National Library of Energy BETA

Sample records for industrial electric utilities

  1. Electric Utility Industry Update

    Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  2. Lodi Electric Utility- Commercial and Industrial Energy Efficiency Loan Program

    Energy.gov [DOE]

    Lodi Electric Utility provides an on-bill financing program for the commercial and industrial customers. To participate, the customer must receive a rebate through the utility's rebate program, and...

  3. Electric Utility Industry Experience with Geomagnetic Disturbances

    SciTech Connect

    Barnes, P.R.

    1991-01-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as a few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration.

  4. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W.; Taylor, E.R. Jr.; Tesche, F.M.

    1991-09-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems` responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  5. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W. ); Taylor, E.R. Jr. ); Tesche, F.M.

    1991-09-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  6. Perspectives on the future of the electric utility industry

    SciTech Connect

    Tonn, B.; Schaffhauser, A.

    1994-04-01

    This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

  7. Reshaping the electric utility industry: Competitive implications for Illinois

    SciTech Connect

    Maschoff, D.C.

    1995-12-31

    This paper briefly outlines some of the issues in the electric power industry restructuring. In addition, the impacts of these changes on the energy marketplace are discussed. Federal policy initiatives, state regulatory response, and utility management response are each described. Management skills are identified as the critical success factor for competition in the utility market.

  8. Managing an evolution: Deregulation of the electric utility industry

    SciTech Connect

    Skinner, S.K.

    1994-12-31

    The author discusses the emerging competitive situation in the electric power industry as deregulation of electric utilities looms on the horizon. The paper supports this change, and the competition it will bring, but urges caution as changes are instituted, and the regulatory bodies decide how and how much to free, and at what rates. The reason for his urge for caution comes from historical experience of other industries, which were smaller and had less direct impact on every American.

  9. Austin Utilities (Gas and Electric) - Commercial and Industrial...

    Energy.gov [DOE] (indexed site)

    commercial location per year, 5,000 per industrial location per year Program Info Sector Name Utility Administrator Austin Utilities Website http:www.austinutilities.compages...

  10. Cyber Security Challenges in Using Cloud Computing in the Electric Utility Industry

    SciTech Connect

    Akyol, Bora A.

    2012-09-01

    This document contains introductory material that discusses cyber security challenges in using cloud computing in the electric utility industry.

  11. Synthesis of economic criteria in the design of electric utility industrial conservation programs in Costa Rica

    SciTech Connect

    Fisher, S.C.

    1995-12-31

    This paper lays out a set of economic criteria to guide the development of electricity conservation programs for industrial customers of the Costa Rican utilities. It puts the problem of utility and other public policy formulation in the industrial conservation field into the context of ongoing economic and trade liberalization in Costa Rica, as well as the financial and political pressures with which the country`s utilities must contend. The need to bolster utility financial performance and the perennial political difficulty of adjusting power rates for inflation and devaluation, not to mention maintaining efficient real levels, puts a premium on controlling the costs of utility conservation programs and increasing the degree of cost recovery over time. Industrial conservation programs in Costa Rica must adopt a certain degree of activation to help overcome serious market failures and imperfections while at the same time avoiding significant distortion of the price signals guiding the ongoing industrial rationalization process and the reactivation of growth.

  12. Capacity utilization and fuel consumption in the electric power industry, 1970-1981

    SciTech Connect

    Lewis, E.W.

    1982-07-01

    This report updates the 1980 Energy Information Administration (EIA) publication entitled Trends in the Capacity Utilization and Fuel Consumption of Electric Utility Powerplants, 1970-1978, DOE/EIA-184/32. The analysis covers the period from 1970 through 1981, and examines trends during the period prior to the 1973 Arab oil embargo (1970-1973), after the embargo (1974-1977), and during the immediate past (1978-1981). The report also addresses other factors affecting the electric utility industry since the oil embargo: the reduction in foreign oil supplies as a result of the 1979 Iranian crisis, the 1977 drought in the western United States, the 1978 coal strike by the United Mine Workers Union, and the shutdown of nuclear plants in response to the accident at Three Mile Island. Annual data on electric utility generating capacity, net generation, and fuel consumption are provided to identify changes in patterns of power plant capacity utilization and dispatching.

  13. Different approaches to estimating transition costs in the electric- utility industry

    SciTech Connect

    Baxter, L.W.

    1995-10-01

    The term ``transition costs`` describes the potential revenue shortfall (or welfare loss) a utility (or other actor) may experience through government-initiated deregulation of electricity generation. The potential for transition costs arises whenever a regulated industry is subject to competitive market forces as a result of explicit government action. Federal and state proposals to deregulate electricity generation sparked a national debate on transition costs in the electric-utility industry. Industry-wide transition cost estimates range from about $20 billion to $500 billion. Such disparate estimates raise important questions on estimation methods for decision makers. This report examines different approaches to estimating transition costs. The study has three objectives. First, we discuss the concept of transition cost. Second, we identify the major cost categories included in transition cost estimates and summarize the current debate on which specific costs are appropriately included in these estimates. Finally, we identify general and specific estimation approaches and assess their strengths and weaknesses. We relied primarily on the evidentiary records established at the Federal Energy Regulatory Commission and the California Public Utilities Commission to identify major cost categories and specific estimation approaches. We also contacted regulatory commission staffs in ten states to ascertain estimation activities in each of these states. We refined a classification framework to describe and assess general estimation options. We subsequently developed and applied criteria to describe and assess specific estimation approaches proposed by federal regulators, state regulators, utilities, independent power companies, and consultants.

  14. The revenue requirement approach to analysis of alternative technologies in the electric utility industry

    SciTech Connect

    Lohrasbi, J. )

    1990-01-01

    The advancement of coal-based power generation technology is of primary interest to the U.S. Department of Energy (DOE). The interests are well-founded due to increasing costs for premium fuels and, more importantly, the establishment of energy independence to promote national security. One of DOE's current goals is to promote the development of coal-fired technology for the electric utility industry. This paper is concerned with the economic comparison of two alternative technologies: the coal gasification-combined cycle (GCC) and the coal-fired magnetohydrodynamic (MHD)-combined cycle. The revenue requirement analysis was used for the economic evaluation of engineering alternatives in the electric utility industry. The results were compared based on year-by-year revenue requirement analysis. A computer program was written in Fortran to perform the calculations.

  15. Mergers, acquisitions, divestitures, and applications for market-based rates in a deregulating electric utility industry

    SciTech Connect

    Cox, A.J.

    1999-05-01

    In this article, the author reviews FERC's current procedures for undertaking competitive analysis. The current procedure for evaluating the competitive impact of transactions in the electric utility industry is described in Order 592, in particular Appendix A. These procedures effectively revised criteria that had been laid out in Commonwealth Edison and brought its merger policy in line with the EPAct and the provisions of Order 888. Order 592 was an attempt to provide more certainty and expedition in handling mergers. It established three criteria that had to be satisfied for a merger to be approved: Post-merger market power must be within acceptable thresholds or be satisfactorily mitigated, acceptable customer protections must be in place (to ensure that rates will not go up as a result of increased costs) and any adverse effect on regulation must be addressed. FERC states that its Order 592 Merger Policy Statement is based upon the Horizontal Merger Guidelines issued jointly by the Federal Trade Commission and the Antitrust Division Department of Justice (FTC/DOJ Merger Guidelines). While it borrows much of the language and basic concepts of the Merger Guidelines, FERC's procedures have been criticized as not following the methodology closely enough, leaving open the possibility of mistakes in market definition.

  16. Electrical utilities relay settings

    SciTech Connect

    HACHE, J.M.

    1999-02-24

    This document contains the Hanford transmission and distribution system relay settings that are under the control of Electrical Utilities.

  17. United States Electricity Industry Primer

    Office of Energy Efficiency and Renewable Energy (EERE)

    The United States Electricity Industry Primer provides a high-level overview of the U.S. electricity supply chain, including generation, transmission, and distribution; markets and ownership structures, including utilities and regulatory agencies; and system reliability and vulnerabilities.

  18. Identification, definition and evaluation of potential impacts facing the US electric utility industry over the next decade. Final report

    SciTech Connect

    Grainger, J.J.; Lee, S.S.H.

    1993-11-26

    There are numerous conditions of the generation system that may ultimately develop into system states affecting system reliability and security. Such generation system conditions should also be considered when evaluating the potential impacts on system operations. The following five issues have been identified to impact system reliability and security to the greatest extent: transmission access/retail wheeling; non-utility generators and independent power producers; integration of dispersed storage and generation into utility distribution systems; EMF and right-of-way limitations; Clean Air Act Amendments. Strictly speaking, some issues are interrelated and one issue cannot be completely dissociated from the others. However, this report addresses individual issues separately in order to determine all major aspects of bulk power system operations affected by each issue. The impacts of the five issues on power system reliability and security are summarized. This report examines the five critical issues that the US electric utility industry will be facing over the next decade. The investigation of their impacts on utility industry will be facing over the next decade. The investigation of their impacts on utility system reliability and security is limited to the system operation viewpoint. Those five issues will undoubtedly influence various planning aspects of the bulk transmission system. However, those subjects are beyond the scope of this report. While the issues will also influence the restructure and business of the utility industry politically, sociologically, environmentally, and economically, all discussion included in the report are focused only on technical ramifications.

  19. Electrical Utility Materials Handler

    Energy.gov [DOE]

    Join the Bonneville Power Administration (BPA) for a challenging and rewarding career, while working, living, and playing in the Pacific Northwest. The Electrical Utility Material Handler (EUMH)...

  20. A utility survey and market assessment on repowering in the electric power industry

    SciTech Connect

    Klara, J.M.; Weinstein, R.E.; Wherley, M.R.

    1996-08-01

    Section 1 of this report provides a background about the DOE High Performance Power Systems (HIPPS) program. There are two kinds of HIPPS cycles under development. One team is led by the Foster Wheeler Development Corporation, the other team is led by the United Technologies Research Center. These cycles are described. Section 2 summarizes the feedback from the survey of the repowering needs of ten electric utility companies. The survey verified that the utility company planners favor a repowering for a first-of-a-kind demonstration of a new technology rather than an all-new-site application. These planners list the major factor in considering a unit as a repowering candidate as plant age: they identify plants built between 1955 and 1965 as the most likely candidates. Other important factors include the following: the need to reduce operating costs; the need to perform major maintenance/replacement of the boiler; and the need to reduce emissions. Section 3 reports the results of the market assessment. Using the size and age preferences identified in the survey, a market assessment was conducted (with the aid of a power plant data base) to estimate the number and characteristics of US generating units which constitute the current, primary potential market for coal-based repowering. Nearly 250 units in the US meet the criteria determined to be the potential repowering market.

  1. Electric Utility Energy Efficiency Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Utility Energy Efficiency Programs Electric Utility Energy Efficiency Programs This presentation discusses national trends in electric utility energy efficiency programs for industrial customers, insights from investor-owned utilities, and national trends/developments among electric cooperatives. Electric Utility Energy Efficiency Programs (October 5, 2010) (4.76 MB) More Documents & Publications CX-004355: Categorical Exclusion Determination Industrial Customer Perspectives on

  2. Federal Utility Partnership Working Group Industry Commitment

    Energy.gov [DOE]

    Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist Federal agencies in achieving energy-saving goals. These goals are set in the Energy Policy Act of...

  3. Utility Partnerships Webinar Series: Electric Utility Energy Efficiency Programs

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Partnerships Webinar Series: Electric Utility Energy Efficiency Programs October 5, 2010 Industrial Technologies Program eere.energy.gov Speakers and Topics: * Consortium for Energy Efficiency (CEE), Industrial Program Manager, Kellem Emanuele, will discuss national trends in electric energy efficiency programs for industrial customers. * Xcel Energy, Trade Relations Manager in Colorado, Bob Macauley, and Trade Relations Manager in Minnesota, Brian Hammarsten, will provide insight from a large

  4. Some perspectives on the electric industry

    SciTech Connect

    Winer, J.H.

    1996-12-31

    Opinions regarding future directions of the U.S. electric utility industry are presented in the paper. Pertinent historical aspects and current industry rules are summarized. Major issues and trends in the electricity market are outlined, and recommendations are presented. It is concluded that new rules in the industry will be set directly by customers, and that customers want renewable energy resources.

  5. Optimal Electric Utility Expansion

    Energy Science and Technology Software Center

    1989-10-10

    SAGE-WASP is designed to find the optimal generation expansion policy for an electrical utility system. New units can be automatically selected from a user-supplied list of expansion candidates which can include hydroelectric and pumped storage projects. The existing system is modeled. The calculational procedure takes into account user restrictions to limit generation configurations to an area of economic interest. The optimization program reports whether the restrictions acted as a constraint on the solution. All expansionmore » configurations considered are required to pass a user supplied reliability criterion. The discount rate and escalation rate are treated separately for each expansion candidate and for each fuel type. All expenditures are separated into local and foreign accounts, and a weighting factor can be applied to foreign expenditures.« less

  6. Florida's electric industry and solar electric technologies

    SciTech Connect

    Camejo, N.

    1983-12-01

    The Florida Electric Industry is in a process of diversifying its generation technology and its fuel mix. This is being done in an effort to reduce oil consumption, which in 1981 accounted for 46.5% of the electric generation by fuel type. This does not compare well with the rest of the nation where oil use is lower. New coal and nuclear units are coming on line, and probably more will be built in the near future. However, eventhough conservation efforts may delay their construction, new power plants will have to be built to accomodate the growing demand for electricity. Other alternatives being considered are renewable energy resources. The purpose of this paper is to present the results of a research project in which 10 electric utilities in Florida and the Florida Electric Power Coordinating Group rated six Solar Electric options. The Solar Electric options considered are: 1) Wind, 2) P.V., 3) Solar thermal-electric, 4) OTEC, 5) Ocean current, and 6) Biomass. The questionaire involved rating the economic and technical feasibility, as well as, the potential environmental impact of these options in Florida. It also involved rating the difficulty in overcoming institutional barriers and assessing the status of each option. A copy of the questionaire is included after the references. The combined capacity of the participating utilities represent over 90% of the total generating capacity in Florida. A list of the participating utilities is also included. This research was done in partial fulfillment for the Mater's of Science Degree in Coastal Zone Management. This paper is complementary to another paper (in these condensed conference proceedings) titled COASTAL ZONE ENERGY MANAGEMENT: A multidisciplinary approach for the integration of Solar Electric Systems with Florida's power generation system, which present a summary of the Master's thesis.

  7. Federal Utility Partnership Working Group Industry Commitment | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Federal Utility Partnership Working Group Industry Commitment Federal Utility Partnership Working Group Industry Commitment Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist Federal agencies in achieving energy-saving goals. These goals are set in the Energy Policy Act of 1992 and subsequent executive orders. Federal agencies can contact Federal Utility Partnership Working Group utility partners for more information on assistance.

  8. Electric industry restructuring in Massachusetts

    SciTech Connect

    Wadsworth, J.W.

    1998-07-01

    A law restructuring the electric utility industry in Massachusetts became effective on November 25, 1997. The law will break up the existing utility monopolies into separate generation, distribution and transmission entities, and it will allow non-utility generators access to the retail end user market. The law contains many compromises aimed at protecting consumers, ensuring savings, protecting employees and protecting the environment. While it appears that the legislation recognizes the sanctity of independent power producer contracts with utilities, it attempts to provide both carrots and sticks to the utilities and the IPP generators to encourage renegotiations and buy-down of the contracts. Waste-to-energy contracts are technically exempted from some of the obligations to remediate. Waste-to-energy facilities are classified as renewable energy sources which may have positive effects on the value to waste-to-energy derived power. On November 25, 1997, the law restructuring the electric utility industry in Massachusetts became effective. The law will have two primary effects: (1) break up the existing utility monopolies into separate generation, distribution and transmission entities, and (2) allow non-utility generators access to the retail end-user market.

  9. A Case Study of Danville Utilities: Utilizing Industrial Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Study of Danville Utilities: Utilizing Industrial Assessment Centers to Provide Energy Efficiency Resources for Key Accounts A Case Study of Danville Utilities: Utilizing ...

  10. U.S. Electric Utility Demand-Side Management

    Reports and Publications

    2002-01-01

    Final issue of this report. - Presents comprehensive information on electric power industry demand side management (DSM) activities in the United States at the national, regional, and utility levels.

  11. Financial statistics of major publicly owned electric utilities, 1991

    SciTech Connect

    Not Available

    1993-03-31

    The Financial Statistics of Major Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with data that can be used for policymaking and decisionmaking purposes relating to publicly owned electric utility issues.

  12. Industrial energy management and utilization

    SciTech Connect

    Witte, L.C.; Schmidt, P.S.; Brown, D.

    1986-01-01

    This text covers the principles of industrial energy conservation and energy conservation applications, with emphasis on the energy-intensive industries. Topics covered include energy consumption, alternative energy sources, elements of energy audits, economic investment analysis, management of energy conservation programs, boilers and fired heaters, steam and condensate systems, classification and fouling of heat exchangers, heat transfer augmentation, waste heat sources, heat recovery equipment, properties and characteristics of insulation, energy conservation in industrial buildings, cogeneration, power circuit components and energy conversion devices, electrical energy conservation. A review of the fundamentals of fluid mechanics, heat transfer, and thermodynamics, as well as examples, problems, and case studies from specific industries are included.

  13. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO{sub 2}) and oxides of nitrogen (NO{sub x}) from electric power generating stations. The restrictions on SO{sub 2} take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry`s response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  14. Industrial Utility Webinar: Public Power Open Session

    SciTech Connect

    2010-02-10

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  15. Industrial Utility Webinar: Natural Gas Efficiency Programs

    SciTech Connect

    2010-04-15

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  16. Industrial Utility Webinar: Combined Heat and Power

    SciTech Connect

    2010-06-09

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  17. Industrial Utility Webinar: Financial Mechanisms and Incentives

    SciTech Connect

    2010-03-10

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  18. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO[sub 2]) and oxides of nitrogen (NO[sub x]) from electric power generating stations. The restrictions on SO[sub 2] take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry's response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  19. Creating New Incentives for Risk Identification and Insurance Process for the Electric Utility Industry (initial award through Award Modification 2); Energy & Risk Transfer Assessment (Award Modifications 3 - 6)

    SciTech Connect

    Michael Ebert

    2008-02-28

    This is the final report for the DOE-NETL grant entitled 'Creating New Incentives for Risk Identification & Insurance Processes for the Electric Utility Industry' and later, 'Energy & Risk Transfer Assessment'. It reflects work done on projects from 15 August 2004 to 29 February 2008. Projects were on a variety of topics, including commercial insurance for electrical utilities, the Electrical Reliability Organization, cost recovery by Gulf State electrical utilities after major hurricanes, and review of state energy emergency plans. This Final Technical Report documents and summarizes all work performed during the award period, which in this case is from 15 August 2004 (date of notification of original award) through 29 February 2008. This report presents this information in a comprehensive, integrated fashion that clearly shows a logical and synergistic research trajectory, and is augmented with findings and conclusions drawn from the research as a whole. Four major research projects were undertaken and completed during the 42 month period of activities conducted and funded by the award; these are: (1) Creating New Incentives for Risk Identification and Insurance Process for the Electric Utility Industry (also referred to as the 'commercial insurance' research). Three major deliverables were produced: a pre-conference white paper, a two-day facilitated stakeholders workshop conducted at George Mason University, and a post-workshop report with findings and recommendations. All deliverables from this work are published on the CIP website at http://cipp.gmu.edu/projects/DoE-NETL-2005.php. (2) The New Electric Reliability Organization (ERO): an examination of critical issues associated with governance, standards development and implementation, and jurisdiction (also referred to as the 'ERO study'). Four major deliverables were produced: a series of preliminary memoranda for the staff of the Office of Electricity Delivery and Energy Reliability ('OE'), an ERO interview

  20. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PDF icon "List of Covered Electric Utilities" under the Public Utility Regulatory Policies ... Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy ...

  1. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

  2. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies ...

  3. Wonewoc Electric & Water Util | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wonewoc Electric & Water Util Jump to: navigation, search Name: Wonewoc Electric & Water Util Place: Wisconsin Phone Number: (608) 464-3114 Website: www.wonewocwisc.compublicwor...

  4. Studying the Communications Requirements of Electric Utilities...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid ...

  5. Tipton Municipal Electric Util | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Electric Util Jump to: navigation, search Name: Tipton Municipal Electric Util Address: P.O. Box 288 Place: Tipton, Indiana Zip: 46072 Service Territory: Indiana Phone Number:...

  6. Electric utility system master plan

    SciTech Connect

    Erickson, O.M.

    1992-10-01

    This publication contains the electric utility system plan and guidelines for providing adequate electric power to the various facilities of Lawrence Livermore National Laboratory in support of the mission of the Laboratory. The topics of the publication include general information on the current systems and their operation, a planning analysis for current and future growth in energy demand, proposed improvements and expansions required to meet long range site development and the site`s five-year plan.

  7. A Case Study of Danville Utilities: Utilizing Industrial Assessment Centers

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to Provide Energy Efficiency Resources for Key Accounts | Department of Energy Study of Danville Utilities: Utilizing Industrial Assessment Centers to Provide Energy Efficiency Resources for Key Accounts A Case Study of Danville Utilities: Utilizing Industrial Assessment Centers to Provide Energy Efficiency Resources for Key Accounts This case study provides information on how Danville Utilities used Industrial Assessment Centers to provide energy efficiency resources to key accounts. A Case

  8. Financial statistics of selected investor-owned electric utilities, 1989

    SciTech Connect

    Not Available

    1991-01-01

    The Financial Statistics of Selected Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide the Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues.

  9. Power Sales to Electric Utilities

    SciTech Connect

    1989-02-01

    The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities

  10. Columbia Utilities Electricity | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Electricity Jump to: navigation, search Name: Columbia Utilities Electricity Place: New York Phone Number: (877) 726-5862 Website: www.columbiautilities.com Twitter:...

  11. Financial statistics of major US publicly owned electric utilities 1993

    SciTech Connect

    Not Available

    1995-02-01

    The 1993 edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents five years (1989 to 1993) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. The primary source of publicly owned financial data is the Form EIA-412, the Annual Report of Public Electric Utilities, filed on a fiscal basis.

  12. U.S. electric utility demand-side management 1993

    SciTech Connect

    1995-07-01

    This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

  13. U.S. electric utility demand-side management 1995

    SciTech Connect

    1997-01-01

    The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  14. Page Electric Utility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Page Electric Utility Jump to: navigation, search Name: Page Electric Utility Place: Arizona Phone Number: (928) 645-2419 Website: pageutility.com Outage Hotline: (928) 645-2419...

  15. US electric utility demand-side management, 1994

    SciTech Connect

    1995-12-26

    The report presents comprehensive information on electric power industry demand-side management (DSM) activities in US at the national, regional, and utility levels. Objective is provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions, and costs attributable to DSM.

  16. Nongqishi Electric Power Industrial Corporation | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Nongqishi Electric Power Industrial Corporation Jump to: navigation, search Name: Nongqishi Electric Power Industrial Corporation Place: Kuitun City, Xinjiang Autonomous Region,...

  17. Midstate Electric Cooperative - Commercial and Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial...

  18. Industrial Energy Efficiency Utility Webinars

    Office of Energy Efficiency and Renewable Energy (EERE)

    State, regional, and utility partners can learn how to help manufacturing customers save energy by reading the following presentations. Webinars feature experts from utilities, government, and...

  19. Technology opportunities in a restructured electric industry

    SciTech Connect

    Gehl, S.

    1995-12-31

    This paper describes the Strategic Research & Development (SR&D) program of the Electric Power Research Institute (EPRI). The intent of the program is to anticipate and shape the scientific and technological future of the electricity enterprise. SR&D serves those industry R&D needs that are more exploratory, precompetitive, and longer-term. To this end, SR&D seeks to anticipate technological change and, where possible, shape that change to the advantage of the electric utility enterprise and its customers. SR&D`s response to this challenge is research and development program that addresses the most probable future of the industry, but at the same time is robust against alternative futures. The EPRI SR&D program is organized into several vectors, each with a mission that relates directly to one or more EPRI industry goals, which are summarized in the paper. 1 fig., 2 tabs.

  20. Overview of U.S. electric utilities: Transmission and distribution systems

    SciTech Connect

    Brown, R.D.

    1994-12-31

    I hope this brief description of the US electric utility industry has been interesting and informative. No doubt many characteristics, concerns, and research efforts mirror those of the electric utility industry in South Korea. It is hoped that through workshops such as this that electric utilities, manufacturers and consultants may learn from each other for the mutual benefit of all.

  1. An electric utility's adventures in commercial refrigeration

    SciTech Connect

    Flannick, J.A. ); Stamm, R.H. ); Calle, M.M. ); Gomolla, J.C. , Milwaukee, WI )

    1994-10-01

    This article provides a look at the history of energy conservation efforts in supermarket refrigeration from World War II to the present and a goal for the future. A supermarket is a low profit margin business, typically netting 1 percent on annual sales. The typical supermarket's annual electric bill equals or exceeds the annual profits. With all of these data, it looked like energy conservation in the supermarket industry was going to be an easy task. Change the lighting to a more energy-efficient system and lower the head pressure and raise the suction pressure in the refrigeration. Any owner, CEO, or general manager who could easily increase his bottom-line profit by 10 to 30 percent would jump at the opportunity, especially when the electric utility was willing to support a portion of the cost for the changes.

  2. Anaheim Public Utilities - Commercial & Industrial New Construction...

    Energy.gov [DOE] (indexed site)

    Utilities (APU) offers commercial, industrial, and institutional customers the New Construction Incentives Program to offset construction and installation costs of energy...

  3. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    OpenEI (Open Energy Information) [EERE & EIA]

    August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for August 2008. Monthly Electric Utility Sales...

  4. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    OpenEI (Open Energy Information) [EERE & EIA]

    December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for December 2008. Monthly Electric Utility...

  5. U.S. electric utility demand-side management 1996

    SciTech Connect

    1997-12-01

    The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  6. Industrial energy management and utilization

    SciTech Connect

    Witte, L.C.; Schmidt, P.S.; Brown, D.R.

    1988-01-01

    This book presents a study of the technical, economic and management principles of effective energy use. The authors report on: energy consumption, conservation, and resources. They present an analysis of thermal-fluid systems. Energy conservation in combustion systems. Heat exchangers, heat recovery, energy conservation in industrial buildings, and industrial cogeneration are discussed.

  7. Lodi Electric Utility- PV Rebate Program

    Energy.gov [DOE]

    Note: Lodi Electric Utility accepted applications for program year 2015 from January 2 - 30, 2015. The program is fully subscribed for 2015.  

  8. The industrial role in the changing electric industry

    SciTech Connect

    Freeman, B.

    1994-12-31

    Armco is a large customer on the West Penn Power, Ohio Power, and Ohio Edison systems. Two of the three utilities are considered low cost providers, one as a high cost provider. Even though all three utilities provide the same product in the same region of the country, the established regulatory system for setting rates has resulted in a price disparity between these suppliers that is economically unjustified. Deregulation and retail wheeling would correct this efficiency problem to the benefit of the ratepayers. Armco, along with many other energy intensive industrials, has a long history of involvement in traditional utility matters. Typically, this role has had two phases: First, at the local level, a partnership with the utility on the efficient transmission and distribution of energy into our facilities and involvement with the utility on the customer side of the meter with projects that affect power consumption and quality in the plant. The second phase is in the regulatory world. Typically, Armco is one of many adversaries jockeying for adoption of a particular revenue requirement and method of cost allocation in PUC hearings. At the state level, Armco has successfully appealed several PUC decisions that could adversely affect business. Armco management continues to support industrial positions at the federal level through trade associations such as ELCON. Armco`s role in the changing electric power industry is discussed.

  9. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  10. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound ...

  11. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  12. " Electricity Generation by Census Region, Industry...

    Energy Information Administration (EIA) (indexed site)

    "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and ...

  13. Residential Commercial Industrial Electric Power

    Energy Information Administration (EIA) (indexed site)

    63 dollars per thousand cubic feet 0 2 4 6 8 10 12 2011 2012 2013 2014 2015 Residential Commercial Industrial Electric Power Notes: Coverage for prices varies by consumer sector. Prices are in nominal dollars. See Appendix A for further discussion on consumer prices. Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-923, "Power Plant Operations Report"; and Form EIA-910,

  14. Public-policy responsibilities in a restructured electricity industry

    SciTech Connect

    Tonn, B.; Hirst, E.; Bauer, D.

    1995-06-01

    In this report, we identify and define the key public-policy values, objectives, and actions that the US electricity industry currently meets. We also discuss the opportunities for meeting these objectives in a restructured industry that relies primarily on market forces rather than on government mandates. And we discuss those functions that governments might undertake, presumably because they will not be fully met by a restructured industry on its own. These discussions are based on a variety of inputs. The most important inputs came from participants in an April 1995 workshop on Public-Policy Responsibilities and Electric Industry Restructuring: Shaping the Research Agenda. Other sources of information and insights include the reviews of a draft of this report by workshop participants and others and the rapidly growing literature on electric-industry restructuring and its implications. One of the major concerns about the future of the electricity industry is the fate of numerous social and environmental programs supported by today`s electric utilities. Many people worry that a market-driven industry may not meet the public-policy objectives that electric utilities have met in the past. Examples of potentially at-risk programs include demand-side management (DSM), renewable energy, low-income weatherization, and fuel diversity. Workshop participants represented electric utilities, public utility commissions (PUCs), state energy offices, public-interest groups, other energy providers, and the research community.

  15. Category:Monthly Electric Utility Sales and Revenue Data | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Monthly Electric Utility Sales and Revenue Data Jump to: navigation, search Category for Monthly Electric Utility Revenue and Sales Information. Pages in category "Monthly Electric...

  16. Financial statistics of selected publicly owned electric utilities 1989. [Contains glossary

    SciTech Connect

    Not Available

    1991-02-06

    The Financial Statistics of Selected Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide the Federal and State governments, industry, and the general public with data that can be used for policymaking and decision making purposes relating to publicly owned electric utility issues. 21 tabs.

  17. Approaches to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment

    SciTech Connect

    Brockway, N.

    2001-05-21

    As the electric industry goes through a transformation to a more market-driven model, traditional grounds for utility energy efficiency have come under fire, undermining the existing mechanisms to fund and deliver such services. The challenge, then, is to understand why the electric industry should sustain investments in helping low-income Americans use electricity efficiently, how such investments should be made, and how these policies can become part of the new electric industry structure. This report analyzes the opportunities and barriers to leveraging electric utility energy efficiency assistance to low-income customers during the transition of the electric industry to greater competition.

  18. Galena Electric Utility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Galena Electric Utility Place: Alaska Phone Number: (907) 656-1301 Website: www.ci.galena.ak.usindex.asp? Outage Hotline: (907) 656-1503 AFTER HOURS References: EIA Form...

  19. Farmington Electric Utility System- Net Metering

    Energy.gov [DOE]

    Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity. This option is available for photovoltaic (PV), wind, hydro...

  20. Tatitlek Electric Utility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Electric Utility Place: Alaska Phone Number: 907-562-4155 or 1-800-478-4155 - toll free in Alaska Website: www.chugachmiut.orgtribestat Outage Hotline: 907-562-4155 or...

  1. Financial statistics of major US publicly owned electric utilities 1992

    SciTech Connect

    Not Available

    1994-01-01

    The 1992 edition of the Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 4 years (1989 through 1992) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Four years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, {open_quotes}Annual Report of Public Electric Utilities.{close_quotes} Public electric utilities file this survey on a fiscal year, rather than a calendar year basis, in conformance with their recordkeeping practices. In previous editions of this publication, data were aggregated by the two most commonly reported fiscal years, June 30 and December 31. This omitted approximately 20 percent of the respondents who operate on fiscal years ending in other months. Accordingly, the EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents.

  2. World electricity and gas industries; Pressures for structural change

    SciTech Connect

    Kahane, A. )

    1990-01-01

    Electric and gas utilities are central middlemen in the energy business. Worldwide, more than 50% of all primary energy is transformed by utilities and delivered to final consumers through utility wires and pipes. The structure and behavior of the electricity and gas industries and the role and behavior of utilities are therefore important to all other energy industry players. The electricity and gas industries are special. Unlike oil, coal, or wood, electricity and gas are transported from producers to consumers mostly via fixed grids. This means that supplies are generally tied to specific markets and, unlike an oil tanker on the high seas, cannot be easily diverted elsewhere. These grids are natural monopolies inasmuch as having more than one wire or pipe along a given route is generally unnecessary duplicative. In addition, both supply and grid investments are generally large and lumpy. Industrial organization theory suggests that the coordination of industries can be achieved either through hierarchies or through markets. Hierarchies are generally preferred when the transaction costs of coordinating through markets is too high. These two elements of electricity and gas industry structure are the means of hierarchical coordination. This paper discusses the possibilities for changing the structure of utilities to one which has greater reliance on markets.

  3. Industrial Utility Webinar: Public Power Financial Incentive Programs

    SciTech Connect

    2010-05-14

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  4. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    OpenEI (Open Energy Information) [EERE & EIA]

    March 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for March 2009. Monthly Electric Utility Sales and...

  5. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    OpenEI (Open Energy Information) [EERE & EIA]

    July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for July 2008. Monthly Electric Utility Sales and...

  6. American Indian tribes and electric industry restructuring: Issues and opportunities

    SciTech Connect

    Howarth, D.; Busch, J.; Starrs, T.

    1997-07-01

    The US electric utility industry is undergoing a period of fundamental change that has significant implications for Native American tribes. Although many details remain to be determined, the future electric power industry will be very different from that of the present. It is anticipated that the new competitive electric industry will be more efficient, which some believe will benefit all participants by lowering electricity costs. Recent developments in the industry, however, indicate that the restructuring process will likely benefit some parties at the expense of others. Given the historical experience and current situation of Native American tribes in the US, there is good reason to pay attention to electric industry changes to ensure that the situation of tribes is improved and not worsened as a result of electric restructuring. This paper provides a review of electricity restructuring in the US and identifies ways in which tribes may be affected and how tribes may seek to protect and serve their interests. Chapter 2 describes the current status of energy production and service on reservations. Chapter 3 provides an overview of the evolution of the electric industry to its present form and introduces the regulatory and structural changes presently taking place. Chapter 4 provides a more detailed discussion of changes in the US electric industry with a specific focus on the implications of these changes for tribes. Chapter 5 presents a summary of the conclusions reached in this paper.

  7. Service design in the electric power industry

    SciTech Connect

    Oren, S.S.; Smith, S.A.; Wilson, R.B. )

    1990-01-01

    This essay reviews the basic concepts of product differentiation as they apply to service design in the electric power industry. Unbundling the quality attributes of service conditions benefits utilities as well as their customers. Each customer gains from new opportunities to match the quality and cost of service conditions to the characteristics of their end uses. A well designed product line of service conditions benefits every customer. The utility benefits from improved operating efficiency and from greater flexibility in meeting service obligations and competitive pressures. In addition, the utility obtains better information for planning investments in generation, transmission, and distribution. Together these features provide a foundation for a utility's business strategy. The basic principles of product design are described and a unified methodology for specifying and pricing service conditions is outlined. We also describe how the pricing of quality attributes enables the utility to price other service options systematically, such as long-term supply contracts, cogeneration, and standby service. 60 refs., 21 figs., 14 tabs.

  8. 1979 revenue growth belies utility industry problems

    SciTech Connect

    Lincicome, R.

    1980-06-01

    Despite growth in revenues during 1979, electric utilities are greatly troubled by high inflation, restricted capital, and the lack of rate relief from utility commissions. The growth, although smaller than normal, will likely convince commissions to respond to rate increase requests by authorizing only the smallest possible increases. With inflationary pressures eroding utility companies' financial base, the benefits of rate increases are wiped out after a year or so, necessitating a return to the commissions for futher adjustments. This up-down cycling is reflected in the report of the performances of the top one hundred utility companies. Earning growth statistics, sales data, financial statistics, and company performances (electric sales, customers served, revenues, and after-tax net income) of top one hundred electric utilities are given in separate tables for 1979. Overall, kWh sales were up 2.9%; revenues were up 13.4%; net income was up 8.1%; and overall earnings performance was a weak increase of 9.4%. (SAC)

  9. Financial statistics major US publicly owned electric utilities 1996

    SciTech Connect

    1998-03-01

    The 1996 edition of The Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 5 years (1992 through 1996) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Five years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 2 figs., 32 tabs.

  10. DOE New Madrid Seismic Zone Electric Utility Workshop Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 The DOE New Madrid ...

  11. An Updated Assessement of Copper Wire Thefts from Electric Utilities...

    Energy Saver

    An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 The U.S. ...

  12. Cost analysis of energy storage systems for electric utility...

    Office of Scientific and Technical Information (OSTI)

    Cost analysis of energy storage systems for electric utility applications Citation Details In-Document Search Title: Cost analysis of energy storage systems for electric utility ...

  13. Electrical utilities model for determining electrical distribution capacity

    SciTech Connect

    Fritz, R. L.

    1997-09-03

    In its simplest form, this model was to obtain meaningful data on the current state of the Site`s electrical transmission and distribution assets, and turn this vast collection of data into useful information. The resulting product is an Electrical Utilities Model for Determining Electrical Distribution Capacity which provides: current state of the electrical transmission and distribution systems; critical Hanford Site needs based on outyear planning documents; decision factor model. This model will enable Electrical Utilities management to improve forecasting requirements for service levels, budget, schedule, scope, and staffing, and recommend the best path forward to satisfy customer demands at the minimum risk and least cost to the government. A dynamic document, the model will be updated annually to reflect changes in Hanford Site activities.

  14. (Electric) Commercial and Industrial Energy Efficiency Programs

    Energy.gov [DOE]

    All Connecticut Utilities implement electric and gas efficiency rebate programs funded by Connecticut's public benefits charge through the Energy Efficiency Fund. The Connecticut Light and Power...

  15. DSM and electric utility competitiveness: An Illinois perspective

    SciTech Connect

    Jackson, P.W.

    1994-12-31

    A predominant theme in the current electric utility industry literature is that competitive forces have emerged and may become more prominent. The wholesale bulk power market is alreadly competitive, as non-utility energy service providers already have had a significant impact on that market; this trend was accelerated by the Energy Policy Act of 1992. Although competition at the retail level is much less pervasive, electric utility customers increasingly have greater choice in selecting energy services. These choices may include, depending on the customer, the ability to self-generate, switch fuels, move to a new location, or rely more heavily on demand-side management as a means of controlling electric energy use. This paper explores the subject of how demand-side management (DSM) programs, which are often developed by a utility to satisfy resource requirements as a part of its least-cost planning process, can affect the utility`s ability to compete in the energy services marketplace. In this context, the term `DSM` is used in this paper to refer to those demand-side services and programs which provide resources to the utility`s system. Depending on one`s perspective, DSM programs (so defined) can be viewed either as an enhancement to the competitive position of a utility by enabling it to provide its customers with a broader menu of energy services, simultaneously satisfying the objectives of the utility as well as those of the customers, or as a detractor to a utility`s ability to compete. In the latter case, the concern is with respect to the potential for adverse rate impacts on customers who are not participants in DSM programs. The paper consists of an identification of the pros and cons of DSM as a competitive strategy, the tradeoff which can occur between the cost impacts and rate impacts of DSM, and an examination of alternative strategies for maximizing the utilization of DSM both as a resource and as a competitive strategy.

  16. The next gordian knot for state regulators and electric utilities: The unbundling of retail services

    SciTech Connect

    Costello, K.W.

    1995-11-01

    Unbundling of retail electric services will accelerate competitive forces in a way that could radically change the future course of the electric power industry. Although simple in concept, unbundling raises a broad range of complex issues, many of which are fundamental to today`s concepts of regulation and utility management. This article addresses four questions: (1) What is retail unbundling? (2) What role might it play in the future electric power industry? (3) What lessons can be learned from retail unbundling in other regulated industries, specifically the natural gas industry? (4) What are the major issues associated with retail unbundling for electric utilities and state regulators?

  17. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  18. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  19. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  20. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  1. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  2. Industrial Utility Webinar: Opportunities for Cost-Effective Energy Efficiency in the Industrial Sector

    SciTech Connect

    2010-01-13

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  3. High slot utilization systems for electric machines

    DOEpatents

    Hsu, John S

    2009-06-23

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  4. Financial statistics of major U.S. investor-owned electric utilities 1993

    SciTech Connect

    Not Available

    1995-01-01

    The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues.

  5. Financial statistics of major US investor-owned electric utilities 1994

    SciTech Connect

    1995-12-01

    The Financial Statistics of Major U.S. Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State Governments, industry, and the general public with current and historical data that can be used for making policy and decisions relating to investor-owned electric utility issues.

  6. Table A18. Quantity of Electricity Sold to Utility and Nonutility Purchasers

    Energy Information Administration (EIA) (indexed site)

    8. Quantity of Electricity Sold to Utility and Nonutility Purchasers" " by Census Region, Industry Group, and Selected Industries, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," "," ","RSE" "SIC"," "," ","Utility ","Nonutility","Row" "Code(a)","Industry Groups and Industry","Total

  7. Table A30. Quantity of Electricity Sold to Utility and Nonutility Purchasers

    Energy Information Administration (EIA) (indexed site)

    Quantity of Electricity Sold to Utility and Nonutility Purchasers" " by Census Region, Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," "," ","RSE" "SIC"," "," ","Utility ","Nonutility","Row" "Code(a)","Industry Group and Industry","Total

  8. Electric Market and Utility Operation Terminology (Fact Sheet)

    SciTech Connect

    Not Available

    2011-05-01

    This fact sheet is a list of electric market and utility operation terminology for a series of three electricity fact sheets.

  9. Electric Market and Utility Operation Terminology (Fact Sheet)

    SciTech Connect

    2011-05-03

    This fact sheet is a list of electric market and utility operation terminology for a series of three electricity fact sheets.

  10. Treatment of Solar Generation in Electric Utility Resource Planning

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Treatment of Solar Generation in Electric Utility Resource Planning John Sterling Solar Electric Power Association Joyce McLaren National Renewable Energy Laboratory Mike Taylor ...

  11. Industrial Customer Perspectives on Utility Energy Efficiency Programs |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Customer Perspectives on Utility Energy Efficiency Programs Industrial Customer Perspectives on Utility Energy Efficiency Programs These presentations from ATK Aerospace Systems, Owens Corning, and Ingersoll Rand provide context for industrial customer perspectives on utility energy efficiency programs. Industrial Customer Perspective on Utility Energy Efficiency Programs (February 1, 2011) (2.01 MB) More Documents & Publications Leveraging Utility Resources to Boost

  12. Shenzhen Soyin Electrical Appliance Industrial Co Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Soyin Electrical Appliance Industrial Co Ltd Jump to: navigation, search Name: Shenzhen Soyin Electrical Appliance Industrial Co Ltd Place: Xixiang Town,Shenzhen, Guangdong...

  13. Inventory of Electric Utility Power Plants in the United States

    Reports and Publications

    2002-01-01

    Final issue of this report. Provides detailed statistics on existing generating units operated by electric utilities as of December 31, 2000, and certain summary statistics about new generators planned for operation by electric utilities during the next 5 years.

  14. New London Electric&Water Util | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Electric&Water Util Jump to: navigation, search Name: New London Electric&Water Util Place: Wisconsin Phone Number: (920) 982-8516 Website: newlondonutilities.org Outage Hotline:...

  15. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  16. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  17. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  18. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  19. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  20. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  1. Studying the Communications Requirements of Electric Utilities to Inform

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Federal Smart Grid Policies- Public Meeting | Department of Energy Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Transcript of public meeting on Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies Studying the Communications Requirements of Electric Utilities

  2. Factors that affect electric-utility stranded commitments

    SciTech Connect

    Hirst, E.; Hadley, S.; Baxter, L.

    1996-07-01

    Estimates of stranded commitments for U.S. investor-owned utilities range widely, with many falling in the range of $100 to $200 billion. These potential losses exist because some utility-owned power plants, long-term power-purchase contracts and fuel-supply contracts, regulatory assets, and expenses for public-policy programs have book values that exceed their expected market values under full competition. This report quantifies the sensitivity of stranded- commitment estimates to the various factors that lead to these above- market-value estimates. The purpose of these sensitivity analyses is to improve understanding on the part of state and federal regulators, utilities, customers, and other electric-industry participants about the relative importance of the factors that affect stranded- commitment amounts.

  3. Electric utility antitrust issues in an era of bulk power market competition

    SciTech Connect

    Green, D.G.; Bouknight, J.A. Jr.

    1994-12-31

    The electric utility industry is facing a new spectrum of antitrust issues reflecting its transformation from an industry that is fully regulated to one that is partly regulated, partly competitive. There are two principal antitrust issues: claims of price squeezes and claims by municipal and cooperative utilities that their traditional utility supplier is refusing to wheel power from other suppliers. This article discusses the following related topics: new antitrust issues; regional transmission groups and other joint ventures; mergers.

  4. Carbon Constraints and the Electric Power Industry

    SciTech Connect

    2007-11-15

    The report is designed to provide a thorough understanding of the type of carbon constraints that are likely to be imposed, when they are likely to take effect, and how they will impact the electric power industry. The main objective of the report is to provide industry participants with the knowledge they need to plan for and react to a future in which carbon emissions are restricted. The main goal of the report is to ensure an understanding of the likely restrictions that will be placed on carbon emissions, the methods available for reducing their carbon emissions, and the impact that carbon reductions will have on the electric power industry. A secondary goal of the report is to provide information on key carbon programs and market participants to enable companies to begin participating in the international carbon marketplace. Topics covered in the report include: overview of what climate change and the Kyoto Protocol are; analysis of the impacts of climate change on the U.S. and domestic efforts to mandate carbon reductions; description of carbon reduction mechanisms and the types of carbon credits that can be created; evaluation of the benefits of carbon trading and the rules for participation under Kyoto; Description of the methods for reducing carbon emissions available to the U.S. electric power industry; analysis of the impact of carbon restrictions on the U.S. electric power industry in terms of both prices and revenues; evaluation of the impact of carbon restrictions on renewable energy; overview of the current state of the global carbon market including descriptions of the three major marketplaces; descriptions of the industry and government programs already underway to reduce carbon emissions in the U.S. electric power industry; and, profiles of the major international carbon exchanges and brokers.

  5. Wells Public Utilities - Commercial & Industrial Energy Efficiency...

    Energy.gov [DOE] (indexed site)

    Commercial Refrigeration Equipment Program Info Sector Name Utility Administrator Wells Public Utilities Website http:www.SaveEnergyInWells.com State Minnesota Program Type...

  6. Mora Municipal Utilities - Commercial & Industrial Energy Efficiency...

    Energy.gov [DOE] (indexed site)

    Commercial Refrigeration Equipment Program Info Sector Name Utility Administrator Mora Municipal Utilities Website http:www.SaveEnergyInMora.com State Minnesota Program...

  7. The status of electric industry restructuring

    SciTech Connect

    Morey, M.

    1996-12-31

    This presentation discusses current electric utility regulatory reform with a focus on the impacts of competition in the Midwest marketplace. Information and data are presented through 14 figures and 30 tables. Regulatory issues at the state and Federal levels are very briefly outlined, including reciprocity, unbundling, stranded cost recovery, and independent system operation. Graphical data on energy capacity by source, capacity additions, wholesale markets, electricity prices, and market development are also presented.

  8. Electric Utility Sales and Revenue - EIA-826 detailed data file

    Energy Information Administration (EIA) (indexed site)

    826 detailed data Find detailed data at right for: net metering | advanced metering | solar (PV) estimates | sales and revenue | green pricing The Form EIA-826 "Monthly Electric Utility Sales and Revenue Report with State Distributions" collects sales of electricity and associated revenue, each month, from a statistically chosen sample of electric utilities in the United States. The respondents to the Form EIA-826 are chosen from the Form EIA-861, "Annual Electric Utility

  9. Financial statistics of major US investor-owned electric utilities 1992

    SciTech Connect

    Not Available

    1993-12-28

    The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues. The Financial Statistics of Major US Investor-Owned Electric Utilities publication provides information about the financial results of operations of investor-owned electric utilities for use by government, industry, electric utilities, financial organizations and educational institutions in energy planning. In the private sector, the readers of this publication are researchers and analysts associated with the financial markets, the policymaking and decisionmaking members of electric utility companies, and economic development organizations. Other organizations that may be interested in the data presented in this publication include manufacturers of electric power equipment and marketing organizations. In the public sector, the readers of this publication include analysts, researchers, statisticians, and other professionals engaged in regulatory, policy, and program areas. These individuals are generally associated with the Congress, other legislative bodies, State public utility commissions, universities, and national strategic planning organizations.

  10. Financial statistics of major US publicly owned electric utilities 1994

    SciTech Connect

    1995-12-15

    This publication presents 5 years (1990--94) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. Generator and nongenerator summaries are presented. Composite tables present: Aggregates of income statement and balance sheet data, financial indicators, electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data.

  11. Informatics requirements for a restructured competitive electric power industry

    SciTech Connect

    Pickle, S.; Marnay, C.; Olken, F.

    1996-08-01

    The electric power industry in the United States is undergoing a slow but nonetheless dramatic transformation. It is a transformation driven by technology, economics, and politics; one that will move the industry from its traditional mode of centralized system operations and regulated rates guaranteeing long-run cost recovery, to decentralized investment and operational decisionmaking and to customer access to true spot market prices. This transformation will revolutionize the technical, procedural, and informational requirements of the industry. A major milestone in this process occurred on December 20, 1995, when the California Public Utilities Commission (CPUC) approved its long-awaited electric utility industry restructuring decision. The decision directed the three major California investor-owned utilities to reorganize themselves by the beginning of 1998 into a supply pool, at the same time selling up to a half of their thermal generating plants. Generation will be bid into this pool and will be dispatched by an independent system operator. The dispatch could potentially involve bidders not only from California but from throughout western North America and include every conceivable generating technology and scale of operation. At the same time, large customers and aggregated customer groups will be able to contract independently for their supply and the utilities will be required to offer a real-time pricing tariff based on the pool price to all their customers, including residential. In related proceedings concerning competitive wholesale power markets, the Federal Energy Regulatory Commission (FERC) has recognized that real-time information flows between buyers and sellers are essential to efficient equitable market operation. The purpose of this meeting was to hold discussions on the information technologies that will be needed in the new, deregulated electric power industry.

  12. NREL: Technology Deployment - Electric Utility Assistance and Support

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electric Utility Assistance and Support NREL provides data-driven support, assistance, and tools to electric utilities to help further the integration of renewable energy and energy efficiency technologies into the electric grid. Distributed Generation Interconnection Collaborative The Distributed Generation Interconnection Collaborative aims to share knowledge on distributed photovoltaic interconnection practices and innovation. The collaborative hosts monthly informational meetings on

  13. Wells Public Utilities- Commercial & Industrial Energy Efficiency Rebate Program

    Energy.gov [DOE]

    SMMPA develops innovative products and services to help them deliver value to customers. With help from SMMPA, Wells Public Utilities provides incentives for its commercial and industrial custome...

  14. Anaheim Public Utilities- Commercial & Industrial New Construction Rebate Program

    Energy.gov [DOE]

    Anaheim Public Utilities (APU) offers commercial, industrial, and institutional customers the New Construction Incentives Program to offset construction and installation costs of energy efficient...

  15. Saint Peter Municipal Utilities- Commercial & Industrial Energy Efficiency Rebate Program

    Energy.gov [DOE]

    With help from the Southern Minnesota Municipal Power Agency (SMMPA), Saint Peter Municipal Utilities provides incentives for its commercial and industrial customers to improve the energy...

  16. Coldwater Board of Public Utilities - Commercial & Industrial...

    Energy.gov [DOE] (indexed site)

    that encourage commercial and industrial to pursue energy efficient equipment and energy saving measures. Prescriptive rebates are available for efficient lighting, HVAC...

  17. Utilities Working with Industry: Action Plan

    SciTech Connect

    none,

    2010-06-25

    This action plan outlines joint ITP and utility activities that will help reach a national goal of reducing energy by 25 percent over then next 10 years.

  18. Shakopee Public Utilities - Commercial and Industrial Energy...

    Energy.gov [DOE] (indexed site)

    conditioners CustomOthers pending approval Other EE Maximum Rebate 50% of total project cost PV: 5000 per business account Program Info Sector Name Utility Administrator...

  19. An Updated Assessement of Copper Wire Thefts from Electric Utilities -

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    October 2010 | Department of Energy An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 The U.S. Department of Energy (DOE), Office of Electricity Delivery and Energy Reliability monitors changes, threats, and risks to the energy infrastructure in the United States. This report updates a previously published report on copper wire theft. The combined efforts of electric

  20. PPL Electric Utilities - Custom Energy Efficiency Program | Department...

    Energy.gov [DOE] (indexed site)

    0.08 per projected first year kWh savings Summary Prospective applicants should contact their PPL Electric Utilities Key Account Manager before beginning any project. If...

  1. Approaches to Electric Utility Energy Efficiency for Low Income...

    OpenEI (Open Energy Information) [EERE & EIA]

    Approaches to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Approaches...

  2. The Impacts of Commercial Electric Utility Rate Structure Elements...

    Energy.gov [DOE] (indexed site)

    This analysis uses simulated building data, simulated solar photovoltaic (PV) data, and actual electric utility tariff data from 25 cities to better understand the impacts of ...

  3. Lodi Electric Utility- Residential Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Lodi Electric Utility (LEU) offers several residential energy efficiency programs, including the Appliance Rebate Program and the Home Improvement Rebate Program. 

  4. Lodi Electric Utility- Commercial Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Lodi Electric Utility (LEU) offers energy efficiency incentives to eligible commercial and multifamily residential customers. More information regarding the rebate programs, including application...

  5. Orange and Rockland Utilities (Electric)- Energy Efficiency Program

    Energy.gov [DOE]

    Orange and Rockland Utilities offers electric energy efficiency program that provides rebates to replace various appliances. To apply for rebate, submit rebate application form along with required...

  6. Changing Structure of the Electric Power Industry 1999: Mergers and Other Corporate Combinations, The

    Reports and Publications

    1999-01-01

    Presents data about corporate combinations involving investor-owned utilities in the United States, discusses corporate objectives for entering into such combinations, and assesses their cumulative effects on the structure of the electric power industry.

  7. United States Industrial Electric Motor Systems Market Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Motor Systems Market Opportunities Assessment United States Industrial Electric Motor Systems Market Opportunities Assessment The objectives of the Market Assessment were ...

  8. Electric and Gas Industries Association | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gas Industries Association Jump to: navigation, search Name: Electric and Gas Industries Association Place: Sacramento, CA Zip: 95821 Website: www.egia.org Coordinates:...

  9. Challenges of Electric Power Industry Restructuring for Fuel Suppliers

    Reports and Publications

    1998-01-01

    Provides an assessment of the changes in other energy industries that could occur as the result of restructuring in the electric power industry.

  10. NIPSCO Custom Commercial and Industrial Gas and Electric Incentive Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    NIPSCO’s Commercial and Industrial Custom Electric and Natural Gas Incentive Program offers financial incentives to qualifying large commercial, industrial, non-profit, governmental and...

  11. Electric Power Industry Needs for Grid-Scale Storage Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industry Needs for Grid-Scale Storage Applications Electric Power Industry Needs for Grid-Scale Storage Applications Stationary energy storage technologies will address the growing ...

  12. New Ulm Public Utilities- Solar Electric Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers. Rebates are for $1 per nameplate watt, and customers must sign a net...

  13. "List of Covered Electric Utilities" under the Public Utility

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Regulatory Policies Act of 1978 (PURPA) - 2006 Revised | Department of Energy 6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility. "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978

  14. "List of Covered Electric Utilities" under the Public Utility

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Regulatory Policies Act of 1978 (PURPA) - 2008 | Department of Energy 8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility. "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) (52.14 KB) More

  15. "List of Covered Electric Utilities" under the Public Utility Regulatory

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Policies Act of 1978 (PURPA) - 2009 | Department of Energy 9 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) (2.43 MB

  16. PPL Electric Utilities Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Data Utility Id 14715 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt...

  17. FERC must fix its electric utility merger policy

    SciTech Connect

    Grankena, M.

    1996-10-01

    In evaluating mergers, FERC should adopt the approach of the federal antitrust agencies to prevent firms from gaining and exercising market power. Doing so will require changes in everything from how FERC defines product and geographic markets, and how market concentration, entry conditions and cost saving are evaluated, to how discovery is conducted - in short, to virtually every aspect of how FERC reaches a merger decision. Reliance on competition to benefit consumers carries with it the necessity to preserve competition that is threatened by mergers or other structural changes. Faced with numerous mergers of large and medium-size electric utilities and the expectation of more to come, in January 1996 the Federal Energy Regulatory Commission requested comments on how it should evaluate mergers. This paper addresses that need. Section I explains how FERC and the federal antitrust agencies have responded to the competitive issues raised by utility mergers during the past decade. Section II introduces the analytical approach used by the antitrust agencies to evaluate mergers. Section III highlights features of the electric power industry that make analysis of market power unusually complex. Section IV evaluates FERC`s past reliance on comparable open access transmission as a sufficient remedy for competitive concerns relating to the availability, reliability and pricing of transmission service. Section V suggests changes to FERC`s merger policy that would make it consistent with antitrust principles and FERC`s public interest responsibilities. The final section draws conclusions.

  18. DOE Offers Technical Assistance on EPA Rules Implementation to States and the Utility Industry

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is offering technical assistance to state public utility commissioners, generation owner/operators, and utilities on implementing the new and pending EPA air rules affecting the electric utility industry. Examples of typical assistance include technical information on cost and performance of the various power plant pollution retrofit control technologies; technical information on generation, demand-side or transmission alternatives for any replacement power needed for retiring generating units; and assistance to public utility commissions regarding any regulatory evaluations or approvals they may have to make on utility compliance strategies.

  19. 2015 Utility Bundled Retail Sales- Industrial

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... 559 25,106 2,071.5 8.25 Coos-Curry Electric Coop, Inc OR ... 227 452,985 19,665.2 4.34 Oregon Trail El Cons Coop, Inc OR ... 8.93 City of Sturgeon Bay - (WI) WI Municipal 1 14,452 ...

  20. Ashland Electric Utility - Photovoltaic Rebate Program | Department...

    Energy.gov [DOE] (indexed site)

    The City of Ashland Conservation Division offers electric customers installing photovoltaic systems a rebate of either 0.50 per watt (residential) or 0.75 per watt...

  1. Avista Utilities (Electric) - Commercial Energy Efficiency Incentives...

    Energy.gov [DOE] (indexed site)

    Commercial Industrial InstallersContractors Savings Category Clothes Washers Dehumidifiers Equipment Insulation Lighting Heat recovery Steam-system upgrades Energy Mgmt. Systems...

  2. Financial statistics of major U.S. publicly owned electric utilities 1997

    SciTech Connect

    1998-12-01

    The 1997 edition of the ``Financial Statistics of Major U.S. Publicly Owned Electric Utilities`` publication presents 5 years (1993 through 1997) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, ``Annual Report of Public Electric Utilities.`` Public electric utilities file this survey on a fiscal year basis, in conformance with their recordkeeping practices. The EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents. The review indicated that financial indicators differ most according to whether or not a publicly owned electric utility generates electricity. Therefore, the main body of the report provides summary information in generator/nongenerator classifications. 2 figs., 101 tabs.

  3. Cost and quality of fuels for electric utility plants, 1992

    SciTech Connect

    Not Available

    1993-08-02

    This publication presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  4. Cost and quality of fuels for electric utility plants, 1994

    SciTech Connect

    1995-07-14

    This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

  5. Distributed generation technology in a newly competitive electric power industry

    SciTech Connect

    Pfeifenberger, J.P.; Ammann, P.R.; Taylor, G.A.

    1996-10-01

    The electric utility industry is in the midst of enormous changes in market structure. While the generation sector faces increasing competition, the utilities` transmission and distribution function is undergoing a transition to more unbundled services and prices. This article discusses the extent to which these changes will affect the relative advantage of distributed generation technology. Although the ultimate market potential for distributed generation may be significant, the authors find that the market will be very heterogeneous with many small and only a few medium-sized market segments narrowly defined by operating requirements. The largest market segment is likely to develop for distributed generation technology with operational and economical characteristics suitable for peak-shaving. Unbundling of utility costs and prices will make base- and intermediate-load equipment, such as fuel cells, significantly less attractive in main market segments unless capital costs fall significantly below $1,000/kW.

  6. Waseca Utilities- Commercial & Industrial Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency (SMMPA) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit, municipally-owned member utilities...

  7. Secretary Moniz Announces the Launch of New Veterans' Utility Industry

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transition Effort | Department of Energy the Launch of New Veterans' Utility Industry Transition Effort Secretary Moniz Announces the Launch of New Veterans' Utility Industry Transition Effort June 8, 2015 - 9:37am Addthis NEWS MEDIA CONTACT (202) 586-4940 NEW ORLEANS -- The Obama administration has made helping veterans find civilian employment and reintegrate into our nation's workforce and economy a top priority. Further building on that effort, U.S. Department of Energy Secretary Ernest

  8. Energy Department Develops Tool with Industry to Help Utilities Strengthen

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Their Cybersecurity Capabilities | Department of Energy Develops Tool with Industry to Help Utilities Strengthen Their Cybersecurity Capabilities Energy Department Develops Tool with Industry to Help Utilities Strengthen Their Cybersecurity Capabilities June 28, 2012 - 10:24am Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's commitment to protecting America's critical energy infrastructure, U.S. Energy Secretary Steven Chu today announced the

  9. Breakthrough Industrial Carbon Capture, Utilization and Storage Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Begins Full-Scale Operations | Department of Energy Industrial Carbon Capture, Utilization and Storage Project Begins Full-Scale Operations Breakthrough Industrial Carbon Capture, Utilization and Storage Project Begins Full-Scale Operations May 10, 2013 - 11:36am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The Energy Department's Acting Assistant Secretary for Fossil Energy Christopher Smith today attended a dedication ceremony at the Air Products and Chemicals hydrogen production

  10. Dublin Municipal Electric Util | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

  11. Sustainable Electric Utility (SEU)- SREC Purchase Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    SREC purchase program is a joint incentive of Delaware Division of Energy and Climate (DNREC) and the state’s Sustainable Energy Utility (SEU). The program offers a standard onetime payment of $450...

  12. Electrolysis: Information and Opportunities for Electric Power Utilities

    SciTech Connect

    Kroposki, B.; Levene, J.; Harrison, K.; Sen, P.K.; Novachek, F.

    2006-09-01

    Recent advancements in hydrogen technologies and renewable energy applications show promise for economical near- to mid-term conversion to a hydrogen-based economy. As the use of hydrogen for the electric utility and transportation sectors of the U.S. economy unfolds, electric power utilities need to understand the potential benefits and impacts. This report provides a historical perspective of hydrogen, discusses the process of electrolysis for hydrogen production (especially from solar and wind technologies), and describes the opportunities for electric power utilities.

  13. ORFIN: An electric utility financial and production simulator

    SciTech Connect

    Hadley, S.W.

    1996-03-01

    With the coming changes in the electrical industry, there is a broad need to understand the impacts of restructuring on customers, existing utilities, and other stakeholders. Retail wheeling; performance-based regulation; unbundling of generation, transmission, and distribution; and the impact of stranded commitments are all key issues in the discussions of the future of the industry. To quantify these issues, financial and production cost models are required. The authors have created a smaller and faster finance and operations model call the Oak Ridge Financial Model (ORFIN) to help analyze the ramifications of the issues identified above. It combines detailed pricing and financial analysis with an economic dispatch model over a multi-year period. Several types of ratemaking are modeled, as well as the wholesale market and retail wheeling. Multiple plants and purchased power contracts are modeled for economic dispatch, and separate financial accounts are kept for each. Transmission, distribution, and other functions are also broken out. Regulatory assets such as deferred tax credits and demand-side management (DSM) programs are also included in the income statement and balance sheet. This report describes some of the key features of the model. Examples of the financial reports are shown, with a description of their formulation. Some of the ways these results can be used in analyzing various issues are provided.

  14. City of Shasta Lake Electric Utility- PV Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    City of Shasta Lake Electric Utility is providing rebates to their customers for the purchase of photovoltaic (PV) systems. The rebate levels will decrease annually over the life of the program. ...

  15. Rural Development's Rural Utilities Service (RUS) Electric Programs

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Development's Rural Utilities Service (RUS) Electric Programs Jonathan P. Claffey | Senior Policy Advisor Office of the Assistant Administrator Electric Program | Rural Utilities Service USDA Rural Development Washington, DC 20250 Cell: (202)251-3771 | Office: (202) 720-9545 | Fax: (202) 690-0717 jon.claffey@wdc.usda.gov United States Department of Agriculture (USDA) Seven Mission Areas Secretary Tom Vilsack Farm & Foreign Agriculture Services Food Safety Natural Resources and Environment

  16. Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants

    Energy Information Administration (EIA) (indexed site)

    Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants April 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and

  17. Challenges of electric power industry restructuring for fuel suppliers

    SciTech Connect

    1998-09-01

    The purpose of this report is to provide an assessment of the changes in other energy industries that could occur as the result of restructuring in the electric power industry. This report is prepared for a wide audience, including Congress, Federal and State agencies, the electric power industry, and the general public. 28 figs., 25 tabs.

  18. Wholesale service obligation of electric utilities

    SciTech Connect

    Norton, F.L. IV; Spivak, M.R.

    1985-01-01

    The basic concepts of public utility status and utility regulation intertwine the obligation to provide service to the public as reasonably demanded with rate regulation and shielding from competitive interference. While a common law service obligation was not part of the Federal Power Act, the Federal Energy Regulatory Commission has taken the position that service, once commenced, may not be terminated without its approval. This view of Commission authority may not be supported by the legislative history of the Federal Power Act or by judicial precedent. The requirement to serve apart from recognition of a right to serve may result in increased rates in the near term and insufficient capacity, or both, in the long run. A review by the Commission and the courts is examining ways to introduce competition and shift risks from ratepayers to shareholders.

  19. Orange and Rockland Utilities (Electric)- Commercial Efficiency Programs

    Energy.gov [DOE]

    Orange and Rockland Utilities (O&R) offers energy efficiency program for both small business and large commercial and industrial customers to install high-efficiency equipment in eligible...

  20. A model for IPP sales to electric utilities

    SciTech Connect

    Norman, G.L.; Anderson, R.W.

    1996-11-01

    This paper shows several constraints that an unregulated plant would encounter. Florida Power Corporation has built a plant that has the characteristics of an IPP operating in the future deregulated electricity market. This plant, the University of Florida Cogeneration Plant undergoes the same conditions experienced in an IPP selling energy to the electric utilities when its contractual electric customer was unable to take the energy. It is a model of the future deregulated IPP.

  1. Development of the electric utility dispersed use PAFC stack

    SciTech Connect

    Horiuchi, Hiroshi; Kotani, Ikuo; Morotomi, Isamu

    1996-12-31

    Kansai Electric Power Co. and Mitsubishi Electric Co. have been developing the electric utility dispersed use PAFC stack operated under the ambient pressure. The new cell design have been developed, so that the large scale cell (1 m{sup 2} size) was adopted for the stack. To confirm the performance and the stability of the 1 m{sup 2} scale cell design, the short stack study had been performed.

  2. United States Total Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Total Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United ... Gases",2256,2313,1995,1932,2700 "Nuclear",100334,100266,100755,101004,10116...

  3. United States Renewable Electric Power Industry Net Generation...

    Energy Information Administration (EIA) (indexed site)

    Renewable Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" ... "Solar",508,612,864,891,1212 "Wind",26589,34450,55363,73886,94652 "WoodWood ...

  4. United States Total Electric Power Industry Net Generation, by...

    Energy Information Administration (EIA) (indexed site)

    Total Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" "(Thousand Megawatthours)" "United States" "Energy Source",2006,2007,2008,2009,2010 ...

  5. ConEd (Electric)- Commercial and Industrial Energy Efficiency Program

    Energy.gov [DOE]

    The Commercial and Industrial Equipment Rebate and Custom Efficiency Programs offer incentives to directly metered electric customers in good standing who contribute to the system benefits charge ...

  6. Lincoln Electric System (Commercial and Industrial)- Sustainable Energy Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives to their commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are...

  7. Midstate Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Midstate Electric Cooperative (MEC) encourages energy efficiency in the commercial and industrial sectors by giving customers a choice of several different financial incentive programs. First, ...

  8. Lincoln Electric System (Commercial and Industrial)- 2015 Sustainable Energy Program

    Energy.gov [DOE]

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives for commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are provided on...

  9. Green Button Initiative Makes Headway with Electric Industry and Consumers

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Button Initiative Makes Headway with Electric Industry and Consumers Green Button Initiative Makes Headway with Electric Industry and Consumers July 22, 2015 - 3:01pm Addthis Photo courtesy of San Diego Gas & Electric Photo courtesy of San Diego Gas & Electric Kristen Honey Science and Technology Policy Fellow, Office of Energy Efficiency and Renewable Energy David Wollman Deputy Director of the Smart Grid and Cyber-Physical Systems Program at the National

  10. Oncor Electric Delivery - Commercial and Industrial Rebate Program...

    Energy.gov [DOE] (indexed site)

    Contact Oncor Program Info Sector Name Utility Administrator Oncor Electric Delivery Website http:www.takealoadofftexas.comindex.aspx?idcommercial-standard-offer...

  11. Assessment of electric-utility supply plans, 1978-2000

    SciTech Connect

    Not Available

    1980-01-01

    An assessment of the utilities' forecasts of future electricity supply is presented. An analysis of the demand forecast is contained in a separate document. California Energy Demand 1978 to 2000: A preliminary Assessment (August 1979). An evaluation of the feasibility and implications of supply plans, formulated by the State's electric utilities, to meet their forecasted demand is presented. The report is a critique of the supply plans; therefore, it establishes the foundation for the examining alternatives. Utility resource plans and underlying supply planning assumptions were submitted between March and June 1978 for evaluation, but updated resource plans of July 1979 were used as the basis for the assessment. Supply plans were evaluated from utilities (PG and E, SCE, SDG and E, LADWP, Sacramento Municipal Utility District); cities (Burbank, Anaheim, Glendale, Pasadena, Riverside); Northern California Power Agency; Modesto Irrigation District; Turlock Irrigation District; Imperial Irrigation District; and Department of Water Resources.

  12. Financial statistics of major U.S. publicly owned electric utilities 1995

    SciTech Connect

    1997-07-01

    The 1995 Edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents 5 years (1991 through 1995) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 9 figs., 87 tabs.

  13. Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1989 and Preceding Years.

    SciTech Connect

    United States. Bonneville Power Administration.

    1990-06-01

    This report officially releases the compilation of regional 1989 retail customer sector sales data by the Bonneville Power Administration. This report is intended to enable detailed examination of annual regional electricity consumption. It gives statistics covering the time period 1970--1989, and also provides observations based on statistics covering the 1983--1989 time period. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell to consumers annually. Data is provided on each retail customer sector: residential, commercial, industrial, direct-service industrial, and irrigation. The data specifically supports forecasting activities, rate development, conservation and market assessments, and conservation and market program development and delivery. All of these activities require a detailed look at electricity use. 25 figs., 34 tabs.

  14. Cost analysis of energy storage systems for electric utility applications

    SciTech Connect

    Akhil, A.; Swaminathan, S.; Sen, R.K.

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  15. United States Industrial Electric Motor Systems Market Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Assessment | Department of Energy Electric Motor Systems Market Opportunities Assessment United States Industrial Electric Motor Systems Market Opportunities Assessment The objectives of the Market Assessment were to: Develop a detailed profile of the stock of motor-driven equipment in U.S. industrial facilities; Characterize and estimate the magnitude of opportunities to improve the energy efficiency of industrial motor systems; Develop a profile of motor system purchase and maintenance

  16. Utility Partnership Webinar Series: Industrial Customer Perspectives on Utility Energy Efficiency Programs

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Partnership Webinar Series Industrial Customer Perspectives on Utility Energy Efficiency Programs February 1, 2011 Industrial Technologies Program eere.energy.gov Speakers and Topics: * ATK Aerospace Systems, Plant Engineer/Energy Manager, Roger Weir will discuss ATK's energy efficiency projects and their relationship with Rocky Mountain Power. * Owens Corning, Plant Energy Leader, Jacob Lane will discuss the Santa Clara, CA Owens Corning facility's energy efficiency projects and Owens Corning,

  17. Positioning the electric utility to build information infrastructure

    SciTech Connect

    Not Available

    1994-11-01

    In two particular respects (briefly investigated in this study from a lawyer`s perspective), electric utilities appear uniquely well-positioned to contribute to the National Information Infrastructure (NII). First of all, utilities have legal powers derived from their charters and operating authorities, confirmed in their rights-of-way, to carry out activities and functions necessary for delivering electric service. These activities and functions include building telecommunications facilities and undertaking information services that have become essential to managing electricity demand and supply. The economic value of the efficiencies made possible by telecommunications and information could be substantial. How great remains to be established, but by many estimates electric utility applications could fund a significant share of the capital costs of building the NII. Though utilities` legal powers to pursue such efficiencies through telecommunications and information appear beyond dispute, it is likely that the effort to do so will produce substantial excess capacity. Who will benefit from this excess capacity is a potentially contentious political question that demands early resolution. Will this windfall go to the utility, the customer, or no one (because of political paralysis), or will there be some equitable and practical split? A second aspect of inquiry here points to another contemporary issue of very great societal importance that could very well become the platform on which the first question can be resolved fortuitously-how to achieve universal telecommunications service. In the effort to fashion the NII that will now continue, ways and means to maximize the unique potential contribution of electric utilities to meeting important social and economic needs--in particular, universal service--merit priority attention.

  18. Salem Electric - Residential, Commercial, and Industrial Efficiency...

    Energy.gov [DOE] (indexed site)

    Industrial Local Government Nonprofit Residential State Government Federal Government Multifamily Residential Savings Category Clothes Washers RefrigeratorsFreezers Equipment...

  19. Electric Utility Rate Design Study: economic theory of marginal-cost pricing and its application by electric utilities in France and Great Britain

    SciTech Connect

    Westfield, F.M.

    1980-08-12

    This report (1) reviews economic theory of marginal-cost pricing; and (2) examines its applications, going back to the 1960s and before, by electric utilities in France and Great Britain. An ideal pricing system for an economy is first reviewed to clarify fairly complicated ideas of economic theory for noneconomists - the industry specialist and state regulator. The concept of ideal marginal-cost pricing as applied to electricity is then developed. Next, an overview is provided of practical issues that need to be faced when the theory is implemented. Finally, the study turns to examine how the theory has actually been interpreted and applied to electricity rate design by the French and the British. Their methods of transforming theory into practice are reviewed, illustrative tariffs that incorporate their interpretation are provided.

  20. Collaborative jurisdiction in the regulation of electric utilities: A new look at jurisdictional boundaries

    SciTech Connect

    1991-12-31

    This conference is one of several activities initiated by FERC, DOE and NARUC to improve the dialogue between Federal and State regulators and policymakers. I am pleased to be here to participate in this conference and to address, with you, electricity issues of truly national significance. I would like to commend Ashley Brown and the NARUC Electricity Committee for its foresight in devising a conference on these issues at this critical juncture in the regulation of the electric utility industry. I also would like to commend Chairman Allday and the FERC for their efforts to improve communication between Federal and State electricity regulators; both through FERC`s Public Conference on Electricity Issues that was held last June, and through the FERC/NARUC workshops that are scheduled to follow this conference. These collaborative efforts are important and necessary steps in addressing successfully the many issues facing the electric utility industry those who regulate it, and those who depend upon it - in other words, about everyone.

  1. Wyoming Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Wyoming Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity ...

  2. Iowa Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Iowa Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity ...

  3. Kansas Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Kansas Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity ...

  4. The distributed utility: A new electric utility planning and pricing paradigm

    SciTech Connect

    Feinstein, C.D.; Orans, R.; Chapel, S.W.

    1997-12-31

    The distributed utility concept provides an alternate approach to guide electric utility expansion. The fundamental idea within the distributed utility concept is that particular local load increases can be satisfied at least cost by avoiding or delaying the more traditional investments in central generation capacity, bulk transmission expansion, and local transmission and distribution upgrades. Instead of these investments, the distributed utility concept suggests that investments in local generation, local storage, and local demand-side management technologies can be designed to satisfy increasing local demand at lower total cost. Critical to installation of distributed assets is knowledge of a utility system`s area- and time-specific costs. This review introduces the distributed utility concept, describes an application of ATS costs to investment planning, discusses the various motivations for further study of the concept, and reviews relevant literature. Future research directions are discussed.

  5. Consumer's Guide to the economics of electric-utility ratemaking

    SciTech Connect

    Not Available

    1980-05-01

    This guide deals primarily with the economics of electric utilities, although certain legal and organizational aspects of utilities are discussed. Each of the seven chapters addresses a particular facet of public-utility ratemaking. Chapter One contains a discussion of the evolution of the public-utility concept, as well as the legal and economic justification for public utilities. The second chapter sets forth an analytical economic model which provides the basis for the next four chapters. These chapters contain a detailed examination of total operating costs, the rate base, the rate of return, and the rate structure. The final chapter discusses a number of current issues regarding electric utilities, mainly factors related to fuel-adjustment costs, advertising, taxes, construction work in progress, and lifeline rates. Some of the examples used in the Guide are from particular states, such as Illinois and California. These examples are used to illustrate specific points. Consumers in other states can generalize them to their states and not change the meaning or significance of the points. 27 references, 8 tables.

  6. Dakota Electric Association - Commercial and Industrial Energy...

    Energy.gov [DOE] (indexed site)

    Industrial Agricultural Savings Category Geothermal Heat Pumps Lighting Chillers Heat Pumps Air conditioners Compressed air Energy Mgmt. SystemsBuilding Controls Motors Motor VFDs...

  7. Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1990 and Preceding Years.

    SciTech Connect

    United States. Bonneville Power Administration.

    1991-06-01

    This report officially releases the compilation of regional 1990 retail customer sector sales data by the Bonneville Power Administration. The report is intended to enable detailed examination of annual regional electricity consumption. It also provides observations based on statistics covering the 1983--1990 time period, and gives statistics covering the time period 1970--1990. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell annually to four sectors. Data is provided on each retail customer sector and also on the customers Bonneville serves directly: residential, commercial, industrial, direct-service industrial, and irrigation. 21 figs., 40 tabs.

  8. Electric utility applications of hydrogen energy storage systems

    SciTech Connect

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  9. Industrial recovered-materials-utilization targets for the metals and metal-products industry

    SciTech Connect

    1980-03-01

    The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

  10. Rural electric cooperatives and the cost structure of the electric power industry: A multiproduct analysis

    SciTech Connect

    Berry, D.M.

    1992-01-01

    Since 1935, the federal government of the United States has administered a program designed to make electricity available to rural Americans. This dissertation traces the history of the rural electrification program, as well as its costs. While the Congress intended to simply provide help in building the capital structure of rural electric distribution systems, the program continues to flourish some 35 years after these systems first fully covered the countryside. Once the rural distribution systems were built, the government began to provide cooperatives with billions of dollars in subsidized loans for the generation of electric power. Although this program costs the taxpayers nearly $1 billion per year, no one has ever tested its efficacy. The coops' owner/members do not have the right to trade their individual ownership shares. The RECs do not fully exploit the scale and scope economies observed in the investor-owned sector of this industry. This dissertation compares the relative productive efficiencies of the RECs and the investor-owned electric utilities (IOUs) in the United States. Using multiproduct translog cost functions, the estimated costs of cooperatives are compared to those of IOUs in providing identical output bundles. Three separate products are considered as outputs: (1) wholesale power; (2) power sold to large industrial customers; and (3) power sold to residential and commercial customers. It is estimated that, were the RECs forced to pay market prices for their inputs, their costs would exceed those incurred by the IOUs by about 24 percent. Several policy recommendations are made: (1) the RECs should be converted to stockholder-owned, tax-paying corporations; (2) the government should discontinue its subsidized loan program; (3) the government should sell its hydroelectric power at market prices, nullifying the current preference given to cooperatives and municipal distributors in the purchase of this currently underpriced power.

  11. Cost and Quality of Fuels for Electric Utility Plants

    Gasoline and Diesel Fuel Update

    Synthetic 1980-2005 Propane-Air 1980-2009

    1994 1995 1996 View History Net Withdrawals 0 0 1973-1996 Injections 0 0 0 1973-1996 Withdrawals 0 0 0 1973-1996

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 10 14 2 2 2015 3 4 5 3 6 9 10 13 6 7 10 9 2016 1

    1) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2001 March 2004 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy

  12. Changing Structure of the Electric Power Industry: Selected Issues, 1998

    Reports and Publications

    1998-01-01

    Provides an analytical assessment of the changes taking place in the electric power industry, including market structure, consumer choice, and ratesetting and transition costs. Also presents federal and state initiatives in promoting competition.

  13. Changing Structure of the Electric Power Industry: An Update, The

    Reports and Publications

    1996-01-01

    Provides a comprehensive overview of the structure of the U.S. electric power industry over the past 10 years, with emphasis on the major changes that have occurred, their causes, and their effects.

  14. Empire District Electric- Commercial & Industrial Energy Efficiency Rebates

    Energy.gov [DOE]

    The Empire District Electric Company offers a Commercial/Industrial Prescriptive Rebate Program to its non-residential customers in Arkansas who purchase certain high-efficiency equipment for...

  15. A Brief History of the Electricity Industry

    Annual Energy Outlook

    timing" problem sold coal and nuke plants at the wrong time Average Retail Price of Electricity, 1960-2005 Source: EIA, http:www.eia.doe.govemeuaerpdfpagessec838.pdf. ...

  16. Electric-utility DSM programs: Terminology and reporting formats

    SciTech Connect

    Hirst, E. ); Sabo, C. )

    1991-10-01

    The number, scope, effects, and costs of electric-utility demand-site management programs are growing rapidly in the United States. Utilities, their regulators, and energy policy makers need reliable information on the costs of, participation in, and energy and load effects of these programs to make informed decisions. In particular, information is needed on the ability of these programs to cost-effectively provide energy and capacity resources that are alternatives to power plants. This handbook addresses the need for additional and better information in two ways. First, it discusses the key concepts associated with DSM-program types, participation, energy and load effects, and costs. Second, the handbook offers definitions and a sample reporting form for utility DSM programs. The primary purpose in developing these definitions and this form is to encourage consistency in the collection and reporting of data on DSM programs. To ensure that the discussions, reporting formats, and definitions will be useful and used, development of this handbook was managed by a committee, with membership from electric utilities, state regulatory commissions, and the US Department of Energy. Also, this data-collection form was pretested by seven people from six utilities, who completed the form for nine DSM programs.

  17. The changing structure of the electric power industry: An update

    SciTech Connect

    1996-12-01

    The U. S. electric power industry today is on the road to restructuring a road heretofore uncharted. While parallels can be drawn from similar journeys taken by the airline industry, the telecommunications industry, and, most recently, the natural gas industry, the electric power industry has its own unique set of critical issues that must be resolved along the way. The transition will be from a structure based on a vertically integrated and regulated monopoly to one equipped to function successfully in a competitive market. The long-standing traditional structure of the electric power industry is the result of a complex web of events that have been unfolding for over 100 years. Some of these events had far-reaching and widely publicized effects. Other major events took the form of legislation. Still other events had effects that are less obvious in comparison (e.g., the appearance of technologies such as transformers and steam and gas turbines, the invention of home appliances, the man-made fission of uranium), and it is likely that their significance in the history of the industry has been obscured by the passage of time. Nevertheless, they, too, hold a place in the underpinnings of today`s electric industry structure. The purpose of this report, which is intended for both lay and technical readers, is twofold. First, it is a basic reference document that provides a comprehensive delineation of the electric power industry and its traditional structure, which has been based upon its monopoly status. Second, it describes the industry`s transition to a competitive environment by providing a descriptive analysis of the factors that have contributed to the interest in a competitive market, proposed legislative and regulatory actions, and the steps being taken by the various components of the industry to meet the challenges of adapting to and prevailing in a competitive environment.

  18. South Dakota Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Dakota Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,623 100.0 Total Net Summer Renewable Capacity 2,223 61.3 Geothermal - - Hydro Conventional 1,594 44.0 Solar - - Wind 629 17.3 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 10,050 100.0 Total

  19. Montana Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Montana Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 5,866 100.0 Total Net Summer Renewable Capacity 3,085 52.6 Geothermal - - Hydro Conventional 2,705 46.1 Solar - - Wind 379 6.5 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 29,791 100.0 Total

  20. Connecticut Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update

    Connecticut Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 8,284 100.0 Total Net Summer Renewable Capacity 281 3.4 Geothermal - - Hydro Conventional 122 1.5 Solar - - Wind - - Wood/Wood Waste - - MSW/Landfill Gas 159 1.9 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net

  1. Alabama Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Alabama Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 32,417 100.0 Total Net Summer Renewable Capacity 3,855 11.9 Geothermal - - Hydro Conventional 3,272 10.1 Solar - - Wind - - Wood/Wood Waste 583 1.8 MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 152,151 100.0 Total

  2. Compliance problems of small utility systems with the Powerplant and Industrial Fuel Use Act of 1978: volume II - appendices

    SciTech Connect

    1981-01-01

    A study of the problems of compliance with the Powerplant and Industrial Fuel Use Act of 1978 experienced by electric utility systems which have a total generating capacity of less than 2000 MW is presented. This volume presents the following appendices: (A) case studies (Farmington, New Mexico; Lamar, Colorado; Dover, Delaware; Wolverine Electric Cooperative, Michigan; Central Telephone and Utilities, Kansas; Sierra Pacific Power Company, Nevada; Vero Beach, Florida; Lubbock, Texas; Western Farmers Cooperative, Oklahoma; and West Texas Utilities Company, Texas); (B) contacts and responses to study; (C) joint action legislation chart; (D) Texas Municipal Power Agency case study; (E) existing generating units jointly owned with small utilities; (F) future generating units jointly owned with small utilities; (G) Federal Register Notice of April 17, 1980, and letter of inquiry to utilities; (H) small utility responses; and (I) Section 744, PIFUA. (WHK)

  3. Washington Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update

    December 9, 2015 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS PAUL HOLTBERG TEAM LEADER ANALYSIS INTEGRATION TEAM JAMES TURNURE DIRECTOR OFFICE OF ENERGY CONSUMPTION & EFFICIENCY ANALYSIS LYNN WESTFALL DIRECTOR OFFICE OF ENERGY MARKETS & FINANCIAL ANALYSIS FROM: MACROECONOMIC & INDUSTRIAL ENERGY CONSUMPTION & EFFICIENCY ANALYSIS TEAMS SUBJECT: First AEO2016 Macro-Industrial Working Group Meeting Summary, presented on 12-03-2016 Attendees: Bob Adler (EIA)

  4. Alabama Natural Gas % of Total Electric Utility Deliveries (Percent)

    Energy Information Administration (EIA) (indexed site)

    Electric Utility Deliveries (Percent) Alabama Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.17 0.13 0.23 0.23 0.29 0.60 0.53 2000's 0.81 1.29 1.98 1.68 2.14 1.79 2.34 2.57 2.46 3.30 2010's 3.81 4.53 4.40 4.08 4.25 4.12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016

  5. Earth-sheltered industrial utility park. Final report

    SciTech Connect

    Not Available

    1981-04-01

    The potential to develop the Cumberland (Wisconsin) industrial park site using earth-integrated techniques is discussed. The concept feasibility study concerned the site, the land-use plan, and building types. An assessment of energy use in the Cumberland community for 1979 and 1980 was made by compiling sales data from the various suppliers of gasoline, diesel, electricity, natural gas, and other fuels. A resource and technology assessment of biomass feedstocks for a possible community scale bioenergy facility was made. Details of each element of the study are presented and conclusions are summarized. (MCW)

  6. A primer on incentive regulation for electric utilities

    SciTech Connect

    Hill, L.J.

    1995-10-01

    In contemplating a regulatory approach, the challenge for regulators is to develop a model that provides incentives for utilities to engage in socially desirable behavior. In this primer, we provide guidance on this process by discussing (1) various models of economic regulation, (2) problems implementing these models, and (3) the types of incentives that various models of regulation provide electric utilities. We address five regulatory models in depth. They include cost-of-service regulation in which prudently incurred costs are reflected dollar-for-dollar in rates and four performance-based models: (1) price-cap regulation, in which ceilings are placed on the average price that a utility can charge its customers; (2) revenue-cap regulation, in which a ceiling is placed on revenues; (3) rate-of-return bandwidth regulation, in which a utility`s rates are adjusted if earnings fall outside a {open_quotes}band{close_quotes} around equity returns; and (4) targeted incentives, in which a utility is given incentives to improve specific components of its operations. The primary difference between cost-of-service and performance-based approaches is the latter sever the tie between costs and prices. A sixth, {open_quotes}mixed approach{close_quotes} combines two or more of the five basic ones. In the recent past, a common mixed approach has been to combine targeted incentives with cost-of-service regulation. A common example is utilities that are subject to cost-of-service regulation are given added incentives to increase the efficiency of troubled electric-generating units.

  7. Minnesota Valley Electric Cooperative - Commercial and Industrial...

    Energy.gov [DOE] (indexed site)

    lighting, motors, and ASDs, there is a maximum of 50% of the project cost, or 5,000 Agriculture Ventilation: 50% of cost or 100,000 Program Info Sector Name Utility Administrator...

  8. Annual Electric Utility Data - Form EIA-906 Database

    Energy Information Administration (EIA) (indexed site)

    Detailed data files > Historic Form EIA-906 Historic Form EIA-906 Detailed Data with previous form data (EIA-759) Historic electric utility data files include information on net generation, fuel consumption, fuel stocks, prime mover and fuel type. Data sources are surveys -- Form EIA-906, "Power Plant Report" and Form EIA-759, "Monthly Power Plant Report." Beginning with 1996, two separate files are available for each year: Monthly (M) data submitted by those respondents

  9. A knowledge based model of electric utility operations. Final report

    SciTech Connect

    1993-08-11

    This report consists of an appendix to provide a documentation and help capability for an analyst using the developed expert system of electric utility operations running in CLIPS. This capability is provided through a separate package running under the WINDOWS Operating System and keyed to provide displays of text, graphics and mixed text and graphics that explain and elaborate on the specific decisions being made within the knowledge based expert system.

  10. Tennessee Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Tennessee Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,417 100.0 Total Net Summer Renewable Capacity 2,847 13.3 Geothermal - - Hydro Conventional 2,624 12.3 Solar - - Wind 29 0.1 Wood/Wood Waste 185 0.9 MSW/Landfill Gas 6 * Other Biomass 2 * Generation (thousand megawatthours) Total Electricity Net Generation 82,349 100.0 Total

  11. Texas Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Texas Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 108,258 100.0 Total Net Summer Renewable Capacity 10,985 10.1 Geothermal - - Hydro Conventional 689 0.6 Solar 14 * Wind 9,952 9.2 Wood/Wood Waste 215 0.2 MSW/Landfill Gas 88 0.1 Other Biomass 28 * Generation (thousand megawatthours) Total Electricity Net Generation 411,695 100.0 Total Renewable Net Generation

  12. Pennsylvania Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Pennsylvania Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 45,575 100.0 Total Net Summer Renewable Capacity 1,984 4.4 Geothermal - - Hydro Conventional 747 1.6 Solar 9 * Wind 696 1.5 Wood/Wood Waste 108 0.2 MSW/Landfill Gas 424 0.9 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 229,752 100.0

  13. Rhode Island Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Rhode Island Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,782 100.0 Total Net Summer Renewable Capacity 28 1.6 Geothermal - - Hydro Conventional 3 0.2 Solar - - Wind 2 0.1 Wood/Wood Waste - - MSW/Landfill Gas 24 1.3 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net

  14. South Carolina Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Carolina Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 23,982 100.0 Total Net Summer Renewable Capacity 1,623 6.8 Geothermal - - Hydro Conventional 1,340 5.6 Solar - - Wind - - Wood/Wood Waste 255 1.1 MSW/Landfill Gas 29 0.1 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 104,153 100.0 Total

  15. Maryland Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Maryland Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,516 100.0 Total Net Summer Renewable Capacity 799 6.4 Geothermal - - Hydro Conventional 590 4.7 Solar 1 * Wind 70 0.6 Wood/Wood Waste 3 * MSW/Landfill Gas 135 1.1 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 43,607 100.0 Total Renewable

  16. Massachusetts Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Massachusetts Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 13,697 100.0 Total Net Summer Renewable Capacity 566 4.1 Geothermal - - Hydro Conventional 262 1.9 Solar 4 * Wind 10 0.1 Wood/Wood Waste 26 0.2 MSW/Landfill Gas 255 1.9 Other Biomass 9 0.1 Generation (thousand megawatthours) Total Electricity Net Generation

  17. Minnesota Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Minnesota Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,715 100.0 Total Net Summer Renewable Capacity 2,588 17.6 Geothermal - - Hydro Conventional 193 1.3 Solar - - Wind 2,009 13.7 Wood/Wood Waste 177 1.2 MSW/Landfill Gas 134 0.9 Other Biomass 75 0.5 Generation (thousand megawatthours) Total Electricity Net Generation 53,670 100.0 Total Renewable Net

  18. Nebraska Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Nebraska Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,857 100.0 Total Net Summer Renewable Capacity 443 5.6 Geothermal - - Hydro Conventional 278 3.5 Solar - - Wind 154 2.0 Wood/Wood Waste - - MSW/Landfill Gas 6 0.1 Other Biomass 5 0.1 Generation (thousand megawatthours) Total Electricity Net Generation 36,630 100.0 Total Renewable

  19. Nevada Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Nevada Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 11,421 100.0 Total Net Summer Renewable Capacity 1,507 13.2 Geothermal 319 2.8 Hydro Conventional 1,051 9.2 Solar 137 1.2 Wind - - Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 35,146 100.0 Total

  20. New Mexico Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Mexico Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 8,130 100.0 Total Net Summer Renewable Capacity 818 10.1 Geothermal - - Hydro Conventional 82 1.0 Solar 30 0.4 Wind 700 8.6 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass 6 0.1 Generation (thousand megawatthours) Total Electricity Net Generation 36,252 100.0 Total Renewable Net Generation 2,072 5.7

  1. North Carolina Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Carolina Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 27,674 100.0 Total Net Summer Renewable Capacity 2,499 9.0 Geothermal - - Hydro Conventional 1,956 7.1 Solar 35 0.1 Wind - - Wood/Wood Waste 481 1.7 MSW/Landfill Gas 27 0.1 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 128,678 100.0 Total

  2. North Dakota Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Dakota Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 6,188 100.0 Total Net Summer Renewable Capacity 1,941 31.4 Geothermal - - Hydro Conventional 508 8.2 Solar - - Wind 1,423 23.0 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass 10 0.2 Generation (thousand megawatthours) Total Electricity Net Generation 34,740 100.0 Total Renewable Net Generation 6,150

  3. Oregon Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Oregon Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,261 100.0 Total Net Summer Renewable Capacity 10,684 74.9 Geothermal - - Hydro Conventional 8,425 59.1 Solar - - Wind 2,004 14.1 Wood/Wood Waste 221 1.6 MSW/Landfill Gas 31 0.2 Other Biomass 3 * Generation (thousand megawatthours) Total Electricity Net Generation 55,127 100.0

  4. Arizona Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Arizona Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,392 100.0 Total Net Summer Renewable Capacity 2,901 11.0 Geothermal - - Hydro Conventional 2,720 10.3 Solar 20 0.1 Wind 128 0.5 Wood/Wood Waste 29 0.1 MSW/Landfill Gas 4 * Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 111,751 100.0 Total

  5. California Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    California Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 67,328 100.0 Total Net Summer Renewable Capacity 16,460 24.4 Geothermal 2,004 3.0 Hydro Conventional 10,141 15.1 Solar 475 0.7 Wind 2,812 4.2 Wood/Wood Waste 639 0.9 MSW/Landfill Gas 292 0.4 Other Biomass 97 0.1 Generation (thousand megawatthours) Total Electricity Net

  6. 1990,"AK","Total Electric Power Industry","All Sources",4208809...

    Energy Information Administration (EIA) (indexed site)

    1990,"AK","Electric Utility","Coal",646430,832,2881 1990,"AK","Electric Utility","Natural Gas",1886585,9,4364 1990,"AK","Electric Utility","Petroleum",281115,1562,592 ...

  7. Assessing strategies to address transition costs in a restructuring electricity industry

    SciTech Connect

    Baxter, L.; Hadley, S.; Hirst, E.

    1996-08-01

    Restructuring the US electricity industry has become the nation`s central energy issue for the 1990s. Restructuring proposals at the federal and state levels focus on more competitive market structures for generation and the integration of transmission within those structures. The proposed move to more competitive generation markets will expose utility costs that are above those experienced by alternative suppliers. Debate about these above-market, or transition, costs (e.g., their size,who will pay for them and how) has played a prominent role in restructuring proceedings. This paper presents results from a project to systematically assess strategies to address transition costs exposed by restructuring the electricity industry.

  8. Homeostatic control: the utility/customer marketplace for electric power

    SciTech Connect

    Schweppe, F.C.; Tabors, R.D.; Kirtley, J.L.

    1981-09-01

    A load management system is proposed in which the electric utility customer controls his on-site power demand to coincide with the lowest possible cost of power generation. Called Homeostatic Control, this method is founded on feedback between the customer and the utility and on customer independence. The utility has no control beyond the customer's meter. Computers located at the customer's site are continuously fed data on weather conditions, utility generating costs, and demand requirements for space conditioning, lighting, and appliances. The customer then directs the computer to schedule and control the power allotted for these functions. On-site generation by the customer can be incorporated in the system. It is argued that homeostatic control is technically feasible, that the level of control equipment sophistication can be adapted to the benefits received by the customer, that such a system would encourage the use of customer-site energy storage and energy conservation equipment, and that it represents a realistic method for allowing the customer to decide how he will use electric power during an era of increasing costs for power generation. (LCL)

  9. Estimation and decomposition of productive efficiency in a panel data model: an application to electric utilities

    SciTech Connect

    Melfi, C.A.

    1984-01-01

    New econometric methodology for modeling and estimating technical and allocative efficiency in production is proposed and applied. Translog cost frontier and share equations are presented in a panel data context, with the structure of the error terms representing noise and inefficiency. The use of panel data with this multivariate error components approach facilitates the separation of eficiency into its technical and allocative components, as well as the separation of noise from inefficiency. The model used is logically consistent in that the distributional assumptions concerning the disturbance vectors take into account the relationships among the disturbance terms in the cost and share equations. This method of efficiency measurement is applied to the electric utilities industry to obtain individual firm estimates of technical and allocative efficiency. The data consist of yearly cost, output, and input price information on 38 electric utility firms over a period of 18 years. Rate-of-return regulation in the electric utilities industry requires estimation of a regulated cost frontier and the associated share equations. Estimates of technical and allocative efficiency are obtained for each firm in every year. Comparisons are made with previous efficiency measurement studies. The measures of efficiency are analyzed in light of rate-of-return regulation.

  10. Electric Market and Utility Operation Terminology (Fact Sheet), Solar Energy Technologies Program (SETP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet is a list of electric market and utility operation terminology for a series of three electricity fact sheets.

  11. Delaware Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update

    18/1 Nonresidential Buildings Energy Consumption Survey: 1979 Consumption and Expenditures D! Part I: Natural Gas and Electricity March 1983 Energy Information Administration Washington, D.C. 1111? This publication is available from the Superintendent of Documents, U.S. Government Printing Office |GPO). Make check or money order payable to the Superintendent of Documents. You may send your order to the U.S. Government Printing Office or the National Energy Information Center. GPO prices are

  12. Assistance to States on Electric Industry Issues

    SciTech Connect

    Glen Andersen

    2010-10-25

    This project seeks to educate state policymakers through a coordinated approach involving state legislatures, regulators, energy officials, and governors’ staffs. NCSL’s activities in this project focus on educating state legislators. Major components of this proposal include technical assistance to state legislatures, briefing papers, coordination with the National Council on Electricity Policy, information assistance, coordination and outreach, meetings, and a set of transmission-related activities.

  13. Tennessee Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Tennessee" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",21417,100 "Total Net Summer Renewable Capacity",2847,13.3 " Geothermal","-","-" " Hydro Conventional",2624,12.3 "

  14. Texas Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Texas" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",108258,100 "Total Net Summer Renewable Capacity",10985,10.1 " Geothermal","-","-" " Hydro Conventional",689,0.6 " Solar",14,"*" "

  15. Pennsylvania Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Pennsylvania" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",45575,100 "Total Net Summer Renewable Capacity",1984,4.4 " Geothermal","-","-" " Hydro Conventional",747,1.6 "

  16. Rhode Island Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Rhode Island" "Primary Renewable Energy Capacity Source","Municipal Solid Waste/Landfill Gas" "Primary Renewable Energy Generation Source","Municipal Solid Waste/Landfill Gas" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",1782,100 "Total Net Summer Renewable Capacity",28,1.6 " Geothermal","-","-" " Hydro

  17. South Carolina Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Carolina" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",23982,100 "Total Net Summer Renewable Capacity",1623,6.8 " Geothermal","-","-" " Hydro Conventional",1340,5.6 "

  18. South Dakota Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Dakota" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",3623,100 "Total Net Summer Renewable Capacity",2223,61.3 " Geothermal","-","-" " Hydro Conventional",1594,44 "

  19. Louisiana Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Louisiana" "Primary Renewable Energy Capacity Source","Wood/Wood Waste" "Primary Renewable Energy Generation Source","Wood/Wood Waste" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",26744,100 "Total Net Summer Renewable Capacity",517,1.9 " Geothermal","-","-" " Hydro Conventional",192,0.7 "

  20. Maine Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Maine" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",4430,100 "Total Net Summer Renewable Capacity",1692,38.2 " Geothermal","-","-" " Hydro Conventional",738,16.6 "

  1. Maryland Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Maryland" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",12516,100 "Total Net Summer Renewable Capacity",799,6.4 " Geothermal","-","-" " Hydro Conventional",590,4.7 "

  2. Massachusetts Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Massachusetts" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Municipal Solid Waste/Landfill Gas" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",13697,100 "Total Net Summer Renewable Capacity",566,4.1 " Geothermal","-","-" " Hydro Conventional",262,1.9

  3. Michigan Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Michigan" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Wood/Wood Waste" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",29831,100 "Total Net Summer Renewable Capacity",807,2.7 " Geothermal","-","-" " Hydro Conventional",237,0.8 "

  4. Minnesota Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Minnesota" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",14715,100 "Total Net Summer Renewable Capacity",2588,17.6 " Geothermal","-","-" " Hydro Conventional",193,1.3 " Solar","-","-"

  5. Mississippi Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Mississippi" "Primary Renewable Energy Capacity Source","Wood/Wood Waste" "Primary Renewable Energy Generation Source","Wood/Wood Waste" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",15691,100 "Total Net Summer Renewable Capacity",235,1.5 " Geothermal","-","-" " Hydro Conventional","-","-"

  6. Missouri Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Missouri" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",21739,100 "Total Net Summer Renewable Capacity",1030,4.7 " Geothermal","-","-" " Hydro Conventional",564,2.6 "

  7. Montana Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Montana" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",5866,100 "Total Net Summer Renewable Capacity",3085,52.6 " Geothermal","-","-" " Hydro Conventional",2705,46.1 "

  8. Nebraska Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Nebraska" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",7857,100 "Total Net Summer Renewable Capacity",443,5.6 " Geothermal","-","-" " Hydro Conventional",278,3.5 "

  9. Nevada Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Nevada" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",11421,100 "Total Net Summer Renewable Capacity",1507,13.2 " Geothermal",319,2.8 " Hydro Conventional",1051,9.2 " Solar",137,1.2 "

  10. New Hampshire Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Hampshire" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",4180,100 "Total Net Summer Renewable Capacity",671,16.1 " Geothermal","-","-" " Hydro Conventional",489,11.7 "

  11. New Jersey Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Jersey" "Primary Renewable Energy Capacity Source","Municipal Solid Waste/Landfill Gas" "Primary Renewable Energy Generation Source","Municipal Solid Waste/Landfill Gas" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",18424,100 "Total Net Summer Renewable Capacity",230,1.2 " Geothermal","-","-" " Hydro

  12. New Mexico Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Mexico" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",8130,100 "Total Net Summer Renewable Capacity",818,10.1 " Geothermal","-","-" " Hydro Conventional",82,1 " Solar",30,0.4 " Wind",700,8.6

  13. New York Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    York" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",39357,100 "Total Net Summer Renewable Capacity",6033,15.3 " Geothermal","-","-" " Hydro Conventional",4314,11 "

  14. North Carolina Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Carolina" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",27674,100 "Total Net Summer Renewable Capacity",2499,9 " Geothermal","-","-" " Hydro Conventional",1956,7.1 "

  15. North Dakota Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    North Dakota" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",6188,100 "Total Net Summer Renewable Capacity",1941,31.4 " Geothermal","-","-" " Hydro Conventional",508,8.2 "

  16. Ohio Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Ohio" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",33071,100 "Total Net Summer Renewable Capacity",231,0.7 " Geothermal","-","-" " Hydro Conventional",101,0.3 "

  17. Oklahoma Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Oklahoma" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",21022,100 "Total Net Summer Renewable Capacity",2412,11.5 " Geothermal","-","-" " Hydro Conventional",858,4.1 " Solar","-","-"

  18. Oregon Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Oregon" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",14261,100 "Total Net Summer Renewable Capacity",10684,74.9 " Geothermal","-","-" " Hydro Conventional",8425,59.1 "

  19. Alabama Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Alabama" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",32417,100 "Total Net Summer Renewable Capacity",3855,11.9 " Geothermal","-","-" " Hydro Conventional",3272,10.1 "

  20. Alaska Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Alaska" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",2067,100 "Total Net Summer Renewable Capacity",422,20.4 " Geothermal","-","-" " Hydro Conventional",414,20.1 "

  1. Arizona Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Arizona" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",26392,100 "Total Net Summer Renewable Capacity",2901,11 " Geothermal","-","-" " Hydro Conventional",2720,10.3 "

  2. Arkansas Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Arkansas" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",15981,100 "Total Net Summer Renewable Capacity",1667,10.4 " Geothermal","-","-" " Hydro Conventional",1341,8.4 "

  3. California Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    California" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",67328,100 "Total Net Summer Renewable Capacity",16460,24.4 " Geothermal",2004,3 " Hydro Conventional",10141,15.1 " Solar",475,0.7 "

  4. New Hampshire Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update

    Generating Technology to Reduce Greenhouse Gas Emissions ENERGY INFORMATION ADMINISTRATION 30 TH BIRTHDAY CONFERENCE April 7, 2008 Linda G. Stuntz Stuntz, Davis & Staffier, P.C. Stuntz, Davis & Staffier, P.C. 2 The Target * Energy related emissions of CO2 will increase by about 16% in AEO 2008 Reference Case between 2006 and 2030 (5,890 MM metric tons to 6,859 MM metric tons). (#s from Caruso Senate Energy testimony of 3/4/08). * Last year, emissions from electricity generation were 40%

  5. Efficiency, equity and the environment: Institutional challenges in the restructuring of the electric power industry

    SciTech Connect

    Haeri, M.H.

    1998-07-01

    In the electric power industry, fundamental changes are underway in Europe, America, Australia, New Zealand and, more recently, in Asia. Rooted in increased deregulation and competition, these changes are likely to radically alter the structure of the industry. Liberalization of electric power markets in the United Kingdom is, for the most part, complete. The generation market in the United States began opening to competition following the 1987 Public Utility Regulatory Policies Act (PURPA). The Energy Policy Act of 1992 set the stage for a much more dramatic change in the industry. The most far-reaching provision of the Act was its electricity title, which opened access to the electric transmission grid. With legal barriers now removed, the traditionally sheltered US electric utility market is becoming increasingly open to entry and competition. A number of important legislative, regulatory and governmental policy initiatives are underway in the Philippines that will have a profound effect on the electric power industry. In Thailand, the National Energy Planning Organization (NEPO) has undertaken a thorough investigation of industry restructuring. This paper summarizes recent international developments in the deregulation and liberalization of electricity markets in the U.K., U.S., Australia, and New Zealand. It focuses on the relevance of these experiences to development underway in the Philippines and Thailand, and presents alternative possible structures likely to emerge in these countries, drawing heavily on the authors' recent experiences in Thailand and the Philippines. The impact of these changes on the business environment for power generation and marketing will be discussed in detail, as will the opportunities these changes create for investment among private power producers.

  6. Antitrust policy in the new electricity industry

    SciTech Connect

    Pierce, R.J. Jr.

    1996-12-31

    The Federal Energy Regulatory Commission should encourage all potential consolidations of transmission assets. It should defer to the position of state Public Utility Commissions with respect to all proposed consolidations of distribution assets. It should take a conservative initial attitude toward all proposed changes in the structure of the wholesale market, both proposed consolidations and potential coerced divestitures. It should eliminate price controls on virtually all wholesales on an experimental basis and use the data made available by that experiment as the basis for a more refined set of policies applicable to the structure of the wholesale market in the dramatically new environment that it is in the process of creating.

  7. The changing structure of the electric power industry: Selected issues, 1998

    SciTech Connect

    1998-07-01

    More than 3,000 electric utilities in the United States provide electricity to sustain the Nation`s economic growth and promote the well-being of its inhabitants. At the end of 1996, the net generating capability of the electric power industry stood at more than 776,000 megawatts. Sales to ultimate consumers in 1996 exceeded 3.1 trillion kilowatthours at a total cost of more than $210 billion. In addition, the industry added over 9 million new customers during the period from 1990 through 1996. The above statistics provide an indication of the size of the electric power industry. Propelled by events of the recent past, the industry is currently in the midst of changing from a vertically integrated and regulated monopoly to a functionally unbundled industry with a competitive market for power generation. Advances in power generation technology, perceived inefficiencies in the industry, large variations in regional electricity prices, and the trend to competitive markets in other regulated industries have all contributed to the transition. Industry changes brought on by this movement are ongoing, and the industry will remain in a transitional state for the next few years or more. During the transition, many issues are being examined, evaluated, and debated. This report focuses on three of them: how wholesale and retail prices have changed since 1990; the power and ability of independent system operators (ISOs) to provide transmission services on a nondiscriminatory basis; and how issues that affect consumer choice, including stranded costs and the determination of retail prices, may be handled either by the US Congress or by State legislatures.

  8. Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities

    SciTech Connect

    Porter, K.; Rogers, J.

    2009-12-01

    The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

  9. Financial Statistics of Major U.S. Investor-Owned Electric Utilities

    Reports and Publications

    1997-01-01

    1996 - Final issue. Presents summary and detailed financial accounting data on the investor-owned electric utilities.

  10. Institutional contexts of market power in the electricity industry

    SciTech Connect

    Foer, A.A.

    1999-05-01

    Market power is widely recognized as one of the principal issues that must be dealt with if the electricity industry is to make the transition from regulation to competition. In this article, the author provides a legal and economic introduction to what the antitrust community means by market power and offers a primer on why market power is so central an issue in the electricity industry. Finally and most importantly, he offers comments on the institutional contexts of market power, exploring a process which he calls Shermanization that helps explain the institutional aspect of moving from regulation to competition and holds implications for where oversight should reside during this complex transition.

  11. United States Industrial Electric Motor Systems Market Opportunities Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    O R E W O R D I United States Industrial Electric Motor Systems Market Opportunities Assessment December 2002 This document was originally published by the U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) in Decem- ber 1998. As of fiscal year 2000, DOE's Motor Challenge Program was inte- grated into BestPractices, a broad initiative within EERE. EERE's BestPractices introduces industrial end users to emerging technolo- gies and cost-saving opportunities

  12. Electric Utility Company Assigned to a Zip Code? | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Electric Utility Company Assigned to a Zip Code? Home I have found an error in the utility company assigned to a zip code. I am not sure if the "assigned" utility company covers...

  13. Industrial- and utility-scale coal-water fuel demonstration projects

    SciTech Connect

    Hathi, V.; Ramezan, M.; Winslow, J.

    1993-01-01

    Laboratory-, pilot-, and large-scale CWF combustion work has been performed primarily in Canada, China, Italy, Japan, Korea, Sweden, and the United States, and several projects are still active. Sponsors have included governments, utilities and their research arms, engine manufacturers, equipment suppliers, and other organizations in attempts to show that CWF is a viable alternative to premium fuels, both in cost and performance. The objective of this report is to present brief summaries of past and current industrial- and utility-scale CWF demonstrations in order to determine what lessons can be learned from these important, highly visible projects directed toward the production of steam and electricity. Particular emphasis is placed on identifying the CWF characteristics; boiler type, geometry, size, and location; length of the combustion tests; and the results concerning system performance, including emissions.

  14. Assessment of industrial activity in the utilization of biomass for energy

    SciTech Connect

    Not Available

    1980-09-01

    The objective of this report is to help focus the federal programs in biomass energy, by identifying the status and objectives of private sector activity in the biomass field as of mid-1979. In addition, the industry's perceptions of government activities are characterized. Findings and conclusions are based principally on confidential interviews with executives in 95 companies. These included forest products companies, agricultural products companies, equipment manufacturers, electric and gas utilities petroleum refiners and distributors, research and engineering firms, and trade organizations, as listed in Exhibit 1. Interview findings have been supplemented by research of recent literature. The study focused on four key questions: (1) what is the composition of the biomass industry; (2) what are the companies doing; (3) what are their objectives and strategies; and (4) what are the implications for government policy. This executive summary provides highlights of the key findings and conclusions. The summary discussion is presented in seven parts: (1) overview of the biomass field; (2) structure of the biomass industry today; (3) corporate activities in biomass-related areas; (4) motivations for these activities; (5) industry's outlook on the future for energy-from-biomass; (6) industry's view of government activities; and (7) implications for Federal policy.

  15. Electric utilities sales and revenue monthly report (EIA-826), 1987. Data file

    SciTech Connect

    Curry, J.; Wilkins, S.

    1987-01-01

    The purpose of Form EI-826 formerly FERC-5, Electric Utility Company Monthly Statement, is to collect data necessary to fulfill regulatory responsibility; identify near-term trends in energy use; and contingency analysis. The form is filed monthly by approximately 150 electric utilities. All privately owned electric utilities with annual electric operating revenues of $100,000,000 or more must respond. In addition, the sample includes other selected electric utilities. The reported data is expanded by factors, calculated using annual data from a previous period, to give electric sales data by state and sector. Other information collected includes data gathered on depreciation, construction, net income before taxes, and extraordinary items.

  16. Electric Utilities Monthly Sales and Revenue Report (EIA-826), current. Data file

    SciTech Connect

    Not Available

    1990-01-01

    Form EI-826, formerly FERC-5, Electric Utility Company Monthly Statement, collects data necessary to fulfill regulatory responsibility; identify near-term trends in energy use; and contingency analysis. The form is filed monthly by approximately 150 electric utilities. All privately owned electric utilities with annual electric operating revenues of $100,000,000 or more must respond. In addition, the sample includes other selected electric utilities. The reported data is expanded by factors, calculated using annual data from a previous period, to give electric sales data by state and sector. Other information collected includes data gathered on depreciation, construction, net income before taxes, and extraordinary items.

  17. Changing Structure of the Electric Power Industry: 1970-1991

    Reports and Publications

    1993-01-01

    The purpose of this report is to provide a comprehensive overview of the ownership of the U.S. electric power industry over the past two decades, with emphasis on the major changes that have occurred, their causes, and their effects.

  18. Characterizing the Response of Commercial and Industrial Facilities to Dynamic Pricing Signals from the Utility

    SciTech Connect

    Mathieu, Johanna L.; Gadgil, Ashok J.; Callaway, Duncan S.; Price, Phillip N.; Kiliccote, Sila

    2010-07-01

    We describe a method to generate statistical models of electricity demand from Commercial and Industrial (C&I) facilities including their response to dynamic pricing signals. Models are built with historical electricity demand data. A facility model is the sum of a baseline demand model and a residual demand model; the latter quantifies deviations from the baseline model due to dynamic pricing signals from the utility. Three regression-based baseline computation methods were developed and analyzed. All methods performed similarly. To understand the diversity of facility responses to dynamic pricing signals, we have characterized the response of 44 C&I facilities participating in a Demand Response (DR) program using dynamic pricing in California (Pacific Gas and Electric's Critical Peak Pricing Program). In most cases, facilities shed load during DR events but there is significant heterogeneity in facility responses. Modeling facility response to dynamic price signals is beneficial to the Independent System Operator for scheduling supply to meet demand, to the utility for improving dynamic pricing programs, and to the customer for minimizing energy costs.

  19. Electric power industry in Korea: Past, present, and future

    SciTech Connect

    Lee, Hoesung

    1994-12-31

    Electrical power is an indispensable tool in the industrialization of a developing country. An efficient, reliable source of electricity is a key factor in the establishment of a wide range of industries, and the supply of energy must keep pace with the increasing demand which economic growth creates in order for that growth to be sustained. As one of the most successful of all developing countries, Korea has registered impressive economic growth over the last decade, and it could be said that the rapid growth of the Korean economy would not have been possible without corresponding growth in the supply of electric power. Power producers in Korea, and elsewhere in Asia, are to be commended for successfully meeting the challenge of providing the necessary power to spur what some call an economic miracle. The future continues to hold great potential for participants in the electrical power industry, but a number of important challenges must be met in order for that potential to be fully realized. Demand for electricity continues to grow at a staggering rate, while concerns over the environmental impact of power generating facilities must not be ignored. As it becomes increasingly difficult to finance the rapid, and increasingly larger-scale expansion of the power industry through internal sources, the government must find resources to meet the growing demand at least cost. This will lead to important opportunities for the private sector. It is important, therefore, for those interested in participating in the power production industry and taking advantage of the newly emerging opportunities that lie in the Korean market, and elsewhere in Asia, to discuss the relevant issues and become informed of the specific conditions of each market.

  20. U.S. and Chinese experts perspectives on IGCC technology for Chinese electric power industry

    SciTech Connect

    Hsieh, B.C.B.; Wang Yingshi

    1997-11-01

    Although China is a very large and populous nation, and has one of the longest known histories in the world, it has only lately begun to seek its place among modern industrial nations. This move, precipitated by the government`s relatively recently adopted strategic goals of economic development, societal reform and promotion of engagement with other industrial nations, has brought to the fore the serious situation in which the Chinese electric power industry finds itself. Owing to the advanced average age of generation facilities and the technology used in them, serious expansion and modernization of this industry needs to take place, and soon, if it is to support the rapid industrial development already taking place in China. While China does have some oil and gas, coal constitutes its largest indigenous energy supply, by far. Coal has been mined and utilized for years in China. It is used directly to provide heat for homes, businesses and in industrial applications, and used to raise steam for the generation of electricity. The presently dominant coal utilization methods are characterized by low or marginal efficiencies and an almost universal lack of pollution control equipment. Because there is so much of it, coal is destined to be China`s predominant source of thermal energy for decades to come. Realizing these things--the rapidly increasing demand for more electric power than China presently can produce, the need to raise coal utilization efficiencies, and the corresponding need to preserve the environment--the Chinese government moved to commission several official working organizations to tackle these problems.

  1. Port Angeles Public Works & Utilities - Commercial and Industrial...

    Energy.gov [DOE] (indexed site)

    70% of incremental energy project costs Program Info Sector Name Utility Administrator Port Angeles Public Works and Utilities Website https:www.cityofpa.us...

  2. Table 5. Electric power industry generation by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    District of Columbia" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",0,0,0,71199,0,0,0,0,0,0,0,0,0,0,97423,230003,243975,70661,109809,188862,274252,188452,73991,179814,361043,67.5,0,0 "Natural

  3. SO{sub 2} trading program as a metaphor for a competitive electric industry

    SciTech Connect

    O`Connor, P.R.

    1996-12-31

    This very brief presentation focuses on the competitive market impacts of sulfur dioxide SO{sub 2} emissions trading. Key points of the presentation are highlighted in four tables. The main principles and results of the emissions trading program are outlined, and the implications of SO{sub 2} trading for the electric industry are listed. Parallels between SO{sub 2} trading and electric utility restructing identified include no market distortion by avoiding serious disadvantages to competitors, and avoidance of stranded costs through compliance flexibility. 4 tabs.

  4. Applying electrical utility least-cost approach to transportation planning

    SciTech Connect

    McCoy, G.A.; Growdon, K.; Lagerberg, B.

    1994-09-01

    Members of the energy and environmental communities believe that parallels exist between electrical utility least-cost planning and transportation planning. In particular, the Washington State Energy Strategy Committee believes that an integrated and comprehensive transportation planning process should be developed to fairly evaluate the costs of both demand-side and supply-side transportation options, establish competition between different travel modes, and select the mix of options designed to meet system goals at the lowest cost to society. Comparisons between travel modes are also required under the Intermodal Surface Transportation Efficiency Act (ISTEA). ISTEA calls for the development of procedures to compare demand management against infrastructure investment solutions and requires the consideration of efficiency, socioeconomic and environmental factors in the evaluation process. Several of the techniques and approaches used in energy least-cost planning and utility peak demand management can be incorporated into a least-cost transportation planning methodology. The concepts of avoided plants, expressing avoidable costs in levelized nominal dollars to compare projects with different on-line dates and service lives, the supply curve, and the resource stack can be directly adapted from the energy sector.

  5. Survey and analysis of selected jointly owned large-scale electric utility storage projects

    SciTech Connect

    Not Available

    1982-05-01

    The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

  6. Shakopee Public Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Shakopee Public Utilities has a new Retrocommissioning program. Clink on the website link to learn more.

  7. Penetration and air-emission-reduction benefits of solar technologies in the electric utilities

    SciTech Connect

    Sutherland, R.J.

    1981-01-01

    The results of a study of four solar energy technologies and the electric utility industry are reported. The purpose of the study was to estimate the penetration by federal region of four solar technologies - wind, biomass, phtovoltaics, and solar thermal - in terms of installed capacity and power generated. The penetration by these technologies occurs at the expense of coal and nuclear power. The displacement of coal plants implies a displacement of their air emissions, such as sulfur dioxide, oxides of nitrogen, and particulate matter. The main conclusion of this study is that solar thermal, photovoltaics, and biomass fail to penetrate significantly by the end of this century in any federal region. Wind energy penetrates the electric utility industry in several regions during the 1990s. Displaced coal and nuclear generation are also estimated by region, as are the corresponding reductions in air emissions. The small-scale penetration by the solar technologies necessarily limits the amount of conventional fuels displaced and the reduction in air emissions. A moderate displacement of sulfur dioxide and the oxides of nitrogen is estimated to occur by the end of this century, and significant lowering of these emissions should occur in the early part of the next century.

  8. Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 1

    SciTech Connect

    Negus-deWys, J.

    1990-03-01

    The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

  9. Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 2

    SciTech Connect

    Negus-deWys, J.

    1990-03-01

    The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

  10. Integration of distributed resources in electric utility systems: Current interconnection practice and unified approach. Final report

    SciTech Connect

    Barker, P.; Leskan, T.; Zaininger, H.; Smith, D.

    1998-11-01

    Deregulation of the electric utility industry, new state and federal programs, and technology developments are making distributed resources (DR) an increasingly utilized option to provide capacity for growing or heavily loaded electric power systems. Optimal DR placement near loads provides benefits not attainable from bulk generation system additions. These include reduced loading of the T and D system, reduced losses, voltage support, and T and D equipment upgrade deferments. The purpose of this document is to review existing interconnection practices and present interconnection guidelines are relevant to the protection, control, and data acquisition requirements for the interconnection of distributed resources to the utility system. This is to include protection performance requirements, data collection and reporting requirements, on-line communication requirements, and ongoing periodic documentation requirements. This document also provides guidelines for the practical placement and sizing of resources as pertinent to determining the interconnection equipment and system control requirements. The material contained herein has been organized into 4 sections dealing with application issues, existing practices, a unified interconnection approach, and future work. Section 2 of the report discusses the application issues associated with distributed resources and deals with various engineering issues such as overcurrent protection, voltage regulation, and islanding. Section 3 summarizes the existing utility interconnection practices and guidelines as determined from the documents provided by participating utilities. Section 4 presents a unified interconnection approach that is intended to serve as a guide for interconnection of distributed resources to the utility system. And finally, Section 5 outlines possible future areas of study to expand upon the topics discussed in this report.

  11. Ashland Electric Utility - Bright Way to Heat Water Loan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Type Loan Program Summary The City of Ashland Conservation Division offers a solar water heating program to residential electric customers who currently use an electric...

  12. Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers

    Energy.gov [DOE]

    Honeywell’s Smart Grid Investment Grant (SGIG) project demonstrates utility-scale performance of a hardware/software platform for automated demand response (ADR) for utility, commercial, and industrial customers. The case study is now available for downloading.

  13. Workforce Trends in the Electric Utility Industry | Department...

    Energy Saver

    Section 1101 of the U.S. Energy Policy Act of 2005 (EPACT)1 calls for a report on the current trends in the workforce of (A) skilled technical personnel that support energy ...

  14. Working With Industry and Utilities to Promote Electric Vehicles...

    Energy Saver

    which we know results in even lower net emissions than gas-powered vehicles. ... And, more than 9,000 public charging stations and more than 1,700 private, non-residential ...

  15. Local government: The sleeping giant in electric industry restructuring

    SciTech Connect

    Ridley, S.

    1997-11-01

    Public power has long been a cornerstone of consumer leverage in the electric industry. But its foundation consists of a much broader and deeper consumer authority. Understanding that authority - and present threats to it - is critical to restructuring of the electric industry as well as to the future of public power. The country has largely forgotten the role that local governments have played and continue to play in the development of the electric industry. Moreover, we risk losing sight of the options local governments may offer to protect consumers, to advance competition in the marketplace, and to enhance opportunities for technology and economic development. The future role of local government is one of the most important issues in the restructuring discussion. The basic authority of consumers rests at the local level. The resulting options consumers have to act as more than just respondents to private brokers and telemarketing calls are at the local level. And the ability for consumers to shape the marketplace and standards for what it will offer exists at the local level as well.

  16. Performance-based ratemaking for electric utilities: Review of plans and analysis of economic and resource-planning issues. Volume 1

    SciTech Connect

    Comnes, G.A.; Stoft, S.; Greene, N.; Hill, L.J. |

    1995-11-01

    Performance-Based Ratemaking (PBR) is a form of utility regulation that strengthens the financial incentives to lower rates, lower costs, or improve nonprice performance relative traditional regulation, which the authors call cost-of-service, rate-of-return (COS/ROR) regulation. Although the electric utility industry has considerable experience with incentive mechanisms that target specific areas of performance, implementation of mechanisms that cover a comprehensive set of utility costs or services is relatively rare. In recent years, interest in PBR has increased as a result of growing dissatisfaction with COS/ROR and as a result of economic and technological trends that are leading to more competition in certain segments of the electricity industry. In addition, incentive regulation has been used with some success in other public utility industries, most notably telecommunications in the US and telecommunications, energy, and water in the United Kingdom. In this report, the authors analyze comprehensive PBR mechanisms for electric utilities in four ways: (1) they describe different types of PBR mechanisms, (2) they review a sample of actual PBR plans, (3) they consider the interaction of PBR and utility-funded energy efficiency programs, and (4) they examine how PBR interacts with electric utility resource planning and industry restructuring. The report should be of interest to technical staff of utilities and regulatory commissions that are actively considering or designing PBR mechanisms. 16 figs., 17 tabs.

  17. Fort Collins Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Fort Collins provides businesses incentives for new construction projects and existing building retrofits. The Electric Efficiency Program encourages companies to retrofit facilities with new...

  18. Energy data report: Sales, Revenue, and Income of Electric Utilities. Monthly report, October 1981

    SciTech Connect

    Woods, T.F.

    1982-01-19

    This is the last issue of Sales, Revenue, and Income of Electric Utilities. The data contained in this report are being published in Section 10 of the Electric Power Monthly.

  19. Expectations models of electric utilities' forecasts: a case study of econometric estimation with influential data points

    SciTech Connect

    Vellutini, R. de A.S.; Mount, T.D.

    1983-01-01

    This study develops an econometric model for explaining how electric utilities revise their forecasts of future electricity demand each year. The model specification is developed from the adaptive expectations hypothesis and it relates forecasted growth rates to actual lagged growth rates of electricity demand. Unlike other studies of the expectation phenomenon, expectations of future demand levels constitute an observable variable and thus can be incorporated explicitly into the model. The data used for the analysis were derived from the published forecasts of the nine National Electric Reliability Councils in the US for the years 1974 to 1980. Three alternative statistical methods are used for estimation purposes: ordinary least-squares, robust regression and a diagnostic analysis to identify influential observations. The results obtained with the first two methods are very similar, but are both inconsistent with the underlying economic logic of the model. The estimated model obtained from the diagnostics approach after deleting two aberrant observations is consistent with economic logic, and supports the hypothesis that the low growth demand experienced immediately following the oil embargo in 1973 were disregarded by the industry for forecasting purposes. The model includes transitory effects associated with the oil embargo that gradually disappear over time, the estimated coefficients for the lagged values of actual growth approach a structure with declining positive weights. The general shape of this asymptotic structure is similar to the findings in many economic applications using distributed lag models.

  20. Estimated Value of Service Reliability for Electric Utility Customers in the United States

    SciTech Connect

    Sullivan, M.J.; Mercurio, Matthew; Schellenberg, Josh

    2009-06-01

    Information on the value of reliable electricity service can be used to assess the economic efficiency of investments in generation, transmission and distribution systems, to strategically target investments to customer segments that receive the most benefit from system improvements, and to numerically quantify the risk associated with different operating, planning and investment strategies. This paper summarizes research designed to provide estimates of the value of service reliability for electricity customers in the US. These estimates were obtained by analyzing the results from 28 customer value of service reliability studies conducted by 10 major US electric utilities over the 16 year period from 1989 to 2005. Because these studies used nearly identical interruption cost estimation or willingness-to-pay/accept methods it was possible to integrate their results into a single meta-database describing the value of electric service reliability observed in all of them. Once the datasets from the various studies were combined, a two-part regression model was used to estimate customer damage functions that can be generally applied to calculate customer interruption costs per event by season, time of day, day of week, and geographical regions within the US for industrial, commercial, and residential customers. Estimated interruption costs for different types of customers and of different duration are provided. Finally, additional research and development designed to expand the usefulness of this powerful database and analysis are suggested.

  1. Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition

    SciTech Connect

    Rogers, J.; Porter, K.

    2011-03-01

    The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

  2. Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Project | Department of Energy Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project January 17, 2012 - 12:00pm Addthis Washington, DC - An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned utility in the United States under a recently signed Power Purchase Agreement, the U.S. Department of Energy (DOE) announced today. Under the

  3. Financial Statistics of Major U.S. Publicly Owned Electric Utilities

    Reports and Publications

    2001-01-01

    2000 - Final issue. Presents summary financial data for 1994 through 2000 and detailed financial data for 2000 on major publicly owned electric utilities.

  4. Moorhead Public Service Utility - Commercial and Industrial Energy...

    Energy.gov [DOE] (indexed site)

    Personal Computing Equipment Commercial Refrigeration Equipment Program Info Sector Name Utility Administrator Moorhead Public ServiceBright Energy Solutions Website http:...

  5. Manufacturers and Utilities to Accelerate Industry Uptake of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Utilities joining the program include the Bonneville Power Administration, Efficiency ... can achieve, sustain, and expand over time with an effective energy management system. ...

  6. Energy Department Develops Tool with Industry to Help Utilities...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... will receive reports with anonymous benchmarking results of all utilities participating ... The Energy Department has a long history of working closely with Federal partners, ...

  7. Earth sheltered industrial/utility park. Final report

    SciTech Connect

    Not Available

    1981-04-01

    A proposed industrial park in Cumberland, Wisconsin is discussed. Planners identified 4 land use elements for the site. A concept feasibility study for the earth-covered industrial park, an analysis of energy flows within the Cumberland community, and a resource and technology assessment of biomass feedstocks for a possible community scale bioenergy facility are discussed. (MCW)

  8. Ashland Electric Utility - Bright Way to Heat Water Rebate |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    average 800 to 1,000) Summary The City of Ashland Conservation Division offers a solar water heating program to its residential electric customers who currently use an electric...

  9. Making evolution work for us: Structural adaptation in the electric industry

    SciTech Connect

    Howe, J.

    1994-09-01

    Adoption of a thoughtful model of reform with the unbundling of generation as its keystone could make the evolutionary process work for the industry and its stakeholders alike. Integration of transition cost recovery into this approach would defuse utilities` concerns that exposure to competition could lead to financial meltdown. Evolution, biologists now theorize, takes place not in glacial, steady progression but in volatile spasms. Surely this principle of dynamis and stasis is illustrated by the sudden wave of reform activity underway in electricity markets - a startling departure after decades in which the utility industry was the very symbol of stability in American business. The change agent has been the onset of effective competition in bulk power generation, beginning with the thin wedge of the Public Utility Regulatory Policies Act. As competition in the power supply area grew, spurred by low natural gas prices and advances in the cost effectiveness of smaller generating units, Congress enacted the Energy Policy Act of 1992, embracing competition in bulk power markets as the cornerstone of federal electricity policy. Passage of EPAct alone will not, in and of itself, restructure bulk power markets, of course. Rather, it will result in the opening of transmission systems over time and the establishment of truly competitive power markets, with private initiative and actions by federal and state regulators. Even more recently, before the industry could catch its breath and accommodate to the substantial changes set in motion by EPAct, the ripening of retail wheeling proposals in California and Michigan has spurred a further quantum leap in the nature of the debate over the industry`s future.

  10. The market potential for SMES in electric utility applications. Final report

    SciTech Connect

    Not Available

    1994-06-01

    Superconducting magnetic energy storage (SMES) is an emerging technology with features that are potentially attractive in electric utility applications. This study evaluates the potential for SMES technology in the generation, transmission, distribution, and use of electric energy; the time frame of the assessment is through the year 2030. Comparisons are made with other technology options, including both commercially available and advanced systems such as various peaking generation technologies, transmission stability improvement technologies, and power quality enhancement devices. The methodology used for this study focused on the needs of the market place, the capabilities of S and the characteristics of the competing technologies. There is widespread interest within utilities for the development of SMES technology, but there is no general consensus regarding the most attractive size. Considerable uncertainty exists regarding the eventual costs and benefits of commercial SMES systems, but general trends have been developed based on current industry knowledge. Results of this analysis indicate that as storage capacity increases, cost increases at a rate faster than benefits. Transmission system applications requiring dynamic storage appear to have the most attractive economics. Customer service applications may be economic in the near term, but improved ride-through capability of end-use equipment may limit the size of this market over time. Other applications requiring greater storage capacity appear to be only marginally economic at best.

  11. Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)

    SciTech Connect

    Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

    2014-01-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  12. Rural Utilities Service Electric Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    loan guarantees finance the construction of electric distribution, transmission, and generation facilities, including system improvements and replacement required to furnish and ...

  13. Annual Public Electric Utility data - EIA-412 data file

    Annual Energy Outlook

    412 Archive Data (The EIA-412 survey has been terminated.) The EIA-412 "Annual Electric ... as income statements, balance sheets, sales and purchases, and transmission line data. ...

  14. Black Hills/Colorado Electric Utility Co. Smart Grid Project...

    OpenEI (Open Energy Information) [EERE & EIA]

    Thermostats Targeted Benefits Reduced Meter Reading Costs Improved Electric Service Reliability Reduced Ancillary Service Cost Reduced Truck Fleet Fuel Usage Reduced Greenhouse...

  15. Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants

    Reports and Publications

    2013-01-01

    The current and future projected cost and performance characteristics of new electric generating capacity are a critical input into the development of energy projections and analyses.

  16. Electric utilities monthly sales and revenue report (EIA-826), current (on magnetic tape). Data file

    SciTech Connect

    1991-12-31

    Data regarding electricity sales (megawatthours) and associated revenue (thousand dollars) are submitted to the Energy Information Administration (EIA) by selected electric utilities on the Form EIA-826, `Monthly Electric Utility Sales and Revenue Report with State Distributions.` The Form EIA-826 survey is a statistical sample drawn from the respondents to the Form EIA-861, `Annual Electric Utility Report.` The monthly survey consists of the utilities with the largest sales within each state and a stratified random sample of the remaining utilities. The Form EIA-826 is designed to facilitate the estimation of electricity sales and associated revenue at the National Census Division, and state level, by class of consumer. These estimates in turn, can be used to calculate average revenue per milowatthour and estimates of sales, revenue, and average revenue per kilowatthour coefficients of variation.

  17. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect

    Hopman, Ulrich,; Kruiswyk, Richard W.

    2005-07-05

    Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

  18. Specific systems studies of battery energy storage for electric utilities

    SciTech Connect

    Akhil, A.A.; Lachenmeyer, L.; Jabbour, S.J.; Clark, H.K.

    1993-08-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

  19. Norwich Public Utilities (Electric)- Residential Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Norwich Public Utilities (NPU) provides residential customers with rebates on the ENERGY STAR-qualified appliances and energy efficient HVAC equipment. Eligible appliance purchases include...

  20. Liberty Utilities (Electric)- Residential Energy Efficiency Rebate Programs

    Energy.gov [DOE]

    Liberty Utilities offers incentives and technical support to help customers implement energy efficiency upgrades to existing homes or build an ENERGY STAR certified home. Eligible equipment...

  1. Sustainable Energy Utility (Electric & Gas)- Business Energy Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The District of Columbia's Sustainable Energy Utility (DCSEU) administers the Business Energy Rebate Program. Rebates are available to businesses and institutions for the installation of energy...

  2. DOE New Madrid Seismic Zone Electric Utility Workshop Summary...

    Office of Environmental Management (EM)

    ... incurred as a result of avoiding the interstate weight scale stations. Public Messaging. ... For those utilities providing gas services, it is essential that the public have ...

  3. Strategies for promoting renewables in a new electric industry

    SciTech Connect

    Driver, B.

    1996-12-31

    This paper describes strategies for promoting renewable resources in an era characterized by competitive pressures in the electric industry. It begins with a background section to describe the perspective from which I am writing and the nature of the pressures confronting renewables in 1996. Then, the paper turns to a discussion of the regulatory and other options to promote renewables in this environment. The major conclusion of the paper is that there is no {open_quotes}magic bullet{close_quotes} to guide the development of renewables through the developing competitive era within the electric industry. Indeed, it appears that the job can get done only through a combination of different measures at all levels of government. The author believes that among the most effective measures are likely to be: a national renewable resources generation standard; conditions attached to restructuring events; regional interstate compacts; regional risk-sharing consortia supported by federal and state tax and fiscal policy; and state {open_quotes}systems benefits charges;{close_quotes}

  4. Decoupling Utility Profits from Sales: Issues for the Photovoltaic Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    This decoupling white paper stays neutral on the topic, instead providing an overview of the problem with revenue loss and a background on net metering and its specific impact on the problem. The paper then goes on to more specifically define and discuss decoupling and alternatives to decoupling. This is followed by a decoupling case study of a hypothetical utility.

  5. DOE Report to Congress„Energy Efficient Electric and Natural Gas Utilities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    REGIONAL POLICIES THAT PROMOTE ENERGY EFFICIENCY PROGRAMS CARRIED OUT BY ELECTRIC AND GAS UTILITIES A REPORT TO THE UNITED STATES CONGRESS PURSUANT TO SECTION 139 OF THE ENERGY POLICY ACT OF 2005 MARCH 2007 U.S. DEPARTMENT OF ENERGY Sec. 139. Energy Efficient Electric and Natural Gas Utilities Study. a) IN GENERAL.-Not later than 1 year after the date of enactment of this Act, the Secretary, in consultation with the National Association of Regulatory Utility Commis- sioners and the National

  6. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect

    Gerke, Frank G.

    2001-08-05

    This cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar, Inc. is aimed at demonstrating electric turbocompound technology on a Class 8 truck engine. This is a lab demonstration program, with no provision for on-truck testing of the system. The goal is to demonstrate the level of fuel efficiency improvement attainable with the electric turbocompound system. Also, electric turbocompounding adds an additional level of control to the air supply which could be a component in an emissions control strategy.

  7. Treatment of Solar Generation in Electric Utility Resource Planning

    SciTech Connect

    Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

    2013-10-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  8. Optimizing electric utility air toxics compliance with other titles of the Clean Air Act

    SciTech Connect

    Loeb, A.P.; South, D.W.

    1993-12-31

    This paper provides an overview of regulatory issues under Title III of the Clean Air Act Amendments that could affect electric utilities. Title III contains provisions relating to hazardous air pollutants (HAPs) and provides special treatment for electric utilities. Generally, this discussion documents that if utility toxic emissions are regulated, one of the chief difficulties confronting utilities will be the lack of coordination between Title III and other titles of the Act. The paper concludes that if the US Environmental Protection Agency (EPA) determines that regulation of utility HAPs is warranted under Title III, savings can be realized from flexible compliance treatment.

  9. Do You Buy Clean Electricity From Your Utility?

    Energy.gov [DOE]

    If you can't set up a small renewable energy system of your own, buying clean electricity is a great way to support the use of renewable energy.

  10. DOE National Power Grid recommendations: unreliable guides for the future organization of the bulk electric-power industry

    SciTech Connect

    Miller, J.T. Jr.

    1980-01-01

    The bulk electric power supply industry needs leadership to meet its problems effectively, economically, and with the least injury to the environment during the rest of the century. The industry's pluralistic character, which is one of its strengths, and the range of the federal antitrust laws have blunted industry response to the challenge of supplying adequate bulk power. DOE failed to recognize the leadership vacuum and to use the opportunity provided by its Final Report on the National Power Grid Study to adopt a more effective role. DOE can still recover and urge Congress to pass the necessary enabling legislation to establish a regional bulk power supply corporation that would generate and transmit electric power for sale to federally chartered, privately owned electric utilities having no corporate links to their wholesale customers. 87 references.

  11. Assessing the Economic Value of New Utility - Scale Electricity Generation Projects

    Gasoline and Diesel Fuel Update

    Workshop Discussion Paper: LCOE and LACE 1 July 2013 Assessing the Economic Value of New Utility-Scale Electricity Generation Projects Introduction and motivation Electricity producers, consumers, and policymakers all desire measures that can provide insight into the economic attractiveness of deploying alternate electricity generation technologies. Levelized cost of electricity (LCOE), one commonly cited cost measure, reflects both the capital and operating costs of deploying and running new

  12. Liberty Utilities (Electric)- Commercial Energy Efficiency Loan Program

    Energy.gov [DOE]

    Liberty Utilities offers qualified commercial customers zero interest financing for energy efficiency improvements. Customers may borrow up to $50,000 per project and up to $150,000 per year. Loans...

  13. Manufacturers and Utilities to Accelerate Industry Uptake of Superior Energy Performance

    Energy.gov [DOE]

    At a White House meeting of the Better Buildings Initiative on December 3rd, six manufacturers and three utilities officially joined the Department of Energy’s Better Buildings Industrial Superior Energy Performance (SEP) Accelerator Program.

  14. An Examination of Temporal Trends in Electricity Reliability Based on Reports from U.S. Electric Utilities

    SciTech Connect

    Eto, Joseph H.; LaCommare, Kristina Hamachi; Larsen, Peter; Todd, Annika; Fisher, Emily

    2012-01-06

    Since the 1960s, the U.S. electric power system has experienced a major blackout about once every 10 years. Each has been a vivid reminder of the importance society places on the continuous availability of electricity and has led to calls for changes to enhance reliability. At the root of these calls are judgments about what reliability is worth and how much should be paid to ensure it. In principle, comprehensive information on the actual reliability of the electric power system and on how proposed changes would affect reliability ought to help inform these judgments. Yet, comprehensive, national-scale information on the reliability of the U.S. electric power system is lacking. This report helps to address this information gap by assessing trends in U.S. electricity reliability based on information reported by electric utilities on power interruptions experienced by their customers. Our research augments prior investigations, which focused only on power interruptions originating in the bulk power system, by considering interruptions originating both from the bulk power system and from within local distribution systems. Our research also accounts for differences among utility reliability reporting practices by employing statistical techniques that remove the influence of these differences on the trends that we identify. The research analyzes up to 10 years of electricity reliability information collected from 155 U.S. electric utilities, which together account for roughly 50% of total U.S. electricity sales. The questions analyzed include: 1. Are there trends in reported electricity reliability over time? 2. How are trends in reported electricity reliability affected by the installation or upgrade of an automated outage management system? 3. How are trends in reported electricity reliability affected by the use of IEEE Standard 1366-2003?

  15. Hot dry rock geothermal energy for U.S. electric utilities. Draft final report

    SciTech Connect

    Not Available

    1993-06-01

    In order to bring an electric utility component into the study of hot dry rock geothermal energy called for in the Energy Policy Act of 1992 (EPAct), EPRI organized a one-day conference in Philadelphia on January 14,1993. The conference was planned as the first day of a two-day sequence, by coordinating with the U.S. Geological Survey (USGS) and the U.S. Department of Energy (DOE). These two federal agencies were charged under EPAct with the development of a report on the potential for hot dry rock geothermal energy production in the US, especially the eastern US. The USGS was given lead responsibility for a report to be done in association with DOE. The EPRI conference emphasized first the status of technology development and testing in the U.S. and abroad, i.e., in western Europe, Russia and Japan. The conference went on to address the extent of knowledge regarding the resource base in the US, especially in the eastern half of the country, and then to address some practical business aspects of organizing projects or industries that could bring these resources into use, either for thermal applications or for electric power generation.

  16. Ozone nonattainment: Implications for NO[sub x] and VOC compliance by the electric power industry

    SciTech Connect

    Fernau, M.E.; South, D.W.; Guziel, K.A.

    1993-01-01

    Title I of the Clean Air Act Amendments of 1990 requires that regions not in ozone attainment and designated as severe'' take actions to achievement by 2007. In a several-phase study for the US Department of Energy, ANL is investigating the impact and implications of the Title I requirements in the Chicago Metropolitan Area. As part of tie study we examined the potential additional compliance requirements that might be imposed on the electric power industry, after satisfying O[sub 2]and NO[sub x] requirements specified in Title IV, to achieve attainment in Chicago. Alternative scenarios were examined to show the incremental emission reductions and air quality effects of each action. The Urban Airshed Model (UAM) selected by the US Environmental Protection Agency (EPA) for ozone compliance modeling, was used to assess the effects on air quality. Preliminary results show that, for the episode modeled, compliance with Title TV regulations for utility NO[sub x] emissions did not have much effect on air quality. Consequently, if utilities are the targeted emissions source, it is possible that additional regulations beyond Title IV may be imposed. However, complete removal of utility emissions did not lead to attainment and only improved air quality by 20--25% of the improvement from removing all emissions, pointing out the importance of non-utility sources to the ozone problem in the region. Non-utility sources will be investigated further in another phase of this work.

  17. Ozone nonattainment: Implications for NO{sub x} and VOC compliance by the electric power industry

    SciTech Connect

    Fernau, M.E.; South, D.W.; Guziel, K.A.

    1993-03-01

    Title I of the Clean Air Act Amendments of 1990 requires that regions not in ozone attainment and designated as ``severe`` take actions to achievement by 2007. In a several-phase study for the US Department of Energy, ANL is investigating the impact and implications of the Title I requirements in the Chicago Metropolitan Area. As part of tie study we examined the potential additional compliance requirements that might be imposed on the electric power industry, after satisfying O{sub 2}and NO{sub x} requirements specified in Title IV, to achieve attainment in Chicago. Alternative scenarios were examined to show the incremental emission reductions and air quality effects of each action. The Urban Airshed Model (UAM) selected by the US Environmental Protection Agency (EPA) for ozone compliance modeling, was used to assess the effects on air quality. Preliminary results show that, for the episode modeled, compliance with Title TV regulations for utility NO{sub x} emissions did not have much effect on air quality. Consequently, if utilities are the targeted emissions source, it is possible that additional regulations beyond Title IV may be imposed. However, complete removal of utility emissions did not lead to attainment and only improved air quality by 20--25% of the improvement from removing all emissions, pointing out the importance of non-utility sources to the ozone problem in the region. Non-utility sources will be investigated further in another phase of this work.

  18. Electric and gas utility marketing of residential energy conservation case studies

    SciTech Connect

    1980-05-01

    The objective of this research was to obtain information about utility conservation marketing techniques from companies actively engaged in performing residential conservation services. Many utilities currently are offering comprehensive services (audits, listing of contractors and lenders, post-installation inspection, advertising, and performing consumer research). Activities are reported for the following utilities: Niagara Mohawk Power Corporation; Tampa Electric Company; Memphis Light, Gas, and Water Division; Northern States Power-Wisconsin; Public Service Company of Colorado; Arizona Public Service Company; Pacific Gas and Electric Company; Sacramento Municipal Utility District; and Pacific Power and Light Company.

  19. Integrating renewable energy technologies in the electric supply industry: A risk management approach

    SciTech Connect

    Hoff, T.E.

    1997-07-01

    Regulatory and technical forces are causing electric utilities to move from a natural monopoly to a more competitive environment. Associated with this movement is an increasing concern about how to manage the risks associated with the electric supply business. One approach to managing risks is to purchase financial instruments such as options and futures contracts. Another approach is to own physical assets that have low risk attributes or characteristics. This research evaluates how investments in renewable energy technologies can mitigate risks in the electric supply industry. It identifies risks that are known to be of concern to utilities and other power producers. These risks include uncertainty in fuel prices, demand, environmental regulations, capital cost, supply, and market structure. The research then determines how investments in renewables can mitigate these risks. Methods are developed to calculate the value of renewables in terms of their attributes of fuel costs, environmental costs, lead-time, modularity, availability, initial capital costs, and investment reversibility. Examples illustrate how to apply the methods.

  20. Electric industry restructuring, ancillary services, and the potential impact on wind

    SciTech Connect

    Kirby, B.; Hirst, E.; Parsons, B.; Porter, K.

    1997-12-31

    The new competitive electric power environment raises increased challenges for wind power. The DOE and EPRI wind programs have dealt extensively with the traditional vertically integrated utility planning and operating environment in which the host utility owns the generation (or purchases the power) and provides dispatch and transmission services. Under this traditional environment, 1794 MW of wind power, principally in California, have been successfully integrated into the U.S. electric power system. Another 4200 MW are installed elsewhere in the world. As issues have arisen, such as intermittency and voltage regulation, they have been successfully addressed with accepted power system procedures and practices. For an intermittent, non-dispatchable resource such as wind, new regulatory rules affecting power transmission services, raise questions about which ancillary services wind plants will be able to sell, which they will be required to purchase, and what the economic impacts will be on individual wind projects. This paper begins to look at issues of concern to wind in a restructured electric industry. The paper first briefly looks at the range of unbundled services and comments on their unique significance to wind. To illustrate the concerns that arise with restructuring, the paper then takes a more detailed look at a single service: regulation. Finally, the paper takes a brief look at technologies and strategies that could improve the competitive position of wind.

  1. City of Statesville Electric Utility Department- Residential Energy Efficiency Rebate Program

    Energy.gov [DOE]

    The City of Statesville Electric Utility Department offers rebates to its residential customers for installing new, energy efficient water heaters and heat pumps. To qualify for the heat pump...

  2. Electric utilities monthly sales and revenue report (EIA-826), current (for microcomputers). Data file

    SciTech Connect

    1992-08-01

    Data regarding electricity sales (megawatthours) and associated revenue (thousand dollars) are submitted to the Energy Information Administration (EIA) by selected electric utilities on the Form EIA-826, `Monthly Electric Utility Sales and Revenue Report with State Distributions.` The monthly survey consists of the utilities with the largest sales within each state and a stratified random sample of the remaining utilities. The Form EIA-826 is designed to facilitate the estimation of electricity sales and associated revenue at the National Census Division, and state level, by class of consumer. These estimates in turn, can be used to calculate average revenue per milowatthour and estimates of sales, revenue, and average revenue per kilowatthour coefficients of variation.

  3. User's guide to SERICPAC: A computer program for calculating electric-utility avoided costs rates

    SciTech Connect

    Wirtshafter, R.; Abrash, M.; Koved, M.; Feldman, S.

    1982-05-01

    SERICPAC is a computer program developed to calculate average avoided cost rates for decentralized power producers and cogenerators that sell electricity to electric utilities. SERICPAC works in tandem with SERICOST, a program to calculate avoided costs, and determines the appropriate rates for buying and selling of electricity from electric utilities to qualifying facilities (QF) as stipulated under Section 210 of PURA. SERICPAC contains simulation models for eight technologies including wind, hydro, biogas, and cogeneration. The simulations are converted in a diversified utility production which can be either gross production or net production, which accounts for an internal electricity usage by the QF. The program allows for adjustments to the production to be made for scheduled and forced outages. The final output of the model is a technology-specific average annual rate. The report contains a description of the technologies and the simulations as well as complete user's guide to SERICPAC.

  4. Cost and Quality of Fuels for Electric Utility Plants 1997

    Gasoline and Diesel Fuel Update

    7 Tables May 1998 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration/Cost

  5. Electric Utility Phase I Acid Rain Compliance Strategies for the Clean Air Act Amendments of 1990

    Reports and Publications

    1994-01-01

    The Acid Rain Program is divided into two time periods; Phase I, from 1995 through 1999, and Phase II, starting in 2000. Phase I mostly affects power plants that are the largest sources of SO2 and NOx . Phase II affects virtually all electric power producers, including utilities and nonutilities. This report is a study of the effects of compliance with Phase I regulations on the costs and operations of electric utilities, but does not address any Phase II impacts.

  6. A Quantitative Assessment of Utility Reporting Practices for Reporting Electric Power Distribution Events

    SciTech Connect

    Hamachi La Commare, Kristina

    2011-11-11

    Metrics for reliability, such as the frequency and duration of power interruptions, have been reported by electric utilities for many years. This study examines current utility practices for collecting and reporting electricity reliability information and discusses challenges that arise in assessing reliability because of differences among these practices. The study is based on reliability information for year 2006 reported by 123 utilities in 37 states representing over 60percent of total U.S. electricity sales. We quantify the effects that inconsistencies among current utility reporting practices have on comparisons of System Average Interruption Duration Index (SAIDI) and System Average Interruption Frequency Index (SAIFI) reported by utilities. We recommend immediate adoption of IEEE Std. 1366-2003 as a consistent method for measuring and reporting reliability statistics.

  7. $18.8 Million Award for Power Systems Engineering Research Center Continues Collaboration of 13 Universities and 35 Utilities for Electric Power Research, Building the Nation's Energy Workforce

    Energy.gov [DOE]

    The Department of Energy awarded a cooperative agreement on January 16, 2009, to the Arizona State University (ASU) Board of Regents to operate the Power Systems Engineering Research Center (PSERC). PSERC is a collaboration of 13 universities with 35 electricity industry member organizations including utilities, transmission companies, vendors and research organizations.

  8. Statistical recoupling: A new way to break the link between electric-utility sales and revenues

    SciTech Connect

    Hirst, E.

    1993-09-01

    In 1991, US electric utilities spent almost $1.8 billion on demand-side management (DSM) programs. These programs cut peak demands 5% and reduced electricity sales 1% that year. Utility projections suggest that these reductions will increase to 9% and 3%, respectively, by the year 2001. However, utility DSM efforts vary enormously across the country, concentrated in a few states along the east and west coasts and the upper midwest. To some extent, this concentration is a function of regulatory reforms that remove disincentives to utility shareholders for investments in DSM programs. A key component of these reforms is recovery of the net lost revenues caused by utility DSM programs. These lost revenues occur between rate cases when a utility encourages its customers to improve energy efficiency and cut demand. The reduction in sales means that the utility has less revenue to cover its fixed costs. This report describes a new method, statistical recoupling (SR), that addresses this net-lost-revenue problem. Like other decoupling approaches, SR breaks the link between electric-utility revenues and sales. Unlike other approaches, SR minimizes changes from traditional regulation. In particular, the risks of revenue swings associated with year-to-year changes in weather and the economy remain with the utility under SR. Statistical recoupling uses statistical models, based on historical data, that explain retail electricity sales as functions of the number of utility customers, winter and summer weather, the condition of the local economy, electricity price, and perhaps a few other key variables. These models, along with the actual values of the explanatory variables, are then used to estimate ``allowed`` electricity sales and revenues in future years.

  9. Electric-utility DSM programs: 1990 data and forecasts to 2000

    SciTech Connect

    Hirst, E.

    1992-06-01

    In April 1992, the Energy Information Administration (EIA) released data on 1989 and 1990 electric-utility demand-site management (DMS) programs. These data represent a census of US utility DSM programs, with reports of utility expenditures, energy savings, and load reductions caused by these programs. In addition, EIA published utility estimates of the costs and effects of these programs from 1991 to 2000. These data provide the first comprehensive picture of what utilities are spending and accomplishing by utility, state, and region. This report presents, summarizes, and interprets the 1990 data and the utility forecasts of their DSM-program expenditures and impacts to the year 2000. Only utilities with annual sales greater than 120 GWh were required to report data on their DSM programs to EIA. Of the 1194 such utilities, 363 reported having a DSM program that year. These 363 electric utilities spent $1.2 billion on their DSM programs in 1990, up from $0.9 billion in 1989. Estimates of energy savings (17,100 GWh in 1990 and 14,800 GWh in 1989) and potential reductions in peak demand (24,400 MW in 1990 and about 19,400 MW in 1989) also showed substantial increases. Overall, utility DSM expenditures accounted for 0.7% of total US electric revenues, while the reductions in energy and demand accounted for 0.6% and 4.9% of their respective 1990 national totals. The investor-owned utilities accounted for 70 to 90% of the totals for DSM costs, energy savings, and demand reductions. The public utilities reported larger percentage reductions in peak demand and energy smaller percentage DSM expenditures. These averages hide tremendous variations across utilities. Utility forecasts of DSM expenditures and effects show substantial growth in both absolute and relative terms.

  10. "Annual Electric Power Industry Report (EIA-861 data file)

    Energy Information Administration (EIA) (indexed site)

    Electric Sales, Revenue, and Average Price CorrectionUpdate Annual data revisions: ... due to enhancements to the SEDAPs imputation system. Contact: Electricity data experts

  11. Power electronics in electric utilities: HVDC power transmission systems

    SciTech Connect

    Nozari, F.; Patel, H.S.

    1988-04-01

    High Voltage Direct Current (HVDC) power transmission systems constitute an important application of power electronics technology. This paper reviews salient aspects of this growing industry. The paper summarizes the history of HVDC transmission and discusses the economic and technical reasons responsible for development of HVDC systems. The paper also describes terminal design and basic configurations of HVDC systems, as well as major equipments of HVDC transmission system. In this regard, the state-of-the-art technology in the equipments constructions are discussed. Finally, the paper reviews future developments in the HVDC transmission systems, including promising technologies, such as multiterminal configurations, Gate Turn-Off (GTO) devices, forced commutation converters, and new advances in control electronics.

  12. Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy Act of 2005 (EPACT 2005) –List of Covered Electric Utilities- 2006

    Energy.gov [DOE]

    Under Title I of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility that Title I applies...

  13. Electric industry restructuring and environmental issues: A comparative analysis of the experience in California, New York, and Wisconsin

    SciTech Connect

    Fang, J.M.; Galen, P.S.

    1996-08-01

    Since the California Public Utilities Commission (CPUC) issued its April 20, 1994, Blue Book proposal to restructure the regulation of electric utilities in California to allow more competition, over 40 states have initiated similar activities. The question of how major public policy objectives such as environmental protection, energy efficiency, renewable energy, and assistance to low-income customers can be sustained in the new competitive environment is also an important element being considered. Because many other states will undergo restructuring in the future, the experience of the {open_quotes}early adopter{close_quotes} states in addressing public policy objectives in their electric service industry restructuring processes can provide useful information to other states. The Competitive Resource Strategies Program of the U.S. Department of Energy`s (DOE`s) Office of Utility Technologies, is interested in documenting and disseminating the experience of the pioneering states. The Center for Energy Analysis and Applications of the National Renewable Energy Laboratory assisted the Office of Utility Technologies in this effort with a project on the treatment of environmental issues in electric industry restructuring.

  14. Dakota Electric Association- Commercial and Industrial Custom Energy Grant Program

    Energy.gov [DOE]

    Dakota Electric will conduct an inspection of the project site prior to approval, and grant applications must earn pre-approval from Dakota Electric before any work begins. To qualify for rebates...

  15. Salem Electric- Residential, Commercial, and Industrial Efficiency Rebate Program

    Energy.gov [DOE]

    Salem Electric provides incentives for members to increase the energy efficiency of eligible homes and facilities. Available rebates include:

  16. National Grid (Electric) Commercial and Industrial Rebate Program

    Energy.gov [DOE]

    National Grid offers various rebate programs for industrial and commercial customers to install energy efficiency measures. 

  17. The Council of Industrial Boiler Owners special project on non-utility fossil fuel ash classification

    SciTech Connect

    Svendsen, R.L.

    1996-12-31

    Information is outlined on the Council of Industrial Boiler Owners (CIBO) special project on non-utility fossil fuel ash classification. Data are presented on; current (1996) regulatory status of fossil-fuel combustion wastes; FBC technology identified for further study; CIBO special project methods; Bevill amendment study factors; data collection; and CIBO special project status.

  18. Cost and Quality of Fuels for Electric Utility Plants 2000 Tables

    Gasoline and Diesel Fuel Update

    0) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2000 Tables August 2001 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position

  19. Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual

    SciTech Connect

    Not Available

    1981-06-25

    In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

  20. Table A31. Quantity of Electricity Sold to Utility and Nonutility Purchasers

    Energy Information Administration (EIA) (indexed site)

    Quantity of Electricity Sold to Utility and Nonutility Purchasers by Census Region," " Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Million Kilowatthours)" ,,,,"RSE" " "," ","Utility ","Nonutility","Row" "Economic Characteristics(a)","Total Sold","Purchaser(b)","Purchaser(c)","Factors" ,"Total United

  1. Assessment of potential and existing problems concerning interface between electric utilities and cogenerators

    SciTech Connect

    Not Available

    1980-03-01

    The potential and existing problems concerning the interface between US electric utilities and cogenerators are considered by region. Also considered are regulatory barriers, rates and contracts, economic feasibility, and impact on system planning. Finally, the impact of the National Energy Act on the marketability potential of cogeneration is reviewed. The three appendixes summarize the utility meetings on cogeneration held in Washington, DC, Los Angeles, and Chicago.

  2. DTE Energy (Electric)- Commercial and Industrial Energy Efficiency Program

    Energy.gov [DOE]

    The Energy Efficiency Program for Business offers prescriptive incentives for both electric and natural gas energy efficient improvements in areas of lighting, HVAC, processes, compressed air,...

  3. "Annual Electric Power Industry Report (EIA-861 data file)

    Energy Information Administration (EIA) (indexed site)

    FILES FORM EIA-861 DETAILED DATA Revisions Corrections for electric power sales, revenue, and energy efficiency Form EIA-861 detailed data files Annual 2013 data revisions: ...

  4. Renewable Electricity Use by the U.S. Information and Communication Technology (ICT) Industry

    SciTech Connect

    Miller, John; Bird, Lori; Heeter, Jenny; Gorham, Bethany

    2015-07-20

    The information and communication technology (ICT) sector continues to witness rapid growth and uptake of ICT equipment and services at both the national and global levels. The electricity consumption associated with this expansion is substantial, although recent adoptions of cloudcomputing services, co-location data centers, and other less energy-intensive equipment and operations have likely reduced the rate of growth in this sector. This paper is intended to aggregate existing ICT industry data and research to provide an initial look at electricity use, current and future renewable electricity acquisition, as well as serve as a benchmark for future growth and trends in ICT industry renewable electricity consumption.

  5. A Primer on Electric Utilities, Deregulation, and Restructuring of U.S. Electricity Markets

    SciTech Connect

    Warwick, William M.

    2002-06-03

    This primer is offered as an introduction to utility restructuring to better prepare readers for ongoing changes in public utilities and associated energy markets. It is written for use by individuals with responsibility for the management of facilities that use energy, including energy managers, procurement staff, and managers with responsibility for facility operations and budgets. The primer was prepared by the Pacific Northwest National Laboratory under sponsorship from the U.S. Department of Energy?s Federal Energy Management Program. The impetus for this primer originally came from the Government Services Administration who supported its initial development.

  6. A Framework for Organizing Current and Future Electric Utility Regulatory and Business Models

    SciTech Connect

    Satchwell, Andrew; Cappers, Peter; Schwartz, Lisa C.; Fadrhonc, Emily Martin

    2015-06-01

    Many regulators, utilities, customer groups, and other stakeholders are reevaluating existing regulatory models and the roles and financial implications for electric utilities in the context of today’s environment of increasing distributed energy resource (DER) penetrations, forecasts of significant T&D investment, and relatively flat or negative utility sales growth. When this is coupled with predictions about fewer grid-connected customers (i.e., customer defection), there is growing concern about the potential for serious negative impacts on the regulated utility business model. Among states engaged in these issues, the range of topics under consideration is broad. Most of these states are considering whether approaches that have been applied historically to mitigate the impacts of previous “disruptions” to the regulated utility business model (e.g., energy efficiency) as well as to align utility financial interests with increased adoption of such “disruptive technologies” (e.g., shareholder incentive mechanisms, lost revenue mechanisms) are appropriate and effective in the present context. A handful of states are presently considering more fundamental changes to regulatory models and the role of regulated utilities in the ownership, management, and operation of electric delivery systems (e.g., New York “Reforming the Energy Vision” proceeding).

  7. Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review

    SciTech Connect

    Lesh, Pamela G.

    2009-10-15

    Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

  8. Tribal Authority Process Case Studies: The Conversion of On-Reservation Electric Utilities to Tribal Ownership and Operation

    Energy.gov [DOE]

    Three case studies documenting the processes followed by Indian tribes when they took over ownership and operation of their electric utilities.

  9. The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments

    SciTech Connect

    Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C.

    1994-06-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

  10. Cheyenne Light, Fuel and Power (Electric)- Commercial and Industrial Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cheyenne Light, Fuel and Power offers incentives to commercial and industrial electric customers who wish to install energy efficient equipment and measures in eligible facilities. Incentives are...

  11. Changing Structure of the Electric Power Industry 2000: An Update, The

    Reports and Publications

    2000-01-01

    Provides a comprehensive overview of the structure of the U.S. electric power industry over the past 10 years, with emphasis on the major changes that have occurred, their causes, and their effects.

  12. Dakota Electric Association- Commercial and Industrial Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Rebates are limited to 50% of the project cost up to a maximum of $100,000. Customers who wish to participate in this rebate program should call Dakota Electric Association before the new equipme...

  13. RG&E (Electric)- Commercial and Industrial Efficiency Program

    Energy.gov [DOE]

    NYSEG and RG&E offer rebates to non-residential customers installing energy efficient equipment that have an electricity Systems Benefits Charge (SBC) included in their energy bills. Both...

  14. Managing steam: An engineering guide to industrial, commercial, and utility systems

    SciTech Connect

    Makansi, J.

    1985-01-01

    This book is a guide to steam production, utilization, handling, transport, system optimization, and condensation and recovery. This book incudes a description of how steam, condensate, and hot water are used in various industrial, commercial, institutional, and utility sectors and explains how steam is generated and distributed. Waste-heat recovery, fluidized-bed boilers, and cogeneration systems and boiler control theory are discussed. The book also describes different types of valves, valve components, regulators, steam traps, and metering devices available for managing steam and condensate and discusses maintaining steam systems for optimum service and longer life.

  15. Duke Energy (Electric)- Commercial/Industrial Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Duke Energy’s Smart $aver Incentive program offers rebates to non-residential customers to install energy efficient equipment in commercial/industrial facilities. All Duke Energy Ohio...

  16. Comparative analysis of electric and gas industries regulatory initiatives on Integrated Resource Planning (IRP). Topical report, July 1992-November 1993

    SciTech Connect

    Stapor, M.C.; Hederman, W.F.

    1993-11-01

    The report focuses on the parallels and contrasts between gas and electric utilities that have implications for applying analogies from electric utility integrated resource planning (IRP)/demand-side management (DSM) to gas utilities. In addition, the report provides an overview of IRP and DSM trends as applied to gas utilities. Understanding the similarities and differences between the gas and electric utilities is an important step toward adopting appropriate regulatory policies for gas IRP/DSM.

  17. Hydro and geothermal electricity as an alternative for industrial petroleum consumption in Costa Rica

    SciTech Connect

    Mendis, M.; Park, W.; Sabadell, A.; Talib, A.

    1982-04-01

    This report assesses the potential for substitution of electricity for petroleum in the industrial/agro-industrial sector of Costa Rica. The study includes a preliminary estimate of the process energy needs in this sector, a survey of the principal petroleum consuming industries in Costa Rica, an assessment of the electrical technologies appropriate for substitution, and an analysis of the cost trade offs of alternative fuels and technologies. The report summarizes the total substitution potential both by technical feasibility and by cost effectiveness under varying fuel price scenarios and identifies major institutional constraints to the introduction of electric based technologies. Recommendations to the Government of Costa Rica are presented. The key to the success of a Costa Rican program for substitution of electricity for petroleum in industry rests in energy pricing policy. The report shows that if Costa Rica Bunker C prices are increased to compare equitably with Caribbean Bunker C prices, and increase at 3 percent per annum relative to a special industrial electricity rate structure, the entire substitution program, including both industrial and national electric investment, would be cost effective. The definition of these pricing structures and their potential impacts need to be assessed in depth.

  18. Drug and alcohol abuse: the bases for employee assistance programs in the nuclear-utility industry

    SciTech Connect

    Radford, L.R.; Rankin, W.L.; Barnes, V.; McGuire, M.V.; Hope, A.M.

    1983-07-01

    This report describes the nature, prevalence, and trends of drug and alcohol abuse among members of the US adult population and among personnel in non-nuclear industries. Analogous data specific to the nuclear utility industry are not available, so these data were gathered in order to provide a basis for regulatory planning. The nature, prevalence, and trend inforamtion was gathered using a computerized literature, telephone discussions with experts, and interviews with employee assistance program representatives from the Seattle area. This report also evaluates the possible impacts that drugs and alcohol might have on nuclear-related job performance, based on currently available nuclear utility job descriptions and on the scientific literature regarding the impairing effects of drugs and alcohol on human performance. Employee assistance programs, which can be used to minimize or eliminate job performance decrements resulting from drug or alcohol abuse, are also discussed.

  19. UTILITY CHARACTERISTICS",,,,,,"RESIDENTIAL",,,"COMMERCIAL",,,"INDUSTRIAL",,,"TRA

    Energy Information Administration (EIA) (indexed site)

    "RESIDENTIAL",,,"COMMERCIAL",,,"INDUSTRIAL",,,"TRANSPORTATION",,,"TOTAL" ,,,,,,"Revenue","Sales","Customers","Revenue","Sales","Customers","Revenue","Sales","Customers","Revenue","Sales","Customers","Revenue","Sales","Customers" "Year","Month","Utility

  20. Praise and suggestions for fusion research from a utility industry think

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    tank | Princeton Plasma Physics Lab Praise and suggestions for fusion research from a utility industry think tank By John Greenwald November 21, 2012 Tweet Widget Google Plus One Share on Facebook Interior of the National Spherical Torus Experiment at PPPL. (Photo by Elle Starkman, Office of Communications, PPPL) Interior of the National Spherical Torus Experiment at PPPL. Research to develop fusion energy has shown "significant progress" in many areas, according to a new report

  1. Table 5. Electric power industry generation by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Arizona" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  2. Table 5. Electric power industry generation by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    California" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  3. Table 5. Electric power industry generation by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Connecticut" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  4. Table 5. Electric power industry generation by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Rhode Island" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  5. Table 5. Electric power industry generation by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Arkansas" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  6. Development and utilization of new and renewable energy with Stirling engine system for electricity in China

    SciTech Connect

    Dong, W.; Abenavoli, R.I.; Carlini, M.

    1996-12-31

    China is the largest developing country in the world. Self-supporting and self-sustaining energy supply is the only solution for development. Recently, fast economic development exposed gradually increasing pressure of energy demand and environment concern. In order to increase the production of electricity of China, the Stirling engine system should be developed. This paper provides an investigation of energy production and consumption in China. The main features of the energy consumption and the development objectives of China`s electric power industry are also described. The necessity and possibility of development of Stirling engine system is discussed.

  7. Electricity from coal and utilization of coal combustion by-products

    SciTech Connect

    Demirbas, A.

    2008-07-01

    Most electricity in the world is conventionally generated using coal, oil, natural gas, nuclear energy, or hydropower. Due to environmental concerns, there is a growing interest in alternative energy sources for heat and electricity production. The major by-products obtained from coal combustion are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) materials. The solid wastes produced in coal-fired power plants create problems for both power-generating industries and environmentalists. The coal fly ash and bottom ash samples may be used as cementitious materials.

  8. Prospects for the medium- and long-term development of China`s electric power industry and analysis of the potential market for superconductivity technology

    SciTech Connect

    Li, Z.

    1998-05-01

    First of all, overall economic growth objectives in China are concisely and succinctly specified in this report. Secondly, this report presents a forecast of energy supply and demand for China`s economic growth for 2000--2050. In comparison with the capability of energy construction in China in the future, a gap between supply and demand is one of the important factors hindering the sustainable development of Chain`s economy. The electric power industry is one of China`s most important industries. To adopt energy efficiency through high technology and utilizing energy adequately is an important technological policy for the development of China`s electric power industry in the future. After briefly describing the achievements of China`s electric power industry, this report defines the target areas and policies for the development of hydroelectricity and nuclear electricity in the 2000s in China, presents the strategic position of China`s electric power industry as well as objectives and relevant plans of development for 2000--2050. This report finds that with the discovery of superconducting electricity, the discovery of new high-temperature superconducting (HTS) materials, and progress in materials techniques, the 21st century will be an era of superconductivity. Applications of superconductivity in the energy field, such as superconducting storage, superconducting transmission, superconducting transformers, superconducting motors, its application in Magneto-Hydro-Dynamics (MHD), as well as in nuclear fusion, has unique advantages. Its market prospects are quite promising. 12 figs.

  9. A case study review of technical and technology issues for transition of a utility load management program to provide system reliability resources in restructured electricity markets

    SciTech Connect

    Weller, G.H.

    2001-07-15

    Utility load management programs--including direct load control and interruptible load programs--were employed by utilities in the past as system reliability resources. With electricity industry restructuring, the context for these programs has changed; the market that was once controlled by vertically integrated utilities has become competitive, raising the question: can existing load management programs be modified so that they can effectively participate in competitive energy markets? In the short run, modified and/or improved operation of load management programs may be the most effective form of demand-side response available to the electricity system today. However, in light of recent technological advances in metering, communication, and load control, utility load management programs must be carefully reviewed in order to determine appropriate investments to support this transition. This report investigates the feasibility of and options for modifying an existing utility load management system so that it might provide reliability services (i.e. ancillary services) in the competitive markets that have resulted from electricity industry restructuring. The report is a case study of Southern California Edison's (SCE) load management programs. SCE was chosen because it operates one of the largest load management programs in the country and it operates them within a competitive wholesale electricity market. The report describes a wide range of existing and soon-to-be-available communication, control, and metering technologies that could be used to facilitate the evolution of SCE's load management programs and systems to provision of reliability services. The fundamental finding of this report is that, with modifications, SCE's load management infrastructure could be transitioned to provide critical ancillary services in competitive electricity markets, employing currently or soon-to-be available load control technologies.

  10. Performance Issues for a Changing Electric Power Industry

    Reports and Publications

    1995-01-01

    Provides an overview of some of the factors affecting reliability within the electric bulk power system. Historical and projected data related to reliability issues are discussed on a national and regional basis. Current research on economic considerations associated with reliability levels is also reviewed.

  11. Low-income energy policy in a restructuring electricity industry: an assessment of federal options

    SciTech Connect

    Baxter, L.W.

    1997-07-01

    This report identifies both the low-income energy services historically provided in the electricity industry and those services that may be affected by industry restructuring. It identifies policies that are being proposed or could be developed to address low- income electricity services in a restructured industry. It discusses potential federal policy options and identifies key policy and implementation issues that arise when considering these potential federal initiatives. To understand recent policy development at the state level, we reviewed restructuring proposals from eight states and the accompanying testimony and comments filed in restructuring proceedings in these states.

  12. United States Industrial Electric Motor Systems Market Opportunities Assessment - Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ENERGY EFFICIENCY AND RENEWABLE ENERGY U.S. DEPARTMENT OF ENERGY T O F E N E R G Y D E P A R T M E N U E N I T E D S T A T S O F A E R I C A M OFFICE OF INDUSTRIAL TECHNOLOGIES United States Industrial Electric Motor Systems Market Opportunities Assessment Executive Summary United States Industrial Electric Motor Systems Market Opportunities Assessment Executive Summary TABLE OF CONTENTS PROJECT OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . 1 OVERVIEW OF FINDINGS . . . . . . . .

  13. Electric utilities monthly sales and revenue report with state distributions, 1991-1992 (EIA-826H). Data file

    SciTech Connect

    1992-12-31

    Data regarding electricity sales (megawatthours) and associated revenue (thousand dollars) are submitted to the Energy Information Administration (EIA) by selected electric utilities on the Form EIA-826, Monthly Electric Utility Sales and Revenue Report with State Distributions. The Form EIA-826 survey is a statistical sample drawn from the respondents to the Form EIA-861, Annual Electric Utility Report. The monthly survey consists of the utilities with the largest sales within each state and a stratified random sample of the remaining utilities. The form EIA-826 is designed to facilitate the estimation of electricity sales and associated revenue at the National Census Division, and state level, by class of consumer. These estimates in turn, can be used to calculate average revenue per milowatthour and estimates of sales, revenue, and average revenue per kilowatthour coefficients of variation.

  14. Electric utilities monthly sales and revenue report with state distributions, 1991-1992 (EIA-826H). Data file

    SciTech Connect

    Not Available

    1992-01-01

    Data regarding electricity sales (megawatthours) and associated revenue (thousand dollars) are submitted to the Energy Information Administration (EIA) by selected electric utilities on the Form EIA-826, Monthly Electric Utility Sales and Revenue Report with State Distributions. The Form EIA-826 survey is a statistical sample drawn from the respondents to the Form EIA-861, Annual Electric Utility Report. The monthly survey consists of the utilities with the largest sales within each state and a stratified random sample of the remaining utilities. The form EIA-826 is designed to facilitate the estimation of electricity sales and associated revenue at the National Census Division, and state level, by class of consumer. These estimates in turn, can be used to calculate average revenue per milowatthour and estimates of sales, revenue, and average revenue per kilowatthour coefficients of variation.

  15. Impacts of Western Area Power Administration`s power marketing alternatives on electric utility systems

    SciTech Connect

    Veselka, T.D.; Portante, E.C.; Koritarov, V.

    1995-03-01

    This technical memorandum estimates the effects of alternative contractual commitments that may be initiated by the Western Area Power Administration`s Salt Lake City Area Office. It also studies hydropower operational restrictions at the Salt Lake City Area Integrated Projects in combination with these alternatives. Power marketing and hydropower operational effects are estimated in support of Western`s Electric Power Marketing Environmental Impact Statement (EIS). Electricity production and capacity expansion for utility systems that will be directly affected by alternatives specified in the EIS are simulated. Cost estimates are presented by utility type and for various activities such as capacity expansion, generation, long-term firm purchases and sales, fixed operation and maintenance expenses, and spot market activities. Operational changes at hydropower facilities are also investigated.

  16. Table 8.13 Electric Utility Demand-Side Management Programs, 1989-2010

    Energy Information Administration (EIA) (indexed site)

    3 Electric Utility Demand-Side Management Programs, 1989-2010 Year Actual Peakload Reductions 1 Energy Savings Electric Utility Costs 4 Energy Efficiency 2 Load Management 3 Total Megawatts Million Kilowatthours Thousand Dollars 5 1989 NA NA 12,463 14,672 872,935 1990 NA NA 13,704 20,458 1,177,457 1991 NA NA 15,619 24,848 1,803,773 1992 7,890 9,314 17,204 35,563 2,348,094 1993 10,368 12,701 23,069 45,294 2,743,533 1994 11,662 13,340 25,001 52,483 2,715,657 1995 13,212 16,347 29,561 57,421

  17. Electric utility engineer`s FGD manual -- Volume 1: FGD process design. Final report

    SciTech Connect

    1996-03-04

    Part 1 of the Electric Utility Engineer`s Flue Gas Desulfurization (FGD) Manual emphasizes the chemical and physical processes that form the basis for design and operation of lime- and limestone-based FGD systems applied to coal- or oil-fired steam electric generating stations. The objectives of Part 1 are: to provide a description of the chemical and physical design basis for lime- and limestone-based wet FGD systems; to identify and discuss the various process design parameters and process options that must be considered in developing a specification for a new FGD system; and to provide utility engineers with process knowledge useful for operating and optimizing a lime- or limestone-based wet FGD system.

  18. Assessment of rotor-bearing dynamics: a planning study for the utility industry. Final report

    SciTech Connect

    Tecza, J.A.; Zorzi, E.S.

    1981-08-01

    This report presents the results of an EPRI-sponsored study to determine the current state of the art with regard to the rotor-bearing analysis of large steam turbine-generators, to seek out the needs of American utilities with regard to rotor vibration related problems and to develop an R and D plan to fulfill those needs. The overall goal is eventually to be able to provide utilities with needed analysis tools and techniques to reduce machine downtime and associated outage costs. Information has been drawn from an extensive literature search and from interviews with US and European utilities and US, European and Japanese manufacturers. Presented are a justification of the need for improved analysis methods, a summary of current American capabilities and practices, the needs of the utility industry in this area which appear most pressing and a plan for addressing them. This plan calls for, among other things, improved analytical tools, development of advanced machinery monitoring techniques, generation of objective criteria with which to judge the potential smoothness of operation of a turboset design and the transfer of expertise in the use of analytical tools to utility personnel who most need to use them.

  19. The Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    This analysis uses simulated building data, simulated solar photovoltaic (PV) data, and actual electric utility tariff data from 25 cities to better understand the impacts of different commercial rate structures on the value of solar PV systems. By analyzing and comparing 55 unique rate structures across the United States, this study seeks to identify the rate components that have the greatest effect on the value of PV systems.

  20. Electric power annual 1995. Volume II

    SciTech Connect

    1996-12-01

    This document summarizes pertinent statistics on various aspects of the U.S. electric power industry for the year and includes a graphic presentation. Data is included on electric utility retail sales and revenues, financial statistics, environmental statistics of electric utilities, demand-side management, electric power transactions, and non-utility power producers.

  1. Renewable Electricity Benefits Quantification Methodology: A Request for Technical Assistance from the California Public Utilities Commission

    SciTech Connect

    Mosey, G.; Vimmerstedt, L.

    2009-07-01

    The California Public Utilities Commission (CPUC) requested assistance in identifying methodological alternatives for quantifying the benefits of renewable electricity. The context is the CPUC's analysis of a 33% renewable portfolio standard (RPS) in California--one element of California's Climate Change Scoping Plan. The information would be used to support development of an analytic plan to augment the cost analysis of this RPS (which recently was completed). NREL has responded to this request by developing a high-level survey of renewable electricity effects, quantification alternatives, and considerations for selection of analytic methods. This report addresses economic effects and health and environmental effects, and provides an overview of related analytic tools. Economic effects include jobs, earnings, gross state product, and electricity rate and fuel price hedging. Health and environmental effects include air quality and related public-health effects, solid and hazardous wastes, and effects on water resources.

  2. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles

    SciTech Connect

    Love, Lonnie J.

    2015-08-01

    This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local Motors Inc. Phase 1 was previously reported as Advanced Manufacturing of Complex Cyber Mechanical Devices through Community Engagement and Micro-manufacturing and demonstrated the integration of components onto a prototype body part for a vehicle. Phase 2 was reported as Utility of Big Area Additive Manufacturing (BAAM) for the Rapid Manufacture of Customized Electric Vehicles and demonstrated the high profile live printing of an all-electric vehicle using ONRL s Big Area Additive Manufacturing (BAAM) technology. This demonstration generated considerable national attention and successfully demonstrated the capabilities of the BAAM system as developed by ORNL and Cincinnati, Inc. and the feasibility of additive manufacturing of a full scale electric vehicle as envisioned by the CRADA partner Local Motors, Inc.

  3. Financial impacts of nonutility power purchases on investor-owned electric utilities

    SciTech Connect

    Not Available

    1994-06-01

    To assist in its these responsibilities in the area of electric power, EIA has prepared this report, Financial Impacts of Nonutility Power Purchases on Investor-Owned Electric Utilities. The primary purpose of this report is to provide an overview of the issues surrounding the financial impacts of nonutility generation contracts (since the passage of the Public Utility Regulatory Policies Act of 1978) on investor-owned utilities. The existing concern in this area is manifest in the provisions of Section 712 of the Energy Policy Act of 1992, which required State regulatory commissions to evaluate various aspects of long-term power purchase contracts, including their impact on investor-owned utilities` cost of capital and rates charged to customers. The EIA does not take positions on policy questions. The EIA`s responsibility is to provide timely, high quality information and to perform objective, credible analyses in support of the deliberations by both public and private decision-makers. Accordingly, this report does not purport to represent the policy positions of the US Department of Energy or the Administration.

  4. Energy, capacity, and economic effects of cogeneration interfaced with electric-utility systems

    SciTech Connect

    VaKuiken, J.; Hub, K.

    1980-01-01

    The potential energy saving, capacity credits, and economic impacts of various arrangements for electrical power supply between utilities and small power cogenerators are discussed. The approach is to use a methodology consistent with those used by utilities in their reliability and generation cost analysis. Emphasis is placed on qualitative observations derived from detailed simulation investigations. Results are discussed that exhibit a wide range of fuel and cost impacts from grid-connected cogeneration. The variations demonstrate the dependency of results on utility system and cogenerator characteristics. Observations summarize, as best as possible, the general trends that occur for alternative combinations of: (1) utility composition; (2) cogenerator design and fuel type; and (3) capacity displacement choices. These are the three characteristic parameters used to describe each case study. Two synthetic utility systems are tested for their fuel and reliability responses to cogeneration. One is representative of systems in the midwest with predominantly coal-fueled capacity (51%). Nuclear (20%) and oil (21%) units make up most of the remaining capacity. The other system is primarily oil-fired capacity (54%) with smaller amounts of coal (23%) and nuclear (18%) sources. In general, it appears that cogeneration will have a difficult time competing with utility generation.

  5. Electric Power annual 1996: Volume II

    SciTech Connect

    1997-12-01

    This document presents a summary of electric power industry statistics. Data are included on electric utility retail sales of electricity, revenues, environmental information, power transactions, emissions, and demand-side management.

  6. Hydrothermal industrialization electric-power systems development. Final report

    SciTech Connect

    Not Available

    1982-03-01

    The nature of hydrothermal resources, their associated temperatures, geographic locations, and developable capacity are described. The parties involved in development, required activities and phases of development, regulatory and permitting requirements, environmental considerations, and time required to complete development activities ae examined in detail. These activities are put in proper perspective by detailing development costs. A profile of the geothermal industry is presented by detailing the participants and their operating characteristics. The current development status of geothermal energy in the US is detailed. The work on market penetration is summarized briefly. Detailed development information is presented for 56 high temperature sites. (MHR)

  7. A framework and review of customer outage costs: Integration and analysis of electric utility outage cost surveys

    SciTech Connect

    Lawton, Leora; Sullivan, Michael; Van Liere, Kent; Katz, Aaron; Eto, Joseph

    2003-11-01

    A clear understanding of the monetary value that customers place on reliability and the factors that give rise to higher and lower values is an essential tool in determining investment in the grid. The recent National Transmission Grid Study recognizes the need for this information as one of growing importance for both public and private decision makers. In response, the U.S. Department of Energy has undertaken this study, as a first step toward addressing the current absence of consistent data needed to support better estimates of the economic value of electricity reliability. Twenty-four studies, conducted by eight electric utilities between 1989 and 2002 representing residential and commercial/industrial (small, medium and large) customer groups, were chosen for analysis. The studies cover virtually all of the Southeast, most of the western United States, including California, rural Washington and Oregon, and the Midwest south and east of Chicago. All variables were standardized to a consistent metric and dollar amounts were adjusted to the 2002 CPI. The data were then incorporated into a meta-database in which each outage scenario (e.g., the lost of electric service for one hour on a weekday summer afternoon) is treated as an independent case or record both to permit comparisons between outage characteristics and to increase the statistical power of analysis results. Unadjusted average outage costs and Tobit models that estimate customer damage functions are presented. The customer damage functions express customer outage costs for a given outage scenario and customer class as a function of location, time of day, consumption, and business type. One can use the damage functions to calculate outage costs for specific customer types. For example, using the customer damage functions, the cost experienced by an ''average'' customer resulting from a 1 hour summer afternoon outage is estimated to be approximately $3 for a residential customer, $1,200 for small

  8. Lorentz factor determination for local electric fields in semiconductor devices utilizing hyper-thin dielectrics

    SciTech Connect

    McPherson, J. W.

    2015-11-28

    The local electric field (the field that distorts, polarizes, and weakens polar molecular bonds in dielectrics) has been investigated for hyper-thin dielectrics. Hyper-thin dielectrics are currently required for advanced semiconductor devices. In the work presented, it is shown that the common practice of using a Lorentz factor of L = 1/3, to describe the local electric field in a dielectric layer, remains valid for hyper-thin dielectrics. However, at the very edge of device structures, a rise in the macroscopic/Maxwell electric field E{sub diel} occurs and this causes a sharp rise in the effective Lorentz factor L{sub eff}. At capacitor and transistor edges, L{sub eff} is found to increase to a value 2/3 < L{sub eff} < 1. The increase in L{sub eff} results in a local electric field, at device edge, that is 50%–100% greater than in the bulk of the dielectric. This increase in local electric field serves to weaken polar bonds thus making them more susceptible to breakage by standard Boltzmann and/or current-driven processes. This has important time-dependent dielectric breakdown (TDDB) implications for all electronic devices utilizing polar materials, including GaN devices that suffer from device-edge TDDB.

  9. WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water

    SciTech Connect

    Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz

    2004-11-01

    Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water system cost

  10. Effects of federal income taxes on the cash flow, operating revenue, and net income of electric utilities

    SciTech Connect

    Moore, J.T.

    1982-01-01

    The idea to do this research was suggested by the efforts of some consumer groups and others to seek passage of a law in the United States to exempt investor-owned electric utilities from federal income taxes. The goal of the consumer groups is to reduce the charges to utility customers (which is measured in this study by the amount of the operating revenues of the utilities) while not causing any harm to the utilities. The population of interest consisted of all investor-owned electric utilities included on a current Compustat utility tape. In the analysis of the data, the changes in cash flow, operating revenue, and net income were summarized by the 89 utilities as a total group and by the division of the utilities into smaller groups or combinations which used the same accounting methods during the test period. The results of this research suggest the following conclusions concerning the change to a situation in which electric utilities are not subject to federal income taxes: (1) as a group, the decrease in cash flow would be significant, (2) as a group, the decrease in operating revenue (charges to customers) would not be significant, (3) as a group, the increase in net income would be significant, and (4) in analyzing the effects of any financial adjustments or changes on electric utilities, the accounting policies used to the utilities are an important factor.

  11. Nitrogen oxides emission control options for coal-fired electric utility boilers

    SciTech Connect

    Ravi K. Srivastava; Robert E. Hall; Sikander Khan; Kevin Culligan; Bruce W. Lani

    2005-09-01

    Recent regulations have required reductions in emissions of nitrogen oxides (NOx) from electric utility boilers. To comply with these regulatory requirements, it is increasingly important to implement state-of-the-art NOx control technologies on coal-fired utility boilers. This paper reviews NOx control options for these boilers. It discusses the established commercial primary and secondary control technologies and examines what is being done to use them more effectively. Furthermore, the paper discusses recent developments in NOx controls. The popular primary control technologies in use in the United States are low-NOx burners and overfire air. Data reflect that average NOx reductions for specific primary controls have ranged from 35% to 63% from 1995 emissions levels. The secondary NOx control technologies applied on U.S. coal-fired utility boilers include reburning, selective noncatalytic reduction (SNCR), and selective catalytic reduction (SCR). Thirty-six U.S. coal-fired utility boilers have installed SNCR, and reported NOx reductions achieved at these applications ranged from 15% to 66%. Recently, SCR has been installed at 150 U.S. coal-fired utility boilers. Data on the performance of 20 SCR systems operating in the United States with low-NOx emissions reflect that in 2003, these units achieved NOx emission rates between 0.04 and 0.07 lb/106 Btu. 106 refs., 6 figs., 6 tabs.

  12. Electric Industry Structure and Regulatory Responses in a High Distributed Energy Resources Future

    SciTech Connect

    Corneli, Steve; Kihm, Steve; Schwartz, Lisa

    2015-11-01

    The emergence of distributed energy resources (DERs) that can generate, manage and store energy on the customer side of the electric meter is widely recognized as a transformative force in the power sector. This report focuses on two key aspects of that transformation: structural changes in the electric industry and related changes in business organization and regulation that are likely to result from them. Both industry structure and regulation are inextricably linked. History shows that the regulation of the power sector has responded primarily to innovation in technologies and business models that created significant structural changes in the sector’s cost and organizational structure.

  13. The geothermal partnership: Industry, utilities, and government meeting the challenges of the 90's

    SciTech Connect

    Not Available

    1991-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal community. This year's conference, Program Review IX, was held in San Francisco on March 19--21, 1991. The theme of this review was The Geothermal Partnership -- Industry, Utilities, and Government Meeting the Challenges of the 90's.'' The importance of this partnership has increased markedly as demands for improved technology must be balanced with available research resources. By working cooperatively, the geothermal community, including industry, utilities, DOE, and other state and federal agencies, can more effectively address common research needs. The challenge currently facing the geothermal partnership is to strengthen the bonds that ultimately will enhance opportunities for future development of geothermal resources. Program Review IX consisted of eight sessions including an opening session. The seven technical sessions included presentations by the relevant field researchers covering DOE-sponsored R D in hydrothermal, hot dry rock, and geopressured energy and the progress associated with the Long Valley Exploratory Well. Individual papers have been cataloged separately.

  14. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  15. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book

    5 U.S. Electric Utility and Nonutility Net Summer Electricity Generation Capacity (GW) Coal Steam Other Fossil Combine Cycle Combustion Turbine Nuclear Pumped Total 1980 0.0 1981 0.0 1982 0.0 1983 0.0 1984 0.0 1985 0.0 1986 0.0 1987 0.0 1988 0.0 1989 18.1 1990 19.5 1991 18.4 1992 21.2 1993 21.1 1994 21.2 1995 21.4 1996 21.1 1997 19.3 1998 19.5 1999 19.6 2000 19.5 2001 19.7 2002 20.4 2003 20.5 2004 20.8 2005 21.3 2006 21.5 2007 21.9 2008 21.9 2009 22.2 2010 22.2 2011 22.2 2012 22.2 2013 22.2 2014

  16. EPA programs to reduce NO{sub x} and particulate matter emissions from electric utility sources and the possible impact of deregulation on those EPA programs

    SciTech Connect

    Field, A.B.

    1997-12-31

    At the same time that the electric utility industry is in the midst of deregulation, it could be hit with numerous additional regulatory burdens. For example, EPA now plans to decide by July 1997 whether to make major changes to the current ozone and particulate matter ambient standards -- changes which could force utilities to reduce significantly both their nitrogen oxide (NO{sub x}) and sulfur dioxide (SO{sub 2}) emissions. Even if EPA does not adopt new ambient standards, though, many electric utilities still face the prospect of making additional NO{sub x} reductions if they are found to be contributing to ozone levels in areas that are not meeting the current ozone ambient standards. Several multi-state groups -- notably the Ozone Transport Assessment Group (OTAG) and the Northeast Ozone Transport Commission (OTC) -- are evaluating programs that could lead to calls for additional NO{sub x} reductions from power plants in ozone nonattainment areas and from plants located outside the nonattainment areas but found to be contributing to ozone levels in those areas. And these multi-state groups are motivated not only by pollution levels they see now, but also by what they fear will be increased pollution levels as a result of deregulation. This paper examines the status of the major rulemakings now underway that could force substantial additional reductions in electric utility NO{sub x} and SO{sub 2} emissions. It also discusses the impacts that deregulation could have in those rulemakings.

  17. Electric power industry restructuring in Australia: Lessons from down-under. Occasional paper No. 20

    SciTech Connect

    Ray, D.

    1997-01-01

    Australia`s electric power industry (EPI) is undergoing major restructuring. This restructuring includes commercialization of state-owned electric organization through privatization and through corporatization into separate governmental business units; structural unbundling of generation, transmission, retailing, and distribution; and creation of a National Electricity Market (NEM) organized as a centralized, market-based trading pool for buying and selling electricity. The principal rationales for change in the EPI were the related needs of enhancing international competitiveness, improving productivity, and lowering electric rates. Reducing public debt through privatization also played an important role. Reforms in the EPI are part of the overall economic reform package that is being implemented in Australia. Enhancing efficiency in the economy through competition is a key objective of the reforms. As the need for reform was being discussed in the early 1990s, Australia`s previous prime minister, Paul Keating, observed that {open_quotes}the engine which drives efficiency is free and open competition.{close_quotes} The optimism about the economic benefits of the full package of reforms across the different sectors of the economy, including the electricity industry, is reflected in estimated benefits of a 5.5 percent annual increase in real gross domestic product and the creation of 30,000 more jobs. The largest source of the benefits (estimated at 25 percent of total benefits) was projected to come from reform of the electricity and gas sectors.

  18. The Treatment of Solar Generation in Electric Utility Resource Planning (Presentation), NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Treatment of Solar Generation in Electric Utility Resource Planning NREL Webinar Karlynn Cory, John Sterling, Mike Taylor, and Joyce McLaren January 14, 2014 NREL/PR-6A20-60946 2 Logistics * Participants are joined in listen-only mode. * Use the Q&A panel to ask questions during the webinar. We will hold all questions until the end of the webinar. o To ask a question: - Click Q&A at the top of the Live Meeting Window - Type your question in the Q&A box - Click "Ask" to

  19. Electric utilities monthly sales and revenue report (EIA-826), current (for microcomputers) (January 1991-August 1992). Data file

    SciTech Connect

    Not Available

    1992-08-01

    Data regarding electricity sales (megawatthours) and associated revenue (thousand dollars) are submitted to the Energy Information Administration (EIA) by selected electric utilities on the Form EIA-826, Monthly Electric Utility Sales and Revenue Report with State Distributions. The monthly survey consists of the utilities with the largest sales within each state and a stratified random sample of the remaining utilities. The Form EIA-826 is designed to facilitate the estimation of electricity sales and associated revenue at the National Census Division, and state level, by class of consumer. These estimates in turn, can be used to calculate average revenue per milowatthour and estimates of sales, revenue, and average revenue per kilowatthour coefficients of variation.

  20. Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles (Revised)

    SciTech Connect

    Denholm, P.; Short, W.

    2006-10-01

    Hybrid electric vehicles with the capability of being recharged from the grid may provide a significant decrease in oil consumption. These ''plug-in'' hybrids (PHEVs) will affect utility operations, adding additional electricity demand. Because many individual vehicles may be charged in the extended overnight period, and because the cost of wireless communication has decreased, there is a unique opportunity for utilities to directly control the charging of these vehicles at the precise times when normal electricity demand is at a minimum. This report evaluates the effects of optimal PHEV charging, under the assumption that utilities will indirectly or directly control when charging takes place, providing consumers with the absolute lowest cost of driving energy. By using low-cost off-peak electricity, PHEVs owners could purchase the drive energy equivalent to a gallon of gasoline for under 75 cents, assuming current national average residential electricity prices.

  1. Derivatives and Risk Management in the Petroleum, Natural Gas, and Electricity Industries

    Reports and Publications

    2002-01-01

    In February 2002 the Secretary of Energy directed the Energy Information Administration (EIA) to prepare a report on the nature and use of derivative contracts in the petroleum, natural gas, and electricity industries. Derivatives are contracts ('financial instruments') that are used to manage risk, especially price risk.

  2. The Public Utilities Regulatory Policy Act (PURPA) and US Geothermal Industry: Current controversies and trends in federal and state implementation

    SciTech Connect

    Not Available

    1988-09-01

    This report is an analysis of the issues confronting US energy policymakers and the US geothermal industry as the result of the implementation and interpretation of the 1978 Public Utility Regulatory Policies Act, commonly known as PURPA. It seeks to answer four sets of questions about PURPA: (1) What has the existence of PURPA meant to the US geothermal industry. (2) How has the interpretation of PURPA evolved over the past decade. (3) What particular portions of PURPA rule making have been most crucial to the growth and development of the geothermal industry. (4) What aspects of PURPA have been most troubling to utilities purchasing or developing geothermal energy.

  3. Electricity industry development trends and the environmental programs in the Czech Republic

    SciTech Connect

    Karas, P.

    1995-12-01

    The process of industrialization in the Czech Republic, which is more intensive than in other parts of central Europe, has been under way since the mid-nineteenth century. Over the last 40 years, large-scale industrial activity was based on extensive use of domestic primary energy sources, especially brown-coal/lignite. The escalation of this usage inflicted heavy devastation to large portions of industrial zones and, as a result, worsened living conditions through atmospheric pollution and other environmental impacts in large regions of central Europe. The Czech electricity industry and CEZ, a.s. (the nation`s principal electricity generator, responsible for meeting eighty percent of national electricity demand, and operator of the nationwide EHV transmission system) has been challenged to cope with all environmental issues by the end of 1997, in compliance with the strict limits set by the Clean Air Act of 1991, which are comparable to standard implemented in advanced industrial countries. A review of the critical environmental issues is presented and the role of the individual and of the State is analyzed. The approach of CEZ, a.s., towards a better natural environment and its response to legal environment provisions have been incorporated into the company`s development program. It comprises decommissioning the most obsolete fossil-fuel fired power stations; rehabilitation of thermal power plants; supplementing the coal/lignite-fired units selected for future operation with FGD systems and retrofitting them with DENOX equipment; a larger share of nuclear electricity generation after the completion of the Temelin NPP (2 units of 1000MW each) and, last but not least, initiating DSM (demand-side management) programs of energy-electricity savings in the Czech Republic.

  4. Tool Helps Utilities Assess Readiness for Electric Vehicle Charging (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    NREL research helps answer a fundamental question regarding electric vehicles: Is the grid ready to handle them? Environmental, economic and security concerns regarding oil consumption make electrifying the transportation sector a high national priority. NREL's Center for Transportation Technologies & Systems (CTTS) has developed a framework for utilities to evaluate the plug-in vehicle (PEV) readiness of distribution transformers. Combining a wealth of vehicle performance statistics with load data from partner utilities including the Hawaiian Electric Company and Xcel Energy, NREL analyzed the thermal loading characteristics of distribution transformers due to vehicle charging. After running millions of simulations replicating varying climates and conditions, NREL is now able to predict aging rates for transformers when PEVs are added to existing building loads. With the NREL tool, users define simulation parameters by inputting vehicle trip and weather data; transformer load profiles and ratings; PEV penetration, charging rates and battery sizes; utility rates; the number of houses on each transformer; and public charging availability. Transformer load profiles, drive cycles, and ambient temperature data are then run through the thermal model to produce a one-year timeseries of the hotspot temperature. Annual temperature durations are calculated to help determine the annual aging rate. Annual aging rate results are grouped by independent variables. The most useful measure is transformer mileage, a measure of how many electrically-driven miles must be supplied by the transformer. Once the spectrum analysis has been conducted for an area or utility, the outputs can be used to help determine if more detailed evaluation is necessary, or if transformer replacement is required. In the majority of scenarios, transformers have enough excess capacity to charge PEVs. Only in extreme cases does vehicle charging have negative long-term impact on transformers. In those cases

  5. Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Eyer, James M.

    2009-06-01

    The work documented in this report was undertaken as part of an ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Electricity Storage Systems (ESS) Program. This study characterizes one especially attractive value proposition for modular electricity storage (MES): electric utility transmission and distribution (T&D) upgrade deferral. The T&D deferral benefit is characterized in detail. Also presented is a generalized framework for estimating the benefit. Other important and complementary (to T&D deferral) elements of possible value propositions involving MES are also characterized.

  6. Norwich Public Utilities- Commercial Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Norwich Public Utilities (NPU) provides rebates to its commercial, industrial, institutional, and agricultural customers for high-efficiency HVAC systems, premium efficiency electric motors,...

  7. Utilities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 July 2016 ______________________________________________________________________________ 1 Utilities [References: FAR 41, DEAR 941 and 970.4102] 1.0 Summary of Latest Changes This update includes administrative changes. 2.0 Discussion This chapter supplements other more primary acquisition regulations and policies contained in the references above and should be considered in the context of those references. 2.1 Overview. This section discusses the acquisition and sales of utility services by

  8. Industry and Government: Paving the way towards electric modes of transportation

    SciTech Connect

    Hendrickson, G.L.

    1995-06-01

    Government officials and the private sector have taken a renewed interest in supporting the development and commercialization of electric vehicles in the United States. The current electric vehicle renaissance is the result of three very important factors: the need to improve our environment, particularly our urban air quality; the need to enhance our energy security through increased use of domestically produced fuels; and the desire to increase our global economic competitiveness. In the past decade, research and development efforts related to electric vehicles (EVs) have increased dramatically in response to national imperatives to address the transportation sector`s contribution to air pollution and to our reliance on foreign oil. Also, it is recognized that development and expansion of a U.S. electric vehicle could contribute to an international competitive advantage and could assist in the conversion of traditionally defense-related industries to civilian applications.

  9. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book

    1 Buildings Share of U.S. Electricity Consumption/Sales (Percent) Buildings Delivered Total | Total Industry Transportation Total (10^15 Btu) 1980 | 60.9% 38.9% 0.2% 100% | 7.15 1981 | 61.4% 38.5% 0.1% 100% | 7.33 1982 | 64.1% 35.7% 0.2% 100% | 7.12 1983 | 63.8% 36.1% 0.2% 100% | 7.34 1984 | 63.2% 36.7% 0.2% 100% | 7.80 1985 | 63.8% 36.0% 0.2% 100% | 7.93 1986 | 64.8% 35.1% 0.2% 100% | 8.08 1987 | 64.9% 34.9% 0.2% 100% | 8.38 1988 | 65.0% 34.8% 0.2% 100% | 8.80 1989 | 64.8% 35.0% 0.2% 100% |

  10. " and Electricity Generation by Census Region, Census Division, Industry Group,"

    Energy Information Administration (EIA) (indexed site)

    3. Total Inputs of Selected Wood and Wood-Related Products for Heat, Power," " and Electricity Generation by Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Billion Btu)" ,,,,"Selected Wood and Wood-Related Products" ,,,,,"Biomass" " "," ",," "," "," ","Wood Residues","Wood-Related"," " " ","

  11. "Table A16. Components of Total Electricity Demand by Census Region, Industry"

    Energy Information Administration (EIA) (indexed site)

    6. Components of Total Electricity Demand by Census Region, Industry" " Group, and Selected Industries, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," ","Sales and/or"," ","RSE" "SIC"," "," ","Transfers","Total

  12. Reduction in tribological energy losses in the transportation and electric utilities sectors

    SciTech Connect

    Pinkus, O.; Wilcock, D.F.; Levinson, T.M.

    1985-09-01

    This report is part of a study of ways and means of advancing the national energy conservation effort, particularly with regard to oil, via progress in the technology of tribology. The report is confined to two economic sectors: transportation, where the scope embraces primarily the highway fleets, and electric utilities. Together these two sectors account for half of the US energy consumption. Goal of the study is to ascertain the energy sinks attributable to tribological components and processes and to recommend long-range research and development (R and D) programs aimed at reducing these losses. In addition to the obvious tribological machine components such as bearings, piston rings, transmissions and so on, the study also extends to processes which are linked to tribology indirectly such as wear of machine parts, coatings of blades, high temperature materials leading to higher cycle efficiencies, attenuation of vibration, and other cycle improvements.

  13. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book

    6 U.S. Renewable Electric Utility and Nonutility Net Summer Electricity Generation Capacity (GW) Conv. Hydropower Geothermal Municipal Solid Waste Biomass Solar Thermal Solar PV Wind 1980 81.7 0.9 0.0 0.1 0.0 N.A. N.A. 1981 82.4 0.9 0.0 0.1 0.0 N.A. 0.0 1982 83.0 1.0 0.0 0.1 0.0 N.A. 0.0 1983 83.9 1.2 0.0 0.2 0.0 N.A. 0.0 1984 85.3 1.2 0.0 0.3 0.0 N.A. 0.0 1985 88.9 1.6 0.2 0.2 0.0 N.A. 0.0 1986 89.3 1.6 0.2 0.2 0.0 N.A. 0.0 1987 89.7 1.5 0.2 0.2 0.0 N.A. 0.0 1988 90.3 1.7 0.2 0.2 0.0 N.A. 0.0

  14. WARP: A modular wind power system for distributed electric utility application

    SciTech Connect

    Weisbrich, A.L.; Ostrow, S.L.; Padalino, J.P.

    1996-07-01

    Steady development of wind turbine technology, and the accumulation of wind farm operating experience, have resulted in the emergence of wind power as a potentially attractive source of electricity for utilities. Since wind turbines are inherently modular, with medium-sized units typically in the range of a few hundred kilowatts each, they lend themselves well to distributed generation service. A patented wind power technology, the Toroidal Accelerator Rotor Platform (TARP) Windframe, forms the basis for a proposed network-distributed, wind power plant combining electric generation and transmission. While heavily building on proven wind turbine technology, this system is projected to surpass traditional configuration windmills through a unique distribution/transmission combination, superior performance, user-friendly operation and maintenance, and high availability and reliability. Furthermore, its environmental benefits include little new land requirements, relatively attractive appearance, lower noise and EMI/TV interference, and reduced avian (bird) mortality potential. Its cost of energy is projected to be very competitive, in the range of from approximately 2{cents}/kWh to 5{cents}/kWh, depending on the wind resource.

  15. WARP{trademark}: A modular wind power system for distributed electric utility application

    SciTech Connect

    Weisbrich, A.L.; Ostrow, S.L.; Padalino, J.

    1995-12-31

    Steady development of wind turbine technology, and the accumulation of wind farm operating experience, have resulted in the emergence of wind power as a potentially attractive source of electricity for utilities. Since wind turbines are inherently modular, with medium-sized units typically in the range of a few hundred kW each, they lend themselves well to distributed generation service. A patented wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for a proposed network-distributed, wind power plant combining electric generation and transmission. While heavily building on proven wind turbine technology, this system is projected to surpass traditional configuration windmills through a unique distribution/transmission combination, superior performance, user friendly operation and maintenance, and high availability and reliability. Furthermore, its environmental benefits include little new land requirements, relatively attractive appearance, lower noise and EMI/TV interference, and reduced avian (bird) mortality potential. Its cost of energy is projected to be very competitive, in the range of from approximately 2{cents}/kWh to 5{cents}/ kWh, depending on the wind resource.

  16. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  17. Antitrust Enforcement in the Electricity and Gas Industries: Problems and Solutions for the EU

    SciTech Connect

    Leveque, Francois

    2006-06-15

    Antitrust enforcement in the electricity and gas industries raises specific problems that call for specific solutions. Among the issues: How can the anticompetitive effects of mergers be assessed in a changing regulatory environment? Should long-term agreements in energy purchasing be prohibited? What are the benefits of preventive action such as competition advocacy and market surveillance committees? Should Article 82 (a) of the EC Treaty be used to curb excessive pricing?. (author)

  18. Visioning the 21st Century Electricity Industry: Outcomes and Strategies for America

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lauren Azar Senior Advisor to the Secretary U. S. Department of Energy 8 February 2012 Visioning the 21 st Century Electricity Industry: Strategies and Outcomes for America http://teeic.anl.gov/er/transmission/restech/dist/index.cfm We all have "visions," in one form or another: * Corporations call them strategic plans * RTOs ... transmission expansion plans or Order 1000 plans * State PUCs ... integrated resource plans * Employees ... career goals Artist: Paolo Frattesi Artist: Paolo

  19. Summary of the research and development effort on steam plants for electric-utility service

    SciTech Connect

    Fraas, A.P.

    1981-06-01

    The development of steam power plants for electric utility service over the past century is reviewed with particular emphasis on the prime problems and their solution. Increases in steam pressure and temperature made possible by developments in metallurgy led to an increase in thermal efficiency by a factor of 8 between 1880 and 1955. Further improvements have not been made because the use of still more expensive alloys is not economically justified, even with the much higher fuel prices of the latter 1970's. In fact, EPA regulations on waste heat and sulfur emissions have led to the use of cooling towers and wet limestone stack gas scrubbers that cause a degradation in plant thermal efficiency. The various possibilities for further improvements in efficiency and their problems are examined. The development of steam power plants in the past has been carried out in sufficiently small steps that the utilities and the equipment manufacturers have been able to assume the financial risk involved; but the fluidized-bed combustion system, which appears to be the most promising area, presents such a large step with major uncertainties that U.S. government financial support of the research and development effort appears to be required. The potential benefits appear to justify the research and development cost many times over.

  20. Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems

    SciTech Connect

    Ong, S.; Denholm, P.; Doris, E.

    2010-06-01

    This analysis uses simulated building data, simulated solar photovoltaic (PV) data, and actual electric utility tariff data from 25 cities to understand better the impacts of different commercial rate structures on the value of solar PV systems. By analyzing and comparing 55 unique rate structures across the United States, this study seeks to identify the rate components that have the greatest effect on the value of PV systems. Understanding the beneficial components of utility tariffs can both assist decision makers in choosing appropriate rate structures and influence the development of rates that favor the deployment of PV systems. Results from this analysis show that a PV system's value decreases with increasing demand charges. Findings also indicate that time-of-use rate structures with peaks coincident with PV production and wide ranges between on- and off-peak prices most benefit the types of buildings and PV systems simulated. By analyzing a broad set of rate structures from across the United States, this analysis provides an insight into the range of impacts that current U.S. rate structures have on PV systems.

  1. An examination of the costs and critical characteristics of electric utility distribution system capacity enhancement projects

    SciTech Connect

    Balducci, Patrick J.; Schienbein, Lawrence A.; Nguyen, Tony B.; Brown, Daryl R.; Fathelrahman, Eihab M.

    2004-06-01

    This report classifies and analyzes the capital and total costs (e.g., income tax, property tax, depreciation, centralized power generation, insurance premiums, and capital financing) associated with 130 electricity distribution system capacity enhancement projects undertaken during 1995-2002 or planned in the 2003-2011 time period by three electric power utilities operating in the Pacific Northwest. The Pacific Northwest National Laboratory (PNNL), in cooperation with participating utilities, has developed a large database of over 3,000 distribution system projects. The database includes brief project descriptions, capital cost estimates, the stated need for each project, and engineering data. The database was augmented by additional technical (e.g., line loss, existing substation capacities, and forecast peak demand for power in the area served by each project), cost (e.g., operations, maintenance, and centralized power generation costs), and financial (e.g., cost of capital, insurance premiums, depreciations, and tax rates) data. Though there are roughly 3,000 projects in the database, the vast majority were not included in this analysis because they either did not clearly enhance capacity or more information was needed, and not available, to adequately conduct the cost analyses. For the 130 projects identified for this analysis, capital cost frequency distributions were constructed, and expressed in terms of dollars per kVA of additional capacity. The capital cost frequency distributions identify how the projects contained within the database are distributed across a broad cost spectrum. Furthermore, the PNNL Energy Cost Analysis Model (ECAM) was used to determine the full costs (e.g., capital, operations and maintenance, property tax, income tax, depreciation, centralized power generation costs, insurance premiums and capital financing) associated with delivering electricity to customers, once again expressed in terms of costs per kVA of additional capacity

  2. Biocide usage in cooling towers in the electric power and petroleum refining industries

    SciTech Connect

    Veil, J.; Rice, J.K.; Raivel, M.E.S.

    1997-11-01

    Cooling towers users frequently apply biocides to the circulating cooling water to control growth of microorganisms, algae, and macroorganisms. Because of the toxic properties of biocides, there is a potential for the regulatory controls on their use and discharge to become increasingly more stringent. This report examines the types of biocides used in cooling towers by companies in the electric power and petroleum refining industries, and the experiences those companies have had in dealing with agencies that regulate cooling tower blowdown discharges. Results from a sample of 67 electric power plants indicate that the use of oxidizing biocides (particularly chlorine) is favored. Quaternary ammonia salts (quats), a type of nonoxidizing biocide, are also used in many power plant cooling towers. The experience of dealing with regulators to obtain approval to discharge biocides differs significantly between the two industries. In the electric power industry, discharges of any new biocide typically must be approved in writing by the regulatory agency. The approval process for refineries is less formal. In most cases, the refinery must notify the regulatory agency that it is planning to use a new biocide, but the refinery does not need to get written approval before using it. The conclusion of the report is that few of the surveyed facilities are having any difficulty in using and discharging the biocides they want to use.

  3. Industry

    SciTech Connect

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  4. Ultra-Efficient and Power Dense Electric Motors for U. S. Industry

    SciTech Connect

    Melfi, Michael J.; Schiferl, Richard F.; Umans, Stephen D.

    2013-03-12

    The primary purpose of this project was to combine the ease-of-installation and ease-of-use attributes of industrial induction motors with the low-loss and small size and weight advantages of PM motors to create an ultra-efficient, high power density industrial motor that can be started across-the-line or operated from a standard, Volts/Hertz drive without the need for a rotor position feedback device. PM motor products that are currently available are largely variable speed motors that require a special adjustable speed drive with rotor position feedback. The reduced size and weight helps to offset the magnet cost in order make these motors commercially viable. The scope of this project covers horsepower ratings from 20 ? 500. Prototypes were built and tested at ratings ranging from 30 to 250 HP. Since fans, pumps and compressors make up a large portion of industrial motor applications, the motor characteristics are tailored to those applications. Also, since there is extensive use of adjustable frequency inverters in these applications, there is the opportunity to design for an optimal pole number and operate at other than 60 Hz frequency when inverters are utilized. Designs with four and eight pole configurations were prototyped as part of this work. Four pole motors are the most commonly used configuration in induction motors today. The results of the prototype design, fabrication, and testing were quite successful. The 50 HP rating met all of the design goals including efficiency and power density. Tested values of motor losses at 50 HP were 30% lower than energy efficient induction motors and the motor weight is 35% lower than the energy efficient induction motor of the same rating. Further, when tested at the 30 HP rating that is normally built in this 286T frame size, the efficiency far exceeds the project design goals with 30 HP efficiency levels indicating a 55% reduction in loss compared to energy efficient motors with a motor weight that is a few

  5. Industrial landfill leachate characterization and treatment utilizing anaerobic digestion with methane production

    SciTech Connect

    Corbo, P.

    1985-01-01

    Anaerobic digestion of organic compounds found in an industrial landfill leachate originating from a Superfund site was assessed using mixed methanogenic cultures. Leachate was found to contain a dissolved organic content (DOC) of about 16,000 mg/liter, of which 40% was in the form of acetic, propionic and butyric acids. The overall reduction of DOC and the fates of individual volatile fatty acids were studied during batch experiments of 5, 10, and 20% leachate dilutions. Other leachate components were characterized. Two methanogenic cultures were selected. A leachate digesting culture was selected directly with the leachate. A volatile fatty acid digesting culture was selected using acetic, propionic and butyric acids in the ratio found in the leachate. An overall DOC reduction of 64.3% was observed for the leachate digesting culture. A reduction of 69.1% was observed for the volatile fatty acid digesting culture. Specific DOC utilization rates were 0.154 and 0.211 day/sup -1/, for the leachate digesting and volatile fatty acid digesting cultures, respectively. Methane was produced at levels of 0.95-0.99 liters per gram DOC removed. Cell growth could not be observed during batch experiments. Acetate appeared to be the rate-limiting step in the DOC removal. Batch experiments with 20% leachate dilutions did not produce much methane, possibly due to overloading systems with volatile fatty acids. Other leachate components did not appear to effect anaerobic digestion.

  6. Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers...

    Annual Energy Outlook

    ... and Related Devices 4 4 0 335 Electrical Equip., Appliances, and Components * * ... and Related Devices 0 0 0 335 Electrical Equip., Appliances, and Components 0 0 ...

  7. Table N13.3. Electricity: Sales to Utility and Nonutility Purchasers...

    Energy Information Administration (EIA) (indexed site)

    ... and Related Devices",0,0,0,0 335,"Electrical Equip., Appliances, and ... and Related Devices",0,0,0,0 335,"Electrical Equip., Appliances, and ...

  8. Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers...

    Energy Information Administration (EIA) (indexed site)

    ... and Related Devices",24,1,23,1 335,"Electrical Equip., Appliances, and ... and Related Devices",0,0,0,0 335,"Electrical Equip., Appliances, and ...

  9. Annual Electric Utility Data - EIA-906/920/923 Data File

    Annual Energy Outlook

    923 detailed data with previous form data (EIA-906920) The survey Form EIA-923 collects detailed electric power data -- monthly and annually -- on electricity generation, fuel...

  10. Techniques of analyzing the impacts of certain electric-utility ratemaking and regulatory-policy concepts. Bibliography

    SciTech Connect

    1980-08-01

    This bibliography provides documentation for use by state public utility commissions and major nonregulated utilities in evaluating the applicability of a wide range of electric utility rate design and regulatory concepts in light of certain regulatory objectives. Part I, Utility Regulatory Objectives, contains 2084 citations on conservation of energy and capital; efficient use of facilities and resources; and equitable rates to electricity consumers. Part II, Rate Design Concepts, contains 1238 citations on time-of-day rates; seasonally-varying rates; cost-of-service rates; interruptible rates (including the accompanying use of load management techniques); declining block rates; and lifeline rates. Part III, Regulatory Concepts, contains 1282 references on restrictions on master metering; procedures for review of automatic adjustment clauses; prohibitions of rate or regulatory discrimination against solar, wind, or other small energy systems; treatment of advertising expenses; and procedures to protect ratepayers from abrupt termination of service.

  11. Tuesday Webcasts for Industry: Engaging Supply Chains in Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and for suppliers Educational servicestools to assist suppliers in achieving ... to electric utilities) Niagara Alcan Atlantic Wood Cleaveland Price C.O.W. Industries ...

  12. Methods to estimate stranded commitments for a restructuring US electricity industry

    SciTech Connect

    Hirst, E.; Hadley, S.; Baxter, L.

    1996-01-01

    Estimates of stranded commitments for US investor-owned electric utilities range widely, from as little as $20 billion to as much as $500 billion (more than double the shareholder equity in US utilities). These potential losses are a consequence of the above-market book values for some utility-owned power plants, long-term power-purchase contracts, deferred income taxes, regulatory assets, and public-policy programs. Because of the wide range of estimates and the potentially large dollar amounts involved, state and federal regulators need a clear understanding of the methods used to calculate these estimates. In addition, they may want simple methods that they can use to check the reasonableness of the estimates that utilities and other parties present in regulatory proceedings. This report explains various top-down and bottom-up methods to calculate stranded commitments. The purpose of this analysis is to help regulators and others understand the implications of different analytical approaches to estimating stranded-commitment amounts. Top-down methods, because they use the utility as the unit of analysis, are simple to apply and to understand. However, their aggregate nature makes it difficult to determine what specific assets and liabilities affect their estimates. Bottom-up methods use the individual asset (e.g., power plant) or liability (e.g., power-purchase contract, fuel-supply contract, and deferred income taxes) as the unit of analysis. These methods have substantial data and computational requirements.

  13. The state of energy storage in electric utility systems and its effect on renewable energy resources

    SciTech Connect

    Rau, N.S.

    1994-08-01

    This report describes the state of the art of electric energy storage technologies and discusses how adding intermittent renewable energy technologies (IRETs) to a utility network affects the benefits from storage dispatch. Load leveling was the mode of storage dispatch examined in the study. However, the report recommended that other modes be examined in the future for kilowatt and kilowatt-hour optimization of storage. The motivation to install storage with IRET generation can arise from two considerations: reliability and enhancement of the value of energy. Because adding storage increases cost, reliability-related storage is attractive only if the accruing benefits exceed the cost of storage installation. The study revealed that the operation of storage should not be guided by the output of the IRET but rather by system marginal costs. Consequently, in planning studies to quantify benefits, storage should not be considered as an entity belonging to the system and not as a component of IRETS. The study also indicted that because the infusion of IRET energy tends to reduce system marginal cost, the benefits from load leveling (value of energy) would be reduced. However, if a system has storage, particularly if the storage is underutilized, its dispatch can be reoriented to enhance the benefits of IRET integration.

  14. Effects of Title IV of the Clean Air Act Amendments of 1990 on Electric Utilities: An Update, The

    Reports and Publications

    1997-01-01

    Describes the strategies used to comply with the Acid Rain Program in 1995, the effect of compliance on SO2 emissions levels, the cost of compliance, and the effects of the program on coal supply and demand. It updates and expands the EIA report, Electric Utility Phase I Acid Rain Compliance Strategies for the Clean Air Act Amendments of 1990.

  15. Convergence of natural gas and electricity industries means change, opportunity for producers in the U. S

    SciTech Connect

    Dar, V.K. Jefferson Gas Systems Inc., Arlington, VA )

    1995-03-13

    The accelerating deregulation of natural gas and electricity distribution is the third and most powerful wave of energy deregulation coursing through North America. The first wave (1978--92) provided the impetus for sculpting competitive markets in energy production. The second (1986--95) is now breaking to fashion competitive bulk logistical and wholesale consumption markets through open access on and unbundling of gas pipeline and storage capacity and high voltage transmission capacity. The third wave, the deregulation of gas and electric retail markets through open access and nondiscriminatory, unbundled local gas and electric distribution tariffs, began in the early 1990s. It will gather momentum for the next 5 years and crest at the turn of the century, affecting and molding almost $300 billion/year in retail energy sales. The transformation will have these strategic implications: (1) the convergent evolution of the gas and electric industries; (2) severe margin compression along the energy value chain from wellhead to busbar to the distribution pipes and wires; and (3) the rapid emergency of cyberspace retailing of energy products and services. The paper discusses merchant plants, convergence and producers, capital flows, producer federations, issues of scale, and demand, margins, and value.

  16. United States Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Renewable Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",2274,2214,2229,2382,2405 "Hydro Conventional",77821,77885,77930,78518,78825 "Solar",411,502,536,619,941 "Wind",11329,16515,24651,34296,39135 "Wood/Wood Waste",6372,6704,6864,6939,7037 "MSW/Landfill Gas",3166,3536,3644,3645,3690

  17. Impacts of Western Area Power Administration`s power marketing alternatives on retail electricity rates and utility financial viability

    SciTech Connect

    Bodmer, E.; Fisher, R.E.; Hemphill, R.C.

    1995-03-01

    Changes in power contract terms for customers of Western`s Salt Lake City Area Office affect electricity rates for consumers of electric power in Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. The impacts of electricity rate changes on consumers are studied by measuring impacts on the rates charged by individual utility systems, determining the average rates in regional areas, and conducting a detailed rate analysis of representative utility systems. The primary focus is an evaluation of the way retail electricity rates for Western`s preference customers vary with alternative pricing and power quantity commitment terms under Western`s long-term contracts to sell power (marketing programs). Retail rate impacts are emphasized because changes in the price of electricity are the most direct economic effect on businesses and residences arising from different Western contractual and operational policies. Retail rates are the mechanism by which changes in cost associated with Western`s contract terms are imposed on ultimate consumers, and rate changes determine the dollar level of payments for electric power incurred by the affected consumers. 41 figs., 9 tabs.

  18. Re-utilization of Industrial CO2 for Algae Production Using a Phase Change Material

    SciTech Connect

    Joseph, Brian

    2013-12-31

    This is the final report of a 36-month Phase II cooperative agreement. Under this project, Touchstone Research Laboratory (Touchstone) investigated the merits of incorporating a Phase Change Material (PCM) into an open-pond algae production system that can capture and re-use the CO2 from a coal-fired flue gas source located in Wooster, OH. The primary objective of the project was to design, construct, and operate a series of open algae ponds that accept a slipstream of flue gas from a coal-fired source and convert a significant portion of the CO2 to liquid biofuels, electricity, and specialty products, while demonstrating the merits of the PCM technology. Construction of the pilot facility and shakedown of the facility in Wooster, OH, was completed during the first two years, and the focus of the last year was on operations and the cultivation of algae. During this Phase II effort a large-scale algae concentration unit from OpenAlgae was installed and utilized to continuously harvest algae from indoor raceways. An Algae Lysing Unit and Oil Recovery Unit were also received and installed. Initial parameters for lysing nanochloropsis were tested. Conditions were established that showed the lysing operation was effective at killing the algae cells. Continuous harvesting activities yielded over 200 kg algae dry weight for Ponds 1, 2 and 4. Studies were conducted to determine the effect of anaerobic digestion effluent as a nutrient source and the resulting lipid productivity of the algae. Lipid content and total fatty acids were unaffected by culture system and nutrient source, indicating that open raceway ponds fed diluted anaerobic digestion effluent can obtain similar lipid productivities to open raceway ponds using commercial nutrients. Data were also collected with respect to the performance of the PCM material on the pilot-scale raceway ponds. Parameters such as evaporative water loss, temperature differences, and growth/productivity were tracked. The pond with the

  19. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Alaska" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",2313,2205,1946,1891,1889,1868,1847,1820,1736,1769,1722,1752,1740,1770,1775,1725,1702,1763,1739,1737,1740,1715,1679,1551,1547,84,91.4,93.9

  20. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Arizona" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",21311,20668,20277,20168,20115,20127,19717,19551,19566,18860,16854,15542,15516,15284,15140,15091,15084,15164,15147,15222,15067,14990,14970,14911,14906,98.9,76.2,75.4

  1. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    California" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",28201,28165,30294,29011,28685,28021,26467,26334,26346,25248,23739,23171,24390,24347,24321,24324,30665,43711,43936,43303,42329,43140,42673,42780,42822,46.5,42.6,37.8

  2. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Colorado" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",10204,10238,10475,10580,9114,8454,8142,8008,8034,7955,7954,7883,7596,7479,7271,7255,6938,6851,6795,6648,6675,6637,6629,6610,6533,86.6,66.2,68.3

  3. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Connecticut" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",161,152,152,154,160,111,111,111,37,25,174,210,78,185,2204,2454,5617,6295,6321,6723,6579,6600,6600,6764,7079,34.2,1.9,1.8

  4. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Delaware" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",102,102,98,56,55,55,55,56,58,194,58,58,233,184,969,2285,2285,2277,2239,2239,2269,2269,2267,2162,1777,40.1,1.6,3.3

  5. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    District of Columbia" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,806,806,806,806,806,806,806,806,806,806,0,0,0

  6. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Florida" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",51775,50967,51373,51298,50853,50781,47222,47224,45184,45196,42619,41996,40267,38238,37265,36537,36472,39460,36899,35857,34769,33663,33403,32204,32103,89.7,86,87.1

  7. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Georgia" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",28873,28875,29293,27146,26639,26558,26462,26432,26542,26538,25404,24804,25821,24099,24861,23331,23392,23148,22791,22299,21698,21163,21160,20752,20731,89.6,72.7,75.5

  8. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Hawaii" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",1732,1821,1821,1821,1828,1859,1730,1730,1730,1705,1691,1624,1622,1622,1627,1609,1617,1597,1611,1603,1603,1603,1602,1522,1488,68.1,72.1,64.8

  9. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Idaho" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",3413,3394,3394,3035,3035,3029,2686,2547,2558,2558,2394,2439,2674,2521,2585,2571,2576,2576,2553,2559,2500,2300,2308,2282,2282,85.7,76.1,69

  10. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Illinois" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",5263,5269,5274,5280,4789,4819,4680,4630,4731,3976,4233,3007,4151,4420,17497,16817,30367,33550,33169,33143,32951,32770,33644,32644,32597,48.1,10.9,11.8

  11. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Indiana" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",23319,23309,23031,22763,23008,23631,23598,22012,22021,22017,21261,21016,20392,20616,20554,20358,20337,20201,20681,20712,20632,20901,20901,20702,20588,85.9,83.2,84.8

  12. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Iowa" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",12655,12092,12179,11863,11282,11479,11274,10669,9562,10090,9895,9039,8457,8402,8511,8438,8370,8217,8161,8237,8219,8069,8074,8093,7702,93.5,77.3,76.7

  13. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Kansas" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",11468,11485,11593,11746,11732,11733,11246,10944,10829,10734,10705,10729,10244,10223,10089,10023,9918,9789,9697,9678,9525,9525,9518,9507,9475,99.5,93.5,80.6

  14. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Kentucky" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",19473,19599,19681,19601,18945,18763,16759,16819,16878,16234,15860,15349,15419,15229,14781,14708,13995,15660,15686,15425,15397,15297,15297,15333,15511,88,92.6,93.3

  15. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Louisiana" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",18120,17297,16661,15991,16471,15615,15755,14756,15176,15137,14249,12728,14233,14165,14317,16339,17014,17080,17150,17019,16433,16221,16221,15883,15839,67.8,61.6,68

  16. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Maine" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",10,14,19,19,19,19,19,19,19,19,19,19,16,17,21,63,1457,1502,2388,2433,2253,2222,2222,2379,2369,0.5,0.4,0.2

  17. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Maryland" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",85,85,85,81,80,80,80,80,79,79,79,70,70,70,753,10955,10971,11105,10958,10958,10838,10709,10709,10723,9758,7.2,0.6,0.7

  18. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Massachusetts" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",971,969,991,956,936,930,829,827,837,983,981,981,945,993,997,2216,3386,11295,9366,9289,9219,9461,9452,9770,9909,8.1,6.8,7.4

  19. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Michigan" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",22260,22148,22517,22401,21639,21759,21885,21894,22734,23029,23310,23345,23575,22833,22757,22378,21948,21916,21990,21986,22396,22395,22347,22258,22298,88.3,72.6,73.1

  20. Table 4. Electric power industry capability by primary energy source, 1990 throu

    Energy Information Administration (EIA) (indexed site)

    Minnesota" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",11557,11901,11685,11650,11547,11639,11432,10719,10458,10543,10175,10129,10073,9885,9069,8988,9090,9217,9181,8925,8936,8853,8830,8854,8806,88.4,78.5,74