessment of potential release scenarios. Draft report

    SciTech Connect (OSTI)

    1995-11-01

    This report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. The Accident Analysis is an evaluation of the likelihood of occurrence and resulting consequences from several general classes of accidents that could potentially occur during operation of the facility. The Accident Analysis also evaluates the effectiveness of existing mitigation measures in reducing off-site impacts. Volume VII describes in detail the methods used to conduct the Accident Analysis and reports the results of evaluations of likelihood and consequence for the selected accident scenarios.

  18. Annual report to Congress. Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 2000

    SciTech Connect (OSTI)

    2001-03-01

    This Annual Report to the Congress describes the Department of Energy's activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board. During 2000, the Department completed its implementation and proposed closure of one Board recommendation and completed all implementation plan milestones associated with two additional Board recommendations. Also in 2000, the Department formally accepted two new Board recommendations and developed implementation plans in response to those recommendations. The Department also made significant progress with a number of broad-based safety initiatives. These include initial implementation of integrated safety management at field sites and within headquarters program offices, issuance of a nuclear safety rule, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

  19. Commercial & Industrial Renewable Energy Grants

    Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) offers grant funding for renewable energy projects installed at commercial, industrial, public, non-profit, municipal or school facilities, or ...

  20. Collaborating with Industry for Innovation

    SciTech Connect (OSTI)

    2004-03-01

    This is a brochure describing Laboratory Coordinating Council's network of labs and facilities to promote partnership between industry and national laboratories.

  1. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 4. Atmospheric dispersion and deposition modeling of emissions. Draft report

    SciTech Connect (OSTI)

    1995-11-01

    The report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume IV describes the air dispersion model used to estimate air concentrations and particle deposition, as well as the results of the modeling exercise.

  2. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 1. Executive summary. Draft report

    SciTech Connect (OSTI)

    1995-11-01

    This report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume I is a description of the components and methodologies used in the risk assessment and provides a summary of the major results from the three components of the assessment.

  3. ARM - SGP Extended Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Extended Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  4. ARM - SGP Intermediate Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Intermediate Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  5. ARM - SGP Central Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  6. Regional economic activity and petroleum industry incentive policies: Utah`s Uintah Basin

    SciTech Connect (OSTI)

    Duffy-Deno, K.T.; Robinson, M.H.

    1995-12-31

    Proponents of petroleum industry subsidies often assert that such policies will have positive economic implications for rural communities. This paper examines the economic impacts of such a policy in Utah. Specifically, this paper quantifies the direct and indirect economic and fiscal impacts of a tax credit granted for oil and gas well workovers in Utah`s Uintah Basin. The analysis is made possible by an input-output model constructed specifically for Utah`s oil producing economy. The tax credit policy was found to generate a net fiscal loss for the state. However, it does generate employment in the Uintah Basin. The total per job cost to the state of generating an average of one job per year for 5 years through the tax credit policy is $24,056 (1991 dollars). However, if the public expenditure impacts are taken into account, then the cost per job could be as high as $48,423 (1991 dollars). Whether there are other ways to generate the same employment gains at a lower cost was lost in the political debate surrounding this petroleum industry tax credit. 8 refs., 2 figs., 9 tabs.

  7. Industrial Energy Efficiency Assessments

    Energy.gov (indexed) [DOE]

    Department of Energy Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Cassie Mills Communications Associate in the Advanced

  8. Status of Activities on Rehabilitation Of Radioactively Contaminated Facilities and the Site of Russian Research Center ''Kurchatov Institute''

    SciTech Connect (OSTI)

    Volkov, V. G.; Ponomarev-Stepnoi, N. N.; Melkov, E. S; Ryazantsev, E. P.; Dikarev, V. S.; Gorodetsky, G. G.; Zverkov, Yu. A.; Kuznetsov, V. V.; Kuznetsova, T. I.

    2003-02-25

    This paper describes the program, the status, and the course of activities on rehabilitation of radioactively contaminated facilities and the territory of temporary radioactive waste (radwaste) disposal at the Russian Research Center ''Kurchatov Institute'' (RRC KI) in Moscow as performed in 2001-2002. The accumulation of significant amounts of radwaste at RRC KI territory is shown to be the inevitable result of Institute's activity performed in the days of former USSR nuclear weapons project and multiple initial nuclear power projects (performed from 1950's to early 1970's). A characterization of RRC KI temporary radwaste disposal site is given. Described is the system of radiation control and monitoring as implemented on this site. A potential hazard of adverse impacts on the environment and population of the nearby housing area is noted, which is due to possible spread of the radioactive plume by subsoil waters. A description of the concept and project of the RRC KI temporary radwaste disposal site is presented. Specific nature of the activities planned and performed stems from the nearness of housing area. This paper describes main stages of the planned activities for rehabilitation, their expected terms and sources of funding, as well as current status of the project advancement. Outlined are the problems faced in the performance and planning of works. The latter include: diagnostics of the concrete-grouted repositories, dust-suppression technologies, packaging of the fragmented ILW and HLW, soil clean-up, radioactive plume spread prevention, broad radiation monitoring of the work zone and environment in the performance of rehabilitation works. Noted is the intention of RRC KI to establish cooperation with foreign, first of all, the U.S. partners for the solution of problems mentioned above.

  9. Sample registration software for process automation in the Neutron Activation Analysis (NAA) Facility in Malaysia nuclear agency

    SciTech Connect (OSTI)

    Rahman, Nur Aira Abd Yussup, Nolida; Ibrahim, Maslina Bt. Mohd; Mokhtar, Mukhlis B.; Soh Shaari, Syirrazie Bin Che; Azman, Azraf B.; Salim, Nazaratul Ashifa Bt. Abdullah; Ismail, Nadiah Binti

    2015-04-29

    Neutron Activation Analysis (NAA) had been established in Nuclear Malaysia since 1980s. Most of the procedures established were done manually including sample registration. The samples were recorded manually in a logbook and given ID number. Then all samples, standards, SRM and blank were recorded on the irradiation vial and several forms prior to irradiation. These manual procedures carried out by the NAA laboratory personnel were time consuming and not efficient. Sample registration software is developed as part of IAEA/CRP project on ‘Development of Process Automation in the Neutron Activation Analysis (NAA) Facility in Malaysia Nuclear Agency (RC17399)’. The objective of the project is to create a pc-based data entry software during sample preparation stage. This is an effective method to replace redundant manual data entries that needs to be completed by laboratory personnel. The software developed will automatically generate sample code for each sample in one batch, create printable registration forms for administration purpose, and store selected parameters that will be passed to sample analysis program. The software is developed by using National Instruments Labview 8.6.

  10. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  11. Wheelabrator Sherman Energy Facility Biomass Facility | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector...

  12. Methanol Synthesis over Cu/ZnO/Al2O3: The Active Site in Industrial Catalysis

    SciTech Connect (OSTI)

    Behrens, Malte

    2012-03-28

    Unlike homogeneous catalysts, heterogeneous catalysts that have been optimized through decades are typically so complex and hard to characterize that the nature of the catalytically active site is not known. This is one of the main stumbling blocks in developing rational catalyst design strategies in heterogeneous catalysis. We show here how to identify the crucial atomic structure motif for the industrial Cu/ZnO/Al{sub 2}O{sub 3} methanol synthesis catalyst. Using a combination of experimental evidence from bulk-, surface-sensitive and imaging methods collected on real high-performance catalytic systems in combination with DFT calculations. We show that the active site consists of Cu steps peppered with Zn atoms, all stabilized by a series of well defined bulk defects and surface species that need jointly to be present for the system to work.

  13. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 5. Human health risk assessment; evaluation of potential risks from multipathway exposure to emissions

    SciTech Connect (OSTI)

    1997-05-01

    The report provide estimates of: (1) individual risks based on central tendency exposure; (2) individual risks based on maximum environmental concentrations; (3) risks to highly exposed or susceptible subgroups of the population (e.g., subsistence farmers and school children); (4) risks associated with specific activities that may result in elevated exposures (e.g., subsistence fishermen and deer hunters); and (5) population risk. This approach allows for the estimation of risks to specific segments of the population taking into consideration activity patterns, number of individuals, and actual locations of individuals in these subgroups with respect to the facility. The fate and transport modeling of emissions from the facility to estimate exposures to identified subgroups is described.

  14. Enterprise Assessments Operational Awareness Record for the Review of the Hanford Site Waste Treatment and Immobilization Plant Low-Activity Facility Wide Draft Hazard Analysis Report – June 2015

    Energy.gov [DOE]

    Operational Awareness Record for the Review of the Waste Treatment and Immobilization Plant Low-Activity Facility-Wide Draft Hazard Analysis Report

  15. A Strategy to Assess Performance of Selected Low-Activity Waste Forms in an Integrated Disposal Facility

    SciTech Connect (OSTI)

    McGrail, B PETER.; Bacon, Diana H.; Serne, R JEFFREY.; Pierce, Eric M.

    2003-08-22

    An overall strategy for evaluating the long-term performance of three waste forms being considered for supplemental treatment of low-activity waste at Hanford is discussed. The same computational framework used to conduct the 2001 ILAW performance assessment will be used for all three waste forms. Cast stone will be modeled with a diffusion-advection transport model and bulk vitrified glass and steam reformed LAW will be modeled with a reactive chemical transport simulator. The recommended laboratory testing to support the supplemental LAW form selection includes single-pass flow-through (SPFT), product consistency (PCT), and vapor hydration tests for glass, SPFT and PCT tests for steam reformed LAW forms, and ANS 16.1 tests for cast stone. These and potentially other laboratory tests for the selected waste form(s) would also be the basis for more detailed studies needed to support a comprehensive long-term performance assessment should one or more of these waste forms be selected for disposal in an integrated disposal facility.

  16. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    September 15, 2009 [Facility News] Outreach Display Awarded for Communications Excellence Bookmark and Share The ARM display received the Gold Hermes Creative Award in 2009 for exemplifying communications excellence. The ARM display received the Gold Hermes Creative Award in 2009 for exemplifying communications excellence. As the ARM Climate Research Facility prepares to participate in the coming round of winter meetings, now is a good time to share news of the two industry awards its display

  17. Final report on passive and active low-frequency electromagnetic spectroscopy for airborne detection of underground facilities

    SciTech Connect (OSTI)

    SanFilipo, Bill

    2000-04-01

    The objective of this program is to perform research to advance the science in the application of both passive and active electromagnetic measurement techniques for the detection and spatial delineation of underground facilities. Passive techniques exploit the electromagnetic fields generated by electrical apparatus within the structure, including generators, motors, power distribution circuitry, as well as communications hardware and similar electronics equipment. Frequencies monitored are generally in the audio range (60-20,000 Hz), anticipating strong sources associated with normal AC power (i.e., 50 or 60 Hz and associated harmonics), and low frequency power from broad-band sources such as switching circuits. Measurements are made using receiver induction coils wired to electronics that digitize and record the voltage induced by the time varying magnetic fields. Active techniques employ electromagnetic field transmitters in the form of AC current carrying loops also in the audio frequency range, and receiving coils that measure the resultant time varying magnetic fields. These fields are perturbed from those expected in free space by any conductive material in the vicinity of the coils, including the ground, so that the total measured field is comprised of the primary free-space component and the secondary scattered component. The latter can be further delineated into an average background field (uniform conductive half-space earth) and anomalous field associated with heterogeneous zones in the earth, including both highly conductive objects such as metallic structures as well as highly resistive structures such as empty voids corresponding to rooms or tunnels. Work performed during Phase I included the development of the prototype GEM-2H instrumentation, collection of data at several test sites in the passive mode and a single site in the active mode, development of processing and interpretation software. The technical objectives of Phase II were to: (1

  18. Byron Extended Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Byron Extended Facility Map

  19. Ashton Extended Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Ashton Extended Facility Map

  20. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 6. Screening ecological risk assessment

    SciTech Connect (OSTI)

    1997-05-01

    The Screening Ecological Risk Assessment (SERA) includes an evaluation of available biotic information from the site vicinity to provide a preliminary description of potential ecological receptors (e.g., rare, threatened and endangered species; migratory birds; and important game species), and important ecological habitats (e.g., wetland areas). A conceptual site model is developed that describe show stressors associated with the WTI facility might affect the ecological components in the surrounding environment through the development and evaluation of specific ecological endpoints. Finally, an estimate of the potential for current and/or future adverse impacts to the biotic component of the environment is provided, based on the integration of potential exposures of ecological receptors to WTI emissions and toxicological threshold values.

  1. WE-D-17A-05: Measurement of Stray Radiation Within An Active Scanning Proton Therapy Facility: EURADOS WG9 Intercomparison Exercise of Active Dosimetry Systems

    SciTech Connect (OSTI)

    Farah, J; Trompier, F; Stolarczyk, L; Klodowska, M; Liszka, M; Olko, P; Algranati, C; Fellin, F; Schwarz, M; Domingo, C; Romero-Exposito, M; Dufek, V; Frojdh, E; George, S; Harrison, R; Kubancak, J; Ploc, O; Knezevic, Z; Majer, M; Miljanic, S; and others

    2014-06-15

    Purpose: Intercomparison of active dosemeters in the measurement of stray radiation at the Trento active-scanning proton therapy facility. Methods: EURADOS WG9 carried out a large intercomparison exercise to test different dosemeters while measuring secondary neutrons within a 230 MeV scanned proton therapy facility. Detectors included two Bonner Sphere Spectrometers (BSS), three tissue equivalent proportional counters (TEPCHawk) and six rem-counters (Wendi II, Berthold, RadEye, a regular and an extended-range Anderson and Braun NM2B counters). Measurements of neutron ambient dose equivalents, H*(10), were done at several positions inside (8 positions) and outside (3 positions) the treatment room while irradiating a water tank phantom with a 10 10 10 cc field. Results: A generally good agreement on H*(10) values was observed for the tested detectors. At distance of 2.25 m and angles 45, 90 and 180 with respect to the beam axis, BSS and proportional counters agreed within 30%. Higher differences (up to 60%) were observed at the closest and farthest distances, i.e. at positions where detectors sensitivity, energy, fluence and angular response are highly dependent on neutron spectra (flux and energy). The highest neutron H*(10) value, ?60 microSv/Gy, was measured at 1.15 m along the beam axis. H*(10) decreased significantly with the distance from the isocenter dropping to 1.1 microSv/Gy at 4.25 m and 90 from beam axis, ?2 nanoSv/Gy at the entrance of the maze, 0.2 nanoSv/Gy at the door outside the room and below detection limit in the gantry control room and at an adjacent room. These values remain considerately lower than those of passively scattered proton beams. BSS and Hawk unfolded spectra provide valuable inputs when studying the response of each detector. Conclusion: TEPCs and BSS enable accurate measurements of stray neutrons while other rem-meters also give satisfactory results but require further improvements to reduce uncertainties.

  2. User Facilities at Argonne | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    User Facilities at Argonne Argonne National Laboratory designs, builds, and operates national scientific user facilities for the benefit of researchers from industry, academia, and government laboratories. These one-of-a-kind facilities attract great minds from all over the nation to solve society's complex scientific problems. PDF icon User_Facilities

  3. Facility deactivation and demolition

    SciTech Connect (OSTI)

    Cormier, S.L.; Adamowski, S.J.

    1994-12-31

    Today an improperly closed facility can be a liability to its owner, both financially and environmentally. A facility deactivation program must be planned and implemented to decrease liabilities, minimize operating costs, seek to reuse or sell processes or equipment, and ultimately aid in the sale and/or reuse of the facility and property whether or not the building(s) are demolished. These programs should be characterized within the deactivation plan incorporating the following major categories: Utility Usage; Environmental Decontamination; Ongoing Facility Management; Property Management/Real Estate Issues. This paper will outline the many facets of the facility deactivation and demolition programs implemented across the country for clients in the chemical, automotive, transportation, electronic, pharmaceutical, power, natural gas and petroleum industries. Specific emphasis will be placed on sampling and analysis plans, specification preparation, equipment and technologies utilized, ``how clean is clean`` discussions and regulatory guidelines applicable to these issues.

  4. Sandia National Laboratories: Research: Facilities: Technology...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas:...

  5. 3 Cleantech Facilities You Should Know About

    Office of Energy Efficiency and Renewable Energy (EERE)

    These National Lab facilities are supporting local economies across the country and driving national industries -- and you should definitely know more about them.

  6. User Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    User Facilities User Facilities A new research frontier awaits! Our door is open, and we thrive on mutually beneficial partnerships and collaborations that drive innovations and new technologies. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, Los Alamos National Laboratory can implement user facility agreements that allow its partners and other entities to conduct research at many of its unique facilities. While our largest user

  7. Maywood Industries of Oregon Space Heating Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Maywood Industries of Oregon Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Maywood Industries of Oregon Space Heating Low Temperature...

  8. Calistoga Private and Commercial Industrial Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Private and Commercial Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Calistoga Private and Commercial Industrial Low Temperature Geothermal...

  9. Energy efficiency in California laboratory-type facilities

    SciTech Connect (OSTI)

    Mills, E.; Bell, G.; Sartor, D.

    1996-07-31

    The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in the overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.

  10. Workshop proceeding of the industrial building energy use

    SciTech Connect (OSTI)

    Akbari, H.; Gadgil, A.

    1988-01-01

    California has a large number of small and medium sized industries which have a major impact on the demand growth of California utilities. Energy use in building services (lighting, HVAC, office equipment, computers, etc.). These industries constitute an important but largely neglected fraction of the total site energy use. The ratio of energy use in building service to the total site energy use is a function of the industrial activity, its size, and the climate at the site of the facility. Also, energy use in building services is more responsive to weather and occupant schedules than the traditional base-load'' industrial process energy. Industrial energy use is considered as a base-load'' by utility companies because it helps to increase the utilities' load factor. To increase this further, utilities often market energy at lower rates to industrial facilities. Presently, the energy use in the building services of the industrial sector is often clubbed together with industrial process load. Data on non-process industrial energy use are not readily available in the literature. In cases where the major portion of the energy is used in the building services (with daily and seasonal load profiles that in fact peak at the same time as systemwide load peaks), the utility may be selling below cost at peak power times. These cases frequently happen with electric utilities. 30 figs., 6 tabs.

  11. {open_quotes}Radon{close_quotes} - the system of Soviet designed regional waste management facilities

    SciTech Connect (OSTI)

    Horak, W.C.; Reisman, A.; Purvis, E.E. III

    1997-07-01

    The Soviet Union established a system of specialized regional facilities to dispose of radioactive waste generated by sources other than the nuclear fuel cycle. The system had 16 facilities in Russia, 5 in Ukraine, one in each of the other CIS states, and one in each of the Baltic Republics. These facilities are still being used. The major generators of radioactive waste they process these are research and industrial organizations, medical and agricultural institution and other activities not related to nuclear power. Waste handled by these facilities is mainly beta- and gamma-emitting nuclides with half lives of less than 30 years. The long-lived and alpha-emitting isotopic content is insignificant. Most of the radwaste has low and medium radioactivity levels. The facilities also handle spent radiation sources, which are highly radioactive and contain 95-98 percent of the activity of all the radwaste buried at these facilities.

  12. DOE-STD-1053-93; DOE Standard Guideline to Good Practices For Control of Maintenance Activities at DOE Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3-93 March 1993 DOE STANDARD GUIDELINE TO GOOD PRACTICES FOR CONTROL OF MAINTENANCE ACTIVITIES AT DOE NUCLEAR FACILITIES U.S. Department of Energy AREA MNTY Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831. Available to the public from the

  13. Emergency Facilities and Equipment

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  14. Successful Characterization Strategies for the Active High Risk Y-12 National Security Complex 9201-5 (Alpha-5) Facility, Oak Ridge, TN - 12164

    SciTech Connect (OSTI)

    Birchfield, Joseph W. III; Albrecht, Linda

    2012-07-01

    Building 9201-5 (Alpha 5) was completed in May 1944 and served as a production facility for National Nuclear Security Administration (NNSA) Y-12 Weapons Plant. During the Manhattan Project, it functioned as a uranium enrichment facility. The facility was renovated and altered over the years, converting the calutrons to support other missions. Alpha 5 consists of 4 floors and a basement measuring approximately 600,000 square feet. The facility contains various pieces of equipment remaining from legacy operations. A significant amount (approximately 200,000 kgs) of mercury (Hg) has been spilled in the facility over the operational history of the building. To further complicate matters, beryllium (Be) contamination in 9201-5 is found throughout approximately sixty percent of the facility. Concentrations varying from very low (< 0.2 micrograms (μg)/100 cm{sup 2}) to areas where concentrations are relatively high, approximately 600 μg/100 cm{sup 2}, in regulated beryllium areas. The primary site related contaminants (SRCs) for the waste in this facility are enriched uranium, depleted uranium, beryllium and mercury. This facility represents the highest environmental risk for DOE-ORO EM and NNSA at Y-12 and must be quickly addressed to minimize impacts to future Y-12 missions, as well as human health and the environment. As part of the American Recovery and Reinvestment Act (ARRA), approximately 700,000 cubic feet of legacy material was removed in 2010 and 2011. In addition, characterization of the 9201-5 facility was scheduled in the winter and spring of 2011. This activity was initiated in January 2011 and was completed in July 2011. Heavy schedule pressure was further complicated by the fact that this building has active utility, security and process systems. Given these complex variables, a unique, out of the box characterization strategy was forged in an effort to bound radiological and chemical contaminants, as well as providing the appropriate level of quality to

  15. ORISE: Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ORISE Facilities Unique laboratories and training centers among the assets managed on behalf of the U.S. Department of Energy The Oak Ridge Institute for Science and Education (ORISE) is home to a number of on- and off-site facilities that support the U.S. Department of Energy's (DOE) science education and research mission. From on-site medical laboratories to radiation emergency medicine training facilities, ORISE facilities are helping to address national needs in the following areas:

  16. Science Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Facilities Science Facilities The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Center for Integrated Nanotechnologies» Dual Axis Radiographic Hydrodynamic Test Facility (DARHT)» Electron Microscopy Lab» Ion Beam Materials Lab» Isotope Production Facility» Los Alamos Neutron Science Center» Lujan Center» Matter-Radiation Interactions in

  17. Facility Safety

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  18. Facility Safety

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  19. Enforcement Letter, Amer Industrial Technologies- April 13, 2010

    Energy.gov [DOE]

    Issued to Amer Industrial Technologies related to Weld Deficiencies at the Salt Waste Processing Facility at the Savannah River Site.

  20. Cogeneration: A northwest medical facility`s answer to the uncertainties of deregulation

    SciTech Connect (OSTI)

    Almeda, R.; Rivers, J.

    1998-10-01

    Not so long ago, in the good old days, the energy supply to a health care facility was one of the most stable. The local utility provided what was needed at a reasonable cost. Now the energy industry is being deregulated. Major uncertainties exist in all parts of the energy industry. Since reasonably priced and readily available energy is mandatory for a health care facility operation, the energy industry uncertainties reverberate through the health care industry. This article reviews how the uncertainty of electric utility deregulation was converted to an opportunity to implement the ultimate energy conservation project--cogeneration. The project development was made essentially risk free by tailoring project development to deregulation. Costs and financial exposure were minimized by taking numerous small steps in sequence. Valley Medical Center, by persevering with the development of a cogeneration plant, has been able to reduce its energy costs and more importantly, stabilize its energy supply and costs for many years to come. This article reviews activities in two arenas, internal project development and external energy industry developments, by periodically updating each arena and showing how external developments affected the project.

  1. NETL - Fuel Reforming Facilities

    SciTech Connect (OSTI)

    2013-06-12

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  2. NETL - Fuel Reforming Facilities

    ScienceCinema (OSTI)

    None

    2014-06-27

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  3. Advanced Industrial Materials (AIM) Program annual progress report, FY 1997

    SciTech Connect (OSTI)

    1998-05-01

    The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

  4. About Industrial Distributed Energy

    Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  5. Minimize Compressed Air Leaks; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 * August 2004 Industrial Technologies Program Suggested Actions * Fixing leaks once is not enough. Incorporate a leak prevention program into operations at your facility. It ...

  6. EIS-0429: Indiana Gasification, LLC, Industrial Gasification...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EIS-0429: Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, IN and CO2 Pipeline Documents Available for Download EIS-0429: Notice of Intent to Prepare an ...

  7. Biodiesel Industries Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Barbara, California Zip: 93110 Product: Biodiesel producer and facility developer. References: Biodiesel Industries Inc1 This article is a stub. You can help OpenEI by expanding...

  8. Industrial Buildings

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  9. PANWAS: A Passive/Active Neutron Waste Assay System for the Radiological Characterization of Waste Packages at the Nucleco Facility at Casaccia

    SciTech Connect (OSTI)

    Alvarez, E.; Wilkins, C.G.; Croft, S.; Villani, M.F.; Ambrifi, A.; Simone, G.

    2006-07-01

    CANBERRA has recently supplied Nucleco SpA with a new Passive/Active Neutron Waste Assay System (PANWAS) for use at their waste management facility at Casaccia in Italy. The system complements two existing CANBERRA high-resolution gamma spectrometry waste assay systems. The three waste assay systems have been integrated into a combined facility for the radiological characterization of the waste managed by Nucleco in order to provide the information required to: - Determine the physical inventory of the nuclear material present for Safeguards purposes, - Segregate the waste into different categories, - Allow transportation to and storage in the final repository for the waste. This paper describes the main characteristics of the PANWAS, how it is used (in conjunction with the two gamma monitoring systems) to determine the radionuclide inventory of the waste and how the system was calibrated and characterized for use in this application. (authors)

  10. Uranium industry annual 1994

    SciTech Connect (OSTI)

    1995-07-05

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  11. Uranium industry annual 1998

    SciTech Connect (OSTI)

    1999-04-22

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  12. Wheelabrator Millbury Facility Biomass Facility | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Facility Facility Wheelabrator Millbury Facility Sector Biomass Facility Type Municipal Solid Waste Location Worcester County, Massachusetts Coordinates 42.4096528, -71.8571331...

  13. Integrated Biorefinery Research Facility | Bioenergy | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Integrated Biorefinery Research Facility NREL's Integrated Biorefinery Research Facility (IBRF) enables researchers and industry partners to develop, test, evaluate, and demonstrate processes and technologies for the production of bio-based products and fuels. Interior of industrial, two-story building with high-bay, piping, and large processing equipment. Three workers in hard hats. In addition to the facility itself, NREL's world-renowned expert staff works with IBRF partners at every stage of

  14. CASL Industry Council Meeting

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Industry Council Meeting 4 - 5 November 2015 Meeting Minutes The autumn 2015 meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on 4 - 5 November 2015 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN. The first day of meeting was a joint meeting of the CASL Industry and Science Councils and was held at the Spallation Neutron Source (SNS) facility at ORNL. An independent IC meeting was held the morning of the second

  15. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

    2010-05-21

    The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

  16. Beamlines & Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Imaging Group: Beamlines The X-ray Micrscopy and Imaging Group operates several beamlines and facilities. The bending magnet beamline (2-BM) entertaines 2 general user programs in...

  17. Kauai Test Facility

    SciTech Connect (OSTI)

    Hay, R.G.

    1982-01-01

    The Kauai Test Facility (KTF) is a Department of Energy rocket launch facility operated by Sandia National Laboratories. Originally it was constructed in support of the high altitude atmospheric nuclear test phase of operation Dominic in the early 1960's. Later, the facility went through extensive improvement and modernization to become an integral part of the Safeguard C readiness to resume nuclear testing program. Since its inception and build up, in the decade of the sixties and the subsequent upgrades of the seventies, range test activities have shifted from full scale test to emphasis on research and development of materials and components, and to making high altitude scientific measurements. Primarily, the facility is intended to be utilized in support of development programs at the DOE weapons laboratories, however, other organizations may make use of the facility on a non-interface basis. The physical components at KTF and their operation are described.

  18. Qualitative and Quantitative Assessment of Nuclear Materials Contained in High-Activity Waste Arising from the Operations at the 'SHELTER' Facility

    SciTech Connect (OSTI)

    Cherkas, Dmytro

    2011-10-01

    As a result of the nuclear accident at the Chernobyl NPP in 1986, the explosion dispeesed nuclear materials contained in the nuclear fuel of the reactor core over the destroyed facilities at Unit No. 4 and over the territory immediately adjacent to the destroyed unit. The debris was buried under the Cascade Wall. Nuclear materials at the SHELTER can be characterized as spent nuclear fuel, fresh fuel assemblies (including fuel assemblies with damaged geometry and integrity, and individual fuel elements), core fragments of the Chernobyl NPP Unit No. 4, finely-dispersed fuel (powder/dust), uranium and plutonium compounds in water solutions, and lava-like nuclear fuel-containing masses. The new safe confinement (NSC) is a facility designed to enclose the Chernobyl NPP Unit No. 4 destroyed by the accident. Construction of the NSC involves excavating operations, which are continuously monitored including for the level of radiation. The findings of such monitoring at the SHELTER site will allow us to characterize the recovered radioactive waste. When a process material categorized as high activity waste (HAW) is detected the following HLW management operations should be involved: HLW collection; HLW fragmentation (if appropriate); loading HAW into the primary package KT-0.2; loading the primary package filled with HAW into the transportation cask KTZV-0.2; and storing the cask in temporary storage facilities for high-level solid waste. The CDAS system is a system of 3He tubes for neutron coincidence counting, and is designed to measure the percentage ratio of specific nuclear materials in a 200-liter drum containing nuclear material intermixed with a matrix. The CDAS consists of panels with helium counter tubes and a polyethylene moderator. The panels are configured to allow one to position a waste-containing drum and a drum manipulator. The system operates on the ‘add a source’ basis using a small Cf-252 source to identify irregularities in the matrix during an assay

  19. Geothermal industry assessment

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

  20. Quarterly Report for LANL Activities: FY12-Q2 National Risk Assessment Partnership (NRAP): Industrial Carbon Capture Program

    SciTech Connect (OSTI)

    Pawar, Rajesh J.

    2012-04-17

    This report summarizes progress of LANL activities related to the tasks performed under the LANL FWP FE102-002-FY10, National Risk Assessment Partnership (NRAP): Industrial Carbon Capture Program. This FWP is funded through the American Recovery and Reinvestment Act (ARRA). Overall, the NRAP activities are focused on understanding and evaluating risks associated with large-scale injection and long-term storage of CO{sub 2} in deep geological formations. One of the primary risks during large-scale injection is due to changes in geomechanical stresses to the storage reservoir, to the caprock/seals and to the wellbores. These changes may have the potential to cause CO{sub 2} and brine leakage and geochemical impacts to the groundwater systems. While the importance of these stresses is well recognized, there have been relatively few quantitative studies (laboratory, field or theoretical) of geomechanical processes in sequestration systems. In addition, there are no integrated studies that allow evaluation of risks to groundwater quality in the context of CO{sub 2} injection-induced stresses. The work performed under this project is focused on better understanding these effects. LANL approach will develop laboratory and computational tools to understand the impact of CO{sub 2}-induced mechanical stress by creating a geomechanical test bed using inputs from laboratory experiments, field data, and conceptual approaches. The Geomechanical Test Bed will be used for conducting sensitivity and scenario analyses of the impacts of CO{sub 2} injection. The specific types of questions will relate to fault stimulation and fracture inducing stress on caprock, changes in wellbore leakage due to evolution of stress in the reservoir and caprock, and the potential for induced seismicity. In addition, the Geomechanical Test Bed will be used to investigate the coupling of stress-induced leakage pathways with impacts on groundwater quality. LANL activities are performed under two tasks

  1. Facility Representatives

    Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-06

    REPLACED BY DOE-STD-1063 | SUPERSEDING DOE-STD-1063-2000 (MARCH 2000) The purpose of the DOE Facility Representative Program is to ensure that competent DOE staff personnel are assigned to oversee the day-to-day contractor operations at DOE’s hazardous nuclear and non-nuclear facilities.

  2. Facility Safety

    Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  3. WINDExchange: Deployment Activities

    WindExchange

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers Economic Development Siting Deployment Activities Recent years have seen major growth in wind energy, and deployment projections indicate this trend will continue for all parts of the wind industry, from small distributed and community wind projects to massive land-based and offshore utility-scale facilities. Record numbers of Americans see wind energy as an important contributor to a secure and clean energy

  4. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    April 30, 2008 [Facility News] ARM Outreach Materials Chosen for Earth Day Display in Washington DC Bookmark and Share Posters for the ARM Mobile Facility and ARM Education and Outreach were selected for the 2008 Earth Day display at DOE Headquarters. Earth Day is officially honored each year on April 22, however, many groups sponsor activities throughout the entire month of April. At DOE Headquarters in Washington DC, two ARM posters were selected to join a poster display representing programs

  5. NREL: Photovoltaics Research - Outdoor Test Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Outdoor Test Facility Aerial photo of the Outdoor Test Facility. The Outdoor Test Facility at NREL is used to evaluate prototype, precommercial, and commercial modules. Outdoor Test Facility (OTF) researchers study and evaluate advanced or emerging PV technologies under simulated, accelerated indoor and outdoor, and prevailing outdoor conditions. One of the major roles of researchers at the OTF is to work with industry to develop uniform and consensus standards and codes for testing PV devices.

  6. Energy Department Applauds Nation's First Large-Scale Industrial Carbon

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Capture and Storage Facility | Department of Energy Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility August 24, 2011 - 6:23pm Addthis Washington, D.C. - The U.S. Department of Energy issued the following statement in support of today's groundbreaking for construction of the nation's first large-scale industrial carbon capture and storage (ICCS) facility in Decatur,

  7. Annual summary of Immobilized Low-Activity Waste (ILAW) Performance Assessment for 2003 Incorporating the Integrated Disposal Facility Concept

    SciTech Connect (OSTI)

    MANN, F M

    2003-09-01

    To Erik Olds 09/30/03 - An annual summary of the adequacy of the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (ILAW PA) is necessary in each year in which a full performance assessment is not issued.

  8. Facility Safety

    Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. This Page Change is limited in scope to changes necessary to invoke DOE-STD-1104, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, and revised DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis as required methods. DOE O 420.1C Chg 1, dated 2-27-15, supersedes DOE O 420.1C.

  9. Uranium industry annual 1996

    SciTech Connect (OSTI)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  10. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Pierce, Eric M.; McGrail, B. Peter; Bagaasen, Larry M.; Rodriguez, Elsa A.; Wellman, Dawn M.; Geiszler, Keith N.; Baum, Steven R.; Reed, Lunde R.; Crum, Jarrod V.; Schaef, Herbert T.

    2006-06-30

    The purpose of this report is to document the results from laboratory testing of the bulk vitri-fied (BV) waste form that was conducted in support of the 2005 integrated disposal facility (IDF) performance assessment (PA). Laboratory testing provides a majority of the key input data re-quired to assess the long-term performance of the BV waste package with the STORM code. Test data from three principal methods, as described by McGrail et al. (2000a; 2003a), are dis-cussed in this testing report including the single-pass flow-through test (SPFT) and product con-sistency test (PCT). Each of these test methods focuses on different aspects of the glass corrosion process. See McGrail et al. (2000a; 2003a) for additional details regarding these test methods and their use in evaluating long-term glass performance. In addition to evaluating the long-term glass performance, this report discusses the results and methods used to provided a recommended best estimate of the soluble fraction of 99Tc that can be leached from the engineer-ing-scale BV waste package. These laboratory tests are part of a continuum of testing that is aimed at improving the performance of the BV waste package.

  11. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Pierce, Eric M.; McGrail, B. Peter; Bagaasen, Larry M.; Rodriguez, Elsa A.; Wellman, Dawn M.; Geiszler, Keith N.; Baum, Steven R.; Reed, Lunde R.; Crum, Jarrod V.; Schaef, Herbert T.

    2005-03-31

    The purpose of this report is to document the results from laboratory testing of the bulk vitri-fied (BV) waste form that was conducted in support of the 2005 integrated disposal facility (IDF) performance assessment (PA). Laboratory testing provides a majority of the key input data re-quired to assess the long-term performance of the BV waste package with the STORM code. Test data from three principal methods, as described by McGrail et al. (2000a; 2003a), are dis-cussed in this testing report including the single-pass flow-through test (SPFT) and product con-sistency test (PCT). Each of these test methods focuses on different aspects of the glass corrosion process. See McGrail et al. (2000a; 2003a) for additional details regarding these test methods and their use in evaluating long-term glass performance. In addition to evaluating the long-term glass performance, this report discusses the results and methods used to provided a recommended best estimate of the soluble fraction of 99Tc that can be leached from the engineer-ing-scale BV waste package. These laboratory tests are part of a continuum of testing that is aimed at improving the performance of the BV waste package.

  12. Gas Utilization Facility Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Gas Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type...

  13. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  14. Facility Safety

    Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  15. System Assessment Standards: Defining the Market for Industrial Energy Assessments

    SciTech Connect (OSTI)

    Sheaffer, Paul; McKane, Aimee; Tutterow, Vestal; Crane, Ryan

    2009-08-01

    Improved efficiency of industrial systems (e.g., compressed air or steam) contributes to a manufacturing facility?s bottom line, improves reliability, and better utilizes assets. Despite these advantages, many industrial facilities continue to have unrealized system optimization potential. A barrier to realizing this potential is the lack of market definition for system energy efficiency assessment services, creating problems for both service providers in establishing market value for their services and for consumers in determining the relative quality of these system assessment services. On August 19, 2008, the American Society of Mechanical Engineers (ASME) issued four new draft Standards for trial use that are designed to raise the bar and define the market for these services. These draft Standards set the requirements for conducting an energy assessment at an industrial facility for four different system types: compressed air, process heating, pumping, and steam. The Standards address topics such as organizing and conducting assessments; analyzing the data collected; and reporting and documentation. This paper addresses both the issues and challenges in developing the Standards and the accompanying Guidance Documents, as well as the result of field testing by industrial facilities, consultants, and utilities during the trial use period that ended in January, 2009. These Standards will be revised and released by ASME for public review, and subsequently submitted for approval as American National Standards for publication in late 2009. Plans for a related activity to establish a professional-level program to certify practitioners in the area of system assessments, opportunities to integrate the ASME Standards with related work on industrial energy efficiency, as well as plans to expand the system assessment Standard portfolio are also discussed.

  16. Facility Safety

    Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  17. Facility Safety

    Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  18. Facility Safety

    Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  19. Interim Closure Activities at Corrective Action Unit 114: Area 25 EMAD Facility, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    Boehlecke, R. F.

    2011-10-24

    This letter report documents interim activities that have been completed at CAU 114 to support ongoing access and generate information necessary to plan future closure activities. General housekeeping and cleanup of debris was conducted in the EMAD yard, cold bays, support areas of Building 3900, and postmortem cell tunnel area of the hot bay. All non-asbestos ceiling tiles and loose and broken non-friable asbestos floor tiles were removed from support galleries and office areas. Non-radiologically contaminated piping and equipment in the cold areas of the building and in the two 120-ton locomotives in the yard were tapped, characterized, drained, and verified free of contents.

  20. Summary of activities at the Engineered Barriers Test Facility, October 1, 1995 to January 31, 1997, and initial data

    SciTech Connect (OSTI)

    Porro, I.; Keck, K.N.

    1997-03-01

    Replicates of two engineered barrier designs (a thick soil barrier and a bio/capillary barrier) were constructed in the test plots of the facility. Prior to placement of any soil in the test plots, instruments were calibrated and attached to plot instrument towers, which were then installed in the test plots. Soil from Spreading Area B was installed in the test plots in lifts and compacted. Instruments attached to the instrument tower were placed in shallow trenches dug in the lifts and buried. Each instrument was checked to make sure it functioned prior to installation of the next lift. Soil samples were collected from each lift in one plot during construction for later determination of physical and hydraulic properties. After completion of the test plots, the data acquisition system was finalized, and data collection began. Appropriate instrument calibration equations and equation coefficients are presented, and data reduction techniques are described. Initial data show test plot soils drying throughout the summer and early fall. This corresponds to low rainfall during this period. Infiltration of water into the test plots was first detected around mid-November with several subsequent episodes in December. Infiltration was verified by corresponding measurements from several different instruments [time domain reflectometry (TDR), neutron probe, thermocouple psychrometers, and heat dissipation sensors]. Tensiometer data does not appear to corroborate data from the other instruments. Test plots were warmer on the side closest to the access trench indicating a temperature effect from the trench. This resulted in greater soil moisture freezing with less and shallower infiltration on the far side of the plots than on the side closest to the trench. At the end of this monitoring period, infiltration in all but two of the test plots has reached the 155-cm depth. Infiltration in test plots B2 and S3 has reached only the 140-cm depth. The monitored infiltration events have

  1. .Mr. C. Yayne Bickerstaff Manager, Corporate Industrial Hygiene

    Office of Legacy Management (LM)

    Mr. C. Yayne Bickerstaff Manager, Corporate Industrial Hygiene Westinghouse Electric Corporation East Pittsburgh Plant Forest Hills Pittsburgh, Pennsylvania 15230 Dear Mr. Bickerstaff: The Department of Energy (DOE), as part of its formerly Utilized Sites Remedial Action Program (FUSRAP). has reviewed information on the Westinghouse facility in Pittsburgh, Pennsylvania, to determine whether it contains residual radioactivity traceable to activities conducted on behalf of the Atomic Energy

  2. Working with SRNL - Our Facilities - Glovebox Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    SRNL Our Facilities - Glovebox Facilities Govebox Facilities are sealed, protectively-lined compartments with attached gloves, allowing workers to safely handle dangerous materials...

  3. Data Sharing Report for the Quantification of Removable Activity in Various Surveillance and Maintenance Facilities at the Oak Ridge National Laboratory Oak Ridge TN

    SciTech Connect (OSTI)

    King, David A

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (OR-EM) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using American Recovery and Reinvestment Act (ARRA) funds. Specifically, DOE OR-EM requested that ORAU plan and implement a sampling and analysis campaign targeting potential removable radiological contamination that may be transferrable to future personal protective equipment (PPE) and contamination control materials—collectively referred to as PPE throughout the remainder of this report—used in certain URS|CH2M Oak Ridge, LLC (UCOR) Surveillance and Maintenance (S&M) Project facilities at the Oak Ridge National Laboratory (ORNL). Routine surveys in Bldgs. 3001, 3005, 3010, 3028, 3029, 3038, 3042, 3517, 4507, and 7500 continuously generate PPE. The waste is comprised of Tyvek coveralls, gloves, booties, Herculite, and other materials used to prevent worker exposure or the spread of contamination during routine maintenance and monitoring activities. This report describes the effort to collect and quantify removable activity that may be used by the ORNL S&M Project team to develop radiation instrumentation “screening criteria.” Material potentially containing removable activity was collected on smears, including both masselin large-area wipes (LAWs) and standard paper smears, and analyzed for site-related constituents (SRCs) in an analytical laboratory. The screening criteria, if approved, may be used to expedite waste disposition of relatively clean PPE. The ultimate objectives of this effort were to: 1) determine whether screening criteria can be developed for these facilities, and 2) provide process knowledge information for future site planners. The screening criteria, if calculated, must be formally approved by Federal Facility Agreement parties prior to use for

  4. About Industrial Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technical Assistance » About Industrial Technical Assistance About Industrial Technical Assistance CHP System at Frito Lay facility in Killingly, Connecticut.<br /> <em>Photo courtesy of Energy Solutions Center.</em> CHP System at Frito Lay facility in Killingly, Connecticut. Photo courtesy of Energy Solutions Center. Industrial Technical Assistance supports the deployment of energy efficient manufacturing technologies and practices, including strategic energy management and

  5. User's guide to DOE facilities

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The Department of Energy's research laboratories represent valuable, often unique, resources for university and industrial scientists. It is DOE policy to make these laboratories and facilities available to qualified scientists. The answers to such questions as who are eligible, what and where are the facilities, what is the cost, when can they be used, are given. Data sheets are presented for each facility to provide information such as location, user contact, description of research, etc. A subject index refers to areas of research and equipment available.

  6. Test and User Facilities | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Test and User Facilities Our test and user facilities are available to industry and other organizations for researching, developing, and evaluating energy technologies. We can work with you to design the tests and operate the equipment. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Advanced Research Turbines B Battery Thermal and Life Test Facility Biochemical Conversion Pilot Plant C Controllable Grid Interface Test System D Distributed

  7. SLAC Accelerator Test Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    FACET & TF Careers & Education Archived FACET User Facility Quick Launch About FACET & Test Facilities Expand About FACET & Test Facilities FACET & Test Facilities User Portal...

  8. Berkeley Low Background Facility

    SciTech Connect (OSTI)

    Thomas, K. J.; Norman, E. B.; Smith, A. R.; Poon, A. W. P.; Chan, Y. D.; Lesko, K. T.

    2015-08-17

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects.

  9. 8.0 FACILITY DISPOSITION PROCESS

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    facility transition, surveillance and maintenance (S&M), and disposition phase activities. ... handling and processing, storage, maintenance, administrative, or support activities ...

  10. Industrial Users | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Industrial Users Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities User Facilities Accessing ASCR Facilities Innovative & Novel Computational Impact on Theory & Experiement (INCITE) ASCR Leadership Computing Challenge (ALCC) Industrial Users Computational Science Graduate Fellowship (CSGF) Research & Evaluation Prototypes (REP) Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community

  11. Audit Report: Modular Office Facilities for Recovery Act Program Activities at the Hanford Site, OAS-RA-13-04

    Energy Savers

    2 Audit Report: IG-0702 September 30, 2005 Use of Performance Based Incentives by the Office of Civilian Radioactive Waste Management Audit Report: IG-0702 (487.45 KB) More Documents & Publications Audit Report: IG-0736 Audit Report: IG-0863 Audit Report: IG-0412

    6 Audit Report: IG-0706 October 17, 2005 Accelerated Tank Waste Retrieval Activities at the Hanford Site The Department will not meet Tri-Party Agreement (Agreement) milestones for the retrieval of waste from the single-shell

  12. Geothermal industry employment: Survey results & analysis

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    The Geothermal Energy Association (GEA) is ofteh asked about the socioeconomic and employment impact of the industry. Since available literature dealing with employment involved in the geothermal sector appeared relatively outdated, unduly focused on certain activities of the industry (e.g. operation and maintenance of geothermal power plants) or poorly reliable, GEA, in consultation with the DOE, decided to conduct a new employment survey to provide better answers to these questions. The main objective of this survey is to assess and characterize the current workforce involved in geothermal activities in the US. Several initiatives have therefore been undertaken to reach as many organizations involved in geothermal activities as possible and assess their current workforce. The first section of this document describes the methodology used to contact the companies involved in the geothermal sector. The second section presents the survey results and analyzes them. This analysis includes two major parts. The first part analyzes the survey responses, presents employment numbers that were captured and describes the major characteristics of the industry that have been identified. The second part of the analysis estimates the number of workers involved in companies that are active in the geothermal business but did not respond to the survey or could not be reached. Preliminary conclusions and the study limits and restrictions are then presented. The third section addresses the potential employment impact related to manufacturing and construction of new geothermal power facilities. Indirect and induced economic impacts related with such investment are also investigated.

  13. Liquid Effluent Retention Facility/Effluent Treatment Facility Hazards Assessment

    SciTech Connect (OSTI)

    Simiele, G.A.

    1994-09-29

    This document establishes the technical basis in support of Emergency Planning activities for the Liquid Effluent Retention Facility and Effluent Treatment Facility the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  14. Number of Large Energy User Manufacturing Facilities by Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) State...

  15. Advances in Ion Accelerators Boost Argonne's ATLAS User Facility...

    Office of Science (SC) [DOE]

    generation, high-current accelerator-based isotope production facilities, and compact high-intensity proton accelerators for medical, industrial and homeland security applications. ...

  16. Recent developments: Industry briefs

    SciTech Connect (OSTI)

    1992-06-01

    This article is the `Industry Briefs` portion of Nuexco`s June 1992 `Recent Developments` section. Specific items mentioned in this article include: (1) a new fuel fabrication facility in South Korea, (2) use of mixed-oxide fuel in Belgium, (3) privatization of nuclear plants in Argentina, (4) startup of Ohi-4 in Japan, (5) purchase of uranium properties in Wyoming, and (6) formation of an international utilities forum.

  17. Why industry demand-side management programs should be self-directed

    SciTech Connect (OSTI)

    Pritchett, T.; Moody, L. ); Brubaker, M. )

    1993-11-01

    U.S. industry believes in DSM. But it does not believe in the way DSM is being implemented, with its emphasis on mandatory utility surcharge/rebate programs. Self-directed industrial DSM programs would be better for industry - and for utilities as well. Industrial demand-side management, as it is currently practiced, relies heavily on command-and-control-style programs. The authors believe that all parties would benefit if utilities and state public service commissions encouraged the implementation of [open quotes]self-directed[close quotes] industrial DSM programs as an alternative to these mandatory surcharge/rebate-type programs. Here the authors outline industrial experience with existing demand-side management programs, and offer alternative approaches for DSM in large manufacturing facilities. Self-directed industrial programs have numerous advantages over mandatory utility-funded and sponsored DSM programs. Self-directed programs allow an industrial facility to use its own funds to meet its own specific goals, whether they are set on the basis of demand reduction, energy use reduction, spending levels for DSM and environmental activities, or some combination of these or other readily measurable criteria. This flexibility fosters a higher level of cost effectiveness, a more focused and effective approach for optimizing energy usage, larger emission reductions per dollar of expenditure, and more competitive industrial electric rates.

  18. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  19. Regulatory facility guide for Ohio

    SciTech Connect (OSTI)

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O.; Rymer, A.C.

    1994-02-28

    The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

  20. Recycled Water Reuse Permit Renewal Application for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    No Name

    2014-10-01

    ABSTRACT This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  1. Nuclear Facilities

    Energy.gov [DOE]

    The nuclear sites list and map shows how DOE nuclear operations are mostly divided between nuclear weapons stockpile maintenance, research and environmental cleanup. The operations are performed within several different facilities supporting nuclear reactor operations, nuclear research, weapons disassembly, maintenance and testing, hot cell operations, nuclear material storage and processing and waste disposal.

  2. Facility Safety

    Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  3. Facility Safety

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  4. Fermilab | Illinois Accelerator Research Center | IARC Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    IARC Facilities Rendering Visit the IARC Multimedia Gallery The IARC Facility Located in the heart of the industrial area of the Fermi lab campus, IARC will consist of 36, 000 square feet of heavy assembly, technical, and office space in the existing heavy industrial building plus an additional 47,000 square feet of technical, office and educational space in the State funded addition. The resulting 83,000 square foot IARC complex will provide space and infrastructure for scientists and engineers

  5. Uranium industry annual, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-09-29

    This report provides current statistical data on the US uranium industry for the Congress, federal and state agencies, the uranium and utility industries, and the public. It utilizes data from the mandatory ''Uranium Industry Annual Survey,'' Form EIA-858; historical data collected by the Energy Information Administration (EIA) and by the Grand Junction (Colorado) Project Office of the Idaho Operations Office of the US Department of Energy (DOE); and other data from federal agencies that preceded the DOE. The data provide a comprehensive statistical characterization of the industry's annual activities and include some information about industry plans and commitments over the next several years. Where these data are presented in aggregate form, care has been taken to protect the confidentiality of company-specific data while still conveying an accurate and complete statistical representation of the industry data.

  6. Beam Test Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Beam Test Facility Beam Test Facility Print Tuesday, 20 October 2009 09:36 Coming Soon

  7. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  8. Industrial Permit

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    discharges to Sandia Canyon, Los Alamos Canyon, Mortandad Canyon, Water Canyon, Canon de Valle, Ten Site Canyon, and Canada del Buey. The facility's discharges, most of...

  9. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    , 2014 [Education, Facility News] ARM Educational Outreach Puts Fun Twist on Science Night Bookmark and Share Community STEM Event Draws Big Crowds Laura Riihimaki intrigues students with monsoon activity during science night. Laura Riihimaki intrigues students with monsoon activity during science night. In November, ARM communications staff and scientists participated in the 6th annual Chief Joseph Middle School Science Night in Richland, Washington. Hundreds of students, parents, and educators

  10. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    18, 2015 [Facility News] ARM Data Developers Prepare for Next Generation of ARM Bookmark and Share Around 40 ARM staff attended the 2015 Data Developer's Meeting at the National Weather Center in Oklahoma to discuss current activities and the reconfiguration of ARM sites. Around 40 ARM staff attended the 2015 Data Developer's Meeting at the National Weather Center in Oklahoma to discuss current activities and the reconfiguration of ARM sites. About 40 ARM staff members gathered at the National

  11. Environmental, Health and Safety Assessment: ATS 7H Program (Phase 3R) Test Activities at the GE Power Systems Gas Turbine Manufacturing Facility, Greenville, SC

    SciTech Connect (OSTI)

    1998-11-17

    International Technology Corporation (IT) was contracted by General Electric Company (GE) to assist in the preparation of an Environmental, Health and Safety (HI&3) assessment of the implementation of Phase 3R of the Advanced Turbine System (ATS) 7H program at the GE Gas Turbines facility located in Greenville, South Carolina. The assessment was prepared in accordance with GE's contractual agreement with the U.S. Department of Energy (GE/DOE Cooperative Agreement DE-FC21-95MC3 1176) and supports compliance with the requirements of the National Environmental Policy Act of 1970. This report provides a summary of the EH&S review and includes the following: General description of current site operations and EH&S status, Description of proposed ATS 7H-related activities and discussion of the resulting environmental, health, safety and other impacts to the site and surrounding area. Listing of permits and/or licenses required to comply with federal, state and local regulations for proposed 7H-related activities. Assessment of adequacy of current and required permits, licenses, programs and/or plans.

  12. Kaiser Engineers Hanford internal position paper -- Project W-236A, Multi-function Waste Tank Facility -- Peer reviews of selected activities

    SciTech Connect (OSTI)

    Stine, M.D.

    1995-01-04

    The purpose of this paper is to develop and document a proposed position on the performance of independent peer reviews on selected design and analysis components of the Title 1 [Preliminary] and Title 2 [Final] design phases of the Multi-Function Waste Tank Facility [MWTF] project. An independent, third-party peer review is defined as a documented critical review of documents, data, designs, design inputs, tests, calculations, or related materials. The peer review should be conducted by persons independent of those who performed the work, but who are technically qualified to perform the original work. The peer review is used to assess the validity of assumptions and functional requirements, to assess the appropriateness and logic of selected methodologies and design inputs, and to verify calculations, analyses and computer software. The peer review can be conducted at the end of the design activity, at specific stages of the design process, or continuously and concurrently with the design activity. This latter method is often referred to as ``Continuous Peer Review.``

  13. Siting analyses for existing facilities

    SciTech Connect (OSTI)

    Ford, K.; Mannan, M. [RMT/Jones and Neuse, Inc., Austin, TX (United States)

    1996-08-01

    The term {open_quotes}facility siting{close_quotes} refers to the spacial relationships between process units, process equipment within units, and the location of buildings relative to process equipment. Facility siting is an important consideration for the safe operation of manufacturing facilities. Paragraph (d) of the Process Safety Management (PSM) rule (29 CFR 1910.119) requires employers to document the codes and standards used for designing process equipment. This documentation includes facility siting. The regulation also requires employers to document that the design of the facility complies with recognized and generally accepted good engineering practices. In addition, paragraph (e) of the PSM regulation requires that facility siting be evaluated during Process Hazard Analyses. Facility siting issues may also need to be considered in emergency planning and response which are required under paragraph (n) of the PSM rule. This paper will demonstrate, by utilizing an example, one technique for evaluating whether buildings could be affected by a catastrophic incident and for determining if these buildings should be included in the PSM programs developed at the facility such as Process Hazard Analysis and Mechanical Integrity. In addition, this example will illustrate a methodology for determining if the buildings are designed and located in accordance with good engineering practice and industry standards.

  14. Facility effluent monitoring plan for the 327 Facility

    SciTech Connect (OSTI)

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  15. Uranium industry annual 1995

    SciTech Connect (OSTI)

    1996-05-01

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  16. Mobile Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govSitesMobile Facility AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 MAOS AMF Fact Sheet Images Contacts AMF Deployments McMurdo Station, Antarctica, 2015-2016 Pearl Harbor, Hawaii, to San Francisco, California, 2015 Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010

  17. Facility Type!

    Office of Legacy Management (LM)

    ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR

  18. Facility Decontamination and Decommissioning Program Surveillance and Maintenance Plan, Revision 2

    SciTech Connect (OSTI)

    Poderis, Reed J.; King, Rebecca A.

    2013-09-30

    This Surveillance and Maintenance (S&M) Plan describes the activities performed between deactivation and final decommissioning of the following facilities located on the Nevada National Security Site, as documented in the Federal Facility Agreement and Consent Order under the Industrial Sites program as decontamination and decommissioning sites: ? Engine Maintenance, Assembly, and Disassembly (EMAD) Facility: o EMAD Building (Building 25-3900) o Locomotive Storage Shed (Building 25-3901) ? Test Cell C (TCC) Facility: o Equipment Building (Building 25-3220) o Motor Drive Building (Building 25-3230) o Pump Shop (Building 25-3231) o Cryogenic Lab (Building 25-3232) o Ancillary Structures (e.g., dewars, water tower, piping, tanks) These facilities have been declared excess and are in various stages of deactivation (low-risk, long-term stewardship disposition state). This S&M Plan establishes and implements a solid, cost-effective, and balanced S&M program consistent with federal, state, and regulatory requirements. A graded approach is used to plan and conduct S&M activities. The goal is to maintain the facilities in a safe condition in a cost-effective manner until their final end state is achieved. This plan accomplishes the following: ? Establishes S&M objectives and framework ? Identifies programmatic guidance for S&M activities to be conducted by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) ? Provides present facility condition information and identifies hazards ? Identifies facility-specific S&M activities to be performed and their frequency ? Identifies regulatory drivers, NNSA/NFO policies and procedures, and best management practices that necessitate implementation of S&M activities ? Provides criteria and frequencies for revisions and updates ? Establishes the process for identifying and dispositioning a condition that has not been previously identified or

  19. Assessment of Replicable Innovative Industrial Cogeneration Applications,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    June 2001 | Department of Energy Replicable Innovative Industrial Cogeneration Applications, June 2001 Assessment of Replicable Innovative Industrial Cogeneration Applications, June 2001 U.S. industrial facilities utilize a wide array of thermal process equipment, including hot water heaters, thermal liquid heaters, ovens, furnaces, kilns, dryers, chillers, and boilers. This report provides a market assessment of innovative industrial distributed generation cogeneration systems that are less

  20. Tax-Exempt Bond Financing for Nonprofit Organizations and Industries |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Tax-Exempt Bond Financing for Nonprofit Organizations and Industries Tax-Exempt Bond Financing for Nonprofit Organizations and Industries State-chartered bond authorities exist in every state. They include healthcare facility authorities, housing finance agencies, higher education facility authorities, and industrial development finance authorities. For those authorities, eligible projects include energy efficiency retrofits for existing facilities owned by eligible

  1. US nuclear warhead facility profiles

    SciTech Connect (OSTI)

    Cochran, T.B.; Arkin, W.A.; Norris, R.S.; Hoenig, M.M.

    1987-01-01

    US Nuclear Warhead Facility Profiles is the third volume of the Nuclear Weapons Databook, a series published by the Natural Resources Defense Council. This volume reviews the different facilities in the US nuclear warhead complex. Because of the linkage between nuclear energy and nuclear weapons, the authors cover not only those facilities associated mainly with nuclear power research, but also those well known for weapons development. They are: the Argonne National Laboratory; the Hanford Reservation; the Oak Ridge National Laboratory; the Pantex plant; the Los Alamos Test Site; the Rocky Flats plant; the Sandia National Laboratories; and a host of others. Information on each facility is organized into a standard format that makes the book easy to use. The reader will find precise information ranging from a facility's address to its mission, management, establishment, budget, and staff. An additional, more in-depth presentation covers the activities and technical process of each facility. Maps, pictures, and figures complement the text.

  2. Industry Cluster Development Grant winners

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Industry Cluster Development Grant winners Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Industry Cluster Development Grant winners Recipients include Picuris Pueblo and Rio Arriba County February 1, 2015 A new community mural on the Hunter Ford facility in Española celebrates the building's planned revitalization and the future location of the Northern New Mexico Food Hub. A new

  3. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 5. Human health risk assessment (HHRA): Evaluation of potential risks from multipathway exposure to emissions. Draft report

    SciTech Connect (OSTI)

    1995-11-01

    The Human Health Risk Assessment (HHRA) portion of the WTI Risk Assessment involves the integration of information about the facility with site-specific data for the surrounding region and population to characterize the potential human health risks due to emissions from the facility. The estimation of human health risks is comprised of the following general steps: (1) identification of substances of potential concern; (2) estimation of the nature and magnitude of chemical releases from the WTI facility; (3) prediction of the atmospheric transport of the emitted contaminants; (4) determination of the types of adverse effects associated with exposure to the substances of potential concern (referred to as hazard identification), and the relationship between the level of exposure and the severity of any health effect (referred to as dose-response assessment); (5) estimation of the magnitude of exposure (referred to as exposure assessment); and (6) characterization of the health risks associated with exposure (referred to as risk characterization).

  4. Industrial Permit

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System. October 15, 2012 Outfall from the Laboratory's Data Communications Center cooling towers Intermittent flow of discharged water from the Laboratory's Data Communications Center eventually reaches perennial segment of Sandia Canyon during storm events (Outfall 03A199). Contact Environmental Communication & Public

  5. Industry Economists

    U.S. Energy Information Administration (EIA) (indexed site)

    Industry Economists The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Industry Economist, whose work is associated with the performance of economic analyses using economic techniques. Responsibilities: Industry Economists perform or participate in one or more of the following

  6. Production Facility SCADA Design Report

    SciTech Connect (OSTI)

    Dale, Gregory E.; Holloway, Michael Andrew; Baily, Scott A.; Woloshun, Keith Albert; Wheat, Robert Mitchell Jr.

    2015-03-23

    The following report covers FY 14 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production facility. The goal of this effort is to provide Northstar with a baseline system design.

  7. OTHER INDUSTRIES

    Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  8. Industrial Users

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR...

  9. Duke Energy- Commercial and Industrial Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Duke Energy encourages its business customers to increase the energy efficiency of eligible facilities through the Commercial and Industrial Energy Efficiency Rebate Program. The equipment rebates...

  10. Tacoma Power- Commercial and Industrial Energy Efficiency Rebate Programs

    Energy.gov [DOE]

    Tacoma Power’s New Construction Program is designed for commercial and business customers including industrial facilities, major remodels, offices, schools, hospitals, retail, non-profits and...

  11. Save (More) Energy Now with Intelligent Industrial Buildings

    Energy.gov [DOE]

    This tip sheet outlines a variety of tools to reduce energy use in industrial facilities and improve plant-wide performance.

  12. Wind Energy In America: Ventower Industries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 of 3 Finished wind tower sections await load-out at Ventower Industries, state-of-the-art fabrication facility in Monroe, MI. Image: Ventower Industries. 2 of 3 Ventower...

  13. Synthesis of ZnO nanorodnanosheet composite via facile hydrothermal method and their photocatalytic activities under visible-light irradiation

    SciTech Connect (OSTI)

    Tan, Wai Kian; Abdul Razak, Khairunisak; Lockman, Zainovia; Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-03-15

    ZnO composite films consisting of ZnO nanorods and nanosheets were prepared by low-temperature hydrothermal processing at 80 C on seeded glass substrates. The seed layer was coated on glass substrates by solgel dip-coating and pre-heated at 300 C for 10 min prior to hydrothermal growth. The size of the grain formed after pre-heat treatment was ?40 nm. A preferred orientation seed layer at the c-axis was obtained, which promoted vertical growth of the ZnO nanorod arrays and formation of the ZnO nanosheets. X-ray diffraction patterns and high-resolution transmission electron microscope (HR-TEM) images confirmed that the ZnO nanorods and nanosheets consist of single crystalline and polycrystalline structures, respectively. Room temperature photoluminescence spectra of the ZnO nanorodnanosheet composite films exhibited band-edge ultraviolet (UV) and visible emission (blue and green) indicating the formation of ZnO crystals with good crystallinity and are supported by Raman scattering results. The formation of one-dimensional (1D) ZnO nanorod arrays and two-dimensional (2D) ZnO nanosheet films using seeded substrates in a single low-temperature hydrothermal step would be beneficial for realization of device applications that utilize substrates with limited temperature stability. The ZnO nanorods and nanosheets composite structure demonstrated higher photocatalytic activity during degradation of aqueous methylene blue under visible-light irradiation. -- Graphical abstract: Schematic illustration of ZnO nanorodnanosheet composite structure formation by hydrothermal at low-temperature of 80 C against time. Highlights: Novel simultaneous formation of ZnO nanorods and nanosheets composite structure. Facile single hydrothermal step formation at low-temperature. Photoluminescence showed ultraviolet and visible emission. Feasible application on substrates with low temperature stability. Improved photocatalytic activity under visible-light irradiation.

  14. NREL: Research Facilities - Webmaster

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Your name: Your email address: Your message: Send Message Printable Version Research Facilities Home Laboratories Test & User Facilities Laboratories & Facilities by Technology...

  15. Facilities | Bioenergy | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Facilities At NREL's state-of-the-art bioenergy research facilities, researchers design ... facility to develop, test, evaluate, and demonstrate bioenergy processes and technologies. ...

  16. Research Facility,

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Delivering the Data As a general condition for use of the ARM Climate Research Facility, users are required to include their data in the ARM Data Archive. All data acquired must be of sufficient quality to be useful and must be documented such that users will be able to clearly understand the meaning and organization of the data. Final, quality-assured data sets are stored in the Data Archive and are freely accessible to the general scientific community. Upon conclusion of the field campaign,

  17. Hanford Site waste tank farm facilities design reconstitution program plan

    SciTech Connect (OSTI)

    Vollert, F.R.

    1994-09-06

    Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980`s has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan.

  18. Operational Readiness Review: Savannah River Replacement Tritium Facility

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    The Operational Readiness Review (ORR) is one of several activities to be completed prior to introducing tritium into the Replacement Tritium Facility (RTF) at the Savannah River Site (SRS). The Secretary of Energy will rely in part on the results of this ORR in deciding whether the startup criteria for RTF have been met. The RTF is a new underground facility built to safely service the remaining nuclear weapons stockpile. At RTF, tritium will be unloaded from old components, purified and enriched, and loaded into new or reclaimed reservoirs. The RTF will replace an aging facility at SRS that has processed tritium for more than 35 years. RTF has completed construction and is undergoing facility startup testing. The final stages of this testing will require the introduction of limited amounts of tritium. The US Department of Energy (DOE) ORR was conducted January 19 to February 4, 1993, in accordance with an ORR review plan which was developed considering previous readiness reviews. The plan also considered the Defense Nuclear Facilities Safety Board (DNFSB) Recommendations 90-4 and 92-6, and the judgements of experienced senior experts. The review covered three major areas: (1) Plant and Equipment Readiness, (2) Personnel Readiness, and (3) Management Systems. The ORR Team was comprised of approximately 30 members consisting of a Team Leader, Senior Safety Experts, and Technical Experts. The ORR objectives and criteria were based on DOE Orders, industry standards, Institute of Nuclear Power Operations guidelines, recommendations of external oversight groups, and experience of the team members.

  19. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    SciTech Connect (OSTI)

    Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

    2008-11-19

    Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

  20. Support - Facilities - Radiation Effects Facility / Cyclotron...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    During experiments at the Radiation Effects Facility users are assisted by the experienced ... shops are available to the users of the Radiation Effects Facility for design, ...

  1. Radiation Effects Facility - Facilities - Cyclotron Institute

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Radiation Effects Facility Typical DUT(device under test) set-up at the end of the Radiation Effects beamline. The Radiation Effects Facility is available for commercial, ...

  2. Harrisburg Facility Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleHarrisburgFacilityBiomassFacility&oldid397545" Feedback Contact needs updating Image needs updating...

  3. Brookhaven Facility Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleBrookhavenFacilityBiomassFacility&oldid397235" Feedback Contact needs updating Image needs updating...

  4. Safeguards considerations related to the decontamination and decommissioning of former nuclear weapons facilities

    SciTech Connect (OSTI)

    Crawford, D.

    1995-12-31

    In response to the post-Cold War environment and the changes in the U. S. Department of Energy defense mission, many former nuclear operations are being permanently shut down. These operations include facilities where nuclear materials production, processing, and weapons manufacturing have occurred in support of the nation`s defense industry. Since defense-related operations have ceased, many of the classification and sensitive information concerns do not exist. However, nuclear materials found at these sites are of interest to the DOE from environmental, safety and health, and materials management perspectives. Since these facilities played a role in defense activities, the nuclear materials found at these facilities are considered special nuclear materials, primarily highly enriched uranium and/or plutonium. Consequently, these materials pose significant diversion, theft, and sabotage threats, and significant nuclear security issues exist that must be addressed. This paper focuses on the nuclear materials protection issues associated with facility decommissioning and decontamination, primarily safeguards.

  5. Facility effluent monitoring plan for the 325 Facility

    SciTech Connect (OSTI)

    1998-12-31

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  6. Industry outreach a status report

    SciTech Connect (OSTI)

    Surek, D.; Sen, R.

    1995-09-01

    The Outreach Project was initiated in October 1994 with the objective of developing a multi-year plan for the U.S. Department of Energy (DOE) for targeted outreach activities for stakeholders in industry and the general public. This status report summarizes the work on industry outreach that has been completed since the inception of the project in October 1994. A three-pronged approach was taken to ascertain issues related to industry outreach. First, there was a review of on-going and past industry outreach activities at DOE and NHA. Next, a series of meetings with industry decision makers was arranged to get a better understanding of industry interests and concerns, and to discuss how DOE and industry could work collaboratively to develop hydrogen energy systems. Third, a workshop is scheduled where representatives from industry, DOE and other federal agencies can identify issues that would enhance partnering between the federal government and industry in the development of hydrogen energy systems. At this tiny, the review of on-going and past activities has been completed. Industry interviews are in progress and a majority of meetings have been held. Analysis of the information gained is in progress. The preliminary analysis of this information indicates that for appropriate near-term demonstration-type projects, the level of interest for collaboration between DOE and industry is high. The data also identifies issues industry is concerned with which impact the commercialization of hydrogen energy systems.

  7. Kent County Waste to Energy Facility Biomass Facility | Open...

    Open Energy Information (Open El) [EERE & EIA]

    County Waste to Energy Facility Biomass Facility Jump to: navigation, search Name Kent County Waste to Energy Facility Biomass Facility Facility Kent County Waste to Energy...

  8. Stockton Regional Water Control Facility Biomass Facility | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Stockton Regional Water Control Facility Biomass Facility Jump to: navigation, search Name Stockton Regional Water Control Facility Biomass Facility Facility Stockton Regional...

  9. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    GEWEX Touts ARM Data Sets for Climate Assessment Activities Bookmark and Share ARM data sets are featured in the latest issue of GEWEX News. In the latest newsletter of the Global Energy and Water Cycle Experiment (GEWEX), the opening commentary features the use of data acquired from the ARM Climate Research Facility's Southern Great Plains site. The detailed data sets are described as a "benchmark against which [global climate model] GCM developers can compare their model codes for

  10. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    September 30, 2008 [Facility News] Education and Outreach Activities in the Tropics Get a Tune-up Bookmark and Share Leonard Jonli (right), Assistant Administrator for Education on Manus, discusses his perspective with (left to right) Ed Lorusso, ARM Education and Outreach Director; Hymson Waffi, local Officer in Charge for the ARM site on Manus; and Larry Jones, ARM Site Manager for the TWP. Leonard Jonli (right), Assistant Administrator for Education on Manus, discusses his perspective with

  11. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    6, 2007 [Facility News] Radiative Heating in Unexplored Bands Campaign Begins Today Bookmark and Share This chart shows the spectral and height dependence of the infrared cooling rates for a mid-latitude summer profile. Note that the majority of the infrared cooling in the middle and upper tropsphere occurs in spectral regions that RHUBC will investigate. In conjunction with other scientific activities taking place during International Polar Year 2007-2008, today (February 26) an international

  12. Guidelines for Evaluation of Nuclear Facility Training Programs

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-22

    The Guidelines for Evaluation of Nuclear Facility Training Programs establish objectives and criteria for evaluating nuclear facility training programs. The guidance in this standard provides a framework for the systematic evaluation of training programs at nuclear facilities and is based, in part, on established criteria for Technical Safety Appraisals, Tiger Team Assessments, commercial nuclear industry evaluations, and the DOE Training Accreditation Program.

  13. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    December 4, 2010 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of the ARM mobile facilities, aerial facility, and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility. Facility availability is as follows: ARM Mobile Facility 2 (AMF2) available FY2013 ARM Mobile Facility 1 (AMF1) available March 2015

  14. Manufacturing Demonstration Facility

    Energy Savers

    of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and ...

  15. Water treatment facilities (excluding wastewater facilities). (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The bibliography contains citations concerning the design, construction, costs, and operation of water treatment facilities. Facilities covered include those that provide drinking water, domestic water, and water for industrial use. Types of water treatment covered include reverse osmosis, chlorination, filtration, and ozonization. Waste water treatment facilities are excluded from this bibliography. (Contains 250 citations and includes a subject term index and title list.)

  16. Industry Perspective

    Energy.gov [DOE]

    Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  17. Industry @ ALS

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Industry @ ALS Industry @ ALS Hewlett Packard Labs Gains Insights with Innovative ALS Research Tools Print Thursday, 05 May 2016 11:21 For the past eight years, Hewlett Packard Labs, the central research organization of Hewlett Packard Enterprise, has been using cutting-edge ALS techniques to advance some of their most promising technological research, including vanadium dioxide phase transitions and atomic movement during memristor operation. Summary Slide Read more... ALS, Molecular Foundry,

  18. ICF Facilities | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Facilities Nike mirror array and lens array ICF operates a set of world-class experimental facilities to create HEDP conditions and to obtain quantitative data in support of its numerous stockpile stewardship-related activities. To learn about three high energy experimental facilities and two small lasers that provide ICF capabilities, select the links below. National Ignition Facility, Lawrence Livermore National Laboratory OMEGA and OMEGA EP, University of Rochester Laboratory for Laser

  19. CMR: Chemistry and Metallurgy Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    CMR: Chemistry and Metallurgy Research Facility CMR: Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) building supports research and experimental activities for plutonium and uranium analytical chemistry and metallurgy. CMR capabilities support a number of national security programs, such as non-proliferation and nuclear safeguards. The CMR Facility In 1952, the first LANL CMR facility was completed. At that time, the

  20. Programs | Argonne Leadership Computing Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Early Science Program INCITE Program ALCC Program Director's Discretionary (DD) Program ALCF Data Science Program INCITE 2016 Projects ALCC 2015 Projects ESP Projects View All Projects Publications ALCF Tech Reports Industry Collaborations Featured Science Reactive MD Simulations of Electrochemical Oxide Interfaces at Mesoscale Subramanian Sankaranarayanan Allocation Program: INCITE Allocation Hours: 40 Million Addressing Challenges As a DOE Office of Science User Facility dedicated to open

  1. EPA issues draft general permits for industrial stormwater discharges

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    EPA on Nov. 16, 1990, issued stormwater discharge regulations associated with industrial activity'' under the authority of CWA's National Pollutant Discharge Elimination System (NPDES). Those regulations established NPDES permit application requirements for industrial and certain municipal separate stormwater discharge systems. Three permit application options were made available for industrial stormwater discharges -- filing an individual application, becoming a participant in a group application or filing a notice of intent to be covered under a general permit and its requirements. The Agency of Nov. 19 proposed a draft general permit for group applications. Industrial dischargers choosing the group option previously were required to file in two parts. Part 1 was due by Sept. 30, 1991, and Part 2 was due by Oct. 1, 1992. The proposed permit would apply to industrial facilities, including certain Indian lands, in selected areas of EPA Regions I, II, III, IV, VI, VIII, IX and X. The permit would cover industrial stormwater discharges to US waters, and would include discharges transmitted through large, medium-sized and other municipal separate storm sewer systems.

  2. Experimental Facilities Division progress report 1996--97

    SciTech Connect (OSTI)

    1997-04-01

    This progress report summarizes the activities of the Experimental Facilities Division (XFD) in support of the users of the Advanced Photon Source (APS), primarily focusing on the past year of operations. In September 1996, the APS began operations as a national user facility serving the US community of x-ray researchers from private industry, academic institutions, and other research organizations. The start of operations was about three months ahead of the baseline date established in 1988. This report is divided into the following sections: (1) overview; (2) user operations; (3) user administration and technical support; (4) R and D in support of view operations; (5) collaborative research; and (6) long-term strategic plans for XFD.

  3. HTGR Industrial Application Functional and Operational Requirements

    SciTech Connect (OSTI)

    L. E. Demick

    2010-08-01

    This document specifies the functional and performance requirements to be used in the development of the conceptual design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to a typical industrial facility. These requirements were developed from collaboration with industry and HTGR suppliers over the preceding three years to identify the energy needs of industrial processes for which the HTGR technology is technically and economically viable. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a conceptual design of the plant that will serve the broadest range of industrial applications.

  4. Oregon Water Quality Permit Program (Stormwater - Industrial...

    Open Energy Information (Open El) [EERE & EIA]

    Activities) Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Water Quality Permit Program (Stormwater - Industrial Activities) Website...

  5. Office of Science User facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resources » Office of Science User facilities Office of Science User facilities The Office of Science national scientific user facilities provide researchers with the most advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. In Fiscal Year 2013 over 30,000 researchers from academia, industry, and government laboratories, spanning all fifty

  6. Facilities removal working group

    SciTech Connect (OSTI)

    1997-03-01

    This working group`s first objective is to identify major economic, technical, and regulatory constraints on operator practices and decisions relevant to offshore facilities removal. Then, the group will try to make recommendations as to regulatory and policy adjustments, additional research, or process improvements and/or technological advances, that may be needed to improve the efficiency and effectiveness of the removal process. The working group will focus primarily on issues dealing with Gulf of Mexico platform abandonments. In order to make the working group sessions as productive as possible, the Facilities Removal Working Group will focus on three topics that address a majority of the concerns and/or constraints relevant to facilities removal. The three areas are: (1) Explosive Severing and its Impact on Marine Life, (2) Pile and Conductor Severing, and (3) Deep Water Abandonments This paper will outline the current state of practice in the offshore industry, identifying current regulations and specific issues encountered when addressing each of the three main topics above. The intent of the paper is to highlight potential issues for panel discussion, not to provide a detailed review of all data relevant to the topic. Before each panel discussion, key speakers will review data and information to facilitate development and discussion of the main issues of each topic. Please refer to the attached agenda for the workshop format, key speakers, presentation topics, and panel participants. The goal of the panel discussions is to identify key issues for each of the three topics above. The working group will also make recommendations on how to proceed on these key issues.

  7. Commercial / Industrial Lighting

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  8. CRAD, Nuclear Facility Safety System- September 25, 2009

    Energy.gov [DOE]

    Nuclear Facility Safety System Functionality Inspection Criteria, Inspection Activities, and Lines of Inquiry (HSS CRAD 64-17, Rev 0 )

  9. Sandia National Laboratories: Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Facilities Electromagnetic Environments Simulator (EMES) Mode Stirred Chamber Lightning Facility Electrostatic Discharge (ESD) Laboratory Other Facilities and Capabilities Programs & Capabilities Partnership Opportunities EM News & Reports Contact Information Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Facilities

  10. Opportunities, Barriers and Actions for Industrial Demand Response in California

    SciTech Connect (OSTI)

    McKane, Aimee T.; Piette, Mary Ann; Faulkner, David; Ghatikar, Girish; Radspieler Jr., Anthony; Adesola, Bunmi; Murtishaw, Scott; Kiliccote, Sila

    2008-01-31

    In 2006 the Demand Response Research Center (DRRC) formed an Industrial Demand Response Team to investigate opportunities and barriers to implementation of Automated Demand Response (Auto-DR) systems in California industries. Auto-DR is an open, interoperable communications and technology platform designed to: Provide customers with automated, electronic price and reliability signals; Provide customers with capability to automate customized DR strategies; Automate DR, providing utilities with dispatchable operational capability similar to conventional generation resources. This research began with a review of previous Auto-DR research on the commercial sector. Implementing Auto-DR in industry presents a number of challenges, both practical and perceived. Some of these include: the variation in loads and processes across and within sectors, resource-dependent loading patterns that are driven by outside factors such as customer orders or time-critical processing (e.g. tomato canning), the perceived lack of control inherent in the term 'Auto-DR', and aversion to risk, especially unscheduled downtime. While industry has demonstrated a willingness to temporarily provide large sheds and shifts to maintain grid reliability and be a good corporate citizen, the drivers for widespread Auto-DR will likely differ. Ultimately, most industrial facilities will balance the real and perceived risks associated with Auto-DR against the potential for economic gain through favorable pricing or incentives. Auto-DR, as with any ongoing industrial activity, will need to function effectively within market structures. The goal of the industrial research is to facilitate deployment of industrial Auto-DR that is economically attractive and technologically feasible. Automation will make DR: More visible by providing greater transparency through two-way end-to-end communication of DR signals from end-use customers; More repeatable, reliable, and persistent because the automated controls

  11. LANSCE | Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Los Alamos Neutron Science Center lansce.lanl.gov lansce-user-office@lanl.gov mesa header Beam Status Accelerator Ops (Internal) Operating Schedule Long Range Operating Schedule User Resources User Agreements Proposals Visit Registration Schedules Experiment Reports User Satisfaction Survey Reviews Users User Office User Program LANSCE User Group Rosen Scholar Rosen Prize News & Multimedia News Multimedia Events Profiles Highlights Seminars Activity Reports The Pulse User Program Headlines

  12. Guidelines for Estimating Unmetered Industrial Water Use | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Industrial Water Use Guidelines for Estimating Unmetered Industrial Water Use Document describes a systematic approach to estimate industrial water use in evaporative cooling systems, steam boiler systems, and facility wash applications. It assists Federal agencies in the baseline development by providing a methodology to calculate unmetered sources of industrial water use utilizing engineering estimates. Download the Guidelines for Estimating Unmetered Industrial Water Use. (2.11 MB)

  13. CMI Unique Facility: Ferromagnetic Materials Characterization Facility |

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Critical Materials Institute Ferromagnetic Materials Characterization Facility The Ferromagnetic Materials Characterization Facility is one of more than a dozen unique facilities developed by the Critical Materials Institute, an Energy Innovation Hub of the U.S. Department of Energy. CMI ferromagnetic materials characterization facility at The Ames Laboratory. In the search for substitute materials to replace rare earths in permanent magnets, whenever promising materials are identified,

  14. Materials Engineering Research Facility | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and Manufacturing R&D Program. The MERF is enabling the development of manufacturing processes for producing advanced battery materials in sufficient quantity for industrial testing. The research conducted in this program is known as process scale-up. Scale-up R&D involves taking a laboratory-developed material and developing

  15. Uranium Processing Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Uranium Processing Facility

  16. Studsvik Processing Facility Update

    SciTech Connect (OSTI)

    Mason, J. B.; Oliver, T. W.; Hill, G. M.; Davin, P. F.; Ping, M. R.

    2003-02-25

    Studsvik has completed over four years of operation at its Erwin, TN facility. During this time period Studsvik processed over 3.3 million pounds (1.5 million kgs) of radioactive ion exchange bead resin, powdered filter media, and activated carbon, which comprised a cumulative total activity of 18,852.5 Ci (6.98E+08 MBq). To date, the highest radiation level for an incoming resin container has been 395 R/hr (3.95 Sv/h). The Studsvik Processing Facility (SPF) has the capability to safely and efficiently receive and process a wide variety of solid and liquid Low Level Radioactive Waste (LLRW) streams including: Ion Exchange Resins (IER), activated carbon (charcoal), graphite, oils, solvents, and cleaning solutions with contact radiation levels of up to 400 R/hr (4.0 Sv/h). The licensed and heavily shielded SPF can receive and process liquid and solid LLRWs with high water and/or organic content. This paper provides an overview of the last four years of commercial operations processing radioactive LLRW from commercial nuclear power plants. Process improvements and lessons learned will be discussed.

  17. McKay Bay Facility Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass Facility Facility McKay Bay Facility Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  18. Industrial Assessment Centers Train Future Energy-Savvy Engineers |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Train Future Energy-Savvy Engineers Industrial Assessment Centers Train Future Energy-Savvy Engineers April 12, 2013 - 11:06am Addthis Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility

  19. Facilities | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Facilities Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated research facilities. As a U.S. Department of Energy national laboratory, Argonne offers access to the facilities listed below through a variety of arrangements. Advanced Powertrain Research Facility Center for Transportation Research Materials Engineering Research Facility Distributed Energy Research Center

  20. National User Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    National User Facilities Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Berkeley Lab's User Facilities-Engines of Discovery Berkeley Lab's User Facilities provide state-of-the-art resources for scientists across the nation and around the world. About 10,000 researchers a year use these facilities, representing nearly one third of the total for all Department of Energy

  1. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    March 15, 2009 [Facility News] Science and Operations Team for RACORO Supports Outreach Activities Bookmark and Share John Hubbe answers questions from 3rd graders at St. Mary. John Hubbe answers questions from 3rd graders at St. Mary. With a presence in the Guthrie, Oklahoma area for the next several months for the RACORO field campaign, science and infrastructure staff took some time to reach out to the local community. On February 24, Pete Lamb attended a board of director's meeting for the

  2. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1, 2014 [Facility News] AGU Journal Seeks Editor in Chief Bookmark and Share The American Geophysical Union (AGU) is seeking a dynamic, well-organized scientist with high editorial standards to serve a 4-year term as the editor-in-chief for the Journal of Advances in Modeling Earth Systems (JAMES). The editor-in-chief will be the principal architect of the scientific content for the journal and an active scientist, well known and well regarded in their discipline. The editor-in-chief will act as

  3. Site maps and facilities listings

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used for production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.

  4. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    30, 2009 Facility News ARM Aerial Facility Leads International Discussions on Aircraft Research Bookmark and Share Five research aircraft participated in the VAMOS...

  5. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (BERAC) published findings and recommendations from their assessment of the effectiveness of ARM Climate Research Facility as a national scientific user facility. Based on...

  6. NREL: Wind Research - Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that...

  7. NREL: Biomass Research - Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

  8. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Interferometers Compared for ARM Mobile Facility Deployment in China Bookmark and Share ... Mobile Facility in 2008 for a field campaign to study Aerosol Indirect Effects in China. ...

  9. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    January 11, 2007 Facility News ARM Mobile Facility Moves to China in 2008 for Study of ... China generates exceptionally high amounts of aerosol particles whose influence on the ...

  10. Central Receiver Test Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Receiver Test Facility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Applications National Solar Thermal Test Facility Nuclear Energy Systems ...

  11. ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman ... DOESC-ARM-14-003 ARM Climate Research Facility Quarterly Ingest Report First Quarter: ...

  12. ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    8 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman ... DOESC-ARM-14-028 ARM Climate Research Facility Quarterly Ingest Report Fourth Quarter: ...

  13. ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman ... DOESC-ARM-15-003 ARM Climate Research Facility Quarterly Ingest Report First Quarter: ...

  14. ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    DOESC-ARM-15-019 ARM Climate Research Facility Quarterly Value-Added Product Report ... implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. ...

  15. ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    DOESC-ARM-15-020 ARM Climate Research Facility Quarterly Ingest Report Second Quarter: ... maintained by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. ...

  16. ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman April ... DOESC-ARM-14-014 ARM Climate Research Facility Quarterly Ingest Report Second Quarter: ...

  17. ARM - NSA Barrow Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Barrow Facility NSA Related Links Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA...

  18. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    13, 2014 Facility News Characterizing Ice Nuclei Over Southern Great Plains Bookmark and Share Placed on the upper platform of the SGP Guest Instrument Facility, this filter...

  19. Bulletin, Fire Prevention Measures For Cutting, Welding, And Related Activities

    Energy.gov [DOE]

    The purpose of this Bulletin is to summarize existing DOE and industry requirements, standards,and guidelines that are applicable to hot work and related activities that represent a significant fire risk to DOE and contractor personnel, programs, and facilities. [DOE/EH-0196 Issue No.97-3

  20. AVLIS industrial access program

    SciTech Connect (OSTI)

    Not Available

    1984-11-15

    This document deals with the procurements planned for the construction of an Atomic Vapor Laser Isotope Separation (AVLIS) production plant. Several large-scale AVLIS facilities have already been built and tested; a full-scale engineering demonstration facility is currently under construction. The experience gained from these projects provides the procurement basis for the production plant construction and operation. In this document, the status of the AVLIS process procurement is presented from two viewpoints. The AVLIS Production Plant Work Breakdown Structure is referenced at the level of the items to be procured. The availability of suppliers for the items at this level is discussed. In addition, the work that will result from the AVLIS enrichment plant project is broken down by general procurement categories (construction, mechanical equipment, etc.) and the current AVLIS suppliers are listed according to these categories. A large number of companies in all categories are currently providing AVLIS equipment for the Full-Scale Demonstration Facility in Livermore, California. These companies form an existing and expanding supplier network for the AVLIS program. Finally, this document examines the relationship between the AVLIS construction project/operational facility and established commercial suppliers. The goal is to utilize existing industrial capability to meet the needs of the project in a competitive procurement situation. As a result, costs and procurement risks are both reduced because the products provided come from within the AVLIS suppliers' experience base. At the same time, suppliers can benefit by the potential to participate in AVLIS technology spin-off markets. 35 figures.

  1. Accessing ASCR Facilities | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Facilities Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities User Facilities Accessing ASCR Facilities Innovative & Novel Computational Impact on Theory & Experiement (INCITE) ASCR Leadership Computing Challenge (ALCC) Industrial Users Computational Science Graduate Fellowship (CSGF) Research & Evaluation Prototypes (REP) Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community

  2. ARM - SGP Radiometric Calibration Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Radiometric Calibration Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Radiometric Calibration Facility The Radiometric Calibration Facility (RCF) provides shortwave radiometer

  3. EERE Success Story-New Wind Test Facilities Open in Colorado...

    Energy.gov (indexed) [DOE]

    Two of the world's largest state-of-the-art drivetrain test facilities are now open for ... DOE's new test facility at the NWTC offers industry the capability to perform accelerated ...

  4. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  5. Colorado Industrial Energy Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    State and Utility Engagement Activities » Colorado Industrial Energy Challenge Colorado Industrial Energy Challenge Colorado The U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program) has developed multiple resources and a Best Practices suite of tools to help industrial manufacturers reduce their energy intensity. AMO adopted the Energy Policy Act of 2005 objective of reducing industrial energy intensity 2.5% annually over the next

  6. CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) HISTORY & STATUS & FUTURE PLANS

    SciTech Connect (OSTI)

    FARABEE, O.A.

    2006-02-24

    In 1993, the US Department of Energy (DOE) decided to shut down the Fast Flux Test Facility (FFTF) due to lack of national missions that justified the annual operating budget of approximately $88M/year. The initial vision was to ''deactive'' the facility to an industrially and radiologically safe condition to allow long-term, minimal surveillance storage until approximately 2045. This approach would minimize near term cash flow and allow the radioactive decay of activated components. The final decontamination and decommissioning (D and D) would then be performed using then-current methodology in a safe and efficient manner. the philosophy has now changed to close coupling the initial deactivation with final D and D. This paper presents the status of the facility and focuses on the future challenge of sodium removal.

  7. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    SciTech Connect (OSTI)

    TOMASZEWSKI, T.A.

    2000-04-25

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

  8. Independent Oversight Review, Savannah River Field Office Tritium Facilities – November 2013

    Energy.gov [DOE]

    Review of Savannah River Field Office Tritium Facilities Radiological Controls Activity-Level Implementation

  9. LBL/Industry fractured reservoir performance definition project

    SciTech Connect (OSTI)

    Benson, S.M.

    1995-04-01

    One of the problems facing the petroleum industry is the recovery of oil from heterogeneous, fractured reservoirs and from reservoirs that have been partially depleted. In response to this need, several companies, notably British Petroleum USA, (BP) and Continental Oil Company (CONOCO), have established integrated reservoir description programs. Concurrently, LBL is actively involved in developing characterization technology for heterogeneous, fractured rock, mainly for DOE`s Civilian Nuclear Waste Program as well as Geothermal Energy programs. The technology developed for these programs was noticed by the petroleum industry and resulted in cooperative research centered on the petroleum companies test facilities. The emphasis of this work is a tightly integrated interdisciplinary approach to the problem of characterizing complex, heterogeneous earth materials. In this approach we explicitly combine the geologic, geomechanical, geophysical and hydrologic information in a unified model for predicting fluid flow. The overall objective is to derive improved integrated approaches to characterizing naturally fractured gas reservoirs.

  10. Energy conservation and cost benefits in the dairy processing industry

    SciTech Connect (OSTI)

    none,

    1982-01-01

    Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

  11. Industry Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    idatech.com info@idatech.com 63065 NE 18 th Street Bend, OR 97701 541.383.3390 Industry Perspective Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 11 - 13, 2012 Mike Hicks Chairman of the Board of Directors, FCHEA Treasurer of the Board of Directors, FCS&E Engineering Manager, Technology Development & Integration, IdaTech Outline 1. Critical Factors * Fuel Purity * Fuel Cost 2. Natural Gas - The Wild Card & Competition 3. IdaTech's Experience Implementing

  12. Occupational Safety Review of High Technology Facilities

    SciTech Connect (OSTI)

    Lee Cadwallader

    2005-01-31

    This report contains reviews of operating experiences, selected accident events, and industrial safety performance indicators that document the performance of the major US DOE magnetic fusion experiments and particle accelerators. These data are useful to form a basis for the occupational safety level at matured research facilities with known sets of safety rules and regulations. Some of the issues discussed are radiation safety, electromagnetic energy exposure events, and some of the more widespread issues of working at height, equipment fires, confined space work, electrical work, and other industrial hazards. Nuclear power plant industrial safety data are also included for comparison.

  13. NREL, Clemson University Collaborate on Wind Energy Testing Facilities

    Energy.gov [DOE]

    In May, two of our nation’s most advanced wind research and test facilities joined forces to help the wind energy industry improve the performance of wind turbine drivetrains and better understand...

  14. Petroleum industry in Iran

    SciTech Connect (OSTI)

    Farideh, A.

    1981-01-01

    This study examines the oil industry in Iran from the early discovery of oil nearly two hundred years ago in Mazandaran (north part) to the development of a giant modern industry in the twentieth century. Chapter I presents a brief historical setting to introduce the reader to the importance of oil in Iran. It focuses on the economic implications of the early oil concessions in the period 1901 to 1951. Chapter II discusses the nationalization of the Iranian oil industry and creation of NIOC in 1951 and the international political and economic implication of these activities. Chapter III explains the activities of NIOC in Iran. Exploration and drilling, production, exports, refineries, natural gas, petrochemicals and internal distributions are studied. Chapter IV discusses the role of the development planning of Iran. A brief presentation of the First Development Plan through the Fifth Development Plan is given. Sources and uses of funds by plan organization during these Five Plans is studied. The Iran and Iraq War is also studied briefly, but the uncertainty of its resolution prevents any close analysis of its impact on the Iranian oil industry. One conclusion, however, is certain; oil has been a vital resource in Iran's past and it will remain the lifetime of its economic development in the future.

  15. Facilities | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Facilities Argonne maintains two state-of-the-art facilities for high-energy physics research. The Argonne Wakefield Accelerator Facility is home to technology that produces high accelerating gradients that could form the basis of the next generation of particle accelerators. Additionally, the 4 Tesla Magnet Facility reuses hospital MRI magnets to provide benchmarking for new muon experiments that will be performed at Fermilab. 4 Tesla Magnet Facility Learn More » Argonne Wakefield Accelerator

  16. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    February 28, 2010 [Facility News] Footprint Adjustments Underway at Southern Great Plains Site Bookmark and Share Upon completion of the SGP footprint reduction, extended facilities 9, 11, 12, 15 and 21 will remain intact, along with the Central Facility (C1) near Lamont. Instrumentation at the remaining sites will be consolidated into the new, smaller footprint. Facilities closed thus far are colored black. Upon completion of the SGP footprint reduction, extended facilities 9, 11, 12, 15 and 21

  17. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    August 15, 2008 [Facility News] New Ceilometer Evaluated at Southern Great Plains Site Bookmark and Share Dan Nelson, SGP facilities manager, inspects the new ceilometer during its evaluation period on the platform of the SGP Guest Instrument Facility between June and July 2008. Dan Nelson, SGP facilities manager, inspects the new ceilometer during its evaluation period on the platform of the SGP Guest Instrument Facility between June and July 2008. To analyze cloud properties, ARM scientists

  18. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    8, 2011 [Facility News, Publications] Journal Special Issue Includes Mobile Facility Data from Germany Bookmark and Share The ARM Mobile Facility operated in Heselbach, Germany, as part of the COPS surface network. The ARM Mobile Facility operated in Heselbach, Germany, as part of the COPS surface network. In 2007, the ARM Mobile Facility participated in one of the most ambitious field studies ever conducted in Europe-the Convective and Orographically Induced Precipitation Study (COPS). Now, 21

  19. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    22, 2011 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of an ARM mobile facility (AMF), the ARM aerial facility (AAF), and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility, with availability as follows: AMF2 available December 2013 AMF1 available March 2015 AAF available between June and October

  20. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    May 15, 2008 [Facility News] National User Facility Organization Meets to Discuss Progress and Ideas Bookmark and Share In late April, the ARM Technical Director attended an annual meeting of the National User Facility Organization. Comprised of representatives from Department of Energy (DOE) national user facilities, the purpose of this group is to promote and encourage discussions among user facility administrators, their management, and their user organization representatives by communicating

  1. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    10, 2016 [Facility News] Opportunity for Cloud Properties Retrieval Algorithm Development: Request for Interest Opened Bookmark and Share The ARM Facility is seeking a scientific consultant to develop an operational cloud property algorithm, using data from ARM facilities and instruments like these scanning cloud radars. The ARM Facility is seeking a scientific consultant to develop an operational cloud property algorithm, using data from ARM facilities and instruments like these scanning cloud

  2. Interim Activities at Corrective Action Unit 114: Area 25 EMAD Facility, Nevada National Security Site, Nevada, for Fiscal Years 2012 and 2013

    SciTech Connect (OSTI)

    Silvas, A J

    2013-10-24

    This letter report documents interim activities that have been completed at CAU 114 in fiscal years 2012 and 2013.

  3. Advanced Powertrain Research Facility | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Advanced Powertrain Research Facility Argonne's Advanced Powertrain Research Facility (APRF) enables researchers to conduct vehicle benchmarking and testing activities that provide data critical to the development and commercialization of next-generation vehicles. APRF engineers use the facility's two-wheel drive (2WD) and four-wheel drive (4WD) dynamometers and state-of-the-art instrumentation to reveal important information on performance, fuel economy, energy consumption and emissions output.

  4. Sandia National Laboratories: Research: Facilities: Technology Deployment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Centers: Radiation Detection Materials Characterization Laboratory Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas: (1) testing and characterizing radiation detector materials and devices; and (2) determining the relationships between the physical properties of the detector materials and the device response. Systems of interest include scintillators and

  5. Integrated Disposal Facility Risk Assessment

    SciTech Connect (OSTI)

    MANN, F. M.

    2003-06-03

    An environmental risk assessment associated with the disposal of projected Immobilized Low-Activity Waste, solid wastes and failed or decommissioned melters in an Integrated Disposal Facility was performed. Based on the analyses all performance objectives associated with the groundwater, air, and intruder pathways were met.

  6. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Goli, Sasank; McKane, Aimee; Olsen, Daniel

    2011-06-14

    Industrial refrigerated warehouses that implemented energy efficiency measures and have centralized control systems can be excellent candidates for Automated Demand Response (Auto-DR) due to equipment synergies, and receptivity of facility managers to strategies that control energy costs without disrupting facility operations. Auto-DR utilizes OpenADR protocol for continuous and open communication signals over internet, allowing facilities to automate their Demand Response (DR). Refrigerated warehouses were selected for research because: They have significant power demand especially during utility peak periods; most processes are not sensitive to short-term (2-4 hours) lower power and DR activities are often not disruptive to facility operations; the number of processes is limited and well understood; and past experience with some DR strategies successful in commercial buildings may apply to refrigerated warehouses. This paper presents an overview of the potential for load sheds and shifts from baseline electricity use in response to DR events, along with physical configurations and operating characteristics of refrigerated warehouses. Analysis of data from two case studies and nine facilities in Pacific Gas and Electric territory, confirmed the DR abilities inherent to refrigerated warehouses but showed significant variation across facilities. Further, while load from California's refrigerated warehouses in 2008 was 360 MW with estimated DR potential of 45-90 MW, actual achieved was much less due to low participation. Efforts to overcome barriers to increased participation may include, improved marketing and recruitment of potential DR sites, better alignment and emphasis on financial benefits of participation, and use of Auto-DR to increase consistency of participation.

  7. Benchmarking transition costs for the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Hulvey, R.K.

    1996-12-31

    The Fast Flux Test Facility (FFTF) is a government-owned, 400-MW(thermal), sodium-cooled test reactor operated by Westinghouse Hanford Company. The reactor is shut down and is undergoing a transition to a long-term surveillance and maintenance state. The mission strategy for the FFTF transition project is to place the FFTF in a radiologically and industrially safe condition, completing the transition phase activities as soon as possible to drive down the current annual surveillance and maintenance costs from approximately $26 million/yr to roughly $1.5 million/yr. The effort to establish the shutdown and transition costs for this 7-yr, $260 million activity is a first of a kind for the U.S. Department of Energy (DOE).

  8. WIRELESS FOR A NUCLEAR FACILITY

    SciTech Connect (OSTI)

    Shull, D; Joe Cordaro, J

    2007-03-28

    The introduction of wireless technology into a government site where nuclear material is processed and stored brings new meaning to the term ''harsh environment''. At SRNL, we are attempting to address not only the harsh RF and harsh physical environment common to industrial facilities, but also the ''harsh'' regulatory environment necessitated by the nature of the business at our site. We will discuss our concepts, processes, and expected outcomes in our attempts to surmount the roadblocks and reap the benefits of wireless in our ''factory''.

  9. Calibration Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities DOE supports the development, standardization, and maintenance of calibration facilities for environmental radiation sensors. Radiation standards at the facilities are primarily used to calibrate portable surface gamma-ray survey meters and borehole logging instruments used for uranium and other mineral exploration and remedial action measurements. Standards

  10. Hanford Facility Beryllium Fact Sheet Building Number/Name:

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    71B B Plant Support Building March 25, 1998 February 9, 2012 CHPRC Kristy Kimmerle, CIH PAST OPERATIONS Beryllium brought in facility: NO Form of beryllium: N/A Period of beryllium operations (dates): N/A End: N/A Location(s) in facility that contained beryllium materials: None that were known. Description of beryllium activities: This facility appeared on the original list of possible beryllium facilities. Reviews of documentation, facility personnel, a UW research representative, and DOE-RL

  11. Waste Treatment and Immobilization Plant HLW Waste Vitrification Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy HLW Waste Vitrification Facility Waste Treatment and Immobilization Plant HLW Waste Vitrification Facility Full Document and Summary Versions are available for download Waste Treatment and Immobilization Plant HLW Waste Vitrification Facility (742.54 KB) Summary - WTP HLW Waste Vitrification Facility (137.99 KB) More Documents & Publications Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste

  12. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  13. CRAD, Facility Safety- Nuclear Facility Design

    Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Design.

  14. Emulsified industrial oils recycling

    SciTech Connect (OSTI)

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  15. CRAD, Occupational Safety & Health- Idaho MF-628 Drum Treatment Facility

    Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Occupational Safety and Industrial Hygiene programs at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project.

  16. Argonne's Materials Engineering Research Facility - Joint Center for

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Energy Storage Research August 8, 2012, Videos Argonne's Materials Engineering Research Facility Argonne's Materials Engineering Research Facility (MERF) enables the development of manufacturing processes for producing advanced battery materials in sufficient quantity for industrial testing. The research conducted in this program is known as process scale-up

  17. Facility effluent monitoring plan for the 324 Facility

    SciTech Connect (OSTI)

    1994-11-01

    The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  18. 233-S plutonium concentration facility hazards assessment

    SciTech Connect (OSTI)

    Broz, R.E.

    1994-12-19

    This document establishes the technical basis in support of Emergency Planning activities for the 233-S Plutonium Concentration Facility on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  19. 340 Facility emergency preparedness hazards assessment

    SciTech Connect (OSTI)

    CAMPBELL, L.R.

    1998-11-25

    This document establishes the technical basis in support of Emergency Planning activities for the 340 Facility on the Hanford Site. Through this document, the technical basis for the development of facility specific Emergency Action Levels and Emergency Planning Zone, is demonstrated.

  20. ORPS Facility Registration Form

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ORPS FACILITY REGISTRATION FORM Submit completed form to: U.S. Department of Energy AU User Support EMAIL: ORPSsupport@hq.doe.gov PHONE: 800-473-4375 FAX: 301-903-9823 Note:  Only one facility per form  Type or print all entries 1. TYPE OF CHANGE  Add a Facility (Complete Section 1.A, then go to Section 2)  Change a Facility (Complete Section 1.B, then go to Section)  Delete a Facility (Complete Section 1.C, then go to Section 2) A. Add a New Facility Use this section if you are

  1. Project Profile: National Solar Thermal Test Facility Operations and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Maintenance (SuNLaMP) | Department of Energy Project Profile: National Solar Thermal Test Facility Operations and Maintenance (SuNLaMP) Project Profile: National Solar Thermal Test Facility Operations and Maintenance (SuNLaMP) Funding Program: SuNLaMP SunShot Subprogram: CSP Location: Sandia National Laboratory, Albuquerque, NM SunShot Award Amount: $2,250,000 This project maintains the National Solar Thermal Test Facility (NSTTF), which provides the CSP industry with established test

  2. 200 Area Liquid Effluent Facilities -- Quality assurance program plan

    SciTech Connect (OSTI)

    Fernandez, L.

    1995-03-13

    This Quality Assurance Program Plan (QAPP) describes the quality assurance and management controls used by the 200 Area Liquid Effluent Facilities (LEF) to perform its activities in accordance with DOE Order 5700.6C. The 200 Area LEF consists of the following facilities: Effluent Treatment Facility (ETF); Treated Effluent Disposal Facility (TEDF); Liquid Effluent Retention facility (LERF); and Truck Loading Facility -- (Project W291). The intent is to ensure that all activities such as collection of effluents, treatment, concentration of secondary wastes, verification, sampling and disposal of treated effluents and solids related with the LEF operations, conform to established requirements.

  3. The Fast Flux Test Facility shutdown program plan

    SciTech Connect (OSTI)

    Guttenberg, S.; Jones, D.H.; Midgett, J.C.; Nielsen, D.L.

    1995-01-01

    The Fast Flux Test Facility (FFTF) is a 400 MWt sodium-cooled research reactor owned by the US Department of Energy (DOE) and operated by the Westinghouse Hanford Company (WHC) on the Hanford Site in southeastern Washington State. The decision was made by the DOE in December, 1993, to initiate shutdown of the FFTF. This paper describes the FFTF Transition Project Plan (1) (formerly the FFTF Shutdown Program Plan) which provides the strategy, major elements, and project baseline for transitioning the FFTF to an industrially and radiologically safe shutdown condition. The Plan, and its resource loaded schedule, indicate this transition can be achieved in a period of six to seven years at a cost of approximately $359 million. The transition activities include reactor defueling, fuel offload to dry cask storage, sodium drain and reaction, management of sodium residuals, shutdown of auxiliary systems, and preparation of appropriate environmental and regulatory documentation. Completion of these activities will involve resolution of many challenging and unique issues associated with shutdown of a large sodium reactor facility. At the conclusion of these activities, the FFTF will be in a safe condition for turnover to the Hanford Site Environmental Restoration Contractor for a long term surveillance and maintenance phase and decommissioning.

  4. Advanced Manufacturing Office (Formerly Industrial Technologies Program) |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. DOE's Advanced Manufacturing Office (85.03 KB) More Documents & Publications Innovative Manufacturing Initiative Recognition Day Manufacturing Demonstration Facilities Workshop Agenda, March 2012 Advanced Manufacturing

  5. Summary of FY13 Industry Interviews

    SciTech Connect (OSTI)

    Hund, Gretchen; Kurzrok, Andrew J.; Seward, Amy M.; Wyse, Evan T.; Gunawardena, Navindra H.

    2013-09-01

    This white paper discusses the industry self-regulation project’s outreach interview activities for FY13 and summarizes conclusions.

  6. United Nations Industrial Development Organization (UNIDO) |...

    Open Energy Information (Open El) [EERE & EIA]

    development of industry in developing nations. UNIDO focuses on three key areas: Poverty reduction through productive activities Trade capacity-building Energy and...

  7. Siddeshwari Industries Pvt Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Muzaffarnagar, Uttar Pradesh, India Zip: 251001 Product: Muzaffarnagar based paper mill with cogeneration activities References: Siddeshwari Industries Pvt Ltd.1 This...

  8. Analysis of energy use in building services of the industrial sector in California: A literature review and a preliminary characterization

    SciTech Connect (OSTI)

    Akbari, H.; Borgers, T.; Gadgil, A.; Sezgen, O.

    1991-04-01

    Energy use patterns in many of California's fastest-growing industries are not typical of those in the mix of industries elsewhere in the US. Many California firms operate small and medium-sized facilities, often in buildings used simultaneously or interchangeably for commercial (office, retail, warehouse) and industrial activities. In these industrial subsectors, the energy required for building services'' to provide occupant comfort and necessities (lighting, HVAC, office equipment, computers, etc.) may be at least as important as the more familiar process energy requirements -- especially for electricity and on-peak demand. In this report, published or unpublished information on energy use for building services in the industrial sector have been compiled and analyzed. Seven different sources of information and data relevant to California have been identified. Most of these are studies and/or projects sponsored by the Department of Energy, the California Energy Commission, and local utilities. The objectives of these studies were diverse: most focused on industrial energy use in general, and, in one case, the objective was to analyze energy use in commercial buildings. Only one of these studies focused directly on non-process energy use in industrial buildings. Our analysis of Northern California data for five selected industries shows that the contribution of total electricity consumption for lighting ranges from 9.5% in frozen fruits to 29.1% in instruments; for air-conditioning, it ranges from nonexistent in frozen fruits to 35% in instrument manufacturing. None of the five industries selected had significant electrical space heating. Gas space heating ranges from 5% in motor vehicles facilities to more than 58% in the instrument manufacturing industry. 15 refs., 15 figs., 9 tabs.

  9. AMO Industrial Distributed Energy: Immediate Deployment of Waste Energy Technologies at Multiple Sites

    Energy.gov [DOE]

    Fact sheet overviewing Verso Paper Corp. project that will deploy industrial technologies to recover and reuse water and steam at pulp and paper facilities.

  10. Cutting Residential, Commercial, and Industrial Energy Use: Tools and Incentives that Work

    Energy.gov [DOE]

    This presentation, presented July 8, 2010, covered energy efficiency potential, examined specific energy efficiency opportunities in residential, commercial, industrial facilities, identified market barriers, and more.

  11. U.S. Department of Energy Announces Completion of 500 Industrial...

    Office of Environmental Management (EM)

    the 500th Energy Saving Assessment (ESA) at the nation's largest industrial facilities. These assessments have helped companies identify opportunities to save over an estimated ...

  12. North Branch Municipal Water & Light- Commercial & Industrial Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    North Branch Municipal Water & Light provides incentives for its commercial and industrial customers to improve the energy efficiency of facilities. Rebates are available for a variety of...

  13. Industrial Carbon Management Initiative

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Energy Industrial Assessment Centers (IAC) Update -- July 2015 Industrial Assessment Centers (IAC) Update -- July 2015 Read the Industrial Assessment Centers (IAC) Update -- July 2015 Industrial Assessment Centers Quarterly Update, July 2015 (845.58 KB) More Documents & Publications Industrial Assessment Centers Update, Fall 2015 Industrial Assessment Centers Quarterly Update, Spring 2014 IAC Factsheet

    Industrial Assessment Centers Update, Fall 2015 Industrial Assessment Centers

  14. Technology Transitions Facilities Database

    Energy.gov [DOE]

    The types of R&D facilities at the DOE Laboratories available to the public typically fall into three broad classes depending on the mode of access: Designated User Facilities, Shared R&D...

  15. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Data Available from ARM Mobile Facility Deployment in China Bookmark and Share The Study of Aerosol Indirect Effects in China was anchored by the ARM Mobile Facility in Shouxian ...

  16. ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    9 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman April ... DOESC-ARM-14-009 ARM Climate Research Facility Quarterly Value-Added Product Report First ...

  17. ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman January ... DOESC-ARM-14-002 ARM Climate Research Facility Quarterly Value-Added Product Report First ...

  18. ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    7 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman October ... DOESC-ARM-14-027 ARM Climate Research Facility Quarterly Value-Added Product Report ...

  19. ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman ... DOESC-ARM-11-023 ARM Climate Research Facility Quarterly Value-Added Product Report ...

  20. ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman July ... DOESC-ARM-14-023 ARM Climate Research Facility Quarterly Ingest Report Third Quarter: ...

  1. ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    8 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman July 2015 ... DOESC-ARM-15-038 ARM Climate Research Facility Quarterly Value-Added Product Report Third ...

  2. ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman January ... DOESC-ARM-15-002 ARM Climate Research Facility Quarterly Value-Added Product Report First ...

  3. ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    0 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman July 2014 ... DOESC-ARM-14-020 ARM Climate Research Facility Quarterly Value-Added Product Report Third ...

  4. ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman February ... DOESC-ARM-12-002 ARM Climate Research Facility Quarterly Value-Added Product Report First ...

  5. ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman ... DOESC-ARM-11-021 ARM Climate Research Facility Quarterly Value-Added Product Report Third ...

  6. Microsoft PowerPoint - NMMSS Assistance to Industry Related to Foreign Obligations_Mitch Hembree [Compatibility Mode]

    National Nuclear Security Administration (NNSA)

    Assistance to Industry Related to Foreign Obligations Mitch Hembree NMMSS Introduction 2 Transit Matching of Communications with NMMSS State of NMMSS Obligation Accounting Prior to Enhancement Benefits of NMMSS Obligation Accounting Enhancement 123 Agreement Communications & NMMSS Where NMMSS fits into the Foreign Obligation story? 3 Nuclear Materials Management and Safeguards System (NMMSS) Key Import: Export: Domestic Activity: Report to NMMSS: US Facility: Transactions (741) Physical

  7. Sandia National Laboratories: Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Facilities State-Of-The-Art Supporting all elements of IMS projects Facilities Labs and Test Sites Integrated Military Systems maintains a number of state-of-the-art testing and fabrication facilities. Supporting all elements of IMS projects including design, prototyping, fabrication, development, testing, and assessments, these facilities enable customers to quickly realize their projects and get the information they need in a fast and effective way. Use the "left" and

  8. Expertise & Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Expertise & Facilities Expertise & Facilities Our full spectrum of end-to-end integrated capabilities in explosives make Los Alamos the ideal place to develop, characterize, and test all types of explosives and explosives threat scenarios. v Award-winning scientists, state-of-the-art facilities LACED is built upon Los Alamos' unparalleled explosives detection capabilities derived from the expertise of award-winning scientists and state-of-the-art facilities. LACED is made up of 57

  9. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    January 21, 2014 [Facility News] ARM Facility Embarks on Expansion in the United States Bookmark and Share A reconfiguration plan is being set in motion for the ARM Facility that will result in even better observations of atmospheric processes at the SGP site. A reconfiguration plan is being set in motion for the ARM Facility that will result in even better observations of atmospheric processes at the SGP site. Through 20 years of measurements at its observations sites around the world, the ARM

  10. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    July 18, 2016 [Facility News] Next Round of Deadlines for Small Campaigns Coming Up Bookmark and Share The next deadline to propose for smaller field campaigns will be August 22. Small campaigns do not require a full deployment of ARM Facility equipment, like an ARM mobile or aerial facility. They require just an instrument or two, or are in conjunction with a larger facility operation. Costing less than $25,000, these campaigns give researchers access to ARM's equipment to perform focused,

  11. NEAC Facilities Subcommittee Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Facilities Subcommittee Report Presentation to the NEAC Committee 12/11/2015 John I. Sackett Facilities Subcommittee Members * John Ahearne * Dana Christensen * Tom Cochran * Mike Corradini * Dave Hill * Hussein Khalil * Andy Klein * Paul Murray * John Sackett, chair Subcommittee Objectives * The objective of our deliberations has been to help DOE-NE develop a means to identify, prioritize and make available those facilities important to Nuclear Energy Research and Development. - All facilities

  12. WIPP - Public Reading Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Public Reading Facilities/Electronic Reading Facilities The Freedom of Information Act (FOIA) and Electronic FOIA (E-FOIA) require that various specific types of records, as well as various other records, be maintained in public reading facilities. Before you submit a FOIA request, we recommend you contact or visit the appropriate public reading facility to determine if the records you are seeking have already been released. The U.S. Department of Energy (DOE), as well as other related DOE

  13. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    January 11, 2011 [Facility News] ARM Mobile Facility Completes Extended Campaign in the Azores; Next Stop-India Bookmark and Share The ARM Mobile Facility obtained data on Graciosa Island in the Azores from May 2009 through December 2010--its longest deployment to date. The ARM Mobile Facility obtained data on Graciosa Island in the Azores from May 2009 through December 2010--its longest deployment to date. December 31, 2010, marked the last official day of data collection for the Clouds,

  14. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Science Board Established for ARM Climate Research Facility Bookmark and Share The scientific infrastructure established by the ARM Program - heavily instrumented research sites, the ARM Data Archive, and the ARM Mobile Facility under development - is now available for use by scientists worldwide through the ARM Climate Research Facility. As a national user facility, this unique asset provides the opportunity for a broader national and international research community to study global change. The

  15. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    New Backup Software Improves Processing, Reliability at Data Management Facility Bookmark and Share Real-time data from all three of the ARM Climate Research Facility sites (North Slope of Alaska, Southern Great Plains, and Tropical Western Pacific) are collected and processed at the ARM Climate Research Facility Data Management Facility (DMF) each day. Processing involves the application of algorithms for performing simple averaging routines, qualitative comparisons, or more complicated

  16. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    March 20, 2014 [Facility News, Publications] 2013 ARM Annual Report Now Available Bookmark and Share The 2013 edition of the ARM Climate Research Facility Annual Report was published in February 2014. The first 25 pages include a short overview of the Facility, followed by featured field campaigns, user research results, and summaries of infrastructure achievements. The back portion of the report includes a summary of all 2013 field campaigns conducted throughout the ARM Facility and a

  17. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    , 2009 [Facility News] Mobile Facility Begins Marine Cloud Study in the Azores Bookmark and Share Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated instrument suite will obtain atmospheric measurements from the marine boundary layer. Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated instrument suite will obtain atmospheric measurements from the marine boundary layer. Extended

  18. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    March 22, 2007 [Facility News] GEWEX News Features Dust Data from ARM Mobile Facility Deployment Bookmark and Share Data from the recent deployment of the ARM Mobile Facility are featured in the February issue of GEWEX News. The February 2007 issue (Vol. 17, No. 1) of GEWEX News features early results from special observing periods of the African Monsoon Mutidisciplinary Analysis, including data obtained by the ARM Mobile Facility (AMF). The AMF was stationed in the central Sahel from January

  19. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    June 1, 2015 [Facility News] BAMS Features Results of 21-Month ARM Deployment Bookmark and Share Low clouds were observed typically at the Graciosa site during the 21-month ARM Mobile Facility deployment. Low clouds were observed typically at the Graciosa site during the 21-month ARM Mobile Facility deployment. Featured in the March 2015 Bulletin of the American Meteorological Society (BAMS), the 21-month ARM mobile facility deployment in the Azores was the longest of its type in a non-tropical

  20. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    8, 2015 [Facility News] New Science Board Members Tackle ARM's Expanding Landscape Bookmark and Share With facilities around the world hosting field campaigns on a regular basis, the ARM Climate Research Facility continues to be an important resource to the scientific community. Thanks to the vigilance of the ARM Science Board, the ARM Facility is able to support quality science with over 70 campaigns a year. Comprised of highly-respected scientists from the external climate research community,

  1. Facilities Management | Jefferson Lab

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Facilities Management Facilities Management & Logistics is responsible for performing or specifying performance of all Jefferson Lab facility maintenance, construction, security, property, and facility services. The lab's 206-acre campus includes 169 acres owned by the U.S. Department of Energy and 37 acres owned by the Southeast Universities Research Association. In addition, the Commonwealth of Virginia owns an 8-acre parcel referred to as the Virginia Associated Research Campus (VARC)

  2. Jupiter Laser Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    jupiter laser facility Jupiter Laser Facility The commissioning of the Titan Petawatt-Class laser to LLNL's Jupiter Laser Facility (JLF) has provided a unique platform for the use of petawatt (PW)-class lasers to explore laser-matter interactions under extreme conditions. The JLF includes the Janus, Callisto, Europa, Titan, and COMET lasers and associated target chambers (see Laser Facilities). Commissioned in 2007, Titan was the first to offer synchronized operation of both a short-pulse PW

  3. Assessment of Energy Use in Multibuilding Facilities (1989 data...

    U.S. Energy Information Administration (EIA) (indexed site)

    in general, and tend to be either engaged in energy-intensive activities such as health care, or associated with industrial activities. By CBECS definition, commercial buildings...

  4. Glass Furnace Combustion and Melting Research Facility.

    SciTech Connect (OSTI)

    Connors, John J.; McConnell, John F.; Henry, Vincent I.; MacDonald, Blake A.; Gallagher, Robert J.; Field, William B.; Walsh, Peter M.; Simmons, Michael C.; Adams, Michael E.; Leadbetter, James M.; Tomasewski, Jack W.; Operacz, Walter J.; Houf, William G.; Davis, James W.; Marvin, Bart G.; Gunner, Bruce E.; Farrell, Rick G.; Bivins, David P.; Curtis, Warren; Harris, James E.

    2004-08-01

    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the

  5. Match Pumps to System Requirements: Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 * October 2005 Match Pumps to System Requirements An industrial facility can reduce the energy costs associated with its pumping systems, and save both energy and money, in many ...

  6. Duke Energy (Electric)- Commercial/Industrial Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Duke Energy’s Smart $aver Incentive program offers rebates to non-residential customers to install energy efficient equipment in commercial/industrial facilities. All Duke Energy Ohio...

  7. Test for Pumping System Efficiency; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 * September 2005 Test for Pumping System Efficiency A pump's efficiency can degrade as much as 10% to 25% before it is replaced, according to a study of industrial facilities ...

  8. How Industrial Energy Efficiency Can Support State Climate and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... 28 U.S. facilities (17 states & DC), 4 Mexico, 2 Canada SEP partners: 7 ISO 50001 and ... Future: In 2030, industrial energy efficiency* could result in 115 to 175 million MWh and ...

  9. National Solar Thermal Test Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    National Solar Thermal Test Facility HomeNational Solar Thermal Test Facility Permalink Pratt Whitney Rocketdyne Testing Concentrating Solar Power, EC, Energy, Facilities, ...

  10. ARM - Facility News Archive

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Archive Media Contact Hanna Goss hanna-dot-goss-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes117 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 7 ARM Mobile Facility 2 47 ARM Mobile Facility 3 1 BAECC 1 BBOP 4 CARES 1 Data Quality Office 2 ENA 2 GOAMAZON 7 HI-SCALE 4 LASIC 3 MAGIC 15 MC3E 17 PECAN 3 SGP 8 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility

  11. ARM - Facility News

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    News Media Contact Hanna Goss hanna-dot-goss-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes117 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 7 ARM Mobile Facility 2 47 ARM Mobile Facility 3 1 BAECC 1 BBOP 4 CARES 1 Data Quality Office 2 ENA 2 GOAMAZON 7 HI-SCALE 4 LASIC 3 MAGIC 15 MC3E 17 PECAN 3 SGP 8 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility

  12. Wheelabrator Westchester Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Westchester Biomass Facility Jump to: navigation, search Name Wheelabrator Westchester Biomass Facility Facility Wheelabrator Westchester Sector Biomass Facility Type Municipal...

  13. Hydrodynamic Testing Facilities Database | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hydrodynamic Testing Facilities Database (Redirected from Hydrodynamic Testing Facilities) Jump to: navigation, search Facility Operators By viewing Hydrodynamic Testing Facilities...

  14. Oak Ridge Manufacturing Demonstration Facility (MDF) | Department...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Facilities Oak Ridge Manufacturing Demonstration Facility (MDF) Oak Ridge Manufacturing Demonstration Facility (MDF) The Manufacturing Demonstration Facility (MDF) is a ...

  15. CRAD, Occupational Safety & Health- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Industrial Safety and Industrial Health programs at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  16. CMMS in the Wind Industry

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    10617P Unlimited_Release Printed January 2013 CMMS in the Wind Industry Dennis Belanger MRG, Vice President Doug Hart MRG Consultant Bob Crull MRG Consultant Brian Maier MRG Consultant Management Resources Group, Inc. 27 Glen Road, Sandy Hook, CT 06482 Abstract Through a wide variety of activities and interactions, Sandia has observed limited adoption of electronic work orders in the wind industry. To explore some of the contributing factors for this limited adoption, the CREW team looked to

  17. Demand-Side Response from Industrial Loads

    SciTech Connect (OSTI)

    Starke, Michael R; Alkadi, Nasr E; Letto, Daryl; Johnson, Brandon; Dowling, Kevin; George, Raoule; Khan, Saqib

    2013-01-01

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  18. Working with SRNL - Our Facilities- Rapid Fabrication Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Rapid Fabrication Facility Working with SRNL Our Facilities - Rapid Fabrication Facility At SRNL's Rapid Fabrication Facility, low-cost prototypes are produced, as well as parts and complete working models

  19. Partnerships For Industry - JCAP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    115.jpg Partnerships For Industry Connect With JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP Connect with JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP partnerships for industry JCAP has established an Industrial Partnership Program. For more information on Industrial Partnership Program or to learn more about other modes of industrial interactions with JCAP, please contact: California Institute of Technology Office of

  20. Department of Energy Facilities | Department of Energy

    Energy Savers

    Department of Energy Facilities Department of Energy Facilities Department of Energy Facilities View All Maps Addthis...

  1. Department of Energy Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Facilities Department of Energy Facilities Department of Energy Facilities

  2. Changing industrial patterns in the metroplitan Chicago area

    SciTech Connect (OSTI)

    Allardice, D.

    1994-12-31

    The industrial base of Chicago, and most Midwestern cities, continues to change. These changes are particularly visible in the manufacturing sector where the exodus of companies has left behind abandoned factories and industrial sites that now blight the urban landscape. As urban centers have seen a steady decline in their ability to attract and maintain their manufacturing base, great interest has been placed in seeing what can be done to attract economic activity back into the urban center. For most Midwestern cities, this often means trying to either replace or stem the tide of manufacturing facilities that have left the city for {open_quotes}greenfields{close_quotes} in suburban or rural locations or have simply moved overseas. On the replacement front, to compensate for the loss of manufacturing, some cities such as Chicago have managed to expand other areas of their economies, such as business services, finance, and tourism and recreation to maintain their vitality. This paper discusses three aspects of the changing economic landscape of Chicago and other Midwestern urban areas. First, some historical perspective will be provided on how Chicago came to be a manufacturing center and what factors since World War II have led manufacturing facilities to move away from the urban center. Second, the future prospects for manufacturing in the central city will be examined. Finally, what policies may help increase (or at the very least maintain) the concentration of manufacturing in Chicago will be discussed.

  3. 1990 Washington State directory of biomass energy facilities

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1990-01-01

    This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington's industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state's total industrial fuel demand. This is a sizable contribution to the state's energy needs.

  4. 1990 Washington State directory of biomass energy facilities

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1990-12-31

    This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington`s industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state`s total industrial fuel demand. This is a sizable contribution to the state`s energy needs.

  5. Haselden/RNL - Research Support Facility Documentary

    ScienceCinema (OSTI)

    None

    2013-05-29

    The US Department of Energy's (DOE) Research Support Facility (RSF) on the campus of the National Renewable Energy Laboratory is positioned to be one of the most energy efficient buildings in the world. It will demonstrate NREL's role in moving advanced technologies and transferring knowledge into commercial applications. Because 19 percent of the country's energy is used by commercial buildings, DOE plans to make this facility a showcase for energy efficiency. DOE hopes the design of the RSF will be replicated by the building industry and help reduce the nation's energy consumption by changing the way commercial buildings are designed and built.

  6. Maintenance Management Program for DOE Nuclear Facilities

    Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-06-01

    To define the program for the management of cost-effective maintenance of Department of Energy (DOE) nuclear facilities. Guidance for compliance with this Order is contained in DOE G 433.1-1, Nuclear Facility Maintenance Management Program Guide for use with DOE O 433.1, which references Federal regulations, DOE directives, and industry best practices using a graded approach to clarify requirements and guidance for maintaining DOE-owned Government property. (Cancels DOE 4330.4B, Chapter II, Maintenance Management Program, dated 2-10-94.) Cancels DOE 4330.4B (in part). Canceled by DOE O 433.1A.

  7. Industrial ecology Prosperity Game{trademark}

    SciTech Connect (OSTI)

    Beck, D.; Boyack, K.; Berman, M.

    1998-03-01

    Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.

  8. The Mixed Waste Management Facility. Monthly report, February 1996

    SciTech Connect (OSTI)

    Streit, R.D.

    1996-03-01

    During February the Project activities included completion of the cost-benefit analysis for the MWMF Project, completion of the 95% Title 2 design review for the DWTF Phase 2, further development of an MWMF business plan for working with industry, and finalization of outstanding issues from the Preliminary Design Review. Based on the best available data, the results of the cost-benefit analysis lead to three simple conclusions: (1) it would be cost effective for the DOE to complete pilot-scale demonstrations of alternatives to incineration prior to design and construction of full-scale facilities; (2) given that demonstrations are to be conducted, it is more cost effective to consolidate these in the MWMF, cost-benefit from a centralized demonstration facility will more than pay for the cost of the facility over the first eight demonstrations; (3) as the cost for independent site demonstrations or the cost for deploying full-scale treatment facilities is reduced, the net benefit of demonstrations is reduced. However, under these circumstances, the risk of deploying technologies increases and the ability to promote competition among small companies, unable to compete with independent pilot-scale demonstrations, will be significantly reduced. The 95% design review of the MWMF building, DWTF Phase 2, was completed with a number of minor comments to be incorporated in the final design. Technically, the first phase of testing for the MSO (Molten Salt Oxidation) demonstrations in the engineering development unit (EDU) have been completed. A number of key engineering issues were identified and resolved including the parameters associated with the chloride content for salt recycle, baffle design, side injector, burst disk design, and material evaluations. The EDU unit will be refurbished in March for continued operations to finalize design details for the downcomer injector for solid and liquid feeds, alternate baffle design, and other engineering design issues.

  9. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    SciTech Connect (OSTI)

    Ballinger, M.Y.; Shields, K.D.

    1999-04-02

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP.

  10. Lime slurry use at the Industrial Wastewater Pretreatment Facility

    SciTech Connect (OSTI)

    Rice, L.E.; Hughes, R.W.; Baggett, G.

    1996-04-01

    The use of lime slurry at the IWPF demonstrated many benefits. Hazardous chemical use was reduced, solids handling was improved, water quality was enhanced and there has been a cost savings. The lime slurry also enabled the plant to begin treating the soluble oil waste, which we were not able to do in the past.

  11. Two Facilities, One Goal: Advancing America's Wind Industry | Department of

    Office of Environmental Management (EM)

    of Energy Twelve Collegiate Teams Gear Up to Compete at WINDPOWER 2016 Twelve Collegiate Teams Gear Up to Compete at WINDPOWER 2016 May 18, 2015 - 2:38pm Addthis Twelve collegiate teams are gearing up to participate in the U.S. Department of Energy's (DOE's) second Collegiate Wind Competition that will take place at the annual American Wind Energy Association (AWEA) WINDPOWER Conference and Exhibition in New Orleans, Louisiana, from May 23 to 26, 2016. The Collegiate Wind Competition

  12. 2015 Energy Systems Integration Facility Annual Report Calls to Industry:

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    5 Distributed Wind Market Report Fact Sheet 2015 Distributed Wind Market Report Fact Sheet 2015-Distributed-Wind-Market-Report-Fact-Sheet_Page_1.jpg Wind turbines in distributed applications are found in all 50 states, Puerto Rico, and the U.S. Virgin Islands to provide energy locally, either serving on-site electricity needs or a local grid. Distributed wind is defined by the wind project's location relative to end-use and powerdistribution infrastructure, rather than turbine or project size.

  13. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Awards are judged by industry professionals who look for talents that exceed a high standard of excellence and work that serves as a benchmark for the industry. Trying to...

  14. Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Topical report No. 14. Catalyst activity trends in two-stage coal liquefaction

    SciTech Connect (OSTI)

    Not Available

    1984-02-01

    The Two Stage Coal Liquefaction process became operational at Wilsonville in May 1981, with the inclusion of an H-OIL ebullated-bed catalytic reactor. The two stage process was initially operated in a nonintegrated mode and has recently been reconfigurated to fully integrate the thermal and the catalytic stages. This report focuses on catalyst activity trends observed in both modes of operation. A literature review of relevant catalyst screening studies in bench-scale and PDU units is presented. Existing kinetic and deactivation models were used to analyze process data over an extensive data base. Based on the analysis, three separate, application studies have been conducted. The first study seeks to elucidate the dependence of catalyst deactivation rate on type of coal feedstock used. A second study focuses on the significance of catalyst type and integration mode on SRC hydrotreatment. The third study presents characteristic deactivation trends observed in integrated operation with different first-stage thermal severities. In-depth analytical work was conducted at different research laboratories on aged catalyst samples from Run 242. Model hydrogenation and denitrogenation activity trends are compared with process activity trends and with changes observed in catalyst porosimetric properties. The accumulation of metals and coke deposits with increasing catalyst age, as well as their distribution across a pellet cross-section, are discussed. The effect of catalyst age and reactor temperature on the chemical composition of flashed bottoms product is addressed. Results from regenerating spent catalysts are also presented. 35 references, 31 figures, 18 tables.

  15. Listing of Defense Nuclear Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Listing of Defense Nuclear Facilities Listing of Defense Nuclear Facilities Attachment 1 - Listing of Defense Nuclear Facilities (55.77 KB) More Documents & Publications Draft Policy and Planning Guidance for Community Transition Activities Workforce Restructuring Policy The First Five Years FY 2004-2008

  16. Save Energy Now Energy Assessments What Are the Benefits for Small and Medium Facilities?

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    February 19, 2009 Energy Assessments: What are the Benefits to Small and Medium Facilities? 2 Energy Assessments: What are the Benefits to Small and Medium Facilities? Webcast Agenda * Overview of Industrial Assessment Center (IAC) Program - Bill Prymak, US Department of Energy * Facility Assessment Process - Don Kasten, Rutgers University * Demonstration of IAC Website - Don Kasten/Michael B. Muller, Rutgers University * Q&A 3 DOE Industrial Technologies Goal: Drive a 25% reduction in

  17. Industrial lead paint removal specifications

    SciTech Connect (OSTI)

    Stone, R.C.

    1997-06-01

    The purpose of this paper is to inform the reader as to some of the pertinent rules and regulations promulgated by the Environmental Protection Agency (EPA) and the Occupational Safety and Health Administration (OSHA) that may effect an industrial lead paint removal project. The paper discusses a recommended schedule of procedures and preparations to be followed by the lead paint removal specification writer when analyzing the possible impact of the project on the environment, the public and workers. Implications of the Clean Air Act, the Clean Water Act and the Resource Conservation and Recovery Act (RCRA) along with hazardous waste handling, manifesting, transporting and disposal procedures are discussed with special emphasis placed as to their impact on the writer and the facility owner. As the rules and regulations are highly complex, the writer has attempted to explain the methodology currently being used in state-of-the-art industrial lead abatement specifications.

  18. Savannah River Site Federal Facility Agreement, January 15, 1993...

    Office of Environmental Management (EM)

    Site Agreement Name Savannah River Site Federal Facility Agreement Under Section 120 of ... with past and present activities at the Savannah River Site are thoroughly investigated ...

  19. Toxic Substances Control Act Uranium Enrichment Federal Facilities...

    Office of Environmental Management (EM)

    Toxic Substance Control Act Uranium Enrichment Federal Facilities Compliance Agreement ... for bringing DOE's former and active Uranium Enrichment Plants in Paducah, Portsmouth, ...

  20. Spearville Wind Energy Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Energy Facility Jump to: navigation, search Name Spearville Wind Energy Facility Facility Spearville Wind Energy Facility Sector Wind energy Facility Type Commercial Scale...

  1. Baseline Wind Energy Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Energy Facility Jump to: navigation, search Name Baseline Wind Energy Facility Facility Baseline Wind Energy Facility Sector Wind energy Facility Type Commercial Scale Wind...

  2. Ainsworth Wind Energy Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Ainsworth Wind Energy Facility Jump to: navigation, search Name Ainsworth Wind Energy Facility Facility Ainsworth Wind Energy Facility Sector Wind energy Facility Type Commercial...

  3. Searsburg Wind Energy Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Searsburg Wind Energy Facility Jump to: navigation, search Name Searsburg Wind Energy Facility Facility Searsburg Wind Energy Facility Sector Wind energy Facility Type Commercial...

  4. Kammerer Solar Power Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Power Facility Facility Kammerer Solar Power Facility Sector Solar Facility Type Photovoltaics Facility Status In Service Developer Recurrent Energy Energy Purchaser Sacramento...

  5. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    7, 2009 [Facility News] Town Hall Meeting at AGU 2009 Fall Meeting Bookmark and Share ARM Climate Research Facility - New Measurement Capabilities for Climate Research Thursday, December 17, 6:15-7:15 pm, Moscone West Room 2002 American Recovery and Reinvestment Act American Recovery and Reinvestment Act Scientists from around the world use data from the ARM Climate Research Facility to study the interactions between clouds, aerosol and radiation. Through the American Recovery and Reinvestment

  6. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    January 15, 2006 [Facility News] ARM Mobile Facility Begins Year-Long Deployment in Africa Bookmark and Share Beginning on January 9, the ARM Mobile Facility began officially collecting atmospheric data from a location at the airport in Niamey, Niger, Africa. As part of the RADAGAST field campaign, the AMF will measure the effects of absorbing aerosols from desert dust in the dry season, and the effects of deep convective clouds and associated moisture loadings on the transmission of atmospheric

  7. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    November 15, 2005 [Facility News] More Server Power Improves Performance at the ARM Data Management Facility Bookmark and Share Recently, several new Sun servers joined the production system at the ARM Data Management Facility (DMF). These servers provide much needed cpu-the Central Processing Unit is the computing part of the computer known as the processor-power to handle the ever-increasing processing load. The DMF is responsible for collecting and processing hourly data from all three ARM

  8. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    20, 2010 [Facility News] ARM Mobile Facility Blogs from Steamboat Springs Bookmark and Share This month, team members for the second ARM Mobile Facility (AMF2) are in Steamboat Springs, Colorado, preparing for the Storm Peak Lab Validation Experiment, or STORMVEX. Follow their progress on the AMF2 blog, as they install instrumentation at three sites on Mount Werner. This is the first topic for the ARM News Center blog, which was developed to share a variety of ARM stories and experiences. Be

  9. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    15, 2005 [Facility News] Aging, Overworked Computer Network at SGP Gets Overhauled Bookmark and Share This aerial map of instruments deployed at the SGP Central Facility provides an indication of the computer resources needed to manage data at the site, let alone communicate with other ARM sites. Established as the first ARM research facility in 1992, the Southern Great Plains (SGP) site in Oklahoma is the "old man on the block" when it comes to infrastructure. Though significant

  10. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    30, 2005 [Facility News] Coastal Clouds Field Campaign Takes Off in July Bookmark and Share The 2-channel NFOV gets careful attention as it joins the suite of instruments collecting data for the ARM Mobile Facility field campaign at Point Reyes National Seashore. Since March 2005, the ARM Mobile Facility (AMF) has been at Point Reyes National Seashore in northern California for the Marine Stratus Radiation, Aerosol, and Drizzle Intensive Operational Period. The goals of this 6-month field

  11. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mobile Facility Beta Testing Complete; System Headed to California Seashore Bookmark and Share A key addition to the ARM Climate Research Facility scientific infrastructure is ready to roll...literally. In February, the ARM Mobile Facility (AMF) is being packed up and shipped from Richland, Washington, to the Point Reyes National Seashore north of San Francisco, California. There, it will be reassembled in preparation for its first deployment as part of a 6-month experiment to study the

  12. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1, 2011 [Facility News] Data from Field Campaign in Black Forest, Germany, are Red Hot Bookmark and Share During COPS, the ARM Mobile Facility operated in Heselbach, Germany, obtaining measurements encompassing the entire life cycle of precipitation. The AMF site also hosted a number of guest instruments for supplemental field campaigns throughout the deployment. During COPS, the ARM Mobile Facility operated in Heselbach, Germany, obtaining measurements encompassing the entire life cycle of

  13. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    13, 2012 [Facility News] Another Kind of Rush in Alaska Bookmark and Share Summer time in Alaska this year brought a rush of visitors to the ARM Climate Research Facility Barrow site. North Slope of Alaska facility manager Mark Ivey hosted two prestigious groups of visitors: a Sandia National Laboratory leadership team in June and U.S. Department of Energy management from the Office of Biological and Environmental Research (BER) in August. In August, DOE management from the Office of Biological

  14. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    8, 2012 [Data Announcements, Facility News] New Data from Greenland for Arctic Climate Research Bookmark and Share Instruments for ICECAPS operate on top and inside of the Mobile Science Facility at Summit Station in Greenland. Instruments for ICECAPS operate on top and inside of the Mobile Science Facility at Summit Station in Greenland. In 2010, researchers installed a powerful suite of climate and weather instruments at Greenland's frozen research outpost, Summit Station, for a long-term

  15. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    July 10, 2007 [Facility News] Jim Mather Selected as New ARM Technical Director Bookmark and Share Congratulations to Dr. Jim Mather, who will take the position of Technical Director of the ARM Climate Research Facility effective August 1, 2007. The Technical Director is responsible and accountable for the successful overall management of the user facility and works with the other ARM managers to this end. Jim's leadership will be critical for the successful development and evolution of the

  16. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    9, 2014 [Facility News] Workshops Begin for ARM Megasites Bookmark and Share While the mission of the ARM Climate Research Facility has not changed, it is undergoing a reconfiguration to better support the linking of ARM measurements with process-oriented models. The facility reconfiguration, presented at the recent Atmospheric System Research meeting, will involve three main components: Augmenting measurements at the ARM Southern Great Plains site and the two sites on the North Slope of Alaska,

  17. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    January 15, 2008 [Facility News] ARM Mobile Facility Completes Field Campaign in Germany Bookmark and Share Researchers will study severe precipitation events that occurred in August and October 2007, stalling Rhine River traffic and causing flooding in portions of Germany. (Image source: DW-WORLD.DE) Operations at the ARM Mobile Facility (AMF) site in Heselbach, Germany, officially came to a close on January 1, 2008. As one of several measurement "supersites" situated throughout the

  18. Tribal Facilities Retrofits

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    up resources through reduced demand" Elias Duran - Property Manager  Day to day operations of facilities  Budget control over facilities  Project needs for future space requirements  Maintenance  Capital improvements  Brief history of the Tlingit & Haida Tribes  Tour of our Juneau facilities  Historical utility cost data  Summary of Project Objectives  Expected cost and emission reductions  Strategic planning for future implementation Two separate

  19. Central Facilities Area Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Lisa Harvego; Brion Bennett

    2011-11-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Central Facilities Area facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facilityspecific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  20. DOE Facility Management Contracts Facility Owner Contractor

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Facility Management Contracts Facility Owner Contractor Award Date End Date Options/Award Term Ultimate Potential Expiration Date Contract FY Competed Parent Companies INEEL (AMWTP Ops) EM Bechtel BWXT Idaho LLC (Under Protest) 6/15/1999 3/31/2011 2 three month option periods until protest resolved 9/30/2011 M&O 1999 Bechtel National, Inc. (67%) and Babcock and Wilcox Company (33%) Portsmouth Remediation EM LATA/Parallax 1/10/2005 6/30/2010 2/28/2011 Site Clean up 2005 Los Alamos Technical