National Library of Energy BETA

Sample records for industrial cp-2 large

  1. CP2K

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    CP2K CP2K Description CP2K performs atomistic and molecular simulations of solid state, liquid, molecular and biological systems. It provides a general framework for different methods such as e.g. density functional theory (DFT) using a mixed Gaussian and plane waves approach (GPW), and classical pair and many-body potentials. How to Access CP2K This program is currently available at NERSC on Edison and Cori. NERSC uses modules to manage access to software. To use the default version of CP2K,

  2. LARGE INDUSTRIAL FACILITIES BY STATE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LARGE INDUSTRIAL FACILITIES BY STATE LARGE INDUSTRIAL FACILITIES BY STATE PDF icon Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy...

  3. Simple but Stronger UO, Double but Weaker UNMe Bonds: The Tale Told by Cp2UO and Cp2UNR

    SciTech Connect

    LPCNO, CNRS-UPS-INSA, INSA Toulouse; Institut Charles Gerhardt, CNRS, Universite Montpellier; Laboratoire de Chimie et Physique Quantiques, CNRS, IRSAMC, Universite Paul Sabatier; Andersen, Richard; Barros, Noemi; Maynau, Daniel; Maron, Laurent; Eisenstein, Odile; Zi, Guofu; Andersen, Richard

    2007-06-27

    The free energies of reaction and the activation energies are calculated, with DFT (B3PW91) and small RECP (relativistic core potential) for uranium, for the reaction of Cp2UNMe and Cp2UO with MeCCMe and H3Si-Cl that yields the corresponding addition products. CAS(2,7) and DFT calculations on Cp2UO and Cp2UNMe give similar results, which validates the use of DFT calculations in these cases. The calculated results mirror the experimental reaction of [1,2,4-(CMe3)3C5H2]2UNMe with dimethylacetylene and [1,2,4-(CMe3)3C5H2]2UO with Me3SiCl. The net reactions are controlled by the change in free energy between the products and reactants, not by the activation energies, and therefore by the nature of the UO and UNMe bonds in the initial and final states. A NBO analysis indicates that the U-O interaction in Cp2UO is composed of a single U-O bond with three lone pairs of electrons localized on oxygen, leading to a polarized U-O fragment. In contrast, the U-NMe interaction in Cp2UNMe is composed of a and component and a lone pairof electrons localized on the nitrogen, resulting in a less polarized UNMe fragment, in accord with the lower electronegativity of NMe relative to O. The strongly polarized U(+)-O(-) bond is calculated to be about 70 kcal mol-1 stronger than the less polarized U=NMe bond.

  4. Energy Department Applauds Nation's First Large-Scale Industrial Carbon

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Capture and Storage Facility | Department of Energy Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility August 24, 2011 - 6:23pm Addthis Washington, D.C. - The U.S. Department of Energy issued the following statement in support of today's groundbreaking for construction of the nation's first large-scale industrial carbon capture and storage (ICCS) facility in Decatur,

  5. Energy Department Applauds Nation's First Large-Scale Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... News Media Contact: 202-586-4940 Addthis Related Articles Large-Scale Industrial Carbon ... designed National Sequestration Education Center, located at Richland Community ...

  6. Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration

  7. Breakthrough Large-Scale Industrial Project Begins Carbon Capture and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Utilization | Department of Energy Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products

  8. Large-Scale Industrial CCS Projects Selected for Continued Testing |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy CCS Projects Selected for Continued Testing Large-Scale Industrial CCS Projects Selected for Continued Testing June 10, 2010 - 1:00pm Addthis Washington, DC - Three Recovery Act funded projects have been selected by the U.S. Department of Energy (DOE) to continue testing large-scale carbon capture and storage (CCS) from industrial sources. The projects - located in Texas, Illinois, and Louisiana - were initially selected for funding in October 2009 as part of a $1.4

  9. Thermal Dihydrogen Elimination from Cp*2Yb(4,5-Diazafluorene...

    Office of Scientific and Technical Information (OSTI)

    Thermal Dihydrogen Elimination from Cp*2Yb(4,5-Diazafluorene) Citation ... Publication Date: 2013-03-11 OSTI Identifier: 1165114 Report Number(s): LBNL-6439E Journal ID: ISSN ...

  10. Energy management planning and control in a large industrial facility

    SciTech Connect

    Rood, L.; Korber, J.

    1995-06-01

    Eastman Kodak`s Kodak Park Manufacturing facility is a collection of hundreds of buildings and millions of square feet operated by dozens of semi-autonomous manufacturing units. The facility is served by a centralized Utilities system which cogenerates electricity and distributes steam, chilled water, compressed air, and several other services throughout the site. Energy management at Kodak Park has been active since the 70`s. In 1991, the Utilities Division took ownership of a site wide energy thrust to address capacity limitations of electric, compressed air and other services. Planning and organizing a program to meet Utilities Division goals in such a large complex site was a slightly daunting task. Tracking progress and keeping on schedule is also a challenge. The authors will describe innovative use of a project management software program called Open Plan{reg_sign} to accomplish much of the planning and control for this program. Open Plan{reg_sign} has been used since the initial planning to the current progress of about 50% completion of the program. Hundreds of activities performed by dozens of resource people are planned and tracked. Not only the usual cost and schedule information is reported, but also the schedule for savings in terms of kilowatt-hours, pounds of steam, etc. These savings schedules are very useful for tracking against energy goals and Utilities business planning. Motivation of the individual departments to participate in the program and collection of data from these departments will also be discussed.

  11. Drivers and barriers to e-invoicing adoption in Greek large scale manufacturing industries

    SciTech Connect

    Marinagi, Catherine E-mail: ptrivel@yahoo.com Trivellas, Panagiotis E-mail: ptrivel@yahoo.com Reklitis, Panagiotis E-mail: ptrivel@yahoo.com; Skourlas, Christos

    2015-02-09

    This paper attempts to investigate the drivers and barriers that large-scale Greek manufacturing industries experience in adopting electronic invoices (e-invoices), based on three case studies with organizations having international presence in many countries. The study focuses on the drivers that may affect the increase of the adoption and use of e-invoicing, including the customers demand for e-invoices, and sufficient know-how and adoption of e-invoicing in organizations. In addition, the study reveals important barriers that prevent the expansion of e-invoicing, such as suppliers’ reluctance to implement e-invoicing, and IT infrastructures incompatibilities. Other issues examined by this study include the observed benefits from e-invoicing implementation, and the financial priorities of the organizations assumed to be supported by e-invoicing.

  12. Estimating Demand Response Market Potential Among Large Commercialand Industrial Customers:A Scoping Study

    SciTech Connect

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan,Bernie; Cappers, Peter

    2007-01-01

    Demand response is increasingly recognized as an essentialingredient to well functioning electricity markets. This growingconsensus was formalized in the Energy Policy Act of 2005 (EPACT), whichestablished demand response as an official policy of the U.S. government,and directed states (and their electric utilities) to considerimplementing demand response, with a particular focus on "price-based"mechanisms. The resulting deliberations, along with a variety of stateand regional demand response initiatives, are raising important policyquestions: for example, How much demand response is enough? How much isavailable? From what sources? At what cost? The purpose of this scopingstudy is to examine analytical techniques and data sources to supportdemand response market assessments that can, in turn, answer the secondand third of these questions. We focus on demand response for large(>350 kW), commercial and industrial (C&I) customers, althoughmany of the concepts could equally be applied to similar programs andtariffs for small commercial and residential customers.

  13. Methodological report on the 1980 manufacturing industries survey of large combustors (EIA-463)

    SciTech Connect

    Not Available

    1982-03-01

    The 1980 Manufacturing Industries Energy Consumption Study and Survey of Large Combustors (EIA-463) was designed to collect information on large combustors in the United States and the manufacturing establishments operating them. The survey was mailed to a list of respondents in late November and early December 1980. On February 20, 1981, the Secretary of Energy received notice from the Office of Management and Budget that authority for this information collection activity had been withdrawn and that the information already collected must be treated in a confidential manner. At that time, responses had been received from approximately 76 percent of the final survey frame and, even though this represented a respectable response rate, the usefulness of the survey was substantially disminished. This report presents a detailed overview of the methodology for this survey and a discussion of its limitations. This report is technical and is designed for analysts working with the results of this survey and for survey statisticians interested in specific survey methodologies.

  14. Industry

    SciTech Connect

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  15. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Energy.gov [DOE]

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

  16. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Energy.gov [DOE]

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces, Supplemental Notice of Proposed Rulemaking

  17. Semiconductor nanocrystal quantum dot synthesis approaches towards large-scale industrial production for energy applications

    DOE PAGES [OSTI]

    Hu, Michael Z.; Zhu, Ting

    2015-12-04

    This study reviews the experimental synthesis and engineering developments that focused on various green approaches and large-scale process production routes for quantum dots. Fundamental process engineering principles were illustrated. In relation to the small-scale hot injection method, our discussions focus on the non-injection route that could be scaled up with engineering stir-tank reactors. In addition, applications that demand to utilize quantum dots as "commodity" chemicals are discussed, including solar cells and solid-state lightings.

  18. THE LHC CRYOMAGNET SUPPORTS IN GLASS-FIBER REINFORCED EPOXY: A LARGE SCALE INDUSTRIAL PRODUCTION WITH HIGH REPRODUCIBILITY IN PERFORMANCE

    SciTech Connect

    Poncet, A.; Struik, M.; Parma, V.; Trigo, J.

    2008-03-03

    The about 1700 LHC main ring super-conducting magnets are supported within their cryostats on 4700 low heat in leak column-type supports. The supports were designed to ensure a precise and stable positioning of the heavy dipole and quadrupole magnets while keeping thermal conduction heat loads within budget. A trade-off between mechanical and thermal properties, as well as cost considerations, led to the choice of glass fibre reinforced epoxy (GFRE). Resin Transfer Moulding (RTM), featuring a high level of automation and control, was the manufacturing process retained to ensure the reproducibility of the performance of the supports throughout the large production.The Spanish aerospace company EADS-CASA Espacio developed the specific RTM process, and produced the total quantity of supports between 2001 and 2004.This paper describes the development and the production of the supports, and presents the production experience and the achieved performance.

  19. Comparison of the One-electron Oxidations of CO-Bridged vs Unbridged Bimetallic Complexes: Electron-transfer Chemistry of Os2Cp2(CO)4 and Os2Cp*2(μ-CO)2(CO)2 (Cp = η5-C5H5, Cp* = η5-C5Me5)

    SciTech Connect

    Laws, Derek R.; Bullock, R. Morris; Lee, Richmond; Huang, Kuo-Wei; Geiger, William J.

    2014-09-22

    The one-electron oxidations of two dimers of half-sandwich osmium carbonyl complexes have been examined by electrochemistry, spectro-electrochemistry, and computational methods. The all-terminal carbonyl complex Os2Cp2(CO)4 (1, Cp = η5-C5H5) undergoes a reversible one-electron anodic reaction at E1/2 = 0.41 V vs ferrocene in CH2Cl2/0.05 M [NBu4][B(C6F5)4], giving a rare example of a metal-metal bonded radical cation unsupported by bridging ligands. The IR spectrum of 1+ is consistent with an approximately 1:1 mixture of anti and gauche structures for the 33 e- radical cation in which it has retained all-terminal bonding of the CO ligands. DFT calculations, including orbital-occupancy-perturbed Mayer bond-order analyses, show that the HOMOs of anti-1 and gauche-1 are metal-ligand delocalized. Removal of an electron from 1 has very little effect on the Os-Os bond order, accounting for the resistance of 1+ to heterolytic cleavage. The Os-Os bond distance is calculated to decrease by 0.10 Å and 0.06 Å as a consequence of one-electron oxidation of anti-1 and gauche-1, respectively. The CO-bridged complex Os2Cp*2(μ-CO)2(CO)2 (Cp* = η5-C5Me5), trans-2, undergoes a more facile oxidation, E1/2 = - 0.11 V, giving a persistent radical cation shown by solution IR analysis to preserve its bridged-carbonyl structure. However, ESR analysis of frozen solutions of 2+ is interpreted in terms of the presence of two isomers, most likely anti-2+ and trans-2+, at low temperature. Calculations show that the HOMO of trans-2 is highly delocalized over the metal-ligand framework, with the bridging carbonyls accounting for about half of the orbital makeup. The Os-Os bond order again changes very little with removal of an electron, and the Os-Os bond length actually undergoes minor shortening. Calculations suggest that the second isomer of 2+ has both the trans CO-bridged and the anti all-terminal CO structures. DRL and WEG acknowledge the support of the National Science Foundation under

  20. Users from Industry

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, andor...

  1. Industrial Buildings

    Energy Information Administration (EIA) (indexed site)

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  2. The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.

    SciTech Connect

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2009-11-02

    Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result

  3. Idaho Power- Large Commercial Custom Efficiency Program

    Energy.gov [DOE]

    Large commercial and industrial Idaho Power customers that reduce energy usage through more efficient electrical commercial and industrial processes may qualify for an incentive that is the lesser...

  4. Large Customers (DR Sellers)

    SciTech Connect

    Kiliccot, Sila

    2011-10-25

    State of the large customers for demand response integration of solar and wind into electric grid; openADR; CAISO; DR as a pseudo generation; commercial and industrial DR strategies; California regulations

  5. Industrial Users

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Industrial Users The facility has been used for more than a decade by a virtual Who's Who of the semiconductor industry to simulate the potential failures posed by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User Information The Neutron and Nuclear Science (WNR) Facility welcomes proposals for beam time experiments from industry users. Proprietary and non-proprietary industrial

  6. Industrial Permit

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System. October 15, 2012 Outfall from the Laboratory's Data Communications Center cooling towers Intermittent flow of discharged water from the Laboratory's Data Communications Center eventually reaches perennial segment of Sandia Canyon during storm events (Outfall 03A199). Contact Environmental Communication & Public

  7. Industry Economists

    Energy Information Administration (EIA) (indexed site)

    Industry Economists The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Industry Economist, whose work is associated with the performance of economic analyses using economic techniques. Responsibilities: Industry Economists perform or participate in one or more of the following

  8. OTHER INDUSTRIES

    Office of Energy Efficiency and Renewable Energy (EERE)

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  9. Industrial Users

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR Facility Links About WNR Industrial Users 4FP30L-A/ICE House 4FP30R/ICE II Media

  10. NIPSCO Custom Commercial and Industrial Gas and Electric Incentive Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    NIPSCO’s Commercial and Industrial Custom Electric and Natural Gas Incentive Program offers financial incentives to qualifying large commercial, industrial, non-profit, governmental and...

  11. Commercial / Industrial Lighting

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  12. Industry Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    idatech.com info@idatech.com 63065 NE 18 th Street Bend, OR 97701 541.383.3390 Industry Perspective Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 11 - 13, 2012 Mike Hicks Chairman of the Board of Directors, FCHEA Treasurer of the Board of Directors, FCS&E Engineering Manager, Technology Development & Integration, IdaTech Outline 1. Critical Factors * Fuel Purity * Fuel Cost 2. Natural Gas - The Wild Card & Competition 3. IdaTech's Experience Implementing

  13. Mining Industry Energy Bandwidth Study

    SciTech Connect

    none,

    2007-07-01

    The Industrial Technologies Program (ITP) relies on analytical studies to identify large energy reduction opportunities in energy-intensive industries and uses these results to guide its R&D portfolio. The energy bandwidth illustrates the total energy-saving opportunity that exists in the industry if the current processes are improved by implementing more energy-efficient practices and by using advanced technologies. This bandwidth analysis report was conducted to assist the ITP Mining R&D program in identifying energy-saving opportunities in coal, metals, and mineral mining. These opportunities were analyzed in key mining processes of blasting, dewatering, drilling, digging, ventilation, materials handling, crushing, grinding, and separations.

  14. Industry Profile

    Energy.gov [DOE]

    Combined heat and power (CHP)—sometimes referred to as cogeneration—involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

  15. Industrial Carbon Management Initiative

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Industrial Assessment Centers Update, Fall 2015 Industrial Assessment Centers Update, Fall 2015 Read the Industrial Assessment Centers (IAC) Update, Fall 2015 Industrial Assessment Centers Update, Fall 2015 (477.91 KB) More Documents & Publications Industrial Assessment Centers (IAC) Update -- July 2015 Industrial Assessment Centers Update, Spring 2016 Industrial Assessment Centers Quarterly Update, Spring 2014

    Industrial Carbon Management Initiative Fact Sheets Research Team Members Key

  16. Partnerships For Industry - JCAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    115.jpg Partnerships For Industry Connect With JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP Connect with JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP partnerships for industry JCAP has established an Industrial Partnership Program. For more information on Industrial Partnership Program or to learn more about other modes of industrial interactions with JCAP, please contact: California Institute of Technology Office of

  17. Carbon Emissions: Food Industry

    Energy Information Administration (EIA) (indexed site)

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  18. Chemicals Industry Vision

    SciTech Connect

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  19. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    This case study describes the Southern California Gas Company’s Industrial End User program, which helps large industrial customers increase energy efficiency and reduce energy use and greenhouse gas emissions.

  20. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    SciTech Connect

    2010-06-25

    This case study describes the Southern California Gas Company’s Industrial End User program that helps large industrial customers increase energy efficiency and reduce energy use and GHG emissions.

  1. Chemical Industry Corrosion Management

    SciTech Connect

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  2. Electric Utility Industry Update

    Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  3. Industrial | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Trends Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case....

  4. Uranium industry annual 1997

    SciTech Connect

    1998-04-01

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  5. LS Industrial Systems Co Ltd formerly LG Industrial Systems ...

    OpenEI (Open Energy Information) [EERE & EIA]

    LS Industrial Systems Co Ltd formerly LG Industrial Systems Jump to: navigation, search Name: LS Industrial Systems Co Ltd (formerly LG Industrial Systems) Place: Anyang,...

  6. Number of Large Energy User Manufacturing Facilities by Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) State...

  7. LARGE INDUSTRIAL FACILITIES BY STATE | Department of Energy

    Energy.gov [DOE] (indexed site)

    | Department of Energy Below is the text version of the webinar Know the Score: Hear the Latest on Home Energy Score from DOE, presented in January 2016. Watch the presentation. Gannate Khowailed: ... for joining the call. It's an exciting time, and I'm excited to introduce this webinar. Ideally, what we are here today is to talk about the Home Energy Score program that was developed at the U.S. Department of Energy and how this program is trying to enable the ability to continue realizing

  8. Nuclear Industry Job Descriptions Boilermaker

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Industry Job Descriptions Boilermaker Skilled craft who make, install, and repair boilers, closed vats, and other large vessels or containers that hold liquids and gases. Install and maintain boilers and other vessels, and help erect and repair air pollution equipment, blast furnaces, water treatment plants, storage and process tanks, and smoke stacks. Carpenter Skilled craft who construct, erect, install, and repair structures and fixtures made from wood and other materials. Includes

  9. Industrial sector energy consumption

    Annual Energy Outlook

    Chapter 7 Industrial sector energy consumption Overview The industrial sector uses more delivered energy 294 than any other end-use sector, consuming about 54% of the world's total ...

  10. Geothermal Industry Partnership Opportunities

    Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  11. Industrial Strength Pipes

    Energy Science and Technology Software Center

    2006-01-23

    Industrial Strength Pipes (ISP) is a toolkit for construction pipeline applications using the UNIX pipe and filter model.

  12. Industrial Green | Jefferson Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant

  13. Photovoltaics industry profile

    SciTech Connect

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  14. Industry`s turnaround looks real

    SciTech Connect

    1997-08-01

    The paper discusses the industry outlook for North American gas and oil industries. In a robust Canada, land sales are setting records, drilling is up, and output is rising beyond last year`s 21% growth. A perception among US operators that wellhead prices will remain stable is translating to increased spending. The USA, Canada, Mexico, Cuba are evaluated separately, with brief evaluations of Greenland, Guatemala, Belize, and Costa Rico. Data are presented on drilling activities.

  15. Uranium industry annual 1998

    SciTech Connect

    1999-04-22

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  16. Uranium industry annual 1994

    SciTech Connect

    1995-07-05

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  17. AVLIS industrial access program

    SciTech Connect

    Not Available

    1984-11-15

    This document deals with the procurements planned for the construction of an Atomic Vapor Laser Isotope Separation (AVLIS) production plant. Several large-scale AVLIS facilities have already been built and tested; a full-scale engineering demonstration facility is currently under construction. The experience gained from these projects provides the procurement basis for the production plant construction and operation. In this document, the status of the AVLIS process procurement is presented from two viewpoints. The AVLIS Production Plant Work Breakdown Structure is referenced at the level of the items to be procured. The availability of suppliers for the items at this level is discussed. In addition, the work that will result from the AVLIS enrichment plant project is broken down by general procurement categories (construction, mechanical equipment, etc.) and the current AVLIS suppliers are listed according to these categories. A large number of companies in all categories are currently providing AVLIS equipment for the Full-Scale Demonstration Facility in Livermore, California. These companies form an existing and expanding supplier network for the AVLIS program. Finally, this document examines the relationship between the AVLIS construction project/operational facility and established commercial suppliers. The goal is to utilize existing industrial capability to meet the needs of the project in a competitive procurement situation. As a result, costs and procurement risks are both reduced because the products provided come from within the AVLIS suppliers' experience base. At the same time, suppliers can benefit by the potential to participate in AVLIS technology spin-off markets. 35 figures.

  18. Uranium industry annual, 1987

    SciTech Connect

    Not Available

    1988-09-29

    This report provides current statistical data on the US uranium industry for the Congress, federal and state agencies, the uranium and utility industries, and the public. It utilizes data from the mandatory ''Uranium Industry Annual Survey,'' Form EIA-858; historical data collected by the Energy Information Administration (EIA) and by the Grand Junction (Colorado) Project Office of the Idaho Operations Office of the US Department of Energy (DOE); and other data from federal agencies that preceded the DOE. The data provide a comprehensive statistical characterization of the industry's annual activities and include some information about industry plans and commitments over the next several years. Where these data are presented in aggregate form, care has been taken to protect the confidentiality of company-specific data while still conveying an accurate and complete statistical representation of the industry data.

  19. Midwest Industrial Energy Efficiency Handbook

    SciTech Connect

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  20. Keystone coal industry manual

    SciTech Connect

    Not Available

    1993-01-01

    The 1994 Keystone Coal Industry Manual is presented. Keystone has served as the one industry reference authority for the many diverse organizations concerned with the supply and utilization of coal in the USA and Canada. Through the continuing efforts of coal producers, buyers, users, sellers, and equipment designers and manufacturers, the coal industry supplies an abundant and economical fuel that is indispensable in meeting the expanding energy needs of North America. The manual is divided into the following sections: coal sales companies, coal export, transportation of coal, consumer directories, coal associations and groups, consulting and financial firms, buyers guide, industry statistics and ownership, coal preparation, coal mine directory, and coal seams.

  1. Macro Industrial Working Group

    Gasoline and Diesel Fuel Update

    is a "Lite" year - New ethanepropane pricing model only major update - Major side ... you'll see today - Shipments - Industrial energy use (total and excluding both refining ...

  2. Baytown Industrial Park

    SciTech Connect

    2005-06-01

    This is a combined heat and power (CHP) project profile on an 830 MW combined-cycle CHP application at Baytown Industrial Park in Baytown, Texas.

  3. wave energy industry research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar ... SunShot Grand Challenge: Regional Test Centers wave energy industry research HomeTag:wave ...

  4. Commercial & Industrial Demand Response

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  5. Window Industry Technology Roadmap

    SciTech Connect

    None, None

    2000-04-01

    The Window Industry Technology Roadmap looks at the trends in window design and installation in 2000 and projects trends for the future.

  6. About Industrial Distributed Energy

    Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  7. Presentations for Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    Learn energy-saving strategies from leading manufacturing companies and energy experts. The presentations are organized below by topic area. In addition, industrial energy managers, utilities, and...

  8. Sustainable Nanomaterials Industry Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industry Perspective U.S. Department of Energy Advanced Manufacturing Office Sustainable ... Uses renewable resources grown with sustainable forestry practices Encourages ...

  9. Industrial Energy Efficiency

    Energy.gov [DOE] (indexed site)

    Barriers to Industrial Energy Efficiency Report to Congress June 2015 United States Department of Energy Washington, DC 20585 Department of Energy | June 2015 Message from the ...

  10. Appendix C - Industrial technologies

    SciTech Connect

    None, None

    2002-12-20

    This report describes the results, calculations, and assumptions underlying the GPRA 2004 Quality Metrics results for all Planning Units within the Office of Industrial Technologies.

  11. China develops natural gas industry

    SciTech Connect

    An, Z.

    1982-09-06

    As of 1981, China was producing some 474.4 billion CF (12.74 billion m/sup 3/)/yr of natural gas from over 60 gas fields, 40 of them in Sichuan Province. The Sichuan gas lies in fractures and solution cavities in limestone and dolomite formations that generally require stimulation. After desulfurization, the gas is used by the steel and chemical industries and for residential heating. Recent discoveries in other areas of China include the Guxinzhuang field in the Bohai-North China basin, where geological conditions favor large gas pools, and the Sebei fields in Qaidam basin, northwest China.

  12. The industrial role in the changing electric industry

    SciTech Connect

    Freeman, B.

    1994-12-31

    Armco is a large customer on the West Penn Power, Ohio Power, and Ohio Edison systems. Two of the three utilities are considered low cost providers, one as a high cost provider. Even though all three utilities provide the same product in the same region of the country, the established regulatory system for setting rates has resulted in a price disparity between these suppliers that is economically unjustified. Deregulation and retail wheeling would correct this efficiency problem to the benefit of the ratepayers. Armco, along with many other energy intensive industrials, has a long history of involvement in traditional utility matters. Typically, this role has had two phases: First, at the local level, a partnership with the utility on the efficient transmission and distribution of energy into our facilities and involvement with the utility on the customer side of the meter with projects that affect power consumption and quality in the plant. The second phase is in the regulatory world. Typically, Armco is one of many adversaries jockeying for adoption of a particular revenue requirement and method of cost allocation in PUC hearings. At the state level, Armco has successfully appealed several PUC decisions that could adversely affect business. Armco management continues to support industrial positions at the federal level through trade associations such as ELCON. Armco`s role in the changing electric power industry is discussed.

  13. The methanol industry`s missed opportunities

    SciTech Connect

    Stokes, C.A.

    1995-12-31

    Throughout its history the methanol industry has been backward in research and development and in industry cooperation on public image and regulatory matters. It has been extremely reticent as to the virtue of its product for new uses, especially for motor fuel. While this is perhaps understandable looking back, it is inexcusable looking forward. The industry needs to cooperate on a worldwide basis in research and market development, on the one hand, and in image-building and political influence, on the other, staying, of course, within the US and European and other regional antitrust regulations. Unless the industry develops the motor fuel market, and especially the exciting new approach through fuel cell operated EVs, to siphon off incremental capacity and keep plants running at 90% or more of capacity, it will continue to live in a price roller-coaster climate. A few low-cost producers will do reasonably well and the rest will just get along or drop out here and there along the way, as in the past. Having come so far from such a humble beginning, it is a shame not to realize the full potential that is clearly there: a potential to nearly double sales dollars without new plants and to produce from a plentiful resource, at least for the next half-century, all the methanol that can be imagined to be needed. Beyond that the industry can turn to renewable energy--the sun--via biomass growth, to make their product. In so doing, it can perhaps apply methanol as a plant growth stimulant, in effect making the product fully self-sustainable. The world needs to know what methanol can do to provide--economically and reliably--the things upon which a better life rests.

  14. Uranium industry annual 1993

    SciTech Connect

    Not Available

    1994-09-01

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

  15. Geothermal industry assessment

    SciTech Connect

    Not Available

    1980-07-01

    An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

  16. Uranium industry annual 1996

    SciTech Connect

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  17. Uranium industry annual 1995

    SciTech Connect

    1996-05-01

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  18. Industrial process surveillance system

    DOEpatents

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  19. Industrial Process Surveillance System

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W; Singer, Ralph M.; Mott, Jack E.

    2001-01-30

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  20. Industrial process surveillance system

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.; Singer, Ralph M.; Mott, Jack E.

    1998-01-01

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  1. CASL Industry Council Meeting

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    6 CASL Industry Council Meeting March 26-27, 2013 - Cranberry Township, PA Minutes The sixth meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on March 26-27, 2013 at Westinghouse in Cranberry Township, PA. The first day of the Industry Council was chaired by John Gaertner and the second day was chaired by Heather Feldman. The meeting attendees and their affiliations are listed on Attachment 1 to these minutes. Attendance was

  2. CASL Industry Council Meeting

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Industry Council Meeting 4 - 5 November 2015 Meeting Minutes The autumn 2015 meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on 4 - 5 November 2015 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN. The first day of meeting was a joint meeting of the CASL Industry and Science Councils and was held at the Spallation Neutron Source (SNS) facility at ORNL. An independent IC meeting was held the morning of the second

  3. Caraustar Industries Energy Assessment

    SciTech Connect

    2010-06-25

    This plant-wide assessment case study is about commissioned energy assessments by the U.S. Department of Energy Industrial Technologies Program at two of Caraustar's recycled paperboard mills.

  4. Uranium Industry Annual, 1992

    SciTech Connect

    Not Available

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  5. Presentations for Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    Industrial energy managers, utilities, and energy management professionals can find online trainings and information dissemination at no-cost. AMO has provided these energy-saving strategies from leading manufacturing companies and energy experts through several different presentation series.

  6. Industrial Fuel Flexibility Workshop

    SciTech Connect

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  7. Macro Industrial Working Group

    Energy Information Administration (EIA) (indexed site)

    September 29, 2014 | Washington, DC WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Industrial team preliminary results for AEO2015 Overview AEO2015 2 Industrial Team Washington DC, September 29, 2014 WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE * AEO2015 is a "Lite" year - New ethane/propane pricing model only major update - Major side cases released with Reference case

  8. CASL Industry Council Members:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    CASL Industry Council Members: We are looking forward to hosting you at the upcoming CASL Industry Council Meeting on Tuesday, April 12, 2016 through Wednesday, April 13, 2016 at the following location: ALOFT Greenville Downtown Converge Conference Room 5 North Laurens Street Greenville, SC 29601 864-297-6100 Meeting Contact: Lorie Fox (865) 548-5178 Lodging: ALOFT Greenville Downtown: http://www.aloftgreenvilledowntown.com/ Hotel Information * Check-in time: 4 PM * Checkout time: 12 PM * Fast

  9. NREL Employees Lauded by Industry Peers - News Releases | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Employees Lauded by Industry Peers April 8, 2013 Employees of the U.S. Department of Energy's (DOE)'s National Renewable Energy Laboratory (NREL) were recently recognized by industry peers for their work in grid integration, industry advancement and electrochemistry. NREL was also named an Outstanding Large Company by IEEE. Utility Variable-Generation Integration Group Recognizes Five NREL Employees The Utility Variable-Generation Integration Group (UVIG) announced that NREL's Debbie Lew, Greg

  10. Industry Cluster Development Grant winners

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Industry Cluster Development Grant winners Community Connections: Your link to news and ... All Issues submit Industry Cluster Development Grant winners Recipients include Picuris ...

  11. Eolica Industrial | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Industrial Jump to: navigation, search Name: Eolica Industrial Place: Sao Paulo, Sao Paulo, Brazil Zip: 01020-901 Sector: Wind energy Product: Brazil based wind turbine steel...

  12. Jumpstarting the carbon capture industry

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jumpstarting the carbon capture industry: Science on the Hill Jumpstarting the carbon capture industry: Science on the Hill Carbon capture, utilization, and storage can provide a...

  13. Guardian Industries | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Industries Jump to: navigation, search Name: Guardian Industries Place: Auburn Hills, MI Website: www.guardian.com References: Results of NREL Testing (Glass Magazine)1 Guardian...

  14. Xcel Energy- Commercial and Industrial Standard Offer Program

    Energy.gov [DOE]

    Xcel Energy Large Commercial and Industrial Standard Offer Program (SOP) pays incentives to businesses for retrofit and new construction projects that save energy in peak summer demand periods and...

  15. Industrial Energy Efficiency Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Energy Efficiency Assessments Industrial Energy Efficiency Assessments Details about the Industrial Energy Efficiency Assessments program and its implementation in...

  16. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial ...

  17. Emulsified industrial oils recycling

    SciTech Connect

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  18. Industrial Facility Combustion Energy Use

    DOE Data Explorer

    McMillan, Colin

    2016-08-01

    Facility-level industrial combustion energy use is calculated from greenhouse gas emissions data reported by large emitters (>25,000 metric tons CO2e per year) under the U.S. EPA's Greenhouse Gas Reporting Program (GHGRP, https://www.epa.gov/ghgreporting). The calculation applies EPA default emissions factors to reported fuel use by fuel type. Additional facility information is included with calculated combustion energy values, such as industry type (six-digit NAICS code), location (lat, long, zip code, county, and state), combustion unit type, and combustion unit name. Further identification of combustion energy use is provided by calculating energy end use (e.g., conventional boiler use, co-generation/CHP use, process heating, other facility support) by manufacturing NAICS code. Manufacturing facilities are matched by their NAICS code and reported fuel type with the proportion of combustion fuel energy for each end use category identified in the 2010 Energy Information Administration Manufacturing Energy Consumption Survey (MECS, http://www.eia.gov/consumption/manufacturing/data/2010/). MECS data are adjusted to account for data that were withheld or whose end use was unspecified following the procedure described in Fox, Don B., Daniel Sutter, and Jefferson W. Tester. 2011. The Thermal Spectrum of Low-Temperature Energy Use in the United States, NY: Cornell Energy Institute.

  19. Solar industrial process heat

    SciTech Connect

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  20. UAIEE and Industrial Assessment Centers

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    55-62011| Industrial Assessment Centers * Started in 1976 * Currently 26 Centers across the US * Almost...

  1. Large displacement spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2002-01-01

    A new class of spherical joints has a very large accessible full cone angle, a property which is beneficial for a wide range of applications. Despite the large cone angles, these joints move freely without singularities.

  2. Running Large Scale Jobs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Running Large Scale Jobs Running Large Scale Jobs Users face various challenges with running and scaling large scale jobs on peta-scale production systems. For example, certain applications may not have enough memory per core, the default environment variables may need to be adjusted, or I/O dominates run time. This page lists some available programming and run time tuning options and tips users can try on their large scale applications on Hopper for better performance. Try different compilers

  3. Industry Partners Panel

    Office of Energy Efficiency and Renewable Energy (EERE)

    Industry Panel presenters include: Michael G. Andrew, Director - Academic and Technical Programs, Advanced Products and Materials, Johnson Controls Power Solutions Michael A. Fetcenko, Vice President and Managing Director, BASF Battery Materials – Ovonic, BASF Corporation Adam Kahn, Founder and CEO, AKHAN Technologies, Inc. Stephen E. Zimmer, Executive Director, United States Council for Automotive Research (USCAR)

  4. Petroleum industry in Iran

    SciTech Connect

    Farideh, A.

    1981-01-01

    This study examines the oil industry in Iran from the early discovery of oil nearly two hundred years ago in Mazandaran (north part) to the development of a giant modern industry in the twentieth century. Chapter I presents a brief historical setting to introduce the reader to the importance of oil in Iran. It focuses on the economic implications of the early oil concessions in the period 1901 to 1951. Chapter II discusses the nationalization of the Iranian oil industry and creation of NIOC in 1951 and the international political and economic implication of these activities. Chapter III explains the activities of NIOC in Iran. Exploration and drilling, production, exports, refineries, natural gas, petrochemicals and internal distributions are studied. Chapter IV discusses the role of the development planning of Iran. A brief presentation of the First Development Plan through the Fifth Development Plan is given. Sources and uses of funds by plan organization during these Five Plans is studied. The Iran and Iraq War is also studied briefly, but the uncertainty of its resolution prevents any close analysis of its impact on the Iranian oil industry. One conclusion, however, is certain; oil has been a vital resource in Iran's past and it will remain the lifetime of its economic development in the future.

  5. INTERMOUNTAIN INDUSTRIAL ASSESSMENT CENTER

    SciTech Connect

    MELINDA KRAHENBUHL

    2010-05-28

    The U. S. Department of Energy’s Intermountain Industrial Assessment Center (IIAC) at the University of Utah has been providing eligible small- and medium-sized manufacturers with no-cost plant assessments since 2001, offering cost-effective recommendations for improvements in the areas of energy efficiency, pollution prevention, and productivity improvement.

  6. Workshop proceeding of the industrial building energy use

    SciTech Connect

    Akbari, H.; Gadgil, A.

    1988-01-01

    California has a large number of small and medium sized industries which have a major impact on the demand growth of California utilities. Energy use in building services (lighting, HVAC, office equipment, computers, etc.). These industries constitute an important but largely neglected fraction of the total site energy use. The ratio of energy use in building service to the total site energy use is a function of the industrial activity, its size, and the climate at the site of the facility. Also, energy use in building services is more responsive to weather and occupant schedules than the traditional base-load'' industrial process energy. Industrial energy use is considered as a base-load'' by utility companies because it helps to increase the utilities' load factor. To increase this further, utilities often market energy at lower rates to industrial facilities. Presently, the energy use in the building services of the industrial sector is often clubbed together with industrial process load. Data on non-process industrial energy use are not readily available in the literature. In cases where the major portion of the energy is used in the building services (with daily and seasonal load profiles that in fact peak at the same time as systemwide load peaks), the utility may be selling below cost at peak power times. These cases frequently happen with electric utilities. 30 figs., 6 tabs.

  7. Energy efficiency programs and policies in the industrial sector in industrialized countries

    SciTech Connect

    Galitsky, Christina; Price, Lynn; Worrell, Ernst

    2004-06-01

    About 37% of the primary energy consumed both in the U.S. and globally is used by the industrial sector. A variety of energy efficiency policies and programs have been implemented throughout the world in an effort to improve the energy efficiency of this sector. This report provides an overview of these policies and programs in twelve industrialized nations and the European Union (EU). We focus on energy efficiency products and services that are available to industrial consumers, such as reports, guidebooks, case studies, fact sheets, profiles, tools, demonstrations, roadmaps and benchmarking. We also focus on the mechanisms to communicate the availability and features of these products and services and to disseminate them to the industrial consumers who can use them. Communication channels include customer information centers and websites, conferences and trade shows, workshops and other training mechanisms, financial assistance programs, negotiated agreements, newsletters, publicity, assessments, tax and subsidy schemes and working groups. In total, over 30 types of industrial sector energy efficiency products, services and delivery channels have been identified in the countries studied. Overall, we found that the United States has a large variety of programs and offers industry a number of supporting programs for improving industrial energy efficiency. However, there are some products and services found in other industrialized countries that are not currently used in the U.S., including benchmarking programs, demonstration of commercialized technologies and provision of energy awareness promotion materials to companies. Delivery mechanisms found in other industrialized countries that are not employed in the U.S. include negotiated agreements, public disclosure and national-level tax abatement for energy-efficient technologies.

  8. Career Map: Industrial Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Engineer Career Map: Industrial Engineer Two industrial engineers analyze data on a computer. Industrial Engineer Position Title Industrial Engineer Alternate Title(s) Production Engineer, Process Engineer, Manufacturing Engineer, Industrial Production Manager Education & Training Level Advanced, Bachelors required, prefer graduate degree Education & Training Level Description Industrial engineers should have a bachelor's degree in industrial engineering. Employers also value

  9. Automotive Turbocharging: Industrial Requirements and Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turbocharging: Industrial Requirements and Technology Developments Automotive Turbocharging: Industrial Requirements and Technology Developments Significant improvements in ...

  10. Coal industry annual 1993

    SciTech Connect

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  11. Coal industry annual 1997

    SciTech Connect

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  12. US cement industry

    SciTech Connect

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  13. Fermilab | Resources | Industrial Partnerships

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resources Navbar Toggle About Leadership and Organization Leadership bios Organizational chart Committees and Councils Science Photo and Video Gallery History Diversity Education Safety Sustainability and Environment Contact Related Links DOE FRA UChicago URA Newsroom Spotlight Press releases Fact sheets and brochures symmetry Interactions.org Photo and video archive Resources for ... Employees Researchers, postdocs and graduate students Job seekers Neighbors Industry K-12 students, teachers and

  14. Industrial Analytics Corporation

    SciTech Connect

    Industrial Analytics Corporation

    2004-01-30

    The lost foam casting process is sensitive to the properties of the EPS patterns used for the casting operation. In this project Industrial Analytics Corporation (IAC) has developed a new low voltage x-ray instrument for x-ray radiography of very low mass EPS patterns. IAC has also developed a transmitted visible light method for characterizing the properties of EPS patterns. The systems developed are also applicable to other low density materials including graphite foams.

  15. Recent developments: Industry briefs

    SciTech Connect

    1992-06-01

    This article is the `Industry Briefs` portion of Nuexco`s June 1992 `Recent Developments` section. Specific items mentioned in this article include: (1) a new fuel fabrication facility in South Korea, (2) use of mixed-oxide fuel in Belgium, (3) privatization of nuclear plants in Argentina, (4) startup of Ohi-4 in Japan, (5) purchase of uranium properties in Wyoming, and (6) formation of an international utilities forum.

  16. Running Large Scale Jobs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    try on their large scale applications on Hopper for better performance. Try different compilers and compiler options The available compilers on Hopper are PGI, Cray, Intel, GNU,...

  17. Industrial Dojo Program Fosters Industrial Internet Development | GE Global

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Launches Cloud Foundry 'Industrial Dojo,' Contributes to Open Source to Foster Continued Development of the Industrial Internet Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Launches Cloud Foundry 'Industrial Dojo,' Contributes to Open Source to Foster Continued Development of the Industrial Internet

  18. Reid Industries | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Reid Industries Jump to: navigation, search Name: Reid Industries Address: PO Box 503 Place: San Francisco, CA Zip: 94104 Phone Number: 415-947-1050 Coordinates: 37.7923058,...

  19. Deaerators in Industrial Steam Systems

    SciTech Connect

    Not Available

    2006-01-01

    This revised ITP tip sheet on deaerators in industrial steam systems provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  20. Industrial Process Heating - Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Process Heating - Technology Assessment 1 2 Contents 3 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Industrial Process Heating Overview ............................................................................................ 2 6 2. Technology Assessment and Potential ................................................................................................. 6 7 2.1. Status

  1. Forest Products Industry Technology Roadmap

    SciTech Connect

    none,

    2010-04-01

    This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.

  2. Large-bore pipe decontamination

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system.

  3. Enviromech Industries | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Enviromech Industries Place: Thousands Palms, California Zip: 92276 Product: Alternative fuel system design and integration company. References: Enviromech...

  4. Barriers to Industrial Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Barriers to Industrial Energy Efficiency A Study Pursuant to Section 7 of the American Energy Manufacturing Technical Corrections Act June 2015 Blank Page iii Statutory Requirement American Energy Manufacturing Technical Corrections Act Public Law 112-210 Section 7. Reducing Barriers to the Deployment of Industrial Energy Efficiency (a) Definitions - In this section: 1) Industrial Energy Efficiency - The term "industrial energy efficiency" means the energy efficiency derived from

  5. CEMI Industrial Efficiency (text version)

    Energy.gov [DOE]

    Below is the text version for the Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video.  

  6. Industry outreach a status report

    SciTech Connect

    Surek, D.; Sen, R.

    1995-09-01

    The Outreach Project was initiated in October 1994 with the objective of developing a multi-year plan for the U.S. Department of Energy (DOE) for targeted outreach activities for stakeholders in industry and the general public. This status report summarizes the work on industry outreach that has been completed since the inception of the project in October 1994. A three-pronged approach was taken to ascertain issues related to industry outreach. First, there was a review of on-going and past industry outreach activities at DOE and NHA. Next, a series of meetings with industry decision makers was arranged to get a better understanding of industry interests and concerns, and to discuss how DOE and industry could work collaboratively to develop hydrogen energy systems. Third, a workshop is scheduled where representatives from industry, DOE and other federal agencies can identify issues that would enhance partnering between the federal government and industry in the development of hydrogen energy systems. At this tiny, the review of on-going and past activities has been completed. Industry interviews are in progress and a majority of meetings have been held. Analysis of the information gained is in progress. The preliminary analysis of this information indicates that for appropriate near-term demonstration-type projects, the level of interest for collaboration between DOE and industry is high. The data also identifies issues industry is concerned with which impact the commercialization of hydrogen energy systems.

  7. Recent developments: Industry briefs

    SciTech Connect

    1990-04-01

    Recent nuclear industry briefs are presented. These briefs include: Soviet Union to build Iran nuclear plant; Dension announces cuts in Elliot Lake production; Soviet environmental study delays Rostov startup; Cogema closes two mines; Namibian sanctions lifted by USA and Canada; US Energy and Kennecott restructors joint venture; Australians reelect Hawke; China to buy Soviet nuclear plant; Olympic Dam`s first sale of concentrates to USA; Uranevz buys one-third of Cogema`s Rabbit Lake operations; East and West Germany forming joint nuclear law; and Nova Scotia extends uranium exploration plan.

  8. Coal Industry Annual 1995

    SciTech Connect

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  9. Coal industry annual 1996

    SciTech Connect

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  10. CASL Industry Council Meeting

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Meeting 12-13 April 2016 Meeting Minutes Page | 1 The spring 2016 meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on April 12-13, 2016 at the Aloft Hotel in Greenville, South Carolina and was led by the CASL IC Chairman Scott Thomas of Duke Energy and the new CASL IC Executive Director Erik Mader from the EPRI Fuel Reliability Program. The meeting location and logistics were excellent and the group profusely thanked Lorie

  11. Characterization of the U.S. Industrial/Commercial Boiler Population -

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Final Report, May 2005 | Department of Energy U.S. Industrial/Commercial Boiler Population - Final Report, May 2005 Characterization of the U.S. Industrial/Commercial Boiler Population - Final Report, May 2005 The U.S. industrial and commercial sectors consume large quantities of energy. Much of this energy is used in boilers to generate steam and hot water. This 2005 report characterizes the boilers in the industrial and commercial sector in terms of number of units, aggregate capacity,

  12. Conducting polymers: Synthesis and industrial applications

    SciTech Connect

    Gottesfeld, S.

    1997-04-01

    The Conducting Polymer project funded by the AIM Program has developed new methods for the synthesis of conducting polymers and evaluated new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1996 included two ongoing efforts on membranes for gas separation and on electrochemical capacitors and a third new application: electrochemical reactors (ECRs) based on polymeric electrolytes. As a gas separation membrane, conducting polymers offer high selectivity and the potential to chemically or electrically adapt the membrane for specific gas combinations. Potential energy savings in the US for this application are estimated at 1 to 3 quads/yr. As an active material in electrochemical capacitors, electronically conducting polymers have the potential of storing large amounts of electric energy in low cost materials. Potential energy savings estimated at 1 quad/yr would result from introduction of electrochemical capacitors as energy storage devices in power trains of electric and hybrid vehicles, once such vehicles reach 20% of the total transportation market in the US. In the chlor-alkali industry, electrochemical reactors based on polymer electrolyte membranes consume around 1 % of the total electric power in the US. A new activity, started in FY 1996, is devoted to energy efficient ECRs. In the case of the chlor-alkali industry, energy savings as high as 50% seem possible with the novel ECR technology demonstrated by the author in 1996.

  13. Building America Webinar: Opportunities in Large Data Collection and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Analysis | Department of Energy Opportunities in Large Data Collection and Analysis Building America Webinar: Opportunities in Large Data Collection and Analysis The webinar, presented on April 16, 2014, focused on specific Building America projects that are looking to gather and analyze large bodies of data on new and existing homes, and discussed opportunities for industry to collaborate with researchers to gather and analyze valuable data. View the presentations: Introduction and Building

  14. Controlling NOx emission from industrial sources

    SciTech Connect

    Srivastava, R.K.; Nueffer, W.; Grano, D.; Khan, S.; Staudt, J.E.; Jozewicz, W.

    2005-07-01

    A number of regulatory actions focused on reducing NOx emissions from stationary combustion sources have been taken in the United States in the last decade. These actions include the Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, and the NOx SIP Call rulemakings. In addition to these regulations, the recent Interstate Air Quality Rulemaking proposal and other bills in the Congress are focusing on additional reductions of NOx. Industrial combustion sources accounted for about 18016 of NOx emissions in the United States in 2000 and constituted the second largest emitting source category within stationary sources, only behind electric utility sources. Based on these data, reduction of NOx emissions from industrial combustion sources is an important consideration in efforts undertaken to address the environmental concerns associated with NOx. This paper discusses primary and secondary NOx control technologies applicable to various major categories of industrial sources. The sources considered in this paper include large boilers, furnaces and fired heaters, combustion turbines, large IC engines, and cement kilns. For each source category considered in this paper, primary NOx controls are discussed first, followed by a discussion of secondary NOx controls.

  15. Lien Hwa Industrial Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lien Hwa Industrial Corporation Jump to: navigation, search Name: Lien Hwa Industrial Corporation Place: Taipei, Taiwan Product: Lien Hwa Industrial Corporation is an agricultural,...

  16. Equity Industrial Partners | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Equity Industrial Partners Jump to: navigation, search Name Equity Industrial Partners Facility Equity Industrial Partners Sector Wind energy Facility Type Community Wind Facility...

  17. TG Agro Industrial | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    TG Agro Industrial Jump to: navigation, search Name: TG Agro Industrial Place: Brazil Product: Maranhao-based ethanol producer. References: TG Agro Industrial1 This article is a...

  18. Biofuel Industries Group LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Industries Group LLC Jump to: navigation, search Name: Biofuel Industries Group LLC Place: Adrian, Michigan Zip: 49221 Product: Biofuel Industries Group, LLC owns and operates the...

  19. Energy Intensity Indicators: Industrial Source Energy Consumption

    Energy.gov [DOE]

    The industrial sector comprises manufacturing and other nonmanufacturing industries not included in transportation or services. Manufacturing includes 18 industry sectors, generally defined at the...

  20. Assessment of Replicable Innovative Industrial Cogeneration Applicatio...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Replicable Innovative Industrial Cogeneration Applications, June 2001 Assessment of Replicable Innovative Industrial Cogeneration Applications, June 2001 U.S. industrial facilities ...

  1. Industrial Assessment Centers Update, March 2015 | Department...

    Energy.gov [DOE] (indexed site)

    Read the Industrial Assessment Centers (IAC) Update -- March 2015 Industrial Assessment Centers Quarterly Update, March 2015 More Documents & Publications Industrial Assessment...

  2. MRL Industries Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MRL Industries Inc Jump to: navigation, search Name: MRL Industries Inc Place: Sonora, California Zip: 95370 Sector: Solar Product: MRL Industries is a US company committed to...

  3. Industrial Assessment Centers (IACs) | Department of Energy

    Office of Environmental Management (EM)

    Technical Assistance Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Small- and medium-sized manufacturers may be...

  4. Local Option- Industrial Facilities and Development Bonds

    Energy.gov [DOE]

    Under the Utah Industrial Facilities and Development Act, counties, municipalities, and state universities in Utah may issue Industrial Revenue Bonds (IRBs) or Industrial Development Bonds (IDBs)...

  5. Meehan s Industrial | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Meehan s Industrial Jump to: navigation, search Name: Meehan's Industrial Place: Milton, Ontario, Canada Zip: L9T 5C1 Product: Meehan's Industrial is a manufacturer, project...

  6. Industrial Energy Efficiency: Designing Effective State Programs...

    Office of Environmental Management (EM)

    Energy Efficiency: Designing Effective State Programs for the Industrial Sector Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector This ...

  7. Ternion Bio Industries | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ternion Bio Industries Jump to: navigation, search Logo: Ternion Bio Industries Name: Ternion Bio Industries Address: 1060 Minnesota Ave., Suite 6 Place: San Jose, California Zip:...

  8. Outlook optimistic for 1997 E and P industry

    SciTech Connect

    Popov, S.

    1997-01-01

    The ninth annual Arthur Andersen Oil and Gas Industry Outlook Survey of company executives` forecasts for the US exploration and production industry were presented last month at the 17th Annual Energy Symposium. The consulting firm surveyed the chief financial officers of more than 350 US E and P companies, with 92 companies responding, including 8 majors, 9 large and 75 small independents. Overall, top E and P company executives predict 1997 to be a healthy year for the oil and gas industry. The paper discusses demand and supply, oil and gas prices, capital spending, employment, rig counts and availability, problems and opportunities.

  9. Research Projects in Industrial Technology.

    SciTech Connect

    United States. Bonneville Power Administration. Industrial Technology Section.

    1990-06-01

    The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

  10. Macro-Industrial Working Group Meeting 2: Industrial updates...

    Energy Information Administration (EIA) (indexed site)

    Industrial Team, MIWG 2, February 18, 2016 3 Data updates & regulation * Data - Economic Census (2012) for nonmanufacturing - completed - Calibration to achieve greater precision ...

  11. Large Group Visits

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Large Group Visits Large Group Visits All tours of the Museum are self-guided, but please schedule in advance so we can best accommodate your group. Contact Us 1350 Central Avenue (505) 667-4444 Email Let us know if you plan to bring a group of 10 or more. All tours of the Museum are self-guided, but please schedule in advance so we can best accommodate your group. Parking for buses and RVs is available on Iris Street behind the Museum off of 15th St. See attached map (pdf). Contact us at

  12. Industry Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industry Perspective Industry Perspective Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado. june2012_biogas_workshop_hicks.pdf (534.01 KB) More Documents & Publications The Business Case for Fuel Cells 2011: Energizing America's Top Companies 2011 Fuel Cell Technologies Market Report Florida Hydrogen Initiative

  13. Industrial Hygiene | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hygiene Ames Laboratory's Industrial Hygiene (IH) Program is dedicated to providing employees a workplace free from or protected against recognized hazards that could potentially cause illness or injury. The basic principles of industrial hygiene are applied: Anticipation, recognition, evaluation and control of workplace hazards. The industrial hygienist participates on Readiness Review committees to assist in anticipation and recognition of chemical, physical, biological, or ergonomic hazards.

  14. Kerala Industrial Infrastructure Development Corporation Kinfra...

    OpenEI (Open Energy Information) [EERE & EIA]

    Kerala Industrial Infrastructure Development Corporation Kinfra Jump to: navigation, search Name: Kerala Industrial Infrastructure Development Corporation (Kinfra) Place:...

  15. ITP Industrial Materials: Development and Commercialization of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ITP Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

  16. Southeast Electronic Book of Industrial Resources

    SciTech Connect

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  17. Midstate Electric Cooperative - Commercial and Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial...

  18. Agile Biomanufacturing Industry Listening Workshop | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    California, to increase understanding of industry needs around synthetic biology. ... platform that uses synthetic biology tools to rapidly engineer industrially ...

  19. Guiding Principles for Successfully Implementing Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Guiding Principles for Successfully Implementing Industrial Energy Assessment Recommendations Guiding Principles for Successfully Implementing Industrial Energy Assessment ...

  20. Development of Industrially Viable Battery Electrode Coatings...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Development of Industrially Viable Battery Electrode Coatings Development of Industrially Viable Battery Electrode Coatings Development of ...

  1. ITP Industrial Materials: Development and Commercialization of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and ...

  2. China National Machinery Industry Complete Engineering Corporation...

    OpenEI (Open Energy Information) [EERE & EIA]

    Industry Complete Engineering Corporation CMCEC Jump to: navigation, search Name: China National Machinery Industry Complete Engineering Corporation (CMCEC) Place: Beijing,...

  3. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel ...

  4. DMI Industries | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    (NASDAQ: OTTR), is a diversified heavy steel manufacturer with a primary concentration on wind tower fabrication. References: DMI Industries1 This article is a stub....

  5. AEO2014: Preliminary Industrial Output

    Energy Information Administration (EIA) (indexed site)

    and demand computed from Input-Output basis * Major drivers: capacity utilization, interest rates, relative prices, ... For the energy industries (coal mining, oil & gas ...

  6. Lab-Corps: Industry Mentor

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industry Mentor * EcoSnap-AC Team - Window AC without the need for window * Background - Four start up technology companies - 2 - Software 2 - Advanced Materials - Current ...

  7. Greenline Industries | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Industries Place: San Rafael, California Zip: 94901 Product: Small to medium scale biodiesel plants designer and producer. They also run a biodiesel plant in Vallejo,...

  8. Jax Industries | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jax Industries Place: Hillsboro, Oregon Product: Developer of recharge systems for CZ process silicon ingot growers, some of which produce PV silicon feedstock. Coordinates:...

  9. Industrial Feedstock Flexibility Workshop Results

    SciTech Connect

    Ozokwelu, Dickson; Margolis, Nancy; Justiniano, Mauricio; Monfort, Joe; Brueske, Sabine; Sabouni, Ridah

    2009-08-01

    This report (PDF 649 KB) summarizes the results of the 2009 Industrial Feedstock Flexibility Workshop, which took place in Atlanta, GA on August 19-20, 2009.

  10. Commercial & Industrial Renewable Energy Grants

    Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) offers grant funding for renewable energy projects installed at commercial, industrial, public, non-profit, municipal or school facilities, or ...

  11. Collaborating with Industry for Innovation

    SciTech Connect

    2004-03-01

    This is a brochure describing Laboratory Coordinating Council's network of labs and facilities to promote partnership between industry and national laboratories.

  12. Industrial energy management and utilization

    SciTech Connect

    Witte, L.C.; Schmidt, P.S.; Brown, D.

    1986-01-01

    This text covers the principles of industrial energy conservation and energy conservation applications, with emphasis on the energy-intensive industries. Topics covered include energy consumption, alternative energy sources, elements of energy audits, economic investment analysis, management of energy conservation programs, boilers and fired heaters, steam and condensate systems, classification and fouling of heat exchangers, heat transfer augmentation, waste heat sources, heat recovery equipment, properties and characteristics of insulation, energy conservation in industrial buildings, cogeneration, power circuit components and energy conversion devices, electrical energy conservation. A review of the fundamentals of fluid mechanics, heat transfer, and thermodynamics, as well as examples, problems, and case studies from specific industries are included.

  13. Industrial Carbon Capture Project Selections

    Office of Energy Efficiency and Renewable Energy (EERE)

    Industrial Carbon Capture Project SelectionsSeptember 2, 2010These projects have been selected for negotiation of awards; final award amounts may vary.

  14. Natural Gas Industrial Price (Summary)

    Annual Energy Outlook

    & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual Download Series History Download Series History ...

  15. Industrial Process Heating - Technology Assessment

    Energy.gov [DOE] (indexed site)

    ... are used to perform operations such as heating, drying, ... total fuel used in the chemical manufacturing industry, ... 2. 82 83 Hybrid process heating systems utilize a ...

  16. Deaerators in Industrial Steam Systems

    Energy.gov [DOE]

    This tip sheet on deaerators provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  17. Extra-Large Memory Nodes

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Extra-Large Memory Nodes Extra-Large Memory Nodes Extra-Large Memory Nodes Overview Carver has two "extra-large" memory nodes; each node has four 8-core Intel X7550 ("Nehalem EX")...

  18. Industries & Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information Resources » Industries & Technologies Industries & Technologies The Advanced Manufacturing Office (AMO) emphasizes innovative technologies to increase manufacturing agility and open new markets. AMO also maintains a range of projects, analyses, protocols, and strategies to reduce industrial energy intensity and carbon emissions in specific industries and technology areas: Industries Aluminum Chemicals Forest Products Glass Metal Casting Mining Other Industries Petroleum

  19. Energy Conservation Projects to Benefit the Railroad Industry

    SciTech Connect

    Clifford Mirman; Promod Vohra

    2009-12-31

    The Energy Conservation Projects to benefit the railroad industry using the Norfolk Southern Company as a model for the railroad industry has five unique tasks which are in areas of importance within the rail industry, and specifically in the area of energy conservation. The NIU Engineering and Technology research team looked at five significant areas in which research and development work can provide unique solutions to the railroad industry in energy the conservation. (1) Alternate Fuels - An examination of various blends of bio-based diesel fuels for the railroad industry, using Norfolk Southern as a model for the industry. The team determined that bio-diesel fuel is a suitable alternative to using straight diesel fuel, however, the cost and availability across the country varies to a great extent. (2) Utilization of fuel cells for locomotive power systems - While the application of the fuel cell has been successfully demonstrated in the passenger car, this is a very advanced topic for the railroad industry. There are many safety and power issues that the research team examined. (3) Thermal and emission reduction for current large scale diesel engines - The current locomotive system generates large amount of heat through engine cooling and heat dissipation when the traction motors are used to decelerate the train. The research team evaluated thermal management systems to efficiently deal with large thermal loads developed by the operating engines. (4) Use of Composite and Exotic Replacement Materials - Research team redesigned various components using new materials, coatings, and processes to provide the needed protection. Through design, analysis, and testing, new parts that can withstand the hostile environments were developed. (5) Tribology Applications - Identification of tribology issues in the Railroad industry which play a significant role in the improvement of energy usage. Research team analyzed and developed solutions which resulted in friction

  20. Large Eddy Simulations: Where

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Eddy Simulations: Where observations and modeling collides July 18, 2015 Cascade of Models ⌅ General Circulation Models ⌅ Regional Models ⌅ Large-Eddy Simulations ⌅ Direct Numerical Simulations LES GCM vs LES History Theory What if? Using LES together with Observations Testbed LES 2 / 37 Cascade of Models General Circulation Models ⌅ Domain size: Entire Earth ⌅ Horizontal Boundary conditions: None ⌅ Horizontal grid spacing: 50km ⌅ Total number of points: about 400 ⇥ 400 ⇥ 100

  1. Meet with Large Businesses

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Meet with Large Businesses and learn about upcoming acquisitions! * Federal Energy Management Program (FEMP) * National Renewable Energy Laboratory (NREL) * Small Business Administration (SBA) * U.S. Department of Energy / Energy, Efficiency, and Renewable Energy (EERE) * U.S. Department of Energy / Golden Field Office (GFO) * Western Area Power Administration (WAPA) * Colorado Procurement Technical Assistance Center (PTAC) SMALL BUSINESS OUTREACH "Federal Contracting with Small

  2. Industrial energy management and utilization

    SciTech Connect

    Witte, L.C.; Schmidt, P.S.; Brown, D.R.

    1988-01-01

    This book presents a study of the technical, economic and management principles of effective energy use. The authors report on: energy consumption, conservation, and resources. They present an analysis of thermal-fluid systems. Energy conservation in combustion systems. Heat exchangers, heat recovery, energy conservation in industrial buildings, and industrial cogeneration are discussed.

  3. Large-Scale PV Integration Study

    SciTech Connect

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  4. High Power UV LED Industrial Curing Systems

    SciTech Connect

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  5. Gyrokinetic large eddy simulations

    SciTech Connect

    Morel, P.; Navarro, A. Banon; Albrecht-Marc, M.; Carati, D.; Merz, F.; Goerler, T.; Jenko, F.

    2011-07-15

    The large eddy simulation approach is adapted to the study of plasma microturbulence in a fully three-dimensional gyrokinetic system. Ion temperature gradient driven turbulence is studied with the GENE code for both a standard resolution and a reduced resolution with a model for the sub-grid scale turbulence. A simple dissipative model for representing the effect of the sub-grid scales on the resolved scales is proposed and tested. Once calibrated, the model appears to be able to reproduce most of the features of the free energy spectra for various values of the ion temperature gradient.

  6. Industrial use of molten nitrate/nitrite salts

    SciTech Connect

    Carling, R.W.; Mar, R.W.

    1981-12-01

    Nitrate salts have been used for years as a high-temperature heat transfer medium in the chemical and metal industries. This experience is often cited as an argument for the use of these salts in large-scale solar energy systems. However, this industrial experience has not been well documented and a study was carried out to provide such information to the solar community and to determine the applicability of this data base. Seven different industrial plants were visited and the plant operators were interviewed with regard to operating history and experience. In all cases the molten salt systems operate without problems. However, it is not possible to apply the base of industrial experience directly to solar thermal energy applications because of differences in operating temperature, salt composition, alloys used, and thermal/mechanical conditions.

  7. Industrial process heat case studies. [PROSYS/ECONMAT code

    SciTech Connect

    Hooker, D.W.; May, E.K.; West, R.E.

    1980-05-01

    Commercially available solar collectors have the potential to provide a large fraction of the energy consumed for industrial process heat (IPH). Detailed case studies of individual industrial plants are required in order to make an accurate assessment of the technical and economic feasibility of applications. This report documents the results of seven such case studies. The objectives of the case study program are to determine the near-term feasibility of solar IPH in selected industries, identify energy conservation measures, identify conditions of IPH systems that affect solar applications, test SERI's IPH analysis software (PROSYS/ECONOMAT), disseminate information to the industrial community, and provide inputs to the SERI research program. The detailed results from the case studies are presented. Although few near-term, economical solar applications were found, the conditions that would enhance the opportunities for solar IPH applications are identified.

  8. Large Particle Titanate Sorbents

    SciTech Connect

    Taylor-Pashow, K.

    2015-10-08

    This research project was aimed at developing a synthesis technique for producing large particle size monosodium titanate (MST) to benefit high level waste (HLW) processing at the Savannah River Site (SRS). Two applications were targeted, first increasing the size of the powdered MST used in batch contact processing to improve the filtration performance of the material, and second preparing a form of MST suitable for deployment in a column configuration. Increasing the particle size should lead to improvements in filtration flux, and decreased frequency of filter cleaning leading to improved throughput. Deployment of MST in a column configuration would allow for movement from a batch process to a more continuous process. Modifications to the typical MST synthesis led to an increase in the average particle size. Filtration testing on dead-end filters showed improved filtration rates with the larger particle material; however, no improvement in filtration rate was realized on a crossflow filter. In order to produce materials suitable for column deployment several approaches were examined. First, attempts were made to coat zirconium oxide microspheres (196 µm) with a layer of MST. This proved largely unsuccessful. An alternate approach was then taken synthesizing a porous monolith of MST which could be used as a column. Several parameters were tested, and conditions were found that were able to produce a continuous structure versus an agglomeration of particles. This monolith material showed Sr uptake comparable to that of previously evaluated samples of engineered MST in batch contact testing.

  9. Large Spectral Library Problem

    SciTech Connect

    Chilton, Lawrence K.; Walsh, Stephen J.

    2008-10-03

    Hyperspectral imaging produces a spectrum or vector at each image pixel. These spectra can be used to identify materials present in the image. In some cases, spectral libraries representing atmospheric chemicals or ground materials are available. The challenge is to determine if any of the library chemicals or materials exist in the hyperspectral image. The number of spectra in these libraries can be very large, far exceeding the number of spectral channels collected in the ¯eld. Suppose an image pixel contains a mixture of p spectra from the library. Is it possible to uniquely identify these p spectra? We address this question in this paper and refer to it as the Large Spectral Library (LSL) problem. We show how to determine if unique identi¯cation is possible for any given library. We also show that if p is small compared to the number of spectral channels, it is very likely that unique identi¯cation is possible. We show that unique identi¯cation becomes less likely as p increases.

  10. Measuring industrial energy efficiency: Physical volume versus economic value

    SciTech Connect

    Freeman, S.L.; Niefer, M.J.; Roop, J.M.

    1996-12-01

    This report examines several different measures of industrial output for use in constructing estimates of industrial energy efficiency and discusses some reasons for differences between the measures. Estimates of volume-based measures of output, as well as 3 value-based measures of output (value of production, value of shipments, and value added), are evaluated for 15 separate 4-digit industries. Volatility, simple growth rate, and trend growth rate estimates are made for each industry and each measure of output. Correlations are made between the volume- and value-based measures of output. Historical energy use data are collected for 5 of the industries for making energy- intensity estimates. Growth rates in energy use, energy intensity, and correlations between volume- and value-based measures of energy intensity are computed. There is large variability in growth trend estimates both long term and from year to year. While there is a high correlation between volume- and value-based measures of output for a few industries, typically the correlation is low, and this is exacerbated for estimates of energy intensity. Analysis revealed reasons for these low correlations. It appears that substantial work must be done before reliable measures of trends in the energy efficiency of industry can be accurately characterized.

  11. Energy use and CO2 emissions of China’s industrial sector from a global perspective

    SciTech Connect

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick W.; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-07-10

    The industrial sector has accounted for more than 50% of China’s final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China’s per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.

  12. The Clinch Bend Regional Industrial Site and economic development opportunities

    SciTech Connect

    1995-12-31

    This effort focuses initially on the Clinch Bend site. Other sites and developable tracts of land are identified with the assistance of communities in proximity to Oak Ridge, the State of Tennessee, and others, and compared with the projected site requirements for large industrial facilities.

  13. Industrial Management of Fuel Impurities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    14 - 2014 A Century of Innovation in the Oil and Gas Industry © 2014 UOP LLC. All rights reserved. UOP 6123-1 Industrial Management of Fuel Impurities Mark Riley UOP LLC, A Honeywell Company Workshop on Gas Clean-Up for Fuel Cell Applications March 6-7, 2014 Argonne National Laboratory About UOP For nearly 100 years, UOP has been the leading international supplier and licensor for the petroleum refining, gas processing, petrochemical production and major manufacturing industries. UOP 6123-2 As

  14. Sean Large | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sean Large Sean Large Sean Large - Intern with the Office of Energy Efficiency and Renewable Energy Most Recent Be Part of the Solution! June 22 What's Up With Fuel Cells? June 8

  15. Large Magnetization at Carbon Surfaces

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile...

  16. Industrial Demand Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

  17. United States Electricity Industry Primer

    Office of Energy Efficiency and Renewable Energy (EERE)

    The United States Electricity Industry Primer provides a high-level overview of the U.S. electricity supply chain, including generation, transmission, and distribution; markets and ownership structures, including utilities and regulatory agencies; and system reliability and vulnerabilities.

  18. Industrial Hygienist/Health Physicist

    Energy.gov [DOE]

    A successful candidate in this position wil l serve as an Industrial Hygienist/Health Physicist in the Operations and Oversight Division, providing technical oversight of the Oak Ridge National...

  19. Learning in Emerging Energy Industries

    Energy Science and Technology Software Center

    2013-10-16

    This software is a learning model excerpted from the BSM that can be used to examine effects of different learning rates and different techno-economics on industry evolution.

  20. Industrial Plans for AEO2014

    Energy Information Administration (EIA) (indexed site)

    30, 2013 | Washington, DC WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Industrial team plans for AEO2014 Overview -- AEO2014 * Process flow status & updates * Other model updates * Major data updates * CHP updates 2 Industrial Team Washington DC, July 30, 2013 WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Process flow models * General: - Replace energy consumption based on

  1. Working with SRNL - AMC - Industry

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Industry The dynamic, long-term relationships that would emerge from this laboratory, industry, and academic collaborative would generate new concepts and approaches that not only "spin in" modern manufacturing methods that support DOE mission success but also "spin out" new innovations to support overall chemical and manufacturing competitiveness within the United States. Technology and innovation are being driven by the need to work smarter to reduce risk. The Advanced

  2. Industry Cluster Development Grant winners

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Industry Cluster Development Grant winners Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:November 2, 2016 all issues All Issues » submit Industry Cluster Development Grant winners Recipients include Picuris Pueblo and Rio Arriba County February 1, 2015 A new community mural on the Hunter Ford facility in Española celebrates the building's planned revitalization and the future location of the Northern New Mexico Food Hub. A new

  3. 1994 Nuclear Industry Conference review

    SciTech Connect

    Hammons, T.J.

    1995-03-01

    The 1994 Nuclear Industry Conference, held in London United Kingdom, September 14--15, 1994, was the first serious nuclear energy conference to take place for more than 12 years. It had a challenging agenda, no less than whether the industry would sustain its role into the twenty-fist century. The conference focused on the world`s nuclear industry, which is in a crucial period of development, with few new reactors being built in Western Europe and none in the US. Attention in the industry is moving eastward to the troubled legacy of eastern Europe and to the dynamic new markets of the Far East. The immediate future of the reactor builders lies in these regions, for without new orders, the industry will decline. At the same time, the industry faces challenges at home. The end of the Cold War has brought a new appraisal of the fuel cycle, the ever-present dangers of proliferation, and the problems of long-term waste-disposal and decommissioning remain. New challenges include the role for nuclear energy as privatization of power utilities and liberalization of electricity markets takes place. Whether short-term market trends will dominate new orders for power plants or whether supply security considerations count was also discussed.

  4. Large forging manufacturing process

    DOEpatents

    Thamboo, Samuel V.; Yang, Ling

    2002-01-01

    A process for forging large components of Alloy 718 material so that the components do not exhibit abnormal grain growth includes the steps of: a) providing a billet with an average grain size between ASTM 0 and ASTM 3; b) heating the billet to a temperature of between 1750.degree. F. and 1800.degree. F.; c) upsetting the billet to obtain a component part with a minimum strain of 0.125 in at least selected areas of the part; d) reheating the component part to a temperature between 1750.degree. F. and 1800.degree. F.; e) upsetting the component part to a final configuration such that said selected areas receive no strains between 0.01 and 0.125; f) solution treating the component part at a temperature of between 1725.degree. F. and 1750.degree. F.; and g) aging the component part over predetermined times at different temperatures. A modified process achieves abnormal grain growth in selected areas of a component where desirable.

  5. Large scale tracking algorithms.

    SciTech Connect

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  6. Market Report for the Industrial Sector, 2009

    SciTech Connect

    Sastri, Bhima; Brueske, Sabine; de los Reyes, Pamela; Jamison, Keith; Justiniano, Mauricio; Margolis, Nancy; Monfort, Joe; Raghunathan, Anand; Sabouni, Ridah

    2009-07-01

    This report provides an overview of trends in industrial-sector energy use. It focuses on some of the largest and most energy-intensive industrial subsectors and several emerging technologies that could transform key segments of industry.

  7. Waste Heat-to-Power in Small Scale Industry Using Scroll Expander for Organic Rankine Bottoming Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat-to-Power ADVANCED MANUFACTURING OFFICE Waste Heat-to- Power in Small Scale Industry Using Scroll Expander for Organic Rankine Bottoming Cycle Development of an Efficient, Cost- Effective System to Recover Medium- Grade Industrial Waste Heat. There is a signifcant opportunity to recover waste heat that is exhausted in various manufacturing industries, including food processing. A large portion of unrecovered industrial waste heat is considered to be low temperature, which has less recovery

  8. Industrial Energy Efficiency Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Energy Efficiency Assessments Industrial Energy Efficiency Assessments Details about the Industrial Energy Efficiency Assessments program and its implementation in China. session_2_industry_track_price_en.pdf (1.27 MB) session_2_industry_track_price_cn.pdf (1.47 MB) More Documents & Publications UAIEE and Industrial Assessment Centers The Second US-China Energy Efficiency Forum: Energy Management Standards and Implementation Energy Efficiency Financing

  9. Oregon Trail Mushrooms Industrial Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Mushrooms Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Trail Mushrooms Industrial Low Temperature Geothermal Facility Facility Oregon...

  10. Shanghai Aerospace Industrial General Corporation aka Shanghai...

    OpenEI (Open Energy Information) [EERE & EIA]

    Industrial General Corporation aka Shanghai Academy of Spaceflight Technology Jump to: navigation, search Name: Shanghai Aerospace Industrial General Corporation (aka Shanghai...

  11. CRV industrial Ltda | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    CRV industrial Ltda Jump to: navigation, search Name: CRV industrial Ltda Place: Carmo do Rio Verde, Goias, Brazil Sector: Biomass Product: Ethanol and biomass energy producer...

  12. Ennis Laundry Industrial Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ennis Laundry Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Ennis Laundry Industrial Low Temperature Geothermal Facility Facility Ennis Laundry...

  13. Individual Industrial WPFC Permit | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Individual Industrial WPFC Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Individual Industrial WPFC Permit Published Publisher Not Provided,...

  14. Nongqishi Electric Power Industrial Corporation | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Nongqishi Electric Power Industrial Corporation Jump to: navigation, search Name: Nongqishi Electric Power Industrial Corporation Place: Kuitun City, Xinjiang Autonomous Region,...

  15. Yusheng Industrial Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Yusheng Industrial Co Ltd Jump to: navigation, search Name: Yusheng Industrial Co., Ltd Place: Hunan Province, China Zip: 415000 Sector: Hydro Product: Hunan-based small hydro...

  16. Orion Bus Industries | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bus Industries Jump to: navigation, search Name: Orion Bus Industries Place: Ontario, Canada Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

  17. Industrial Utility Webinar: Public Power Open Session

    SciTech Connect

    2010-02-10

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  18. Hebei Huazheng Industry | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hebei Province, China Zip: 53500 Product: Hebei Huazheng Industry manufactures electrical semiconductor devices. References: Hebei Huazheng Industry1 This article is a stub. You...

  19. Industrial Technology Research Institute | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technology Research Institute Jump to: navigation, search Logo: Industrial Technology Research Institute Name: Industrial Technology Research Institute Address: Rm. 112, Bldg. 24,...

  20. Clean Technology Sustainable Industries Organization | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sustainable Industries Organization Jump to: navigation, search Name: Clean Technology & Sustainable Industries Organization Place: Royal Oak, Michigan Zip: 48073 Product: A...

  1. Residential Building Industry Consulting Services | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Residential Building Industry Consulting Services Jump to: navigation, search Name: Residential Building Industry Consulting Services Place: New York, NY Information About...

  2. Goat Industries Fuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Industries Fuels Jump to: navigation, search Name: Goat Industries Fuels Place: Gwynedd, Wales, United Kingdom Zip: LL56 4PZ Product: Welsh manufacturer of biodiesel equipment that...

  3. Sierra Pacific Industries Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Industries Inc Place: California Website: www.spi-ind.com Twitter: @SierraPacificIn Facebook: https:www.facebook.compagesSierra-Pacific-Industries295910403780823 References:...

  4. Analyzing Your Compressed Air System; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 * August 2004 Industrial Technologies Program For additional information on industrial energy efficiency measures, contact the EERE Information Center at 1-877-337-3463 or visit ...

  5. Industrial Utility Webinar: Natural Gas Efficiency Programs

    SciTech Connect

    2010-04-15

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  6. EIS-0428: Mississippi Gasification, LLC, Industrial Gasification...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS ...

  7. Integrated Biodiesel Industries Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Industries Ltd Jump to: navigation, search Name: Integrated Biodiesel Industries Ltd Place: Sao Paulo, Sao Paulo, Brazil Zip: 01418-200 Product: Sao Paulo-based biodiesel producer....

  8. Sanyo Chemical Industries | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Industries Jump to: navigation, search Name: Sanyo Chemical Industries Place: Tokyo, Japan Zip: 103-0023 Product: String representation "Sanyo is a petr ... uction process." is...

  9. Toray Industries Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Industries Inc Jump to: navigation, search Name: Toray Industries Inc Place: Tokyo, Japan Zip: 103 8666 Sector: Carbon, Vehicles, Wind energy Product: String representation "A...

  10. ,"West Virginia Natural Gas Industrial Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    AM" "Back to Contents","Data 1: West Virginia Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035WV2" "Date","West Virginia Natural Gas Industrial Consumption ...

  11. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January ...

  12. Aditya Solar Power Industries | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Aditya Solar Power Industries Jump to: navigation, search Name: Aditya Solar Power Industries Place: India Sector: Solar Product: Bangalore-based solar project developer....

  13. Passive Solar Industries Council | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Passive Solar Industries Council Jump to: navigation, search Name: Passive Solar Industries Council Place: Ashland, OR Information About Partnership with NREL Partnership with NREL...

  14. Canyon Industries Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Industries Inc Jump to: navigation, search Name: Canyon Industries Inc Place: Deming, Washington State Zip: 98244 Sector: Hydro Product: Canyon Hydro produces a range of small...

  15. Solar Energy Industries Association | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Energy Industries Association Name: Solar Energy Industries Association Address: 575 7th Street NW 400 Place: Washington, DC Zip: 20004 Number of Employees: 11-50 Year...

  16. Superior Energy Performance Industrial Facility Best Practice...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Facility Best Practice Scorecard Superior Energy Performance Industrial Facility Best Practice Scorecard Superior Energy Performance logo Facilities seeking to use the ...

  17. Agro Industrial Taruma | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Industrial Taruma Jump to: navigation, search Name: Agro Industrial Taruma Place: Sao Pedro do Turvo, Sao Paulo, Brazil Zip: 18940-000 Product: Brazil based ethanol producer...

  18. Macro-Industrial Working Group: meeting 1

    Gasoline and Diesel Fuel Update

    for the NEMS Industrial Demand Module to project more detailed energy use by industry. ... additional term to account for feedstock pricing * Feedstock pricing is one of several ...

  19. California Solar Energy Industries Association | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Energy Industries Association Jump to: navigation, search Name: California Solar Energy Industries Association Place: Rio Vista, California Zip: 94571 Sector: Solar Product:...

  20. PAIS Industries Group | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PAIS Industries Group Jump to: navigation, search Name: PAIS Industries Group Sector: Solar Product: Plans to supply solar-grade silicon, conditional on an agreement with the Inner...

  1. ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Aluminum Industry Vision: Sustainable Solutions for a Dynamic World ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World alumvision.pdf (938.86 KB) ...

  2. Industrial Utility Webinar: Combined Heat and Power

    SciTech Connect

    2010-06-09

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  3. Qualified Specialists in Industrial Assessment Tools | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Qualified Specialists in Industrial Assessment Tools Qualified Specialists in Industrial Assessment Tools Locate a DOE-trained Qualified Specialist in your area to identify ways to...

  4. Triangle biofuels Industries | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Triangle biofuels Industries Jump to: navigation, search Name: Triangle biofuels Industries Place: Iowa Product: Biodiesel producer developing a 19mlpa plant in Johnston, IA....

  5. " Electricity Generation by Census Region, Industry...

    Energy Information Administration (EIA) (indexed site)

    "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and ...

  6. Green Energy Industries Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Industries Inc Jump to: navigation, search Name: Green Energy Industries Inc Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  7. Industrial Utility Webinar: Financial Mechanisms and Incentives

    SciTech Connect

    2010-03-10

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  8. Industrial Scale Energy Systems Integration (Presentation), NREL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    (ESI) opportunities in industry o Combined heat and power o Trigeneration o Demand response o Integrated, hybrid energy systems 3 Energy Use in the Industrial Sector * 25% of ...

  9. Oregon General Industrial Water Pollution Control Facilities...

    OpenEI (Open Energy Information) [EERE & EIA]

    General Industrial Water Pollution Control Facilities Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon General Industrial Water Pollution...

  10. Industrial Activities at DOE: Efficiency, Manufacturing, Process...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D Overview of ...

  11. Future Bottlenecks for Industrial Water Recycling. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Future Bottlenecks for Industrial Water Recycling. Citation Details In-Document Search Title: Future Bottlenecks for Industrial Water Recycling. Authors: Brady, Patrick V....

  12. IMPACTS: Industrial Technologies Program, Summary of Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009 IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009 ...

  13. Vikram Group of Industries | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Vikram Group of Industries Jump to: navigation, search Name: Vikram Group of Industries Place: Kolkatta, West Bengal, India Zip: 700001 Product: Kolkata-based tea processing...

  14. South Jersey Industries | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jersey Industries Jump to: navigation, search Name: South Jersey Industries Place: Folsom, New Jersey Zip: 8037 Sector: Services Product: An energy services holding company....

  15. AgroIndustrial Capela | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    AgroIndustrial Capela Jump to: navigation, search Name: AgroIndustrial Capela Place: Capela, Sergipe, Brazil Product: Brazil based ethanol producer located in Sergipe, part of...

  16. Millennium Energy Industries | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Industries Place: Jordan Zip: 1182 Sector: Solar Product: Jordan-based solar energy firm focused in MENA region. References: Millennium Energy Industries1 This article is a...

  17. Industrial Assessment Centers Help Students, Communities Learn...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Help Students, Communities Learn About Energy Efficiency Industrial Assessment Centers Help ... The Industrial Technologies Program (ITP) is part of the Department's Office of ...

  18. Phoenix Bio Industries LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bio Industries LLC Jump to: navigation, search Name: Phoenix Bio-Industries LLC Place: Goshen, California Zip: 93227 Product: Ethanol producer. Coordinates: 37.988525,...

  19. Angelantoni Industrie Spa | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Angelantoni Industrie Spa Jump to: navigation, search Name: Angelantoni Industrie Spa Place: Massa Martana, Italy Zip: 6056 Sector: Renewable Energy Product: String representation...

  20. Colorado Industrial Challenge and Recognition Program

    Energy.gov [DOE]

    U.S. Department of Energy Industrial Technologies Program 2009 State Award Fact Sheet that offers details of the Colorado Industrial program.

  1. Everbrite Industries Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Everbrite Industries Inc. Place: Toronto, Ontario, Canada Zip: M1R 2T6 Sector: Solar Product: Everbrite Industries is an electrical contractor...

  2. Danish Wind Industry Association | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Danish Wind Industry Association Place: Copenhagen V, Denmark Zip: DK-1552 Sector: Wind energy Product: The Danish Wind Industry Association...

  3. Guardian Industries Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Industries Corp Jump to: navigation, search Name: Guardian Industries Corp Place: Auburn Hills, Michigan Zip: 48326-1714 Sector: Solar Product: Michigan-based firm that...

  4. Aftertreatment Research Prioritization: A CLEERS Industrial Survey...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research Prioritization: A CLEERS Industrial Survey Aftertreatment Research Prioritization: A CLEERS Industrial Survey Presentation given at the 2007 Diesel Engine-Efficiency & ...

  5. Solventus Industrial SL | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Solventus Industrial SL Place: Alczar de San Juan, Spain Zip: 13600 Product: Spanish project developer and engineering. References: Solventus Industrial SL1 This...

  6. World electricity and gas industries; Pressures for structural change

    SciTech Connect

    Kahane, A. )

    1990-01-01

    Electric and gas utilities are central middlemen in the energy business. Worldwide, more than 50% of all primary energy is transformed by utilities and delivered to final consumers through utility wires and pipes. The structure and behavior of the electricity and gas industries and the role and behavior of utilities are therefore important to all other energy industry players. The electricity and gas industries are special. Unlike oil, coal, or wood, electricity and gas are transported from producers to consumers mostly via fixed grids. This means that supplies are generally tied to specific markets and, unlike an oil tanker on the high seas, cannot be easily diverted elsewhere. These grids are natural monopolies inasmuch as having more than one wire or pipe along a given route is generally unnecessary duplicative. In addition, both supply and grid investments are generally large and lumpy. Industrial organization theory suggests that the coordination of industries can be achieved either through hierarchies or through markets. Hierarchies are generally preferred when the transaction costs of coordinating through markets is too high. These two elements of electricity and gas industry structure are the means of hierarchical coordination. This paper discusses the possibilities for changing the structure of utilities to one which has greater reliance on markets.

  7. EPA issues draft general permits for industrial stormwater discharges

    SciTech Connect

    Not Available

    1994-01-01

    EPA on Nov. 16, 1990, issued stormwater discharge regulations associated with industrial activity'' under the authority of CWA's National Pollutant Discharge Elimination System (NPDES). Those regulations established NPDES permit application requirements for industrial and certain municipal separate stormwater discharge systems. Three permit application options were made available for industrial stormwater discharges -- filing an individual application, becoming a participant in a group application or filing a notice of intent to be covered under a general permit and its requirements. The Agency of Nov. 19 proposed a draft general permit for group applications. Industrial dischargers choosing the group option previously were required to file in two parts. Part 1 was due by Sept. 30, 1991, and Part 2 was due by Oct. 1, 1992. The proposed permit would apply to industrial facilities, including certain Indian lands, in selected areas of EPA Regions I, II, III, IV, VI, VIII, IX and X. The permit would cover industrial stormwater discharges to US waters, and would include discharges transmitted through large, medium-sized and other municipal separate storm sewer systems.

  8. Steel Industry Energy Bandwidth Study

    SciTech Connect

    none,

    2004-10-01

    ITP conducted a study on energy use and potential savings, or "bandwidth" study, in major steelmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results based on the 2nd law of thermodynamics. The Steel Industry Energy Bandwidth Study (PDF133 KB) also estimates steel industry energy use in the year 2010, and uses that value as a basis for comparison against the minimum requirements. This energy savings opportunity for 2010 will aid focus on longer term R&D.

  9. The chemical industry, by country

    SciTech Connect

    Not Available

    1995-03-01

    Beijing will be the site for the third ACHEMASIA, international petrochemical and chemical exhibition and conference, May 15--20, 1995. In preparation for this conference, Hydrocarbon Processing contacted executives of petrochemical/chemical industries and trade associations, seeking views on the state of the industry. The Asia-Pacific region is the center of new construction and expanded capacity and also a mixture of mature, developing and emerging petrochemical industries. Established countries must mold and grow with emerging economies as the newcomers access natural resources and develop their own petrochemical infrastructures. The following nation reports focus on product supply/demand trends, economic forecasts, new construction, etc. Space limitations prohibit publishing commentaries from all countries that have petrochemical/chemical capacity. Reports are published from the following countries: Australia, China, Japan, Korea, Malaysia, Philippines, Thailand, and Vietnam.

  10. Assessment of industrial attitudes toward generic research needs in tribology

    SciTech Connect

    Sibley, L.B.; Zlotnick, M.; Levinson, T.M.

    1985-09-01

    Based on extended discussions during visits with 27 companies representing 13 different parts of the tribology industry (such as bearings, lubricants, coatings, powerplants), it is apparent that only a tiny fraction of the large sums publicly reported as R and D expenditures by industry are used to fund generic tribology research. For example, of the greater than $2 B expenditures reported for R and D in the lubricants sector for 1982, the estimated total for generic tribology research was $12 M. This was the largest expenditure in any sector of the tribology industry and one-third of the total of $36 M. In the automotive industry out of a reported expenditure of $4 B, the estimated generic tribology research was $3 M. In some segments of the tribology industry, for example coatings and filters, there were no expenditures on generic research. There was little tendency to improve the state of the art of the tribology industry through long-term investment in generic R and D in ways that would foster innovation and productivity of energy conservation technology. Expenditures were oriented to development of specific commercial and military products, or to basic research focused on unspecified far term results, although useful spin-off of military developments into commercial fields sometimes occurs. There was a broad consensus in the companies visited that existing research results were not always made easily accessible to potential users in industry. The implication was that industry might benefit more if a larger fraction of the funds were devoted to putting the research results into a form design and development engineers could more readily apply. The need for a more effective presentation of research results was expressed with greater urgency at the smaller companies, but there seemed to be a broad consensus on the need for improvement. Recommendations are given.

  11. Aging assessment of large electric motors in nuclear power plants

    SciTech Connect

    Villaran, M.; Subudhi, M.

    1996-03-01

    Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failure in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry`s large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs.

  12. Industry turns its attention south

    SciTech Connect

    Marhefka, D.

    1997-08-01

    The paper discusses the outlook for the gas and oil industries in the Former Soviet Union and Eastern Europe. Significant foreign investment continues to elude Russia`s oil and gas industry, so the Caspian nations of Kazakhstan and Azerbaijan are picking up the slack, welcoming the flow of foreign capital to their energy projects. Separate evaluations are given for Russia, Azerbaijan, Kazakhstan, Turkmenistan, Ukraine, Armenia, Belarus, Georgia, Lithuania, Latvia, Estonia, Moldova, Tajikstan, Uzbekistan, Albania, Bulgaria, Croatia, Czech Republic, Hungary, Poland, Romania, Slovakia, Slovenia, and Serbia.

  13. Energy Industry Days Additional Information

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy is hosting several Energy Industry Day events to promote and publicize opportunities for small businesses seeking to meet DOE support requirements. Opportunities will be available for attendees to learn of potential partnerships with prime and subcontracting companies. These Energy Industry Day events would both support the agency's commitment to DOE's "Small Business First Policy" and would provide dedicated sessions that introduce Energy Service Companies (ESCOs) and other prime contract holders with small business.

  14. Advanced Energy Industries, Inc. SEGIS developments.

    SciTech Connect

    Scharf, Mesa P.; Bower, Ward Isaac; Mills-Price, Michael A.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

    2012-03-01

    The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

  15. Look At (Search) Large Files

    Energy Science and Technology Software Center

    1992-07-13

    Scanning large files for information can be time consuming and expensive when using edit utilities on large mainframe computers. The reason is that editors must usually load the file into a buffer.

  16. ITP Mining: Water Use in Industries of the Future: Mining Industry |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Water Use in Industries of the Future: Mining Industry ITP Mining: Water Use in Industries of the Future: Mining Industry water_use_mining.pdf (158.07 KB) More Documents & Publications ITP Mining: Energy and Environmental Profile of the U.S. Mining Industry (December 2002) U.S. Mining Industry Energy Bandwidth Study ITP Mining: Mining Industry of the Future Mineral Processing Technology Roadmap

  17. Final Technical Report for University of Michigan Industrial Assessment Center

    SciTech Connect

    Atreya, Arvind

    2007-04-17

    The UM Industrial Assessment Center assisted 119 primary metals, automotive parts, metal casting, chemicals, forest products, agricultural, and glass manufacturers in Michigan, Ohio and Indiana to become more productive and profitable by identifying and recommending specific measures to improve energy efficiency, reduce waste and increase productivity. This directly benefits the environment by saving a total of 309,194 MMBtu of energy resulting in reduction of 0.004 metric tons of carbon emissions. The $4,618,740 implemented cost savings generated also saves jobs that are evaporating from the manufacturing industries in the US. Most importantly, the UM Industrial Assessment Center provided extremely valuable energy education to forty one UM graduate and undergraduate students. The practical experience complements their classroom education. This also has a large multiplier effect because the students take the knowledge and training with them.

  18. 2015 NREL Industry Growth Forum

    Energy.gov [DOE]

    During NREL’s 2015 Industry Growth Forum, 30 competitively selected clean energy startups will pitch their businesses to investors and compete to win the NREL Best Venture Award.  One of the...

  19. World Congress on Industrial Biotechnology

    Energy.gov [DOE]

    Held this year in Montreal, Quebec, the BIO World Congress on Industrial Biotechnology will bring together business leaders, investors, and policy makers in biofuels, biobased products, and renewable chemicals. BETO Demonstration and Market Transformation Program Manager Jim Spaeth and Support Specialist Natalie Roberts will be in attendance.

  20. Rebuilding the American Auto Industry

    Energy.gov [DOE]

    The Administration made strategic investments to help U.S. auto manufacturers retool to produce the hybrid, electric, and highly fuel efficient advanced vehicles of the future. With the help of these investments -- and the incredible talent and commitment of America's auto workers -- the auto industry is growing again.

  1. Wind Power: Options for Industry

    SciTech Connect

    Not Available

    2003-03-01

    This six-page brochure outlines ways for industry to integrate wind power, including assessing wind power, building wind farms, using a developer, capitalizing on technology, enhancing the corporate image, and preparing RFPs. Company examples and information resources are also provided.

  2. Mining Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Mining Industry Profile Mining Industry Profile The U.S. mining industry consists of the search for, extraction, beneficiation, and processing of naturally occurring solid minerals from the earth. These mined minerals include coal, metals such as iron, copper, or zinc, and industrial minerals such as potash, limestone, and other crushed rocks. Oil and natural gas extraction (NAICS code 211) is not included in this industry. Metals and other minerals are an essential source of raw materials for

  3. Colorado Industrial Energy Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technical Assistance » State and Utility Engagement Activities » Colorado Industrial Energy Challenge Colorado Industrial Energy Challenge Colorado The U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program) has developed multiple resources and a Best Practices suite of tools to help industrial manufacturers reduce their energy intensity. AMO adopted the Energy Policy Act of 2005 objective of reducing industrial energy intensity

  4. IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 5: Method of Calculating Results for the Save Energy Now Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    181 DOE Industrial Technologies Program Appendix 5: Method of Calculating Results for the Save Energy Now Initiative u Large Plant Assessments .................................................................................................................................................................... 182 u Training

  5. Extra-Large Memory Nodes

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Extra-Large Memory Nodes Extra-Large Memory Nodes Extra-Large Memory Nodes Overview Carver has two "extra-large" memory nodes; each node has four 8-core Intel X7550 ("Nehalem EX") 2.0 GHz processors (32 cores total) and 1TB memory. These nodes are available through the queue "reg_xlmem". They can be used for interactive and batch jobs that require large amount of memory (16GB per core or more). reg_xlmem queue Please refer to the "Queues and Policies" page

  6. Industrial

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  7. Industrial

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Company, Smoky Canyon Mining, PNL 9344 UC-310 (195) Impact Evaluation of a Slush Chest Bypass Installed at Scott Paper Company; PNL 9466, UC-310 (295) Impact Evaluation of...

  8. Industrial

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    efficiency; or to replace it with a new motor. If the motor rewind resulted in the motor having maintained its original efficiency, it is commonly called a GREEN REWIND....

  9. Cleanroom energy benchmarking in high-tech and biotech industries

    SciTech Connect

    Tschudi, William; Benschine, Kathleen; Fok, Stephen; Rumsey, Peter

    2001-04-01

    Cleanrooms, critical to a wide range of industries, universities, and government facilities, are extremely energy intensive. Consequently, energy represents a significant operating cost for these facilities. Improving energy efficiency in cleanrooms will yield dramatic productivity improvement. But more importantly to the industries which rely on cleanrooms, base load reduction will also improve reliability. The number of cleanrooms in the US is growing and the cleanroom environmental systems' energy use is increasing due to increases in total square footage and trends toward more energy intensive, higher cleanliness applications. In California, many industries important to the State's economy utilize cleanrooms. In California these industries utilize over 150 cleanrooms with a total of 4.2 million sq. ft. (McIlvaine). Energy intensive high tech buildings offer an attractive incentive for large base load energy reduction. Opportunities for energy efficiency improvement exist in virtually all operating cleanrooms as well as in new designs. To understand the opportunities and their potential impact, Pacific Gas and Electric Company sponsored a project to benchmark energy use in cleanrooms in the electronics (high-tech) and biotechnology industries. Both of these industries are heavily dependent intensive cleanroom environments for research and manufacturing. In California these two industries account for approximately 3.6 million sq. ft. of cleanroom (McIlvaine, 1996) and 4349 GWh/yr. (Sartor et al. 1999). Little comparative energy information on cleanroom environmental systems was previously available. Benchmarking energy use allows direct comparisons leading to identification of best practices, efficiency innovations, and highlighting previously masked design or operational problems.

  10. Animal and industrial waste anaerobic digestion: USA status report

    SciTech Connect

    Lusk, P.D.

    1996-01-01

    Pollutants from unmanaged animal and bio-based industrial wastes can degrade the environment, and methane emitted from decomposing wastes may contribute to global climate change. One waste management system prevents pollution and converts a disposal problem into a new profit center. Case studies of operating systems indicate that the anaerobic digestion of animal and industrial wastes is a commercially available bioconversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel. Growth and concentration of the livestock industry create opportunities to properly dispose of the large quantities of manures generated at dairy, swine, and poultry farms. Beyond the farm, extension of the anaerobic digestion process to recover methane has considerable potential for certain classified industries - with a waste stream characterization similar to livestock manures. More than 35 example industries have been identified, and include processors of chemicals, fiber, food, meat, milk, and pharmaceuticals. Some of these industries already recover methane for energy. This status report examines some current opportunities for recovering methane from the anaerobic digestion of animal and industrial wastes in the US. Case studies of operating digesters, including project and maintenance histories, and the operator`s {open_quotes}lessons learned,{close_quotes} are included as a reality check. Factors necessary for successful projects, as well as a list of reasons explaining why some anaerobic digestion projects fail, are provided. The role of management is key; not only must digesters be well engineered and built with high-quality components, they must also be sited at facilities willing to incorporate the uncertainties of a new technology. Anaerobic digestion can provide monetary benefits and mitigate possible pollution problems, thereby sustaining development while maintaining environmental quality.

  11. Automatic control in petroleum, petrochemical and desalination industries

    SciTech Connect

    Kotob, S.

    1986-01-01

    This is the second IFAC workshop on the subject of Automatic Control in Oil and Desalination Industries. Presentations and discussions underscored the priorities of oil and desalination industries in getting better overall quality, improved energy use, lower cost, and better safety and security. These factors will take on added importance to oil exporting nations that have been hit recently by large oil price declines, which are forcing them to improve the efficiency of their industries and rationalize all new capital expenditures. Papers presented at the workshop included reviews of theoretical developments in control and research in modelling, optimization, instrumentation and control. They included the latest developments in applications of control systems to petroleum, petrochemical and desalination industries such as refineries, multi-stage flash desalination, chemical reactors, and bioreactors. The papers covered the latest in the applications of adaptive control, robust control, decentralized control, bilinear control, measurement techniques, plant optimization and maintenance, and artificial intelligence. Several case studies on modernization of refineries and controls and its economics were included. Two panel discussions, on new projects at the Kuwait National Petroleum Company (KNPC) and needs for control systems were held. Participation in the workshop came from the oil industry and academic institutions.

  12. World tanker industry maintains momentum from Persian Gulf war

    SciTech Connect

    Not Available

    1991-06-10

    The world tanker industry has managed to maintain the momentum generated during the Persian Gulf War. Freight rates for large vessels have regained the high levels seen during the first 2 months of this year, while the expected postwar decline in use of tankers has not materialized. The health of the tanker industry is linked closely with the volume of long haul crude oil from the Middle East, a spot charter from the gulf to Europe, an owner would only break even on the cost of building and operating a new tanker to the highest environmental standards. Owners currently can expect spot rates of about $40,000/day, excellent by the standards of the late 1980s and early 1990s but still below the level needed to justify new buildings. And there are many in the industry who think $40,000/day will be just a happy memory later in the year. Owners are facing pressure for major changes in the industry. Governments and the public want better operating standards and new environmentally sound tankers to reduce the risk of oil spills. At the same time, the industry has to learn to live with repercussion in the 1990 Oil Pollution Act in the U.S., which has opened the way for unlimited liability against tanker owners involved in spills off the U.S. The search also is on for improved profits to make investments required by the changing world of seaborne oil transportation.

  13. The Advanced Automation for Powder Diffraction toward Industrial Application

    SciTech Connect

    Osaka, Keiichi; Matsumoto, Takuya; Miura, Keiko; Sato, Masugu; Hirosawa, Ichiro; Watanabe, Yoshio

    2010-06-23

    A highly automated system for powder diffraction with synchrotron radiation was installed on the large Debye-Scherrer camera at the BL19B2 Engineering Science Research I beamline of SPring-8. Combined with a sample transfer and an automated centering system, we have succeeded in increasing the ratio of exposure time in the user beam time to 85%. The proposed system can be applied to a wide range of industrial uses.

  14. Large

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... at the beginning of the discharge, which could damage the detectors. The shutter has a finite opening time of 3 ms. After laser fire is given to the laser, roughly 1.25 ms are ...

  15. Separation of heavy metals: Removal from industrial wastewaters...

    Office of Scientific and Technical Information (OSTI)

    COMPOUNDS; REACTION KINETICS; SORPTION; WASTES; WATER 540220* -- Environment, ... & Utilization-- Industrial & Agricultural Processes-- Industrial Waste ...

  16. China develops natural gas industry

    SciTech Connect

    Not Available

    1982-01-01

    As of 1981, more than 60 natural gas fields with a total annual output of 12.74 billion cu m have been discovered in China, placing the country among the top 12 gas producers in the world. In addition, there are prospects for natural gas in the Bohai-North China Basin and the Qaidam Basin, NW. China, providing a base for further expansion of the gas industry. Gas reservoirs have been found in 9 different geologic ages: Sinian, Cambrian, Ordovician, Carboniferous, Permian, Triassic, Jurassic, Tertiary, and Quaternary. Of the 60 gas field now being exploited, there are more than 40 fields in Sichuan. The Sichuan Basin gas industry is described in detail.

  17. Industrial lead paint removal specifications

    SciTech Connect

    Stone, R.C.

    1997-06-01

    The purpose of this paper is to inform the reader as to some of the pertinent rules and regulations promulgated by the Environmental Protection Agency (EPA) and the Occupational Safety and Health Administration (OSHA) that may effect an industrial lead paint removal project. The paper discusses a recommended schedule of procedures and preparations to be followed by the lead paint removal specification writer when analyzing the possible impact of the project on the environment, the public and workers. Implications of the Clean Air Act, the Clean Water Act and the Resource Conservation and Recovery Act (RCRA) along with hazardous waste handling, manifesting, transporting and disposal procedures are discussed with special emphasis placed as to their impact on the writer and the facility owner. As the rules and regulations are highly complex, the writer has attempted to explain the methodology currently being used in state-of-the-art industrial lead abatement specifications.

  18. Steel Industry Marginal Opportunity Analysis

    SciTech Connect

    none,

    2005-09-01

    The Steel Industry Marginal Opportunity Analysis (PDF347 KB) identifies opportunities for developing advanced technologies and estimates both the necessary funding and the potential payoff. This analysis determines what portion of the energy bandwidth can be captured through the adoption of state-of-the-art technology and practices. R&D opportunities for addressing the remainder of the bandwidth are characterized and plotted on a marginal opportunity curve.

  19. World Congress on Industrial Biotechnology

    Energy.gov [DOE]

    The World Congress on Industrial Biotechnology is the world’s largest conference on biotechnology and will gather leaders across the bioeconomy. The conference will be held April 17–20, 2016 in San Diego, California. Deputy Assistant Secretary of Sustainable Transportation Reuben Sarkar will also be speaking on a panel titled, “Genomics Pushing the Boundaries of Advanced Manufacturing,” and Technology Manager Jay Fitzgerald will be in attendance

  20. Residential Commercial Industrial Electric Power

    Energy Information Administration (EIA) (indexed site)

    63 dollars per thousand cubic feet 0 2 4 6 8 10 12 2011 2012 2013 2014 2015 Residential Commercial Industrial Electric Power Notes: Coverage for prices varies by consumer sector. Prices are in nominal dollars. See Appendix A for further discussion on consumer prices. Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-923, "Power Plant Operations Report"; and Form EIA-910,

  1. Biomonitoring for the photovoltaics industry

    SciTech Connect

    Bernholc, N.M.; Moskowitz, P.D.

    1995-07-01

    Biomonitoring often is used as a method for estimating the dose to an individual. Therefore, a parameter of measurement, or biomarkers must be identified. The purpose of this paper is to give an overview of biomonitoring protocols for metals used in the photovoltaics industry. Special attention is given to areas that often are skimmed over, to gain insights into some of the problems that may arise when these tasks are carried out. Biological monitoring can be used to determine current human exposures to chemicals, as well as to detect past exposures, and the effects that these exposures may have on human health. It is used in conjunction with environmental monitoring to describe more completely worker`s exposures to, and absorption of, chemicals in the workplace. Biological specimens (e.g., blood, hair or urine) are analyzed for chemical agents, metabolites, or for some specific effect on the person (Lowry 1994). Biomonitoring can assess a workers exposure to industrial chemicals by all routes including skin absorption and ingestion. Although the methodology still is in its infancy, in cases where the procedures have been developed, it can be an invaluable component of an ongoing program of industrial hygiene monitoring. Like any technology, there are limitations to its effectiveness because of a lack of knowledge, contamination of specimens, and the introduction of errors.

  2. Carbon Design Studies for Large ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    creates and evaluates innovative large blade concepts for horizontal axis wind turbines to promote designs that are more efficient aerodynamically, structurally, and economically. ...

  3. Massachusetts Large Blade Test Facility Final Report

    SciTech Connect

    Rahul Yarala; Rob Priore

    2011-09-02

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  4. Macro-Industrial Working Group Meeting 2: Industrial updates and Preliminary results

    Energy Information Administration (EIA) (indexed site)

    Macro-Industrial Working Group Meeting 2: Industrial updates and Preliminary results Macro Industrial Working Group (MIWG) Industrial Team: Kelly Perl, Team Leader; Peter Gross, Susan Hicks, Paul Otis February 18, 2016 | Washington, DC Preliminary Results. Do not Disseminate. AEO2016 additions for the Industrial Demand Module (IDM) * Technology choice models complete; end of 5 year effort * Benchmarking improvements - Individual industry benchmarking of tables complete - On-going effort to

  5. Improve Chilled Water System Performance, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program Chilled Water System Analysis Tool (CWSAT) can help optimize the performance of of industrial chilled water systems.

  6. Tools to Boost Steam System Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program steam software tools can help industrial plants identify steam system improvements to save energy and money.

  7. Industrial Utility Webinar: Opportunities for Cost-Effective Energy Efficiency in the Industrial Sector

    SciTech Connect

    2010-01-13

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  8. ITP Aluminum: Aluminum Industry Technology Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2002, the industry created this updated Aluminum Industry Technology Roadmap to define the specific research and development priorities, performance targets, and milestones required to achieve the set vision.

  9. 2008 Industrial Technologies Market Report, May 2009

    SciTech Connect

    Energetics; DOE

    2009-07-01

    The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

  10. ET Industries: Order (2012-SE-2902)

    Energy.gov [DOE]

    DOE ordered ET Industries, Inc. to pay a $39,000 civil penalty after finding ET Industries had manufactured and distributed in commerce in the U.S. 974 units of basic model TH-1, a noncompliant showerhead.

  11. Ashkelon Technological Industries ATI | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ashkelon Technological Industries (ATI) Place: Israel Sector: Services Product: General Financial & Legal Services ( Government Public sector ) References: Ashkelon...

  12. Salem Electric - Residential, Commercial, and Industrial Efficiency...

    Energy.gov [DOE] (indexed site)

    Industrial Local Government Nonprofit Residential State Government Federal Government Multifamily Residential Savings Category Clothes Washers RefrigeratorsFreezers Equipment...

  13. Borla Performance Industries, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Borla Performance Industries, Inc. America's Next Top Energy Innovator Challenge 1830 likes Borla Performance Industries, Inc. Oak Ridge National Laboratory Borla Performance Industries is a 35-year technology leader, manufacturer and marketer of exhaust for the automotive industry, delivering innovative, patented exhaust systems that enhance the performance of internal combustion engines. Borla has an option to license a novel, nano-pore membrane technology from OakRidge National Laboratory.

  14. Industrial Distributed Energy: Combined Heat & Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information about the Department of Energy’s Industrial Technologies Program and its Combined Heat and Power program.

  15. Chemicals Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chemicals Industry Profile Chemicals Industry Profile Chemical products are essential to the production of a myriad of manufactured products. More than 96% of all manufactured goods are directly touched by the chemicals industry.1 The industry greatly influences our safe water supply, food, shelter, clothing, health care, computer technology, transportation, and almost every other facet of modern life. Economic The United States is the top chemical producer in the world, accounting for nearly

  16. Title: Collaborative Industry - Academic Synchrophasor Engineering...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Title: Collaborative Industry - Academic Synchrophasor Engineering Program Principal ... course in the Electrical and Computer Engineering (ECE) department where students will ...

  17. EERE INDUSTRY DAY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EERE INDUSTRY DAY EERE INDUSTRY DAY On September 23-24, 2015 the inaugural EERE Industry Day was held at Oak Ridge National Laboratory to foster relationships and encourage dialog among researchers, industry representatives, and U.S. Department of Energy representatives. This two-day event was designed to introduce new energy-efficient innovations in buildings, transportation, and advanced manufacturing and to facilitate public-private partnerships and collaborations that will enable these

  18. Mining Industry Roadmap for Crosscutting Technologies

    SciTech Connect

    none,

    1999-05-01

    Technology roadmaps are envisioned in several areas, and begin with a Mining Industry Roadmap for Crosscutting Technologies.

  19. Assessment of replicable innovative industrial cogeneration applications

    SciTech Connect

    None, None

    2001-06-01

    This report provides a market assessment of innovative industrial DG cogeneration systems that are less than 1 MWe.

  20. The Industrialization of Thermoelectric Power Generation Technology...

    Energy.gov [DOE] (indexed site)

    with thermoelectrics such desirable thermoelectric properties, low material toxicity, ... relevant to the Industrialization of Thermoelectric Devices An integrated approach ...

  1. Quarterly Solar Industry Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Quarterly Solar Industry Update Quarterly Solar Industry Update Each quarter, the National Renewable Energy Laboratory (NREL) conducts a presentation of technical trends within the solar industry, which became publicly available in October 2016. Each presentation focuses on global and U.S. supply and demand, module and system price, investment trends and business models, and updates on U.S. government programs supporting the solar industry. Presentations are available for download in PDF format

  2. Oregon Industrial Stormwater Discharge Monitoring Report (DEQ...

    OpenEI (Open Energy Information) [EERE & EIA]

    discharge. Form Type ApplicationNotice Form Topic Industrial Stormwater Discharge Monitoring Report Organization Oregon Department of Environmental Quality Published...

  3. The United States natural gas industry

    SciTech Connect

    Gibson, D.E.

    1988-01-01

    The U.S. natural gas industry can only be understood within the context of the nation's attitudes toward the proper role of government within the U.S. economy. A review of regulatory history provides valuable insights to understanding the unique structure and functioning of the gas industry in the United States, as well as future directions for the industry. Tomorrow's natural gas industry will feature adequate gas supplies, unbundling of services, continuing competition with oil, and changed regulation.

  4. Assessment of Replicable Innovative Industrial Cogeneration Applications,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    June 2001 | Department of Energy Replicable Innovative Industrial Cogeneration Applications, June 2001 Assessment of Replicable Innovative Industrial Cogeneration Applications, June 2001 U.S. industrial facilities utilize a wide array of thermal process equipment, including hot water heaters, thermal liquid heaters, ovens, furnaces, kilns, dryers, chillers, and boilers. This report provides a market assessment of innovative industrial distributed generation cogeneration systems that are less

  5. Industrial Assessment Centers (IACs) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technical Assistance » Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Small- and medium-sized manufacturers may be eligible to receive a no-cost assessment provided by DOE Industrial Assessment Centers (IACs). Teams located at 24 universities around the country conduct the energy audits to identify opportunities to improve productivity, reduce waste, and save energy. IACs typically identify more than $130,000 in potential annual

  6. Industrial Energy Efficiency Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant

  7. Guidelines for Estimating Unmetered Industrial Water Use

    SciTech Connect

    Boyd, Brian K.

    2010-08-01

    The document provides a methodology to estimate unmetered industrial water use for evaporative cooling systems, steam generating boiler systems, batch process applications, and wash systems. For each category standard mathematical relationships are summarized and provided in a single resource to assist Federal agencies in developing an initial estimate of their industrial water use. The approach incorporates industry norms, general rules of thumb, and industry survey information to provide methodologies for each section.

  8. Deregulation-restructuring: Evidence for individual industries

    SciTech Connect

    Costello, K.W.; Graniere, R.J.

    1997-05-01

    Several studies have measured the effects of regulation on a particular industry. These studies range widely in sophistication, from simple observation (comparison) of pre-transformation and post-transformation actual industry performance to econometric analysis that attempt to separate the effects of deregulation from other factors in explaining changes in an industry`s performance. The major problem with observation studies is that they are unable to measure the effect of one particular event, such as deregulation, on an industry`s performance. For example, at the same time that the United Kingdom privatized its electric power industry, it also radically restructured the industry to encourage competition and instituted a price-cap mechanism to regulate the prices of transmission, distribution, and bundled retail services. Subsequent to these changes in 1991, real prices for most UK electricity customers have fallen. It is not certain however, which of these factors was most important or even contributed to the decline in price. In any event, one must be cautious in interpreting the results of studies that attempt to measure the effect of deregulation per se for a specific industry. This report highlights major outcomes for five industries undergoing deregulation or major regulatory and restructuring reforms. These include the natural gas, transportation, UK electric power, financial, and telecommunications industries. Particular attention was given to the historical development of events in the telecommunications industry.

  9. Directory of Tennessee's forest industries 1980

    SciTech Connect

    Not Available

    1980-09-01

    A directory of primary and secondary forest industries is presented. Firm names and addresses are listed by county in alphabetical order. The following information is listed for each industry: type of plant, production and employee size class, products manufactured, and equipment. For the primary industries, the major species of trees used are listed. (MHR)

  10. Some perspectives on the electric industry

    SciTech Connect

    Winer, J.H.

    1996-12-31

    Opinions regarding future directions of the U.S. electric utility industry are presented in the paper. Pertinent historical aspects and current industry rules are summarized. Major issues and trends in the electricity market are outlined, and recommendations are presented. It is concluded that new rules in the industry will be set directly by customers, and that customers want renewable energy resources.

  11. Restructuring the energy industry: A financial perspective

    SciTech Connect

    Abrams, W.A.

    1995-12-31

    This paper present eight tables summarizing financial aspects of energy industry restructuring. Historical, current, and future business characteristics of energy industries are outlined. Projections of industry characteristics are listed for the next five years and for the 21st century. Future independent power procedures related to financial aspects are also outlined. 8 tabs.

  12. Handbook of industrial membrane technology

    SciTech Connect

    Porter, M.C.

    1989-01-01

    This book emphasizes the use of synthetic membranes for separations involving industrial or municipal process streams. In addition to the classic membrane processes-microfiltration, ultrafiltration, reverse osmosis, gas separation, and electrodialysis-chapters on enzyme membrane reactors, membrane fermentors and coupled transport membranes are included. The preparation of synthetic membranes and process design and optimization are also covered. Most of the membrane processes are pressure driven, the notable exception being electrodialysis, by which ions are separated under the influence of an electric field. In addition, coupled transport covers processes driven under the influence of a concentration gradient.

  13. EM Active Sites (large) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EM Active Sites (large) EM Active Sites (large) Center Map View All Maps Addthis

  14. Why industry demand-side management programs should be self-directed

    SciTech Connect

    Pritchett, T.; Moody, L. ); Brubaker, M. )

    1993-11-01

    U.S. industry believes in DSM. But it does not believe in the way DSM is being implemented, with its emphasis on mandatory utility surcharge/rebate programs. Self-directed industrial DSM programs would be better for industry - and for utilities as well. Industrial demand-side management, as it is currently practiced, relies heavily on command-and-control-style programs. The authors believe that all parties would benefit if utilities and state public service commissions encouraged the implementation of [open quotes]self-directed[close quotes] industrial DSM programs as an alternative to these mandatory surcharge/rebate-type programs. Here the authors outline industrial experience with existing demand-side management programs, and offer alternative approaches for DSM in large manufacturing facilities. Self-directed industrial programs have numerous advantages over mandatory utility-funded and sponsored DSM programs. Self-directed programs allow an industrial facility to use its own funds to meet its own specific goals, whether they are set on the basis of demand reduction, energy use reduction, spending levels for DSM and environmental activities, or some combination of these or other readily measurable criteria. This flexibility fosters a higher level of cost effectiveness, a more focused and effective approach for optimizing energy usage, larger emission reductions per dollar of expenditure, and more competitive industrial electric rates.

  15. Large Magnetization at Carbon Surfaces

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure...

  16. Glass needs for a growing photovoltaics industry

    SciTech Connect

    Burrows, Keith; Fthenakis, Vasilis

    2015-01-01

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industrys projected needs, to do so will require advance planning and substantial investments.

  17. HTGR Industrial Application Functional and Operational Requirements

    SciTech Connect

    L. E. Demick

    2010-08-01

    This document specifies the functional and performance requirements to be used in the development of the conceptual design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to a typical industrial facility. These requirements were developed from collaboration with industry and HTGR suppliers over the preceding three years to identify the energy needs of industrial processes for which the HTGR technology is technically and economically viable. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a conceptual design of the plant that will serve the broadest range of industrial applications.

  18. Supporting industries energy and environmental profile

    SciTech Connect

    None, None

    2005-09-21

    As part of its Industries of the Future strategy, the Industrial Technologies Program within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy works with energy-intensive industries to improve efficiency, reduce waste, and increase productivity. These seven Industries of the Future (IOFs) – aluminum, chemicals, forest products, glass, metal casting, mining, and steel – rely on several other so-called “supporting industries” to supply materials and processes necessary to the products that the IOFs create. The supporting industries, in many cases, also provide great opportunities for realizing energy efficiency gains in IOF processes.

  19. Capital tax distortions in the petroleum industry

    SciTech Connect

    Fry, R.C. Jr.

    1985-01-01

    The existence of taxes other than capital taxes increases the total and marginal distortions associated with capital taxation. Thus, for an industry subject to these other taxes, such as the oil industry, capital taxes are more distortionary than has previously been believed. In particular, the ratio of the marginal excess burden to the marginal tax revenue associated with a capital tax in the oil industry is higher than that ratio in other industries. In fact, given plausible parameter values, it is possible for an increase in the capital tax rate in the oil industry to decrease total tax revenue. 43 references, 1 table.

  20. Technology transfer in the petrochemical industry

    SciTech Connect

    Tanaka, M.

    1994-01-01

    The paper deals with the development of the Japanese petrochemical industry from the 1950s through the 1960s solely from the standpoint of the process of technology transplantation. The Japanese petrochemical industry in this period is interesting as it relates to technology transfer to Japan because: (1) It was an industry at the core of the heavy and chemical industries, which were an important pillar of Japan's industrial policy; (2) It was a new technical field with no past history; and (3) Unraveling of technology was successfully pursued, with the result that Japan became a petrochemical technology-exporting country in the 1960s.

  1. Electric industry restructuring in Massachusetts

    SciTech Connect

    Wadsworth, J.W.

    1998-07-01

    A law restructuring the electric utility industry in Massachusetts became effective on November 25, 1997. The law will break up the existing utility monopolies into separate generation, distribution and transmission entities, and it will allow non-utility generators access to the retail end user market. The law contains many compromises aimed at protecting consumers, ensuring savings, protecting employees and protecting the environment. While it appears that the legislation recognizes the sanctity of independent power producer contracts with utilities, it attempts to provide both carrots and sticks to the utilities and the IPP generators to encourage renegotiations and buy-down of the contracts. Waste-to-energy contracts are technically exempted from some of the obligations to remediate. Waste-to-energy facilities are classified as renewable energy sources which may have positive effects on the value to waste-to-energy derived power. On November 25, 1997, the law restructuring the electric utility industry in Massachusetts became effective. The law will have two primary effects: (1) break up the existing utility monopolies into separate generation, distribution and transmission entities, and (2) allow non-utility generators access to the retail end-user market.

  2. Session: Wind industry project development

    SciTech Connect

    Gray, Tom; Enfield, Sam

    2004-09-01

    This first session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a question and answer period. The session was intended to provide a general overview of wind energy product development, from the industry's perspective. Tom Gray of AWEA presented a paper titled ''State of the Wind Energy Industry in 2004'', highlighting improved performance and lower cost, efforts to address avian impacts, a status of wind energy in comparison to other energy-producing sources, and ending on expectations for the near future. Sam Enfield of Atlantic Renewable Energy Corporation presented a paper titled ''Key Factors for Consideration in Wind Plant Siting'', highlighting factors that wind facility developers must consider when choosing a site to build wind turbines and associated structures. Factors covered include wind resources available, ownership and land use patterns, access to transmission lines, accessibility and environmental impacts. The question and answer sum mary included topics related to risk taking, research and development, regulatory requirements, and dealing with utilities.

  3. Adaptable Large Power Transformers (LPTs)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fact Sheet: DOE Award Selections for the Design of More Flexible and Adaptable Large Power Transformers (LPTs) As part of the Energy Department's commitment to a strong and secure power grid, DOE today announced new funding to strengthen protection of the nation's electric grid from natural and manmade hazards. More than $1.5 million will catalyze new designs of large power transformers (LPTs) which are critical to the nation's power grid and represent one of its most vulnerable components.

  4. Office of Industrial Technologies research in progress

    SciTech Connect

    Not Available

    1993-05-01

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

  5. Solar synthesis of advanced materials: A solar industrial program initiative

    SciTech Connect

    Lewandowski, A.

    1992-06-01

    This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000{degrees}C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including the following: Metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).

  6. Florida Natural Gas Number of Industrial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Florida Natural Gas Number of Industrial ... Referring Pages: Number of Natural Gas Industrial Consumers Florida Number of Natural Gas ...

  7. Industrial Assessment Centers (IAC) Update -- July 2015 | Department...

    Office of Environmental Management (EM)

    Industrial Assessment Centers (IAC) Update -- July 2015 Industrial Assessment Centers (IAC) Update -- July 2015 Read the Industrial Assessment Centers (IAC) Update -- July 2015...

  8. Texas Renewable Energy Industries Association | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Renewable Energy Industries Association Jump to: navigation, search Logo: Texas Renewable Energy Industries Association Name: Texas Renewable Energy Industries Association Address:...

  9. Colorado Solar Energy Industries Association | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Industries Association Jump to: navigation, search Logo: Colorado Solar Energy Industries Association Name: Colorado Solar Energy Industries Association Address: 841 Front St....

  10. ITP Industrial Distributed Energy: Combustion Turbine CHP System...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    INDUSTRIAL TECHNOLOGIES PROGRAM Combustion Turbine CHP System for Food Processing Industry Reducing Industry's Environmental Footprint and Easing Transmission Congestion Based at a...

  11. ITP Petroleum Refining: Profile of the Petroleum Refining Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Profile of the Petroleum Refining Industry in California: California Industries of the Future Program ITP Petroleum Refining: Profile of the Petroleum Refining Industry in ...

  12. China and India Industrial Efficiency NREL Partnership | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Industrial Efficiency NREL Partnership Jump to: navigation, search Logo: China-NREL Industrial Efficiency Partnership Name China-NREL Industrial Efficiency Partnership Agency...

  13. Oregon Department of Geology and Mineral Industries | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Geology and Mineral Industries Jump to: navigation, search Logo: Oregon Department of Geology and Mineral Industries Name: Oregon Department of Geology and Mineral Industries...

  14. Humboldt Industrial Park Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Industrial Park Wind Farm Jump to: navigation, search Name Humboldt Industrial Park Wind Farm Facility Humboldt Industrial Park Sector Wind energy Facility Type Community Wind...

  15. Sustainable technologies for the building construction industry

    SciTech Connect

    Vanegas, J.A.; DuBose, J.R.; Pearce, A.R.

    1995-12-31

    As the dawn of the twenty-first century approaches, the current pattern of unsustainable, inequitable and unstable asymmetric demographic and economic growth has forced many segments of society to come together in facing a critical challenge: how can societies across the world meet their current basic human needs, aspirations and desires, without compromising the ability of future generations to meet their own needs? At the core of this challenge is the question: how can the human race maintain in perpetuity a healthy, physically attractive and biologically productive environment. The development path that we have been taking, in the past few centuries, has been ultimately detrimental to the health of our surrounding ecological context. We are consuming an increasing share of the natural resources available to use on this planet, and we are creating sufficiently large amounts of waste and pollution such that the earth can no longer assimilate our wastes and recover from the negative impacts. This is a result of a growing population as well as new technologies which make it easier for use to access natural resources and also require the consumption of more resources. Unsustainable technology has been the result of linear rather than cyclic thinking. The paradigm shift from linear to cyclic thinking in technological design is the crux of the shift from unsustainability to sustainability. This paper discusses the implications for the building design and construction industries. Strategies, technologies, and opportunities are presented to improve the sustainability of the built environment.

  16. Opportunities, Barriers and Actions for Industrial Demand Response in California

    SciTech Connect

    McKane, Aimee T.; Piette, Mary Ann; Faulkner, David; Ghatikar, Girish; Radspieler Jr., Anthony; Adesola, Bunmi; Murtishaw, Scott; Kiliccote, Sila

    2008-01-31

    In 2006 the Demand Response Research Center (DRRC) formed an Industrial Demand Response Team to investigate opportunities and barriers to implementation of Automated Demand Response (Auto-DR) systems in California industries. Auto-DR is an open, interoperable communications and technology platform designed to: Provide customers with automated, electronic price and reliability signals; Provide customers with capability to automate customized DR strategies; Automate DR, providing utilities with dispatchable operational capability similar to conventional generation resources. This research began with a review of previous Auto-DR research on the commercial sector. Implementing Auto-DR in industry presents a number of challenges, both practical and perceived. Some of these include: the variation in loads and processes across and within sectors, resource-dependent loading patterns that are driven by outside factors such as customer orders or time-critical processing (e.g. tomato canning), the perceived lack of control inherent in the term 'Auto-DR', and aversion to risk, especially unscheduled downtime. While industry has demonstrated a willingness to temporarily provide large sheds and shifts to maintain grid reliability and be a good corporate citizen, the drivers for widespread Auto-DR will likely differ. Ultimately, most industrial facilities will balance the real and perceived risks associated with Auto-DR against the potential for economic gain through favorable pricing or incentives. Auto-DR, as with any ongoing industrial activity, will need to function effectively within market structures. The goal of the industrial research is to facilitate deployment of industrial Auto-DR that is economically attractive and technologically feasible. Automation will make DR: More visible by providing greater transparency through two-way end-to-end communication of DR signals from end-use customers; More repeatable, reliable, and persistent because the automated controls

  17. 2015 Average Monthly Bill- Industrial

    Energy Information Administration (EIA) (indexed site)

    Industrial (Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U) State Number of Customers Average Monthly Consumption (kWh) Average Price (cents/kWh) Average Monthly Bill (Dollar and cents) New England 26,912 58,008 12.34 7,159.42 Connecticut 4,458 64,154 12.95 8,310.68 Maine 2,993 89,321 9.05 8,084.41 Massachusetts 14,100 46,644 13.54 6,317.53 New Hampshire 3,277 50,377 12.74 6,416.71 Rhode Island 1,853 35,912 13.76 4,940.91 Vermont 231 512,843 10.27 52,677.42 Middle Atlantic 43,552

  18. PEM Stack Manufacturing: Industry Status

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    © 2009 BALLARD POWER SYSTEMS INC. ALL RIGHTS RESERVED JULY 2009 B U I L D I N G A C L E A N E N E R G Y G R O W T H C O M P A N Y B A L L A R D P O W E R S Y S T E M S PEM Stack Manufacturing: Industry Status Duarte R. Sousa, PE August 11, 2011 AUGUST 2009 P A G E 2 Overview of PEM Stack Manufacturing MEA Manufacturing Plate Manufacturing Stack Assembly Stack Conditioning and Testing Package and Ship For each of the four main processes, the following will be provided: 1. A brief history of

  19. Technology Roadmap. Energy Loss Reduction and Recovery in Industrial Energy Systems

    SciTech Connect

    none,

    2004-11-01

    To help guide R&D decision-making and gain industry insights on the top opportunities for improved energy systems, ITP sponsored the Energy Loss Reduction and Recoveryin Energy Systems Roadmapping Workshopin April 2004 in Baltimore, Maryland. This Technology Roadmapis based largely on the results of the workshop and additional industrial energy studies supported by ITP and EERE. It summarizes industry feedback on the top opportunities for R&D investments in energy systems, and the potential for national impacts on energy use and the environment.

  20. Biodiversity and industry ecosystem management

    SciTech Connect

    Coleman, W.G.

    1996-11-01

    Biodiversity describes the array of interacting, genetically distinct populations and species in a region, the communities they are functioning parts. Ecosystem health is a process identifying biological indicators, end points, and values. The decline of populations or species, an accelerating trend worldwide, can lead to simplification of ecosystem processes, thus threatening the stability an sustainability of ecosystem services directly relevant to human welfare in the chain of economic and ecological relationships. The challenge of addressing issues of such enormous scope and complexity has highlighted the limitations of ecology-as-science. Additionally, biosphere-scale conflicts seem to lie beyond the scope of conventional economics, leading to differences of opinion about the commodity value of biodiversity and of the services that intact ecosystems provide. In the fact of these uncertainties, many scientists and economists have adopted principles that clearly assign burdens of proof to those who would promote the loss of biodiversity and that also establish {open_quotes}near-trump{close_quotes} (preeminent) status for ecological integrity. Electric utility facilities and operations impact biodiversity whenever construction, operation, or maintenance of generation, delivery, and support facilities alters landscapes and habitats and thereby impacts species. Although industry is accustomed to dealing with broad environmental concerns (such as global warming or acid rain), the biodiversity issue invokes hemisphere-side, regional, local, and site-specific concerns all at the same time. Industry can proactively address these issues of scope and scale in two main ways: first, by aligning strategically with the broad research agenda put forth by informed scientists and institutions; and second, by supporting focused management processes whose results will contribute incrementally to the broader agenda of rebuilding or maintaining biodiversity. 40 refs., 8 figs.

  1. Research and development in the textile industry

    SciTech Connect

    1987-06-01

    Included in the portfolio of IP's projects are the R and D activities for several advanced technologies targeted at the textile industry, one of the top ten energy intensive industries in the country. These R and D projects have primarily been aimed at improving the energy efficiency and productivity of textile production processes. Many projects in this area have been successfully completed, and some have resulted in the development and implementation of new technologies (e.g., foam processing) for various process steps. Other projects have produced technical results that have later been utilized by the industry in other capacities (e.g., hyperfiltration). Several projects at various stages of development are currently underway. This brochure describes the Office of Industrial Programs' R and D activities relevant to the textile industry. The brochure is comprised of the following: Industry Update, Energy Consumption in the Textile Industry, Energy Consumption in the Textile Industry, Potential Energy Savings in the Textile Industry, Office of Industrial Programs, R and D Efforts, and R and D Data Base.

  2. Industrial ecology Prosperity Game{trademark}

    SciTech Connect

    Beck, D.; Boyack, K.; Berman, M.

    1998-03-01

    Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.

  3. Informatics requirements for a restructured competitive electric power industry

    SciTech Connect

    Pickle, S.; Marnay, C.; Olken, F.

    1996-08-01

    The electric power industry in the United States is undergoing a slow but nonetheless dramatic transformation. It is a transformation driven by technology, economics, and politics; one that will move the industry from its traditional mode of centralized system operations and regulated rates guaranteeing long-run cost recovery, to decentralized investment and operational decisionmaking and to customer access to true spot market prices. This transformation will revolutionize the technical, procedural, and informational requirements of the industry. A major milestone in this process occurred on December 20, 1995, when the California Public Utilities Commission (CPUC) approved its long-awaited electric utility industry restructuring decision. The decision directed the three major California investor-owned utilities to reorganize themselves by the beginning of 1998 into a supply pool, at the same time selling up to a half of their thermal generating plants. Generation will be bid into this pool and will be dispatched by an independent system operator. The dispatch could potentially involve bidders not only from California but from throughout western North America and include every conceivable generating technology and scale of operation. At the same time, large customers and aggregated customer groups will be able to contract independently for their supply and the utilities will be required to offer a real-time pricing tariff based on the pool price to all their customers, including residential. In related proceedings concerning competitive wholesale power markets, the Federal Energy Regulatory Commission (FERC) has recognized that real-time information flows between buyers and sellers are essential to efficient equitable market operation. The purpose of this meeting was to hold discussions on the information technologies that will be needed in the new, deregulated electric power industry.

  4. Strategic alliances for the future of the gas industry

    SciTech Connect

    Catell, R.B.

    1993-12-31

    The natural gas industry is in a position to benefit significantly from the inherent environmental advantages of natural gas and access to a large reserves base. Concurrently, the domestic natural gas industry will be undergoing extensive regulatory and structural changes in the coming years as a result of the implementation of FERC Order 636. The competition between fuels is intensifying, and the number of new market players and consumer demands are rising. As all sectors of the industry are facing new risk resulting from changes in access to storage, balancing, excess capacity, capacity release programs, and from the entry of gas marketers and aggregators, companies must increasingly rely on strategic alliances to remain competitive and stable. Strategic alliances are cooperative relationships between gas companies, pipelines, end-users, producers, marketers, as well as government bodies and labor unions. The principal goals of strategic alliances are to reduce risks, leverage resources and competitiveness, achieve long-term objectives, and build flexibility. Brooklyn Union has been involved in strategic alliances in the areas of (1) exploration, production, and supply; (2) transportation and storage; (3) marketing and market development; (4) regulatory and legislative activities; and (5) environmental activities. These alliances have allowed Brooklyn Union to diversify its gas supply, cooperatively support new pipelines, introduce new products and services, retain customers, generate new business, and assist in the enactment of reasonable Federal and State regulations and energy policies. Brooklyn Union recognizes that in the future the natural gas industry must continue to form strategic alliances to better serve the customer. Through strategic alliances the industry can increase the value and importance of natural gas as America`s premier energy source.

  5. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. )

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  6. About Industrial Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    About Industrial Technical Assistance About Industrial Technical Assistance CHP System at Frito Lay facility in Killingly, Connecticut.<br /> <em>Photo courtesy of Energy Solutions Center.</em> CHP System at Frito Lay facility in Killingly, Connecticut. Photo courtesy of Energy Solutions Center. Industrial Technical Assistance supports the deployment of energy efficient manufacturing technologies and practices, including strategic energy management and combined heat and power,

  7. Forest Products Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Forest Products Industry Profile Forest Products Industry Profile Wood and paper products meet the everyday needs of consumers and businesses. They provide materials essential for communication, education, packaging, construction, shelter, sanitation, and protection. The U.S. forest products industry is based on a renewable and sustainable raw material: wood. It practices recovery and recycling in its operations. Its forests help the global carbon balance by taking up carbon dioxide from the

  8. INDUSTRIAL ASSESSMENT CENTERS IAC Quarterly Update

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Spring 2016 INDUSTRIAL ASSESSMENT CENTERS IAC Quarterly Update Spring 2014 INDUSTRIAL ASSESSMENT CENTERS IAC Update, Spring 2016 About the IAC Program Beginning in 1976, the Industrial Assessment Centers (IACs) have provided small and medium-sized manufacturers with site- specific recommendations for improving energy efficiency, reducing waste, and increasing productivity through changes in processes and equipment. A typical IAC client will receive recommendations that save them more than

  9. GEA Industry Briefing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industry Briefing GEA Industry Briefing U.S. Department of Energy progress in geothermal energy deployment was addressed at the State of the Industry Geothermal Briefing in Washington, DC on February 24, 2015. Eric Hass, hydrothermal program manager for the Geothermal Technologies Office presented. Exploration drilling in the Wind River Valley basin validates the geothermal resource there. Source: Wyoming State Geological Survey U.S. Department of Energy progress in geothermal energy deployment

  10. NERSC Seeks Industry Partners for Collaborative Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Seeks Industry Partners for Collaborative Research NERSC Seeks Industry Partners for Collaborative Research January 28, 2015 Contact: David Skinner, NERSC Strategic Partnerships Lead, deskinner@lbl.gov, 510-486-4748 Edison7 The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory has launched a private sector partnership program (PSP) to make its computing capabilities available to industry partners working in key technology areas. Led by David

  11. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1989-01-01

    This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

  12. Steel Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Steel Industry Profile Steel Industry Profile The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of manufacturing, construction, transportation, and various consumer products. Traditionally valued for its strength, steel has also become the most recycled material.1 About two-thirds of the steel produced in the United States in 2008 was made from scrap.2 Steelmaking facilities use one of two processes. In the integrated steelmaking process, iron

  13. DOE Issues Funding Opportunity for Academic-Industry Collaboration...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Academic-Industry Collaboration - Synchrophasor Engineering Education Program DOE Issues Funding Opportunity for Academic-Industry Collaboration - Synchrophasor Engineering ...

  14. Industrial Energy Efficiency and Climate Change Mitigation

    SciTech Connect

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  15. Low Temperature Direct Use Industrial Geothermal Facilities ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Low Temperature Direct Use Industrial Geothermal Facilities Jump to: navigation, search Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","SATELLITE","HYBR...

  16. Model Documentation Report: Industrial Sector Demand Module...

    Gasoline and Diesel Fuel Update

    factors are multiplicative for all fuels which have values greater than zero and are additive otherwise. The equation for total industrial electricity consumption is below....

  17. Industrial Energy Efficiency Projects Improve Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Efficiency Projects Improve Competitiveness and Protect Jobs Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs U.S. Department of Energy (DOE) ...

  18. Industrial Research Ltd IRL | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Research Ltd IRL Jump to: navigation, search Name: Industrial Research Ltd (IRL) Place: New Zealand Sector: Services Product: General Financial & Legal Services ( State-owned...

  19. Dakota Electric Association - Commercial and Industrial Energy...

    Energy.gov [DOE] (indexed site)

    Industrial Agricultural Savings Category Geothermal Heat Pumps Lighting Chillers Heat Pumps Air conditioners Compressed air Energy Mgmt. SystemsBuilding Controls Motors Motor VFDs...

  20. Thompson Technology Industries TTI | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    TTI Jump to: navigation, search Name: Thompson Technology Industries (TTI) Place: Novato, California Zip: 94949 Sector: Solar Product: Designer and manufacturer of solar tracking...

  1. Cathay Industrial Biotech Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    and supplier of chemicals, fuels and polymers that is exploring biobutanol research and production. References: Cathay Industrial Biotech Ltd1 This article is a stub. You can...

  2. Achieve Steam System Excellence: Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... equipment. * The IAC Steam Tool Benchmarking Report project tested and validated ... system against well-documented industry best practices. * 3E Plus software evaluates and ...

  3. Guidelines for Estimating Unmetered Industrial Water Use

    Energy.gov [DOE]

    Document describes a systematic approach to estimate industrial water use in evaporative cooling systems, steam boiler systems, and facility wash applications.

  4. Compressed Air Storage Strategies; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9 * August 2004 Industrial Technologies Program Suggested Actions * Review the plant's compressed air demand patterns to determine whether storage would be benefcial. * Examine the ...

  5. Stabilizing System Pressure; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    8 * August 2004 Industrial Technologies Program Suggested Actions * Review compressed air applications and determine the required level of air pressure. * Review your compressed ...

  6. Maintaining System Air Quality; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 * August 2004 Industrial Technologies Program Suggested Actions * Review compressed air applica- tions and determine the required level of air quality for each. * Review the ...

  7. Furnace Pressure Controllers; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 * September 2005 Industrial Technologies Program Furnace Pressure Controllers Furnace draft, or negative pres- sure, is created in fuel-fired furnaces when high temperature gases ...

  8. Compressed Air System Control Strategies; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7 * August 2004 Industrial Technologies Program Suggested Actions * Understand your system require- ments by developing a pressure and a demand profle before investing in ...

  9. Industrial Hygiene Functional Area Qualification Standard

    Energy Saver

    STANDARD INDUSTRIAL HYGIENE FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 ...

  10. ITP Metal Casting: Metalcasting Industry Technology Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Castings are essential building blocks of U. S. industry. More than 90% of all mnaufactured, durable good and 100% of all manufacturing machinery contain castings.

  11. DOE Recognizes Midwest Industrial Efficiency Leaders | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    began last night and continued today, Governor Granholm and DOE announced 11 Save Energy Now awards recognizing industry leaders for their exemplary energy saving accomplishments. ...

  12. Mitsubishi Heavy Industries Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Mitsubishi Heavy Industries Ltd Place: Tokyo, Tokyo, Japan Zip: 108 8215 Product: Integrated technology company and power equipment supplier....

  13. Nisshinbo Industries Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Inc Jump to: navigation, search Name: Nisshinbo Industries Inc Place: Tokyo, Tokyo, Japan Zip: 103-8650 Product: Japanese manufacturing company; its Electronics division offers...

  14. Kishimura Industry Co | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Co Jump to: navigation, search Name: Kishimura Industry Co Place: Kanagawa-Ken, Japan Sector: Solar, Vehicles Product: Developer of solar power systems and 'Eco-Mobile',...

  15. Funding Opportunity Webinar - Building America Industry Partnerships...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    View the Funding Opportunity Webinar or see the presentation slides below. This webinar provides an overview of the "Building America Industry Partnerships for High Performance ...

  16. Webinar: Delivering Transformational HPC Solutions to Industry

    SciTech Connect

    Streitz, Frederick

    2014-04-15

    Dr. Frederick Streitz, director of the High Performance Computing Innovation Center, discusses Lawrence Livermore National Laboratory computational capabilities and expertise available to industry in this webinar.

  17. Zoe Industries: Data Request (2010-SW-1602)

    Energy.gov [DOE]

    DOE requested test data from Zoe Industries, Inc., to permit the Department to evaluate whether a particular model of showerhead meets the applicable water conservation standard.

  18. Zoe Industries: Noncompliance Determination (2011-SW-2912)

    Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Zoe Industries, Inc. finding that Giessdorf 150043 model, a showerhead, does not comport with the water conservation standards.

  19. Gov. Inslee honors Washington industrial companies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    leaders were joined by executives and staff from industrial companies, utilities and energy efficiency organizations at the ceremony. "It was rewarding to hear Gov. Inslee,...

  20. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 9 PDF icon grandchallengesportfoliopg9.pdf More Documents & Publications ...

  1. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    8 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 8 PDF icon grandchallengesportfoliopg8.pdf More Documents & Publications ...

  2. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 6 PDF icon grandchallengesportfoliopg6.pdf More Documents & Publications ...

  3. Energy Industries of Ohio | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ohio Jump to: navigation, search Name: Energy Industries of Ohio Address: Park Center Plaza, Suite 200 6100 Oak Tree Blvd Place: Independence, Ohio Zip: 44131 Website:...

  4. AEO2016 Preliminary Industrial Output Results

    Gasoline and Diesel Fuel Update

    through network analysis will inform future work on analyzing supply matrices - We plan on incorporating detailed industrial price movements which will come from the ...

  5. Kenergy- Commercial and Industrial Rebate Program

    Energy.gov [DOE]

    Kenergy offers commercial and industrial customers rebates for energy-efficient lighting and other energy efficient improvements. Customers can receive rebates of $350 per kilowatt of energy...

  6. Macro-Industrial Working Group 2

    Gasoline and Diesel Fuel Update

    So compared to the AEO2012, this year more of the industrial output again satisfies domestic demand. * More detailed inclusion of increased unconventional natural gas impacts on ...

  7. Siddeshwari Industries Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Muzaffarnagar, Uttar Pradesh, India Zip: 251001 Product: Muzaffarnagar based paper mill with cogeneration activities References: Siddeshwari Industries Pvt Ltd.1 This...

  8. United Nations Industrial Development Organization (UNIDO) |...

    OpenEI (Open Energy Information) [EERE & EIA]

    development of industry in developing nations. UNIDO focuses on three key areas: Poverty reduction through productive activities Trade capacity-building Energy and...

  9. Beckons Industries Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ltd Jump to: navigation, search Name: Beckons Industries Ltd Place: Mohali, Chandigarh, India Zip: 160055 Sector: Biofuels Product: India-based algae technology developer for...

  10. SLS Power Industries Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ltd. Place: Bangalore, Karnataka, India Sector: Hydro Product: Bangalore-based small hydro project developer. References: SLS Power Industries Ltd.1 This article is a stub....

  11. Clean Technology & Sustainable Industries Organization | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    leCleanTechnology%26SustainableIndustriesOrganization&oldid765712" Categories: Organizations Networking Organizations Trade Groups Stubs Articles with outstanding TODO tasks...

  12. Solar Night Industries Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    St Louis, Missouri Zip: 63147 Product: Manufacturer and distributor of products which store energy by day and release it by night. References: Solar Night Industries Inc1 This...

  13. Oregon Water Quality Permit Program (Stormwater - Industrial...

    OpenEI (Open Energy Information) [EERE & EIA]

    Activities) Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Water Quality Permit Program (Stormwater - Industrial Activities) Website...

  14. Steam Digest 2001: Office of Industrial Technologies

    SciTech Connect

    None, None

    2002-01-01

    Steam Digest 2001 chronicles Best Practices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  15. Webinar: Delivering Transformational HPC Solutions to Industry

    ScienceCinema

    Streitz, Frederick

    2016-07-12

    Dr. Frederick Streitz, director of the High Performance Computing Innovation Center, discusses Lawrence Livermore National Laboratory computational capabilities and expertise available to industry in this webinar.

  16. Industrial and Process Efficiency Performance Incentives

    Office of Energy Efficiency and Renewable Energy (EERE)

    The New York State Energy Research and Development Authority (NYSERDA) offers the Industrial and Process Efficiency (IPE) Program to provide performance-based incentives to manufacturers and data...

  17. Business Opportunities in the Energy Industry

    Energy.gov [DOE]

    An opportunity for small businesses to network with industry professionals, sponsored by the American Association of Blacks in Energy and the Denver Chapter & MBDA Business Center, Denver CO

  18. Industrial Solar Technology Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Technology Corp Jump to: navigation, search Name: Industrial Solar Technology Corp Place: Golden, Colorado Zip: CO 80403-1 Product: IST designs, manufactures, installs and...

  19. Partnering for success: Industrial technologies program

    SciTech Connect

    None, None

    2004-02-01

    Partnering for Success features the R&D and industrial energy management best practices and accomplishments of manufacturers who are partnering with DOE.

  20. Container Technologies Industries, LLC receives small business...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Container Technologies ... Container Technologies Industries, LLC receives small business award The mp4 video format is not supported by this browser. Download video Captions: On...

  1. Unichem Industries Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Unichem produces high resolution screen printing equipment for crystalline silicon solar cell production. References: Unichem Industries Inc1 This article is a stub. You...

  2. Wind Industry Training for Our Military Veterans

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department is taking steps to leverage the skill sets of our military veterans in support of the wind energy industry.

  3. CDPHE Industrial Individual Wastewater Discharge Permit Application...

    OpenEI (Open Energy Information) [EERE & EIA]

    ApplicationLegal Abstract Application provided by the Colorado Department of Public Health and Environment (CDPHE) for use by all individual industrial process water dischargers...

  4. Industry Terms and Definitions | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Terms and Definitions Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Industry Terms and Definitions Author Liberty Pioneer educational materials...

  5. Minxing Industry Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Co. Ltd. Place: Sichuan Province, China Zip: 625700 Sector: Hydro Product: Sichuan-based small hydro project developer. References: Minxing Industry Co. Ltd.1 This article is a...

  6. Coldwater Board of Public Utilities - Commercial & Industrial...

    Energy.gov [DOE] (indexed site)

    that encourage commercial and industrial to pursue energy efficient equipment and energy saving measures. Prescriptive rebates are available for efficient lighting, HVAC...

  7. EIS-0429: Indiana Gasification, LLC, Industrial Gasification...

    Energy Saver

    Facility in Rockport, IN and CO2 Pipeline EIS-0429: Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, IN and CO2 Pipeline Documents Available for Download ...

  8. ET Industries: Proposed Penalty (2012-SE-2902)

    Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that ET Industries, Inc. manufactured and distributed noncompliant showerheads in the U.S.

  9. ET Industries: Noncompliance Determination (2012-SE-2902)

    Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to ET Industries, Inc. finding that showerhead basic model TH-1 does not comport with the water conservation standards.

  10. United Nations Industrial Development Organization (UNIDO) |...

    OpenEI (Open Energy Information) [EERE & EIA]

    UNIDO Programs 2 References Resources UNIDO Tools A Global Technology Roadmap on Carbon Capture and Storage in Industry COMFAR III: Computer Model for Feasibility Analysis and...

  11. Tuesday Webcasts for Industry | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tuesday Webcasts for Industry Learn about AMO's software tools, technologies, partnership ... Systems AMO Program Overview AMO Software Tools New and Emerging Technologies Partnerships ...

  12. Industrial Siting Council | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Siting Council Jump to: navigation, search Name: Industrial Siting Council Abbreviation: ISD Address: 122 West 25th St, Herschler Building Place: Cheyenne, Wyoming Zip: 82002 Phone...

  13. FAQS Reference Guide – Industrial Hygiene

    Energy.gov [DOE]

    This reference guide addresses the competency statements in the November 2007 edition of DOE-STD-1138-2007, Industrial Hygiene Functional Area Qualification Standard.

  14. Anaheim Public Utilities - Commercial & Industrial New Construction...

    Energy.gov [DOE] (indexed site)

    Utilities (APU) offers commercial, industrial, and institutional customers the New Construction Incentives Program to offset construction and installation costs of energy...

  15. Cleco- Commercial and Industrial Energy Efficiency Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cleco energy efficiency program provides a number of incentives to its small business, cities, schools, commercial, and industrial customers to save energy. Rebates and cash incentives are...

  16. Academic-Industry Collaboration (AIC) - Synchrophasor Engineering...

    Office of Environmental Management (EM)

    Academic-Industry Collaborations - D. Duan (30.19 KB) Project Summary: VT - Data Mining and Playback of Hybrid Synchrophasor Data for Research and Education - V. Centeno ...

  17. Taiwan Glass Industry Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Taiwan Glass Industry Corp Place: Taipei, Taiwan Zip: 10566 Product: Engaged in the manufacturing, processing and selling of various types of glass. References: Taiwan Glass...

  18. Industrial Energy Efficiency Projects Improve Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rapids, Wisconsin. Photo courtesy of NewPage Wisconsin Systems Inc. Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs Recovery Act Funding Supports ...

  19. Solar Energy Education. Industrial arts: student activities....

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Citation Details In-Document Search Title: Solar Energy Education. Industrial arts: ... to introduce students to information on solar energy through classroom instruction. ...

  20. Industry Interactive Procurement System (IIPS) | Department of...

    Energy.gov [DOE] (indexed site)

    Presentation on DOE's Industry Interactive Procurement System (IIPS) presented at the PEM fuel cell pre-solicitation meeting held May 26, 2005 in Arlington, VA. suppbriefing.pdf ...

  1. Macro-Industrial Working Group: meeting 1

    Annual Energy Outlook

    ... by category for different projection periods shows strong net export growth in "waves" 9 Kay Smith, AEO2015 MacroeconomicIndustrial Working Group July 24, 2014 PLEASE DO ...

  2. Summary of FY13 Industry Interviews

    SciTech Connect

    Hund, Gretchen; Kurzrok, Andrew J.; Seward, Amy M.; Wyse, Evan T.; Gunawardena, Navindra H.

    2013-09-01

    This white paper discusses the industry self-regulation project’s outreach interview activities for FY13 and summarizes conclusions.

  3. Biodiesel Industries Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Barbara, California Zip: 93110 Product: Biodiesel producer and facility developer. References: Biodiesel Industries Inc1 This article is a stub. You can help OpenEI by expanding...

  4. Industrial Consumption of Natural Gas (Summary)

    Gasoline and Diesel Fuel Update

    & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual Download Series History Download Series History ...

  5. Industrial Consumption of Natural Gas (Summary)

    Gasoline and Diesel Fuel Update

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 1231 Reserves ...

  6. FAQS Qualification Card - Industrial Hygiene | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Programs is a set of common Functional Area Qualification Standards (FAQS) and ... More Documents & Publications FAQS Gap Analysis Qualification Card - Industrial Hygiene ...

  7. Introduction to applications and industries for Microelectromechanical...

    Office of Scientific and Technical Information (OSTI)

    Introduction to applications and industries for Microelectromechanical Systems (MEMS). ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 42 ...

  8. PRAJ Industries Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    molasses based distillery technology, plant and equipment for alcohol, fuel ethanol and beer production. References: PRAJ Industries Ltd1 This article is a stub. You can help...

  9. Department of Energy Receives Highest Transportation Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today received the Transportation Community Awareness and Emergency Response (TRANSCAER) Chairman's Award, one of industry's ...

  10. Industrial energy-efficiency-improvement program

    SciTech Connect

    Not Available

    1980-12-01

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  11. Global Industry Analysts | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Global Industry Analysts Address: 6150 Hellyer Avenue Place: San Jose, California Zip: 95138 Region: Bay Area Product: Market research services Year Founded:...

  12. INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING...

    Energy.gov [DOE] (indexed site)

    Industrial Scale Demonstration of Smart Manufacturing (554.65 KB) More Documents & Publications CX-010754: Categorical Exclusion Determination RAPID FREEFORM SHEET METAL FORMING: ...

  13. Microcab Industries Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Microcab Industries Ltd Place: Coventry, United Kingdom Zip: CV1 2TT Sector: Hydro, Hydrogen Product: Urban taxi and light freight vehicle powered by a hydrogen fuel cell....

  14. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Develop and demonstrate pervasive materials technologies that reduce life-cycle energy ... and industry) to bridge the "Valley of Death" for new technologies and material systems. ...

  15. Industrial Energy Efficiency: Designing Effective State Programs...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Executive Summary Industrial Energy Efficiency and Combined Heat and Power Working Group March 2014 The State and Local Energy Efficiency Action Network is a state and local effort ...

  16. Industrial Energy Efficiency: Designing Effective State Programs...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Energy Efficiency and Combined Heat and Power Working Group March 2014 The State and Local Energy Efficiency Action Network is a state and local effort facilitated by ...

  17. The future steelmaking industry and its technologies

    SciTech Connect

    Fruehan, R.J.; Paxton, H.W.; Giarratani, F.; Lave, L. |

    1995-01-01

    The objective of this report is to develop a vision of the future steelmaking industry including its general characteristics and technologies. In addition, the technical obstacles and research and development opportunities for commercialization of these technologies are identified. The report is being prepared by the Sloan Steel Industry Competitiveness Study with extensive input from the industry. Industry input has been through AISI (American Iron and Steel Institute), SMA (Steel Manufacturers Association) and contacts with individual company executives and technical leaders. The report identifies the major industry drivers which will influence technological developments in the industry for the next 5--25 years. Initially, the role of past drivers in shaping the current industry was examined to help understand the future developments. Whereas this report concentrates on future technologies other major factors such as national and international competition, human resource management and capital concerns are examined to determine their influence on the future industry. The future industry vision does not specify specific technologies but rather their general characteristics. Finally, the technical obstacles and the corresponding research and development required for commercialization are detailed.

  18. Plastic Magen Industry | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    products with a lifetime guarantee, including the Heliocol and Sunstar-brand solar water heating systems. References: Plastic Magen Industry1 This article is a stub. You...

  19. Solar Power Industries SPI | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Pennsylvania Zip: 15012 Product: US-based manufacturer of mono and multicrystalline PV cells, modules and systems. References: Solar Power Industries (SPI)1 This article is a...

  20. Industrial Technologies Available for Licensing - Energy Innovation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Marketing Summaries (359) Solar Photovoltaic Solar Thermal Startup America Vehicles ...

  1. Macro-Industrial Working Group: meeting 1

    Energy Information Administration (EIA) (indexed site)

    30 2013 Macroeconomic team: Kay Smith, Russ Tarver, Elizabeth Sendich and Vipin Arora ... concepts that other NEMS modules use Kay Smith, Macroeconomic Industrial Working Group ...

  2. The industrial ecology of steel

    SciTech Connect

    Considine, Timothy J.; Jablonowski, Christopher; Considine, Donita M.M.; Rao, Prasad G.

    2001-03-26

    This study performs an integrated assessment of new technology adoption in the steel industry. New coke, iron, and steel production technologies are discussed, and their economic and environmental characteristics are compared. Based upon detailed plant level data on cost and physical input-output relations by process, this study develops a simple mathematical optimization model of steel process choice. This model is then expanded to a life cycle context, accounting for environmental emissions generated during the production and transportation of energy and material inputs into steelmaking. This life-cycle optimization model provides a basis for evaluating the environmental impacts of existing and new iron and steel technologies. Five different plant configurations are examined, from conventional integrated steel production to completely scrap-based operations. Two cost criteria are used to evaluate technology choice: private and social cost, with the latter including the environmental damages associated with emissions. While scrap-based technologies clearly generate lower emissions in mass terms, their emissions of sulfur dioxide and nitrogen oxides are significantly higher. Using conventional damage cost estimates reported in the literature suggests that the social costs associated with scrap-based steel production are slightly higher than with integrated steel production. This suggests that adopting a life-cycle viewpoint can substantially affect environmental assessment of new technologies. Finally, this study also examines the impacts of carbon taxes on steel production costs and technology choice.

  3. Industrial heat pump demonstration project

    SciTech Connect

    Not Available

    1988-09-01

    This booklet describes an industrial heat pump demonstration project conducted at a plant in Norwich, New York. The project required retrofitting an open-cycle heat pump to a single-effect, recirculating-type evaporator. The heat pump design uses an electrically driven centrifugal compressor to recover the latent heat of the water vapor generated by the evaporator. The compressed vapor is returned to the process, where it displaces the use of boiler steam. The goal was to reduce costs associated with operating the evaporator, which is used for reduction the water content of whey (a liquid by-product from cheese production). The retrofit equipment has now completed more than one year of successful operation. Heat pump coefficient of performance has been measured and is in the range of 14 to 18 under varying process conditions. Generalization of project results indicates that the demonstrated technology achieved attractive economics over a wide range of energy price assumptions, especially when the heat pump is applied to larger processes. 5 refs., 17 figs.

  4. Commercial industry on the horizon

    SciTech Connect

    Belcher, J.

    2000-01-01

    About 5,000 Tcf of stranded gas reserves exist worldwide--gas that is not economically feasible to recover and move to market through pipelines. For oil producers, this is problematic for a number of reasons. What do you do with associated gas when environmental regulations worldwide are banning flaring due to concerns over greenhouse gas emissions? Reinjection is costly and may not be the best solution in every reservoir. While many producers have enormous gas reserves, they are of no value if that gas is just sitting in the ground with no potential markets at hand. How can you monetize these reserves? A potential solution to the problem of stranded gas reserves is GTL processing. This process takes methane and converts it to synthesis gas, uses the Fischer-Tropsch (FT) process to convert the synthesis gas to syncrude, and upgrades the syncrude to various hydrocarbon chains to produce a variety of refined products. Three recent developments favor commercial GTL development: environmental regulations are creating a premium for ultraclean fuels; new technology is lowering the capital costs and operating costs of GTL development; and world oil prices have risen above $20/bbl. Therefore, the oil and gas industry is taking a serious look at commercialization of GTL.

  5. Agile Biomanufacturing Industry Listening Workshop

    Energy.gov [DOE]

    A consortium of nine national labs is excited to announce the Agile Biomanufacturing Industry Listening Workshop on March 15, 2016 in Berkeley, CA. Lawrence Berkeley National Lab, Ames National Lab, Argonne National Lab, Idaho National Lab, Los Alamos National Lab, the National Renewable Energy Lab, Oak Ridge National Lab, Pacific Northwest National Lab, and Sandia National Labs seek to build an agile biomanufacturing platform for biological approaches to produce advanced biofuels, renewable chemicals, and materials that represent low greenhouse gas alternatives to molecules currently derived from petroleum. The labs envision a distributed Agile Biomanufacturing consortium that includes a Foundry to productionize the design-build-test-learn cycle for engineering biology while incorporating process integration, predictable scaling, and techno-economic analyses and life cycle assessments for bioprocess design. The DOE National Laboratories have built deep and unique capabilities that can be brought to bear to build powerful infrastructure and scientific engineering activities that will render design and implementation of new bio-based products scalable, predictable, and more cost-effective. An agile biomanufacturing platform will enable companies, national labs, and universities to develop biological processes efficiently and with reduced risk to create products with better performance than their predecessors.

  6. Aluminum industry applications for OTEC

    SciTech Connect

    Jones, M.S.; Leshaw, D.; Sathyanarayana, K.; Sprouse, A.M.; Thiagarajan, V.

    1980-12-01

    The objective of the program is to study the integration issues which must be resolved to realize the market potential of ocean thermal energy conversion (OTEC) power for the aluminum industry. The study established, as a baseline, an OTEC plant with an electrical output of 100 MWe which would power an aluminum reduction plant. The reduction plant would have a nominal annual output of about 60,000 metric tons of aluminum metal. Three modes of operation were studied, viz: 1. A reduction plant on shore and a floating OTEC power plant moored offshore supplying energy by cable. 2. A reduction plant on shore and a floating OTEC power plant at sea supplying energy by means of an ''energy bridge.'' 3. A floating reduction plant on the same platform as the OTEC power plant. For the floating OTEC/aluminum plantship, three reduction processes were examined. 1. The conventional Hall process with prebaked anodes. 2. The drained cathode Hall cell process. 3. The aluminum chloride reduction process.

  7. Maintaining a competitive geothermal industry

    SciTech Connect

    Zodiaco, V.P.

    1996-04-10

    I come to this geothermal business with over 30 years of experience in the power generation industry. I have earned my spurs (so to speak) in the electric utility, nuclear power, coal and the gas-fired cogeneration power businesses. I have been employed by Oxbow Power for the past seven years and for the past 18 months I have been based in Reno and responsible for the operation, maintenance and management of Oxbow`s domestic power projects which include three geothermal and two gas-fired facilities. The Oxbow Power Group (consisting principally of Oxbow Power Corporation, Oxbow Geothermal Corporation, Oxbow Power of Beowawe, Oxbow Power International and Oxbow Power Services, Inc.) is based in West Palm Beach, Florida, and has regional offices in Reno, Hong Kong and Manila to support on-line geothermal projects in Nevada, other domestic power projects and a geothermal plant under construction in the Philippines. Oxbow Power employs approximately 30 professionals in the development and management of power projects and over 100 supervisors and technicians in the operation and maintenance of power facilities. Current ownership in independent power projects total 340 MW in the United States and 47 MW under construction in the Philippines. Oxbow is currently negotiating additional projects in several Asian and Central American countries.

  8. Chunking of Large Multidimensional Arrays

    SciTech Connect

    Rotem, Doron; Otoo, Ekow J.; Seshadri, Sridhar

    2007-02-28

    Data intensive scientific computations as well on-lineanalytical processing applications as are done on very large datasetsthat are modeled as k-dimensional arrays. The storage organization ofsuch arrays on disks is done by partitioning the large global array intofixed size hyper-rectangular sub-arrays called chunks or tiles that formthe units of data transfer between disk and memory. Typical queriesinvolve the retrieval of sub-arrays in a manner that accesses all chunksthat overlap the query results. An important metric of the storageefficiency is the expected number of chunks retrieved over all suchqueries. The question that immediately arises is "what shapes of arraychunks give the minimum expected number of chunks over a query workload?"In this paper we develop two probabilistic mathematical models of theproblem and provide exact solutions using steepest descent and geometricprogramming methods. Experimental results, using synthetic workloads onreal life data sets, show that our chunking is much more efficient thanthe existing approximate solutions.

  9. Mining industry and US government cooperative research: Lessons learned and benefits to mining industry

    SciTech Connect

    Pearson, D.C.; Stump, B.W.; Phillips, W.S.; Martin, R.; Anderson, D.P.

    1997-09-01

    Since 1994, various mines in the US have cooperated with research scientists at the Los Alamos and Lawrence Livermore National Laboratories to address issues related to verification of the Comprehensive Test Ban Treaty (CTBT). The CTBT requires that no country may conduct any nuclear explosion in the future. While the CTBT is a significant step toward reducing the global nuclear danger, verifying compliance with the treat requires that the monitoring system be able to detect, locate and identify much larger numbers of smaller amplitude seismic events than had been required previously. Large mining blasts conducted world-wide will be of sufficient amplitude to trigger the monitoring system at the lower threshold. It is therefore imperative that research into the range various blasting practices employed, the relationship of yield to seismic magnitude, and identification of anomalous blasting results be performed. This paper will describe a suite of experiments funded by the Department of Energy and conducted by the Los Alamos and Lawrence Livermore National Laboratories in cooperation with the US mining industry. Observations of cast blasting, underground long wall generated coal bumps, stoping, and explosively induced collapse of room and pillar panels will be presented. Results of these dual use experiments which are of interest to the mining community will be discussed. These include (1) variation of amplitude of seismic energy at various azimuths from cast blasts, (2) identification of the extent of back failure following explosive removal of pillars, and (3) the use of single fired shots for calibration of the monitoring system. The wealth of information and discovery described in this paper is a direct result of mutual cooperation between the US Government and the US Mining Industry.

  10. Mass Save (Electric)- Large Commercial Retrofit Program

    Energy.gov [DOE]

    Mass Save organizes commercial, industrial, and institutional conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These...

  11. Large Component Removal/Disposal

    SciTech Connect

    Wheeler, D. M.

    2002-02-27

    This paper describes the removal and disposal of the large components from Maine Yankee Atomic Power Plant. The large components discussed include the three steam generators, pressurizer, and reactor pressure vessel. Two separate Exemption Requests, which included radiological characterizations, shielding evaluations, structural evaluations and transportation plans, were prepared and issued to the DOT for approval to ship these components; the first was for the three steam generators and one pressurizer, the second was for the reactor pressure vessel. Both Exemption Requests were submitted to the DOT in November 1999. The DOT approved the Exemption Requests in May and July of 2000, respectively. The steam generators and pressurizer have been removed from Maine Yankee and shipped to the processing facility. They were removed from Maine Yankee's Containment Building, loaded onto specially designed skid assemblies, transported onto two separate barges, tied down to the barges, th en shipped 2750 miles to Memphis, Tennessee for processing. The Reactor Pressure Vessel Removal Project is currently under way and scheduled to be completed by Fall of 2002. The planning, preparation and removal of these large components has required extensive efforts in planning and implementation on the part of all parties involved.

  12. AMO Industrial Distributed Energy: Industrial Distributed Energy R&D Portfolio Review Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Distributed Energy R&D Portfolio Review Summary Report Washington, D.C. * June 1-2, 2011 Introduction to the Industrial Distributed Energy R&D Portfolio Review ................................................... 1 Welcome and Opening Remarks ............................................................................................................................... 1 Presentation Summaries

  13. Human factors: a necessary tool for industry

    SciTech Connect

    Starcher, K.O.

    1984-03-09

    The need for human factors (ergonomics) input in the layout of a ferroelectric ceramics laboratory is presented as an example of the overall need for human factors professionals in industry. However, even in the absence of one trained in human factors, knowledge of a few principles in ergonomics will provide many possibilities for improving performance in the industrial environment.

  14. INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    TRANSFORMATIONAL ENERGY PRODUCTIVITY GAINS | Department of Energy INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING TRANSFORMATIONAL ENERGY PRODUCTIVITY GAINS INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING TRANSFORMATIONAL ENERGY PRODUCTIVITY GAINS University of Texas at Austin - Austin, TX A Smart Manufacturing (SM) platform can integrate information technology, performance metrics, and models and simulations driven by real-time plant sensor data. This

  15. Industrial Assessment Centers: AMO Technical Assistance Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Assessment Centers: AMO Technical Assistance Overview John Smegal This presentation does not contain any proprietary, confidential, or otherwise restricted information. Industrial Assessment Centers Overview * DOE funds engineering programs at national universities to provide free assessments to identify significant energy savings, water and waste reduction recommendations, and productivity improvements at small and medium-sized manufacturers - Typical IAC plant historically has not

  16. Current and future industrial energy service characterizations

    SciTech Connect

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  17. Guiding Principles for Successfully Implementing Industrial Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Assessment Recommendations | Department of Energy Guiding Principles for Successfully Implementing Industrial Energy Assessment Recommendations Guiding Principles for Successfully Implementing Industrial Energy Assessment Recommendations This implementation guide provides key principles and activities that will lead to the successful implementation of recommendations during energy assessments. Implementation Guidebook (April 2011) (7.11 MB) More Documents & Publications Unveiling the

  18. Nationwide Industries: Order (2011-CW-2803)

    Energy.gov [DOE]

    DOE ordered Nationwide Industries, Inc., d/b/a Banner Faucets to pay a $6,000 civil penalty after finding Nationwide Industries had failed to certify that certain models of faucets and showerheads comply with the applicable water conservation standards.

  19. Hydrogen Industrial Trucks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Trucks Hydrogen Industrial Trucks Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA. csqw_harris.pdf (1.5 MB) More Documents & Publications Non-Metals Workshop Fuel Cell Technologies Program Overview: 2012 IEA HIA Hydrogen Safety Stakeholder Workshop US DRIVE Hydrogen Codes and Standards Technical Team Roadmap

  20. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    SciTech Connect

    Chapas, Richard B.; Colwell, Jeffery A.

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  1. Report on Water Use in the Industries of the Future: Mining Industry

    SciTech Connect

    Mavis, Jim

    2003-01-01

    The report on Water Use in the Industries of the Future features a chapter on the uses of water in the mining industry. This report includes a brief overview of the industry, its water use, associated energy costs, and water reuse practices.

  2. Process modeling and industrial energy use

    SciTech Connect

    Howe, S O; Pilati, D A; Sparrow, F T

    1980-11-01

    How the process models developed at BNL are used to analyze industrial energy use is described and illustrated. Following a brief overview of the industry modeling program, the general methodology of process modeling is discussed. The discussion highlights the important concepts, contents, inputs, and outputs of a typical process model. A model of the US pulp and paper industry is then discussed as a specific application of process modeling methodology. Case study results from the pulp and paper model illustrate how process models can be used to analyze a variety of issues. Applications addressed with the case study results include projections of energy demand, conservation technology assessment, energy-related tax policies, and sensitivity analysis. A subsequent discussion of these results supports the conclusion that industry process models are versatile and powerful tools for energy end-use modeling and conservation analysis. Information on the current status of industry models at BNL is tabulated.

  3. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1990-02-01

    This report summarizes three documents: Multiyear Research Plan, Volume I FY 1989 Task Reports, and Volume II Appendices. These documents describe tasks that were undertaken from November 1988 to December 1989, the first year of the project. Those tasks were: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. While this document summarizes information developed in each task area, it doesn't review task by task, as Volume I FY 1989 Task Reports does, but rather treats the subject of energy efficient industrialized housing as a whole to give the reader a more coherent view. 7 figs., 9 refs.

  4. Confusion reigns over industrial stormwater regulations

    SciTech Connect

    Bishop, J.

    1993-01-01

    More than five years after Congress mandated controls for industrial and municipal stormwater discharges, many in the regulated community remain unclear about how the rules apply to them. The regulations' progress since the 1987 CWA amendments opened the door for their development often has been shaky and marked by setbacks. According to a federal appeals court decision issued last summer, that struggle is likely to continue. Although the original stormwater rules issued by EPA in November 1990 appeared to focus on heavy manufacturing facilities, as well as municipalities, the appellate court cleared a path that could draw light industrial plants and small construction sites within the regulations' domain. The rules in dispute bring under their umbrella any stormwater discharges associated with industrial activity to surface waters or municipal storm sewer systems. However, the regulations distinguish between facilities engaged in heavy industry and light, or enclosed industrial facilities, based on the probability that stormwater discharges will be contaminated and require regulation.

  5. Industrial end-use forecasting that incorporates DSM and air quality

    SciTech Connect

    Tutt, T.; Flory, J.

    1995-05-01

    The California Energy Commission (CEC) and major enregy utilities in California have generally depended on simple aggregate intensity or economic models to forecast energy use in the process industry sector (which covers large industries employing basic processes to transform raw materials, such as paper mills, glass plants, and cement plants). Two recent trends suggests that the time has come to develop a more disaggregate process industry forecasting model. First, recent efforts to improve air quality, especially by the South Coast Air Quality Management District (SCAQMD), could significantly affect energy use by the process industry by altering the technologies and processes employed in order to reduce emissions. Second, there is a renewed interest in Demand-Side Management (DSM), not only for utility least-cost planning, but also for improving the economic competitiveness and environmental compliance of the pro{minus}cess industries. A disaggregate forecasting model is critical to help the CEC and utilities evaluate both the air quality and DSM impacts on energy use. A crucial obstacle to the development and use of these detailed process industry forecasting models is the lack of good data about disaggregate energy use in the sector. The CEC is nearing completion of a project to begin to overcome this lack of data. The project is testing methds of developing detailed energy use data, collecting an initial database for a large portion of southern California, and providing recommendations and direction for further data collection efforts.

  6. Assessment of industrial minerals and rocks in the controlled area

    SciTech Connect

    Castor, S.B.; Lock, D.E.

    1996-08-01

    Yucca Mountain in Nye County, Nevada, is a potential site for a permanent repository for high-level nuclear waste in Miocene ash flow tuff. The Yucca Mountain controlled area occupies approximately 98 km{sup 2} that includes the potential repository site. The Yucca Mountain controlled area is located within the southwestern Nevada volcanic field, a large area of Miocene volcanism that includes at least four major calderas or cauldrons. It is sited on a remnant of a Neogene volcanic plateau that was centered around the Timber Mountain caldera complex. The Yucca Mountain region contains many occurrences of valuable or potentially valuable industrial minerals, including deposits with past or current production of construction aggregate, borate minerals, clay, building stone, fluorspar, silicate, and zeolites. The existence of these deposits in the region and the occurrence of certain mineral materials at Yucca Mountain, indicate that the controlled area may have potential for industrial mineral and rock deposits. Consideration of the industrial mineral potential within the Yucca Mountain controlled area is mainly based on petrographic and lithologic studies of samples from drill holes in Yucca Mountain. Clay minerals, zeolites, fluorite, and barite, as minerals that are produced economically in Nevada, have been identified in samples from drill holes in Yucca Mountain.

  7. Local government: The sleeping giant in electric industry restructuring

    SciTech Connect

    Ridley, S.

    1997-11-01

    Public power has long been a cornerstone of consumer leverage in the electric industry. But its foundation consists of a much broader and deeper consumer authority. Understanding that authority - and present threats to it - is critical to restructuring of the electric industry as well as to the future of public power. The country has largely forgotten the role that local governments have played and continue to play in the development of the electric industry. Moreover, we risk losing sight of the options local governments may offer to protect consumers, to advance competition in the marketplace, and to enhance opportunities for technology and economic development. The future role of local government is one of the most important issues in the restructuring discussion. The basic authority of consumers rests at the local level. The resulting options consumers have to act as more than just respondents to private brokers and telemarketing calls are at the local level. And the ability for consumers to shape the marketplace and standards for what it will offer exists at the local level as well.

  8. Potential for energy conservation in the glass industry

    SciTech Connect

    Garrett-Price, B.A.; Fassbender, A.G.; Bruno, G.A.

    1986-06-01

    While the glass industry (flat glass, container glass, pressed and blown glass, and insulation fiber glass) has reduced its specific energy use (Btu/ton) by almost 30% since 1972, significant potential for further reduction still remains. State-of-the-art technologies are available which could lead to incremental improvements in glass industry energy productivity; however, these technologies must compete for capital with projects undertaken for other reasons (e.g., capacity expansion, equipment rebuild, labor cost reduction, product quality improvement, or compliance with environmental, health or safety regulations). Narrowing profit margins in the large tonnage segments of the glass industry in recent years and the fact that energy costs represent less than 25% of the value added in glass manufacture have combined to impede the widespread adoption of many state-of-the-art conservation technologies. Savings in energy costs alone have not provided the incentive to justify the capital expenditures required to realize the energy savings. Beyond implementation of state-of-the-art technologies, significant potential energy savings could accrue from advanced technologies which represent a radical departure from current glass making technology. Long-term research and development (R and D) programs, which address the technical and economic barriers associated with advanced, energy-conserving technologies, offer the opportunity to realize this energy-saving potential.

  9. Benchmarking and Self-Assessment in the Wine Industry

    SciTech Connect

    Galitsky, Christina; Radspieler, Anthony; Worrell, Ernst; Healy,Patrick; Zechiel, Susanne

    2005-12-01

    Not all industrial facilities have the staff or theopportunity to perform a detailed audit of their operations. The lack ofknowledge of energy efficiency opportunities provides an importantbarrier to improving efficiency. Benchmarking programs in the U.S. andabroad have shown to improve knowledge of the energy performance ofindustrial facilities and buildings and to fuel energy managementpractices. Benchmarking provides a fair way to compare the energyintensity of plants, while accounting for structural differences (e.g.,the mix of products produced, climate conditions) between differentfacilities. In California, the winemaking industry is not only one of theeconomic pillars of the economy; it is also a large energy consumer, witha considerable potential for energy-efficiency improvement. LawrenceBerkeley National Laboratory and Fetzer Vineyards developed the firstbenchmarking tool for the California wine industry called "BEST(Benchmarking and Energy and water Savings Tool) Winery". BEST Wineryenables a winery to compare its energy efficiency to a best practicereference winery. Besides overall performance, the tool enables the userto evaluate the impact of implementing efficiency measures. The toolfacilitates strategic planning of efficiency measures, based on theestimated impact of the measures, their costs and savings. The tool willraise awareness of current energy intensities and offer an efficient wayto evaluate the impact of future efficiency measures.

  10. Towards A Unified HFE Process For The Nuclear Industry

    SciTech Connect

    Jacques Hugo

    2012-07-01

    As nuclear power utilities embark on projects to upgrade and modernize power plants, they are likely to discover that traditional engineering methods do not typically make provision for the integration of human considerations. In addition, human factors professionals will find that traditional human performance methods such as function allocation, task analysis, human reliability analysis and human-machine interface design do not scale well to the complexity of a large-scale nuclear power upgrade project. Up-to-date human factors engineering processes, methods, techniques and tools are required to perform these kinds of analyses. This need is recognized widely in industry and an important part of the Department of Energy’s Light Water Reactor Sustainability Program deals with identifying potential impacts of emerging technologies on human performance and the technical bases needed to address them. However, so far no formal initiative has been launched to deal with the lack of integrated processes. Although human factors integration frameworks do exist in industries such as aviation or defense, no formal integrated human factors process exists in the nuclear industry. As a first step towards creating such a process, a “unified human factors engineering process” is proposed as a framework within which engineering organizations, human factors practitioners and regulatory bodies can ensure that human factors requirements are embedded in engineering activities throughout the upgrade project life cycle.

  11. LHC: The Large Hadron Collider

    SciTech Connect

    Lincoln, Don

    2015-03-04

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  12. the Large Aperture GRB Observatory

    SciTech Connect

    Bertou, Xavier

    2009-04-30

    The Large Aperture GRB Observatory (LAGO) aims at the detection of high energy photons from Gamma Ray Bursts (GRB) using the single particle technique (SPT) in ground based water Cherenkov detectors (WCD). To reach a reasonable sensitivity, high altitude mountain sites have been selected in Mexico (Sierra Negra, 4550 m a.s.l.), Bolivia (Chacaltaya, 5300 m a.s.l.) and Venezuela (Merida, 4765 m a.s.l.). We report on the project progresses and the first operation at high altitude, search for bursts in 6 months of preliminary data, as well as search for signal at ground level when satellites report a burst.

  13. LHC: The Large Hadron Collider

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  14. Industrial Assessment Centers Update, Fall 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Assessment Centers Update, Fall 2015 Industrial Assessment Centers Update, Fall 2015 Read the Industrial Assessment Centers (IAC) Update, Fall 2015 Industrial Assessment Centers Update, Fall 2015 (477.91 KB) More Documents & Publications Industrial Assessment Centers (IAC) Update -- July 2015 Industrial Assessment Centers Update, Spring 2016 Industrial Assessment Centers Quarterly Update, Spring 2014 Solid-State Lighting Home About the Solid-State Lighting Program Research &

  15. Large aperture diffractive space telescope

    DOEpatents

    Hyde, Roderick A.

    2001-01-01

    A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.

  16. Specialized equipment enabled completions with large coiled tubing

    SciTech Connect

    Taylor, R.W.; Conrad, B.

    1996-02-19

    Specialized equipment enabled successful well completions in Oman with large 3{1/2}-inch coiled tubing. Conventional drilling or completion rigs were not needed. Although the use of 3{1/2}-inch coiled tubing to complete wells is relatively new, it is gaining widespread industry application. One Middle East operating company felt that if downhole completion equipment could be successfully run using coiled tubing, greater cost efficiency, both in initial deployment and in maintenance, could be derived. The paper lists some of the technical considerations for these assumptions. The long-term advantages regarding production and well maintenance cannot yet be determined, but experience in Oman has confirmed the belief that large coiled tubing completions can be technically achieved.

  17. Propagation of prices in the oil industry. [Monograph

    SciTech Connect

    Kisselgoff, A.

    1980-01-01

    The main thrust of this report is the development of a price record that would provide a basis for the identification of the areas of activity in the oil industry in which significant price changes have occurred, with expectation that this type of information could serve as a useful ingredient in the policy-making process. The study presents estimates of the selling price of a barrel of oil at three stages of operations of the industry - the wellhead, the refinery, and the end-use levels. Prices of individual classes of petroleum products at refineries and at the end-use level were also estimated. The price data are provided for benchmark years 1958, 1963, 1967, and 1972, as well as for 1973, 1974, 1975, and 1976 when crude oil prices rose considerably. The estimating procedure is briefly described in the study. The examination of the transmission of prices from market to market within the oil industry shows that the steep rise in 1973-1974 prices paid by end-users of petroleum products was due not only to the large increases in crude oil prices but also to the sizable increases in gross operating margins-labor costs, transportation, profits, etc. - at the refinery and distribution levels. In the post-embargo years of 1975 and 1976, prices continued to advance but at a slower pace. The refiners' gross margins in 1975, however, declined somewhat; they rose significantly above the 1974 level in 1976. The marketers' margins made further gains in 1975, but exhibited a decrease in 1976. The study includes a short discussion of the effects of rising oil prices in 1973-1976 on the profitability of the petroleum industry and the general price level.

  18. Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing ADVANCED MANUFACTURING OFFICE Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Development of an Open Architecture, Widely Applicable Smart Manufacturing Platform While many U.S. manufacturing operations utilize optimization for individual unit processes, smart manufacturing (SM) systems that integrate manufacturing intelligence in real time across an entire production operation are rare in large companies and virtually

  19. Industry activities to improve valve performance

    SciTech Connect

    Callaway, C.

    1996-12-01

    Motor-operated valve issues refuse to go away. For over a decade the industry and the NRC have been focusing extraordinary resources on assuring these special components operate when called upon. Now that industry has fixed the design deficiencies, it is focusing on assuring that they perform their safety function within the current licensing basis for the remainder of plant life. NEI supported the efforts by ASME to develop OMN-1 and was encouraged that the industry and the NRC worked together to develop risk and performance based approaches to maintain MOV performance.

  20. Waste combustion in boilers and industrial furnaces

    SciTech Connect

    1997-12-31

    This set of conference papers deals with the combustion of hazardous wastes in boilers and industrial furnaces. The majority of the papers pertain specifically to cement industry kiln incinerators and focus on environmental issues. In particular, stack emission requirements currently enforced or under consideration by the U.S. EPA are emphasized. The papers were drawn from seven areas: (1) proposed Maximum Achievable Control Technology rule, (2) trial burn planning and experience, (3) management and beneficial use of materials, (4) inorganic emissions and continuous emission monitoring, (5) organic emissions, (6) boiler and industrial furnace operations, and (7) risk assessment and communication.