National Library of Energy BETA

Sample records for include waste-heat units

  1. Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery

    SciTech Connect

    Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

    2008-06-20

    An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

  2. New waste-heat refrigeration unit cuts flaring, reduces pollution

    SciTech Connect

    Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

    1998-05-18

    Planetec Utility Services Co. Inc. and Energy Concepts Co. (ECC), with the help of the US Department of Energy (DOE), developed and commissioned a unique waste-heat powered LPG recovery plant in August 1997 at the 30,000 b/d Denver refinery, operated by Ultramar Diamond Shamrock (UDS). This new environmentally friendly technology reduces flare emissions and the loss of salable liquid-petroleum products to the fuel-gas system. The waste heat ammonia absorption refrigeration plant (Whaarp) is the first technology of its kind to use low-temperature waste heat (295 F) to achieve sub-zero refrigeration temperatures ({minus}40 F) with the capability of dual temperature loads in a refinery setting. The ammonia absorption refrigeration is applied to the refinery`s fuel-gas makeup streams to condense over 180 b/d of salable liquid hydrocarbon products. The recovered liquid, about 64,000 bbl/year of LPG and gasoline, increases annual refinery profits by nearly $1 million, while substantially reducing air pollution emissions from the refinery`s flare.

  3. Waste Heat to Power Market Assessment

    SciTech Connect

    Elson, Amelia; Tidball, Rick; Hampson, Anne

    2015-03-01

    Waste heat to power (WHP) is the process of capturing heat discarded by an existing process and using that heat to generate electricity. In the industrial sector, waste heat streams are generated by kilns, furnaces, ovens, turbines, engines, and other equipment. In addition to processes at industrial plants, waste heat streams suitable for WHP are generated at field locations, including landfills, compressor stations, and mining sites. Waste heat streams are also produced in the residential and commercial sectors, but compared to industrial sites these waste heat streams typically have lower temperatures and much lower volumetric flow rates. The economic feasibility for WHP declines as the temperature and flow rate decline, and most WHP technologies are therefore applied in industrial markets where waste heat stream characteristics are more favorable. This report provides an assessment of the potential market for WHP in the industrial sector in the United States.

  4. Waste Heat Recovery

    Office of Environmental Management (EM)

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  5. Waste Heat Management Options for Improving Industrial Process Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power.

  6. Quantity, quality, and availability of waste heat from United States thermal power generation

    DOE PAGES [OSTI]

    Gingerich, Daniel B; Mauter, Meagan S

    2015-06-10

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJthmoreof residual heat in 2012, 4% of which was discharged at temperatures greater than 90 C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.less

  7. Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1. Introduction to Waste Heat Recovery .......................................................................................... 2 5 1.2. Challenges and Barriers for Waste Heat Recovery ..................................................................... 13 6 1.3. Public

  8. Waste heat: Utilization and management

    SciTech Connect

    Sengupta, S.; Lee, S.S.

    1983-01-01

    This book is a presentation on waste heat management and utilization. Topics covered include cogeneration, recovery technology, low grade heat recovery, heat dispersion models, and ecological effects. The book focuses on the significant fraction of fuel energy that is rejected and expelled into the environment either as industrial waste or as a byproduct of installation/equipment operation. The feasibility of retrieving this heat and energy is covered, including technical aspects and potential applications. Illustrations demonstrate that recovery methods have become economical due to recent refinements. The book includes theory and practice concerning waste heat management and utilization.

  9. Waste Heat Recapture from Supermarket Refrigeration Systems

    SciTech Connect

    Fricke, Brian A

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

  10. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Generator Development for Automotive Waste Heat Recovery Thermoelectric Generator ... More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat ...

  11. Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology for Automotive Waste Heat Recovery Thermoelectric Technology for Automotive ... More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat ...

  12. Waste Heat Recovery. Technology and Opportunities in U.S. Industry

    SciTech Connect

    Johnson, Ilona; Choate, William T.; Davidson, Amber

    2008-03-01

    This study was initiated in order to evaluate RD&D needs for improving waste heat recovery technologies. A bottomup approach is used to evaluate waste heat quantity, quality, recovery practices, and technology barriers in some of the largest energyconsuming units in U.S. manufacturing. The results from this investigation serve as a basis for understanding the state of waste heat recovery and providing recommendations for RD&D to advance waste heat recovery technologies.

  13. Rankine cycle waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  14. Rankine cycle waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-05-10

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  15. Waste Heat Recovery Opportunities for Thermoelectric Generators

    Office of Energy Efficiency and Renewable Energy (EERE)

    Thermoelectrics have unique advantages for integration into selected waste heat recovery applications.

  16. Identification of existing waste heat recovery and process improvement technologies

    SciTech Connect

    Watts, R.L.; Dodge, R.E.; Smith, S.A.; Ames, K.R.

    1984-03-01

    General information is provided on waste heat recovery opportunities. The currently available equipment for high- and low-temperature applications are described. Other equipment related to wasteheat recovery equipment such as components, instruments and controls, and cleaning equipment is discussed briefly. A description of the microcomputer data base is included. Suppliers of waste heat equipment are mentioned throughout the report, with specific contacts, addresses, and telephone numbers provided in an Appendix.

  17. Waste Heat Utilization System Property Tax Exemption

    Energy.gov [DOE]

    Waste heat utilization systems arefacilities and equipment for the recovery of waste heat generated in the process of generating electricity and the use of such heat to generate additional elect...

  18. Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Develop Thermoelectric Technology for Automotive Waste Heat Recovery ...

  19. Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Develop Thermoelectric Technology for Automotive Waste Heat Recovery ...

  20. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  1. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound ...

  2. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  3. Waste Heat-to-Power in Small Scale Industry Using Scroll Expander for Organic Rankine Bottoming Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat-to-Power ADVANCED MANUFACTURING OFFICE Waste Heat-to- Power in Small Scale Industry Using Scroll Expander for Organic Rankine Bottoming Cycle Development of an Efficient, Cost- Effective System to Recover Medium- Grade Industrial Waste Heat. There is a signifcant opportunity to recover waste heat that is exhausted in various manufacturing industries, including food processing. A large portion of unrecovered industrial waste heat is considered to be low temperature, which has less recovery

  4. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Energy.gov [DOE] (indexed site)

    Air Products and Chemicals, Inc. - Allentown, PA A microbial reverse electrodialysis technology ... Bio-Electrochemical Integration of Waste Heat Recovery, Waste-To-Energy Conversion, ...

  5. Engine Waste Heat Recovery Concept Demonstration | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in a Small Engine Test Cell for Enhanced Kinetic Engine Modeling Accuracy A Thermoelectric Generator with an Intermediate Heat Exchanger for Automotive Waste Heat Recovery ...

  6. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Energy.gov [DOE] (indexed site)

    Thermoelectrics have unique advantages for integration into selected waste heat recovery applications. fleurial.pdf (2.3 MB) More Documents & Publications High Reliability, High ...

  7. Use of photovoltaics for waste heat recovery

    DOEpatents

    Polcyn, Adam D

    2013-04-16

    A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.

  8. Automotive Waste Heat Conversion to Power Program | Department...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Development of a 500 Watt High Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program Thermoelectric Waste Heat ...

  9. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity ...

  10. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Energy.gov [DOE] (indexed site)

    Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate

  11. Thermoelectrici Conversion of Waste Heat to Electricity in an...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC ...

  12. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    MB) More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity ...

  13. Waste Heat Management Options for Improving Industrial Process...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waste Heat Management Options for Improving Industrial Process Heating Systems Waste Heat Management Options for Improving Industrial Process Heating Systems This presentation ...

  14. Waste Heat Reduction and Recovery for Improving Furnace Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and ...

  15. Using Waste Heat for External Processes; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Using Waste Heat for External Processes The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery ...

  16. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions.

  17. Using Waste Heat for External Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waste Heat for External Processes Using Waste Heat for External Processes This tip sheet describes the potential savings resulting from using waste heat from high-temperature process heating for lower temperature processes, like oven-drying. PROCESS HEATING TIP SHEET #10 Using Waste Heat for External Processes (January 2006) (290.05 KB) More Documents & Publications Reduce Air Infiltration in Furnaces Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and

  18. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    SciTech Connect

    Thekdi, Arvind; Nimbalkar, Sachin U.

    2015-01-01

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  19. High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery

    Energy.gov [DOE]

    Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology

  20. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    DOEpatents

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  1. Waste Heat Utilization System Income Tax Deduction (Personal)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Waste heat utilization system means facilities and equipment for the recovery of waste heat generated in the process of generating electricity and the use of such heat to generate additional elec...

  2. Waste Heat Utilization System Income Tax Deduction (Corporate)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Waste heat utilization system means facilities and equipment for the recovery of waste heat generated in the process of generating electricity and the use of such heat to generate additional elec...

  3. Use Feedwater Economizers for Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Feedwater Economizers for Waste Heat Recovery Use Feedwater Economizers for Waste Heat Recovery This tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #3 Use Feedwater Economizers for Waste Heat Recovery (January 2012) (381.06 KB) More Documents & Publications Consider Installing a Condensing Economizer Considerations When Selecting a Condensing Economizer

  4. Organic rankine cycle waste heat applications

    DOEpatents

    Brasz, Joost J.; Biederman, Bruce P.

    2007-02-13

    A machine designed as a centrifugal compressor is applied as an organic rankine cycle turbine by operating the machine in reverse. In order to accommodate the higher pressures when operating as a turbine, a suitable refrigerant is chosen such that the pressures and temperatures are maintained within established limits. Such an adaptation of existing, relatively inexpensive equipment to an application that may be otherwise uneconomical, allows for the convenient and economical use of energy that would be otherwise lost by waste heat to the atmosphere.

  5. Waste Heat Reduction and Recovery for Improving Furnace Efficiency,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief | Department of Energy Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief This technical brief is a guide to help plant operators reduce waste heat

  6. Vehicle Technologies Office: Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Efficiency & Emissions » Vehicle Technologies Office: Waste Heat Recovery Vehicle Technologies Office: Waste Heat Recovery Along with high efficiency engine technologies and emission control, the Vehicle Technologies Office (VTO) is supporting research and development to increase vehicle fuel economy by recovering energy from engine waste heat. In current gasoline vehicles, only about 25 percent of the fuel's energy is used to drive the wheels; in contrast, more than 70 percent is lost

  7. Characterization of industrial process waste heat and input heat streams

    SciTech Connect

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  8. Development of Thermoelectric Technology for Automotive Waste Heat Recovery

    Energy.gov [DOE]

    Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement.

  9. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Solid-State ...

  10. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Energy.gov [DOE] (indexed site)

    truck schock.pdf (2.38 MB) More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate

  11. Automotive Waste Heat Conversion to Electric Power using Skutterudites...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Development of a Scalable 10% Efficient Thermoelectric Generator Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicular ...

  12. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry On Thermoelectric Properties of p-Type Skutterudites Development of Thermoelectric ...

  13. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy ... Engineering and Materials for Automotive Thermoelectric Applications Electrical and ...

  14. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Energy.gov [DOE] (indexed site)

    (1.82 MB) More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate

  15. Rankine cycle waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  16. Waste Heat Management Options: Industrial Process Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam Generation * Fluid Heating * Calcining * Drying * Heat Treating * Metal Heating * Metal and Non-metal Melting * Smelting, agglomeration etc. * Curing and Forming * Other Heating Waste heat is everywhere! Arvind Thekdi, E3M Inc Arvind Thekdi, E3M Inc 3 Waste Heat Sources from Process Heating Equipment * Hot gases -

  17. QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY

    SciTech Connect

    Saeid Ghamaty

    2006-03-31

    New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

  18. QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY

    SciTech Connect

    Saeid Ghamaty

    2006-02-01

    New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

  19. Performance of an Organic Rankine Cycle Waste Heat Recovery System...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research ...

  20. Feasibility of Thermoelectrics for Waste Heat Recovery in Conventional Vehicles

    SciTech Connect

    Smith, K.; Thornton, M.

    2009-04-01

    Thermoelectric (TE) generators convert heat directly into electricity when a temperature gradient is applied across junctions of two dissimilar metals. The devices could increase the fuel economy of conventional vehicles by recapturing part of the waste heat from engine exhaust and generating electricity to power accessory loads. A simple vehicle and engine waste heat model showed that a Class 8 truck presents the least challenging requirements for TE system efficiency, mass, and cost; these trucks have a fairly high amount of exhaust waste heat, have low mass sensitivity, and travel many miles per year. These factors help maximize fuel savings and economic benefits. A driving/duty cycle analysis shows strong sensitivity of waste heat, and thus TE system electrical output, to vehicle speed and driving cycle. With a typical alternator, a TE system could allow electrification of 8%-15% of a Class 8 truck's accessories for 2%-3% fuel savings. More research should reduce system cost and improve economics.

  1. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Energy.gov [DOE] (indexed site)

    ace46schock.pdf (1.94 MB) More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste

  2. Waste heat driven absorption refrigeration process and system

    DOEpatents

    Wilkinson, William H.

    1982-01-01

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  3. NREL Reveals Potential for Capturing Waste Heat via Nanotubes - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Releases | NREL Reveals Potential for Capturing Waste Heat via Nanotubes April 4, 2016 A finely tuned carbon nanotube thin film has the potential to act as a thermoelectric power generator that captures and uses waste heat, according to researchers at the Energy Department's National Renewable Energy Laboratory (NREL). The research could help guide the manufacture of thermoelectric devices based on either single-walled carbon nanotube (SWCNT) films or composites containing these nanotubes.

  4. Multi-physics modeling of thermoelectric generators for waste heat recovery applications

    Energy.gov [DOE]

    Model developed provides effective guidelines to designing thermoelectric generation systems for automotive waste heat recovery applications

  5. Refinery chooses ORC to convert process waste heat to electric power

    SciTech Connect

    Makansi, J.

    1985-03-01

    The organic Rankine-cycle (ORC) waste-heat-recovery system is one of several concepts that DOE, energy-systems suppliers, and others have been developing to make use of low-level waste-heat streams at process and manufacturing plants. Now, several years after the oil crisis of the 1970s accelerated this development, one ORC system has found a home in the energy-intensive refining industry. Mobil Oil Corp has been generating electric power with an ORC system supplied by Turbonetics Energy Inc, a subsidiary of Mechanical Technology Inc (MTI), Latham, NY - at its Torrence (Calif) refinery complex for about nine months. Two modules, each rated at 1070 kW, recover heat from a 300F vapor product stream leaving a fluidcatalytic-cracking (FCC) unit. As a result, cooling duty on the existing overhead coolers has been reduced by about 70-million Btu/hr.

  6. LPG recovery from refinery flare by waste heat powered absorption refrigeration

    SciTech Connect

    Erickson, D.C.; Kelly, F.

    1998-07-01

    A waste heat powered ammonia Absorption Refrigeration Unit (ARU) has commenced operation at the Colorado Refining Company in Commerce City, Colorado. The ARU provides 85 tons of refrigeration at 30 F to refrigerate the net gas/treat gas stream, thereby recovering 65,000 barrels per year of LPG which formerly was flared or burned as fuel. The ARU is powered by the 290 F waste heat content of the reform reactor effluent. An additional 180 tons of refrigeration is available at the ARU to debottleneck the FCC plant wet gas compressors by cooling their inlet vapor. The ARU is directly integrated into the refinery processes, and uses enhanced, highly compact heat and mass exchange components. The refinery's investment will pay back in less than two years from increased recovery of salable product, and CO{sub 2} emissions are decreased by 10,000 tons per year in the Denver area.

  7. Technologies and Materials for Recovering Waste Heat in Harsh Environments

    SciTech Connect

    Nimbalkar, Sachin U.; Thekdi, Arvind; Rogers, Benjamin M.; Kafka, Orion L.; Wenning, Thomas J.

    2014-12-15

    A large amount (7,204 TBtu/year) of energy is used for process heating by the manufacturing sector in the United States (US). This energy is in the form of fuels mostly natural gas with some coal or other fuels and steam generated using fuels such as natural gas, coal, by-product fuels, and some others. Combustion of these fuels results in the release of heat, which is used for process heating, and in the generation of combustion products that are discharged from the heating system. All major US industries use heating equipment such as furnaces, ovens, heaters, kilns, and dryers. The hot exhaust gases from this equipment, after providing the necessary process heat, are discharged into the atmosphere through stacks. This report deals with identification of industries and industrial heating processes in which the exhaust gases are at high temperature (>1200 F), contain all of the types of reactive constituents described, and can be considered as harsh or contaminated. It also identifies specific issues related to WHR for each of these processes or waste heat streams.

  8. An Engine System Approach to Exhaust Waste Heat Recovery | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy An Engine System Approach to Exhaust Waste Heat Recovery An Engine System Approach to Exhaust Waste Heat Recovery Summarizes progress in design, analysis, and testing of individual component building blocks of waste heat recovery system for a 10% improvement in heavy-duty diesel engine. deer08_kruiswyk.pdf (1.52 MB) More Documents & Publications An Engine System Approach to Exhaust Waste Heat Recovery An Engine System Approach to Exhaust Waste Heat Recovery An Engine System

  9. Fuel cell repeater unit including frame and separator plate

    SciTech Connect

    Yamanis, Jean; Hawkes, Justin R; Chiapetta, Jr., Louis; Bird, Connie E; Sun, Ellen Y; Croteau, Paul F

    2013-11-05

    An example fuel cell repeater includes a separator plate and a frame establishing at least a portion of a flow path that is operative to communicate fuel to or from at least one fuel cell held by the frame relative to the separator plate. The flow path has a perimeter and any fuel within the perimeter flow across the at least one fuel cell in a first direction. The separator plate, the frame, or both establish at least one conduit positioned outside the flow path perimeter. The conduit is outside of the flow path perimeter and is configured to direct flow in a second, different direction. The conduit is fluidly coupled with the flow path.

  10. Waste heat recovery from the European Spallation Source cryogenic helium plants - implications for system design

    SciTech Connect

    Jurns, John M.; Bäck, Harald; Gierow, Martin

    2014-01-29

    The European Spallation Source (ESS) neutron spallation project currently being designed will be built outside of Lund, Sweden. The ESS design includes three helium cryoplants, providing cryogenic cooling for the proton accelerator superconducting cavities, the target neutron source, and for the ESS instrument suite. In total, the cryoplants consume approximately 7 MW of electrical power, and will produce approximately 36 kW of refrigeration at temperatures ranging from 2-16 K. Most of the power consumed by the cryoplants ends up as waste heat, which must be rejected. One hallmark of the ESS design is the goal to recycle waste heat from ESS to the city of Lund district heating system. The design of the cooling system must optimize the delivery of waste heat from ESS to the district heating system and also assure the efficient operation of ESS systems. This report outlines the cooling scheme for the ESS cryoplants, and examines the effect of the cooling system design on cryoplant design, availability and operation.

  11. Water recovery using waste heat from coal fired power plants.

    SciTech Connect

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  12. WASTE HEAT-TO-POWER IN SMALL-SCALE INDUSTRY USING SCROLL EXPANDER...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WASTE HEAT-TO-POWER IN SMALL-SCALE INDUSTRY USING SCROLL EXPANDER FOR ORGANIC RANKINE BOTTOMING CYCLE WASTE HEAT-TO-POWER IN SMALL-SCALE INDUSTRY USING SCROLL EXPANDER FOR ORGANIC ...

  13. Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

  14. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Waste Heat Recovery Systems for Fuel-Fired Furnaces Install Waste Heat Recovery Systems for Fuel-Fired Furnaces This tip sheet recommends installing waste heat recovery systems for fuel-fired furnaces to increase the energy efficiency of process heating systems. PROCESS HEATING TIP SHEET #8 Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (September 2005) (280.81 KB) More Documents & Publications Load Preheating Using Flue Gases from a Fuel-Fired Heating System Using

  15. NSF/DOE Thermoelectrics Partnership: Purdue … GM Partnership on Thermoelectrics for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Reviews results in developing commercially viable thermoelectric generators for efficient conversion of automotive exhaust waste heat to electricity

  16. Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures

    SciTech Connect

    Tomlinson, John J; Christian, Jeff; Gehl, Anthony C

    2012-09-01

    Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the

  17. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    SciTech Connect

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer

  18. Port Graham Woody Biomass Community Waste Heat Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Woody Biomass Community Waste Heat Project Charlie Sink, Chugachmiut For Port Graham Tribal Council U.S. of Energy Tribal Energy Program Annual Tribal Energy Conference 2012 November 13-16, 2012 Nanwalek Nanwalek Port Graham, Alaska Approximately 134 people Annual fuel consumption 53,100 gallons diesel fuel for heat Annual electrical usage 1,340,000 kWh/yr Funding Agencies US Department of Energy Tribal Energy Program (DOE/TEP) http://apps1.eere.energy.gov/tribalenergy/ Alaska Energy Authority

  19. Waste Heat Recovery System: Lightweight Thermal Energy Recovery (LIGHTER) System

    SciTech Connect

    2010-01-01

    Broad Funding Opportunity Announcement Project: GM is using shape memory alloys that require as little as a 10C temperature difference to convert low-grade waste heat into mechanical energy. When a stretched wire made of shape memory alloy is heated, it shrinks back to its pre-stretched length. When the wire cools back down, it becomes more pliable and can revert to its original stretched shape. This expansion and contraction can be used directly as mechanical energy output or used to drive an electric generator. Shape memory alloy heat engines have been around for decades, but the few devices that engineers have built were too complex, required fluid baths, and had insufficient cycle life for practical use. GM is working to create a prototype that is practical for commercial applications and capable of operating with either air- or fluid-based heat sources. GMs shape memory alloy based heat engine is also designed for use in a variety of non-vehicle applications. For example, it can be used to harvest non-vehicle heat sources, such as domestic and industrial waste heat and natural geothermal heat, and in HVAC systems and generators.

  20. Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM

    Office of Energy Efficiency and Renewable Energy (EERE)

    Overview of design, fabrication, integration, and test of working prototype TEG for engine waste heat recovery on Suburban test vehicle, and continuing investigation of skutterudite materials systems

  1. Overview of Fords Thermoelectric Programs: Waste Heat Recovery...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control Thermoelectric HVAC for Light-Duty Vehicle Applications ...

  2. High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Development of an Underamor 1-kW Thermoelectric Generator Waste Heat Recovery System for Military Vehicles Recent Progress in the Development of High ...

  3. Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications

    Energy.gov [DOE]

    Progress in reliable high temperature segmented thermoelectric devices and potential for producing electricity from waste heat from energy intensive industrial processes and transportation vehicles exhaust are discussed

  4. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  5. Capturing the Invisible Resource. Analysis of Waste Heat Potential in Chinese Industry and Policy Options for Waste Heat to Power Generation

    SciTech Connect

    Lu, Hongyou

    2015-05-01

    This study analyzed the theoretical maximum potential and practical potential of waste heat in the cement, iron, and steel, and glass sectors in China, based on thermal energy modeling, expert interviews, and literature reviews.

  6. A Waste Heat Recovery System for Light Duty Diesel Engines

    SciTech Connect

    Briggs, Thomas E; Wagner, Robert M; Edwards, Kevin Dean; Curran, Scott; Nafziger, Eric J

    2010-01-01

    In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

  7. Low-temperature waste-heat recovery in the food and paper industries

    SciTech Connect

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  8. WASTE HEAT-TO-POWER IN SMALL-SCALE INDUSTRY USING SCROLL EXPANDER FOR

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ORGANIC RANKINE BOTTOMING CYCLE | Department of Energy WASTE HEAT-TO-POWER IN SMALL-SCALE INDUSTRY USING SCROLL EXPANDER FOR ORGANIC RANKINE BOTTOMING CYCLE WASTE HEAT-TO-POWER IN SMALL-SCALE INDUSTRY USING SCROLL EXPANDER FOR ORGANIC RANKINE BOTTOMING CYCLE TIAX LLC - Lexington, MA Medium-grade waste heat can be converted to electric power using a novel, scalable scroll expander having an isentropic expansion efficiency of 75% to 80% for a broad range of organic Rankine cycle boiler

  9. Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control

    Energy.gov [DOE]

    Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging, durability, and systems integration

  10. Using Waste Heat for External Processes (English/Chinese) (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used in petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.

  11. Vehicle Technologies Office Merit Review 2014: Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Energy.gov [DOE]

    Presentation given by GenTherm at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thermoelectric waste heat recovery...

  12. Development of a Waste Heat Recovery System for Light Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of ...

  13. Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control

    Energy.gov [DOE]

    Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging, durability, and systems integration

  14. Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    SciTech Connect

    2008-12-01

    This factsheet describes a research project to optimize the Organic Rankine Cycle for the conversion of low-temperature waste heat from gas turbine or reciprocating engine exhaust to electricity.

  15. Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight

    Energy.gov [DOE]

    Did you know 50 percent of the energy generated annually from all sources is lost as waste heat? What scientists are doing to take advantage of this opportunity to save money and new developments in harvesting fuel through photosynthesis.

  16. Use Feedwater Economizers for Waste Heat Recovery - Steam Tip Sheet #3

    SciTech Connect

    2012-01-31

    This revised AMO tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  17. Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dieckmann, TIAX LLC, Principal Investigator (Presenter) U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 14-15, 2016 Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle DE-EE0005767 TIAX LLC and Keurig Green Mountain (field test site) July 1, 2013 - June 30, 2017 Project Objective  Primary objective - develop scroll expander technology for organic Rankine cycle (ORC) for power generation from recovered waste heat, with power outputs

  18. Hybrid Solar Lighting Provides Energy Savings and Reduces Waste Heat

    SciTech Connect

    Lapsa, Melissa Voss; Maxey, L Curt; Earl, Dennis Duncan; Beshears, David L; Ward, Christina D; Parks, James Edgar

    2006-01-01

    ABSTRACT Artificial lighting is the largest component of electricity use in commercial U.S. buildings. Hybrid solar lighting (HSL) provides an exciting new means of reducing energy consumption while also delivering significant ancillary benefits associated with natural lighting in buildings. As more than half of all federal facilities are in the Sunbelt region (defined as having an average direct solar radiation of greater than 4 kWh/m2/day) and as more than half of all square footage available in federal buildings is also in the Sunbelt, HSL is an excellent technology fit for federal facilities. The HSL technology uses a rooftop, 4-ft-wide dish and secondary mirror that track the sun throughout the day (Fig. 1). The collector system focuses the sunlight onto 127 optical fibers. The fibers serve as flexible light pipes and are connected to hybrid light fixtures that have special diffusion rods that spread out the light in all directions. One collector powers about eight hybrid light fixtures-which can illuminate about 1,000 square feet. The system tracks at 0.1 accuracy, required by the two-mirror geometry to keep the focused beam on the fiber bundle. When sunlight is plentiful, the optical fibers in the luminaires provide all or most of the light needed in an area. During times of little or no sunlight, a sensor controls the intensity of the artificial lamps to maintain a desired illumination level. Unlike conventional electric lamps, the natural light produces little to no waste heat and is cool to the touch. This is because the system's solar collector removes the infrared light-the part of the spectrum that generates a lot of the heat in conventional bulbs-from the sunlight.

  19. Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor

    SciTech Connect

    Donna P. Guillen

    2012-07-01

    This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

  20. Comparative Performance Analysis of IADR Operating in Natural Gas-Fired and Waste-Heat CHP Modes

    SciTech Connect

    Petrov, Andrei Y; Sand, James R; Zaltash, Abdolreza

    2006-01-01

    Fuel utilization can be dramatically improved through effective recycle of 'waste' heat produced as a by-product of on-site or near-site power generation technologies. Development of modular compact cooling, heating, and power (CHP) systems for end-use applications in commercial and institutional buildings is a key part of the Department of Energy's (DOE) energy policy. To effectively use the thermal energy from a wide variety of sources which is normally discarded to the ambient, many components such as heat exchangers, boilers, absorption chillers, and desiccant dehumidification systems must be further developed. Recently a compact, cost-effective, and energy-efficient integrated active-desiccant vapor-compression hybrid rooftop (IADR) unit has been introduced in the market. It combines the advantages of an advanced direct-expansion cooling system with the dehumidification capability of an active desiccant wheel. The aim of this study is to compare the efficiency of the IADR operation in baseline mode, when desiccant wheel regeneration is driven by a natural gas burner, and in CHP mode, when the waste heat recovered from microturbine exhaust gas is used for desiccant regeneration. Comparative analysis shows an excellent potential for more efficient use of the desiccant dehumidification as part of a CHP system and the importance of proper sizing of the CHP components. The most crucial factor in exploiting the efficiency of this application is the maximum use of thermal energy recovered for heating of regeneration air.

  1. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    SciTech Connect

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  2. EERE Success Story-Steel Mill Powered by Waste Heat Recovery System |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Steel Mill Powered by Waste Heat Recovery System EERE Success Story-Steel Mill Powered by Waste Heat Recovery System May 16, 2013 - 12:00am Addthis EERE worked with ArcelorMittal USA, Inc. to install an efficient recovery boiler to burn blast furnace gases generated during iron-making operations to produce electricity and steam onsite at the company's Indiana Harbor Steel Mill in East Chicago, Indiana. The steam is being used to drive existing turbogenerators onsite,

  3. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery

    SciTech Connect

    Hendricks, Terry; Choate, William T.

    2006-11-01

    This report evaluates thermoelectric generator (TEG) systems with the intent to: 1) examine industrial processes in order to identify and quantify industrial waste heat sources that could potentially use TEGs; 2) describe the operating environment that a TEG would encounter in selected industrial processes and quantify the anticipated TEG system performance; 3) identify cost, design and/or engineering performance requirements that will be needed for TEGs to operate in the selected industrial processes; and 4) identify the research, development and deployment needed to overcome the limitations that discourage the development and use of TEGs for recovery of industrial waste heat.

  4. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    SciTech Connect

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  5. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Energy.gov [DOE] (indexed site)

    used as an energy recovery system auxiliary power unit in an over-the-road truck system. schock.pdf (2.64 MB) More Documents & Publications Thermoelectric Conversion of Wate

  6. Development of a Waste Heat Recovery System for Light Duty Diesel Engines

    Energy.gov [DOE]

    Substantial increases in engine efficiency of a light-duty diesel engine, which require utilization of the waste energy found in the coolant, EGR, and exhaust streams, may be increased through the development of a Rankine cycle waste heat recovery system

  7. Feasibility of Thermoelectrics for Waste Heat Recovery in Hybrid Vehicles: Preprint

    SciTech Connect

    Smith, K.; Thornton, M.

    2007-12-01

    Using advanced materials, thermoelectric conversion of efficiencies on the order of 20% may be possible in the near future. Thermoelectric generators offer potential to increase vehicle fuel economy by recapturing a portion of the waste heat from the engine exhaust and generating electricity to power vehicle accessory or traction loads.

  8. Development of High-efficiency Thermoelectric Materials for Vehicle Waste Heat Utililization

    SciTech Connect

    Li, Qiang

    2009-04-30

    The goals of this . CRADA are: 1) Investigation of atomistic structure and nucleation of nanoprecipitates in (PbTe){sub I-x}(AgSbTe2){sub x} (LAST) system; and 2) Development of non-equilibrium synthesis of thermoelectric materials for waste heat recovery. We have made significant accomplishment in both areas. We studied the structure of LAST materials using high resolution imaging, nanoelectron diffraction, energy dispersive spectrum, arid electron energy loss spectrum, and observed a range of nanoparticles The results, published in J. of Applied Physics, provide quantitative structure information about nanoparticles, that is essential for the understanding of the origin of the high thermoelectric performance in this class of materials. We coordinated non-equilibrium synthesis and characterization of thermoelectric materials for waste heat recovery application. Our results, published in J. of Electronic Materials, show enhanced thermoelectric figure of merit and robust mechanical properties in bulk . filled skutterudites.

  9. Turning Waste Heat into Power: Ener-G-Rotors and the Entrepreneurial Mentorship Program

    Energy.gov [DOE]

    If you’ve ever driven by an industrial plant, you’ve probably noticed big white plumes rising from the tops of the facilities. While it might look like smoke or pollution at first glance, most of the time those white plumes are comprised of steam and heat, or what Ener-G-Rotors CEO Michael Newell calls waste heat. Mike and the researchers of Ener-G-Rotors are finding ways to use this escaped steam and turn it into energy.

  10. Ethanol production utilizing waste heat. Phart I. Project definition and preliminary design. Final report

    SciTech Connect

    Not Available

    1982-09-30

    A comprehensive evaluation of the utilization of available waste heat and agricultural feed-stocks for the manufacture of fuel-grade ethanol was completed. The results of the first phase of a four-phase program for the commercialization of a 20-million gal/yr ethanol plant at a site adjacent to the US Department of Energy Gaseous Diffusion Plant (GDP) in Paducah, Kentucky are presented.

  11. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  12. Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles

    SciTech Connect

    Haihua Zhao; Per F. Peterson

    2012-10-01

    Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cycles can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.

  13. Optimization of biological recycling of plant nutrients in livestock waste by utilizing waste heat from cooling water

    SciTech Connect

    Maddox, J.J.; Behrends, L.L.; Burch, D.W.; Kingsley, J.B.; Waddell, E.L. Jr.

    1982-05-01

    Results are presented from a 5-year study to develop aquatic methods which beneficially use condenser cooling water from electric generating power plants. A method is proposed which uses a system for aquatic farming. Livestock waste is used to fertilize planktonic algae production and filter-feeding fish are used to biologically harvest the algae, condenser cooling water (simulated) is used to add waste heat to the system, and emergent aquatic plants are used in a flow through series as a bio-filter to improve the water quality and produce an acceptable discharge. Two modes of operation were tested; one uses untreated swine manure as the source of aquatic fertilizer and the other uses anaerobic digester waste as a means of pretreating the manure to produce an organic fertilizer. A set of operating conditions (temperature, retention time, fish stocking rate, fertilizer rates, land and water requirements, suggested fish and plant species, and facility design) were developed from these results. The integrated system allows continual use of power plant condenser cooling water from plants in the southeastern United States.

  14. Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop

    SciTech Connect

    Donna Post Guillen

    2012-11-01

    This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

  15. Optimization of biological recycling of plant nutrients in livestock waste by utilizing waste heat from cooling water. Final report May 75-Sep 81

    SciTech Connect

    Maddox, J.J.; Behrends, L.L.; Burch, D.W.; Kingsley, J.B.; Waddell, E.L. Jr

    1982-05-01

    The report summarizes a 5-year study of the beneficial uses of waste heat from condenser cooling water from steam-electric generating plants. The major effort addressed the recovery of plant nutrients in swine manure by aquatic farming of selected fish and Chinese waterchestnuts. Another effort included biogas production from swine manure in an anaerobic digester and the use of the digester waste to fertilize the aquatic farming system. Optimum recovery of plant nutrients resulted from operation of an integrated fish and waterchestnut system. Flowing water systems were 30-50% more productive than static systems. Annual fish yields of 5000-7000 lb/acre are projected for a properly stocked system over a 150-180 day growing period. Similarly, waterchestnut yields of nearly 17.8 tons/acre and dry hay yields of 6.7 tons/acre from sand-bed filters would be expected when fed wastewater from the fish system. The quality of the water leaving the sand beds would meet tertiary wastewater treatment standards during the growing season. An estimated 2000-head swine facility with a $400,000 investment would annually produce a 20% rate of return, save 360,000 bbl of oil through waste heat utilization, and produce biogas equivalent to 3000 bbl of oil.

  16. Recovery of waste heat from industrial slags via modified float glass process

    SciTech Connect

    Serth, R.W.; Ctvrtnicek, T.E.; McCormick, R.J.; Zanders, D.L.

    1981-01-01

    A novel process for recovering waste heat from molten slags produced as by-products in the steel, copper, and elemental phosphorus industries is investigated. The process is based on technology developed in the glass industry for the commercial production of flat glass. In this process, energy is recovered from molten slag as it cools and solidifies on the surface of a pool of molten tin. In order to determine the technical and economic feasibility of the process, an energy recovery facility designed to handle the slag from a large elemental phosphorus plant is studied. Results indicate that the process is marginally economical at current energy price levels. A number of technical uncertainties in the process design are also identified. 9 refs.

  17. Demonstration of an on-site PAFC cogeneration system with waste heat utilization by a new gas absorption chiller

    SciTech Connect

    Urata, Tatsuo

    1996-12-31

    Analysis and cost reduction of fuel cells is being promoted to achieve commercial on-site phosphoric acid fuel cells (on-site FC). However, for such cells to be effectively utilized, a cogeneration system designed to use the heat generated must be developed at low cost. Room heating and hot-water supply are the most simple and efficient uses of the waste heat of fuel cells. However, due to the short room-heating period of about 4 months in most areas in Japan, the sites having demand for waste heat of fuel cells throughout the year will be limited to hotels and hospitals Tokyo Gas has therefore been developing an on-site FC and the technology to utilize tile waste heat of fuel cells for room cooling by means of an absorption refrigerator. The paper describes the results of fuel cell cogeneration tests conducted on a double effect gas absorption chiller heater with auxiliary waste heat recovery (WGAR) that Tokyo Gas developed in its Energy Technology Research Laboratory.

  18. WASTE HEAT RECOVERY USING THERMOELECTRIC DEVICES IN THE LIGHT METALS INDUSTRY

    SciTech Connect

    Choate, William T.; Hendricks, Terry J.; Majumdar, Rajita

    2007-05-01

    Recently discovered thermoelectric materials and associated manufacturing techniques (nanostructures, thin-film super lattice, quantum wells...) have been characterized with thermal to electric energy conversion efficiencies of 12-25+%. These advances allow the manufacture of small-area, high-energy flux (350 W/cm2 input) thermoelectric generating (TEG) devices that operate at high temperatures (~750C). TEG technology offers the potential for large-scale conversion of waste heat from the exhaust gases of electrolytic cells (e.g., Hall-Hroult cells) and from aluminum, magnesium, metal and glass melting furnaces. This paper provides an analysis of the potential energy recovery and of the engineering issues that are expected when integrating TEG systems into existing manufacturing processes. The TEG module must be engineered for low-cost, easy insertion and simple operation in order to be incorporated into existing manufacturing operations. Heat transfer on both the hot and cold-side of these devices will require new materials, surface treatments and design concepts for their efficient operation.

  19. Fluidized-bed waste-heat recovery system development: Final report

    SciTech Connect

    Patch, K.D.; Cole, W.E.

    1988-06-01

    A major energy loss in industry is the heat content of the flue gases from industrial process heaters. One effective way to utilize the energy, which is applicable to all processes, is to preheat the combustion air for the process heater. Although recuperators are available to preheat this air when the flue gases are clean, recuperators to recover the heat from dirty and corrosive flue gases do not exist. The Fluidized-Bed Waste-Heat Recovery (FBWHR) system is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, recirculating alumina particles are heated by the flue gas in a raining bed. The hot particles are then removed from the bed and placed in a fluidized bed where they are fluidized by the combustion air. Through this process, the combustion air is preheated. The cooled particles are then returned to the raining bed. Initial development of this concept is for the aluminum smelting industry. In this final report, the design, development, fabrication, and installation of a full-scale FBWHR system is detailed.

  20. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    SciTech Connect

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the full FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.

  1. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE PAGES [OSTI]

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  2. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    SciTech Connect

    Khalifa, H.E.

    1983-12-01

    This report presents an evaluation of Brayton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. It is also shown that, if installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or $170/Bhp. Technical and economic barriers that would hinder the commercial introduction of bottoming systems were identified.

  3. Large-dimension, high-ZT Thermoelectric Nanocomposites for High-Power High-efficiency Waste Heat Recovery for Electricity Generation

    Energy.gov [DOE]

    Large-dimension, high-ZT BiTe and Pb-based nanocomposites produced with a low-cost scalable process were used for development and testing of TE module prototypes, and demonstration of a waste heat recovery system

  4. Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    SciTech Connect

    Gregory Meisner

    2011-08-31

    We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem

  5. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    MHRC System Concept ADVANCED MANUFACTURING OFFICE Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes Advancing a Novel Microbial Reverse Electrodialysis Electrolytic System. Many current manufacturing processes produce both low-grade waste heat and wastewater effuents which contain organic materials. A microbial reverse electrodialysis electrolytic cell, designed to integrate

  6. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    John Cirucci Air Products and Chemicals, Inc. U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective Develop a novel system that produces electricity or hydrogen from waste heat conversion and waste effluent oxidation waste water effluent treated effluent dual benefit process waste heat electricity or hydrogen Issues with existing,

  7. Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief. Industrial Technologies Program (ITP) (Brochure).

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable Industrial Technologies Program Boosting the productivity and competitiveness of U.S. industry through improvements in energy and environmental performance 1 BestPractices Technical Brief Waste Heat Reduction and Recovery for Improving

  8. Completion Report for Well ER-12-4, Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain (includes Errata Sheet)

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2006-05-01

    Well ER-12-4 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in May 2005, as part of a hydrogeologic investigation program for the Rainier Mesa-Shoshone Mountain Corrective Action Unit in the north-central portion of the Nevada Test Site. The well is located on Rainier/Aqueduct Mesa, northwest of Yucca Flat, within Area 12 of the Nevada Test Site. The well provided information regarding the radiological and physical environment near underground nuclear tests conducted in U12t Tunnel, information on the pre-Tertiary rocks in the area, and depth to the regional water table.

  9. Membrane-Based Absorption Refrigeration Systems: Nanoengineered Membrane-Based Absorption Cooling for Buildings Using Unconcentrated Solar & Waste Heat

    SciTech Connect

    2010-09-01

    BEETIT Project: UFL is improving a refrigeration system that uses low quality heat to provide the energy needed to drive cooling. This system, known as absorption refrigeration system (ARS), typically consists of large coils that transfer heat. Unfortunately, these large heat exchanger coils are responsible for bulkiness and high cost of ARS. UFL is using new materials as well as system design innovations to develop nanoengineered membranes to allow for enhanced heat exchange that reduces bulkiness. UFL’s design allows for compact, cheaper and more reliable use of ARS that use solar or waste heat.

  10. Use Feedwater Economizers for Waste Heat Recovery: Office of Industrial Technologies (OIT) Steam Energy Tips No.3

    SciTech Connect

    Not Available

    2002-03-01

    A feedwater economizer reduces steam boiler fuel requirements by transferring heat from the flue gas to incoming feedwater. Boiler flue gases are often rejected to the stack at temperatures more than 100 F to 150 F higher than the temperature of the generated steam. Generally, boiler efficiency can be increased by 1% for every 40 F reduction in flue gas temperature. By recovering waste heat, an economizer can often reduce fuel requirements by 5% to 10% and pay for itself in less than 2 years. The table provides examples of the potential for heat recovery.

  11. Fluidized bed waste heat recovery system. Annual report, 1 October 1981-31 March 1983

    SciTech Connect

    Williams, H. W.; Unmack, K. E.

    1983-01-01

    An agreement was reached in July 1982 with the Aluminum Company of America regarding the Massena operations in New York. Since that agreement, a specification has been published which characterizes the waste stream and includes ALCOA, DOE and Aerojet design requirements. Installation of the test unit has been engineered in preliminary form by ALCOA in close liaison with Aerojet and details are being established. A subcontract has been awarded for the design and fabrication of the fluid bed heat exchanger. Initial thermal analyses are complete and a preliminary arrangement layout has been started. Materials corrosion tests were conducted by Oak Ridge National Laboratory on samples of fluid bed heat exchanger materials under the range of temperatures expected. Samples included carbon steel, stainless steels and Incoloy. Test atmospheres included hydrogen chloride and chlorine corrosive species. A study was completed of the research and development which would be necessary to raise the gas inlet temperature rating of the heat exchanger above 1100/sup 0/F. This study has been formalized and submitted in a topical report and discussions are ongoing regarding an activity (Task VI) added to the present contract to conduct high temperature R and D work.

  12. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    SciTech Connect

    Viswanathan, Vish V.; Davies, Richard W.; Holbery, Jim D.

    2006-04-01

    United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and

  13. Use Feedwater Economizers for Waste Heat Recovery, Energy Tips: STEAM, Steam Tip Sheet #3 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PROGRAM Energy Tips: STEAM Steam Tip Sheet #3 Use Feedwater Economizers for Waste Heat Recovery A feedwater economizer reduces steam boiler fuel requirements by transferring heat from the fue gas to incoming feedwater. Boiler fue gases are often rejected to the stack at temperatures more than 100°F to 150°F higher than the temperature of the generated steam. Generally, boiler effciency can be increased by 1% for every 40°F reduction in fue gas temperature. By recovering waste heat, an

  14. Waste-heat boiler application for the Vresova combined cycle plant

    SciTech Connect

    Vicek, Z.

    1995-12-01

    This report describes a project proposal and implementation of two combined-cycle units of the Vresova Fuel Complex (PKV) with 2 x 200 MWe and heat supply. Participation of ENERGOPROJECT Praha a.s., in this project.

  15. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE)

    Describes TEG systems built at MSU to mitigate couple failures and a cost-benefit analysis for a system used as an energy recovery system … auxiliary power unit in an over-the-road truck system.

  16. Investigating potential light-duty efficiency improvements through simulation of turbo-compounding and waste-heat recovery systems

    SciTech Connect

    Edwards, Kevin Dean; Wagner, Robert M; Briggs, Thomas E

    2010-01-01

    Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, achieving similar benefits for light-duty applications is complicated by transient, low-load operation at typical driving conditions and competition with the turbocharger and aftertreatment system for the limited thermal resources. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. The model is used to examine the effects of efficiency-improvement strategies such as cylinder deactivation, use of advanced materials and improved insulation to limit ambient heat loss, and turbo-compounding on the steady-state performance of the ORC system and the availability of thermal energy for downstream aftertreatment systems. Results from transient drive-cycle simulations are also presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and balancing the thermal requirements of waste-heat recovery

  17. An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles

    Energy.gov [DOE]

    Efficient, scalable, and low cost vehicular thermoelectric generators development will include rapid synthesis of thermoelectric materials, different device geometries, heat sink designs, and durability and long-term performance tests

  18. White Paper for U.S. Army Rapid Equipping Force: Waste Heat Recovery with Thermoelectric and Lithium-Ion Hybrid Power System

    SciTech Connect

    Farmer, J C

    2007-11-26

    By harvesting waste heat from engine exhaust and storing it in light-weight high-capacity modules, it is believed that the need for energy transport by convoys can be lowered significantly. By storing this power during operation, substantial electrical power can be provided during long periods of silent operation, while the engines are not operating. It is proposed to investigate the potential of installing efficient thermoelectric generators on the exhaust systems of trucks and other vehicles to generate electrical power from the waste heat contained in the exhaust and to store that power in advanced power packs comprised of polymer-gel lithium ion batteries. Efficient inexpensive methods for production of the thermoelectric generator are also proposed. The technology that exists at LLNL, as well as that which exists at industrial partners, all have high technology readiness level (TRL). Work is needed for integration and deployment.

  19. High-Efficiency, Cost-effective Thermoelectric Materials/Devices for Industrial Process Refrigeration and Waste Heat Recovery, STTR Phase II Final Report

    SciTech Connect

    Lin, Timothy

    2011-01-07

    This is the final report of DoE STTR Phase II project, “High-efficiency, Cost-effective Thermoelectric Materials/Devices for Industrial Process Refrigeration and Waste Heat Recovery”. The objective of this STTR project is to develop a cost-effective processing approach to produce bulk high-performance thermoelectric (TE) nanocomposites, which will enable the development of high-power, high-power-density TE modulus for waste heat recovery and industrial refrigeration. The use of this nanocomposite into TE modules are expected to bring about significant technical benefits in TE systems (e.g. enhanced energy efficiency, smaller sizes and light weight). The successful development and applications of such nanocomposite and the resultant TE modules can lead to reducing energy consumption and environmental impacts, and creating new economic development opportunities.

  20. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    SciTech Connect

    2012-01-31

    The thermoelectric generator shorting system provides the capability to monitor and short-out individual thermoelectric couples in the event of failure. This makes the series configured thermoelectric generator robust to individual thermoelectric couple failure. Open circuit detection of the thermoelectric couples and the associated short control is a key technique to ensure normal functionality of the TE generator under failure of individual TE couples. This report describes a five-year effort whose goal was the understanding the issues related to the development of a thermoelectric energy recovery device for a Class-8 truck. Likely materials and important issues related to the utility of this generator were identified. Several prototype generators were constructed and demonstrated. The generators developed demonstrated several new concepts including advanced insulation, couple bypass technology and the first implementation of skutterudite thermoelectric material in a generator design. Additional work will be required to bring this system to fruition. However, such generators offer the possibility of converting energy that is otherwise wasted to useful electric power. Uur studies indicate that this can be accomplished in a cost-effective manner for this application.

  1. Final Report: Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    SciTech Connect

    Donna Post Guillen; Jalal Zia

    2013-09-01

    This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating, evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the

  2. Cummins Waste Heat Recovery

    Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  3. Fuel cell system including a unit for electrical isolation of a fuel cell stack from a manifold assembly and method therefor

    DOEpatents

    Kelley; Dana A. , Farooque; Mohammad , Davis; Keith

    2007-10-02

    A fuel cell system with improved electrical isolation having a fuel cell stack with a positive potential end and a negative potential, a manifold for use in coupling gases to and from a face of the fuel cell stack, an electrical isolating assembly for electrically isolating the manifold from the stack, and a unit for adjusting an electrical potential of the manifold such as to impede the flow of electrolyte from the stack across the isolating assembly.

  4. Cost-Effective Fabrication Routes for the Production of Quantum Well Structures and Recovery of Waste Heat from Heavy Duty Trucks

    SciTech Connect

    Willigan, Rhonda

    2009-09-30

    The primary objectives of Phase I were: (a) carry out cost, performance and system level models, (b) quantify the cost benefits of cathodic arc and heterogeneous nanocomposites over sputtered material, (c) evaluate the expected power output of the proposed thermoelectric materials and predict the efficiency and power output of an integrated TE module, (d) define market acceptance criteria by engaging Caterpillar's truck OEMs, potential customers and dealers and identify high-level criteria for a waste heat thermoelectric generator (TEG), (e) identify potential TEG concepts, and (f) establish cost/kWatt targets as well as a breakdown of subsystem component cost targets for the commercially viable TEG.

  5. Performance of Gas-Engine Driven Heat Pump Unit

    SciTech Connect

    Abdi Zaltash; Randy Linkous; Randall Wetherington; Patrick Geoghegan; Ed Vineyard; Isaac Mahderekal; Robert Gaylord

    2008-09-30

    Air-conditioning (cooling) for buildings is the single largest use of electricity in the United States (U.S.). This drives summer peak electric demand in much of the U.S. Improved air-conditioning technology thus has the greatest potential impact on the electric grid compared to other technologies that use electricity. Thermally-activated technologies (TAT), such as natural gas engine-driven heat pumps (GHP), can provide overall peak load reduction and electric grid relief for summer peak demand. GHP offers an attractive opportunity for commercial building owners to reduce electric demand charges and operating expenses. Engine-driven systems have several potential advantages over conventional single-speed or single-capacity electric motor-driven units. Among them are variable speed operation, high part load efficiency, high temperature waste heat recovery from the engine, and reduced annual operating costs (SCGC 1998). Although gas engine-driven systems have been in use since the 1960s, current research is resulting in better performance, lower maintenance requirements, and longer operating lifetimes. Gas engine-driven systems are typically more expensive to purchase than comparable electric motor-driven systems, but they typically cost less to operate, especially for commercial building applications. Operating cost savings for commercial applications are primarily driven by electric demand charges. GHP operating costs are dominated by fuel costs, but also include maintenance costs. The reliability of gas cooling equipment has improved in the last few years and maintenance requirements have decreased (SCGC 1998, Yahagi et al. 2006). Another advantage of the GHP over electric motor-driven is the ability to use the heat rejected from the engine during heating operation. The recovered heat can be used to supplement the vapor compression cycle during heating or to supply other process loads, such as water heating. The use of the engine waste heat results in greater

  6. EIS-0310: Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility

    Energy.gov [DOE]

    This PEIS will evaluate the potential environmental impacts of the proposed enhancement of the existing infrastructure, including the possible role of the Fast Flux Test Facility (FFTF), located at...

  7. Engineered Osmosis for Energy Efficient Separations: Optimizing Waste Heat Utilization FINAL SCIENTIFIC REPORT DOE F 241.3

    SciTech Connect

    NATHAN HANCOCK

    2013-01-13

    The purpose of this study is to design (i) a stripper system where heat is used to strip ammonia (NH{sub 3}) and carbon dioxide (CO{sub 2}) from a diluted draw solution; and (ii) a condensation or absorption system where the stripped NH{sub 3} and CO{sub 2} are captured in condensed water to form a re-concentrated draw solution. This study supports the Industrial Technologies Program of the DOE Office of Energy Efficiency and Renewable Energy and their Industrial Energy Efficiency Grand Challenge award solicitation. Results from this study show that stimulated Oasys draw solutions composed of a complex electrolyte solution associated with the dissolution of NH{sub 3} and CO{sub 2} gas in water can successfully be stripped and fully condensed under standard atmospheric pressure. Stripper bottoms NH{sub 3} concentration can reliably be reduced to < 1 mg/L, even when starting with liquids that have an NH{sub 3} mass fraction exceeding 6% to stimulate diluted draw solution from the forward osmosis membrane component of the process. Concentrated draw solution produced by fully condensing the stripper tops was show to exceed 6 M-C with nitrogen-to-carbon (N:C) molar ratios on the order of two. Reducing the operating pressure of the stripper column serves to reduce the partial vapor pressure of both NH{sub 3} and CO{sub 2} in solution and enables lower temperature operation towards integration of industrial low-grade of waste heat. Effective stripping of solutes was observed with operating pressures as low as 100 mbar (3-inHg). Systems operating at reduced pressure and temperature require additional design considerations to fully condense and absorb these constituents for reuse within the Oasys EO system context. Comparing empirical data with process stimulation models confirmed that several key parameters related to vapor-liquid equilibrium and intrinsic material properties were not accurate. Additional experiments and refinement of material property databases within the

  8. Investigating potential efficiency improvement for light-duty transportation applications through simulation of an organic Rankine cycle for waste-heat recovery

    SciTech Connect

    Edwards, Kevin Dean; Wagner, Robert M

    2010-01-01

    Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to heat loss and combustion irreversibility. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, the potential benefits of such a strategy for light-duty applications are unknown due to transient operation, low-load operation at typical driving conditions, and the added mass of the system. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. Results from steady-state and drive-cycle simulations are presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and competition between waste-heat recovery systems, turbochargers, aftertreatment devices, and other systems for the limited thermal resources.

  9. Proactive Design of n-Type (In, Ce) Filled Skutterudites Enabling High-Temperature Waste Heat Recovery

    Energy.gov [DOE]

    Thermoelectric and structural properties of n-type (In, Ce) filled skutterudites including power factors and ZT as a function of temperature are presented

  10. Harvesting Electricity From Wasted Heat

    SciTech Connect

    Schwede, Jared

    2014-06-30

    Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.

  11. Harvesting Electricity From Wasted Heat

    ScienceCinema

    Schwede, Jared

    2016-07-12

    Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.

  12. Corrective Action Investigation Plan for Corrective Action Unit 165: Areas 25 and 26 Dry Well and Washdown Areas, Nevada Test Site, Nevada (including Record of Technical Change Nos. 1, 2, and 3) (January 2002, Rev. 0)

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

    2002-01-09

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 165 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 165 consists of eight Corrective Action Sites (CASs): CAS 25-20-01, Lab Drain Dry Well; CAS 25-51-02, Dry Well; CAS 25-59-01, Septic System; CAS 26-59-01, Septic System; CAS 25-07-06, Train Decontamination Area; CAS 25-07-07, Vehicle Washdown; CAS 26-07-01, Vehicle Washdown Station; and CAS 25-47-01, Reservoir and French Drain. All eight CASs are located in the Nevada Test Site, Nevada. Six of these CASs are located in Area 25 facilities and two CASs are located in Area 26 facilities. The eight CASs at CAU 165 consist of dry wells, septic systems, decontamination pads, and a reservoir. The six CASs in Area 25 are associated with the Nuclear Rocket Development Station that operated from 1958 to 1973. The two CASs in Area 26 are associated with facilities constructed for Project Pluto, a series of nuclear reactor tests conducted between 1961 to 1964 to develop a nuclear-powered ramjet engine. Based on site history, the scope of this plan will be a two-phased approach to investigate the possible presence of hazardous and/or radioactive constituents at concentrations that could potentially pose a threat to human health and the environment. The Phase I analytical program for most CASs will include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons, polychlorinated biphenyls, and radionuclides. If laboratory data obtained from the Phase I investigation indicates the presence of contaminants of concern, the process will continue with a Phase II investigation to define the extent of contamination. Based on the results of

  13. Corrective Action Investigation Plan for Corrective Action Unit 5: Landfills, Nevada Test Site, Nevada (Rev. No.: 0) includes Record of Technical Change No. 1 (dated 9/17/2002)

    SciTech Connect

    IT Corporation, Las Vegas, NV

    2002-05-28

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 5 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 5 consists of eight Corrective Action Sites (CASs): 05-15-01, Sanitary Landfill; 05-16-01, Landfill; 06-08-01, Landfill; 06-15-02, Sanitary Landfill; 06-15-03, Sanitary Landfill; 12-15-01, Sanitary Landfill; 20-15-01, Landfill; 23-15-03, Disposal Site. Located between Areas 5, 6, 12, 20, and 23 of the Nevada Test Site (NTS), CAU 5 consists of unlined landfills used in support of disposal operations between 1952 and 1992. Large volumes of solid waste were produced from the projects which used the CAU 5 landfills. Waste disposed in these landfills may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present at concentrations and locations that could potentially pose a threat to human health and/or the environment. During the 1992 to 1995 time frame, the NTS was used for various research and development projects including nuclear weapons testing. Instead of managing solid waste at one or two disposal sites, the practice on the NTS was to dispose of solid waste in the vicinity of the project. A review of historical documentation, process knowledge, personal interviews, and inferred activities associated with this CAU identified the following as potential contaminants of concern: volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, pesticides, petroleum hydrocarbons (diesel- and gasoline-range organics), Resource Conservation and Recovery Act Metals, plus nickel and zinc. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution criteria

  14. Dixie Valley Bottoming Binary Unit

    SciTech Connect

    McDonald, Dale

    2014-12-21

    This binary plant is the first air cooled, high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a hydrocarbon based cycle are not necessary. The unit is largely modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. The Air Cooled Condensers (ACC), equipment piping, and Balance of Plant (BOP) piping were constructed at site. This project further demonstrates the technical feasibility of using low temperature brine for geothermal power utilization. The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  15. Corrective Action Investigation Plan for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada: Revision 0, Including Record of Technical Change No. 1

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-07-16

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 322 consists of three Corrective Action Sites (CASs): 01-25-01, AST Release (Area 1); 03-25-03, Mud Plant AST Diesel Release (Area 3); 03-20-05, Injection Wells (Area 3). Corrective Action Unit 322 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. The investigation of three CASs in CAU 322 will determine if hazardous and/or radioactive constituents are present at concentrations and locations that could potentially pose a threat to human health and the environment. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  16. Corrective Action Investigation Plan for Corrective Action Unit 527: Horn Silver Mine, Nevada Test Site, Nevada: Revision 1 (Including Records of Technical Change No.1, 2, 3, and 4)

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

    2002-12-06

    This Corrective Action Investigation Plan contains the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 527, Horn Silver Mine, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 527 consists of one Corrective Action Site (CAS): 26-20-01, Contaminated Waste Dump No.1. The site is located in an abandoned mine site in Area 26 (which is the most arid part of the NTS) approximately 65 miles northwest of Las Vegas. Historical documents may refer to this site as CAU 168, CWD-1, the Wingfield mine (or shaft), and the Wahmonie mine (or shaft). Historical documentation indicates that between 1959 and the 1970s, nonliquid classified material and unclassified waste was placed in the Horn Silver Mine's shaft. Some of the waste is known to be radioactive. Documentation indicates that the waste is present from 150 feet to the bottom of the mine (500 ft below ground surface). This CAU is being investigated because hazardous constituents migrating from materials and/or wastes disposed of in the Horn Silver Mine may pose a threat to human health and the environment as well as to assess the potential impacts associated with any potential releases from the waste. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  17. Beowawe Bottoming Binary Unit - Final Technical Report for EE0002856

    SciTech Connect

    McDonald, Dale Edward

    2013-02-12

    This binary plant is the first high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a butane based cycle are not necessary. The unit is modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. This project proves the technical feasibility of using low temperature brine The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy for Nevada, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  18. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 357: Mud Pits and Waste Dump, Nevada Test Site, Nevada: Revision 0, Including Record of Technical Change No. 1

    SciTech Connect

    2003-06-25

    This Streamlined Approach for Environmental Restoration (SAFER) plan was prepared as a characterization and closure report for Corrective Action Unit (CAU) 357, Mud Pits and Waste Dump, in accordance with the Federal Facility Agreement and Consent Order. The CAU consists of 14 Corrective Action Sites (CASs) located in Areas 1, 4, 7, 8, 10, and 25 of the Nevada Test Site (NTS). All of the CASs are found within Yucca Flat except CAS 25-15-01 (Waste Dump). Corrective Action Site 25-15-01 is found in Area 25 in Jackass Flat. Of the 14 CASs in CAU 357, 11 are mud pits, suspected mud pits, or mud processing-related sites, which are by-products of drilling activities in support of the underground nuclear weapons testing done on the NTS. Of the remaining CASs, one CAS is a waste dump, one CAS contains scattered lead bricks, and one CAS has a building associated with Project 31.2. All 14 of the CASs are inactive and abandoned. Clean closure with no further action of CAU 357 will be completed if no contaminants are detected above preliminary action levels. A closure report will be prepared and submitted to the Nevada Division of Environmental Protection for review and approval upon completion of the field activities. Record of Technical Change No. 1 is dated 3/2004.

  19. Pump apparatus including deconsolidator

    SciTech Connect

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  20. Optical modulator including grapene

    DOEpatents

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  1. ,"Housing Units1","Average Square Footage Per Housing Unit",...

    Energy Information Administration (EIA) (indexed site)

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters are excluded. 2Total square footage includes all basements, finished or conditioned (heated ...

  2. Summary Max Total Units

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  3. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    SciTech Connect

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  4. Automotive Waste Heat Conversion to Power Program

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  5. Heat pipes for industrial waste heat recovery

    SciTech Connect

    Merrigan, M.A.

    1981-01-01

    Development work on the high temperature ceramic recuperator at Los Alamos National Laboratory is described and involved material investigations, fabrication methods development, compatibility tests, heat pipe operation, and the modeling of application conditions based on current industrial usage. Solid ceramic heat pipes, ceramic coated refractory pipes, and high-temperature oxide protected metallic pipes have been investigated. Economic studies of the use of heat-pipe based recuperators in industrial furnaces have been conducted and payback periods determined as a function of material, fabrication, and installation cost.

  6. Quantum Well Thermoelectrics and Waste Heat Recovery

    Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  7. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes Advancing a Novel Microbial Reverse Electrodialysis ...

  8. Automotive Waste Heat Conversion to Power Program

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  9. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Energy.gov [DOE] (indexed site)

    thermoelectric generators (TEGs), then installed on a standard GM production vehicle and tested for performance meisner.pdf (1.73 MB) More Documents & Publications Thermoelectric ...

  10. Review of Interests and Activities in Thermoelectric Materials and Devices at the Army Research Laboratory

    Energy.gov [DOE]

    Army interests in thermoelectrics include integrated TE-hand-held burners for battery-replacement, waste-heat recovery on vehicles, heat-powered mobile units, and for thermoelectric cooling of high-performance infrared systems for surveillance

  11. Composite stabilizer unit

    DOEpatents

    Ebaugh, Larry R.; Sadler, Collin P.; Carter, Gary D.

    1992-01-01

    An improved fin stabilized projectile including multiple stabilizer fins upon a stabilizer unit situated at the aft end of the projectile is provided, the improvement wherein the stabilizer fins are joined into the stabillizer unit by an injection molded engineering grade polymer.

  12. Major design issues of molten carbonate fuel cell power generation unit

    SciTech Connect

    Chen, T.P.

    1996-04-01

    In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to comply with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.

  13. Corrective Action Investigation Plan for Corrective Action Unit 168: Areas 25 and 26 Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada (Rev. 0) includes Record of Technical Change No. 1 (dated 8/28/2002), Record of Technical Change No. 2 (dated 9/23/2002), and Record of Technical Change No. 3 (dated 6/2/2004)

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada

    2001-11-21

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 168 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 168 consists of a group of twelve relatively diverse Corrective Action Sites (CASs 25-16-01, Construction Waste Pile; 25-16-03, MX Construction Landfill; 25-19-02, Waste Disposal Site; 25-23-02, Radioactive Storage RR Cars; 25-23-18, Radioactive Material Storage; 25-34-01, NRDS Contaminated Bunker; 25-34-02, NRDS Contaminated Bunker; CAS 25-23-13, ETL - Lab Radioactive Contamination; 25-99-16, USW G3; 26-08-01, Waste Dump/Burn Pit; 26-17-01, Pluto Waste Holding Area; 26-19-02, Contaminated Waste Dump No.2). These CASs vary in terms of the sources and nature of potential contamination. The CASs are located and/or associated wit h the following Nevada Test Site (NTS) facilities within three areas. The first eight CASs were in operation between 1958 to 1984 in Area 25 include the Engine Maintenance, Assembly, and Disassembly Facility; the Missile Experiment Salvage Yard; the Reactor Maintenance, Assembly, and Disassembly Facility; the Radioactive Materials Storage Facility; and the Treatment Test Facility Building at Test Cell A. Secondly, the three CASs located in Area 26 include the Project Pluto testing area that operated from 1961 to 1964. Lastly, the Underground Southern Nevada Well (USW) G3 (CAS 25-99-16), a groundwater monitoring well located west of the NTS on the ridgeline of Yucca Mountain, was in operation during the 1980s. Based on site history and existing characterization data obtained to support the data quality objectives process, contaminants of potential concern (COPCs) for CAU 168 are primarily radionuclide; however, the COPCs for several CASs were not defined. To address COPC uncertainty

  14. State of Washington Clean Energy Opportunity: Technical Market...

    Energy.gov [DOE] (indexed site)

    potential including clean heat and power (CHP)cogeneration, waste heat recovery for ... the technical market potential for CHP and waste heat recovery for power and heat. ...

  15. Remedial investigation work plan for Bear Creek Valley Operable Unit 1 (S-3 Ponds, Boneyard/Burnyard, Oil Landfarm, Sanitary Landfill 1, and the Burial Grounds, including Oil Retention Ponds 1 and 2) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text

    SciTech Connect

    Not Available

    1993-09-01

    The intent and scope of the work plan are to assemble all data necessary to facilitate selection of remediation alternatives for the sites in Bear Creek Valley Operable Unit 1 (BCV OU 1) such that the risk to human health and the environment is reduced to acceptable levels based on agreements with regulators. The ultimate goal is to develop a final Record Of Decision (ROD) for all of the OUs in BCV, including the integrator OU. However, the initial aim of the source OUs is to develop a ROD for interim measures. For source OUs such as BCV OU 1, data acquisition will not be carried out in a single event, but will be carried out in three stages that accommodate the schedule for developing a ROD for interim measures and the final site-wide ROD. The three stages are as follows: Stage 1, Assemble sufficient data to support decisions such as the need for removal actions, whether to continue with the remedial investigation (RI) process, or whether no further action is required. If the decision is made to continue the RI/FS process, then: Stage 2, Assemble sufficient data to allow for a ROD for interim measures that reduce risks to the human health and the environment. Stage 3, Provide input from the source OU that allows a final ROD to be issued for all OUs in the BCV hydrologic regime. One goal of the RI work plan will be to ensure that sampling operations required for the initial stage are not repeated at later stages. The overall goals of this RI are to define the nature and extent of contamination so that the impact of leachate, surface water runoff, and sediment from the OU I sites on the integrator OU can be evaluated, the risk to human health and the environment can be defined, and the general physical characteristics of the subsurface can be determined such that remedial alternatives can be screened.

  16. United States

    Office of Legacy Management (LM)

    Office of Research and EPA 600/R-941209 Environmental Protection Development January 1993 Agency Washington, DC 20460 Offsite Environmental 57,,7 Monitoring Report Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1992 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL MONITORING SYSTEMS LABORATORY-LAS VEGAS P.O. BOX 93478 LAS VEGAS. NEVADA 891 93-3478 702/798-2100 Dear Reader: Since 1954, the U.S. Environmental Protection

  17. United States Electricity Industry Primer

    Office of Energy Efficiency and Renewable Energy (EERE)

    The United States Electricity Industry Primer provides a high-level overview of the U.S. electricity supply chain, including generation, transmission, and distribution; markets and ownership structures, including utilities and regulatory agencies; and system reliability and vulnerabilities.

  18. Voltage verification unit

    DOEpatents

    Martin, Edward J.

    2008-01-15

    A voltage verification unit and method for determining the absence of potentially dangerous potentials within a power supply enclosure without Mode 2 work is disclosed. With this device and method, a qualified worker, following a relatively simple protocol that involves a function test (hot, cold, hot) of the voltage verification unit before Lock Out/Tag Out and, and once the Lock Out/Tag Out is completed, testing or "trying" by simply reading a display on the voltage verification unit can be accomplished without exposure of the operator to the interior of the voltage supply enclosure. According to a preferred embodiment, the voltage verification unit includes test leads to allow diagnostics with other meters, without the necessity of accessing potentially dangerous bus bars or the like.

  19. Design consideration and economic analysis of a community size biogas unit

    SciTech Connect

    Abbus, S.P.

    1983-12-01

    At present, various organizations in Pakistan are involved in RandD work in biogas technology. Most of them are government organizations. The units developed or advertised by these organizations are of small size, i.e., for a single family, to provide gas for cooking and lighting only. In this paper, the design of a community-size biogas unit for power generation has been discussed based on hydraulic flow characteristics. The type of digesters which have been discussed are plug flow, arbitrary flow and complete mix flow. As the biological activity of the organic material in the reactor depends on the residence time and also on the temperature of the digesting liquor, hence the flow characteristics play a major role in the sizing of the digestion reactor tank. A diesel engine coupled with the biogas unit has been discussed. This not only provides power for pumping water, power for cottage industries, etc., but also the waste heat from the internal combustion engine can be used to heat the digester or for other heating needs. The economic evaluation of such a plant has been completed and the payback period has been calculated.

  20. United States

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    E-T Global Energy, LLC OE Docket No. EA-381 Order Authorizing Electricity Exports to Mexico Order No. EA-381 June 10, 2011 I. BACKGROUND E-T Global Energy, LLC Order No. EA-381 Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department ofEnergy Organization Act (42 U.S.C. 7151(b), 7172(f)) and require authorization under section 202(e) ofthe Federal Power Act (FPA) (16 U.S.C.824a(e))

  1. United States

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tenaslta Power Services Co. OE Docket No. EA-243-A Order Authorizing Electricity Exports to Canada Order No. EA-243-A March 1,2007 Tenaska Power Services Co. Order No. EA-243-A I. BACKGROUND Exports of elcctricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30 I(b) and 402(f) of the Departrncnt of' Energy Organizatio~l Act (42 U, S.C. 7 15 1 (b), 7 1 72Cf)) and rcquirc authorization under section 202(e) of the Federal Power Act

  2. United States

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    TexMex Energy, LLC OE Docket No. EA-294-A Order Authorizing Electricity Exports to Mexico Order No. EA-294-A February 22, 2007 TexMex Energy, LLC Order No. EA-294-A I. BACKGROUND Exports of electricity from the United States to a foreign count~y are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 15 1 (b), 71 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16

  3. United States

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BP Energy Company OE Docket No. EA- 3 14 Order Authorizing Electricity Exports to Mexico Order No. EA-3 14 February 22,2007 BP Energy Company Order No. EA-314 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(Q of the Department of Energy Organization Act (42 U.S.C. 7 15 l(b), 7172(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.S24a(e)) .

  4. United States

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CSW Power Marketing OE Docket No. EA-3 1 8 Order Authorizing Electricity Exports to Mexico Order No. EA-3 18 February 22,2007 CSW Power Marketing Order No. EA-318 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30l(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 1 5 1 (b), 7 1 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16

  5. ,"Housing Units1","Average Square Footage Per Housing Unit",...

    Energy Information Administration (EIA) (indexed site)

    ... U.S. Department of Energy's Office of Energy and Efficiency and Renewable Energy (EERE). 5Rented includes households that occupy their primary housing unit without payment of rent. ...

  6. Termination unit

    SciTech Connect

    Traeholt, Chresten; Willen, Dag; Roden, Mark; Tolbert, Jerry C; Lindsay, David; Fisher, Paul W; Nielsen, Carsten Thidemann

    2014-01-07

    This invention relates to a termination unit comprising an end-section of a cable. The end section of the cable defines a central longitudinal axis and comprising end-parts of N electrical phases, an end-part of a neutral conductor and a surrounding thermally insulation envelope adapted to comprising a cooling fluid. The end-parts of the N electrical phases and the end-part of the neutral conductor each comprising at least one electrical conductor and being arranged in the cable concentrically around a core former with a phase 1 located relatively innermost, and phase N relatively outermost in the cable, phase N being surrounded by the neutral conductor, electrical insulation being arrange between neighboring electrical phases and between phase N and the neutral conductor, and wherein the end-parts of the neutral conductor and the electrical phases each comprise a contacting surface electrically connected to at least one branch current lead to provide an electrical connection: The contacting surfaces each having a longitudinal extension, and being located sequentially along the longitudinal extension of the end-section of the cable. The branch current leads being individually insulated from said thermally insulation envelope by individual electrical insulators.

  7. Magnetohydrodynamic Models of Accretion Including Radiation Transport |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Argonne Leadership Computing Facility Snapshot of the global structure of a radiation-dominated accretion flow around a black hole computed using the Athena++ code Snapshot of the global structure of a radiation-dominated accretion flow around a black hole computed using the Athena++ code. Left half of the image shows the density (in units of 0.01g/cm^3), and the right half shows the radiation energy density (in units of the energy density for a 10^7 degree black body). Coordinate axes are

  8. Quantitative Analysis of Biofuel Sustainability, Including Land...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions ...

  9. Topic A Note: Includes STEPS Subtopic

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Topic A Note: Includes STEPS Subtopic 33 Total Projects Developing and Enhancing Workforce Training Programs...

  10. Decommissioning Unit Cost Data

    SciTech Connect

    Sanford, P. C.; Stevens, J. L.; Brandt, R.

    2002-02-26

    The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for

  11. United Bio Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    include consulting and plant management services, ingredients, procurement and marketing, ethanol marketing and hedging. References: United Bio Energy LLC1 This article is...

  12. Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery

    Energy.gov [DOE]

    Skutterudite TE modules were fabricated and assembled into prototype thermoelectric generators (TEGs), then installed on a standard GM production vehicle and tested for performance

  13. Thermoelectric Generator Development for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  14. Analysis & Tools to Spur Increased Deployment of " Waste Heat...

    OpenEI (Open Energy Information) [EERE & EIA]

    largest community-owned electric utility that has created the Nation's top performing renewable energy program, and ClimateMaster, a leading manufacturer of geothermal heat pumps,...

  15. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace049schock2010o...

  16. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces;...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical ...

  17. Composites for Multi-energy conversion & waste heat recovery

    Energy.gov [DOE]

    Discusses development of a composite that transfers energy between thermal, electrical, magnetic, and mechanical types and a composite material that improves performance through in situ strengthening

  18. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  19. Combined Heat and Power, Waste Heat, and District Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers combined heat and power (CHP) technologies and their applications.

  20. Ultramizer: Waste Heat Recovery System for Commercial and Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    removes pure water from the waste stream, which can then be reused to reduce makeup water demand. The recovered latent heat energy can be used to reduce energy input for...

  1. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace050meisner2010o.pdf More...

  2. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    Office of Energy Efficiency and Renewable Energy (EERE)

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Caterpillar/U.S. Department of Energy

  3. Waste heat from kitchen cuts hot water electricity 23%

    SciTech Connect

    Barber, J.

    1984-05-21

    Heat recovered from the Hamburger Hamlet's kitchen in Bethesada, Maryland and used to pre-heat the million gallons of hot water used annually reduced hot water costs 23% and paid off the investment in 1.5 years. Potomac Electric initiated the installation of an air-to-water heat pump in the restaurant kitchen above the dishwasher at a cost of about $5300, with the restaurant obliged to reimburse the utility if performance was satisfactory. Outside water recirculates through storage tanks and the ceiling heat pump until it reaches the required 140/sup 0/F. The amount of electricity needed to bring the preheated water to that temperature was $3770 lower after the installation. Cooled air exhausted from the heat pump circulates throughout the kitchen.

  4. A Spin on Technology: Extracting Value from Wasted Heat

    Energy.gov [DOE]

    Wastewater and steam can be a challenging resource for manufacturers to manage. The heated wastewater and steam are either lost or must be cooled using additional energy. Thus recycling these resources can result in significant cost savings and even reduce companies’ carbon footprint.

  5. An Engine System Approach to Exhaust Waste Heat Recovery

    Energy.gov [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  6. An Engine System Approach to Exhaust Waste Heat Recovery

    Energy.gov [DOE]

    2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  7. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  8. An Engine System Approach to Exhaust Waste Heat Recovery

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  9. An Engine System Approach to Exhaust Waste Heat Recovery

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  10. Heavy Duty Roots Expander for Waste Heat Energy Recovery

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  12. Steel Mill Powered by Waste Heat Recovery System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    efficient recovery boiler. Locations Indiana Partners ArcelorMittal USA, Inc. EERE Investment 31.6 million Clean Energy Sector Energy-saving homes, buildings, and manufacturing

  13. Dual Loop Parallel/Series Waste Heat Recovery System

    Energy.gov [DOE]

    This system captures all the jacket water, intercooler, and exhaust heat from the engine by utilizing a single condenser to reject leftover heat to the atmosphere.

  14. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Energy.gov [DOE] (indexed site)

    Efficiency Improvement in an Over the Road Diesel Powered Engine System by the Application of Advanced Thermoelectric Systems Implemented in a Hybrid Configuration Thermoelectric ...

  15. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

    Energy.gov [DOE] (indexed site)

    12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace080lagrandeur2012o.pdf (1.31 MB) More Documents & ...

  16. An Overview of Thermoelectric Waste Heat Recovery Activities...

    Energy.gov [DOE] (indexed site)

    An overview presentation of R&D projects on thermoelectric power generation technology in Europe. rowe.pdf (5.56 MB) More Documents & Publications Vehicular Applications of ...

  17. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity

    Energy.gov [DOE]

    Presents successful incorporation of one of the most promising classes of the new materials, the skutterudites, into a working automotive TEG prototype and test results on its performance

  20. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect

    Gerke, Frank G.

    2001-08-05

    This cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar, Inc. is aimed at demonstrating electric turbocompound technology on a Class 8 truck engine. This is a lab demonstration program, with no provision for on-truck testing of the system. The goal is to demonstrate the level of fuel efficiency improvement attainable with the electric turbocompound system. Also, electric turbocompounding adds an additional level of control to the air supply which could be a component in an emissions control strategy.

  1. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect

    Hopman, Ulrich,; Kruiswyk, Richard W.

    2005-07-05

    Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

  2. Cascaded organic rankine cycles for waste heat utilization

    DOEpatents

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2011-05-17

    A pair of organic Rankine cycle systems (20, 25) are combined and their respective organic working fluids are chosen such that the organic working fluid of the first organic Rankine cycle is condensed at a condensation temperature that is well above the boiling point of the organic working fluid of the second organic Rankine style system, and a single common heat exchanger (23) is used for both the condenser of the first organic Rankine cycle system and the evaporator of the second organic Rankine cycle system. A preferred organic working fluid of the first system is toluene and that of the second organic working fluid is R245fa.

  3. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  4. United States Government

    Office of Legacy Management (LM)

    UOEF 1325.8 (5831 , - a.. L . . L. . c ,, . . . t ,' <, .* -,. .--1^ a "-2 (J 7 , pe-;L, United States Government memorandum Departmen: of Energy DATEAUG 1 0 1984 REPLY TO Al-fN OF: NE-20 SUBJECT: Action Description Memorandum (ADM) Review: Wayne, New Jersey Proposed 1984 Remedial Actions at TO: File After reviewing all of the pertinent facts including the attached Action Description Memorandum (ADM), I have determined that the remedial action described in the subject ADM is an action

  5. Pressure vessel sliding support unit and system using the sliding support unit

    DOEpatents

    Breach, Michael R.; Keck, David J.; Deaver, Gerald A.

    2013-01-15

    Provided is a sliding support and a system using the sliding support unit. The sliding support unit may include a fulcrum capture configured to attach to a support flange, a fulcrum support configured to attach to the fulcrum capture, and a baseplate block configured to support the fulcrum support. The system using the sliding support unit may include a pressure vessel, a pedestal bracket, and a plurality of sliding support units.

  6. Include tech service engineers in turnaround inspections

    SciTech Connect

    Miller, J.E.

    1987-05-01

    Process Unit startup problems can be minimized by having technical service or process engineers perform equipment turnaround inspections. Most plants have inspectors who are specifically trained to identify corrosion, fatigue and other conditions that lead to deterioration of equipment mechanical integrity. Inspectors are also concerned with the proper assembly of equipment to ensure that all construction agrees with the field drawings. Training and knowledge of how process equipment actually operates often varies among individual inspectors. This, unfortunately, can lead to process equipment performance problems after startup with equipment that is reportedly in good mechanical condition.

  7. INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION

    Office of Scientific and Technical Information (OSTI)

    interval technical basis document Chiaro, P.J. Jr. 44 INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION DETECTORS; RADIATION MONITORS; DOSEMETERS;...

  8. " Million Housing Units, Final...

    Energy Information Administration (EIA) (indexed site)

    ... central air conditioning equipment for a business or farm building as well as another ... ,,"RSEs for Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ...

  9. Gas storage materials, including hydrogen storage materials

    DOEpatents

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  10. Communications circuit including a linear quadratic estimator

    SciTech Connect

    Ferguson, Dennis D.

    2015-07-07

    A circuit includes a linear quadratic estimator (LQE) configured to receive a plurality of measurements a signal. The LQE is configured to weight the measurements based on their respective uncertainties to produce weighted averages. The circuit further includes a controller coupled to the LQE and configured to selectively adjust at least one data link parameter associated with a communication channel in response to receiving the weighted averages.

  11. Gas storage materials, including hydrogen storage materials

    DOEpatents

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  12. Scramjet including integrated inlet and combustor

    SciTech Connect

    Kutschenreuter, P.H. Jr.; Blanton, J.C.

    1992-02-04

    This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.

  13. Electric Power Monthly, August 1990. [Glossary included

    SciTech Connect

    Not Available

    1990-11-29

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  14. Microfluidic devices and methods including porous polymer monoliths...

    Office of Scientific and Technical Information (OSTI)

    (SNL), Albuquerque, NM, and Livermore, CA (United States)) Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY

  15. Photoactive devices including porphyrinoids with coordinating additives

    DOEpatents

    Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K; Thompson, Mark E; Trinh, Cong; Whited, Matthew; Diev, Vlacheslav

    2015-05-12

    Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.

  16. Subterranean barriers including at least one weld

    DOEpatents

    Nickelson, Reva A.; Sloan, Paul A.; Richardson, John G.; Walsh, Stephanie; Kostelnik, Kevin M.

    2007-01-09

    A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.

  17. Rotor assembly including superconducting magnetic coil

    DOEpatents

    Snitchler, Gregory L.; Gamble, Bruce B.; Voccio, John P.

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  18. Nuclear reactor shield including magnesium oxide

    DOEpatents

    Rouse, Carl A.; Simnad, Massoud T.

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  19. Electric power monthly, September 1990. [Glossary included

    SciTech Connect

    Not Available

    1990-12-17

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  20. Power generation method including membrane separation

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  1. Indoor unit for electric heat pump

    DOEpatents

    Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

    1984-05-22

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

  2. Address conversion unit for multiprocessor system

    SciTech Connect

    Fava, T.F.; Lary, R.F.; Blackledge, R.

    1987-03-03

    An address conversion unit is described for use in one processor in a multi-processor data processing system including a common memory, the processors and common memory being interconnected by a common bus including means for transferring address signals defining a common address space. The processor includes private bus means including means for transferring signals including address signals defining a private address space. A processor unit means is connected to the private bus means and includes means for transmitting and receiving signals including address signals over the private bus means for engaging in data transfers thereover. The address conversion unit is connected to the private bus means and common bus means for receiving address signals over the private bus means from the processor unit means in the private address space. The unit comprises: A. pointer storage means for storing a pointer identifying a portion of the common bus memory space; B. pointer generation means connected to receive a common bus address and for generating a pointer in response thereto for storage in the pointer storage means; and C. common bus address generation means connected to the private bus and the pointer storage means for receiving an address from the processor unit means and for generating a common bus address in response thereto. The common bus address is used to initiate transfers between the processor unit means and the common memory over the common bus.

  3. " Million Housing Units, Final...

    Energy Information Administration (EIA) (indexed site)

    ... the use of the heating equipment for a business or farm building as well as another ... for Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ...

  4. " Million Housing Units, Final...

    Energy Information Administration (EIA) (indexed site)

    ... the use of the heating equipment for a business or farm building as well as another ... ,,"RSEs for Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ...

  5. Thermovoltaic semiconductor device including a plasma filter

    DOEpatents

    Baldasaro, Paul F.

    1999-01-01

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  6. Optical panel system including stackable waveguides

    DOEpatents

    DeSanto, Leonard; Veligdan, James T.

    2007-03-06

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  7. Optical panel system including stackable waveguides

    DOEpatents

    DeSanto, Leonard; Veligdan, James T.

    2007-11-20

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  8. Drapery assembly including insulated drapery liner

    DOEpatents

    Cukierski, Gwendolyn (Ithaca, NY)

    1983-01-01

    A drapery assembly is disclosed for covering a framed wall opening, the assembly including drapery panels hung on a horizontal traverse rod, the rod having a pair of master slides and means for displacing the master slides between open and closed positions. A pair of insulating liner panels are positioned behind the drapery, the remote side edges of the liner panels being connected with the side portions of the opening frame, and the adjacent side edges of the liner panels being connected with a pair of vertically arranged center support members adapted for sliding movement longitudinally of a horizontal track member secured to the upper horizontal portion of the opening frame. Pivotally arranged brackets connect the center support members with the master slides of the traverse rod whereby movement of the master slides to effect opening and closing of the drapery panels effects simultaneous opening and closing of the liner panels.

  9. Articles including thin film monolayers and multilayers

    DOEpatents

    Li, DeQuan; Swanson, Basil I.

    1995-01-01

    Articles of manufacture including: (a) a base substrate having an oxide surface layer, and a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, (b) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, and a metal species attached to the multidentate ligand, (c) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, and a multifunctional organic ligand attached to the metal species, and (d) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, a multifunctional organic ligand attached to the metal species, and a second metal species attached to the multifunctional organic ligand, are provided, such articles useful in detecting the presence of a selected target species, as nonliear optical materials, or as scavengers for selected target species.

  10. Engine lubrication circuit including two pumps

    DOEpatents

    Lane, William H.

    2006-10-03

    A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.

  11. Dynamic stall simulation including turbulence modeling

    SciTech Connect

    Allet, A.; Halle, S.; Paraschivoiu, I.

    1995-09-01

    The objective of this study is to investigate the two-dimensional unsteady flow around an airfoil undergoing a Darrieus motion in dynamic stall conditions. For this purpose, a numerical solver based on the solution of the Reynolds-averaged Navier-Stokes equations expressed in a streamfunction-vorticity formulation in a non-inertial frame of reference was developed. The governing equations are solved by the streamline upwind Petrov-Galerkin finite element method (FEM). Temporal discretization is achieved by second-order-accurate finite differences. The resulting global matrix system is linearized by the Newton method and solved by the generalized minimum residual method (GMRES) with an incomplete triangular factorization preconditioning (ILU). Turbulence effects are introduced in the solver by an eddy viscosity model. The investigation centers on an evaluation of the possibilities of several turbulence models, including the algebraic Cebeci-Smith model (CSM) and the nonequilibrium Johnson-King model (JKM). In an effort to predict dynamic stall features on rotating airfoils, first the authors present some testing results concerning the performance of both turbulence models for the flat plate case. Then, computed flow structure together with aerodynamic coefficients for a NACA 0015 airfoil in Darrieus motion under stall conditions are presented.

  12. United Power- Energy Efficiency Rebate Program

    Energy.gov [DOE]

    United Power, together with Tri-State Generation and Transmission (TSGT), offers rebates for the installation of a variety of energy efficient equipment including heating and cooling systems, water...

  13. Other United States Government Awards

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    us govt awards Other United States Government Awards As a Department of Energy (DOE) national laboratory, LLNL tracks achievements recognized by awards from the DOE. These awards span a wide range of accomplishments and include recognition of exemplary programmatic achievements. . Name Year Citation Dexter Lenoir, Rochelle Aguilar, Ramon Martinez, Erik Simmons, Chelle Blocker, Camerino Gutierrez, Joseph Chilton, Janet Cortez, Gary Brown, Judith Juarez, Sobhana Singh, Ronald Washington, Lorraine

  14. Advanced Rooftop Unit Control

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Advanced-Rooftop-Unit-Control Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors...

  15. UNITED STATES GOVERNMENT

    Office of Legacy Management (LM)

    AEC ..J. Ccnmigl.io - Chief of Middlesex Operaticns A. PIhot -Hadiation Section, ... (loose in case of large contaminated units) loaded on truck&and lsonltored at' MIddlesex. ...

  16. Comparison of approaches to Total Quality Management. Including...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 99 MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS; US DOE; PROGRAM MANAGEMENT; ...

  17. Compact monolithic capacitive discharge unit

    DOEpatents

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  18. Structures including network and topology for identifying, locating and quantifying physical phenomena

    DOEpatents

    Richardson, John G.; Moore, Karen A.; Carrington, Robert A.

    2006-04-25

    A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A plurality of laterally adjacent conductors may each include a plurality of segments. Each segment is constructed to exhibit a unit value representative of a defined energy transmission characteristic. A plurality of identity groups are defined with each identity group comprising a plurality of segments including at least one segment from each of the plurality of conductors. The segments contained within an identity group are configured and arranged such that each of their associated unit values may be represented by a concatenated digit string which is a unique number relative to the other identity groups. Additionally, the unit values of the segments within an identity group maintain unique ratios with respect to the other unit values in the identity group.

  19. Pipeline including network and topology for identifying, locating and quantifying physical phenomena

    DOEpatents

    Richardson, John G.; Moore, Karen A.; Carrington, Robert A.

    2006-02-14

    A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A plurality of laterally adjacent conductors may each include a plurality of segments. Each segment is constructed to exhibit a unit value representative of a defined energy transmission characteristic. A plurality of identity groups are defined with each identity group comprising a plurality of segments including at least one segment from each of the plurality of conductors. The segments contained within an identity group are configured and arranged such that each of their associated unit values may be represented by a concatenated digit string which is a unique number relative to the other identity groups. Additionally, the unit values of the segments within an identity group maintain unique ratios with respect to the other unit values in the identity group.

  20. Associative list processing unit

    DOEpatents

    Hemmert, Karl Scott; Underwood, Keith D.

    2013-01-29

    An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full. Also, an associative list processing unit and method comprising employing a plurality of prioritized cell blocks and using a tree of prioritized multiplexers descending from the plurality of cell blocks.

  1. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    Energy Information Administration (EIA) (indexed site)

    7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21

  2. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    1. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," "," " " ",,,,"Fuel Oil",,,"(excluding Coal" " ","

  3. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    5 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal" " ","

  4. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    5 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " ","

  5. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    5 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " ","

  6. Associative list processing unit

    DOEpatents

    Hemmert, Karl Scott; Underwood, Keith D

    2014-04-01

    An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full.

  7. United States Government

    Office of Legacy Management (LM)

    81278 United States Government Department of Energy memorandum - ?71 S.EP 23 F; i: 54 DATE: SEP 1 8 1991 REPLY TO ATTNOF: EM-421 (P. Blom, 3-8148) SUBJECT: Approved Categorical...

  8. Indoor unit for electric heat pump

    DOEpatents

    Draper, Robert; Lackey, Robert S.; Fagan, Jr., Thomas J.; Veyo, Stephen E.; Humphrey, Joseph R.

    1984-01-01

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module 10, an air mover module 12, and a resistance heat package module 14, the refrigeration module including all of the indoor refrigerant circuit components including the compressor 36 in a space adjacent the heat exchanger 28, the modules being adapted to be connected to air flow communication in several different ways as shown in FIGS. 4-7 to accommodate placement of the unit in various orientations.

  9. Estimated United States Transportation Energy Use 2005

    SciTech Connect

    Smith, C A; Simon, A J; Belles, R D

    2011-11-09

    A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

  10. Storage Resource Unit (SRU) Formula Coefficients

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Formula Coefficients Storage Resource Unit (SRU) Formula Coefficients The coefficients in the Storage Resource Unit (SRU) formula were arrived at from the following considerations: - The formula should help influence user behavior towards efficient use of the storage resource. - The formula should reflect the relative costs of "doing business". From these considerations we adopted file counts, bytes stored and I/O transfers as the 3 minimum factors that needed to be included in the

  11. Connective Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    United Kingdom Product: Connective Energy was set-up to capture waste heat from power plants and other heat-generating applications, and transport it to customers. References:...

  12. DOE Meeting Memorandum: Ex Parte Communications

    Energy Saver

    Ormat Technologies is headquartered in Reno Nevada and designs and manufactures waste heat recovery units that are commonly applied on natural gas pipeline compressor stations. ...

  13. United States Environmental Monitoring

    Office of Legacy Management (LM)

    EPA 60014-91/030 Environmental Protection Systems Laboratory DOE/DP00539-063 Agency P.O. Box 93478 Las Vegas NV 891 93-3478 Research and Development Offsite Environmental Monitoring Report: 1 - 3 5 Radiation Monitorina Around * / (- P 7 1 United States ~ u c l g a r Test Areas Calendar Year 1990 This page intentionally left blank EPN60014-90 DOWDP Offsite Environmental Monitoring Report: Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1990 Contributors: D.J. Chaloud,

  14. TRW utility demonstration unit

    SciTech Connect

    Not Available

    1990-01-01

    The TRW Advanced Entrained Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/oil unit to fire 2.5% sulfur coal. The slagging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Environmental Standards. During this report period, activity continued to address the total program funding shortfall. Ideas and responsibilities for further evaluation have been put forward to reduce the shortfall. In addition, an effort aimed at gaining additional program sponsorships, was initiated.

  15. Next Generation Rooftop Unit

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Next Generation Rooftop Unit - CRADA Bo Shen Oak Ridge National Laboratory shenb@ornl.gov; 865-574-5745 April 3, 2013 ET R&D project in support of DOE/BTO Goal of 50% Reduction in Building Energy Use by 2030. CRADA project with Trane TOP US Commercial HVAC Equipment OEM 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: half of all US commercial floor space cooled by packaged AC units, consumes more than 1.0 Quad source energy/year; highly efficient

  16. United Nations | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    United Nations Interregional Crime and Justice Research Institute (UNICRI) United Nations International Research and Training Institute for the Advancement of Women (UN-INSTRAW)...

  17. The United States remains unprepared for oil import disruptions. Volume I. summary: includes conclusions and recommendations. Report to the Congress

    SciTech Connect

    Not Available

    1981-09-29

    The U.S. Government is almost totally unprepared to deal with disruptions in oil imports. Oil import disruptions--such as the 1973 oil embargo and the 1979 Iranian shortfall--pose a significant threat to national security, and the lack of effective contingency planning and program development to data is serious and requires immediate attention. The Government must make a determined commitment to emergency preparedness now, while oil markets are slack, to prepare for any future disruption.

  18. Thermal insulated glazing unit

    DOEpatents

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  19. Thermal insulated glazing unit

    DOEpatents

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  20. Contamination analysis unit

    DOEpatents

    Gregg, Hugh R.; Meltzer, Michael P.

    1996-01-01

    The portable Contamination Analysis Unit (CAU) measures trace quantifies of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surface by measuring residual hazardous surface contamination, such as tritium and trace organics It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings.

  1. Contamination analysis unit

    DOEpatents

    Gregg, H.R.; Meltzer, M.P.

    1996-05-28

    The portable Contamination Analysis Unit (CAU) measures trace quantities of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surfaces by measuring residual hazardous surface contamination, such as tritium and trace organics. It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings. 1 fig.

  2. Laser system preset unit

    DOEpatents

    Goodwin, William L.

    1977-01-01

    An electronic circuit is provided which may be used to preset a digital display unit of a Zeeman-effect layer interferometer system which derives distance measurements by comparing a reference signal to a Doppler signal generated at the output of the interferometer laser head. The circuit presets dimensional offsets in the interferometer digital display by electronically inducing a variation in either the Doppler signal or the reference signal, depending upon the direction of the offset, to achieve the desired display preset.

  3. UNITED STATES GOVERNMENT

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    United states government department of energy ____________________________________________________________________________ ___ CONFERENCE CALL DOE FEDERAL LABOR FORUM PRELIMINARY MEETING AENDA August 9, 2013 @ 11:00 A.M. EDT Agenda: Confirm interest in DOE-wide labor forum Scope of Forum: This federal labor forum will be charged with jointly identifying and crafting recommended solutions to the problems facing us as a Department. The forum will accomplish this by using a constructive and

  4. United States Senate

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    from The Department of Energy for Committee on Energy and Natural Resources United States Senate S. 3312 - The Responsible Disposal Reauthorization Act of 2016 September 22, 2016 The Department of Energy, Office of Legacy Management (DOE-LM) has no issues with the intent of the Responsible Disposal Reauthorization Act of 2016 to extend the operating life of the Grand Junction Disposal Site from the year 2023 to 2048. The disposal site is located about 18 miles southeast of the City of Grand

  5. United States Government

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    * (08-93) United States Government Department of Energy Memorandum OFFICE OF INSPECTOR GENERAL DATE: November 9, 2005 REPLY TO ATTN OF: IG-34 (A05TG036) Audit Report No.: OAS-L-06-01 SUBJECT: Report on Audit of "The Department of Energy's Radio Communications Systems" TO: Chief Information Officer, IM-1 INTRODUCTION AND OBJECTIVE The Department of Energy's (Department) complex-wide radio systems infrastructure supports and facilitates activities such as site emergency response,

  6. Good Energies (United Kingdom) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energies (United Kingdom) Jump to: navigation, search Logo: Good Energies (United Kingdom) Name: Good Energies (United Kingdom) Address: 2-5 Old Bond Street Place: London, United...

  7. CHP Technical Assistance Partnerships (CHP TAPs) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combined Heat & Power Deployment » CHP Technical Assistance Partnerships (CHP TAPs) CHP Technical Assistance Partnerships (CHP TAPs) DOE's CHP Technical Assistance Partnerships (CHP TAPs) promote and assist in transforming the market for CHP, waste heat to power, and district energy technologies/concepts throughout the United States. Key services of the CHP TAPs include: Market Opportunity Analyses - Supporting analyses of CHP market opportunities in diverse markets including industrial,

  8. Nuclear Arms Control R&D Consortium includes Los Alamos

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Arms Control R&D Consortium includes Los Alamos Nuclear Arms Control R&D Consortium includes Los Alamos A consortium led by the University of Michigan that includes LANL as ...

  9. Should Title 24 Ventilation Requirements Be Amended to include...

    Office of Scientific and Technical Information (OSTI)

    include an Indoor Air Quality Procedure? Citation Details In-Document Search Title: Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure? ...

  10. Natural Gas Delivered to Consumers in California (Including Vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    California (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in California (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun ...

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the U.S. (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel ...

  12. Solar Energy Education. Reader, Part II. Sun story. [Includes...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reader, Part II. Sun story. Includes glossary Citation Details In-Document Search Title: Solar Energy Education. Reader, Part II. Sun story. Includes glossary You are ...

  13. Microfluidic devices and methods including porous polymer monoliths...

    Office of Scientific and Technical Information (OSTI)

    Microfluidic devices and methods including porous polymer monoliths Title: Microfluidic devices and methods including porous polymer monoliths Microfluidic devices and methods ...

  14. Microfluidic devices and methods including porous polymer monoliths...

    Office of Scientific and Technical Information (OSTI)

    Microfluidic devices and methods including porous polymer monoliths Citation Details In-Document Search Title: Microfluidic devices and methods including porous polymer monoliths ...

  15. Newport News in Review, ch. 47, segment includes TEDF groundbreaking...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    https:www.jlab.orgnewsarticlesnewport-news-review-ch-47-segment-includes-tedf-groundbreaking-event Newport News in Review, ch. 47, segment includes TEDF groundbreaking event...

  16. Property:Number of Plants included in Capacity Estimate | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Plants included in Capacity Estimate Jump to: navigation, search Property Name Number of Plants included in Capacity Estimate Property Type Number Retrieved from "http:...

  17. Property:Number of Plants Included in Planned Estimate | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Number of Plants Included in Planned Estimate Jump to: navigation, search Property Name Number of Plants Included in Planned Estimate Property Type String Description Number of...

  18. FEMP Expands ESPC ENABLE Program to Include More Energy Conservation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Expands ESPC ENABLE Program to Include More Energy Conservation Measures FEMP Expands ESPC ENABLE Program to Include More Energy Conservation Measures November 13, 2013 - 12:00am...

  19. Natural Gas Delivered to Consumers in Minnesota (Including Vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Minnesota (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in Minnesota (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun ...

  20. United States Government

    Office of Legacy Management (LM)

    . v-w. ' ;H; (07.901 United States Government 0' ; Td 2, <.<~ Department of Energy ' m e m o randum DATE: REPLY TO Al-TN OF: EM-421 (W. A. W illiams, 903-8149) SUBJECT: Authorization for Remedial Action at Alba Craft Laboratory in Oxford, Ohio L. Price, OR TO: The former Alba Craft Laboratory site at lo-14 West Rose Avenue, Oxford, Ohio, is designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Dr. and M rs. Gilbert Pacey, of Oxford, Ohio, own

  1. United States Government DATE:

    Office of Legacy Management (LM)

    5oE(E;,8 ' 0 H .2+ L-1 United States Government DATE: MAR 0 8 1994 REPLY TO AlTN OF: EM-421 (W. A. Williams, 903-8149) SUBJECT: Authority Determination -- Former Herring-Hall-Marvin Safe Co., Hamilton, Ohio TO: The File The attached review documents the basis for determining whether the Department of Energy (DOE) has authority for taking remedial action at the former Herring-Hall-Marvin Safe Co. facility in Hamilton, Ohio, under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The

  2. United States Government

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DOEF 1325.8 {Rev 11*12-91) United States Government Department of Energy (DOE) memorandum Savannah River Operations Office (SR) DATE: OEC 19 2013 REPLY TO ATTN OF: AMMS (Hintze, 803-952-8422) suBJECT: Savannah River Remediation (SRR) Award Fee Determination for Evaluation Period October 1, 2012 to September 30, 2013 To: Charlene Smith, Contracting Officer, Contract DE-AC09-09SR22505 SRR has provided safe, timely, and cost-effective managen1ent and execution of the Liquid Waste program* at the

  3. United States Government

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    30/02 WED 09:58 FAX 423 241 3897 OIG -.- +-+ HQ ]002 rFG (07-;1) United States Government Department of Energy Memorandum DATE: October 29, 2002 REPLY TO 1G-36 (A02DN028) Audit Report No.: OAS-L-03-01 ATTN OF; SUBJECT: Audit of Procurement at the Rocky Flats Environmental Technology Site TO: Eugene Schmitt, Manager, Rocky Flats Field Office ' INTRODUCTION AND OBJECTIVE The Department of Energy (Department) and its site contractor, Kaiser-Hill Company, LLC (Kaiser-Hill), contracted in January

  4. United States Government

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    03/02 TUE 08:59 FAX 423 241 3897 OIG *-* HQ 00o2 DOE F 132,.8 W.I: ((07.9u) United States Government Department of Energy Memorandum DATE: December 2, 2002 REPLY TO REPLY TO -36 (A02SR013) Audit Report No.: OAS-L-03-07 ATTN OF: SUBJECT: Audit of Subcontracting Practices at the Savannah River Site TO: Jeffrey M. Allison, Acting Manager, Savannah River Operations Office INTRODUCTION AND OBJECTIVE The Department of Energy (Department) has contracted with Westinghouse Savannah River Company, LLC

  5. United States Government

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7/03 FRI 08:50 FAX 865 576 3213 OAK RIDGE AUDIT -+44 AIGA o001 10/16/03. THU 15:52 FAX 423 241 3897 OIG -- * ELMORE I001 United States Government Department of Eney memorandum DATE: October 1.6, 2003 b REPLY TO ATTNTO: IG-36 (A030R013) Audit Report No.: OAS-L-04-02 SUBJECT: Waste Pits and Silos Remediation at the Femald Closure Project To: Robert Wazther, Manager, Ohio Field Office INTRODUCTION AND OBJECTIVF In November 2000, the Ohio Field Office awarded a contract to Fluor Fernald Inc.,

  6. United States Government

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    .. a . r-z . "*& ., . .. uoi UA o. --.- flI gj UUX DOE F 1325.8 (08.93) United States Government Department of Ene memorandum DATE: August 19, 2004 Audit Report Number: OAS-L-04-18 REPLY TO ATTN OF: IG-36 (A03IF009) SUBJECT: Audit of the "Revised Pit 9 Cleanup Project at the Idaho National Engineering and Environmental Laboratory" TO: Paul Golan, Acting Assistant Secretary, Office of Environmental Management INTRODUCTION AND OBJECTIVE The Idaho National Engineering and

  7. United States Government

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    cr--ceut w.:3 i-Kun: TO:202 586 1660 P.002/006 DOE F 1325. EFG (07.PO) United States Government Department of Energy memorandum DATE: September 24, 2004 Audit Report Number: OAS-L-04-24 REPLY TO ATTN OF: IG-35 (A04AL004) SUBJECT: Audit Report on "The National Nuclear Security Administration's Secure Transportation Asset Program" TO: Deputy Administrator for Defense Programs, National Nuclear Security Administration INTRODUCTION AND OBIECTV E The Secure Transportation Asset (STA)

  8. United States Government

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7325.8 (08-93) United States Government Department of Energy Memorandum DATE: October 30,2008 Audit Report Nuniber: OAS-L-09-01 REPLY TO AITN OF: IG-30 (A08GT053) SUBJECT: Audit Report on "Review of the Department of Energy's Contract with AHTNA Government Services Corporation Contract No: DE-AC52-04NA25282" TO: Director, Office of Field Financial Management, NNSA INTRODUCTION AND OBJECTIVE The National Nuclear Security Administration (NNSA) awarded a general construction contract to

  9. United States Government Departmen

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7/05 TUE 07:58 FAX 423 241 3897 OIG -** HQ @]002 DOE F 1325.8 (08-93) United States Government Departmen of Energy memorandum DATE: December 20, 2005 Audit Report Number: OAS-L-06-03 REPLY TO A1TN OF; IG-36 (A05SR025) SUBJECT: Audit of "Defense Waste Processing Facility Operations at the Savannah River Site" TO: Jeffrey M. Allison, Manager, Savannah River Operations Office INTRODUCTION AND OBJECTIVE The Department of Energy's (Department) Savannah River Site stores approximately 36

  10. United States Government Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    B.89) EFO (07-90) United States Government Department of Energ Memorandum SEP 24 20t DATE: REPLY TO: IG-34 (A04TG032) Audit Report No.: OAS-L-04-21 SUBJECT: Evaluation of "The Federal Energy Regulatory Commission's Cyber Security Program - 2004" TO: Chairman, Federal Energy Regulatory Commission The purpose of this report is to inform you of the results of our annual evaluation of the Federal Energy Regulatory Commission's unclassified cyber security program. This evaluation was

  11. " Million Housing Units, Final...

    Energy Information Administration (EIA) (indexed site)

    "Routine Service or Maintenance" "Performed on Central Air" ... 3Only includes routine service or maintenance performed in the last year. 4Energy ...

  12. " Million Housing Units, Final...

    Energy Information Administration (EIA) (indexed site)

    ... "Routine Service or Maintenance" "Performed on Central Air" ... 3Only includes routine service or maintenance performed in the last year. 4Energy ...

  13. " Million Housing Units, Final...

    Energy Information Administration (EIA) (indexed site)

    "Routine Service or Maintenance" "Performed on Main Heating Equipment3" ... 3Only includes routine service or maintenance performed in the last year. 4Housing ...

  14. " Million Housing Units, Final...

    Energy Information Administration (EIA) (indexed site)

    ... "Routine Service or Maintenance" "Performed on Main Heating Equipment3" ... 3Only includes routine service or maintenance performed in the last year. 4Housing ...

  15. " Million Housing Units, Final...

    Energy Information Administration (EIA) (indexed site)

    ... "Routine Service or Maintenance" "Performed on Main Heating Equipment4" ... 4Only includes routine service or maintenance performed in the last year. 5Housing ...

  16. United States Attorney General

    Energy.gov [DOE] (indexed site)

    ... Activities for which deficiency appor- tionments have been granted on this basis include FBI criminal investigations, legal services rendered by the De- partment of Agriculture in ...

  17. Feasibility study for small-group water desalination equipment. Final report, February-August 1984

    SciTech Connect

    Holtzapple, M.; Allen, A.; Rogers, M.

    1984-08-01

    The ability for small groups of soldiers to desalinate brackish or sea water will reduce their dependence on supply lines. Ten desalination options were reviewed for effectiveness in nine scenarios. Each option was rated according to a number of factors such as energy consumption, water recovery, logistics concerns, weight, and simplicity. The importance of each of these factors depended on the scenario being considered. These options included simple distillation, single-pass membrane distillation, multiple-pass membrane distillation, multiple effect evaporation, heat pumps, vapor-compression, reverse osmosis without energy recovery, reverse osmosis with energy recovery, electrodialysis and ion exchange. The nine scenarios include: using waste heat from vehicles, using power take-off from vehicles, using a trailer mounted unit performing desalination on the move or in a fixed location, stowing a small desalination unit in vehicles to be used when needed, using waste heat at a fixed location, using a dedicated power source for a desalination unit at a fixed location, using waste heat from a microclimate cooling unit, and having a soldier carry the desalination unit. From this analysis, it was determined that simple distillation, membrane distillation, reverse osmosis, and vapor-compression were viable options.

  18. Energy Exchange Continuing Education Units

    Energy.gov [DOE]

    International Association for Continuing Education and Training (IACET) continuing education units (CEUs) will be available for designated training sessions.

  19. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    2. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " ","

  20. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    6 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " ","

  1. Joint Statement on United States - Israel Energy Dialogue | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy on United States - Israel Energy Dialogue Joint Statement on United States - Israel Energy Dialogue October 20, 2015 - 11:52am Addthis Joint Statement on United States - Israel Energy Dialogue News Media Contact (202) 586-4940 On Monday, October 19, 2015, U.S. Secretary of Energy Ernest J. Moniz and Israeli Minister of National Infrastructures, Energy, and Water Resources Yuval Steinitz launched the 2015 U.S.-Israel Energy Dialogue. The dialogue, held regularly since 2011, includes

  2. Separations Process Research Unit (SPRU) Site Cleanup By the Numbers |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Separations Process Research Unit (SPRU) Site Cleanup By the Numbers Separations Process Research Unit (SPRU) Site Cleanup By the Numbers Separations Process Research Unit (SPRU) Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of

  3. MODULAR CORE UNITS FOR A NEUTRONIC REACTOR

    DOEpatents

    Gage, J.F. Jr.; Sherer, D.B.

    1964-04-01

    A modular core unit for use in a nuclear reactor is described. Many identical core modules can be placed next to each other to make up a complete core. Such a module includes a cylinder of moderator material surrounding a fuel- containing re-entrant coolant channel. The re-entrant channel provides for the circulation of coolant such as liquid sodium from one end of the core unit, through the fuel region, and back out through the same end as it entered. Thermal insulation surrounds the moderator exterior wall inducing heat to travel inwardly to the coolant channel. Spaces between units may be used to accommodate control rods and support structure, which may be cooled by a secondary gas coolant, independently of the main coolant. (AEC)

  4. United States Government

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    11/07/03 13:UU FAA 301 903 4t00 UAI'I'AL REGION -+ tUK rlvrEA I(JUUZ DOE F 1325.8 (08-93) United States Government Department of Energy Memorandum OFFICE OF INSPECTOR GENERAL DATE: November 7, 2003 REPLY TO ATTN OF: IG-34 (A03SC050) Audit Report Number: OAS-L-04-04 SUBJECT: Audit of the U.S. Large Hadron Collider Program TO: Director, Office of Science, SC-1 The purpose of this report is to inform you of the results of our audit of the U.S. Large Hadron Collider (LHC) Program. The audit was

  5. UNITED STATES OF AMERICA

    Office of Environmental Management (EM)

    of natural gas, including LNG, from and to a nation with which there is in effect a free trade agreement requiring national treatment for trade in natural gas and the import of...

  6. Example Retro-Commissioning Scope of Work to Include Services...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Retro-Commissioning Scope of Work to Include Services as Part of an ESPC Investment-Grade Audit Example Retro-Commissioning Scope of Work to Include Services as Part of an ESPC ...

  7. SWS Online Tool now includes Multifamily Content, plus a How...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SWS Online Tool now includes Multifamily Content, plus a How-To Webinar SWS Online Tool now includes Multifamily Content, plus a How-To Webinar This announcement contains ...

  8. Natural Gas Delivered to Consumers in New Mexico (Including Vehicle...

    Energy Information Administration (EIA) (indexed site)

    Mexico (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in New Mexico (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul ...

  9. Replacing ESP controls brings large utility units into compliance

    SciTech Connect

    Hack, P. )

    1994-05-01

    This article examines the effect of retrofitting an electrostatic precipitator (ESP) digital control system on the emissions compliance of a large utility unit. The topics of the article include evaluation of ESP performance, determination of course of action, unit 1 and 2 installation of a digital control system, and results to emissions and performance of the ESP.

  10. Microfluidic devices and methods including porous polymer monoliths

    Office of Scientific and Technical Information (OSTI)

    (Patent) | DOEPatents devices and methods including porous polymer monoliths Title: Microfluidic devices and methods including porous polymer monoliths Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with

  11. United sail windmill

    SciTech Connect

    Labrador, G.A.

    1988-07-12

    This windmill provides low cost energy out of the wind in the form of compressed air, etc, by maximizing wind-contact at the least cost construction and maintenance, at the least cost of project site - making the ''Output/Cost Ratio'' very high. This is done by making the sails very large using light fabrics with aluminum or bamboo frames forming a square face, supported by light strong ropes, by arranging the sails on a single file close to one after the other at erect posture free to clip to the right or to the left, forming a long procession line transverse to the wind which is in close loop with another long procession line parallel to it but moving to the opposite direction, to produce a very large windmill without the need of additional set up units of windmills; by carrying the large sails high about the ground for better wind-contact thru a two level Aerial Cable Railway by means of a deep-groove roller wheel attached to the top end and to the bottom end of each sail-mast; by separating the two parallel lines of sails at least 100 feet apart for better wind-contact thru the use of set of three Terminal Gear Wheels at a Half-Hexagonal formation that hold the end loops of the Power Cable Chain being tugged by each sail; by making the windmill work during strong winds and storing the energy in compressed air tunnels, elevated water.

  12. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    Energy Information Administration (EIA) (indexed site)

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History U.S.

  13. Percentage of Total Natural Gas Residential Deliveries included in Prices

    Energy Information Administration (EIA) (indexed site)

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History U.S.

  14. Microfluidic devices and methods including porous polymer monoliths

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Patent: Microfluidic devices and methods including porous polymer monoliths Citation Details In-Document Search Title: Microfluidic devices and methods including porous polymer monoliths Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting

  15. Introduction to Small-Scale Photovoltaic Systems (Including RETScreen...

    OpenEI (Open Energy Information) [EERE & EIA]

    Photovoltaic Systems (Including RETScreen Case Study) (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Introduction to Small-Scale Photovoltaic Systems...

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    California (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in California (Million Cubic Feet) Year Jan Feb Mar Apr May Jun ...

  17. DOE Releases Request for Information on Critical Materials, Including...

    Energy.gov [DOE] (indexed site)

    including fuel cell platinum group metal catalysts. ... on issues related to the demand, supply, opportunities for ... Announces Second RFI on Rare Earth Metals DOE Announces RFI ...

  18. Numerical simulations for low energy nuclear reactions including...

    Office of Scientific and Technical Information (OSTI)

    Numerical simulations for low energy nuclear reactions including direct channels to validate statistical models Citation Details In-Document Search Title: Numerical simulations for ...

  19. U-182: Microsoft Windows Includes Some Invalid Certificates

    Energy.gov [DOE]

    The operating system includes some invalid intermediate certificates. The vulnerability is due to the certificate authorities and not the operating system itself.

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Virginia (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Virginia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  1. Numerical simulations for low energy nuclear reactions including...

    Office of Scientific and Technical Information (OSTI)

    Numerical simulations for low energy nuclear reactions including direct channels to ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  2. Microfluidic devices and methods including porous polymer monoliths...

    Office of Scientific and Technical Information (OSTI)

    The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to ...

  3. Introduction to Small-Scale Wind Energy Systems (Including RETScreen...

    OpenEI (Open Energy Information) [EERE & EIA]

    Case Study) (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Introduction to Small-Scale Wind Energy Systems (Including RETScreen Case Study) (Webinar) Focus...

  4. Percentage of Total Natural Gas Industrial Deliveries included...

    Gasoline and Diesel Fuel Update

    Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series ...

  5. Search for Earth-like planets includes LANL star analysis

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    their interiors. Consortium team members at Los Alamos include Joyce Ann Guzik, Paul Bradley, Arthur N. Cox, and Kim Simmons. They will help interpret the stellar oscillation...

  6. Including Retro-Commissioning in Federal Energy Savings Performance Contracts

    Energy.gov [DOE]

    Document describes guidance on the importance of (and steps to) including retro-commissioning in federal energy savings performance contracts (ESPCs).

  7. Comparison of Joint Modeling Approaches Including Eulerian Sliding...

    Office of Scientific and Technical Information (OSTI)

    Eulerian Sliding Interfaces Citation Details In-Document Search Title: Comparison of Joint Modeling Approaches Including Eulerian Sliding Interfaces You are accessing a ...

  8. Measuring and modeling the lifetime of nitrous oxide including...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Measuring and modeling the lifetime of nitrous oxide including its variability: NITROUS OXIDE AND ITS CHANGING LIFETIME Prev Next Title: Measuring and ...

  9. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    Units" ,,"UrbanRural Location (as Self-Reported)" ,"Housing Units (millions)" "Space ... ,,"RSEs for UrbanRural Location (as Self-Reported)" ,"RSEs for Housing Units " "Space ...

  10. Next Generation Rooftop Unit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Emerging Technologies Next Generation Rooftop Unit Next Generation Rooftop Unit The U.S. Department of Energy is currently conducting research in a next generation rooftop unit ...

  11. Sandia National Laboratories for the United States

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    XrayToolKit.com X-Ray Toolkit (XTK) is a software program developed by Sandia National Laboratories for the United States Government under funding from NNSA and TSWG. XTK is a radiograph acquisition and processing program designed specifically for Explosive Ordnance Disposal (EOD) technicians. XTK supports image acquisition from a variety of commercial scanners and provides image enhancement, measurement, and markup tools through a modern and user- friendly interface. Other features include

  12. United Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Jump to: navigation, search Name: United Biofuels Place: York, Pennsylvania Product: Waste and animal fats to biofuel producer, switched to animal fats from soy in fall of...

  13. New Mexico grape growers unite

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New Mexico grape growers unite, increase production Grape Growers Association enlivens ... land, enlivens production, protects water rights for Northern New Mexico agriculturists. ...

  14. Solar Energy Education. Reader, Part II. Sun story. [Includes glossary

    SciTech Connect

    Not Available

    1981-05-01

    Magazine articles which focus on the subject of solar energy are presented. The booklet prepared is the second of a four part series of the Solar Energy Reader. Excerpts from the magazines include the history of solar energy, mythology and tales, and selected poetry on the sun. A glossary of energy related terms is included. (BCS)

  15. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V.; Sommer, Gregory j.; Singh, Anup K.; Wang, Ying-Chih; Abhyankar, Vinay

    2015-12-01

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  16. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  17. Articles which include chevron film cooling holes, and related processes

    DOEpatents

    Bunker, Ronald Scott; Lacy, Benjamin Paul

    2014-12-09

    An article is described, including an inner surface which can be exposed to a first fluid; an inlet; and an outer surface spaced from the inner surface, which can be exposed to a hotter second fluid. The article further includes at least one row or other pattern of passage holes. Each passage hole includes an inlet bore extending through the substrate from the inlet at the inner surface to a passage hole-exit proximate to the outer surface, with the inlet bore terminating in a chevron outlet adjacent the hole-exit. The chevron outlet includes a pair of wing troughs having a common surface region between them. The common surface region includes a valley which is adjacent the hole-exit; and a plateau adjacent the valley. The article can be an airfoil. Related methods for preparing the passage holes are also described.

  18. Battleground Energy Recovery Project

    SciTech Connect

    Daniel Bullock

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ? Create a Showcase Waste Heat Recovery Demonstration Project.

  19. Turbomachine injection nozzle including a coolant delivery system

    DOEpatents

    Zuo, Baifang (Simpsonville, SC)

    2012-02-14

    An injection nozzle for a turbomachine includes a main body having a first end portion that extends to a second end portion defining an exterior wall having an outer surface. A plurality of fluid delivery tubes extend through the main body. Each of the plurality of fluid delivery tubes includes a first fluid inlet for receiving a first fluid, a second fluid inlet for receiving a second fluid and an outlet. The injection nozzle further includes a coolant delivery system arranged within the main body. The coolant delivery system guides a coolant along at least one of a portion of the exterior wall and around the plurality of fluid delivery tubes.

  20. Rooftop package unit diagnostician

    DOEpatents

    Chassin, David P [Pasco, WA; Pratt, Robert G [Kennewick, WA; Reid, Larry Dean [Benton City, WA

    2004-08-17

    A diagnostic system for an HVAC system includes a number of sensors used to measure the operation of the HVAC system. Sensor readings are measured by timing the delay between when a strobe signal is sent to a sensor and when an interrupt signal from the sensor is received. A device driver used to measure the sensor readings stores the sensor readings in pseudo-character device files, which are universally accessible by different subsystems of the diagnostic system. Based on the readings from these sensors, this diagnostic system is able to determine the operational status of the HVAC system and if an economizer in the HVAC system is operating properly.

  1. Removal of mineral matter including pyrite from coal

    DOEpatents

    Reggel, Leslie; Raymond, Raphael; Blaustein, Bernard D.

    1976-11-23

    Mineral matter, including pyrite, is removed from coal by treatment of the coal with aqueous alkali at a temperature of about 175.degree. to 350.degree. C, followed by acidification with strong acid.

  2. Virginia Senate Approves Budget Deal to Include Money for FEL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Virginia Senate Approves Budget Deal to Include Money for FEL (Daily Press) External Link: http:articles.dailypress.com2012-04-18newsdp-nws-general-assembly-budget-da... By ...

  3. T-603: Mac OS X Includes Some Invalid Comodo Certificates

    Office of Energy Efficiency and Renewable Energy (EERE)

    The operating system includes some invalid certificates. The vulnerability is due to the invalid certificates and not the operating system itself. Other browsers, applications, and operating systems are affected.

  4. Energy Department Expands Gas Gouging Reporting System to Include...

    Energy Saver

    Expands Gas Gouging Reporting System to Include 1-800 Number: 1-800-244-3301 Energy Department Expands Gas ... of reformulated gasoline in storage and is already helping to ...

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Energy Information Administration (EIA) (indexed site)

    Mexico (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in New Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul ...

  6. Including Retro-Commissioning in Federal Energy Savings Performance...

    Energy Saver

    the cost of the survey. Developing a detailed scope of work and a fixed price for this work is important to eliminate risk to the Agency and the ESCo. Including a detailed scope...

  7. Natural Gas Delivered to Consumers in Ohio (Including Vehicle...

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Delivered to Consumers in Ohio (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 136,340 110,078 102,451 66,525 ...

  8. Heap/stack guard pages using a wakeup unit

    SciTech Connect

    Gooding, Thomas M; Satterfield, David L; Steinmacher-Burow, Burkhard

    2014-04-29

    A method and system for providing a memory access check on a processor including the steps of detecting accesses to a memory device including level-1 cache using a wakeup unit. The method includes invalidating level-1 cache ranges corresponding to a guard page, and configuring a plurality of wakeup address compare (WAC) registers to allow access to selected WAC registers. The method selects one of the plurality of WAC registers, and sets up a WAC register related to the guard page. The method configures the wakeup unit to interrupt on access of the selected WAC register. The method detects access of the memory device using the wakeup unit when a guard page is violated. The method generates an interrupt to the core using the wakeup unit, and determines the source of the interrupt. The method detects the activated WAC registers assigned to the violated guard page, and initiates a response.

  9. Hybrid powertrain system including smooth shifting automated transmission

    DOEpatents

    Beaty, Kevin D.; Nellums, Richard A.

    2006-10-24

    A powertrain system is provided that includes a prime mover and a change-gear transmission having an input, at least two gear ratios, and an output. The powertrain system also includes a power shunt configured to route power applied to the transmission by one of the input and the output to the other one of the input and the output. A transmission system and a method for facilitating shifting of a transmission system are also provided.

  10. Prevention of Harassment (Including Sexual Harassment) and Retaliation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Policy Statement | Department of Energy Prevention of Harassment (Including Sexual Harassment) and Retaliation Policy Statement Prevention of Harassment (Including Sexual Harassment) and Retaliation Policy Statement DOE Policy for Preventing Harassment in the Workplace Harassment Policy July 2011.pdf (112.57 KB) More Documents & Publications Policy Statement on Equal Employment Opportunity, Harassment, and Retaliation Equal Employment Opportunity and Diversity Policy Statement VWA-0039 -

  11. Limited Personal Use of Government Office Equipment including Information Technology

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2005-01-07

    The Order establishes requirements and assigns responsibilities for employees' limited personal use of Government resources (office equipment and other resources including information technology) within DOE, including NNSA. The Order is required to provide guidance on appropriate and inappropriate uses of Government resources. This Order was certified 04/23/2009 as accurate and continues to be relevant and appropriate for use by the Department. Certified 4-23-09. No cancellation.

  12. Research Support Facility (RSF): Leadership in Building Performance...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... The RSF data center is highly efficient with many unique features, including: * Hot aisle containment * Reuse of data\tcenter waste heat to preheat building ventilation * Hybrid ...

  13. Alternative Energy Development Incentive (Corporate)

    Energy.gov [DOE]

    Eligible projects include the construction of electricity generation facilities of 2 megawatts or greater that utilize hydroelectric, solar, biomass, geothermal, wind, or waste heat from an indus...

  14. Alternative Energy Development Incentive (Personal)

    Energy.gov [DOE]

    Eligible projects include the construction of electricity generation facilities of 2 megawatts or greater that utilize hydroelectric, solar, biomass, geothermal, wind, or waste heat from an indus...

  15. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufactur...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Industries with high potential for energy savings through waste heat recovery in harsh environments include the steel, glass, aluminum, and cementlime industries. The estimated ...

  16. High-Performance Thermoelectric Devices Based on Abundant Silicide...

    Energy.gov [DOE] (indexed site)

    Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric ...

  17. Proactive Design of n-Type (In, Ce) Filled Skutterudites Enabling...

    Energy.gov [DOE] (indexed site)

    Thermoelectric and structural properties of n-type (In, Ce) filled skutterudites including ... High-Temperature Waste Heat Recovery Thermoelectric Couple Demonstration of (In, ...

  18. Liquid chromatography detection unit, system, and method

    SciTech Connect

    Derenzo, Stephen E.; Moses, William W.

    2015-10-27

    An embodiment of a liquid chromatography detection unit includes a fluid channel and a radiation detector. The radiation detector is operable to image a distribution of a radiolabeled compound as the distribution travels along the fluid channel. An embodiment of a liquid chromatography system includes an injector, a separation column, and a radiation detector. The injector is operable to inject a sample that includes a radiolabeled compound into a solvent stream. The position sensitive radiation detector is operable to image a distribution of the radiolabeled compound as the distribution travels along a fluid channel. An embodiment of a method of liquid chromatography includes injecting a sample that comprises radiolabeled compounds into a solvent. The radiolabeled compounds are then separated. A position sensitive radiation detector is employed to image distributions of the radiolabeled compounds as the radiolabeled compounds travel along a fluid channel.

  19. Liquid chromatography detection unit, system, and method

    DOEpatents

    Derenzo, Stephen E; Moses, William W

    2015-11-06

    An embodiment of a liquid chromatography detection unit includes a fluid channel and a radiation detector. The radiation detector is operable to image a distribution of a radiolabeled compound as the distribution travels along the fluid channel. An embodiment of a liquid chromatography system includes an injector, a separation column, and a radiation detector. The injector is operable to inject a sample that includes a radiolabeled compound into a solvent stream. The position sensitive radiation detector is operable to image a distribution of the radiolabeled compound as the distribution travels along a fluid channel. An embodiment of a method of liquid chromatography includes injecting a sample that comprises radiolabeled compounds into a solvent. The radiolabeled compounds are then separated. A position sensitive radiation detector is employed to image distributions of the radiolabeled compounds as the radiolabeled compounds travel along a fluid channel.

  20. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    6 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG

  1. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    6 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG

  2. A model for heterogeneous materials including phase transformations

    SciTech Connect

    Addessio, F.L.; Clements, B.E.; Williams, T.O.

    2005-04-15

    A model is developed for particulate composites, which includes phase transformations in one or all of the constituents. The model is an extension of the method of cells formalism. Representative simulations for a single-phase, brittle particulate (SiC) embedded in a ductile material (Ti), which undergoes a solid-solid phase transformation, are provided. Also, simulations for a tungsten heavy alloy (WHA) are included. In the WHA analyses a particulate composite, composed of tungsten particles embedded in a tungsten-iron-nickel alloy matrix, is modeled. A solid-liquid phase transformation of the matrix material is included in the WHA numerical calculations. The example problems also demonstrate two approaches for generating free energies for the material constituents. Simulations for volumetric compression, uniaxial strain, biaxial strain, and pure shear are used to demonstrate the versatility of the model.

  3. Advanced Unit Commitment Strategies in the United States Eastern Interconnection

    SciTech Connect

    Meibom, P.; Larsen, H. V.; Barth, R.; Brand, H.; Tuohy, A.; Ela, E.

    2011-08-01

    This project sought to evaluate the impacts of high wind penetrations on the U.S. Eastern Interconnection and analyze how different unit commitment strategies may affect these impacts.

  4. Metal vapor laser including hot electrodes and integral wick

    DOEpatents

    Ault, E.R.; Alger, T.W.

    1995-03-07

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube. 5 figs.

  5. Tunable cavity resonator including a plurality of MEMS beams

    DOEpatents

    Peroulis, Dimitrios; Fruehling, Adam; Small, Joshua Azariah; Liu, Xiaoguang; Irshad, Wasim; Arif, Muhammad Shoaib

    2015-10-20

    A tunable cavity resonator includes a substrate, a cap structure, and a tuning assembly. The cap structure extends from the substrate, and at least one of the substrate and the cap structure defines a resonator cavity. The tuning assembly is positioned at least partially within the resonator cavity. The tuning assembly includes a plurality of fixed-fixed MEMS beams configured for controllable movement relative to the substrate between an activated position and a deactivated position in order to tune a resonant frequency of the tunable cavity resonator.

  6. Metal vapor laser including hot electrodes and integral wick

    DOEpatents

    Ault, Earl R.; Alger, Terry W.

    1995-01-01

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube.

  7. Solar Energy Education. Renewable energy: a background text. [Includes glossary

    SciTech Connect

    Not Available

    1985-01-01

    Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

  8. Methods of producing adsorption media including a metal oxide

    SciTech Connect

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  9. DOE Considers Natural Gas Utility Service Options: Proposal Includes

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    30-mile Natural Gas Pipeline from Pasco to Hanford | Department of Energy Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford DOE Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford January 23, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE , (509) 376-5365, Cameron.Hardy@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) is considering

  10. Thin film solar cell including a spatially modulated intrinsic layer

    SciTech Connect

    Guha, Subhendu; Yang, Chi-Chung; Ovshinsky, Stanford R.

    1989-03-28

    One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

  11. Information regarding previous INCITE awards including selected highlights

    Office of Science (SC)

    | U.S. DOE Office of Science (SC) Information regarding previous INCITE awards including selected highlights Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities User Facilities Accessing ASCR Facilities Innovative & Novel Computational Impact on Theory & Experiement (INCITE) ASCR Leadership Computing Challenge (ALCC) Industrial Users Computational Science Graduate Fellowship (CSGF) Research & Evaluation Prototypes (REP) Science Highlights Benefits of

  12. cDNA encoding a polypeptide including a hevein sequence

    DOEpatents

    Raikhel, N.V.; Broekaert, W.F.; Namhai Chua; Kush, A.

    1993-02-16

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1,018 nucleotides long and includes an open reading frame of 204 amino acids.

  13. United Cooperative | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    which agreed to purchase a former VeraSun Energy ethanol plant in Iowa from AgStar Financial Services in August 2009. References: United Cooperative1 This article is a...

  14. Direct Current's Energy Unit Calculator

    Energy.gov [DOE]

    We recently released the second episode of Direct Current, our new Energy.gov podcast. Check out our newly proposed energy units -- burritos, Mt. Rushmore, a New York Minute and the Moon Landing!

  15. United States Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Quillen with relief that is equivalent to what he could receive under Part 708. 2 The parties to the settlement agreement were the United Steel, Paper and Forestry, Rubber, ...

  16. United States Environmental Monitoring EPA

    Office of Legacy Management (LM)

    United States Environmental Monitoring EPA 600/R-93/141 Environmental Protection Systems Laboratory January 1992 Agency P.O. Box 93478 Las Vegas NV 89193-3478 Research and Development _EPA Offsite Environmental Monitoring Report: Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1991 Available to DOE and DOE contractors from the Office of Scientificand Technical Information, P.O. Box 62, Oak ridge,TN 39831; pricesavailablefrom (615) 576-8401 Availableto the publicfrom

  17. OSTI Salutes Librarians (including its own!), National Librarian Week

    Office of Scientific and Technical Information (OSTI)

    (April 8-14) | OSTI, US Dept of Energy Office of Scientific and Technical Information Salutes Librarians (including its own!), National Librarian Week (April 8-14) Back to the OSTI News Listing for 2012 Thanks to librarians across the nation for their commitment to ensuring access to information. OSTI, with its own cadre of Masters-level librarians, connects with university research departments and libraries to increase awareness of the U.S. Department of Energy's valuable scientific and

  18. [Article 1 of 7: Motivates and Includes the Consumer]

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2 of 7: Research on the Characteristics of a Modern Grid by the NETL Modern Grid Strategy Team Accommodates All Generation and Storage Options Last month we presented the first Principal Characteristic of a Modern Grid, "Motivates and Includes the Consumer". This month we present a second characteristic, "Accommodates All Generation and Storage Options". This characteristic will fundamentally transition today's grid from a centralized model for generation to one that also has

  19. [Article 1 of 7: Motivates and Includes the Consumer]

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Series on the Seven Principal Characteristics of the Modern Grid [Article 1 of 7: Motivates and Includes the Consumer] In October 2007, Ken Silverstein (Energy Central) wrote an editorial, "Empowering Consumers" that hit a strong, kindred chord with the DOE/National Energy Technology Laboratory (NETL) Modern Grid Strategy team. Through subsequent discussions with Ken and Bill Opalka, Editor- In-Chief, Topics Centers, we decided it would be informative to the industry if the Modern Grid

  20. Evaporative cooler including one or more rotating cooler louvers

    DOEpatents

    Gerlach, David W

    2015-02-03

    An evaporative cooler may include an evaporative cooler housing with a duct extending therethrough, a plurality of cooler louvers with respective porous evaporative cooler pads, and a working fluid source conduit. The cooler louvers are arranged within the duct and rotatably connected to the cooler housing along respective louver axes. The source conduit provides an evaporative cooler working fluid to the cooler pads during at least one mode of operation.

  1. Empowering Women and Girls in the United States and Abroad

    Office of Energy Efficiency and Renewable Energy (EERE)

    The goal of the Equal Futures Partnership is for women to participate fully in public life and to lead and benefit from inclusive economic growth. Founding members, including the United States, are committing to new actions including legal, regulatory and policy reforms to advance this goal.

  2. Conversion of geothermal waste to commercial products including silica

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    2003-01-01

    A process for the treatment of geothermal residue includes contacting the pigmented amorphous silica-containing component with a depigmenting reagent one or more times to depigment the silica and produce a mixture containing depigmented amorphous silica and depigmenting reagent containing pigment material; separating the depigmented amorphous silica and from the depigmenting reagent to yield depigmented amorphous silica. Before or after the depigmenting contacting, the geothermal residue or depigmented silica can be treated with a metal solubilizing agent to produce another mixture containing pigmented or unpigmented amorphous silica-containing component and a solubilized metal-containing component; separating these components from each other to produce an amorphous silica product substantially devoid of metals and at least partially devoid of pigment. The amorphous silica product can be neutralized and thereafter dried at a temperature from about 25.degree. C. to 300.degree. C. The morphology of the silica product can be varied through the process conditions including sequence contacting steps, pH of depigmenting reagent, neutralization and drying conditions to tailor the amorphous silica for commercial use in products including filler for paint, paper, rubber and polymers, and chromatographic material.

  3. Electrolytes including fluorinated solvents for use in electrochemical cells

    DOEpatents

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-07-07

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include ion-supplying salts and fluorinated solvents capable of maintaining single phase solutions with the salts at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and increase safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Fluorinated salts, such as fluoroalkyl-substituted LiPF.sub.6, fluoroalkyl-substituted LiBF.sub.4 salts, linear and cyclic imide salts as well as methide salts including fluorinated alkyl groups, may be used due to their solubility in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene or, more specifically, a cyclic phosphazene and/or one or more ionic liquids.

  4. Multi-processor including data flow accelerator module

    DOEpatents

    Davidson, George S.; Pierce, Paul E.

    1990-01-01

    An accelerator module for a data flow computer includes an intelligent memory. The module is added to a multiprocessor arrangement and uses a shared tagged memory architecture in the data flow computer. The intelligent memory module assigns locations for holding data values in correspondence with arcs leading to a node in a data dependency graph. Each primitive computation is associated with a corresponding memory cell, including a number of slots for operands needed to execute a primitive computation, a primitive identifying pointer, and linking slots for distributing the result of the cell computation to other cells requiring that result as an operand. Circuitry is provided for utilizing tag bits to determine automatically when all operands required by a processor are available and for scheduling the primitive for execution in a queue. Each memory cell of the module may be associated with any of the primitives, and the particular primitive to be executed by the processor associated with the cell is identified by providing an index, such as the cell number for the primitive, to the primitive lookup table of starting addresses. The module thus serves to perform functions previously performed by a number of sections of data flow architectures and coexists with conventional shared memory therein. A multiprocessing system including the module operates in a hybrid mode, wherein the same processing modules are used to perform some processing in a sequential mode, under immediate control of an operating system, while performing other processing in a data flow mode.

  5. High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery Systems on Combustion Engines

    Energy.gov [DOE]

    This poster reports on recent developments, achievements, and capabilities within a virtual environment to predict the dynamic behavior of the Rankine cycle within real driving cycles.

  6. High-Temperature Components for Rankine-Cycle-Based Waste Heat...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Biodiesel Impact on Engine Lubricant Oil Dilution Statistical Analysis of Transient Cycle Test Results in a 40 CFR Part 1065 Engine Dynamometer Test ...

  7. Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery

    Energy.gov [DOE]

    Discusses progress of thermoelectric generator development at BSST and assessment of potential to enter commercial operation in vehicles

  8. Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity

    Energy.gov [DOE]

    Working to expand the usage of thermoelectric technology beyond seat heating and cooling and in doing so reduce CO2 emissions and conserve energy.

  9. Enhancing the Figure-of-Merit in Half-Heuslers for Vehicle Waste Heat Recovery

    Energy.gov [DOE]

    Good ZT can occur in non-traditional TE material structure. Ordered layer for charger carrier and disordered layer for phonon scattering is probably a good way to get high ZT.

  10. Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  11. EERE Success Story-Steel Mill Powered by Waste Heat Recovery...

    Office of Environmental Management (EM)

    R. Byron Pipes, John Leighton Bray Distinguished Professor of Engineering; Victor Smith, Indiana Secretary of Commerce; Leah Jamieson, John A. Edwardson Dean of Engineering; ...

  12. Waste Heat-to-Power Using Scroll Expander for Organic Rankine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Different working fluids - but, many ORC's use HFC-245fa Pressure ratiobuilt-in volume ratio mismatch - larger pressure ratio than practical scroll built-in volume ratio ...

  13. A Thermoelectric Generator with an Intermediate Heat Exchanger for Automotive Waste Heat Recovery System

    Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  14. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    SciTech Connect

    Viswanathan, V. V.; Davies, R. W.; Holbery, J.

    2006-04-01

    This report analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities.

  15. An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles

    Energy.gov [DOE]

    Discusses isostatic pressing for scalable TE elements, properties characterization of nanostructured ZnO materials, and heat exchanger designs to improve device efficiency

  16. An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  17. Waste Heat-to-Power Using Scroll Expander for Organic Rankine...

    Energy Saver

    Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. ...

  18. Technology for industrial waste heat recovery by organic Rankine cycle systems. Final report

    SciTech Connect

    Cain, W.G.; Drake, R.L.; Prisco, C.J.

    1984-10-01

    Four different aspects of ORC technology were studied: possible destructive chemical reaction between an aluminum turbine wheel and R-113 working fluid under wheel-to-rotor rub conditions; possible chemical reaction between stainless steel or carbon steel and any of five different ORC working fluids under rotor-stator rub conditions; effects on electric generator properties of extended exposure to an environment of saturated R-113 vapor/fluid; and operational proof tests under laboratory conditions of two 1070 kW, ORC, R-113 hermetic turbogenerator power module systems.

  19. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  20. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  1. NSF/DOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  2. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Energy.gov [DOE]

    MSU has developed and demonstrated a 5-couple module which produced 5.4 watts at an average ∆T estimated to be ~500 oC

  3. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

    DOEpatents

    Meisner, Gregory P; Yang, Jihui

    2014-02-11

    Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

  4. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery

    Energy.gov [DOE]

    Development for commercialization of automotive thermoelectric generators from high-ZT TE materials with using low-cost, widely available materials, system design and modeling to maximize temperature differential across TE modules and maximize power output

  6. High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Reports of methods to synthesize single-crystal and poly or nano- crystalline p- and n-type higher manganese silicides to reduce lattice thermal conductivity

  7. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Proposed two-stage TEG system with half-heusler as the first stage, and Bi2Te3 as the low temperature stage expected to show a 5% fuel efficiency improvement in vehicle platform under US06 drive cycle

  8. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  9. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  10. Integration of Advanced Materials and Interfaces for Durable Thermoelectric Automobile Exhaust Waste Heat Harvesting Devices

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  11. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  12. Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units

    DOEpatents

    Backhaus, Scott; Swift, Greg

    2013-06-25

    The present invention includes a thermoacoustic assembly and method for improved efficiency. The assembly has a first stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator and at least one additional heat exchanger. The first stage Stirling thermal unit is serially coupled to a first end of a quarter wavelength long coupling tube. A second stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator, and at least one additional heat exchanger, is serially coupled to a second end of the quarter wavelength long coupling tube.

  13. A New Vision for United States Hydropower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A New Vision for United States Hydropower A New Vision for United States Hydropower The goal of the Hydropower Vision is to operate, optimize, and develop hydropower in a manner that maximizes opportunities for low-cost, low-carbon renewable energy production, economic stimulation, and environmental stewardship to provide long-term benefits for the nation. Hydropower Vision Framework The Hydropower Vision Report includes a Roadmap that defines a range of actions needed to realize the economic

  14. Functions and requirements for a cesium demonstration unit

    SciTech Connect

    Howden, G.F.

    1994-04-01

    Westinghouse Hanford Company is investigating alternative means to pretreat the wastes in the Hanford radioactive waste storage tanks. Alternatives include (but are not limited to) in-tank pretreatment, use of above ground transportable compact processing units (CPU) located adjacent to a tank farm, and fixed processing facilities. This document provides the functions and requirements for a CPU to remove cesium from tank waste as a demonstration of the CPU concept. It is therefore identified as the Cesium Demonstration Unit CDU.

  15. Waste Treatment Plant and Tank Farm Program | Department of Energy

    Energy.gov [DOE] (indexed site)

    Systems | Department of Energy presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power. Waste Heat Management Options for Improving Industrial Process Heating Systems (August 20, 2009) (494.7 KB) More Documents & Publications Energy Systems Reduce Radiation Losses from Heating Equipment Seven Ways to Optimize Your Process Heat System Productivity and Emissions

  16. A coke oven model including thermal decomposition kinetics of tar

    SciTech Connect

    Munekane, Fuminori; Yamaguchi, Yukio; Tanioka, Seiichi

    1997-12-31

    A new one-dimensional coke oven model has been developed for simulating the amount and the characteristics of by-products such as tar and gas as well as coke. This model consists of both heat transfer and chemical kinetics including thermal decomposition of coal and tar. The chemical kinetics constants are obtained by estimation based on the results of experiments conducted to investigate the thermal decomposition of both coal and tar. The calculation results using the new model are in good agreement with experimental ones.

  17. cDNA encoding a polypeptide including a hevein sequence

    DOEpatents

    Raikhel, Natasha V.; Broekaert, Willem F.; Chua, Nam-Hai; Kush, Anil

    1993-02-16

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a pu GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon.

  18. Composite material including nanocrystals and methods of making

    DOEpatents

    Bawendi, Moungi G.; Sundar, Vikram C.

    2008-02-05

    Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties

  19. Composite material including nanocrystals and methods of making

    DOEpatents

    Bawendi, Moungi G.; Sundar, Vikram C.

    2010-04-06

    Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties.

  20. NREL: Technology Deployment - Cities-LEAP Energy Profile Tool Includes

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Data on More than 23,400 U.S. Cities Cities-LEAP Energy Profile Tool Includes Energy Data on More than 23,400 U.S. Cities News NREL Report Examines Energy Use in Cities and Proposes Next Steps for Energy Innovation Publications Citi-Level Energy Decision Making: Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities Sponsors DOE's Energy Office of Energy Efficiency and Renewable Energy Policy and Analysis Office Related Stories Hawaii's First Net-Zero Energy

  1. Composite armor, armor system and vehicle including armor system

    DOEpatents

    Chu, Henry S.; Jones, Warren F.; Lacy, Jeffrey M.; Thinnes, Gary L.

    2013-01-01

    Composite armor panels are disclosed. Each panel comprises a plurality of functional layers comprising at least an outermost layer, an intermediate layer and a base layer. An armor system incorporating armor panels is also disclosed. Armor panels are mounted on carriages movably secured to adjacent rails of a rail system. Each panel may be moved on its associated rail and into partially overlapping relationship with another panel on an adjacent rail for protection against incoming ordnance from various directions. The rail system may be configured as at least a part of a ring, and be disposed about a hatch on a vehicle. Vehicles including an armor system are also disclosed.

  2. What To Include In The Whistleblower Complaint? | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) To Include In The Whistleblower Complaint? Your complaint does not need to be in any specific form but must be signed by you and contain the following: A statement specifically describing 1. The alleged retaliation taken against you and 2. The disclosure, participation, or refusal that you believe gave rise to the retaliation; A statement that you are not currently pursuing a remedy under State or other applicable law, as described in Sec. 708.15 of this subpart; A

  3. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    Energy Information Administration (EIA) (indexed site)

    Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons)

  4. Community Assessment Tool for Public Health Emergencies Including Pandemic Influenza

    SciTech Connect

    ORAU's Oak Ridge Institute for Science Education

    2011-04-14

    The Community Assessment Tool (CAT) for Public Health Emergencies Including Pandemic Influenza (hereafter referred to as the CAT) was developed as a result of feedback received from several communities. These communities participated in workshops focused on influenza pandemic planning and response. The 2008 through 2011 workshops were sponsored by the Centers for Disease Control and Prevention (CDC). Feedback during those workshops indicated the need for a tool that a community can use to assess its readiness for a disaster - readiness from a total healthcare perspective, not just hospitals, but the whole healthcare system. The CAT intends to do just that - help strengthen existing preparedness plans by allowing the healthcare system and other agencies to work together during an influenza pandemic. It helps reveal each core agency partners (sectors) capabilities and resources, and highlights cases of the same vendors being used for resource supplies (e.g., personal protective equipment [PPE] and oxygen) by the partners (e.g., public health departments, clinics, or hospitals). The CAT also addresses gaps in the community's capabilities or potential shortages in resources. This tool has been reviewed by a variety of key subject matter experts from federal, state, and local agencies and organizations. It also has been piloted with various communities that consist of different population sizes, to include large urban to small rural communities.

  5. Data report TRUPACT-I, Unit 0

    SciTech Connect

    Mihalovich, G.S.; Hudson, M.; Joseph, B.J.; Romesberg, L.E.

    1985-09-01

    TRUPACT-I was tested to evaluate the design under the regulatory testing requirements defined in DOE Order No. 5480.1, Chapter 3. Tests were conducted both at the Drop Test Facility at Oak Ridge National Laboratories, Oak Ridge, Tennessee, and at Sandia National Laboratories, Albuquerque, New Mexico. The program consisted of 12-inch and 30-foot drop tests onto an essentially unyielding surface, 40-inch drop tests onto a puncture bar, and a thermal test. Instrumentation for the tests included accelerometers, strain gages, and thermocouples. Data from each test was stored on magnetic tape for later analysis. The test unit met all of the structural regulatory requirements during the impact events, with the possible exception of damage to the seal retainer bond line discovered during disassembly. The adhesive bonds on the seal retainer did not hold after the thermal test. The foam behind the puncture panel on the outer door burned during the thermal test, overheating and deteriorating the seals; the seals failed. This report presents the raw data from the testing program of TRUPACT-I, Unit 0. An analysis report interpreting the data will be published as ''TRUPACT-I, Unit 0 Test Data Analysis,'' SAND85-0943 (TTC-0555), Sandia National Laboratories, Albuquerque, New Mexico.

  6. Recent progress and advances in iterative software (including parallel aspects)

    SciTech Connect

    Carey, G.; Young, D.M.; Kincaid, D.

    1994-12-31

    The purpose of the workshop is to provide a forum for discussion of the current state of iterative software packages. Of particular interest is software for large scale engineering and scientific applications, especially for distributed parallel systems. However, the authors will also review the state of software development for conventional architectures. This workshop will complement the other proposed workshops on iterative BLAS kernels and applications. The format for the workshop is as follows: To provide some structure, there will be brief presentations, each of less than five minutes duration and dealing with specific facets of the subject. These will be designed to focus the discussion and to stimulate an exchange with the participants. Issues to be covered include: The evolution of iterative packages, current state of the art, the parallel computing challenge, applications viewpoint, standards, and future directions and open problems.

  7. Hydraulic engine valve actuation system including independent feedback control

    DOEpatents

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  8. International energy outlook. Volume 2. Europe (including USSR)

    SciTech Connect

    Jablonski, D.M.

    1982-01-01

    Europe, like the rest of the globe, still is reeling from the blows of energy crises. European countries are finding energy a critical bottom line to their development and future well-being. To reduce energy dependency and improve fiscal balance, the countries are placing increasing emphasis on exploiting their indigenous energy sources. This volume, Volume 2 is a compilation of official US government intelligence reports examining energy trends and related data in 10 European countries: France, Greece, Italy, Netherlands, Norway, Spain, Sweden, West Germany, Yugoslvania and the Soviet Union. The range and detail of country coverage vary, dut to availability of reports. Although the book details current energy situations, its main emphasis is on the future, including estimates of future production and consumption, and descriptions of energy-development plans. The countries not endowed with large petroleum resources are moving toward non-oil sources. 5 references, 65 tables.

  9. Actuator assembly including a single axis of rotation locking member

    DOEpatents

    Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.

    2009-12-08

    An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.

  10. Dye laser amplifier including a specifically designed diffuser assembly

    DOEpatents

    Davin, James; Johnston, James P.

    1992-01-01

    A large (high flow rate) dye laser amplifier in which a continuous replened supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a relatively high flow rate and a specifically designed diffuser assembly for slowing down the flow of dye while, at the same time, assuring that as the dye stream flows through the diffuser assembly it does so in a stable manner.

  11. Aerodynamic analysis of the Darrieus rotor including secondary effects

    SciTech Connect

    Paraschivoiu, I.; Beguler, C.; Delclaux, F.; Fraunie, P.

    1983-09-01

    An aerodynamic analysis is made of two variants of the two-actuator-disk theory for modeling the Darrieus wind turbine. The double-multiple-streamtube model with constant and variable interference factors, including secondary effects, is examined for a Darrieus rotor. The influence of the secondary effects, namely, the blade geometry and profile type, the rotating tower, and the presence of struts and aerodynamic spoilers, is relatively significant, especially at high tip-speed ratios. Variation of the induced velocity as a function of the aximuthal angle allows a more accurate calculation of the aerodynamic loads on the downwind zone of the rotor with respect to the assumed constant interference factors. The theoretical results were compared with available experimental data for the Magdalen Islands wind turbine and Sandia-type machines (straight-line/ circular-arc shape).

  12. Aerodynamic analysis of the Darrieus rotor including secondary effects

    SciTech Connect

    Paraschivoiu, I.; Delclaux, F.; Fraunie, P.; Beguier, C.

    1983-09-01

    An aerodynamic analysis is made of two variants of the two-actuator-disk theory for modeling the Darrieus wind turbine. The double-multiple-streamtube model with constant and variable interference factors, including secondary effects, is examined for a Darrieus rotor. The influence of the secondary effects, namely, the blade geometry and profile type, the rotating tower, and the presence of struts and aerodynamic spoilers, is relatively significant, especially at high tip-speed ratios. Variation of the induced velocity as a function of the azimuthal angle allows a more accurate calculation of the aerodynamic loads on the downwind zone of the rotor with respect to the assumed constant interference factors. The theoretical results were compared with available experimental data for the Magdalen Islands wind turbine and Sandia-type machines (straight-line/circular-arc shape).

  13. Copper laser modulator driving assembly including a magnetic compression laser

    DOEpatents

    Cook, Edward G.; Birx, Daniel L.; Ball, Don G.

    1994-01-01

    A laser modulator (10) having a low voltage assembly (12) with a plurality of low voltage modules (14) with first stage magnetic compression circuits (20) and magnetic assist inductors (28) with a common core (91), such that timing of the first stage magnetic switches (30b) is thereby synchronized. A bipolar second stage of magnetic compression (42) is coupled to the low voltage modules (14) through a bipolar pulse transformer (36) and a third stage of magnetic compression (44) is directly coupled to the second stage of magnetic compression (42). The low voltage assembly (12) includes pressurized boxes (117) for improving voltage standoff between the primary winding assemblies (34) and secondary winding (40) contained therein.

  14. Nijmegen soft-core potential including two-meson exchange

    SciTech Connect

    Stoks, V.G.J.; Rijken, T.A.

    1995-05-10

    We report on the progress of the construction of the extended soft-core (ESC) Nijmegen potential. Next to the standard one-boson-exchange parts, the model includes the pion-meson-exchange potentials due to the parallel and crossed-box diagrams, as well as the one-pair and two-pair diagrams, vertices for which can be identified with similar interactions appearing in chiral-symmetric Lagrangians. Although the ESC potential is still under construction, it already gives an excellent description of all {ital NN} scattering data below 350 MeV with {chi}{sup 2}/datum=1.3. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  15. Electra-optical device including a nitrogen containing electrolyte

    DOEpatents

    Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Luck, C.F.

    1995-10-03

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C.

  16. Electra-optical device including a nitrogen containing electrolyte

    DOEpatents

    Bates, John B.; Dudney, Nancy J.; Gruzalski, Greg R.; Luck, Christopher F.

    1995-01-01

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  17. Pulse transmission transmitter including a higher order time derivate filter

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-09-23

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission transmitter includes: a clock; a pseudorandom polynomial generator coupled to the clock, the pseudorandom polynomial generator having a polynomial load input; an exclusive-OR gate coupled to the pseudorandom polynomial generator, the exclusive-OR gate having a serial data input; a programmable delay circuit coupled to both the clock and the exclusive-OR gate; a pulse generator coupled to the programmable delay circuit; and a higher order time derivative filter coupled to the pulse generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  18. United Power, Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    United Power, Inc Place: Colorado Website: unitedpower.com Twitter: @UnitedPowerCoop Facebook: https:www.facebook.comUnitedPower Outage Hotline: 1-303-637-1350 Outage Map:...

  19. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    DOEpatents

    Wijmans, Johannes G.; Merkel, Timothy C; Baker, Richard W.

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  20. UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    e'-ä\r., a"àT#j UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 6 14,15 ROSS AVENUE, SUITE 1200 DALLAS, TX 752A2-n33 JA¡t 5 20ll cERTrrmD rytAlr- RETIIRN RECETPT REOITESIEn COPY Edward Ziemianski Acting Manager U.S. Department of Energy Carlsbad Field Offïce P.O. Box 3090 Carlsbad, NM 88221 RE: United States Environmental Protection Agency (EPA) Region 6 Response to the Waste Isolation Pilot Plant OVPP) Approval Request to Use Panel 8 to Store and Land Dispose Polychlorinated

  1. Incoherent pion photoproduction on the deuteron including polarization effects

    SciTech Connect

    Darwish, E.M.; Al-Thoyaib, S.S.

    2011-03-15

    Incoherent pion photoproduction on the deuteron including polarization effects is studied in the energy region from {pi}-threshold up to the {Delta}(1232)-resonance with inclusion of all leading {pi}NN effects. For the elementary pion photoproduction operator, a realistic effective Lagrangian approach is used which displays chiral symmetry, gauge invariance, and crossing symmetry, as well as a consistent treatment of the spin-3/2 interaction. The interactions in the final two-body subsystems are taken in separable form. Effects of final state interaction are investigated and their role in unpolarized and polarization observables are found to be significant. The extracted cross sections and spin asymmetries are compared with available experimental data and predictions of other works, and a satisfactory agreement is obtained. In addition, the sensitivity of results to the elementary N({gamma}, {pi})N operator is investigated. Considerable dependence of the d({gamma}, {pi})NN results on the elementary amplitude is found. This indicates that it can serve as a filter for different elementary operators.

  2. cDNA encoding a polypeptide including a hevein sequence

    DOEpatents

    Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

    1995-03-21

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1,018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 11 figures.

  3. C -parameter distribution at N 3 LL ' including power corrections

    DOE PAGES [OSTI]

    Hoang, André H.; Kolodrubetz, Daniel W.; Mateu, Vicent; Stewart, Iain W.

    2015-05-15

    We compute the e⁺e⁻ C-parameter distribution using the soft-collinear effective theory with a resummation to next-to-next-to-next-to-leading-log prime accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to O(α3s), a numerical determination of the two-loop nonlogarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments Ωn. To eliminate an O(ΛQCD) renormalon ambiguity in the soft function, we switchmore » from the MS¯ to a short distance “Rgap” scheme to define the leading power correction parameter Ω1. We show how to simultaneously account for running effects in Ω1 due to renormalon subtractions and hadron-mass effects, enabling power correction universality between C-parameter and thrust to be tested in our setup. We discuss in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant fit region for αs(mZ) and Ω1, the perturbative uncertainty in our cross section is ≅ 2.5% at Q=mZ.« less

  4. Extractant composition including crown ether and calixarene extractants

    DOEpatents

    Meikrantz, David H.; Todd, Terry A.; Riddle, Catherine L.; Law, Jack D.; Peterman, Dean R.; Mincher, Bruce J.; McGrath, Christopher A.; Baker, John D.

    2009-04-28

    An extractant composition comprising a mixed extractant solvent consisting of calix[4] arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The DtBu18C6 may be present at from approximately 0.01M to approximately 0.4M, such as at from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present at from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The extractant composition further comprises an aqueous phase. The mixed extractant solvent may be used to remove cesium and strontium from the aqueous phase.

  5. Interim performance criteria for photovoltaic energy systems. [Glossary included

    SciTech Connect

    DeBlasio, R.; Forman, S.; Hogan, S.; Nuss, G.; Post, H.; Ross, R.; Schafft, H.

    1980-12-01

    This document is a response to the Photovoltaic Research, Development, and Demonstration Act of 1978 (P.L. 95-590) which required the generation of performance criteria for photovoltaic energy systems. Since the document is evolutionary and will be updated, the term interim is used. More than 50 experts in the photovoltaic field have contributed in the writing and review of the 179 performance criteria listed in this document. The performance criteria address characteristics of present-day photovoltaic systems that are of interest to manufacturers, government agencies, purchasers, and all others interested in various aspects of photovoltaic system performance and safety. The performance criteria apply to the system as a whole and to its possible subsystems: array, power conditioning, monitor and control, storage, cabling, and power distribution. They are further categorized according to the following performance attributes: electrical, thermal, mechanical/structural, safety, durability/reliability, installation/operation/maintenance, and building/site. Each criterion contains a statement of expected performance (nonprescriptive), a method of evaluation, and a commentary with further information or justification. Over 50 references for background information are also given. A glossary with definitions relevant to photovoltaic systems and a section on test methods are presented in the appendices. Twenty test methods are included to measure performance characteristics of the subsystem elements. These test methods and other parts of the document will be expanded or revised as future experience and needs dictate.

  6. cDNA encoding a polypeptide including a hevein sequence

    DOEpatents

    Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

    1999-05-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 12 figs.

  7. cDNA encoding a polypeptide including a hevein sequence

    DOEpatents

    Raikhel, Natasha V.; Broekaert, Willem F.; Chua, Nam-Hai; Kush, Anil

    1999-05-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  8. CDNA encoding a polypeptide including a hevein sequence

    DOEpatents

    Raikhel, Natasha V.; Broekaert, Willem F.; Chua, Nam-Hai; Kush, Anil

    1995-03-21

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  9. GEO UNIT AGREEMENT | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GEO UNIT AGREEMENT Jump to: navigation, search GEO UNIT AGREEMENT Mineral interest joined together to explore, develop and produce geothermal resources Retrieved from "http:...

  10. Photovoltaics Economic Calculator (United States) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaics Economic Calculator (United States) Focus Area: Solar Topics: System & Application...

  11. Unit Energy Europe AG | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind energy Product: Unit Energy develops and operates wind parks and hydroelectric power plants all across Europe. References: Unit Energy Europe AG1 This article is a stub....

  12. Sunton United Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    United Energy LLC Jump to: navigation, search Name: Sunton United Energy LLC Place: Salt Lake City, Utah Sector: Renewable Energy Product: Utah-based investment company seeking...

  13. United Energy Group PLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Group PLC Jump to: navigation, search Name: United Energy Group PLC Place: Haslemere, United Kingdom Sector: Hydro, Wind energy Product: The company develops small hydro, gas...

  14. Biofuels Atlas (United States) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Atlas (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biofuels Atlas (United States) Focus Area: Clean Transportation Topics: Potentials & Scenarios...

  15. Low Carbon Transition Unit | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Transition Unit Jump to: navigation, search Name Low Carbon Transition Unit AgencyCompany Organization Danish Government Partner Danish Ministry of Climate, Energy and Buildings;...

  16. United Biofuels Private Limited | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    United Biofuels Private Limited Jump to: navigation, search Name: United Biofuels Private Limited Place: Tamil Nadu, India Sector: Biomass Product: India-based owner and operator...

  17. United Group Limited | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Limited Jump to: navigation, search Name: United Group Limited Place: Perth, Western Australia, Australia Zip: 6001 Product: The United Group Resources (UGL) division is an EPC and...

  18. United Nations Industrial Development Organization Feed | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    US Savannah River National Laboratory (SRNL) UNEP-Risoe Centre on Energy, Climate and Sustainable Development United Nations Environment Programme (UNEP) United Nations...

  19. United Nations Foundation Feed | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    US Savannah River National Laboratory (SRNL) UNEP-Risoe Centre on Energy, Climate and Sustainable Development United Nations Environment Programme (UNEP) United Nations...

  20. Shipping device for heater unit assembly

    DOEpatents

    Blaushild, Ronald M.; Abbott, Stephan L.; Miller, Phillip E.; Shaffer, Robert

    1991-01-01

    A shipping device for a heater unit assembly (23), the heater unit assembly (23) including a cylindrical wall (25) and a top plate (31) secured to the cylindrical wall (25) and having a flange portion which projects radially beyond the outer surface of the cylindrical wall (25), and the shipping device including: a cylindrical container (3) having a closed bottom (13); a support member (47) secured to the container (3) and having an inwardly directed flange for supporting the flange portion of the top plate (31); a supplemental supporting system (1) for positioning the heater unit assembly (23) in the container (3) at a spaced relation from the inner surface and bottom wall (13) of the container (3); a cover (15) for closing the top of the container (3); and a container supporting structure (5,7,8) supporting the container (3) in a manner to permit the container (3) to be moved, relative to the supporting structure (5,7,8 ), between a vertical position for loading and unloading the assembly (23) and a horizontal position for transport of the assembly (23). A seal (57) is interposed between the container (3) and the cover (15) for sealing the interior of the container (3) from the environment. An abutment member (41) is mounted on the container supporting structure (5,7,8) for supporting the container bottom (13), when the container (3) is in the vertical position, to prevent the container (3) from moving past the vertical position in the direction away from the horizontal position, and a retainer member (55) is secured within the cover (15) for retaining the assembly top plate (31) in contact with the support member (47) when the cover (15) closes the top of the container (3).

  1. Renewable Energy Atlas of the United States

    SciTech Connect

    Kuiper, J.; Hlava, K.; Greenwood, H.; Carr, A.

    2013-12-13

    The Renewable Energy Atlas (Atlas) of the United States is a compilation of geospatial data focused on renewable energy resources, federal land ownership, and base map reference information. This report explains how to add the Atlas to your computer and install the associated software. The report also includes: A description of each of the components of the Atlas; Lists of the Geographic Information System (GIS) database content and sources; and A brief introduction to the major renewable energy technologies. The Atlas includes the following: A GIS database organized as a set of Environmental Systems Research Institute (ESRI) ArcGIS Personal GeoDatabases, and ESRI ArcReader and ArcGIS project files providing an interactive map visualization and analysis interface.

  2. Community Assessment Tool for Public Health Emergencies Including Pandemic Influenza

    SciTech Connect

    HCTT-CHE

    2011-04-14

    The Community Assessment Tool (CAT) for Public Health Emergencies Including Pandemic Influenza (hereafter referred to as the CAT) was developed as a result of feedback received from several communities. These communities participated in workshops focused on influenza pandemic planning and response. The 2008 through 2011 workshops were sponsored by the Centers for Disease Control and Prevention (CDC). Feedback during those workshops indicated the need for a tool that a community can use to assess its readiness for a disaster—readiness from a total healthcare perspective, not just hospitals, but the whole healthcare system. The CAT intends to do just that—help strengthen existing preparedness plans by allowing the healthcare system and other agencies to work together during an influenza pandemic. It helps reveal each core agency partners' (sectors) capabilities and resources, and highlights cases of the same vendors being used for resource supplies (e.g., personal protective equipment [PPE] and oxygen) by the partners (e.g., public health departments, clinics, or hospitals). The CAT also addresses gaps in the community's capabilities or potential shortages in resources. While the purpose of the CAT is to further prepare the community for an influenza pandemic, its framework is an extension of the traditional all-hazards approach to planning and preparedness. As such, the information gathered by the tool is useful in preparation for most widespread public health emergencies. This tool is primarily intended for use by those involved in healthcare emergency preparedness (e.g., community planners, community disaster preparedness coordinators, 9-1-1 directors, hospital emergency preparedness coordinators). It is divided into sections based on the core agency partners, which may be involved in the community's influenza pandemic influenza response.

  3. DOE Tour of Zero Floorplans: United Veterans Beacon House by United Way of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Long Island | Department of Energy United Veterans Beacon House by United Way of Long Island DOE Tour of Zero Floorplans: United Veterans Beacon House by United Way of Long Island DOE Tour of Zero Floorplans: United Veterans Beacon House by United Way of Long Island

  4. Theory, design, and operation of liquid metal fast breeder reactors, including operational health physics

    SciTech Connect

    Adams, S.R.

    1985-10-01

    A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different from the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences.

  5. Polymerase chain reaction system using magnetic beads for analyzing a sample that includes nucleic acid

    DOEpatents

    Nasarabadi, Shanavaz

    2011-01-11

    A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reaction chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.

  6. Inventory of Power Plants in the United States, October 1992

    SciTech Connect

    Not Available

    1993-10-27

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The report is organized into the following chapters: Year in Review, Operable Electric Generating Units, and Projected Electric Generating Unit Additions. Statistics presented in these chapters reflect the status of electric generating units as of December 31, 1992.

  7. Inventory of power plants in the United States, 1993

    SciTech Connect

    Not Available

    1994-12-01

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  8. ABPDU - Advanced Biofuels Process Demonstration Unit

    SciTech Connect

    2011-01-01

    Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

  9. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    Appliances in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,,,,,"5 or More Units","Mobile Homes" "Appliances",,"Detached","Attached","2 to 4 Units" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Cooking Appliances" "Stoves (Units With

  10. 1997 Housing Characteristics Tables Housing Unit Tables

    Energy Information Administration (EIA) (indexed site)

    Million U.S. Households; 45 pages, 128 kb) Contents Pages HC1-1a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 1997 4 HC1-2a. Housing Unit Characteristics by Year of Construction, Million U.S. Households, 1997 4 HC1-3a. Housing Unit Characteristics by Household Income, Million U.S. Households, 1997 4 HC1-4a. Housing Unit Characteristics by Type of Housing Unit, Million U.S. Households, 1997 3 HC1-5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit,

  11. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    2 Appliances in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,"Total U.S.1 (millions)",,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes"

  12. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    2 Televisions in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)"

  13. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    2 Water Heating in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,"Total U.S.1 (millions)",,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes"

  14. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    2 Computers and Other Electronics in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)"

  15. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    2 Air Conditioning in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" "Air

  16. Waste management units - Savannah River Site

    SciTech Connect

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  17. Eielson Air Force Base Operable Unit 2 baseline risk assessment

    SciTech Connect

    Lewis, R.E.; Jarvis, T.T.; Jarvis, M.R.; Whelan, G.

    1994-10-01

    Operable Unit 2 at Eielson Air Force Base (AFB) near Fairbanks, is one of several operable units characterized by petroleum, oil, and lubricant contamination, and by the presence of organic products floating at the water table, as a result of Air Force operations since the 1940s. The base is approximately 19,270 acres in size, and comprises the areas for military operations and a residential neighborhood for military dependents. Within Operable Unit 2, there are seven source areas. These source areas were grouped together primarily because of the contaminants released and hence are not necessarily in geographical proximity. Source area ST10 includes a surface water body (Hardfill Lake) next to a fuel spill area. The primary constituents of concern for human health include benzene, toluene, ethylbenzene, and xylenes (BTEX). Monitored data showed these volatile constituents to be present in groundwater wells. The data also showed an elevated level of trace metals in groundwater.

  18. United States Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    United States Department of Energy Office of Hearings and Appeals In the Matter of: Washington State ) Fleet Operations ) ) Filing Date: December 2, 2014 ) Case No.: AFV-14-0001 ____________________________________) Issued: December 18, 2014 _______________ Decision and Order _______________ This Decision and Order considers an Appeal filed by Washington State Fleet Operations (Washington) from a determination issued on November 10, 2014, by the Department of Energy's (DOE) Alternative Fuel

  19. United States Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    United States Department of Energy University of California Publication Date: May 2016 Capturing the Benefits of Integrated Resource Management for Water & Electricity Utilities and their Partners 2 EXECUTIVE SUMMARY The water and energy sectors have traditionally been studied independently, regulated by separate oversight agencies, and delivered to customers by separate utilities. Yet it is undeniable that there are strong interdependencies between the sectors. Water, in its many forms, has

  20. United States Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    United States Department of Energy Office of Hearings and Appeals In the Matter of ) ) Filing Date: October 27, 2016 ) Case No.: FIA-16-0053 ) _________________________________________ ) Issued: November 4, 2016 ______________________ Decision and Order ______________________ On October 27, 2016, (Appellant) appealed a determination received from the Department of Energy's (DOE) Oak Ridge Office (ORO) (Request No. ORO-2016-01447-F). In that determination, ORO responded to a request filed under