National Library of Energy BETA

Sample records for industrial combined heat

  1. Industrial Distributed Energy: Combined Heat & Power

    Energy.gov [DOE]

    Information about the Department of Energy’s Industrial Technologies Program and its Combined Heat and Power program.

  2. ITP Industrial Distributed Energy: Combined Heat and Power -...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of...

  3. ITP Industrial Distributed Energy: Combined Heat and Power: Effective...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Solutions for a Sustainable Future ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future Report describing the ...

  4. Industrial Energy Efficiency and Combined Heat and Power Fact Sheet

    SciTech Connect (OSTI)

    Industrial Energy Efficiency and Combined Heat and Power Working Group

    2012-07-16

    Provides an overview of the State and Local Energy Efficiency Action Network's (SEE Action) Industrial Energy Efficiency and Combined Heat and Power Working Group.

  5. Industrial Utility Webinar: Combined Heat and Power

    SciTech Connect (OSTI)

    2010-06-09

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  6. ITP Industrial Distributed Energy: Combined Heat and Power: Effective

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Solutions for a Sustainable Future | Department of Energy ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future Report describing the four key areas where CHP has proven its effectiveness and holds promise for the future chp_report_12-08.pdf (3.22 MB) More Documents & Publications CHP: A Clean Energy Solution,

  7. ITP Industrial Distributed Energy: Combined Heat and Power -...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ...lishmentsbooklet.pdf More Documents & Publications High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 Combined Heat and Power - A Decade of Progress, A ...

  8. AMO Industrial Distributed Energy: Combine Heat and Power: A...

    Energy.gov (indexed) [DOE]

    ... That steam is fed to a steam turbine, generating mechanical power or electricity, before exiting the turbine at lower pressure and temperature and used for process or heating ...

  9. FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency

    Energy.gov [DOE]

    Underscoring President Obama’s Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking action to develop the next generation of combined heat and power (CHP) technology.

  10. Waste Heat Management Options for Improving Industrial Process Heating

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems | Department of Energy Waste Heat Management Options for Improving Industrial Process Heating Systems Waste Heat Management Options for Improving Industrial Process Heating Systems This presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power. Waste Heat Management Options for Improving Industrial Process Heating Systems (August 20, 2009) (494.7 KB) More

  11. ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    COMBINED HEAT AND POWER Effective Energy Solutions for a Sustainable Future December 1, 2008 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000

  12. Energy Department Actions to Deploy Combined Heat and Power,...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency October 21, 2013 -...

  13. ITP Industrial Distributed Energy: Combined Heat & Power Multifamily Performance Program-- Sea Park East 150 kW CHP System

    Office of Energy Efficiency and Renewable Energy (EERE)

    Overview of Sea Park East 150 kilowatt (kW) Combined Heat and Power (CHP) System in Brooklyn, New York

  14. Combined Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combined Heat and Power 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1 Combined Heat and Power overview ........................................................................................... 2 5 1.2 Benefits of CHP for the Nation ...................................................................................................... 4 6 1.3 Benefits of CHP for

  15. Combined Heat and Power (CHP) Grant Program

    Energy.gov [DOE]

    Maryland CHP grant program provides grants for construction of new Combined Heat and Power (CHP) systems in industrial and critical infrastructure facilities in Maryland. Applications for the...

  16. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  17. Industrial Process Heating - Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Process Heating - Technology Assessment 1 2 Contents 3 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Industrial Process Heating Overview ............................................................................................ 2 6 2. Technology Assessment and Potential ................................................................................................. 6 7 2.1. Status

  18. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  19. Combined Heat and Power (CHP

    Energy.gov (indexed) [DOE]

    ... Combined cycles 23 make up only 12% of industrial CHP installations; however, they make up the majority of industrial CHP capacity at 58%. Boilersteam turbine systems, which ...

  20. Heat pipes for industrial waste heat recovery

    SciTech Connect (OSTI)

    Merrigan, M.A.

    1981-01-01

    Development work on the high temperature ceramic recuperator at Los Alamos National Laboratory is described and involved material investigations, fabrication methods development, compatibility tests, heat pipe operation, and the modeling of application conditions based on current industrial usage. Solid ceramic heat pipes, ceramic coated refractory pipes, and high-temperature oxide protected metallic pipes have been investigated. Economic studies of the use of heat-pipe based recuperators in industrial furnaces have been conducted and payback periods determined as a function of material, fabrication, and installation cost.

  1. ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) invests in a diverse portfolio of energy technologies in order to achieve a stronger economy, a cleaner environment, and greater energy independence for America. The Industrial Technologies Program (ITP), part of EERE, works in collaboration with U.S. industry to develop technologies and practices that improve industrial energy efficiency and environmental performance. ITP's work to further the reach of

  2. The Market and Technical Potential for Combined Heat and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This January 2000 ONSITE SYCOM Energy Corporation (OSEC) report provides information on the potential for cogeneration or combined heat and power (CHP) in the industrial market. As ...

  3. Combined Heat and Power (CHP) Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Distributed Energy » Combined Heat and Power (CHP) Systems Combined Heat and Power (CHP) Systems The CHP systems program aimed to facilitate acceptance of distributed energy in end-use sectors by forming partnerships with industry consortia in the commercial building, merchant stores, light industrial, supermarkets, restaurants, hospitality, health care and high-tech industries. In high-tech industries such as telecommunications, commercial data processing and internet services, the use of

  4. combined heat power | netl.doe.gov

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Combined Heat & Power and Distributed Energy Combined Heat and Power (CHP) is a key component of distributed energy within the DOE Advanced Manufacturing Office. CHP - sometimes ...

  5. Waste Heat Management Options: Industrial Process Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam Generation * Fluid Heating * Calcining * Drying * Heat Treating * Metal Heating * Metal and Non-metal Melting * Smelting, agglomeration etc. * Curing and Forming * Other Heating Waste heat is everywhere! Arvind Thekdi, E3M Inc Arvind Thekdi, E3M Inc 3 Waste Heat Sources from Process Heating Equipment * Hot gases -

  6. Combined Retrieval, Microphysical Retrievals and Heating Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Feng, Zhe

    2013-02-22

    Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.

  7. Combined Retrieval, Microphysical Retrievals and Heating Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Feng, Zhe

    Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.

  8. Combined Heat and Power (CHP

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combined Heat and Power (CHP) Technical Potential in the United States March 2016 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use

  9. Waste Heat Management Options for Improving Industrial Process...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waste Heat Management Options for Improving Industrial Process Heating Systems Waste Heat Management Options for Improving Industrial Process Heating Systems This presentation ...

  10. Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2015 | Department of Energy Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2015 Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2015 FuelCell Energy, Inc., in collaboration with Abbott Furnace Company, is developing a combined heat, hydrogen, and power (CHHP) system that utilizes reducing gas produced by a high-temperature fuel cell to directly replace hydrogen in metal treatment and other industrial processes. Excess reducing gas can be

  11. Value of solar thermal industrial process heat

    SciTech Connect (OSTI)

    Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

    1986-03-01

    This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

  12. Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentati...

    Energy.gov (indexed) [DOE]

    Presentation on Ultra Efficient Combined Heat, Hydrogen, and Power System, given by Pinakin Patel of FuelCell Energy, at the U.S. DOE Industrial Distributed Energy Portfolio Review ...

  13. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect (OSTI)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  14. Combined Heat and Power, Waste Heat, and District Energy

    Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers combined heat and power (CHP) technologies and their applications.

  15. Industrial Process Heating - Technology Assessment

    Energy.gov (indexed) [DOE]

    ... fuels 29 such as natural gas, coal, biomass and fuel oils. ... heat energy through combustion of solid, liquid, or 46 ... low cost 77 fuel or by products for use in steam generation. ...

  16. Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FuelCell Energy, June 2011 | Department of Energy Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Presentation on Ultra Efficient Combined Heat, Hydrogen, and Power System, given by Pinakin Patel of FuelCell Energy, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  17. Combined Heat and Power (CHP

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... However, as natural gas prices have decreased and in many regions and ... The chemical manufacturing sector is the second largest consumer of energy in the industrial market. ...

  18. Pacific Region Combined Heat and Power Projects

    Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  19. Northwest Region Combined Heat and Power Projects

    Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  20. Northeast Region Combined Heat and Power Projects

    Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  1. Maywood Industries of Oregon Space Heating Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Maywood Industries of Oregon Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Maywood Industries of Oregon Space Heating Low Temperature...

  2. Save Energy Now in Your Process Heating Systems; Industrial Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Process Heating Systems Process heating accounts for about 36% of the total energy used in industrial manufacturing applications. And in some industries, this percentage is much ...

  3. Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) (indexed site)

    c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Commercial Sector 11<//td> 1989 711,212 202,091 600,653 – –

  4. Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007

    Office of Energy Efficiency and Renewable Energy (EERE)

    Reference document of basic information for hospital managers when considering the application of combined heat and power (CHP) in the healthcare industry, specifically in hospitals

  5. New Release -- U.S. DOE Analysis: Combined Heat and Power (CHP...

    Energy Savers

    The "Combined Heat and Power (CHP) Technical Potential in the United States" market analysis report provides data on the technical potential in industrial facilities and commercial ...

  6. The Market and Technical Potential for Combined Heat and Power in the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Sector, January 2000 | Department of Energy Industrial Sector, January 2000 The Market and Technical Potential for Combined Heat and Power in the Industrial Sector, January 2000 This January 2000 ONSITE SYCOM Energy Corporation (OSEC) report provides information on the potential for cogeneration or combined heat and power (CHP) in the industrial market. As part of this effort, OSEC has characterized typical technologies used in industrial CHP, analyzed existing CHP capacity in

  7. Cooling, Heating, and Power for Industry: A Market Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industry: A Market Assessment, August 2003 Cooling, Heating, and Power for Industry: A Market Assessment, August 2003 Industrial applications of CHP have been around for decades, ...

  8. Midwest Region Combined Heat and Power Projects

    Energy.gov [DOE]

    DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. 

  9. US industrial process heating energy consumption: 1985

    SciTech Connect (OSTI)

    McDermott, H.; Chapman, M.A.

    1988-02-01

    The objective of this report was to refine and update energy-use estimates for US industrial process heating based on categories defined in an earlier study sponsored by Gas Research Institute (GRI) (Report No. GRI--84/0187. 154 refs., 77 tabs.

  10. Table 8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 Commercial Sector 8<//td> 1989 13,517 3,896 9,920 102 27,435 145 10,305 10,450 – 37,885 1990 14,670 5,406 15,515 118 35,709 387 10,193 10,580 – 46,289 1991 15,967 3,684 20,809 118 40,578 169 8,980 9,149 1 49,728 1992

  11. Using Waste Heat for External Processes; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Using Waste Heat for External Processes The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery ...

  12. Fuel-Flexible Microturbine and Gasifier System for Combined Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, ...

  13. Engine Driven Combined Heat and Power: Arrow Linen Supply, December...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Engine Driven Combined Heat and Power: Arrow Linen Supply, December 2008 Engine Driven Combined Heat and Power: Arrow Linen Supply, December 2008 This paper describes the Arrow ...

  14. Energy Portfolio Standards and the Promotion of Combined Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009 Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White ...

  15. Combined Heat and Power (CHP) Plant fact sheet | Argonne National...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Combined Heat and Power (CHP) Plant fact sheet Argonne National Laboratory's Combined Heat and Power (CHP) plant, expected to be operational in June 2016, will provide electricity...

  16. Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact...

    Energy Savers

    Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2015 Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2015 FuelCell Energy, Inc., in ...

  17. Guide to Using Combined Heat and Power for Enhancing Reliability...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Using Combined Heat and Power for Enhancing Reliability and Resiliency in Buildings Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in Buildings During ...

  18. Combined Heat and Power Market Potential for Opportunity Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 The purpose of this 2004...

  19. Cooling, heating, and power for industry: A market assessment

    SciTech Connect (OSTI)

    None, None

    2003-08-01

    The focus of this study was to assess the market for cooling, heating, and power applications in the industrial sector.

  20. Improving Process Heating System Performance: A Sourcebook for Industry,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Third Edition | Department of Energy Third Edition Improving Process Heating System Performance: A Sourcebook for Industry, Third Edition This sourcebook introduces industry to process heating basics, performance opportunities for fuel and electric based systems, waste heat management and where they can find help on optimizing these important industrial systems. Over the years AMO has worked with the Industrial Heating Equipment Association (IHEA) in its development. IHEA's mission is to

  1. Combined Heat and Power (CHP) Technology Development

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    John Storey and Tim Theiss Oak Ridge National Laboratory U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Objective of the ORNL CHP R&D program The project objectives are to improve the efficiency and viability of Combined Heat and Power systems and high-efficiency electrical generation systems, while supporting the U.S. manufacturing base. 

  2. Industrial Steam System Heat-Transfer Solutions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat-Transfer Solutions Industrial Steam System Heat-Transfer Solutions This brief provides an overview of considerations for selecting the best heat-transfer equipment for various steam systems and applications. Industrial Steam System Heat-Transfer Solutions (June 2003) (442.68 KB) More Documents & Publications Industrial Steam System Process-Control Schemes Considerations When Selecting a Condensing Economizer Steam Pressure Reduction: Opportunities and Issues

  3. The Influence of Building Location on Combined Heat and Power...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Combined Heat & Power Hydrogen Production Cost Model Allows ... Fuel Cell with CHP Electricity Natural Gas Power Heat Natural Gas or Biogas Hydrogen National Renewable Energy ...

  4. Combined heat recovery and make-up water heating system

    SciTech Connect (OSTI)

    Kim, S.Y.

    1988-05-24

    A cogeneration plant is described comprising in combination: a first stage source of hot gas; a duct having an inlet for receiving the hot gas and an outlet stack open to the atmosphere; a second stage recovery heat steam generator including an evaporator situated in the duct, and economizer in the duct downstream of the evaporator, and steam drum fluidly connected to the evaporator and the economizer; feedwater supply means including a deaerator heater and feedwater pump for supplying deaerated feedwater to the steam drum through the economizer; makeup water supply means including a makeup pump for delivering makeup water to the deaerator heater; means fluidly connected to the steam drum for supplying auxiliary steam to the deaerator heater; and heat exchanger means located between the deaerator and the economizer, for transferring heat from the feedwater to the makeup water, thereby increasing the temperature of the makeup water delivered to the deaerator and decreasing the temperature of the feedwater delivered to the economizer, without fluid exchange.

  5. High temperature absorption heat pump for industrial usage

    SciTech Connect (OSTI)

    Bugarel, R.; Morillon, R.

    1982-01-01

    A theoretical and experimental study has demonstrated that an absorption heat pump with a water-lithium bromide thermodynamic couple has a practical coefficient of performance of 1.4-1.6 when providing a 280/sup 0/F heat source. The ability to serve as a high-temperature heat source makes this heat pump suitable for certain industrial processes such as drying.

  6. Potential for Solar Industrial Process Heat in the United States...

    Office of Scientific and Technical Information (OSTI)

    This initial analysis identified 48 TWhthyear of process heat demand in certain California industries versus a technical solar-thermal energy potential of 23,000 TWhthyear. The ...

  7. Improving Process Heating System Performance: A Sourcbook for Industry

    SciTech Connect (OSTI)

    2004-09-01

    A sourcebook designed to provide process heating system users with a reference outlining opportunities to improve system performance and optimize energy efficiency in industrial energy systems.

  8. Reduce Natural Gas Use in Your Industrial Process Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

  9. National CHP Roadmap: Doubling Combined Heat and Power Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States ...

  10. Ultra Efficient Combined Heat, Hydrogen, and Power System

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ultra Efficient Combined Heat, Hydrogen, and Power System DE-EE0003679 FuelCell Energy, Inc. 10/1/2010 - 9/30/2011 Pinakin Patel FuelCell Energy Inc. ppatel@fce.com 203-825-6072 U.S. DOE Industrial Distributed Energy Portfolio Review Meeting Washington, D.C. June 1-2, 2011 2 FCE Overview * Leading fuel cell developer for over 40 years - MCFC, SOFC, PAFC and PEM (up to 2.8 MW size products) - Over 700 million kWh of clean power produced world-wide (>50 installations) - Renewable fuels: over

  11. Combined Heat and Power Market Potential for Opportunity Fuels

    SciTech Connect (OSTI)

    Jones, David; Lemar, Paul

    2015-12-01

    This report estimates the potential for opportunity fuel combined heat and power (CHP) applications in the United States, and provides estimates for the technical and economic market potential compared to those included in an earlier report. An opportunity fuel is any type of fuel that is not widely used when compared to traditional fossil fuels. Opportunity fuels primarily consist of biomass fuels, industrial waste products and fossil fuel derivatives. These fuels have the potential to be an economically viable source of power generation in various CHP applications.

  12. Combined Heat and Power Systems (CHP): Capabilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    D&MT Capabilities fact sheet that describes the NREL capabilities related to combined heat and power (CHP).

  13. Alaska Gateway School District Adopts Combined Heat and Power

    Energy.gov [DOE]

    Tok School's use of a biomass combined heat and power system is helping the school to save on energy costs.

  14. Combined Heat And Power Installation Market Analysis | OpenEI...

    Open Energy Information (Open El) [EERE & EIA]

    Combined Heat And Power Installation Market Analysis Home There are currently no posts in this category. Syndicate...

  15. Combined Heat And Power Installation Market Forecast | OpenEI...

    Open Energy Information (Open El) [EERE & EIA]

    Combined Heat And Power Installation Market Forecast Home There are currently no posts in this category. Syndicate...

  16. Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  17. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, Armin

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  18. Check Heat Transfer Services; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    slag on the heat transfer surfaces should be avoided. Contamination from Flue Gas and Heating Medium Problem areas from flue gas include soot, scale or oxides, sludge, and slag. ...

  19. Thermal Energy Corporation Combined Heat and Power Project

    SciTech Connect (OSTI)

    Turner, E. Bruce; Brown, Tim; Mardiat, Ed

    2011-12-31

    To meet the planned heating and cooling load growth at the Texas Medical Center (TMC), Thermal Energy Corporation (TECO) implemented Phase 1 of a Master Plan to install an additional 32,000 tons of chilled water capacity, a 75,000 ton-hour (8.8 million gallon) Thermal Energy Storage (TES) tank, and a 48 MW Combined Heat and Power (CHP) system. The Department of Energy selected TMC for a $10 million grant award as part of the Financial Assistance Funding Opportunity Announcement, U.S. Department of Energy National Energy Technology, Recovery Act: Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficiency Industrial Equipment Funding Opportunity Number: DE-FOA-0000044 to support the installation of a new 48 MW CHP system at the TMC located just outside downtown Houston. As the largest medical center in the world, TMC is home to many of the nation's best hospitals, physicians, researchers, educational institutions, and health care providers. TMC provides care to approximately six million patients each year, and medical instruction to over 71,000 students. A medical center the size of TMC has enormous electricity and thermal energy demands to help it carry out its mission. Reliable, high-quality steam and chilled water are of utmost importance to the operations of its many facilities. For example, advanced medical equipment, laboratories, laundry facilities, space heating and cooling all rely on the generation of heat and power. As result of this project TECO provides this mission critical heating and cooling to TMC utilizing a system that is both energy-efficient and reliable since it provides the capability to run on power independent of the already strained regional electric grid. This allows the medical center to focus on its primary mission providing top quality medical care and instruction without worrying about excessive energy costs or the loss of heating and cooling due to the risk of power

  20. Efficient Process Heating in the Aluminum Industry

    SciTech Connect (OSTI)

    2003-01-01

    This 8-page brochure (PDF 300 KB) provides pointers for enhancing the efficiency of melters and furnaces to cut process heating costs by 10 to 30 percent.

  1. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Combined Heat and Power Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Platforms and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial

  2. Combined Heat and Power: Is It Right For Your Facility? | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Power: Is It Right For Your Facility? Combined Heat and Power: Is It Right For Your Facility? This presentation provides an overview of CHP technologies and how they can be used in industrial manufacturing plants to increase productivity and reduce energy and costs. Combined Heat and Power: Is It Right For Your Facility? (May 14, 2009) (634.74 KB) More Documents & Publications HUD CHP GUIDE #2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 New and Emerging

  3. Combined Retrieval, Microphysical Retrievals and Heating Rates...

    Office of Scientific and Technical Information (OSTI)

    Shortwave broadband total upwelling irradiance; Liquid water content; Liquid water path; Radiative heating rate Dataset File size NAView Dataset View Dataset DOI: 10.5439116949

  4. Assessment of Combined Heat and Power Premium Power Applications in

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    California, September 2008 | Department of Energy Combined Heat and Power Premium Power Applications in California, September 2008 Assessment of Combined Heat and Power Premium Power Applications in California, September 2008 This 2008 report analyzes the economic and environmental performance of combined heat and power (CHP) systems in power interruption intolerant commercial facilities in California.Through a series of three case studies, key trade-offs are analyzed with regard to the

  5. Utility Incentives for Combined Heat and Power | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    URI: cleanenergysolutions.orgcontentutility-incentives-combined-heat-and- Language: English Policies: Financial Incentives This report reviews a U.S. Environmental...

  6. Combined Heat and Power with Your Local Utility

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation—given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers combined heat and power (CHP) and its uses, configurations, considerations, and more.

  7. Combined Heat and Power System Enables 100% Reliability at Leading...

    Office of Environmental Management (EM)

    - Case Study, 2013 Combined Heat and Power System Enables 100% Reliability at Leading ... uninterrupted energy services to TECO customers in the event of a prolonged grid outage. ...

  8. The Market and Technical Potential for Combined Heat and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ONSITE SYCOM Energy Corporation (OSEC) assisted the U.S. Department of Energy's Energy Information Administration in determining the potential for cogeneration or combined heat and ...

  9. Combined Heat and Power (CHP) Resource Guide for Hospital Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power (CHP) Resource Guide for Hospital Applications, 2007 Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007 The objective of this 2007 guidebook is to ...

  10. Mid-Atlantic Region Combined Heat and Power Projects

    Energy.gov [DOE]

    DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  11. Integrated Combined Heat and Power/Advanced Reciprocating Internal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications Development of an Improved Modular Landfill Gas Cleanup and...

  12. Combined Heat and Power Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combined Heat and Power Webinar PDF icon 06092010CHP.pdf More Documents & Publications CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, ...

  13. Agricultural and Industrial Process-Heat-Market Sector workbook

    SciTech Connect (OSTI)

    Shulman, M. J.; Kannan, N. P.; deJong, D. L.

    1980-01-01

    This workbook summarizes the preliminary data and assumptions of the Agricultural and Industrial Process Heat Market Sector prepared in conjunction with the development of inputs for a National Plan for the Accelerated Commercialization of Solar Energy.

  14. Improving Process Heating System Performance: A Sourcebook for Industry,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Second Edition | Department of Energy Second Edition Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition This sourcebook describes basic process heating applications and equipment, and outlines opportunities for energy and performance improvements. It also discusses the merits of using a systems approach in identifying and implementing these improvement opportunities. It is not intended to be a comprehensive technical text on improving process heating

  15. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  16. Hydrothermal industrialization: direct heat development. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    A description of hydrothermal resources suitable for direct applications, their associated temperatures, geographic distribution and developable capacity are given. An overview of the hydrothermal direct-heat development infrastructure is presented. Development activity is highlighted by examining known and planned geothermal direct-use applications. Underlying assumptions and results for three studies conducted to determine direct-use market penetration of geothermal energy are discussed.

  17. ARM - PI Product - Combined Retrieval, Microphysical Retrievals & Heating

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Rates ProductsCombined Retrieval, Microphysical Retrievals & Heating Rates ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Combined Retrieval, Microphysical Retrievals & Heating Rates [ research data - ASR funded ] The PNNL Combined Remote Sensor retrieval algorithm (CombRet) is designed to retrieve cloud and precipitation properties for all sky conditions. The retrieval is based on a

  18. New Release-- U.S. DOE Analysis: Combined Heat and Power (CHP) Technical Potential in the United States

    Office of Energy Efficiency and Renewable Energy (EERE)

    The “Combined Heat and Power (CHP) Technical Potential in the United States” market analysis report provides data on the technical potential in industrial facilities and commercial buildings for ...

  19. A new absorption chiller to establish combined cold, heat, and power generation utilizing low-temperature heat

    SciTech Connect (OSTI)

    Schweigler, C.J.; Riesch, P.; Demmel, S.; Alefeld, G.

    1996-11-01

    Presently available absorption machines for air conditioning are driven with heat of a minimum of 80 C (176 F). A combination of the standard single-effect and a double-lift process has been identified as a new cycle that can use driving heat down to return temperatures of about 55 C (131 F) and permits temperature glides in generation of more than 30 K (54 F). Thus a larger cooling capacity can be produced from the same heat source compared to a single-effect chiller run with the same heat carrier supply temperature and mass flow. According to the estimated heat exchanger area, competitive machine costs for this new chiller can be expected. This single-effect/double-lift absorption chiller can be operated with waste heat from industrial processes, as well as with low-temperature heat (e.g., heat from solar collectors) as driving heat for air conditioning. The large temperature glide and the low return temperature especially fit the operating conditions in district heating networks during the summer. The cycle will be presented, followed by a discussion of suitable operating conditions.

  20. Combined Heat and Power System Enables 100% Reliability at Leading...

    Energy.gov (indexed) [DOE]

    and 330,000 pounds of steam per hour; * A 75,000 ... TECO plant peak electrical load and 100% of TECO customers' ... the combined heat and power plant at the Texas Medical ...

  1. Combined Heat & Power Technology Overview and Federal Sector Deployment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation covers the Combined Heat & Power Technology Overview and Federal Sector Deployment from Oakridge National Laboratory. The presentation is from the FUPWG Spring Meeting, held on May 22, 2013 in San Francisco, California.

  2. Combined Heat and Power (CHP): Essential for a Cost Effective...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for a Cost Effective Clean Energy Standard, April 2011 Combined Heat and Power (CHP): Essential for a Cost Effective Clean Energy Standard, April 2011 In March 2011, a federal ...

  3. Testimonials - Partnerships in Combined Heat and Power Technologies -

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cummins Inc. | Department of Energy Combined Heat and Power Technologies - Cummins Inc. Testimonials - Partnerships in Combined Heat and Power Technologies - Cummins Inc. Addthis Text Version The words "Office of Energy Efficiency & Renewable Energy, U.S. Department of Energy, EERE Partnership Testimonials," appear on the screen, followed by "Kevin Keene, Project Director, Cummins" and footage of a man. Kevin Keene: Working with the Department of Energy has been

  4. Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 The U.S. Department of Housing and Urban Development (HUD) and the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL) developed preliminary feasibility (Level 1) screening software and enlisted the DOE CHP Regional Application Centers (RACs) to help run utility data and estimate paybacks. This paper

  5. Process Heating Roadmap to Help U.S. Industries Be Competitive | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Roadmap to Help U.S. Industries Be Competitive Process Heating Roadmap to Help U.S. Industries Be Competitive This brief summarizes the development of a comprehensive plan for meeting industrial process heating needs started by the Industrial Heating Equipment Association (IHEA) and DOE in 1999. Process Heating Roadmap to Help U.S. Industries Be Competitive (January 2001) (19.86 KB) More Documents & Publications Roadmap for Process Heating Technology The Big Picture on Process

  6. Retrofitting Combined Space and Water Heating Systems. Laboratory Tests

    SciTech Connect (OSTI)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olsen, R.; Hewett, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  7. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    SciTech Connect (OSTI)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  8. Combined ICR heating antenna for ion separation systems

    SciTech Connect (OSTI)

    Timofeev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

    2011-01-15

    A combination of one- and two-wave antennas (one and two turns of conductors around a plasma cylinder, respectively) is proposed. This combined antenna localizes an RF field within itself. It is shown that spent nuclear fuel processing systems based on ICR heating of nuclear ash by such a combined antenna have high productivity. A theory of the RF field excitation in ICR ion separation systems is presented in a simple and compact form.

  9. Industrial process heat case studies. [PROSYS/ECONMAT code

    SciTech Connect (OSTI)

    Hooker, D.W.; May, E.K.; West, R.E.

    1980-05-01

    Commercially available solar collectors have the potential to provide a large fraction of the energy consumed for industrial process heat (IPH). Detailed case studies of individual industrial plants are required in order to make an accurate assessment of the technical and economic feasibility of applications. This report documents the results of seven such case studies. The objectives of the case study program are to determine the near-term feasibility of solar IPH in selected industries, identify energy conservation measures, identify conditions of IPH systems that affect solar applications, test SERI's IPH analysis software (PROSYS/ECONOMAT), disseminate information to the industrial community, and provide inputs to the SERI research program. The detailed results from the case studies are presented. Although few near-term, economical solar applications were found, the conditions that would enhance the opportunities for solar IPH applications are identified.

  10. Industrial and agricultural process heat information user study

    SciTech Connect (OSTI)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    The results of a series of telephone interviews with groups of users of information on solar industrial and agricultural process heat (IAPH) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. In the current study only high-priority groups were examined. Results from 10 IAPH groups of respondents are analyzed in this report: IPH Researchers; APH Researchers; Representatives of Manufacturers of Concentrating and Nonconcentrating Collectors; Plant, Industrial, and Agricultural Engineers; Educators; Representatives of State Agricultural Offices; and County Extension Agents.

  11. WASTE HEAT-TO-POWER IN SMALL-SCALE INDUSTRY USING SCROLL EXPANDER...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WASTE HEAT-TO-POWER IN SMALL-SCALE INDUSTRY USING SCROLL EXPANDER FOR ORGANIC RANKINE BOTTOMING CYCLE WASTE HEAT-TO-POWER IN SMALL-SCALE INDUSTRY USING SCROLL EXPANDER FOR ORGANIC ...

  12. Steam Technical Brief: Industrial Heat Pumps for Steam and Fuel Savings

    SciTech Connect (OSTI)

    2010-06-25

    The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

  13. Cooling, Heating, and Power for Industry: A Market Assessment, August 2003

    Office of Energy Efficiency and Renewable Energy (EERE)

    The focus of this study was to assess the market for cooling, heating, and power applications in the industrial sector.

  14. Market development directory for solar industrial process heat systems

    SciTech Connect (OSTI)

    1980-02-01

    The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

  15. Fuel quality issues in the oil heat industry

    SciTech Connect (OSTI)

    Litzke, Wai-Lin

    1992-12-01

    The quality of fuel oil plays an essential role in combustion performance and efficient operation of residential heating equipment. With the present concerns by the oil-heat industry of declining fuel-oil quality, a study was initiated to identify the factors that have brought about changes in the quality of distillate fuel. A background of information will be provided to the industry, which is necessary to deal with the problems relating to the fuel. The high needs for servicing heating equipment are usually the result of the poor handling characteristics of the fuel during cold weather, the buildup of dirt and water in storage tanks, and microbial growth. A discussion of how to deal with these problems is presented in this paper. The effectiveness of fuel additives to control these problems of quality is also covered to help users better understand the functions and limitations of chemical treatment. Test data have been collected which measure and compare changes in the properties of fuel using selected additives.

  16. Combined Heat and Power: Expanding CHP in Your State

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combined Heat and Power: Expanding CHP in Your State December 4, 2013 Molly Lunn U.S. DOE's State and Local Technical Assistance Program 1 | Energy Efficiency and Renewable Energy eere.energy.gov DOE's State & Local Technical Assistance Program * Strategic Energy Planning * Program & Policy Design and ImplementaJon * Financing Strategies * Data Management and EM&V * EE & RE Technologies Priority Areas * General EducaOon (e.g., fact sheets, 101s) * Case Studies * Tools for

  17. Combined Heat and Power Technology Fact Sheets Series: Steam Turbines

    Energy.gov (indexed) [DOE]

    Steam Turbines Steam turbines are a mature technology and have been used since the 1880s for electricity production. Most of the electricity generated in the United States is produced by steam turbines integrated in central station power plants. In addition to central station power, steam turbines are also commonly used for combined heat and power (CHP) instal- lations (see Table 1 for summary of CHP attributes). Applications Based on data from the CHP Installation Database, 1 there are 699

  18. Fuel Cell Combined Heat and Power Commercial Demonstration

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing evaluating the performance of 5 kW stationary combined heat and power fuel cell systems that have been deployed in Oregon and California. It also describes the business case that was developed to identify markets and address cost.

  19. Industrial Heat Pumps for Steam and Fuel Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat Pumps for Steam and Fuel Savings Industrial Heat Pumps for Steam and Fuel Savings This brief introduces heat-pump technology and its application in industrial processes as part of steam systems. The focus is on the most common applications, with guidelines for initial identification and evaluation of the opportunities being provided. Industrial Heat Pumps for Steam and Fuel Savings (June 2003) (445.24 KB) More Documents & Publications This thermoelastic system provides a promising

  20. Combined Heat and Power - A Decade of Progress, A Vision for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combined Heat and Power - A Decade of Progress, A Vision for the Future, August 2009 Combined Heat and Power - A Decade of Progress, A Vision for the Future, August 2009 Combined...

  1. Low-temperature waste-heat recovery in the food and paper industries

    SciTech Connect (OSTI)

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  2. HTR-100 industrial nuclear power plant for generation of heat and electricity

    SciTech Connect (OSTI)

    Brandes, S.; Kohl, W.

    1987-11-01

    Based on their proven high-temperature reactor (HTR) with pebble-bed core, Brown, Boveri and Cie/Hochtemperatur-Reaktorbau have developed an HTR-100 plant that combines favorable capital costs and high availability. Due to the high HTR-specific standards and passive safety features, this plant is especially well suited for siting near the end user. The safety concept permits further operation of the plant or decay heat removal via the operational heat sinks in the event of maloperation and design basis accidents having a higher probability of occurrence. In the event of hypothetical accidents, the decay heat is removed from the reactor pressure vessel by radiation, conduction, and convection to a concrete cooling system operating in natural convection. As an example of the new HTR-100 plant concept, a twin-block plant design for extraction of industrial steam is presented.

  3. Combined Heat and Power - A Decade of Progress, A Vision for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PDF icon Combined Heat and Power: A Decade of Progress, A Vision for the Future, August 2009 More Documents & Publications High Efficiency Microturbine with Integral Heat Recovery ...

  4. Standby Rates for Combined Heat and Power Systems

    SciTech Connect (OSTI)

    Sedano, Richard; Selecky, James; Iverson, Kathryn; Al-Jabir, Ali

    2014-02-01

    Improvements in technology, low natural gas prices, and more flexible and positive attitudes in government and utilities are making distributed generation more viable. With more distributed generation, notably combined heat and power, comes an increase in the importance of standby rates, the cost of services utilities provide when customer generation is not operating or is insufficient to meet full load. This work looks at existing utility standby tariffs in five states. It uses these existing rates and terms to showcase practices that demonstrate a sound application of regulatory principles and ones that do not. The paper also addresses areas for improvement in standby rates.

  5. WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM

    SciTech Connect (OSTI)

    Allan Jones

    2003-09-01

    This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

  6. Baytown Industrial Park

    SciTech Connect (OSTI)

    2005-06-01

    This is a combined heat and power (CHP) project profile on an 830 MW combined-cycle CHP application at Baytown Industrial Park in Baytown, Texas.

  7. ITP Industrial Distributed Energy: Combined Heat and Power Market...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... The waste can be dried and cut into chips to be fired in a boiler (similar to coal). Cofiring is usually preferred, as it reduces the emissions in a coal-fired plant and no boiler ...

  8. National Association of Counties Webinar- Combined Heat and Power: Resiliency Strategies for Critical Facilities

    Energy.gov [DOE]

    Combined heat and power (CHP), also known as cogeneration, is a method whereby energy is produced, and excess heat from the production process can be used for heating and cooling processes....

  9. Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition

    SciTech Connect (OSTI)

    2008-02-01

    This is one in a series of sourcebooks to help manufacturers optimize their industrial systems; this particular sourcebook addresses process heating systems.

  10. THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT...

    Energy Savers

    THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES Section ...

  11. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...

    Office of Environmental Management (EM)

    Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 TDA Research ...

  12. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study ...

  13. Combined Heat and Power (CHP): Is It Right For Your Facility?

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Partnership with the US DOE Combined Heat and Power (CHP) Is It Right For Your Facility U.S. DOE Industrial Technologies Program Webcast Series May 14 th , 2009 John J. Cuttica Cliff Haefke 312/996-4382 312/355-3476 cuttica@uic.edu chaefk1@uic.edu In Partnership with the US DOE Mid Atlantic www.chpcenterma.org Midwest www.chpcentermw.org Pacific www.chpcenterpr.org Northwest Region www.chpcenternw.org Northeast www.northeastchp.org Intermountain www.IntermountainCHP.org Gulf Coast

  14. Guide to Combined Heat and Power Systems for Boiler Owners and Operators

    SciTech Connect (OSTI)

    Oland, CB

    2004-08-19

    Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits

  15. How Combined Heat and Power Can Support State Climate and Energy Planning |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Combined Heat and Power Can Support State Climate and Energy Planning How Combined Heat and Power Can Support State Climate and Energy Planning Provides states and their stakeholders with a short synopsis for what it would look like to include combined heat and power in their climate and energy plans, including current activity at the national and state levels, best practices, energy savings examples, cost-effectiveness, EM&V and DOE support. How Combined Heat and

  16. Engine Driven Combined Heat and Power: Arrow Linen Supply, December 2008

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation overview the arrow linen supply combined heat and power, its cost savings, success factors, and impacts

  17. Potential for Solar Industrial Process Heat in the United States: A Look at

    Office of Scientific and Technical Information (OSTI)

    California (Conference) | SciTech Connect Conference: Potential for Solar Industrial Process Heat in the United States: A Look at California Citation Details In-Document Search Title: Potential for Solar Industrial Process Heat in the United States: A Look at California The use of Concentrating Solar Power (CSP) collectors (e.g., parabolic trough or linear Fresnel systems) for industrial thermal applications has been increasing in global interest in the last few years. In particular, the

  18. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery

    SciTech Connect (OSTI)

    Hendricks, Terry; Choate, William T.

    2006-11-01

    This report evaluates thermoelectric generator (TEG) systems with the intent to: 1) examine industrial processes in order to identify and quantify industrial waste heat sources that could potentially use TEGs; 2) describe the operating environment that a TEG would encounter in selected industrial processes and quantify the anticipated TEG system performance; 3) identify cost, design and/or engineering performance requirements that will be needed for TEGs to operate in the selected industrial processes; and 4) identify the research, development and deployment needed to overcome the limitations that discourage the development and use of TEGs for recovery of industrial waste heat.

  19. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    SciTech Connect (OSTI)

    Dr. Xiaodi Huang; Dr. J. Y. Hwang

    2005-03-28

    Steel is a basic material broadly used by perhaps every industry and individual. It is critical to our nation's economy and national security. Unfortunately, the American steel industry is losing competitiveness in the world steel production field. There is an urgent need to develop the next generation of steelmaking technology for the American steel industry. Direct steelmaking through the combination of microwave, electric arc, and exothermal heating is a revolutionary change from current steelmaking technology. This technology can produce molten steel directly from a shippable agglomerate, consisting of iron oxide fines, powdered coal, and ground limestone. This technology is projected to eliminate many current intermediate steelmaking steps including coking, pellet sintering, blast furnace (BF) ironmaking, and basic oxygen furnace (BOF) steelmaking. This technology has the potential to (a) save up to 45% of the energy consumed by conventional steelmaking; (b) dramatically reduce the emission of CO{sub 2}, SO{sub 2}, NO{sub x}, VOCs, fine particulates, and air toxics; (c) substantially reduce waste and emission control costs; (d) greatly lower capital cost; and (e) considerably reduce steel production costs. This technology is based on the unique capability of microwaves to rapidly heat steelmaking raw materials to elevated temperature, then rapidly reduce iron oxides to metal by volumetric heating. Microwave heating, augmented with electric arc and exothermal reactions, is capable of producing molten steel. This technology has the components necessary to establish the ''future'' domestic steel industry as a technology leader with a strong economically competitive position in world markets. The project goals were to assess the utilization of a new steelmaking technology for its potential to achieve better overall energy efficiency, minimize pollutants and wastes, lower capital and operating costs, and increase the competitiveness of the U.S. steel industry. The

  20. Steam Technical Brief: Industrial Steam System Heat-Transfer Solutions

    SciTech Connect (OSTI)

    2010-06-25

    This BestPractices Steam Technical Brief provides an overview of considerations for selecting the best heat-transfer solution for various applications.

  1. Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power (CCHP) Systems

    Energy.gov [DOE]

    The emergence of technologies that efficiently convert heat into cooling, such as absorption chillers, has opened up many new opportunities and markets for combined heat and power systems. These...

  2. Role of fuel upgrading for industry and residential heating

    SciTech Connect (OSTI)

    Merriam, N.W.; Gentile, R.H.

    1995-12-01

    The Koppleman Series C Process is presently being used in pilot plant tests with Wyoming coal to upgrade the Powder River Basin coal containing 30 wt% moisture and having a heating value of 8100 Btu/lb to a product containing less than 1 wt% moisture and having a heating value of 12,200 Btu/lb. This process is described.

  3. Barriers to Industrial Energy Efficiency - Study (Appendix A...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. ...

  4. Changing Structure of the Electric Power Industry 1999: Mergers and Other Corporate Combinations, The

    Reports and Publications

    1999-01-01

    Presents data about corporate combinations involving investor-owned utilities in the United States, discusses corporate objectives for entering into such combinations, and assesses their cumulative effects on the structure of the electric power industry.

  5. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect (OSTI)

    Curran, Scott; Theiss, Timothy J; Bunce, Michael

    2012-01-01

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  6. Ultra Efficient Combined Heat, Hydrogen, and Power System

    SciTech Connect (OSTI)

    2010-10-28

    Description of CHHP system which utilizes a high-temperature fuel cell to provide on-site process reducing gas, clean power, and heat.

  7. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER...

    Office of Scientific and Technical Information (OSTI)

    ... CONVERSION; ENGINES; EXPLORATION; FUEL CELLS; GAS TURBINES; GREENHOUSE GASES; HOT WATER; INTERNAL COMBUSTION ENGINES; NATURAL GAS; THERMAL RECOVERY; TURBINES; WASTE HEAT; WASTES

  8. Combined Heat and Power Basics | Department of Energy

    Energy Savers

    of electricity or mechanical power and useful thermal energy (heating andor cooling) from a single source of energy. A type of distributed generation, which, unlike central ...

  9. Anaerobic Digestion and Combined Heat and Power Study

    SciTech Connect (OSTI)

    Frank J. Hartz; Rob Taylor; Grant Davies

    2011-12-30

    One of the underlying objectives of this study is to recover the untapped energy in wastewater biomass. Some national statistics worth considering include: (1) 5% of the electrical energy demand in the US is used to treat municipal wastewater; (2) This carbon rich wastewater is an untapped energy resource; (3) Only 10% of wastewater treatment plants (>5mgd) recover energy; (4) Wastewater treatment plants have the potential to produce > 575 MW of energy nationwide; and (5) Wastewater treatment plants have the potential to capture an additional 175 MW of energy from waste Fats, Oils and Grease. The WSSC conducted this study to determine the feasibility of utilizing anaerobic digestion and combined heat and power (AD/CHP) and/or biosolids gasification and drying facilities to produce and utilize renewable digester biogas. Digester gas is considered a renewable energy source and can be used in place of fossil fuels to reduce greenhouse gas emissions. The project focus includes: (1) Converting wastewater Biomass to Electricity; (2) Using innovative technologies to Maximize Energy Recovery; and (3) Enhancing the Environment by reducing nutrient load to waterways (Chesapeake Bay), Sanitary Sewer Overflows (by reducing FOG in sewers) and Greenhouse Gas Emissions. The study consisted of these four tasks: (1) Technology screening and alternative shortlisting, answering the question 'what are the most viable and cost effective technical approaches by which to recover and reuse energy from biosolids while reducing disposal volume?'; (2) Energy recovery and disposal reduction potential verification, answering the question 'how much energy can be recovered from biosolids?'; (3) Economic environmental and community benefit analysis, answering the question 'what are the potential economic, environmental and community benefits/impacts of each approach?'; and (4) Recommend the best plan and develop a concept design.

  10. Opportunities for Combined Heat and Power in Data Centers

    SciTech Connect (OSTI)

    Darrow, Ken; Hedman, Bruce

    2009-03-01

    Data centers represent a rapidly growing and very energy intensive activity in commercial, educational, and government facilities. In the last five years the growth of this sector was the electric power equivalent to seven new coal-fired power plants. Data centers consume 1.5% of the total power in the U.S. Growth over the next five to ten years is expected to require a similar increase in power generation. This energy consumption is concentrated in buildings that are 10-40 times more energy intensive than a typical office building. The sheer size of the market, the concentrated energy consumption per facility, and the tendency of facilities to cluster in 'high-tech' centers all contribute to a potential power infrastructure crisis for the industry. Meeting the energy needs of data centers is a moving target. Computing power is advancing rapidly, which reduces the energy requirements for data centers. A lot of work is going into improving the computing power of servers and other processing equipment. However, this increase in computing power is increasing the power densities of this equipment. While fewer pieces of equipment may be needed to meet a given data processing load, the energy density of a facility designed to house this higher efficiency equipment will be as high as or higher than it is today. In other words, while the data center of the future may have the IT power of ten data centers of today, it is also going to have higher power requirements and higher power densities. This report analyzes the opportunities for CHP technologies to assist primary power in making the data center more cost-effective and energy efficient. Broader application of CHP will lower the demand for electricity from central stations and reduce the pressure on electric transmission and distribution infrastructure. This report is organized into the following sections: (1) Data Center Market Segmentation--the description of the overall size of the market, the size and types of

  11. Opportunities for Combined Heat and Power in Data Centers, March 2009 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Combined Heat and Power in Data Centers, March 2009 Opportunities for Combined Heat and Power in Data Centers, March 2009 This report analyzes the opportunities for combined heat and power (CHP) technologies to assist primary power in making the data center more cost-effective and energy efficient. Broader application of CHP will lower the demand for electricity from central stations and reduce the pressure on electric transmission and distribution infrastructure.

  12. Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, in collaboration with the University of California-Irvine, Packer Engineering, and Argonne National Laboratory, will develop and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel

  13. 1-10 kW Stationary Combined Heat and Power Systems Status and Technical

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Potential: Independent Review | Department of Energy -10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review 1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review This independent review examines the status and technical potential of 1-10 kW stationary combined heat and power fuel cell systems and analyzes the achievability of the DOE cost, efficiency, and durability targets for 2012, 2015, and 2020.

  14. Combined Heat and Power: Expanding CHP in Your State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combined Heat and Power: Expanding CHP in Your State Combined Heat and Power: Expanding CHP in Your State This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Combined Heat and Power: Expanding CHP in Your State Presentation (17.61 MB) Transcript (130 KB) More Documents & Publications expanding_chp_in_your_state.doc Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers (SERC) -

  15. The Market and Technical Potential for Combined Heat and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... The industrial sector is characterized by approximately the same total electricity consumption ... developers hoping to reach the large number of customers in this small-end market. ...

  16. ITP Distributed Energy: Combined Heat and Power Market Assessment...

    Energy.gov (indexed) [DOE]

    * IndustrialAgriculturalWater End Use Energy Efficiency * Renewable Energy ... A-1&1; APPENDIX B: Electricity Consumption per Employee Estimates ......

  17. Novel Controls for Economic Dispatch of Combined Cooling, Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    use of CHP systems under 5 MW. The control systems and technologies are increasing market penetration of CHP systems in the light industrial, commercial, and institutional markets. ...

  18. Combined Heat and Power (CHP) Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    These industries represent high potential for CHP and distributed energy due to their ultra-high reliability and power quality requirements and related large cooling loads. ...

  19. Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009

    Office of Energy Efficiency and Renewable Energy (EERE)

    EPA CHP Partnership’s white paper provides information on energy portfolio standards and how they promote combined heat and power.

  20. Combined Heat and Power System Enables 100% Reliability at Leading Medical Campus - Case Study

    SciTech Connect (OSTI)

    2013-03-29

    Case study of Thermal Energy Corporation (TECO) demonstrating a high-efficiency combined heat and power (CHP) system at Texas Medical Center in Houston, Texas

  1. Top 10 Things You Didn't Know About Combined Heat and Power | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power October 21, 2013 - 11:25am Addthis Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce

  2. 1-10 kW Stationary Combined Heat and Power Systems Status and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Technical Potential: Independent Review 1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review This independent review ...

  3. Combined Heat and Power. Enabling Resilient Energy Infrastructure for Critical Facilities

    SciTech Connect (OSTI)

    Hampson, Anne; Bourgeois, Tom; Dillingham, Gavin; Panzarella, Isaac

    2013-03-01

    This report provides context for combined heat and power (CHP) in critical infrastructure applications, as well as case studies and policies promoting CHP in critical infrastructure.

  4. The market and technical potential for combined heat and power in the commercial/institutional sector

    SciTech Connect (OSTI)

    None, None

    2000-01-01

    Report of an analysis to determine the potential for cogeneration or combined heat and power (CHP) in the commercial/institutional market.

  5. Ultramizer: Waste Heat Recovery System for Commercial and Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    removes pure water from the waste stream, which can then be reused to reduce makeup water demand. The recovered latent heat energy can be used to reduce energy input for...

  6. Reduce Radiation Losses from Heating Equipment; Industrial Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    line of sight, and the rate of heat transfer increases with the fourth power of the ... These graphs give results that are within 5% of the results of using detailed view- factor ...

  7. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    SciTech Connect (OSTI)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  8. Initial Investigation into the Potential of CSP Industrial Process Heat for

    Office of Scientific and Technical Information (OSTI)

    the Southwest United States (Technical Report) | SciTech Connect Initial Investigation into the Potential of CSP Industrial Process Heat for the Southwest United States Citation Details In-Document Search Title: Initial Investigation into the Potential of CSP Industrial Process Heat for the Southwest United States After significant interest in the 1970s, but relatively few deployments, the use of solar technologies for thermal applications, including enhanced oil recovery (EOR),

  9. Low-Cost Packaged Combined Heat and Power System | Department...

    Office of Environmental Management (EM)

    ... to an estimated 36% reduction in the end-user's fuel consumption compared to a standard Cummins ... to separate generation of electricity and heat, given 8,000 hours ...

  10. Fuel Cell Combined Cooling, Heating, and Power | Department of...

    Energy.gov (indexed) [DOE]

    CACP System CACP System Integrated Fuel Cell Integrated Fuel Cell Setup for Heat and Mass ... 300,000 FY16 DOE Funding: 300,000 Cost Share: 100,000 Project Term: February ...

  11. Combined Heat and Power System Achieves Millions in Cost Savings...

    Energy.gov (indexed) [DOE]

    natural gas-fired CHP system consisting of a 34 MW combustion turbine, a 210,000-pound-per-hour (pph) heat recovery steam generator, and an 11 MW steam turbine generator. ...

  12. Combined Heat and Power System Achieves Millions in Cost Savings...

    Energy.gov (indexed) [DOE]

    a new energy future." 2 - Former U.S. Congressman Chet Edwards Texas A&M's CHP system includes a gas turbine generator, heat recovery steam generator, and steam turbine generator. ...

  13. Combined Heat and Power Systems Technology Development and Demonstrati...

    Office of Scientific and Technical Information (OSTI)

    heating and more electrical efficiency California Air Resources Board (CARB) level emissions, and a price target of 600 per kW, the system would represent a step change in the...

  14. About Industrial Distributed Energy

    Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  15. EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska

    Energy.gov [DOE]

    DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska.

  16. Industrial Assistance and Projects Databases | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combined Heat and Power (CHP) Project Profiles Database Arrow DOE's CHP Technical ... Industrial Assessment Centers Database Arrow Industrial Assessment Centers (IAC) perform ...

  17. Industrial Scale Energy Systems Integration (Presentation), NREL...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (ESI) opportunities in industry o Combined heat and power o Trigeneration o Demand response o Integrated, hybrid energy systems 3 Energy Use in the Industrial Sector * 25% of ...

  18. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    SciTech Connect (OSTI)

    Thekdi, Arvind; Nimbalkar, Sachin U.

    2015-01-01

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  19. Combined heat and mass transfer device for improving separation process

    DOE Patents [OSTI]

    Tran, T.N.

    1999-08-24

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.

  20. Combined heat and mass transfer device for improving separation process

    DOE Patents [OSTI]

    Tran, Thanh Nhon

    1999-01-01

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.

  1. Engineering design for geothermal commerical and industrial direct heat applications in Salida, Colorado

    SciTech Connect (OSTI)

    Zocholl, J.R.; Meyer, R.T.

    1981-10-01

    The Salida Geothermal Prospect (Poncha Hot Springs) is being evaluated for commercial and industrial direct heat applications in Salida, Colorado, located approximately five miles east. The prospective energy use includes domestic space heating and hot water, commercial space heating and hot water for motels, restaurants, greenhouses, and swimming pools, and industrial space and process heat requirements for existing and future facilities. The objective of the engineering design is to use the full flow capacity of the resource and to provide for the future development of the commercial and industrial sectors of Salida. The engineering evaluation has included significant design features, including cascaded uses of the hot water, conversion of chicken waste, warm water fish hatching, pipeline crossing of a river, and geothermal fluid cooling and discharge to the Arkansas River. Engineering feasibility of the geothermal well supply and of selected user facility retrofits has been demonstrated.

  2. FACT SHEET: Energy Department Actions to Deploy Combined Heat...

    Office of Environmental Management (EM)

    ... completely offsetting its electricity and steam needs and saving about 100,000 each year. ... Capstone Turbine Corporation is designing a combined 65 kilowatt CHP system and biomass ...

  3. Combined Heat and Power Technology Fact Sheets Series: Reciprocating Engines

    Energy.gov (indexed) [DOE]

    Heat and Power Technology Fact Sheet Series Reciprocating Engines Reciprocating internal combustion engines are a mature tech- nology used for power generation, transportation, and many other purposes. Worldwide production of reciprocating internal combustion engines exceeds 200 million units per year. 1 For CHP installations, reciprocating engines have capacities that range from 10 kW to 10 MW. Multiple engines can be inte- grated to deliver capacities exceeding 10 MW in a single plant. Several

  4. Fuel-Flexible Microturbine and Gasifier System for Combined Heat...

    Energy.gov (indexed) [DOE]

    The most common fuel used in microturbines is currently natural gas. However, a combination ... Integration of a syngas-fueled microturbine with a CHP system and a gasifer is only one ...

  5. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    SciTech Connect (OSTI)

    Conklin, James C.; Forsberg, Charles W.

    2007-07-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR. (authors)

  6. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    SciTech Connect (OSTI)

    Conklin, Jim; Forsberg, Charles W

    2007-01-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR.

  7. Top U.S. Nuclear Official Commends Industry for Submitting 3rd Combined

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Construction & Operating License Application to the NRC | Department of Energy Nuclear Official Commends Industry for Submitting 3rd Combined Construction & Operating License Application to the NRC Top U.S. Nuclear Official Commends Industry for Submitting 3rd Combined Construction & Operating License Application to the NRC November 28, 2007 - 4:45pm Addthis RICHMOND, VA - The U.S. Department of Energy (DOE) Assistant Secretary for Nuclear Energy Dennis Spurgeon today commended

  8. A Total Cost of Ownership Model for Solid Oxide Fuel Cells in Combined Heat

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Power and Power-Only Applications | Department of Energy Solid Oxide Fuel Cells in Combined Heat and Power and Power-Only Applications A Total Cost of Ownership Model for Solid Oxide Fuel Cells in Combined Heat and Power and Power-Only Applications This report prepared by Lawrence Berkeley National Laboratory describes a total cost of ownership model for emerging applications in stationary fuel cell systems. Solid oxide fuel cell systems (SOFC) for use in combined heat and power (CHP)

  9. Assessment of Large Combined Heat and Power Market, April 2004 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Large Combined Heat and Power Market, April 2004 Assessment of Large Combined Heat and Power Market, April 2004 This 2004 report summarizes an assessment of the 2-50 MW combined heat and power (CHP) market and near-term opportunities for a fixed set of CHP technologies. This size range has been the biggest contributor to the traditional inside-the-fence CHP market to date. chp_large.pdf (514.4 KB) More Documents & Publications CHP Assessment, California Energy Commission,

  10. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    Energy.gov [DOE]

    This factsheet describes a project to develop direct steelmaking through the combination of microwave, electric arc, and exothermal heating, a process which is meant to eliminate traditional, intermediate steelmaking steps.

  11. How Combined Heat and Power Can Support State Climate and Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    How Combined Heat and Power Can Support State Climate and Energy Planning Provides states and their stakeholders with a short synopsis for what it would look like to include ...

  12. Combined Heat and Power: A Vision for the Future of CHP in the...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vision for the Future of CHP in the United States in 2020, June 1999 Combined Heat and Power: A Vision for the Future of CHP in the United States in 2020, June 1999 The U.S. ...

  13. Waste-heat boiler application for the Vresova combined cycle plant

    SciTech Connect (OSTI)

    Vicek, Z.

    1995-12-01

    This report describes a project proposal and implementation of two combined-cycle units of the Vresova Fuel Complex (PKV) with 2 x 200 MWe and heat supply. Participation of ENERGOPROJECT Praha a.s., in this project.

  14. Guide to Combined Heat and Power Systems for Boiler Owners and...

    Energy.gov (indexed) [DOE]

    It is part of a suite of publications offered by the Department of Energy to improve steam system performance. Guide to Combined Heat and Power Systems for Boiler Owners and ...

  15. Portland Community College Celebrates Commissioning of Combined Heat and Power Fuel Cell System

    Energy.gov [DOE]

    U.S. Energy Secretary Steven Chu today applauded the commissioning of a combined heat and power (CHP) fuel cell system at Portland Community College in Oregon. The CHP fuel cell system will help...

  16. Survey of Emissions Models for Distributed Combined Heat and Power Systems,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2007 | Department of Energy Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 The models surveyed in this study vary in design, scope, and detail, but they all seek to capture the functions of an energy economy and use knowledge of economic interactions to simulate the effects of economic and policy changes. In this 2007 document, Integrated Planning Model (IPM), Average Displaced

  17. National CHP Roadmap: Doubling Combined Heat and Power Capacity in the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    United States by 2010, March 2001 | Department of Energy CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 The National CHP Roadmap document is the culmination of more than 18 state, regional, national, and international workshops, and numerous discussions, planning studies, and assessments. The origin of these activities was a conference held

  18. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to

    Office of Scientific and Technical Information (OSTI)

    Replace Fossil Fuels, Final Technical Report (Technical Report) | SciTech Connect Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report Citation Details In-Document Search Title: Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a

  19. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power Systems

    Office of Environmental Management (EM)

    (CHP) Systems - Fact Sheet, 2015 | Department of Energy Controls for Economic Dispatch of Combined Cooling, Heating and Power (CHP) Systems - Fact Sheet, 2015 Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power (CHP) Systems - Fact Sheet, 2015 University of California, Irvine, in collaboration with Siemens Corporate Research, developed and demonstrated novel algorithms and dynamic control technology for optimal economic use of CHP systems under 5 MW. The control

  20. DOE Technical Targets for Fuel Cell Systems for Stationary (Combined Heat

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Power) Applications | Department of Energy Stationary (Combined Heat and Power) Applications DOE Technical Targets for Fuel Cell Systems for Stationary (Combined Heat and Power) Applications These tables list the U.S. Department of Energy (DOE) technical targets for stationary fuel cell applications. These targets have been developed with input from developers of stationary fuel cell power systems. More information about targets can be found in the Fuel Cells section of the Fuel Cell

  1. Development of an Advanced Combined Heat and Power (CHP) System Utilizing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Off-Gas from Coke Calcination - Fact Sheet, 2014 | Department of Energy an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2014 Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2014 The Gas Technology Institute-in collaboration with Superior Graphite Company and SCHMIDTSCHE SCHACK, a division of ARVOS Group, Wexford business unit (formerly Alstom Power Energy

  2. Assessing the Benefits of On-Site Combined Heat and Power During the August

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    14, 2003, Blackout, June 2004 | Department of Energy Assessing the Benefits of On-Site Combined Heat and Power During the August 14, 2003, Blackout, June 2004 Assessing the Benefits of On-Site Combined Heat and Power During the August 14, 2003, Blackout, June 2004 On August 14, 2003, large portions of the Midwest and Northeast United States and Ontario, Canada, experienced an electric power outage. This study focused on identifying facilities located in the August 2003 blackout area (United

  3. Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (CHP) Systems - Fact Sheet, 2015 | Department of Energy Controls for Economic Dispatch of Combined Cooling, Heating and Power (CHP) Systems - Fact Sheet, 2015 Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power (CHP) Systems - Fact Sheet, 2015 University of California, Irvine, in collaboration with Siemens Corporate Research, developed and demonstrated novel algorithms and dynamic control technology for optimal economic use of CHP systems under 5 MW. The control

  4. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Central Office | Department of Energy Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study about Verizons Communications, who installed a 14-MW phosphoric acid fuel cell system at its Central Office in Garden City, New York, in 2005 and is now reaping environmental benefits and demonstrating the viaility of fuel cells in a commerical, critical telecommunications

  5. Economic status and prospects of solar thermal industrial heat

    SciTech Connect (OSTI)

    Williams, T.A.; Hale, M.J.

    1992-12-01

    This paper provides estimates of the levelized energy cost (LEC) of a mid-temperature parabolic trough system for three different development scenarios. A current technology case is developed that is representative of recent designs and costs for commercial systems, and is developed using data from a recent system installed in Tehachapi, California. The second scenario looks at design enhancements to the currenttechnology case as a way to increase annual energy output and decrease costs. The third scenario uses the annual energy output of the enhanced design, but allows for cost reductions that would be possible in higher volume production than currently exist. A simulation model was used to estimate the annual energy output from the system, and the results were combined with cost data in an economic analysis model. The study indicates that R D improvements in the current trough system show promise of reducing the (LEC) by about 40%. At higher production rates, the LEC of the solar system with R D improvements could potentially be reduced by over 50%.

  6. Economic status and prospects of solar thermal industrial heat

    SciTech Connect (OSTI)

    Williams, T.A.; Hale, M.J.

    1992-12-01

    This paper provides estimates of the levelized energy cost (LEC) of a mid-temperature parabolic trough system for three different development scenarios. A current technology case is developed that is representative of recent designs and costs for commercial systems, and is developed using data from a recent system installed in Tehachapi, California. The second scenario looks at design enhancements to the currenttechnology case as a way to increase annual energy output and decrease costs. The third scenario uses the annual energy output of the enhanced design, but allows for cost reductions that would be possible in higher volume production than currently exist. A simulation model was used to estimate the annual energy output from the system, and the results were combined with cost data in an economic analysis model. The study indicates that R&D improvements in the current trough system show promise of reducing the (LEC) by about 40%. At higher production rates, the LEC of the solar system with R&D improvements could potentially be reduced by over 50%.

  7. Design considerations for solar industrial process heat systems: nontracking and line focus collector technologies

    SciTech Connect (OSTI)

    Kutscher, C.F.

    1981-03-01

    Items are listed that should be considered in each aspect of the design of a solar industrial process heat system. The collector technologies covered are flat-plate, evacuated tube, and line focus. Qualitative design considerations are stressed rather than specific design recommendations. (LEW)

  8. Combined solar and internal load effects on selection of heat reclaim-economizer HVAC systems

    SciTech Connect (OSTI)

    Sauer, H.J. Jr.; Howell, R.H.; Wang, Z. . Dept. of Mechanical Engineering)

    1990-05-01

    The concern for energy conservation has led to the development and use of heat recovery systems which reclaim the building internal heat before it is discarded in the exhaust air. On the other hand, economizer cycles have been widely used for many years in a variety of types of HVAC systems. Economizer cycles are widely accepted as a means to reduce operating time for chilling equipment when cool outside air is available. It has been suggested that heat reclaim systems should not be used in conjunction with an HVAC system which incorporates an economizer cycle because the economizer operation would result in heat being exhausted which might have been recovered. Others suggest that the economizer cycle can be used economically in a heat recovery system if properly controlled to maintain an overall building heat balance. This study looks at potential energy savings of such combined systems with particular emphasis on the effects of the solar load (amount of glass) and the internal load level (lights, people, appliances, etc.). For systems without thermal storage, annual energy savings of up to 60 percent are predicted with the use of heat reclaim systems in conjunction with economizers when the heat reclaim has priority. These results demonstrate the necessity of complete engineering evaluations if proper selection and operation of combined heat recovery and economizer cycles are to be obtained. This paper includes the basic methodology for making such evaluations.

  9. Combined heat recovery and dry scrubbing for MWCs to meet the new EPA guidelines

    SciTech Connect (OSTI)

    Finnis, P.J.; Heap, B.M.

    1997-12-01

    Both the UK and US Municipal Waste Combuster (MWC) markets have undergone upgraded regulatory control. In the UK, the government`s Integrated Pollution Control (IPC) regime, enforced by the 1990 Environmental Protection Act (EPA) Standard IPR5/3 moved control of emissions of MWCs from local councils to the government Environmental Authority (EA). Existing MWCs had until December 1, 1996 to complete environmental upgrades. Simultaneously, the European Community (EC) was finalizing more stringent legislation to take place in the year 2001. In the US, the 1990 Clean Air Act amendments required the Environmental Protection Agency (EPA) to issue emission guidelines for new and existing facilities. Existing facilities are likely to have only until the end of 1999 to complete upgrades. In North America, Procedair Industries Corp had received contracts from Kvaerner EnviroPower AB, for APC systems of four new Refuse Derived Fuel (RDF) fluid bed boilers that incorporated low outlet temperature economizers as part of the original boiler equipment. The Fayetteville, North Carolina facility was designed for 200,000 tpy. What all these facilities have in common is low economizer outlet temperatures of 285{degrees}F coupled with a Total Dry Scrubbing System. MWC or RDF facilities using conventional spray dryer/fabric filter combinations have to have economizer gas outlet temperatures about 430{degrees}F to allow for evaporation of the lime slurry in the spray dryer without the likelihood of wall build up or moisture carry over. Since the Totally Dry Scrubbing System can operate with economizer gas outlet temperatures about 285{degrees}F, the added energy available for sale from adding low outlet temperature economizer heat recovery can be considerable. This paper focuses on Procedair`s new plant and retrofit experience using `Dry Venturi Reactor/Fabric Filter` combinations with the lower inlet temperature operating conditions.

  10. Initial Investigation into the Potential of CSP Industrial Process Heat for the Southwest United States

    SciTech Connect (OSTI)

    Kurup, Parthiv; Turchi, Craig

    2015-11-01

    After significant interest in the 1970s, but relatively few deployments, the use of solar technologies for thermal applications, including enhanced oil recovery (EOR), desalination, and industrial process heat (IPH), is again receiving global interest. In particular, the European Union (EU) has been a leader in the use, development, deployment, and tracking of Solar Industrial Process Heat (SIPH) plants. The objective of this study is to ascertain U.S. market potential of IPH for concentrating collector technologies that have been developed and promoted through the U.S. Department of Energy's Concentrating Solar Power (CSP) Program. For this study, the solar-thermal collector technologies of interest are parabolic trough collectors (PTCs) and linear Fresnel (LF) systems.

  11. ISSUANCE 2015-06-30: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Final Rule

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Final Rule

  12. ISSUANCE 2014-12-23: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Notice of Proposed Rulemaking

  13. THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FACILITIES | Department of Energy THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES Section 1308 of the Energy Independence and Security Act of 2007 ("EISA 2007") directed the Secretary of Energy, in consultation with the States, to undertake a study of the laws affecting the siting of privately-owned distribution wires on or across public rights of way and to

  14. STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    AND POWER FACILITIE | Department of Energy STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIE STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIE Section 1308 of the Energy Independence and Security Act of 2007 ("EISA 2007") directed the Secretary of Energy, in consultation with the States, to undertake a study of the laws affecting the siting of privately-owned distribution wires on or across public

  15. EERE Success Story-Alaska Gateway School District Adopts Combined Heat

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Power | Department of Energy Alaska Gateway School District Adopts Combined Heat and Power EERE Success Story-Alaska Gateway School District Adopts Combined Heat and Power May 7, 2013 - 12:00am Addthis In Tok, Alaska, the economic impact of high fuel prices was crippling the community's economy€, especially for the Alaska Gateway School District, with staff laid off and double duties assigned to many. To help offset high energy costs, the school district decided to replace its

  16. Combined Heat and Power - A Decade of Progress, A Vision for the Future,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    August 2009 | Department of Energy Power - A Decade of Progress, A Vision for the Future, August 2009 Combined Heat and Power - A Decade of Progress, A Vision for the Future, August 2009 Combined heat and power (CHP) technology holds enormous potential to improve the nation's energy security and reduce greenhouse gas (GHG) emissions. This paper describes DOE's success in building a solid foundation for a robust CHP marketplace over the period of a decade, as well as what can and must be done

  17. Combined Heat and Power Market Potential for Opportunity Fuels, August 2004

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Power Market Potential for Opportunity Fuels, August 2004 Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 The purpose of this 2004 report was to determine the best opportunity fuel(s) for distributed energy resources and combined heat and power (DER/CHP) applications, examine the DER/CHP technologies that can use them, and assess the potential market impacts of opportunity fueled DER/CHP applications. chp_opportunityfuels.pdf (2.56 MB) More

  18. Heat treatment effect on the mechanical properties of industrial drawn copper wires

    SciTech Connect (OSTI)

    Beribeche, Abdellatif Boumerzoug, Zakaria; Ji, Vincent

    2013-12-16

    In this present investigation, the mechanical properties of industrial drawn copper wires have been studied by tensile tests. The effect of prior heat treatments at 500°C on the drawn wires behavior was the main goal of this investigation. We have found that the mechanical behavior of drawn wires depends strongly on those treatments. SEM observations of the wire cross section after tensile tests have shown that the mechanism of rupture was mainly controlled by the void formation.

  19. Solar feasibility study for site-specific industrial-process-heat applications. Final report

    SciTech Connect (OSTI)

    Murray, O.L.

    1980-03-18

    This study addresses the technical feasibility of solar energy in industrial process heat (IPH) applications in Mid-America. The study was one of two contracted efforts covering the MASEC 12-state region comprised of: Illinois, Michigan, North Dakota, Indiana, Minnesota, Ohio, Iowa, Missouri, South Dakota, Kansas, Nebraska, Wisconsin. The results of our study are encouraging to the potential future role of solar energy in supplying process heat to a varied range of industries and applications. We identified and developed Case Study documentation of twenty feasible solar IPH applications covering eight major SIC groups within the Mid-American region. The geographical distribution of these applications for the existing range of solar insolation levels are shown and the characteristics of the applications are summarized. The results of the study include process identification, analysis of process heat requirements, selection of preliminary solar system characteristics, and estimation of system performance and cost. These are included in each of the 20 Case Studies. The body of the report is divided into two primary discussion sections dealing with the Study Methodology employed in the effort and the Follow-On Potential of the identified applications with regard to possible demonstration projects. The 20 applications are rated with respect to their relative overall viability and procedures are discussed for possible demonstration project embarkment. Also, a possible extension of this present feasibility study for late-comer industrial firms expressing interest appears worthy of consideration.

  20. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part II of II, case study results.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01

    Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches. The detailed assumptions and methods behind these models are described in Part I of this article pair.

  1. Optimizal design and control strategies for novel Combined Heat and Power (CHP) fuel cell systems. Part II of II, case study results.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-04-01

    Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches.

  2. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-07-01

    The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

  3. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Lipman, Tim; Megel, Olivier; Ganguly, Srirupa; Siddiqui, Afzal; Lai, Judy

    2009-11-16

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) to determine the potential role of commercial sector distributed generation (DG) with combined heat and power (CHP) capability deployment in greenhouse gas emissions (GHG) reductions. CHP applications at large industrial sites are well known, and a large share of their potential has already been harvested. In contrast, relatively little attention has been paid to the potential of medium-sized commercial buildings, i.e., ones with peak electric loads ranging from 100 kW to 5 MW. We examine how this sector might implement DG with CHP in cost minimizing microgrids that are able to adopt and operate various energy technologies, such as solar photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We apply a mixed-integer linear program (MILP) that minimizes a site's annual energy costs as its objective. Using 138 representative mid-sized commercial sites in California (CA), existing tariffs of three major electricity distribution ultilities plus a natural gas company, and performance data of available technology in 2020, we find the GHG reduction potential for this CA commercial sector segment, which represents about 35percent of total statewide commercial sector sales. Under the assumptions made, in a reference case, this segment is estimated to be capable of economically installing 1.4 GW of CHP, 35percent of the California Air Resources Board (CARB) statewide 4 GW goal for total incremental CHP deployment by 2020. However, because CARB's assumed utilization is far higherthan is found by the MILP, the adopted CHP only contributes 19percent of the CO2 target. Several sensitivity runs were completed. One applies a simple feed-in tariff similar to net metering, and another includes a generous self-generation incentive program (SGIP) subsidy for fuel cells. The feed-in tariff

  4. Combined Heat and Power System Achieves Millions in Cost Savings at Large University - Case Study

    SciTech Connect (OSTI)

    2013-05-29

    Texas A&M University is operating a high-efficiency combined heat and power (CHP) system at its district energy campus in College Station, Texas. Texas A&M received $10 million in U.S. Department of Energy funding from the American Recovery and Reinvestment Act (ARRA) of 2009 for this project. Private-sector cost share totaled $40 million.

  5. EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington

    Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide an American Recovery Act and Reinvestment Act of 2009 financial assistance grant to Seattle Steam Company to facilitate the installation of a combined heat and power plant in downtown Seattle, Washington. NOTE: This Project has been cancelled.

  6. Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in Buildings

    Energy.gov [DOE]

    During and after Hurricane Sandy, combined heat and power (CHP) enabled a number of critical infrastructure and other facilities to continue their operations when the electric grid went down. This guidance document on CHP supports the August 2013 Hurricane Sandy Rebuilding Strategy by providing an overview of CHP and examples of how this technology can help improve the resiliency and reliability of key infrastructure.

  7. Mapping the energy saving potential of passive heating combined with conservation

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01

    A procedure is presented for estimating the energy savings potential of combining conservation and passive solar strategies to reduce building heating. General scaling laws are used for costs and the resulting continuous equations are evaluated to find the least life-cycle cost strategy. Results are mapped for the US.

  8. Combined heat and power systems that consist of biomass fired fluidised bed combustors and modern steam engines

    SciTech Connect (OSTI)

    Joseph, S.D.; Errey, S.; Thomas, M.; Kruger, P.

    1996-12-31

    Biomass energy is widely used in many processing industries in the ASEAN region. The residue produced by agricultural and wood processing plant is either inefficiently combusted in simple furnaces or in the open, or disposed of in land fill sites or in rivers. Many of these industries are paying high prices for electricity in rural areas and/or supply is unreliable. An ASEAN/Australian cooperation program has been under way for the last ten years to introduce clean burning biomass fired heat and/or combined heat and power equipment. It aims to transfer Australian know how in the design and manufacture of fluidised bed CHP technology to the ASEAN region. The main participants involved in the program include SIRIM and UKM in Malaysia, PCIERD, FPRI and Asia Ratan in the Philippines, King Monkutt Institute of Technology (KMITT) in Thailand, LIPI and ITB in Indonesia, and the University of Singapore. In this paper an outline of the program will be given including results of market research and development undertaken into fluidised bed combustion, the proposed plant design and costings, and research and development undertaken into modem steam engine technology. It will be shown that all of the projects to be undertaken are financially viable. In particular the use of simple low cost high efficient steam engines ensures that the smaller CHP plant (50-100 kWe) can be viable.

  9. A Novel Absorption Cycle for Combined Water Heating, Dehumidification, and Evaporative Cooling

    SciTech Connect (OSTI)

    CHUGH, Devesh; Gluesenkamp, Kyle R; Abdelaziz, Omar; Moghaddam, Saeed

    2014-01-01

    In this study, development of a novel system for combined water heating, dehumidification, and space evaporative cooling is discussed. Ambient water vapor is used as a working fluid in an open system. First, water vapor is absorbed from an air stream into an absorbent solution. The latent heat of absorption is transferred into the process water that cools the absorber. The solution is then regenerated in the desorber, where it is heated by a heating fluid. The water vapor generated in the desorber is condensed and its heat of phase change is transferred to the process water in the condenser. The condensed water can then be used in an evaporative cooling process to cool the dehumidified air exiting the absorber, or it can be drained if primarily dehumidification is desired. Essentially, this open absorption cycle collects space heat and transfers it to process water. This technology is enabled by a membrane-based absorption/desorption process in which the absorbent is constrained by hydrophobic vapor-permeable membranes. Constraining the absorbent film has enabled fabrication of the absorber and desorber in a plate-and-frame configuration. An air stream can flow against the membrane at high speed without entraining the absorbent, which is a challenge in conventional dehumidifiers. Furthermore, the absorption and desorption rates of an absorbent constrained by a membrane are greatly enhanced. Isfahani and Moghaddam (Int. J. Heat Mass Transfer, 2013) demonstrated absorption rates of up to 0.008 kg/m2s in a membrane-based absorber and Isfahani et al. (Int. J. Multiphase Flow, 2013) have reported a desorption rate of 0.01 kg/m2s in a membrane-based desorber. The membrane-based architecture also enables economical small-scale systems, novel cycle configurations, and high efficiencies. The absorber, solution heat exchanger, and desorber are fabricated on a single metal sheet. In addition to the open arrangement and membrane-based architecture, another novel feature of the

  10. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  11. The Market and Technical Potential for Combined Heat and Power in the Commercial/Institutional Sector, January 2000

    Office of Energy Efficiency and Renewable Energy (EERE)

    Report of an analysis to determine the potential for cogeneration or combined heat and power (CHP) in the commercial/institutional market.

  12. Effects of a carbon tax on microgrid combined heat and power adoption

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

    2004-11-01

    This paper describes the economically optimal adoption and operation of distributed energy resources (DER) by a hypothetical California microgrid consisting of a group of commercial buildings over an historic test year, 1999. The optimization is conducted using a customer adoption model (DER-CAM) developed at Berkeley Lab and implemented in the General Algebraic Modeling System (GAMS). A microgrid is a semiautonomous grouping of electricity and heat loads interconnected to the existing utility grid (macrogrid) but able to island from it. The microgrid minimizes the cost of meeting its energy requirements (consisting of both electricity and heat loads) by optimizing the installation and operation of DER technologies while purchasing residual energy from the local combined natural gas and electricity utility. The available DER technologies are small-scale generators (< 500 kW), such as reciprocating engines, microturbines, and fuel cells, with or without combined heat and power (CHP) equipment, such as water and space heating and/or absorption cooling. By introducing a tax on carbon emissions, it is shown that if the microgrid is allowed to install CHP-enabled DER technologies, its carbon emissions are mitigated more than without CHP, demonstrating the potential benefits of small-scale CHP technology for climate change mitigation. Reciprocating engines with heat recovery and/or absorption cooling tend to be attractive technologies for the mild southern California climate, but the carbon mitigation tends to be modest compared to purchasing utility electricity because of the predominance of relatively clean central station generation in California.

  13. Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

    2013-10-30

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative

  14. Recovery of waste heat from industrial slags via modified float glass process

    SciTech Connect (OSTI)

    Serth, R.W.; Ctvrtnicek, T.E.; McCormick, R.J.; Zanders, D.L.

    1981-01-01

    A novel process for recovering waste heat from molten slags produced as by-products in the steel, copper, and elemental phosphorus industries is investigated. The process is based on technology developed in the glass industry for the commercial production of flat glass. In this process, energy is recovered from molten slag as it cools and solidifies on the surface of a pool of molten tin. In order to determine the technical and economic feasibility of the process, an energy recovery facility designed to handle the slag from a large elemental phosphorus plant is studied. Results indicate that the process is marginally economical at current energy price levels. A number of technical uncertainties in the process design are also identified. 9 refs.

  15. Industrial Energy Efficiency: Designing Effective State Programs...

    Energy.gov (indexed) [DOE]

    Industrial Energy Efficiency and Combined Heat and Power Working Group March 2014 The State and Local Energy Efficiency Action Network is a state and local effort facilitated by ...

  16. Industrial Energy Efficiency: Designing Effective State Programs...

    Energy.gov (indexed) [DOE]

    Executive Summary Industrial Energy Efficiency and Combined Heat and Power Working Group March 2014 The State and Local Energy Efficiency Action Network is a state and local effort ...

  17. Combined Heat and Power (CHP): Essential for a Cost Effective Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Standard, April 2011 | Department of Energy : Essential for a Cost Effective Clean Energy Standard, April 2011 Combined Heat and Power (CHP): Essential for a Cost Effective Clean Energy Standard, April 2011 In March 2011, a federal Clean Energy Standard (CES) was put forth as an approach to advancing a new national energy policy. This white paper discusses the CES concept. chp_clean_energy_std.pdf (973.28 KB) More Documents & Publications The International CHP/DHC Collaborative -

  18. Survey of Emissions Models for Distributed Combined Heat and Power Systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Survey of Emissions Models for Distributed Combined Heat and Power Systems Will Gans, Anna Monis Shipley, and R. Neal Elliott January 2007 Report Number IE071 ©American Council for an Energy-Efficient Economy 1001 Connecticut Avenue, N.W., Suite 801, Washington, D.C. 20036 (202) 429-8873 phone, (202) 429-2248 fax, http://aceee.org Web site Survey of Emissions Models for CHP, ACEEE CONTENTS

  19. Combined Heat and Power System Enables 100% Reliability at Leading Medical

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Campus - Case Study, 2013 | Department of Energy Enables 100% Reliability at Leading Medical Campus - Case Study, 2013 Combined Heat and Power System Enables 100% Reliability at Leading Medical Campus - Case Study, 2013 Thermal Energy Corporation (TECO), in collaboration with Burns & McDonnell Engineering Co., Inc., operates the largest chilled water district energy system in the United States at the Texas Medical Center, the largest medical center in the world. TECO installed a new

  20. How Combined Heat and Power Can Support State Climate and Energy Planning

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combined Heat and Power Can Support State Climate and Energy Planning energy.gov/eere/slsc/EEopportunities March 18, 2016 2 About this Presentation Slide Overview * Summary * Purpose and Benefits * Current Status * State and Local Role * Best Practices in Implementation * Partners * National Savings Estimates * Expansion Potential: Examples from States * Cost-Effectiveness * Evaluation, Measurement, & Verification * DOE Support * On the Horizon This short presentation is intended give states

  1. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    SciTech Connect (OSTI)

    Dale, Larry; Millstein, Dev; Coughlin, Katie; Van Buskirk, Robert; Rosenquist, Gregory; Lekov, Alex; Bhuyan, Sanjib

    2004-01-30

    In this report we calculate the change in final consumer prices due to minimum efficiency standards, focusing on a standard economic model of the air-conditioning and heating equipment (ACHE) wholesale industry. The model examines the relationship between the marginal cost to distribute and sell equipment and the final consumer price in this industry. The model predicts that the impact of a standard on the final consumer price is conditioned by its impact on marginal distribution costs. For example, if a standard raises the marginal cost to distribute and sell equipment a small amount, the model predicts that the standard will raise the final consumer price a small amount as well. Statistical analysis suggest that standards do not increase the amount of labor needed to distribute equipment the same employees needed to sell lower efficiency equipment can sell high efficiency equipment. Labor is a large component of the total marginal cost to distribute and sell air-conditioning and heating equipment. We infer from this that standards have a relatively small impact on ACHE marginal distribution and sale costs. Thus, our model predicts that a standard will have a relatively small impact on final ACHE consumer prices. Our statistical analysis of U.S. Census Bureau wholesale revenue tends to confirm this model prediction. Generalizing, we find that the ratio of manufacturer price to final consumer price prior to a standard tends to exceed the ratio of the change in manufacturer price to the change in final consumer price resulting from a standard. The appendix expands our analysis through a typical distribution chain for commercial and residential air-conditioning and heating equipment.

  2. Optimal selection of on-site generation with combined heat andpower applications

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; HamachiLaCommare, Kristina

    2004-11-30

    While demand for electricity continues to grow, expansion of the traditional electricity supply system, or macrogrid, is constrained and is unlikely to keep pace with the growing thirst western economies have for electricity. Furthermore, no compelling case has been made that perpetual improvement in the overall power quality and reliability (PQR)delivered is technically possible or economically desirable. An alternative path to providing high PQR for sensitive loads would generate close to them in microgrids, such as the Consortium for Electricity Reliability Technology Solutions (CERTS) Microgrid. Distributed generation would alleviate the pressure for endless improvement in macrogrid PQR and might allow the establishment of a sounder economically based level of universal grid service. Energy conversion from available fuels to electricity close to loads can also provide combined heat and power (CHP) opportunities that can significantly improve the economics of small-scale on-site power generation, especially in hot climates when the waste heat serves absorption cycle cooling equipment that displaces expensive on-peak electricity. An optimization model, the Distributed Energy Resources Customer Adoption Model (DER-CAM), developed at Berkeley Lab identifies the energy bill minimizing combination of on-site generation and heat recovery equipment for sites, given their electricity and heat requirements, the tariffs they face, and a menu of available equipment. DER-CAM is used to conduct a systemic energy analysis of a southern California naval base building and demonstrates atypical current economic on-site power opportunity. Results achieve cost reductions of about 15 percent with DER, depending on the tariff.Furthermore, almost all of the energy is provided on-site, indicating that modest cost savings can be achieved when the microgrid is free to select distributed generation and heat recovery equipment in order to minimize its over all costs.

  3. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  4. Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    SciTech Connect (OSTI)

    Shipley, Ms. Anna; Hampson, Anne; Hedman, Mr. Bruce; Garland, Patricia W; Bautista, Paul

    2008-12-01

    Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure. Using CHP today, the United States already avoids more than 1.9 Quadrillion British thermal units (Quads) of fuel consumption and 248 million metric tons of carbon dioxide (CO{sub 2}) emissions annually compared to traditional separate production of electricity and thermal energy. This CO{sub 2} reduction is the equivalent of removing more than 45 million cars from the road. In addition, CHP is one of the few options in the portfolio of energy alternatives that combines environmental effectiveness with economic viability and improved competitiveness. This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future as an: (1) Environmental Solution: Significantly reducing CO{sub 2} emissions through greater energy efficiency; (2) Competitive Business Solution: Increasing efficiency, reducing business costs, and creating green-collar jobs; (3) Local Energy Solution: Deployable throughout the US; and (4) Infrastructure Modernization Solution: Relieving grid congestion and improving energy security. CHP should be one of the first technologies deployed for near-term carbon reductions. The cost-effectiveness and near-term viability of widespread CHP deployment place the technology at the forefront of practical alternative energy solutions such as wind, solar, clean coal, biofuels, and nuclear power. Clear synergies exist between CHP and most other technologies that dominate the energy and environmental policy dialogue in the country today. As the Nation transforms how it produces, transports, and uses the many forms of energy, it must seize the clear opportunity afforded by CHP in terms of climate change, economic competitiveness, energy security, and infrastructure

  5. Combined heat and power generation with a HCPV system at 2000 suns

    SciTech Connect (OSTI)

    Paredes, Filippo; Montagnino, Fabio M.; Milone, Sergio; Salinari, Piero; Agnello, Simonpietro; Gelardi, Franco M.; Sciortino, Luisa; Cannas, Marco; Bonsignore, Gaetano; Barbera, Marco; Collura, Alfonso; Lo Cicero, Ugo

    2015-09-28

    This work shows the development of an innovative solar CHP system for the combined production of heat and power based upon HCPV modules working at the high concentration level of 2000 suns. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror while a secondary optic at the focus of the parabolic mirror is glued in optical contact with the cell. Each module consist of 2 axis tracker (Alt-Alt type) with 20 multijunction cells each one integrated with an active heat sink. The cell is connected to an active heat transfer system that allows to keep the cell at a high level of electrical efficiency (ηel > 30 %), bringing the heat transfer fluid (water and glycol) up to an output temperature of 90°C. Accordingly with the experimental data collected from the first 1 kWe prototype, the total amount of extracted thermal energy is above the 50% of the harvested solar radiation. That, in addition the electrical efficiency of the system contributes to reach an overall CHP efficiency of more than the 80%.

  6. Method for evaluating the potential of geothermal energy in industrial process heat applications

    SciTech Connect (OSTI)

    Packer, M.B.; Mikic, B.B.; Meal, H.C., Guillamon-Duch, H.

    1980-05-01

    A method is presented for evaluating the technical and economic potential of geothermal energy for industrial process heat applications. The core of the method is a computer program which can be operated either as a design analysis tool to match energy supplies and demands, or as an economic analysis tool if a particular design for the facility has already been selected. Two examples are given to illustrate the functioning of the model and to demonstrate that results reached by use of the model closely parallel those that have been determined by more traditional techniques. Other features of interest in the model include: (1) use of decision analysis techniques as well as classical methods to deal with questions relating optimization; (2) a tax analysis of current regulations governing percentage depletion for geothermal deposits; and (3) development of simplified correlations for the thermodynamic properties of salt solutions in water.

  7. Preliminary Estimates of Combined Heat and Power Greenhouse GasAbatement Potential for California in 2020

    SciTech Connect (OSTI)

    Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare,Kristina

    2007-07-31

    The objective of this scoping project is to help the California Energy Commission's (CEC) Public Interest Energy Research (PIER) Program determine where it should make investments in research to support combined heat and power (CHP) deployment. Specifically, this project will: {sm_bullet} Determine what impact CHP might have in reducing greenhouse gas (GHG) emissions, {sm_bullet} Determine which CHP strategies might encourage the most attractive early adoption, {sm_bullet} Identify the regulatory and technological barriers to the most attractive CHP strategies, and {sm_bullet} Make recommendations to the PIER program as to research that is needed to support the most attractive CHP strategies.

  8. Combined Heat and Power: A Decade of Progress, A Vision for the Future

    SciTech Connect (OSTI)

    none,

    2009-08-01

    Over the past 10 years, DOE has built a solid foundation for a robust CHP marketplace. We have aligned with key partners to produce innovative technologies and spearhead market-transforming projects. Our commercialization activities and Clean Energy Regional Application Centers have expanded CHP across the nation. More must be done to tap CHP’s full potential. Read more about DOE’s CHP Program in “Combined Heat and Power: A Decade of Progress, A Vision for the Future.”

  9. A combined power and ejector refrigeration cycle for low temperature heat sources

    SciTech Connect (OSTI)

    Zheng, B.; Weng, Y.W.

    2010-05-15

    A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)

  10. ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM"PREMIUM POWER" APPLICATIONS IN CALIFORNIA

    SciTech Connect (OSTI)

    Norwood, Zack; Lipman, Timothy; Stadler, Michael; Marnay, Chris

    2010-06-01

    The effectiveness of combined heat and power (CHP) systems for power interruption intolerant,"premium power," facilities is the focus of this study. Through three real-world case studies and economic cost minimization modeling, the economic and environmental performance of"premium power" CHP is analyzed. The results of the analysis for a brewery, data center, and hospital lead to some interesting conclusions about CHP limited to the specific CHP technologies installed at those sites. Firstly, facilities with high heating loads prove to be the most appropriate for CHP installations from a purely economic standpoint. Secondly, waste heat driven thermal cooling systems are only economically attractive if the technology for these chillers can increase above the current best system efficiency. Thirdly, if the reliability of CHP systems proves to be as high as diesel generators they could replace these generators at little or no additional cost if the thermal to electric (relative) load of those facilities was already high enough to economically justify a CHP system. Lastly, in terms of greenhouse gas emissions, the modeled CHP systems provide some degree of decreased emissions, estimated at approximately 10percent for the hospital, the application with the highest relative thermal load in this case

  11. Heat recovery steam generator outlet temperature control system for a combined cycle power plant

    SciTech Connect (OSTI)

    Martens, A.; Myers, G.A.; McCarty, W.L.; Wescott, K.R.

    1986-04-01

    This patent describes a command cycle electrical power plant including: a steam turbine and at least one set comprising a gas turbine, an afterburner and a heat recovery steam generator having an attemperator for supplying from an outlet thereof to the steam turbine superheated steam under steam turbine operating conditions requiring predetermined superheated steam temperature, flow and pressure; with the gas turbine and steam turbine each generating megawatts in accordance with a plant load demand; master control means being provided for controlling the steam turbine and the heat recovery steam generator so as to establish the steam operating conditions; the combination of: first control means responsive to the gas inlet temperature of the heat recovery steam generator and to the plant load demand for controlling the firing of the afterburner; second control means responsive to the superheated steam predetermined temperature and to superheated steam temperature from the outlet for controlling the attemperator between a closed and an open position; the first and second control means being operated concurrently to maintain the superheated steam outlet temperature while controlling the load of the gas turbine independently of the steam turbine operating conditions.

  12. CHP in ESPC: Implementing Combined Heat and Power Technologies Using Energy Savings Performance Contracts (ESPCs): Webinar Transcript

    Office of Energy Efficiency and Renewable Energy (EERE)

    Kurmit Rockwell:Welcome.  I'm Kurmit Rockwell, the ESPC Program Manager for DOE's Federal Energy Management Program.  In this presentation we will introduce you to the basics of combined heat and...

  13. Effects of a carbon tax on combined heat and power adoption by a microgrid

    SciTech Connect (OSTI)

    Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Siddidqui, Afzal S.; Stadler, Michael

    2002-10-01

    This paper describes the economically optimal adoption and operation of distributed energy resources (DER) by a hypothetical California microgrid ((mu)Grid) consisting of a group of commercial buildings over an historic test year, 1999. The optimization is conducted using a customer adoption model (DER-CAM) developed at Berkeley Lab and implemented in the General Algebraic Modeling System (GAMS). A (mu)Grid is a semiautonomous grouping of electricity and heat loads interconnected to the existing utility grid (macrogrid) but able to island from it. The (mu)Grid minimizes the cost of meeting its energy requirements (consisting of both electricity and heat loads) by optimizing the installation and operation of DER technologies while purchasing residual energy from the local combined natural gas and electricity utility. The available DER technologies are small-scale generators (< 500 kW), such as reciprocating engines, microturbines, and fuel cells, with or without CHP equipment, such as water- and space-heating and/or absorption cooling. By introducing a tax on carbon emissions, it is shown that if the (mu)Grid is allowed to install CHP-enabled DER technologies, its carbon emissions are mitigated more than without CHP, demonstrating the potential benefits of small-scale CHP technology for climate change mitigation. Reciprocating engines with heat recovery and/or absorption cooling tend to be attractive technologies for the mild southern California climate, but the carbon mitigation tends to be modest compared to purchasing utility electricity because of the predominance of relatively clean generation in California.

  14. Final Technical Report: Intensive Quenching Technology for Heat Treating and Forging Industries

    SciTech Connect (OSTI)

    Aronov, Michael A.

    2005-12-21

    Intensive quenching (IQ) process is an alternative way of hardening (quenching) steel parts through the use of highly agitated water and then still air. It was developed by IQ Technologies, Inc. (IQT) of Akron, Ohio. While conventional quenching is usually performed in environmentally unfriendly oil or water/polymer solutions, the IQ process uses highly agitated environmentally friendly water or low concentration water/mineral salt solutions. The IQ method is characterized by extremely high cooling rates of steel parts. In contrast to conventional quenching, where parts cool down to the quenchant temperature and usually have tensile or neutral residual surface stresses at the end of quenching. The IQ process is interrupted when the part core is still hot and when there are maximum compressive stresses deep into the parts, thereby providing hard, ductile, better wear resistant parts. The project goal was to advance the patented IQ process from feasibility to commercialization in the heat-treating and forging industries to reduce significantly energy consumption and environmental impact, to increase productivity and to enhance economic competitiveness of these industries as well as Steel, Metal Casting and Mining industries. To introduce successfully the IQ technology in the U.S. metal working industry, the project team has completed the following work over the course of this project: A total of 33 manufacturers of steel products provided steel parts for IQ trails. IQT conducted IQ demonstrations for 34 different steel parts. Our customers tested intensively quenched parts in actual field conditions to evaluate the product service life and performance improvement. The data obtained from the field showed the following: Service life (number of holes punched) of cold-work punches (provided by EHT customer and made of S5 shock-resisting steel) was improved by two to eight times. Aluminum extrusion dies provided by GAM and made of hot work H-13 steel outperformed the

  15. Distributed energy resources customer adoption modeling with combined heat and power applications

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

    2003-07-01

    In this report, an economic model of customer adoption of distributed energy resources (DER) is developed. It covers progress on the DER project for the California Energy Commission (CEC) at Berkeley Lab during the period July 2001 through Dec 2002 in the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. CERTS has developed a specific paradigm of distributed energy deployment, the CERTS Microgrid (as described in Lasseter et al. 2002). The primary goal of CERTS distributed generation research is to solve the technical problems required to make the CERTS Microgrid a viable technology, and Berkeley Lab's contribution is to direct the technical research proceeding at CERTS partner sites towards the most productive engineering problems. The work reported herein is somewhat more widely applicable, so it will be described within the context of a generic microgrid (mGrid). Current work focuses on the implementation of combined heat and power (CHP) capability. A mGrid as generically defined for this work is a semiautonomous grouping of generating sources and end-use electrical loads and heat sinks that share heat and power. Equipment is clustered and operated for the benefit of its owners. Although it can function independently of the traditional power system, or macrogrid, the mGrid is usually interconnected and exchanges energy and possibly ancillary services with the macrogrid. In contrast to the traditional centralized paradigm, the design, implementation, operation, and expansion of the mGrid is meant to optimize the overall energy system requirements of participating customers rather than the objectives and requirements of the macrogrid.

  16. Real-Time Combined Heat and Power Operational Strategy Using a Hierarchical Optimization Algorithm

    SciTech Connect (OSTI)

    Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

    2011-06-01

    Existing attempts to optimize the operation of Combined Heat and Power (CHP) systems for building applications have two major limitations: the electrical and thermal loads are obtained from historical weather profiles; and the CHP system models ignore transient responses by using constant equipment efficiencies. This paper considers the transient response of a building combined with a hierarchical CHP optimal control algorithm to obtain a real-time integrated system that uses the most recent weather and electric load information. This is accomplished by running concurrent simulations of two transient building models. The first transient building model uses current as well as forecast input information to obtain short term predictions of the thermal and electric building loads. The predictions are then used by an optimization algorithm, i.e., a hierarchical controller, that decides the amount of fuel and of electrical energy to be allocated at the current time step. In a simulation, the actual physical building is not available and, hence, to simulate a real-time environment, a second, building model with similar but not identical input loads are used to represent the actual building. A state-variable feedback loop is completed at the beginning of each time step by copying, i.e., measuring, the state variable from the actual building and restarting the predictive model using these ?measured? values as initial conditions. The simulation environment presented in this paper features nonlinear effects such as the dependence of the heat exchanger effectiveness on their operating conditions. The results indicate that the CHP engine operation dictated by the proposed hierarchical controller with uncertain weather conditions have the potential to yield significant savings when compared to conventional systems using current values of electricity and fuel prices.

  17. Final Report: Assessment of Combined Heat and Power Premium Power Applications in California

    SciTech Connect (OSTI)

    Norwood, Zack; Lipman, Tim; Marnay, Chris; Kammen, Dan

    2008-09-30

    This report analyzes the current economic and environmental performance of combined heat and power (CHP) systems in power interruption intolerant commercial facilities. Through a series of three case studies, key trade-offs are analyzed with regard to the provision of black-out ridethrough capability with the CHP systems and the resutling ability to avoid the need for at least some diesel backup generator capacity located at the case study sites. Each of the selected sites currently have a CHP or combined heating, cooling, and power (CCHP) system in addition to diesel backup generators. In all cases the CHP/CCHP system have a small fraction of the electrical capacity of the diesel generators. Although none of the selected sites currently have the ability to run the CHP systems as emergency backup power, all could be retrofitted to provide this blackout ride-through capability, and new CHP systems can be installed with this capability. The following three sites/systems were used for this analysis: (1) Sierra Nevada Brewery - Using 1MW of installed Molten Carbonate Fuel Cells operating on a combination of digestor gas (from the beer brewing process) and natural gas, this facility can produce electricty and heat for the brewery and attached bottling plant. The major thermal load on-site is to keep the brewing tanks at appropriate temperatures. (2) NetApp Data Center - Using 1.125 MW of Hess Microgen natural gas fired reciprocating engine-generators, with exhaust gas and jacket water heat recovery attached to over 300 tons of of adsorption chillers, this combined cooling and power system provides electricity and cooling to a data center with a 1,200 kW peak electrical load. (3) Kaiser Permanente Hayward Hospital - With 180kW of Tecogen natural gas fired reciprocating engine-generators this CHP system generates steam for space heating, and hot water for a city hospital. For all sites, similar assumptions are made about the economic and technological constraints of the

  18. AMO Announces Successful Completion of Industrial-Scale Combined Heat, Hydrogen, and Power System

    Office of Energy Efficiency and Renewable Energy (EERE)

    AMO recently joined with FuelCell Energy of Danbury, CT to celebrate the completion of their successful partnership project at their Torrington, CT manufacturing plant. In addition to the...

  19. Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency

    Energy.gov [DOE]

    DOE released an independent review of Wind Powering America that assessed the impacts of the WPA activity both in general and in the states where the initiative was active.

  20. Improve Overall Plant Efficiency and Fuel Use, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program combined heat and power (CHP) tool can help identify energy savings in gas turbine-driven systems.

  1. Industrial

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  2. Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers

    SciTech Connect (OSTI)

    Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.

    2007-12-31

    The DOE-funded project on materials for industrial heat recovery systems included four research tasks: materials for aluminum melting furnace recuperator tubes, materials and operational changes to prevent cracking and corrosion of the co-extruded tubes that form primary air ports in black liquor recovery boilers, the cause of and means to prevent corrosion of carbon steel tubes in the mid-furnace area of recovery boilers, and materials and operational changes to prevent corrosion and cracking of recovery boiler superheater tubes. Results from studies on the latter two topics are given in this report while separate reports on results for the first two tasks have already been published. Accelerated, localized corrosion has been observed in the mid-furnace area of kraft recovery boilers. This corrosion of the carbon steel waterwall tubes is typically observed in the vicinity of the upper level of air ports where the stainless clad co-extruded wall tubes used in the lower portion of the boiler are welded to the carbon steel tubes that extend from this transition point or “cut line” to the top of the boiler. Corrosion patterns generally vary from one boiler to another depending on boiler design and operating parameters, but the corrosion is almost always found within a few meters of the cut line and often much closer than that. This localized corrosion results in tube wall thinning that can reach the level where the integrity of the tube is at risk. Collection and analysis of gas samples from various areas near the waterwall surface showed reducing and sulfidizing gases were present in the areas where corrosion was accelerated. However, collection of samples from the same areas at intervals over a two year period showed the gaseous environment in the mid-furnace section can cycle between oxidizing and reducing conditions. These fluctuations are thought to be due to gas flow instabilities and they result in an unstable or a less protective scale on the carbon steel

  3. NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    NREL and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heater market.

  4. Waste Heat Recovery. Technology and Opportunities in U.S. Industry

    SciTech Connect (OSTI)

    Johnson, Ilona; Choate, William T.; Davidson, Amber

    2008-03-01

    This study was initiated in order to evaluate RD&D needs for improving waste heat recovery technologies. A bottomup approach is used to evaluate waste heat quantity, quality, recovery practices, and technology barriers in some of the largest energyconsuming units in U.S. manufacturing. The results from this investigation serve as a basis for understanding the state of waste heat recovery and providing recommendations for RD&D to advance waste heat recovery technologies.

  5. Geothermal potential for commercial and industrial direct heat applications in Salida, Colorado. Final report

    SciTech Connect (OSTI)

    Coe, B.A.; Dick, J.D.; Galloway, M.J.; Gross, J.T.; Meyer, R.T.; Raskin, R.; Zocholl, J.R.

    1982-10-01

    The Salida Geothermal Prospect (Poncha Hot Springs) was evaluated for industrial and commercial direct heat applications at Salida, Colorado, which is located approximately five miles east of Poncha Hot Springs. Chaffee Geothermal, Ltd., holds the geothermal leases on the prospect and the right-of-way for the main pipeline to Salida. The Poncha Hot Springs are located at the intersection of two major structural trends, immediately between the Upper Arkansas graben and the Sangre de Cristo uplift. Prominent east-west faulting occurs at the actual location of the hot springs. Preliminary exploration indicates that 1600 gpm of geothermal fluid as hot as 250/sup 0/F is likely to be found at around 1500 feet in depth. The prospective existing endusers were estimated to require 5.02 x 10/sup 10/ Btu per year, but the total annual amount of geothermal energy available for existing and future endusers is 28.14 x 10/sup 10/ Btu. The engineering design for the study assumed that the 1600 gpm would be fully utilized. Some users would be cascaded and the spent fluid would be cooled and discharged to nearby rivers. The economic analysis assumes that two separate businesses, the energy producer and the energy distributor, are participants in the geothermal project. The producer would be an existing limited partnership, with Chaffee Geothermal, Ltd. as one of the partners; the distributor would be a new Colorado corporation without additional income sources. Economic evaluations were performed in full for four cases: the Base Case and three alternate scenarios. Alternate 1 assumes a three-year delay in realizing full production relative to the Base Case; Alternate 2 assumes that the geothermal reservoir is of a higher quality than is assumed for the Base Case; and Alternate 3 assumes a lower quality reservoir. 11 refs., 34 figs., 40 tabs.

  6. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    SciTech Connect (OSTI)

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost-effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads and found that the tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system, among other key findings.

  7. Technical Analysis of Installed Micro-Combined Heat and Power Fuel-Cell System

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-10-31

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a technical analysis of 5 kWe CHP-FCSs installed in different locations in the U.S. At some sites as many as five 5 kWe system is used to provide up to 25kWe of power. Systems in this power range are considered “micro”-CHP-FCS. To better assess performance of micro-CHP-FCS and understand their benefits, the U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe PBI high temperature PEM fuel cells (CE5 models) in the commercial markets of California and Oregon. Pacific Northwest National Laboratory evaluated these systems in terms of their economics, operations, and technical performance. These units were monitored from September 2011 until June 2013. During this time, about 190,000 hours of data were collected and more than 17 billion data points were analyzed. Beginning in July 2013, ten of these systems were gradually replaced with ungraded systems (M5 models) containing phosphoric acid fuel cell technology. The new units were monitored until June 2014 until they went offline because ClearEdge was bought by Doosan at the time and the new manufacturer did not continue to support data collection and maintenance of these units. During these two phases, data was collected at once per second and data analysis techniques were applied to understand behavior of these systems. The results of this analysis indicate that systems installed in the second phase of this demonstration performed much better in terms of availability, consistency in generation, and reliability. The average net electrical power output increased from 4.1 to 4.9 kWe, net heat recovery from 4.7 to 5.4 kWth, and system availability improved from 94% to 95%. The average net system electric

  8. Building America Expert Meeting: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    Energy.gov [DOE]

    The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

  9. Industrial Steam System Heat-Transfer SolutionsL: A BestPractices...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... standards with fouling on the heat- transfer surface. The fouling factor is typically a modest additional cost compared to the value it can provide to the process operation. ...

  10. Energy Smart Guide to Campus Cost Savings: Today's Trends in Project Finance, Clean Fuel Fleets, Combined Heat& Power, Emissions Markets

    SciTech Connect (OSTI)

    Not Available

    2003-07-01

    The Energy Smart Guide to Campus Cost Savings covers today's trends in project finance, combined heat& power, clean fuel fleets and emissions trading. The guide is directed at campus facilities and business managers and contains general guidance, contact information and case studies from colleges and universities across the country.

  11. 1?10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review

    SciTech Connect (OSTI)

    Maru, H. C.; Singhal, S. C.; Stone, C.; Wheeler, D.

    2010-11-01

    This independent review examines the status and technical potential of 1-10 kW stationary combined heat and power fuel cell systems and analyzes the achievability of the DOE cost, efficiency, and durability targets for 2012, 2015, and 2020.

  12. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOE Patents [OSTI]

    Andrews, John W.

    1983-06-28

    A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  13. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOE Patents [OSTI]

    Andrews, J.W.

    1980-06-25

    A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  14. Use of Time-Aggregated Data in Economic Screening Analyses of Combined Heat and Power Systems

    SciTech Connect (OSTI)

    Hudson II, Carl Randy

    2004-09-01

    Combined heat and power (CHP) projects (also known as cogeneration projects) usually undergo a series of assessments and viability checks before any commitment is made. A screening analysis, with electrical and thermal loads characterized on an annual basis, may be performed initially to quickly determine the economic viability of the proposed project. Screening analyses using time-aggregated data do not reflect several critical cost influences, however. Seasonal and diurnal variations in electrical and thermal loads, as well as time-of-use utility pricing structures, can have a dramatic impact on the economics. A more accurate economic assessment requires additional detailed data on electrical and thermal demand (e.g., hourly load data), which may not be readily available for the specific facility under study. Recent developments in CHP evaluation tools, however, can generate the needed hourly data through the use of historical data libraries and building simulation. This article utilizes model-generated hourly load data for four potential CHP applications and compares the calculated cost savings of a CHP system when evaluated on a time-aggregated (i.e., annual) basis to the savings when evaluated on an hour-by-hour basis. It is observed that the simple, aggregated analysis forecasts much greater savings (i.e., greater economic viability) than the more detailed hourly analysis. The findings confirm that the simpler tool produces results with a much more optimistic outlook, which, if taken by itself, might lead to erroneous project decisions. The more rigorous approach, being more reflective of actual requirements and conditions, presents a more accurate economic comparison of the alternatives, which, in turn, leads to better decision risk management.

  15. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    SciTech Connect (OSTI)

    Viswanathan, Vish V.; Davies, Richard W.; Holbery, Jim D.

    2006-04-01

    United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and

  16. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with CombinedHeat and Power

    SciTech Connect (OSTI)

    Marnay, Chris; Stadler, Michael; Cardoso, Goncalo; Megel, Olivier; Lai, Judy; Siddiqui, Afzal

    2009-08-15

    The addition of solar thermal and heat storage systems can improve the economic, as well as environmental attraction of micro-generation systems, e.g. fuel cells with or without combined heat and power (CHP) and contribute to enhanced CO2 reduction. However, the interactions between solar thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and heat storage on CO2 emissions and annual energy costs, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program. The objective is minimization of annual energy costs. This paper focuses on analysis of the optimal interaction of solar thermal systems, which can be used for domestic hot water, space heating and/or cooling, and micro-CHP systems in the California service territory of San Diego Gas and Electric (SDG&E). Contrary to typical expectations, our results indicate that despite the high solar radiation in southern California, fossil based CHP units are dominant, even with forecast 2020 technology and costs. A CO2 pricing scheme would be needed to incent installation of combined solar thermal absorption chiller systems, and no heat storage systems are adopted. This research also shows that photovoltaic (PV) arrays are favored by CO2 pricing more than solar thermal adoption.

  17. Enhanced shell-and-tube heat eschangers for the power and process industries. Final report

    SciTech Connect (OSTI)

    Bergles, A.E.; Jensen, M.K.; Somerscales, E.F.; Curcio, L.A. Jr.; Trewin, R.R.

    1994-08-01

    Single-tube pool boiling tests were performed with saturated pure refrigerants and binary mixtures of refrigerants. Generally, with pure refrigerants, the High Flux surface performed better at the higher heat fluxes compared to the Turbo-B tube, and both enhanced surfaces performed significantly better than smooth surface. In tests of R-11/R-113 mixtures, the enhanced surfaces had much less degradation in heat transfer coefficient due to mixture effects compared to smooth tubes; the largest degradation occurred at a mixture of 25% R-11/75% R-113. Under boiling in saturated aqueous solution of calcium sulfate, with a single tube, effects of fouling were more pronounced at the higher heat fluxes for all surfaces. Two staggered tube bundles were tested with tube pitch-diameter ratios of 1.17 and 1.50. For the pure refrigerant, tests on the smooth-tube bundle indicated that the effects on the heat transfer coefficient of varying mass flux, quality, and tube-bundle geometry were small, except at low heat fluxes. Neither enhanced surface showed any effect with changing mass flux or quality. The binary mixture bundle-boiling tests had results that were very similar to those obtained with the pure refrigerants. When boiling a refrigerant-oil mixture, all three surfaces (smooth, High Flux, and Turbo-B) experienced a degradation in its heat transfer coefficient; no surface studied was found to be immune or vulnerable to the presence of oil than another surface.

  18. Energy Department Turns Up the Heat and Power on Industrial Energy...

    Energy Savers

    CHP has been in use in the United States for more than ... Industrial processes -- from petroleum refineries and paper mills ... one-third of all energy produced in the United States. ...

  19. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    SciTech Connect (OSTI)

    Viswanathan, V. V.; Davies, R. W.; Holbery, J.

    2006-04-01

    This report analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities.

  20. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power

    Energy.gov [DOE]

    With their clean and quiet operation, fuel cells represent a promising means of implementing small-scale distributed power generation in the future. Waste heat from the fuel cell can be harnessed...

  1. Economic analysis of solar industrial process heat systems: a methodology to determine annual required revenue and internal rate of return

    SciTech Connect (OSTI)

    Dickinson, W.C.; Brown, K.C.

    1981-08-11

    To permit an economic evaluation of solar industrial process heat systems, a methodology was developed to determine the annual required revenue and the internal rate of return. First, a format is provided to estimate the solar system's installed cost, annual operating and maintenance expenses, and net annual solar energy delivered to the industrial process. Then an expression is presented that gives the annual required revenue and the price of solar energy. The economic attractiveness of the potential solar investment can be determined by comparing the price of solar energy with the price of fossil fuel, both expressed in levelized terms. This requires calculation of the internal rate of return on the solar investment or, in certain cases, the growth rate of return.

  2. Development of a Packaged and Integrated Microturbine/ Chiller Combined Heat and Power (CHP) System

    SciTech Connect (OSTI)

    2009-03-01

    This factsheet describes a research project whose goal is to define, develop, integrate, and validate at full scale the technology for a 1 MWe, microturbine-driven CHP packaged system for industrial or large commercial applications.

  3. Combined Heat and Power: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices (Part I)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combined Heat and Power: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices (Part I) Susanne Brooks, Brent Elswick, and R. Neal Elliott March 2006 Report Number IE062 ©American Council for an Energy-Efficient Economy 1001 Connecticut Avenue, NW, Suite 801, Washington, D.C. 20036 (202) 429-8873 phone, (202) 429-2248 fax, http://aceee.org Web site CHP: Connecting the Gap, ACEEE Contents

  4. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications Michael Ulsh National Renewable Energy Laboratory Douglas Wheeler DJW Technology Peter Protopappas Sentech Technical Report NREL/TP-5600-52125 August 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole

  5. COMBINING PARTICLE ACCELERATION AND CORONAL HEATING VIA DATA-CONSTRAINED CALCULATIONS OF NANOFLARES IN CORONAL LOOPS

    SciTech Connect (OSTI)

    Gontikakis, C.; Efthymiopoulos, C.; Georgoulis, M. K.; Patsourakos, S.; Anastasiadis, A.

    2013-07-10

    We model nanoflare heating of extrapolated active-region coronal loops via the acceleration of electrons and protons in Harris-type current sheets. The kinetic energy of the accelerated particles is estimated using semi-analytical and test-particle-tracing approaches. Vector magnetograms and photospheric Doppler velocity maps of NOAA active region 09114, recorded by the Imaging Vector Magnetograph, were used for this analysis. A current-free field extrapolation of the active-region corona was first constructed. The corresponding Poynting fluxes at the footpoints of 5000 extrapolated coronal loops were then calculated. Assuming that reconnecting current sheets develop along these loops, we utilized previous results to estimate the kinetic energy gain of the accelerated particles. We related this energy to nanoflare heating and macroscopic loop characteristics. Kinetic energies of 0.1-8 keV (for electrons) and 0.3-470 keV (for protons) were found to cause heating rates ranging from 10{sup -6} to 1 erg s{sup -1} cm{sup -3}. Hydrodynamic simulations show that such heating rates can sustain plasma in coronal conditions inside the loops and generate plasma thermal distributions that are consistent with active-region observations. We concluded the analysis by computing the form of X-ray spectra generated by the accelerated electrons using the thick-target approach. These spectra were found to be in agreement with observed X-ray spectra, thus supporting the plausibility of our nanoflare-heating scenario.

  6. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    SciTech Connect (OSTI)

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

  7. Subcontract Report: Modular Combined Heat & Power System for Utica College: Design Specification

    SciTech Connect (OSTI)

    Rouse, Greg

    2007-09-01

    Utica College, located in Utica New York, intends to install an on-site power/cogeneration facility. The energy facility is to be factory pre-assembled, or pre- assembled in modules, to the fullest extent possible, and ready to install and interconnect at the College with minimal time and engineering needs. External connections will be limited to fuel supply, electrical output, potable makeup water as required and cooling and heat recovery systems. The proposed facility will consist of 4 self-contained, modular Cummins 330kW engine generators with heat recovery systems and the only external connections will be fuel supply, electrical outputs and cooling and heat recovery systems. This project was eventually cancelled due to changing DOE budget priorities, but the project engineers produced this system design specification in hopes that it may be useful in future endeavors.

  8. Analysis of combined hydrogen, heat, and power as a bridge to a hydrogen transition.

    SciTech Connect (OSTI)

    Mahalik, M.; Stephan, C.

    2011-01-18

    Combined hydrogen, heat, and power (CHHP) technology is envisioned as a means to providing heat and electricity, generated on-site, to large end users, such as hospitals, hotels, and distribution centers, while simultaneously producing hydrogen as a by-product. The hydrogen can be stored for later conversion to electricity, used on-site (e.g., in forklifts), or dispensed to hydrogen-powered vehicles. Argonne has developed a complex-adaptive-system model, H2CAS, to simulate how vehicles and infrastructure can evolve in a transition to hydrogen. This study applies the H2CAS model to examine how CHHP technology can be used to aid the transition to hydrogen. It does not attempt to predict the future or provide one forecast of system development. Rather, the purpose of the model is to understand how the system works. The model uses a 50- by 100-mile rectangular grid of 1-square-mile cells centered on the Los Angeles metropolitan area. The major expressways are incorporated into the model, and local streets are considered to be ubiquitous, except where there are natural barriers. The model has two types of agents. Driver agents are characterized by a number of parameters: home and job locations, income, various types of 'personalities' reflective of marketing distinctions (e.g., innovators, early adopters), willingness to spend extra money on 'green' vehicles, etc. At the beginning of the simulations, almost all driver agents own conventional vehicles. They drive around the metropolitan area, commuting to and from work and traveling to various other destinations. As they do so, they observe the presence or absence of facilities selling hydrogen. If they find such facilities conveniently located along their routes, they are motivated to purchase a hydrogen-powered vehicle when it becomes time to replace their present vehicle. Conversely, if they find that they would be inconvenienced by having to purchase hydrogen earlier than necessary or if they become worried that they

  9. Guide to Combined Heat and Power Systems for Boiler Owners and Operators

    Energy.gov [DOE]

    This guide presents useful information for evaluating the viability of cogeneration for new or existing industrial, commercial, or institutional (ICI) boiler installations. It is part of a suite of publications offered by the Department of Energy to improve steam system performance.

  10. Combined Heat and Power Systems Technology Development and Demonstration 370 kW High Efficiency Microturbine

    SciTech Connect (OSTI)

    none,

    2015-10-14

    The C370 Program was awarded in October 2010 with the ambitious goal of designing and testing the most electrically efficient recuperated microturbine engine at a rated power of less than 500 kW. The aggressive targets for electrical efficiency, emission regulatory compliance, and the estimated price point make the system state-of-the-art for microturbine engine systems. These goals will be met by designing a two stage microturbine engine identified as the low pressure spool and high pressure spool that are based on derivative hardware of Capstone’s current commercially available engines. The development and testing of the engine occurred in two phases. Phase I focused on developing a higher power and more efficient engine, that would become the low pressure spool which is based on Capstone’s C200 (200kW) engine architecture. Phase II integrated the low pressure spool created in Phase I with the high pressure spool, which is based on Capstone’s C65 (65 kW) commercially available engine. Integration of the engines, based on preliminary research, would allow the dual spool engine to provide electrical power in excess of 370 kW, with electrical efficiency approaching 42%. If both of these targets were met coupled with the overall CHP target of 85% total combined heating and electrical efficiency California Air Resources Board (CARB) level emissions, and a price target of $600 per kW, the system would represent a step change in the currently available commercial generation technology. Phase I of the C370 program required the development of the C370 low pressure spool. The goal was to increase the C200 engine power by a minimum of 25% — 250 kW — and efficiency from 32% to 37%. These increases in the C200 engine output were imperative to meet the power requirements of the engine when both spools were integrated. An additional benefit of designing and testing the C370 low pressure spool was the possibility of developing a stand-alone product for possible

  11. WASTE HEAT RECOVERY USING THERMOELECTRIC DEVICES IN THE LIGHT METALS INDUSTRY

    SciTech Connect (OSTI)

    Choate, William T.; Hendricks, Terry J.; Majumdar, Rajita

    2007-05-01

    Recently discovered thermoelectric materials and associated manufacturing techniques (nanostructures, thin-film super lattice, quantum wells...) have been characterized with thermal to electric energy conversion efficiencies of 12-25+%. These advances allow the manufacture of small-area, high-energy flux (350 W/cm2 input) thermoelectric generating (TEG) devices that operate at high temperatures (~750C). TEG technology offers the potential for large-scale conversion of waste heat from the exhaust gases of electrolytic cells (e.g., Hall-Hroult cells) and from aluminum, magnesium, metal and glass melting furnaces. This paper provides an analysis of the potential energy recovery and of the engineering issues that are expected when integrating TEG systems into existing manufacturing processes. The TEG module must be engineered for low-cost, easy insertion and simple operation in order to be incorporated into existing manufacturing operations. Heat transfer on both the hot and cold-side of these devices will require new materials, surface treatments and design concepts for their efficient operation.

  12. Thermoeconomic analysis method for optimization of combined heat and power systems

    SciTech Connect (OSTI)

    Silveira, J.L.; Tuna, C.E.

    1999-07-01

    In this paper, a thermoeconomic analysis method based on the second Law of Thermodynamics and applied to analyze four cogeneration system is presented. The objective of the developed technique is to minimize the operating costs of the cogeneration plant, namely Exergetic Manufacturing Cost (EMC), assuming a fixed rate of electricity production and process steam in exergy base. In this study a comparison is made between four configurations. The cogeneration system consisted of a gas turbine with a heat recovery steam generator, without supplementary firing, has the lowest EMC.

  13. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Case Study: Fuel Cells Provide Com- bined Heat and Power at Verizon's Garden City Central Office With more than 67 million customers nationwide, Verizon Communications is one of the largest telecommunica- tions providers in the U.S. Power inter- ruptions can severely impact network operations and could result in losses in excess of $1 million/minute. 1 In 2005, Verizon Communications installed a 1.4 MW phosphoric acid fuel cell (PAFC) system, consisting of seven 200 kW units, at its Central

  14. 1…10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    -10 kW Stationary Combined Heat and Power Systems Status and Technical Potential National Renewable Energy Laboratory 1617 Cole Boulevard * Golden, Colorado 80401 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 Independent Review Published for the U.S. Department of Energy Hydrogen and Fuel Cells Program

  15. Transcript for the U.S. Department of Energy TAP Webinar - Combined Heat and Power: Expanding CHP in Your State

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Amy Hollander: I'd like to welcome you to today's webinar, titled "Combined Heat and Power: Expanding CHP in Your State." This webinar is sponsored by the US Department of Energy Weatherization and Intergovernmental Program. We have an excellent webinar on CHP today, with four speakers from around the nation. We'll give folks a few more minutes to call in and log on, so while we wait, I will go over some logistics, and then we'll get going on today's webinar. Please note, this webinar

  16. Expert Meeting Report. Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-06-01

    This Building America expert meeting was held on 7/31/2011, in Westford, Massachusetts. Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic.

  17. Heat

    U.S. Energy Information Administration (EIA) (indexed site)

    Release date: April 2015 Revised date: May 2016 Heat pumps Furnaces Indiv- idual space heaters District heat Boilers Pack- aged heating units Other All buildings 87,093 80,078 11,846 8,654 20,766 5,925 22,443 49,188 1,574 Building floorspace (square feet) 1,001 to 5,000 8,041 6,699 868 1,091 1,747 Q 400 3,809 Q 5,001 to 10,000 8,900 7,590 1,038 1,416 2,025 Q 734 4,622 Q 10,001 to 25,000 14,105 12,744 1,477 2,233 3,115 Q 2,008 8,246 Q 25,001 to 50,000 11,917 10,911 1,642 1,439 3,021 213 2,707

  18. Combined refrigeration system with a liquid pre-cooling heat exchanger

    DOE Patents [OSTI]

    Gaul, Christopher J.

    2003-07-01

    A compressor-pump unit for use in a vapor-compression refrigeration system is provided. The compressor-pump unit comprises a driving device including a rotatable shaft. A compressor is coupled with a first portion of the shaft for compressing gaseous refrigerant within the vapor-compression refrigeration system. A liquid pump is coupled with a second portion of the shaft for receiving liquid refrigerant having a first pressure and for discharging the received liquid refrigerant at a second pressure with the second pressure being higher than the first pressure by a predetermined amount such that the discharged liquid refrigerant is subcooled. A pre-cooling circuit is connected to the liquid pump with the pre-cooling circuit being exposed to the gaseous refrigerant whereby the gaseous refrigerant absorbs heat from the liquid refrigerant, prior to the liquid refrigerant entering the liquid pump.

  19. Combined Heating and Power Using Microturbines in a Major Urban Hotel

    SciTech Connect (OSTI)

    Sweetser, Richard; Wagner, Timothy; Leslie, Neil; Stovall, Therese K

    2009-01-01

    This paper describes the results of a cooperative effort to install and operate a Cooling, Heating and Power (CHP) System at a major hotel in San Francisco, CA. The packaged CHP System integrated four microturbines, a double-effect absorption chiller, two fuel gas boosters, and the control hardware and software to ensure that the system operated predictably, reliably, and safely. The chiller was directly energized by the recycled hot exhaust from the microturbines, and could be configured to provide either chilled or hot water. As installed, the system was capable of providing up to 227 kW of net electrical power and 142 Refrigeration Tons (RT) of chilled water at a 59oF (15oC) ambient temperature. For the year, the CHP efficiency was 54 percent. Significant lessons learned from this test and verification project are discussed as well as measured performance and economic considerations.

  20. Novel Controls for Time-Dependent Economic Dispatch of Combined Cooling Heating and Power (CCHP)

    SciTech Connect (OSTI)

    Samuelsen, Scott; Brouwer, Jack

    2013-08-31

    The research and development effort detailed in this report directly addresses the challenge of reducing U.S. industrial energy and carbon intensity by contributing to an increased understanding of potential CCHP technology, the CCHP market and the challenges of widespread adoption. This study developed a number of new tools, models, and approaches for the design, control, and optimal dispatch of various CCHP technologies. The UC Irvine campus served as a ‘living laboratory’ of new CCHP technologies and enabled the design and demonstration of several novel control methods. In particular, the integration of large scale thermal energy storage capable of shifting an entire day of cooling demand required a novel approach to the CCHP dispatch optimization. The thermal energy storage proved an economically viable resource which reduced both costs and emissions by enabling generators and chillers to operate under steady high efficiency conditions at all times of the day.

  1. Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in accurately modeling costs for fuel cell-based combined heat, hydrogen, and power systems. Work was performed by NREL's Hydrogen Technologies and Systems Center.

  2. An engineering-economic analysis of combined heat and power technologies in a (mu)grid application

    SciTech Connect (OSTI)

    Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

    2002-03-01

    This report describes an investigation at Ernesto Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) of the potential for coupling combined heat and power (CHP) with on-site electricity generation to provide power and heating, and cooling services to customers. This research into distributed energy resources (DER) builds on the concept of the microgrid (mGrid), a semiautonomous grouping of power-generating sources that are placed and operated by and for the benefit of its members. For this investigation, a hypothetical small shopping mall (''Microgrid Oaks'') was developed and analyzed for the cost effectiveness of installing CHP to provide the mGrid's energy needs. A mGrid consists of groups of customers pooling energy loads and installing a combination of generation resources that meets the particular mGrid's goals. This study assumes the mGrid is seeking to minimize energy costs. mGrids could operate independently of the macrogrid (the wider power network), but they are usually assumed to be connected, through power electronics, to the macrogrid. The mGrid in this study is assumed to be interconnected to the macrogrid, and can purchase some energy and ancillary services from utility providers.

  3. Potentials for reductions of carbon dioxide emissions of industrial sector in transitional economies -- A case study of implementation of absorption heat devices and co-generation

    SciTech Connect (OSTI)

    Remec, J.; Dolsak, N.

    1996-12-31

    World carbon dioxide emissions, caused by commercial energy-generation, contribute to about 57% of global warming potential. Central and East European (CEE) countries together with former USSR emitted about 25% of the world carbon dioxide emissions, predominantly because of high energy intensity of their industries and dependence on coal. Energy efficiency improvements can reduce the high level of carbon dioxide emissions per unit of output, which significantly exceeds the levels of the industry in the European Union. CEE countries` most pressing environmental goal is a reduction of local air and water pollution. Therefore, when analyzing potentials for the reduction of greenhouse gases emissions in these countries, they need to concentrate on the activities which would also decrease local pollution. The paper focuses on technologies which would reduce the need for fossil fuel burning by improving energy efficiency in industry. Process industries are very energy intensive. Structure changes of the products are carried out with operations which require input and output of heat. Heat demand is usually met by combustion of fossil fuels, cold is produced with electricity. Technical potentials of absorption heat devices (AHD) and co-generation in process industry as well as their market penetration potentials are analyzed for Slovenia, one of the fastest transforming CEE economies.

  4. Collaborative National Program for the Development and Performance Testing of Distributed Power Technologies with Emphasis on Combined Heat and Power Applications

    SciTech Connect (OSTI)

    Soinski, Arthur; Hanson, Mark

    2006-06-28

    A current barrier to public acceptance of distributed generation (DG) and combined heat and power (CHP) technologies is the lack of credible and uniform information regarding system performance. Under a cooperative agreement, the Association of State Energy Research and Technology Transfer Institutions (ASERTTI) and the U.S. Department of Energy have developed four performance testing protocols to provide a uniform basis for comparison of systems. The protocols are for laboratory testing, field testing, long-term monitoring and case studies. They have been reviewed by a Stakeholder Advisory Committee made up of industry, public interest, end-user, and research community representatives. The types of systems covered include small turbines, reciprocating engines (including Stirling Cycle), and microturbines. The protocols are available for public use and the resulting data is publicly available in an online national database and two linked databases with further data from New York State. The protocols are interim pending comments and other feedback from users. Final protocols will be available in 2007. The interim protocols and the national database of operating systems can be accessed at www.dgdata.org. The project has entered Phase 2 in which protocols for fuel cell applications will be developed and the national and New York databases will continue to be maintained and populated.

  5. A methodology for understanding the impacts of large-scale penetration of micro-combined heat and power

    SciTech Connect (OSTI)

    Tapia-Ahumada, K.; Pérez-Arriaga, I. J.; Moniz, Ernest J.

    2013-10-01

    Co-generation at small kW-e scale has been stimulated in recent years by governments and energy regulators as one way to increasing energy efficiency and reducing CO2emissions. If a widespread adoption should be realized, their effects from a system's point of view are crucial to understand the contributions of this technology. Based on a methodology that uses long-term capacity planning expansion, this paper explores some of the implications for an electric power system of having a large number of micro-CHPs. Results show that fuel cells-based micro-CHPs have the best and most consistent performance for different residential demands from the customer and system's perspectives. As the penetration increases at important levels, gas-based technologies - particularly combined cycle units - are displaced in capacity and production, which impacts the operation of the electric system during summer peak hours. Other results suggest that the tariff design impacts the economic efficiency of the system and the operation of micro-CHPs under a price-based strategy. Finally, policies aimed at micro-CHPs should consider the suitability of the technology (in size and heat-to-power ratio) to meet individual demands, the operational complexities of a large penetration, and the adequacy of the economic signals to incentivize an efficient and sustainable operation. Highlights: Capacity displacements and daily operation of an electric power system are explored; Benefits depend on energy mix, prices, and micro-CHP technology and control scheme; Benefits are observed mostly in winter when micro-CHP heat and power are fully used; Micro-CHPs mostly displace installed capacity from natural gas combined cycle units; and, Tariff design impacts economic efficiency of the system and operation of micro-CHPs.

  6. Energy System and Thermoeconomic Analysis of Combined Heat and Power High Temperature Proton Exchange Membrane Fuel Cell Systems for Light Commercial Buildings

    SciTech Connect (OSTI)

    Colella, Whitney G.; Pilli, Siva Prasad

    2015-06-01

    The United States (U.S.) Department of Energy (DOE)’s Pacific Northwest National Laboratory (PNNL) is spearheading a program with industry to deploy and independently monitor five kilowatt-electric (kWe) combined heat and power (CHP) fuel cell systems (FCSs) in light commercial buildings. This publication discusses results from PNNL’s research efforts to independently evaluate manufacturer-stated engineering, economic, and environmental performance of these CHP FCSs at installation sites. The analysis was done by developing parameters for economic comparison of CHP installations. Key thermodynamic terms are first defined, followed by an economic analysis using both a standard accounting approach and a management accounting approach. Key economic and environmental performance parameters are evaluated, including (1) the average per unit cost of the CHP FCSs per unit of power, (2) the average per unit cost of the CHP FCSs per unit of energy, (3) the change in greenhouse gas (GHG) and air pollution emissions with a switch from conventional power plants and furnaces to CHP FCSs; (4) the change in GHG mitigation costs from the switch; and (5) the change in human health costs related to air pollution. From the power perspective, the average per unit cost per unit of electrical power is estimated to span a range from $15–19,000/ kilowatt-electric (kWe) (depending on site-specific changes in installation, fuel, and other costs), while the average per unit cost of electrical and heat recovery power varies between $7,000 and $9,000/kW. From the energy perspective, the average per unit cost per unit of electrical energy ranges from $0.38 to $0.46/kilowatt-hour-electric (kWhe), while the average per unit cost per unit of electrical and heat recovery energy varies from $0.18 to $0.23/kWh. These values are calculated from engineering and economic performance data provided by the manufacturer (not independently measured data). The GHG emissions were estimated to decrease by

  7. COMBINED ACTIVE/PASSIVE DECAY HEAT REMOVAL APPROACH FOR THE 24 MWt GAS-COOLED FAST REACTOR

    SciTech Connect (OSTI)

    CHENG,L.Y.; LUDEWIG, H.

    2007-06-01

    Decay heat removal at depressurized shutdown conditions has been regarded as one of the key areas where significant improvement in passive response was targeted for the GEN IV GFR over the GCFR designs of thirty years ago. It has been recognized that the poor heat transfer characteristics of gas coolant at lower pressures needed to be accommodated in the GEN IV design. The design envelope has therefore been extended to include a station blackout sequence simultaneous with a small break/leak. After an exploratory phase of scoping analysis in this project, together with CEA of France, it was decided that natural convection would be selected as the passive decay heat removal approach of preference. Furthermore, a double vessel/containment option, similar to the double vessel/guard vessel approach of the SFR, was selected as the means of design implementation to reduce the PRA risks of the depressurization accident. However additional calculations in conjunction with CEA showed that there was an economic penalty in terms of decay heat removal system heat exchanger size, elevation heights for thermal centers, and most of all in guard containment back pressure for complete reliance on natural convection only. The back pressure ranges complicated the design requirements for the guard containment. Recognizing that the definition of a loss-of-coolant-accident in the GFR is a misnomer, since gas coolant will always be present, and the availability of some driven blower would reduce fuel temperature transients significantly; it was decided instead to aim for a hybrid active/passive combination approach to the selected BDBA. Complete natural convection only would still be relied on for decay heat removal but only after the first twenty four hours after the initiation of the accident. During the first twenty four hour period an actively powered blower would be relied on to provide the emergency decay power removal. However the power requirements of the active blower

  8. Capturing the Invisible Resource. Analysis of Waste Heat Potential in Chinese Industry and Policy Options for Waste Heat to Power Generation

    SciTech Connect (OSTI)

    Lu, Hongyou

    2015-05-01

    This study analyzed the theoretical maximum potential and practical potential of waste heat in the cement, iron, and steel, and glass sectors in China, based on thermal energy modeling, expert interviews, and literature reviews.

  9. ITP Industrial Distributed Energy: Combined Heat and Power- A Decade of Progress, A Vision for the Future

    Office of Energy Efficiency and Renewable Energy (EERE)

    Overview of CHP, DOE's CHP program, accomplishments, progress, technology R&D, marketplace transformation, partnerships, strategies, future goals

  10. High-Efficiency, Cost-effective Thermoelectric Materials/Devices for Industrial Process Refrigeration and Waste Heat Recovery, STTR Phase II Final Report

    SciTech Connect (OSTI)

    Lin, Timothy

    2011-01-07

    This is the final report of DoE STTR Phase II project, “High-efficiency, Cost-effective Thermoelectric Materials/Devices for Industrial Process Refrigeration and Waste Heat Recovery”. The objective of this STTR project is to develop a cost-effective processing approach to produce bulk high-performance thermoelectric (TE) nanocomposites, which will enable the development of high-power, high-power-density TE modulus for waste heat recovery and industrial refrigeration. The use of this nanocomposite into TE modules are expected to bring about significant technical benefits in TE systems (e.g. enhanced energy efficiency, smaller sizes and light weight). The successful development and applications of such nanocomposite and the resultant TE modules can lead to reducing energy consumption and environmental impacts, and creating new economic development opportunities.

  11. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    SciTech Connect (OSTI)

    Ulsh, M.; Wheeler, D.; Protopappas, P.

    2011-08-01

    The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

  12. 2011 Industrial Distributed Energy and CHP R&D Portfolio Review |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Technical Assistance » Combined Heat & Power Deployment » 2011 Industrial Distributed Energy and CHP R&D Portfolio Review 2011 Industrial Distributed Energy and CHP R&D Portfolio Review The Advanced Manufacturing Office met with research partners in June 2011 to review the status of projects in the Combined Heat and Power (CHP)/Industrial Distributed Energy portfolio. An agenda, summary report, and the following presentations from the meeting are available

  13. Solar Process Heat Basics | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Solar Process Heat Basics Commercial and industrial buildings may use the same solar technologies-photovoltaics, passive heating, daylighting, and water heating-that are used for ...

  14. Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant

    SciTech Connect (OSTI)

    A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok

    2007-01-15

    Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

  15. Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015

    SciTech Connect (OSTI)

    2015-06-01

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This study also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  16. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    SciTech Connect (OSTI)

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  17. Use Feedwater Economizers for Waste Heat Recovery: Office of Industrial Technologies (OIT) Steam Energy Tips No.3

    SciTech Connect (OSTI)

    Not Available

    2002-03-01

    A feedwater economizer reduces steam boiler fuel requirements by transferring heat from the flue gas to incoming feedwater. Boiler flue gases are often rejected to the stack at temperatures more than 100 F to 150 F higher than the temperature of the generated steam. Generally, boiler efficiency can be increased by 1% for every 40 F reduction in flue gas temperature. By recovering waste heat, an economizer can often reduce fuel requirements by 5% to 10% and pay for itself in less than 2 years. The table provides examples of the potential for heat recovery.

  18. " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "

    U.S. Energy Information Administration (EIA) (indexed site)

    3 Relative Standard Errors for Table 8.3;" " Unit: Percents." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," " " "," "

  19. ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "

    U.S. Energy Information Administration (EIA) (indexed site)

    3 Relative Standard Errors for Table 8.3;" " Unit: Percents." ,,,"Establishments" ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "

  20. Final Report, Materials for Industrial Heat Recovery Systems, Task 1 Improved Materials and Operation of Recuperators for Aluminum Melting Furnaces

    SciTech Connect (OSTI)

    Keiser, James R.; Sarma, Gorti B.; Thekdi, Arvind; Meisner Roberta A.; Phelps, Tony; Willoughby, Adam W.; Gorog, J. Peter; Zeh, John; Ningileri, Shridas; Liu, Yansheng; Xiao, Chenghe

    2007-09-30

    Production of aluminum is a very energy intensive process which is increasingly more important in the USA. This project concentrated on the materials issues associated with recovery of energy from the flue gas stream in the secondary industry where scrap and recycled metal are melted in large furnaces using gas fired burners. Recuperators are one method used to transfer heat from the flue gas to the air intended for use in the gas burners. By preheating this combustion air, less fuel has to be used to raise the gas temperature to the desired level. Recuperators have been successfully used to preheat the air, however, in many cases the metallic recuperator tubes have a relatively limited lifetime – 6 to 9 months. The intent of this project was to determine the cause of the rapid tube degradation and then to recommend alternative materials or operating conditions to prolong life of the recuperator tubes. The first step to understanding degradation of the tubes was to examine exposed tubes to identify the corrosion products. Analyses of the surface scales showed primarily iron oxides rather than chromium oxide suggesting the tubes were probably cycled to relatively high temperatures to the extent that cycling and subsequent oxide spalling reduced the surface concentration of chromium below a critical level. To characterize the temperatures reached by the tubes, thermocouples were mounted on selected tubes and the temperatures measured. During the several hour furnace cycle, tube temperatures well above 1000°C were regularly recorded and, on some occasions, temperatures of more than 1100°C were measured. Further temperature characterization was done with an infrared camera, and this camera clearly showed the variations in temperature across the first row of tubes in the four recuperator modules. Computational fluid dynamics was used to model the flow of combustion air in the tubes and the flue gas around the outside of the tubes. This modeling showed the

  1. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

  2. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces, Supplemental Notice of Proposed Rulemaking

  3. Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination

    Energy.gov [DOE]

    Coke calcination is a process that involves the heating of green petroleum coke in order to remove volatile material and purify the coke for further processing. Calcined coke is vital to the...

  4. Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation

    SciTech Connect (OSTI)

    Shabani, Bahman; Andrews, John; Watkins, Simon

    2010-01-15

    A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

  5. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    SciTech Connect (OSTI)

    2009-02-01

    Gas Technology Institute will collaborate with Integrated CHP Systems Corporation, West Virginia University, Vronay Engineering Services, KAR Engineering Associates, Pioneer Air Systems, and Energy Concepts Company to recover waste heat from reciprocating engines. The project will integrate waste heat recovery along with gas clean-up technology system improvements. This will address fuel quality issues that have hampered expanded use of opportunity fuels such as landfill gas, digester biogas, and coal mine methane. This will enable increased application of CHP using renewable and domestically derived opportunity fuels.

  6. ADVANCED, ENERGY-EFFICIENT HYBRID MEMBRANE SYSTEM FOR INDUSTRIAL WATER

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    REUSE | Department of Energy ADVANCED, ENERGY-EFFICIENT HYBRID MEMBRANE SYSTEM FOR INDUSTRIAL WATER REUSE ADVANCED, ENERGY-EFFICIENT HYBRID MEMBRANE SYSTEM FOR INDUSTRIAL WATER REUSE Research Triangle Institute - Research Triangle Park, NC A single hybrid system for industrial wastewater treatment and reuse that combines two known processes-forward osmosis and membrane distillation-will be developed and demonstrated. This system will use waste heat to treat a wide variety of waste streams at

  7. Condensing Heating and Water Heating Equipment Workshop Location...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time: ...

  8. Dynamic simulation of a solar-driven carbon dioxide transcritical power system for small scale combined heat and power production

    SciTech Connect (OSTI)

    Chen, Y.; Lundqvist, Per; Pridasawas, Wimolsiri

    2010-07-15

    Carbon dioxide is an environmental benign natural working fluid and has been proposed as a working media for a solar-driven power system. In the current work, the dynamic performance of a small scale solar-driven carbon dioxide power system is analyzed by dynamic simulation tool TRNSYS 16 and Engineering Equation Solver (EES) using co-solving technique. Both daily performance and yearly performance of the proposed system have been simulated. Different system operating parameters, which will influence the system performance, have been discussed. Under the Swedish climatic condition, the maximum daily power production is about 12 kW h and the maximum monthly power production is about 215 kW h with the proposed system working conditions. Besides the power being produced, the system can also produce about 10 times much thermal energy, which can be used for space heating, domestic hot water supply or driving absorption chillers. The simulation results show that the proposed system is a promising and environmental benign alternative for conventional low-grade heat source utilization system. (author)

  9. Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling

    SciTech Connect (OSTI)

    Grapes, Michael D.; LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H.; Friedman, Lawrence H.; LaVan, David A.; Weihs, Timothy P.

    2014-08-15

    Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns500 ns. The full experimental system consists of a modified nanocalorimeter sensor, a custom-built in situ nanocalorimetry holder, a data acquisition system, and the DTEM itself, and is capable of thermodynamic and microstructural characterization of reactions over a range of heating rates (10{sup 2} K/s10{sup 5} K/s) accessible by conventional (DC) nanocalorimetry. To establish its ability to capture synchronized calorimetric and microstructural data during rapid transformations, this work describes measurements on the melting of an aluminum thin film. We were able to identify the phase transformation in both the nanocalorimetry traces and in electron diffraction patterns taken by the DTEM. Potential applications for the newly developed system are described and future system improvements are discussed.

  10. Roadmap for Process Heating Technology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Glass * Metal (ferrous and non- ferrous * Resin and plastic * Heat forming * Thermal forming * Paint and organic ... process heating into the Industries of the Future framework. ...

  11. National Account Energy Alliance Final Report for the Ritz Carlton, San Francisco Combined Heat and Power Project

    SciTech Connect (OSTI)

    Rosfjord, Thomas J

    2007-11-01

    Under collaboration between DOE and the Gas Technology Institute (GTI), UTC Power partnered with Host Hotels and Resorts to install and operate a PureComfort 240M Cooling, Heating and Power (CHP) System at the Ritz-Carlton, San Francisco. This packaged CHP system integrated four microturbines, a double-effect absorption chiller, two fuel gas boosters, and the control hardware and software to ensure that the system operated predictably, reliably, and safely. The chiller, directly energized by the recycled hot exhaust from the microturbines, could be configured to provide either chilled or hot water. As installed, the system was capable of providing up to 227 kW of net electrical power and 142 RT of chilled water at a 59F ambient temperature.

  12. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01

    Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

  13. Combined Heat and Power (CHP) as a Compliance Option under the Clean Power Plan: A Template and Policy Options for State Regulators

    SciTech Connect (OSTI)

    2015-07-30

    Combined Heat and Power (CHP) is an important option for states to consider in developing strategies to meet their emission targets under the US Environmental Protection Agency's Clean Power Plan. This Template is designed to highlight key issues that states should consider when evaluating whether CHP could be a meaningful component of their compliance plans. It demonstrates that CHP can be a valuable approach for reducing emissions and helping states achieve their targets. While the report does not endorse any particular approach for any state, and actual plans will vary dependent upon state-specific factors and determinations, it provides tools and resources that states can use to begin the process, and underscores the opportunity CHP represents for many states. . By producing both heat and electricity from a single fuel source, CHP offers significant energy savings and carbon emissions benefits over the separate generation of heat and power, with a typical unit producing electricity with half the emissions of conventional generation. These efficiency gains translate to economic savings and enhanced competitiveness for CHP hosts, and emissions reductions for the state, along with helping to lower electric bills; and creating jobs in the design, construction, installation and maintenance of equipment. In 2015, CHP represents 8 percent of electric capacity in the United States and provides 12 percent of total power generation. Projects already exist in all 50 states, but significant technical and economic potential remains. CHP offers a tested way for states to achieve their emission limits while advancing a host of ancillary benefits.

  14. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  15. Roadmap for Process Heating Technology

    SciTech Connect (OSTI)

    Eichner, Melissa; Thekdi, Arvind

    2001-03-16

    This roadmap identifies priority research & development goals and near-rerm non- research goals to improve industrial process heating.

  16. Structure and Morphology of Neodymium-doped Cerium Oxide Solid Solution Prepared by a Combined Simple Polymer Heating and D.C.-Magnetron Sputtering Method

    SciTech Connect (OSTI)

    Nurhasanah, I.; Abdullah, M.; Khairurrijal

    2008-03-17

    Neodymium-doped Cerium Oxide (NDC) solid solution is attractive alternative material to replace yttria-stabillized zirconia (YSZ) used as an electrolyte for solid-oxide fuel cells (SOFCs). In this study Nd-CeO{sub 2} nanoparticles with Nd of 3, 6 and 9 at./at.-% were synthesized by simple polymer heating. The NDC thin films were deposited on silicon substrates by using target made from the nanoparticles. Deposition process was carried out by D.C.-magnetron sputtering at temperature as low as 375 deg. C. XRD pattern was used to confirm solid solubility and structural properties of the films. The results indicated that all samples are single phase solid solution with cubic fluorite structure. Their lattice parameters increase with increasing Nd content. It was also found that the mean grain size decrease with increasing Nd content. SEM analysis showed that NDC thin films have dense and uniform thickness. These results revealed that the nanoparticles and thin films of NDC solid solution are successfully prepared by a combined simple polymer heating and D.C.-Magnetron Sputtering method at low temperature.

  17. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    SciTech Connect (OSTI)

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  18. Solar heat pump systems with refrigerant-filled collectors

    SciTech Connect (OSTI)

    O'Dell, M.P.; Beckman, W.A.; Mitchell, J.W.

    1983-01-01

    The heat pump system with a refrigerant-filled evaporator consists of a standard air-to-air or air-to-liquid heat pump that utilizes a solar panel as the evaporator. A combination of solar energy and convection heat transfer acts as the ''free'' energy absorbed by the collector/evaporator. In this paper, the seasonal performance of such systems for industrial applications will be presented. Performance of collector/evaporator heat pumps will be compared with alternative heat pump and solar systems. The benefits of covered and coverless collector/evaporators will be discussed. Results to date have shown that refrigerant-filled collector heat pumps do not perform as well as conventional heat pumps at small collector areas but have as much as 15% performance improvement over conventional heat pumps at an appropriate collector area.

  19. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.

    1986-01-01

    This text covers the principles of industrial energy conservation and energy conservation applications, with emphasis on the energy-intensive industries. Topics covered include energy consumption, alternative energy sources, elements of energy audits, economic investment analysis, management of energy conservation programs, boilers and fired heaters, steam and condensate systems, classification and fouling of heat exchangers, heat transfer augmentation, waste heat sources, heat recovery equipment, properties and characteristics of insulation, energy conservation in industrial buildings, cogeneration, power circuit components and energy conversion devices, electrical energy conservation. A review of the fundamentals of fluid mechanics, heat transfer, and thermodynamics, as well as examples, problems, and case studies from specific industries are included.

  20. NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NREL and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heaters. Water heating energy use represents the second largest energy demand for homes nationwide, offering an opportunity for innovative solar water heating (SWH) technologies to offset energy use and costs. In the Low-Cost Solar Water Heating Research and Development Roadmap, researchers at the National Renewable Energy Laboratory (NREL) outlined a strategy to expand the SWH market. Recognizing

  1. Combined Heat and Power Projects

    Energy.gov [DOE]

    DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles.

  2. Dakota Electric Association - Commercial and Industrial Energy...

    Energy.gov (indexed) [DOE]

    Industrial Agricultural Savings Category Geothermal Heat Pumps Lighting Chillers Heat Pumps Air conditioners Compressed air Energy Mgmt. SystemsBuilding Controls Motors Motor VFDs...

  3. ADVANCED, ENERGY-EFFICIENT HYBRID MEMBRANE SYSTEM FOR INDUSTRIAL WATER

    Energy.gov (indexed) [DOE]

    REUSE | Department of Energy Research Triangle Institute - Research Triangle Park, NC A single hybrid system for industrial wastewater treatment and reuse that combines two known processes-forward osmosis and membrane distillation-will be developed and demonstrated. This system will use waste heat to treat a wide variety of waste streams at manufacturing facilities. Based on current industrial wastewater practices and preliminary analysis, this technology has the potential to reduce

  4. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect (OSTI)

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.

  5. Water Heating Projects | Department of Energy

    Office of Environmental Management (EM)

    HVAC, Water Heating, & Appliances Water Heating Projects Water Heating Projects Figure 1: The system model for the combined Water heater, dehumidifier and cooler (WHDC). A ...

  6. Enabling More Widespread Use of CHP in Light Industrial, Commercial, and Institutional Applications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Controls for Economic Dispatch of Combined Cooling, Heating and Power (CHP) Systems ADVANCED MANUFACTURING OFFICE Enabling More Widespread Use of CHP in Light Industrial, Commercial, and Institutional Applications This project developed and demonstrated novel algorithms and dynamic control technology for optimal economic use of CHP systems under 15 MW. Combined cooling, heating and power (CHP) technologies have successfully entered the market for larger (over 20 MW) applications. Smaller

  7. Microfabricated fuel heating value monitoring device

    DOE Patents [OSTI]

    Robinson, Alex L.; Manginell, Ronald P.; Moorman, Matthew W.

    2010-05-04

    A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

  8. "Integrated Gasification Combined Cycle"

    U.S. Energy Information Administration (EIA) (indexed site)

    Turbine",,"X" " - Heat Recovery Steam Generator",,,"X" " - Gasifier",,"X" " - Balance of Plant",,,"X" "Conventional Natural Gas Combined Cycle" " - Conventional Combustion Turbine"...

  9. Industry Profile

    Energy.gov [DOE]

    Combined heat and power (CHP)—sometimes referred to as cogeneration—involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

  10. Radiant Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Radiant heating systems supply heat directly to the floor or to ... of heat directly from the hot surface to the people and ... wood-fired boilers, solar water heaters, or a combination ...

  11. Heating Ventilation and Air Conditioning Efficiency

    Energy.gov [DOE]

    This presentation covers common pitfalls that lead to wasted energy in industrial heating ventilation and air conditioning (HVAC) systems.

  12. Three-dimensional nonsteady heat-transfer analysis of an indirect heating furnace

    SciTech Connect (OSTI)

    Ito, H.; Umeda, Y.; Nakamura, Y.; Wantanabe, T.; Mitutani, T. ); Arai, N.; Hasatani, M. )

    1991-01-01

    This paper reports on an accurate design method for industrial furnaces from the viewpoint of heat transfer. The authors carried out a three-dimensional nonsteady heat-transfer analysis for a practical-size heat- treatment furnace equipped with radiant heaters. The authors applied three software package programs, STREAM, MORSE, and TRUMP, for the analysis of the combined heat-transfer problems of radiation, conduction, and convection. The authors also carried out experiments of the heating of a charge consisting of packed bolts. The authors found that the air swirled inside the furnace. As for the temperature in each part in the furnace, analytical results were generally in close agreement with the experimental ones. This suggests that our analytical method is useful for a fundamental heat- transfer-based design of a practical-size industrial furnace with an actual charge such as packed bolts. As for the temperature distribution inside the bolt charge (work), the analytical results were also in close agreement with the experimental ones. Consequently, it was found that the heat transfer in the bolt charge could be described with an effective thermal conductivity.

  13. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.R.

    1988-01-01

    This book presents a study of the technical, economic and management principles of effective energy use. The authors report on: energy consumption, conservation, and resources. They present an analysis of thermal-fluid systems. Energy conservation in combustion systems. Heat exchangers, heat recovery, energy conservation in industrial buildings, and industrial cogeneration are discussed.

  14. Check Heat Transfer Surfaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat Transfer Surfaces Check Heat Transfer Surfaces This tip sheet discusses the importance of checking heat transfer surfaces in process heating systems. PROCESS HEAT TIP SHEET #4 Check Heat Transfer Surfaces (September 2005) (330.85 KB) More Documents & Publications Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition Check Burner Air to Fuel Ratios Process Heating Assessment and Survey Tool (PHAST) Introduction

  15. Heat recovery casebook

    SciTech Connect (OSTI)

    Lawn, J.

    1980-10-01

    Plants and factories could apply a great variety of sources and uses for valuable waste heat. Applications may be evaluated on the basis of real use for a specific waste heat, high-enough temperature and quality of work, and feasibility of mechanical heat transfer method. Classification may be by temperature, application, heat-transfer equipment, etc. Many buildings and industrial processes lend themselves well to heat-recovery strategies. Five case histories describe successful systems used by the Continental Corporation Data Center; Nabisco, Inc.; Kasper Foundry Company; Seven Up Bottling Company of Indiana; and Lehr Precision Tool company. (DCK)

  16. Heat pipe array heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  17. Heat Pump Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat Pump Water Heaters Heat Pump Water Heaters A diagram of a heat pump water heater. A diagram of a heat pump water heater. Most homeowners who have heat pumps use them to heat and cool their homes. But a heat pump also can be used to heat water -- either as stand-alone water heating system, or as combination water heating and space conditioning system. How They Work Heat pump water heaters use electricity to move heat from one place to another instead of generating heat directly. Therefore,

  18. Industrial Buildings

    U.S. Energy Information Administration (EIA) (indexed site)

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  19. Advanced, Energy-Efficient Hybrid Membrane System for Industrial...

    Energy.gov (indexed) [DOE]

    Advanced, Energy- Efficient Hybrid Membrane System for Industrial Water Reuse New Hybrid Membrane System Utilizes Industrial Waste Heat to Power Water Purification Process As...

  20. Development of a coal-fired combustion system for industrial process heating applications. Phase 3 final report, November 1992--December 1994

    SciTech Connect (OSTI)

    1995-09-26

    A three phase research and development program has resulted in the development and commercialization of a Cyclone Melting System (CMS{trademark}), capable of being fueled by pulverized coal, natural gas, and other solid, gaseous, or liquid fuels, for the vitrification of industrial wastes. The Phase 3 research effort focused on the development of a process heater system to be used for producing value added glass products from the vitrification of boiler/incinerator ashes and industrial wastes. The primary objective of the Phase 3 project was to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential for successful commercialization. The demonstration test consisted of one test run with a duration of 105 hours, approximately one-half (46 hours) performed with coal as the primary fuel source (70% to 100%), the other half with natural gas. Approximately 50 hours of melting operation were performed vitrifying approximately 50,000 lbs of coal-fired utility boiler flyash/dolomite mixture, producing a fully-reacted vitrified product.

  1. IMPACTS. Industrial Technologies Program: Summary of Program Results for CY 2008

    SciTech Connect (OSTI)

    none,

    2010-08-02

    The Impacts report summarizes benefits resulting from ITP-sponsored technologies, including energy savings, waste reduction, increased productivity, and lowered emissions. It also provides an overview of the activities of the Industrial Assessment Centers, BestPractices Program, and Combined Heat and Power efforts.

  2. Making Industry Part of the Climate Solution

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss; Brown, Dr. Marilyn Ann; Jackson, Roderick K; Cox, Matthew; Cortes, Rodrigo; Deitchman, Benjamin H

    2011-06-01

    Improving the energy efficiency of industry is essential for maintaining the viability of domestic manufacturing, especially in a world economy where production is shifting to low-cost, less regulated developing countries. Numerous studies have shown the potential for significant cost-effective energy-savings in U.S. industries, but the realization of this potential is hindered by regulatory, information, workforce, and financial obstacles. This report evaluates seven federal policy options aimed at improving the energy efficiency of industry, grounded in an understanding of industrial decision-making and the barriers to efficiency improvements. Detailed analysis employs the Georgia Institute of Technology's version of the National Energy Modeling System and spreadsheet calculations, generating a series of benefit/cost metrics spanning private and public costs and energy bill savings, as well as air pollution benefits and the social cost of carbon. Two of the policies would address regulatory hurdles (Output-Based Emissions Standards and a federal Energy Portfolio Standard with Combined Heat and Power); three would help to fill information gaps and workforce training needs (the Superior Energy Performance program, Implementation Support Services, and a Small Firm Energy Management program); and two would tackle financial barriers (Tax Lien Financing and Energy-Efficient Industrial Motor Rebates). The social benefit-cost ratios of these policies appear to be highly favorable based on a range of plausible assumptions. Each of the seven policy options has an appropriate federal role, broad applicability across industries, utilizes readily available technologies, and all are administratively feasible.

  3. Heat transfer fluids containing nanoparticles

    DOE Patents [OSTI]

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  4. Table 8.6a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c)

    U.S. Energy Information Administration (EIA) (indexed site)

    a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 16,509,639 1,410,151 16,356,550 353,000 247,409 19,356,746

  5. Table 8.6b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) (indexed site)

    b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 638,798 119,640 1,471,031 762 – 1,591,433 81,669,945 2,804 24,182 5,687

  6. Improving Process Heating System Performance: A Sourcebook for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This sourcebook introduces industry to process heating basics, performance opportunities for fuel and electric based systems, waste heat management and where they can find help on ...

  7. Improving Process Heating System Performance: A Sourcebook for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Dryers, Evaporators, Fans, Heat Exchangers, HVAC Systems, Pumps Author: Bela G. Liptak ... Modeling of Gas-Fired Furnaces and Boilers and Other Industrial Heating ...

  8. Improving Process Heating System Performance: A Sourcebook for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    It is not intended to be a comprehensive technical text on improving process heating ... Improving Process Heating System Performance: A Sourcebook for Industry, Third Edition ...

  9. Waste Heat to Power Market Assessment

    SciTech Connect (OSTI)

    Elson, Amelia; Tidball, Rick; Hampson, Anne

    2015-03-01

    Waste heat to power (WHP) is the process of capturing heat discarded by an existing process and using that heat to generate electricity. In the industrial sector, waste heat streams are generated by kilns, furnaces, ovens, turbines, engines, and other equipment. In addition to processes at industrial plants, waste heat streams suitable for WHP are generated at field locations, including landfills, compressor stations, and mining sites. Waste heat streams are also produced in the residential and commercial sectors, but compared to industrial sites these waste heat streams typically have lower temperatures and much lower volumetric flow rates. The economic feasibility for WHP declines as the temperature and flow rate decline, and most WHP technologies are therefore applied in industrial markets where waste heat stream characteristics are more favorable. This report provides an assessment of the potential market for WHP in the industrial sector in the United States.

  10. Geothermal District Heating Economics

    Energy Science and Technology Software Center (OSTI)

    1995-07-12

    GEOCITY is a large-scale simulation model which combines both engineering and economic submodels to systematically calculate the cost of geothermal district heating systems for space heating, hot-water heating, and process heating based upon hydrothermal geothermal resources. The GEOCITY program simulates the entire production, distribution, and waste disposal process for geothermal district heating systems, but does not include the cost of radiators, convectors, or other in-house heating systems. GEOCITY calculates the cost of district heating basedmore » on the climate, population, and heat demand of the district; characteristics of the geothermal resource and distance from the distribution center; well-drilling costs; design of the distribution system; tax rates; and financial conditions.« less

  11. Plastic Magen Industry | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    products with a lifetime guarantee, including the Heliocol and Sunstar-brand solar water heating systems. References: Plastic Magen Industry1 This article is a stub. You...

  12. Home Heating

    Energy.gov [DOE]

    Your choice of heating technologies impacts your energy bill. Learn about the different options for heating your home.

  13. Design manual. [High temperature heat pump for heat recovery system

    SciTech Connect (OSTI)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  14. Industrial Users

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Industrial Users The facility has been used for more than a decade by a virtual Who's Who of the semiconductor industry to simulate the potential failures posed by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User Information The Neutron and Nuclear Science (WNR) Facility welcomes proposals for beam time experiments from industry users. Proprietary and non-proprietary industrial

  15. Active solar heating systems installation manual

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book provides an industry consensus of the best available installation procedures for large commercial-scale solar service water and space heating systems.

  16. Cover Heated, Open Vessels | Department of Energy

    Energy Savers

    System Performance: A Sourcebook for Industry, Second Edition Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam Recover Heat from Boiler Blowdown

  17. Table 8.3a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 323,191 95,675 461,905 92,556 973,327 546,354 30,217 576,571 39,041 1,588,939 1990 362,524 127,183 538,063 140,695 1,168,465 650,572 36,433 687,005 40,149 1,895,619 1991 351,834 112,144 546,755 148,216 1,158,949 623,442 36,649

  18. Table 8.3b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 12,768 8,013 66,801 2,243 89,825 19,346 4,550 23,896 679 114,400 1990 20,793 9,029 79,905 3,822 113,549 18,091 6,418 24,509 28 138,086 1991 21,239 5,502 82,279 3,940 112,960 17,166 9,127 26,293 590 139,843 1992 27,545 6,123 101,923

  19. Industrial Scale Energy Systems Integration; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ruth, Mark

    2015-07-28

    The industrial sector consumes 25% of the total energy in the U.S. and produces 18% of the greenhouse gas (GHG) emissions. Energy Systems Integration (ESI) opportunities can reduce those values and increase the profitability of that sector. This presentation outlines several options. Combined heat and power (CHP) is an option that is available today for many applications. In some cases, it can be extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed. extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed.

  20. Hybrid heat exchange for the compression capture of CO2 from recirculated flue gas

    SciTech Connect (OSTI)

    Oryshchyn, Danylo B.; Ochs, Thomas L.; Summers, Cathy A.

    2004-01-01

    An approach proposed for removal of CO2 from flue gas cools and compresses a portion of a recirculated flue-gas stream, condensing its volatile materials for capture. Recirculating the flue gas concentrates SOx, H2O and CO2 while dramatically reducing N2 and NOx, enabling this approach, which uses readily available industrial components. A hybrid system of indirect and direct-contact heat exchange performs heat and mass transfer for pollutant removal and energy recovery. Computer modeling and experimentation combine to investigate the thermodynamics, heat and mass transfer, chemistry and engineering design of this integrated pollutant removal (IPR) system.

  1. Recover Heat from Boiler Blowdown

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on recovering heat from boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  2. Geothermal Heat Pump Manufacturing Activities

    Gasoline and Diesel Fuel Update

    4 Employment in the geothremal heat pump industry, 2007 - 2009 2007 1,219 2008 1,537 2009 1,832 Year Person Years Source: U.S. Energy Information Administration (EIA), Form ...

  3. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  4. Reduce Radiation Losses from Heating Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Radiation Losses from Heating Equipment Reduce Radiation Losses from Heating Equipment This tip sheet describes how to save process heating energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces. PROCESS HEATING TIP SHEET #7 Reduce Radiation Losses from Heating Equipment (January 2006) (277.28 KB) More Documents & Publications Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A

  5. GEOTHERMAL DISTRICT HEATING Dr. John W. Lund, PE Emeritus Director

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DISTRICT HEATING Dr. John W. Lund, PE Emeritus Director Geo-Heat Center Oregon Institute of Technology Klamath Falls, OR GEOTHERMAL DISTRICT HEATING/COOLING Geothermal resource supplying thermal energy to a group of buildings, providing: *Space heating and cooling *Domestic hot water heating *Industrial process heat Could be a hybrid system augmented by: *Heat Pump to boost temperature *Conventional boiler for peaking MAJOR SYSTEM COMPONENTS 1. Heat Production - well field(s) * Production wells

  6. Waste heat: Utilization and management

    SciTech Connect (OSTI)

    Sengupta, S.; Lee, S.S.

    1983-01-01

    This book is a presentation on waste heat management and utilization. Topics covered include cogeneration, recovery technology, low grade heat recovery, heat dispersion models, and ecological effects. The book focuses on the significant fraction of fuel energy that is rejected and expelled into the environment either as industrial waste or as a byproduct of installation/equipment operation. The feasibility of retrieving this heat and energy is covered, including technical aspects and potential applications. Illustrations demonstrate that recovery methods have become economical due to recent refinements. The book includes theory and practice concerning waste heat management and utilization.

  7. A novel radio frequency assisted heat pump dryer

    SciTech Connect (OSTI)

    Marshall, M.G.; Metaxas, A.C.

    1999-09-01

    This paper compares an experimental heat pump batch dryer with the implementation of volumetric Radio Frequency (RF) heating, in the combination drying of crushed brick particulate. Results are presented showing overall improvements in drying. A simplified mathematical drying model including the RF energy source has been developed using mass and energy conservation, confirming the experimental results. Drying is a widespread, energy intensive industrial unit operation. The economics of a drying process operation largely depend upon the dryers performance and ultimately the cost of energy consumption. To enhance the performance of a drying system, the damp air stream that exits the drying chamber can be recycled to reclaim the enthalpy of evaporation that it carries, by using a heat pump (Hodgett, 1976). However, because the medium that dries is still warm air, this system also suffers from heat transfer limitations, particularly towards the falling drying rate period. Such limitations in drying performance can be overcome with the use of Radio Frequency (RF) energy which generates heat volumetrically within the wet material by the combined mechanisms of dipole rotation and conduction effects which speeds up the drying process (Metaxas et al, 1983). Despite the clear advantages that heat pumps and high frequency heating offer for drying, the combination of these two techniques until recently has not been studied (Kolly et al, 1990; Marshall et al, 1995).A series of experiments carried out comprising a motor driven heat pump which was retro-fitted with the ability of imparting RF energy into a material at various stages of the drying cycle are described and compared with a mathematical model.

  8. Process Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Process Heating Systems Process Heating Systems Best operating practices and advanced process heating technologies can lead to significant energy savings at your plant. Use the software tools, training, and publications listed below to optimize performance and save energy. Process Heating Tools Tools to assess your energy system: Process Heating Assessment and Survey Tool (PHAST) Qualified Specialists Qualified Specialists have passed a rigorous competency examination on a specific industrial

  9. Combined Heat and Power System Increases Reliability

    Energy Savers

    ... The three boilers were over thirty years old, and if one boiler needed service, the remaining two boilers could no longer meet the plant's peak steam load. The CHP system can now ...

  10. Combined Heat and Power (CHP) Technology Development

    Energy.gov (indexed) [DOE]

    Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. ...

  11. Combined Heat and Power Grant Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    CHP technologies are eligible for either a grant, loan or power purchase incentive under the initial round of solicitations for new renewable energy generating equipment  up to five megawatts at ...

  12. Combined Heat and Power Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    CHP technologies are eligible for either a grant, loan or power purchase incentive under the initial round of solicitations for new renewable energy generating equipment  up to five megawatts at ...

  13. Combined Heat and Power | Department of Energy

    Energy Savers

    Advanced Reciprocating Engine Systems (ARES) An advanced natural gas enginegenerator system ... avoid complicated and costly system integration and installation but still maximize ...

  14. Combined Heat and Power (CHP) Technology Development

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... estimates IGATE-E IAC, ESA,and MNI Databases Database Schema** 45 tables-MySQL ... system (DBMS) and refers to the organization of data as a blueprint of how a database is ...

  15. Combined Reflectivity/imaging Method for Assessing Diagnostic Mirror

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Combined Heat & Power Deployment » Combined Heat and Power Basics Combined Heat and Power Basics Combined heat and power (CHP), also known as cogeneration, is: A process flow diagram showing efficiency benefits of CHP The concurrent production of electricity or mechanical power and useful thermal energy (heating and/or cooling) from a single source of energy. A type of distributed generation, which, unlike central station generation, is located at or near the point of consumption. A suite

  16. Industrial Permit

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System. October 15, 2012 Outfall from the Laboratory's Data Communications Center cooling towers Intermittent flow of discharged water from the Laboratory's Data Communications Center eventually reaches perennial segment of Sandia Canyon during storm events (Outfall 03A199). Contact Environmental Communication & Public

  17. Industry Economists

    U.S. Energy Information Administration (EIA) (indexed site)

    Industry Economists The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Industry Economist, whose work is associated with the performance of economic analyses using economic techniques. Responsibilities: Industry Economists perform or participate in one or more of the following

  18. Efficiency combined cycle power plant

    SciTech Connect (OSTI)

    Pavel, J.; Meyers, G.A.; Baldwin, T.S.

    1990-06-12

    This patent describes a method of operating a combined cycle power plant. It comprises: flowing exhaust gas from a combustion turbine through a heat recovery steam generator (HRSG); flowing feed water through an economizer section of the HRSG at a flow rate and providing heated feed water; flowing a first portion of the heated feed water through an evaporator section of the HRSG and producing saturated steam at a production rate, the flow rate of the feed water through the economizer section being greater than required to sustain the production rate of steam in the evaporator section; flowing fuel for the turbine through a heat exchanger; and, flowing a second portion of the heated feed water provided by the economizer section through the heat exchanger then to an inlet of the economizer section, thereby heating the fuel flowing through the heat exchanger.

  19. OTHER INDUSTRIES

    Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  20. Industrial Users

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR...

  1. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    SciTech Connect (OSTI)

    Ushimaru, Kenji.

    1990-08-01

    Since 1983, technological advances and market growth of inverter- driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries-- microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices--were able to direct the development and market success of inverter-driven heat pumps. As a result, leading US variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales. 54 refs., 47 figs., 1 tab.

  2. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, Benjamin A.; Zawacki, Thomas S.

    1996-12-03

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. A combination of weak and rich liquor working solution is used as the heat transfer medium.

  3. " Generation by Census Region, Industry Group, Selected Industries, Presence of"

    U.S. Energy Information Administration (EIA) (indexed site)

    4. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, Presence of" " General Technologies, and Industry-Specific Technologies for Selected" " Industries, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row"

  4. Correlation Of Surface Heat Loss And Total Energy Production...

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal systems lose their heat by a site-specific combination of conduction (heat flow) and advection (surface discharge). The conductive loss at or near the surface (shallow...

  5. Process Heating Assessment and Survey Tool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Process Heating Assessment and Survey Tool Process Heating Assessment and Survey Tool April 10, 2014 - 3:34pm Addthis Process Heating Assessment and Survey Tool The Process Heating Assessment and Survey Tool (PHAST) introduces methods to improve thermal efficiency of heating equipment. This tool helps industrial users survey process heating equipment that consumes fuel, steam, or electricity, and identifies the most energy-intensive equipment. The tool can be used to perform a heat balance that

  6. Roadmap for Process Heating Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roadmap for Process Heating Technology Roadmap for Process Heating Technology This roadmap identifies priority research & development goals and near-term non-research goals to improve industrial process heating. Roadmap for Process Heating Technology (March 2001) (577.94 KB) More Documents & Publications Process Heating Roadmap to Help U.S. Industries Be Competitive ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial Methods; September 2001 ITP Aluminum: Alumina Technology

  7. Heat exchanger

    DOE Patents [OSTI]

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  8. Susanville District Heating District Heating Low Temperature...

    Open Energy Information (Open El) [EERE & EIA]

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  9. Total Space Heating Water Heating Cook-

    Annual Energy Outlook

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  10. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  11. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  12. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  13. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  14. Industry Perspective

    Energy.gov [DOE]

    Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  15. Industry @ ALS

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Industry @ ALS Industry @ ALS Hewlett Packard Labs Gains Insights with Innovative ALS Research Tools Print Thursday, 05 May 2016 11:21 For the past eight years, Hewlett Packard Labs, the central research organization of Hewlett Packard Enterprise, has been using cutting-edge ALS techniques to advance some of their most promising technological research, including vanadium dioxide phase transitions and atomic movement during memristor operation. Summary Slide Read more... ALS, Molecular Foundry,

  16. Save Energy Now in Your Steam Systems; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    energy used in industrial applications for product output. These systems can be indispensable in delivering the energy needed for process heating, pressure control, mechanical ...

  17. Quantity, quality, and availability of waste heat from United States thermal power generation

    DOE PAGES-Beta [OSTI]

    Gingerich, Daniel B; Mauter, Meagan S

    2015-06-10

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJthmoreof residual heat in 2012, 4% of which was discharged at temperatures greater than 90 C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.less

  18. Preheated Combustion Air; Industrial Technologies Program (ITP...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    fuel-fired industrial heating processes, one of the most potent ways to improve efficiency and productivity is to preheat the combustion air going to the burners. The source of ...

  19. Jobs, sustainable heating coming to Vermont city | Department...

    Energy.gov (indexed) [DOE]

    A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | ...

  20. HVAC, Water Heating, and Appliances | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Emerging Technologies » HVAC, Water Heating, and Appliances HVAC, Water Heating, and Appliances About the Portfolio The HVAC/Water Heating/Appliance subprogram develops cost effective, energy efficient technologies with national labs and industry partners. Technical analysis has shown that heat pumps have the technical potential to save up to 50% of the energy used by conventional HVAC technologies in residential buildings. Our focus is on the introduction of new heat pumping technologies, heat

  1. Commercial / Industrial Lighting

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  2. Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Automotive Industry | Department of Energy and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_yang.pdf (803.83 KB) More Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Develop Thermoelectric Technology for Automotive

  3. " by Census Region, Census Division, Industry Group, Selected Industries, and"

    U.S. Energy Information Administration (EIA) (indexed site)

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of Industry-Specific Technologies for Selected Industries, 1994: Part 1" " (Estimates in Trillion Btu)" ,,,," Census Region",,,,,,,"Census Division",,,,,"RSE" "SIC"," ",,,,,,,"Middle","East North","West

  4. Process Heating: A Special Supplement to Energy Matters

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Special Supplement to Energy Matters Process Heating Roadmap to Help U.S. Industries Be ... This plan is entitled "Roadmap for Process Heating Technology" and is intended as an ...

  5. Project Profile: High-Temperature Particle Heat Exchanger for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in a turbine to generate electricity. Industry experience with similar heat exchangers is limited to lower pressures, lower temperatures, or alternative fluids like steam or ...

  6. Save Energy Now in Your Process Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial process heating systems.

  7. Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate...

    Energy.gov (indexed) [DOE]

    < Back Eligibility Commercial Industrial Residential Agricultural Savings Category Geothermal Heat Pumps Commercial Refrigeration Equipment Maximum Rebate 1,000ton Program Info...

  8. natural gas+ condensing flue gas heat recovery+ water creation...

    Open Energy Information (Open El) [EERE & EIA]

    natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

  9. Low Cost Solar Water Heating R&D

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Template Low Cost Solar Water Heating R&D Kate Hudon National Renewable Energy Laboratory ... This project addresses this barrier by working with an industry research partner to ...

  10. Enhancement of Aluminum Alloy Forgings Using Rapid Infrared Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and industry partners, Queen City Forging Company and Infra Red Heating Technologies LLC, have developed a process for forging aluminum parts using infrared (IR) technology. ...

  11. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry On Thermoelectric Properties of p-Type Skutterudites Development of Thermoelectric ...

  12. Preheated Combustion Air (International Fact Sheet), Energy Tips-Process Heating, Process Heating Tip Sheet #1c

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    This English/Chinese international tip sheet provides information for optimizing industrial process heating systems and includes measurements in metric units.

  13. Secondary heat exchanger design and comparison for advanced high temperature reactor

    SciTech Connect (OSTI)

    Sabharwall, P.; Kim, E. S.; Siahpush, A.; McKellar, M.; Patterson, M.

    2012-07-01

    Next generation nuclear reactors such as the advanced high temperature reactor (AHTR) are designed to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. This study considers two different types of heat exchangers - helical coiled heat exchanger and printed circuit heat exchanger - as possible options for the AHTR secondary heat exchangers with distributed load analysis and comparison. Comparison is provided for all different cases along with challenges and recommendations. (authors)

  14. Design, construction, operation, and evaluation of solar systems for industrial process-heat applications in the intermediate-temperature range (212/sup 0/F to 550/sup 0/F). Environmental assessment

    SciTech Connect (OSTI)

    1982-01-01

    The environmental impacts are assessed for a proposed 50,000 square foot field of single axis tracking, concentrating solar collectors along the Ohio River in southern Ohio. The facility is planned to produce process steam for use in the production of polystyrene. Absorbed solar energy would heat an aliphatic hydrocarbon synthetic heat transfer fluid to a maximum temperature of 500/sup 0/F. The existing environment is briefly described, particularly regarding air quality. The potential environmental impacts of the solar process heat system on the air, water, soil, endangered species and archaeological and historical resources are examined, including risks due to flood and glare and a comparison of alternatives. Also included are a Consent Judgment relating to two coal-fired boilers in violation of EPA regulations, property data of Gulf Synfluid 4CS (a candidate heat transfer fluid), piping and instrumentation diagrams and schematics, site grade and drainage plan, geological survey map, subsurface soil investigation, Ohio endangered species list, Ohio Archaeological Counsel certification list, and a study of heat transfer fluids and their properties. (LEW)

  15. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  16. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A.

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  17. Clean Boiler Waterside Heat Transfer Surfaces

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  18. High Temperature Heat Exchanger Project

    SciTech Connect (OSTI)

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  19. Power combiner

    DOE Patents [OSTI]

    Arnold, Mobius; Ives, Robert Lawrence

    2006-09-05

    A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

  20. Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time: 10:00 am - 12:30 pm EDT Purpose: To convene representatives from stakeholder organizations in order to enhance their understanding of the characteristics of condensing natural gas heating and water heating equipment that contribute to the unique installation requirements and challenges of this equipment compared to

  1. HEAT EXCHANGER

    DOE Patents [OSTI]

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  2. Waste Heat Recapture from Supermarket Refrigeration Systems

    SciTech Connect (OSTI)

    Fricke, Brian A

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

  3. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  4. Industrial Combustion Vision: A Vision by and for the Industrial Combustion Community

    SciTech Connect (OSTI)

    none,

    1998-05-01

    The Industrial Combustion Vision is the result of a collaborative effort by manufacturers and users of burners, boilers, furnaces, and other process heating equipment. The vision sets bold targets for tomorrow's combustion systems.

  5. Total Space Heating Water Heating Cook-

    Annual Energy Outlook

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 634 578 46 1 Q 116.4 106.3...

  6. Industry Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    idatech.com info@idatech.com 63065 NE 18 th Street Bend, OR 97701 541.383.3390 Industry Perspective Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 11 - 13, 2012 Mike Hicks Chairman of the Board of Directors, FCHEA Treasurer of the Board of Directors, FCS&E Engineering Manager, Technology Development & Integration, IdaTech Outline 1. Critical Factors * Fuel Purity * Fuel Cost 2. Natural Gas - The Wild Card & Competition 3. IdaTech's Experience Implementing

  7. Heating apparatus

    SciTech Connect (OSTI)

    Page, V. J.

    1981-02-10

    A solar energy heating apparatus is described comprising means for concentrating solar energy incident thereon at an absorption station, an absorber located at the said absorption station for absorbing solar energy concentrated thereat, a first passageway associated with the said energy concentrating means for directing fluid so as to be preheated by the proportion of the incident energy absorbed by the said means, a second passageway associated with the absorber for effecting principal heating of fluid directed therethrough. The second passageway is such that on directing fluid through the first passageway it is initially preheated by the proportion of the incident energy absorbed by the energy concentrating means, the preheated fluid thereafter being directed to the second passageway where the principal heating takes place.

  8. Computationally Optimized Homogenization Heat Treatment of Metal Alloys -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Energy Innovation Portal Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Computationally Optimized Homogenization Heat Treatment of Metal Alloys National Energy Technology Laboratory Contact NETL About This Technology Publications: PDF Document Publication Computationally Optimized Homogenization Heat Treatment of Metal Alloys (291 KB) Technology Marketing Summary ? A computational approach has been developed to

  9. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  10. Heat exchanger

    DOE Patents [OSTI]

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  11. Industrial Carbon Management Initiative

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Energy Industrial Assessment Centers (IAC) Update -- July 2015 Industrial Assessment Centers (IAC) Update -- July 2015 Read the Industrial Assessment Centers (IAC) Update -- July 2015 Industrial Assessment Centers Quarterly Update, July 2015 (845.58 KB) More Documents & Publications Industrial Assessment Centers Update, Fall 2015 Industrial Assessment Centers Quarterly Update, Spring 2014 IAC Factsheet

    Industrial Assessment Centers Update, Fall 2015 Industrial Assessment Centers

  12. Federal technology alert. Parabolic-trough solar water heating

    SciTech Connect (OSTI)

    1998-04-01

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  13. Heat transport system

    DOE Patents [OSTI]

    Harkness, Samuel D.

    1982-01-01

    A falling bed of ceramic particles receives neutron irradiation from a neutron-producing plasma and thereby transports energy as heat from the plasma to a heat exchange location where the ceramic particles are cooled by a gas flow. The cooled ceramic particles are elevated to a location from which they may again pass by gravity through the region where they are exposed to neutron radiation. Ceramic particles of alumina, magnesia, silica and combinations of these materials are contemplated as high-temperature materials that will accept energy from neutron irradiation. Separate containers of material incorporating lithium are exposed to the neutron flux for the breeding of tritium that may subsequently be used in neutron-producing reactions. The falling bed of ceramic particles includes velocity partitioning between compartments near to the neutron-producing plasma and compartments away from the plasma to moderate the maximum temperature in the bed.

  14. Expanding the Pool of Federal Policy Options to Promote Industrial Energy Efficiency

    SciTech Connect (OSTI)

    Brown, Dr. Marilyn Ann; Cox, Matthew; Jackson, Roderick K; Lapsa, Melissa Voss

    2011-01-01

    Improving the energy efficiency of industry is essential for maintaining the viability of domestic manufacturing, especially in a world economy where production is shifting to low-cost, less regulated developing countries. Numerous studies have shown the potential for significant cost-effective energy-savings in U.S. industries, but the realization of this potential is hindered by regulatory, information, workforce, and financial obstacles. This report evaluates seven federal policy options aimed at improving the energy efficiency of industry, grounded in an understanding of industrial decision-making and the barriers to efficiency improvements. Detailed analysis employs the Georgia Institute of Technology's version of the National Energy Modeling System and spreadsheet calculations, generating a series of benefit/cost metrics spanning private and public costs and energy bill savings, as well as air pollution benefits and the social cost of carbon. Two of the policies would address regulatory hurdles (Output-Based Emissions Standards and a federal Energy Portfolio Standard with Combined Heat and Power); three would help to fill information gaps and workforce training needs (the Superior Energy Performance program, Implementation Support Services, and a Small Firm Energy Management program); and two would tackle financial barriers (Tax Lien Financing and Energy-Efficient Industrial Motor Rebates). The social benefit-cost ratios of these policies appear to be highly favorable based on a range of plausible assumptions. Each of the seven policy options has an appropriate federal role, broad applicability across industries, utilizes readily available technologies, and all are administratively feasible.

  15. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1979-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  16. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  17. Breakthrough Furnace Can Cut Solar Industry Costs

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Furnace can Cut Solar Industry Costs A game-changing Optical Cavity Furnace (OCF)-developed by the National Renew- able Energy Laboratory (NREL) with funding from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy-uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency. As solar cells move through a manufacturer's production line, they must be oxidized, annealed, purified, diffused, etched, and layered. Heat is an

  18. Geothermal Heat Pump Benchmarking Report

    SciTech Connect (OSTI)

    1997-01-17

    A benchmarking study was conducted on behalf of the Department of Energy to determine the critical factors in successful utility geothermal heat pump programs. A Successful program is one that has achieved significant market penetration. Successfully marketing geothermal heat pumps has presented some major challenges to the utility industry. However, select utilities have developed programs that generate significant GHP sales. This benchmarking study concludes that there are three factors critical to the success of utility GHP marking programs: (1) Top management marketing commitment; (2) An understanding of the fundamentals of marketing and business development; and (3) An aggressive competitive posture. To generate significant GHP sales, competitive market forces must by used. However, because utilities have functioned only in a regulated arena, these companies and their leaders are unschooled in competitive business practices. Therefore, a lack of experience coupled with an intrinsically non-competitive culture yields an industry environment that impedes the generation of significant GHP sales in many, but not all, utilities.

  19. Designing Effective State Programs for the Industrial Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to approximately 6,420 trillion British thermal units of primary energy (including combined heat and power), according to a comprehensive 2009 analysis by McKinsey & Company. ...

  20. Heat transfer and heat exchangers reference handbook

    SciTech Connect (OSTI)

    Not Available

    1991-01-15

    The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

  1. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh; Vinegar, Harold J.

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  2. Heat exchanger

    DOE Patents [OSTI]

    Brackenbury, P.J.

    1983-12-08

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  3. Heat exchanger

    DOE Patents [OSTI]

    Brackenbury, Phillip J.

    1986-01-01

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  4. Heat exchanger

    DOE Patents [OSTI]

    Brackenbury, Phillip J.

    1986-04-01

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  5. Partnerships For Industry - JCAP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    115.jpg Partnerships For Industry Connect With JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP Connect with JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP partnerships for industry JCAP has established an Industrial Partnership Program. For more information on Industrial Partnership Program or to learn more about other modes of industrial interactions with JCAP, please contact: California Institute of Technology Office of

  6. DOE Technical Targets for Fuel Cell Systems for Stationary (Combined...

    Energy Savers

    Stationary (Combined Heat and Power) Applications DOE Technical Targets for Fuel Cell ... is running. g Battelle preliminary 2015 cost assessment of stationary CHP systems, ...

  7. Development of Thermoelectric Technology for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement. deer08_gundlach.pdf (1 MB) More Documents & Publications Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry Develop Thermoelectric

  8. Process Heating Assessment and Survey Tool Fact Sheet | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Assessment and Survey Tool Fact Sheet Process Heating Assessment and Survey Tool Fact Sheet This fact sheet describes how industrial plants can improve their process heating system performance using AMO's Process Heating Assessment and Survey Tool (PHAST) PHAST Fact Sheet (714.05 KB) More Documents & Publications Process Heating Assessment and Survey Tool (PHAST) Introduction Energy Assessment Helps Kaiser Aluminum Save Energy and Improve Productivity Reduce Air Infiltration in

  9. Use Feedwater Economizers for Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Feedwater Economizers for Waste Heat Recovery Use Feedwater Economizers for Waste Heat Recovery This tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #3 Use Feedwater Economizers for Waste Heat Recovery (January 2012) (381.06 KB) More Documents & Publications Consider Installing a Condensing Economizer Considerations When Selecting a Condensing Economizer

  10. Waste heat driven absorption refrigeration process and system

    DOE Patents [OSTI]

    Wilkinson, William H.

    1982-01-01

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  11. STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIE STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER ...

  12. SulfaTrap(tm): Novel Sorbent to Clean Biogas for Fuel Cell Combined...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SulfaTrap(tm): Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power SulfaTrap(tm): Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power Improving ...

  13. STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIE STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER...

  14. Heat pipe methanator

    DOE Patents [OSTI]

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  15. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  16. Segmented heat exchanger

    DOE Patents [OSTI]

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  17. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) (indexed site)

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  18. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  19. Modeling of Electromagnetic Heating in RF Copper Accelerating...

    Office of Scientific and Technical Information (OSTI)

    cooling scheme whether it is water or air based or even a combination of both. In this paper we investigate the electromagnetic heating in multiple cavities that were ...

  20. Electric Utility Industry Update

    Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  1. Uranium industry annual 1997

    SciTech Connect (OSTI)

    1998-04-01

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  2. Chemical Industry Corrosion Management

    SciTech Connect (OSTI)

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  3. Industrial | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Trends Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case....

  4. LS Industrial Systems Co Ltd formerly LG Industrial Systems ...

    Open Energy Information (Open El) [EERE & EIA]

    LS Industrial Systems Co Ltd formerly LG Industrial Systems Jump to: navigation, search Name: LS Industrial Systems Co Ltd (formerly LG Industrial Systems) Place: Anyang,...

  5. Heating 7. 2 user's manual

    SciTech Connect (OSTI)

    Childs, K.W.

    1993-02-01

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

  6. China develops natural gas industry

    SciTech Connect (OSTI)

    An, Z.

    1982-09-06

    As of 1981, China was producing some 474.4 billion CF (12.74 billion m/sup 3/)/yr of natural gas from over 60 gas fields, 40 of them in Sichuan Province. The Sichuan gas lies in fractures and solution cavities in limestone and dolomite formations that generally require stimulation. After desulfurization, the gas is used by the steel and chemical industries and for residential heating. Recent discoveries in other areas of China include the Guxinzhuang field in the Bohai-North China basin, where geological conditions favor large gas pools, and the Sebei fields in Qaidam basin, northwest China.

  7. Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications

    Energy.gov [DOE]

    Progress in reliable high temperature segmented thermoelectric devices and potential for producing electricity from waste heat from energy intensive industrial processes and transportation vehicles exhaust are discussed

  8. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L.

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  9. " by Census Region, Census Division, Industry Group, Selected Industries, and"

    U.S. Energy Information Administration (EIA) (indexed site)

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 1" " (Estimates in Trillion Btu)",," ",,,,,,," "," "," " ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One

  10. Modernizing furnaces with recuperative burners in the metal industry

    SciTech Connect (OSTI)

    Berdoulay, F.; Drewery, P.

    1982-01-01

    Industrial burners equipped with means of preheating the combustion air with the hot combustion products offer significant savings in heat-processing energy consumption. As evidence in some forging furnaces recently outfitted with recuperative burners, reductions in energy consumption range from 30 to 60%. Such burners are particularly well-suited for high-temperature, direct-heating furnaces.

  11. Solar heating panel

    SciTech Connect (OSTI)

    Ellsworth, R.L.

    1983-01-18

    A solar heating panel for collecting solar heat energy and method for making same having a heat insulative substrate with a multiplicity of grooves and structural supporting ribs formed therein covered by a thin, flexible heat conductive film to form fluid conducting channels which in turn are connected to manifolds from which fluid is directed into the channels and heated fluid is removed therefrom.

  12. Heat Exchangers for Solar Water Heating Systems | Department...

    Energy Savers

    Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. |...

  13. Users from Industry

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, and/or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial

  14. Global Heat Exchangers Market to be driven by Rapidly Expanding...

    Open Energy Information (Open El) [EERE & EIA]

    by Rapidly Expanding End-user Industries Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150) Contributor 2 July, 2015 - 00:43 Heat...

  15. York Electric Cooperative- Dual Fuel Heat Pump Rebate Program

    Energy.gov [DOE]

    York Electric Cooperative, Inc. (YEC) offers a $200 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residences, commercial, and industrial...

  16. Recover Heat from Boiler Blowdown - Steam Tip Sheet #10

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on recovering heat from boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  17. Cover Heated, Open Vessels - Steam Tip Sheet #19

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO steam tip sheet on covering heated, open vessels provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  18. Process Heating Assessment and Survey Tool User Manuals

    Office of Energy Efficiency and Renewable Energy (EERE)

    PHAST 3.0 User Manuals are available for Electrotechnology and Fuel Fired Technology (for US and International units). The PHAST tool can be used to assess energy use and estimate energy use reduction for industrial process heating equipment.

  19. City of Palo Alto Utilities- Solar Water Heating Program

    Energy.gov [DOE]

    City of Palo Alto Utilities is offering incentives for their residential, commercial and industrial customers to install solar water heating systems on their homes and facilities with a goal of 1...

  20. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.