National Library of Energy BETA

Sample records for include electrostatic precipitators

  1. Portable liquid collection electrostatic precipitator

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Halverson, Justin E.

    2005-10-18

    A portable liquid collection electrostatic collection precipitator for analyzing air is provided which is a relatively small, self-contained device. The device has a tubular collection electrode, a reservoir for a liquid, and a pump. The pump pumps the liquid into the collection electrode such that the liquid flows down the exterior of the collection electrode and is recirculated to the reservoir. An air intake is provided such that air to be analyzed flows through an ionization section to ionize analytes in the air, and then flows near the collection electrode where ionized analytes are collected. A portable power source is connected to the air intake and the collection electrode. Ionizable constituents in the air are ionized, attracted to the collection electrode, and precipitated in the liquid. The precipitator may also have an analyzer for the liquid and may have a transceiver allowing remote operation and data collection.

  2. SUPER ESP: Ultimate electrostatic precipitation

    SciTech Connect

    Plaks, N.

    1991-01-01

    The paper discusses SUPER ESP, a new electrostatic precipitator (ESP) concept, enabling high collection efficiencies with considerably smaller collection areas than has previously been possible. The new concept allows a major reduction in ESP size by using an alternating sequence of prechargers and short collector sections. The length of the collection section in each precharger/collector pair (module) dominates the optimization. The size reduction is greater for ESPs operating with high resistivity particulate matter than with low resistivity particulate matter. The relationship in number of modules, collector section size, and overall ESP collection is presented and discussed. Comparisons are given of ESP size for both conventional and SUPER ESP technology operating with either high or low resistivity particulate matter. Because of the size reduction, the cost of the SUPER ESP is projected to be lower than that of a conventional ESP of comparable efficiencY. The paper is based on an ESP model, ESPVI 4.0.

  3. Parametric testing of coal electrostatic precipitator performance

    SciTech Connect

    Canadas, L.; Navarrete, B.; Ollero, P.; Salvador, L.

    1997-12-31

    The effect of internal geometry, electrode type, and operating conditions on the performance of a coal electrostatic precipitator (ESP) has been analyzed by means of an extensive parametric testing program. Tests under different conditions of plate spacing, discharge electrodes, gas velocity, and energization wave form have been performed using two extreme coal types, with very high and low resistivity ashes, respectively. The study was made by means of a pilot installation operating with a flue gas slipstream drawn upstream of a power plant ESP. The experimental plant includes a specifically designed pilot ESP, able to admit an internal modification of plate spacing and electrode type. The ESP is equipped with a microprocessor controlled power supply which can generate both continuous and intermittent rectified current. The measured sensitivity of the precipitation process to the dust properties, filter configuration, electrode type, and energization method is presented, covering both the ESP efficiency evolution and the associated power consumption. The results of this work allow to extract practical conclusions about specification of ESP design and size for a given application, and assess the conditions in which use of wide plate spacing, new electrode geometries, or intermittent current are actually advantageous. 11 refs., 6 figs., 5 tabs.

  4. Automatic control and management of electrostatic precipitator

    SciTech Connect

    Durga Prasad, N.V.P.R.; Lakshminarayana, T.; Narasimham, J.R.K.; Verman, T.M.; Krishnam Raju, C.S.R.

    1999-05-01

    The efficient operation of an electrostatic precipitator (ESP) in practice depends upon many variables, such as charging method, particle size, gas flow, temperature, dust resistivity, etc. With the air pollution control requirements becoming increasingly stringent, it is essential to closely monitor and accurately control the key parameters of an ESP control system. The efficient functioning of an ESP normally means minimizing power consumption and maximizing dust collection. Several control strategies can be adopted to meet this broad requirement. In this paper, a distributed control technique of an ESP, which uses the actual dust emission and boiler load as feedback inputs has been explained. The Electrostatic Precipitator Management System, which is a system designed by Bharat Heavy Electricals Ltd., Hyderabad, India, to meet the above control strategies using the distributed architecture to achieve efficient ESP operation is also described.

  5. Membrane-based wet electrostatic precipitation

    SciTech Connect

    David J. Bayless; Liming Shi; Gregory Kremer; Ben J. Stuart; James Reynolds; John Caine

    2005-06-01

    Emissions of fine particulate matter, PM2.5, in both primary and secondary form, are difficult to capture in typical dry electrostatic precipitators (ESPs). Wet (or waterbased) ESPs are well suited for collection of acid aerosols and fine particulates because of greater corona power and virtually no re-entrainment. However, field disruptions because of spraying (misting) of water, formation of dry spots (channeling), and collector surface corrosion limit the applicability of current wet ESPs in the control of secondary PM2.5. Researchers at Ohio University have patented novel membrane collection surfaces to address these problems. Water-based cleaning in membrane collectors made of corrosion-resistant fibers is facilitated by capillary action between the fibers, maintaining an even distribution of water. This paper presents collection efficiency results of lab-scale and pilot-scale testing at First Energy's Bruce Mansfield Plant for the membrane-based wet ESP. The data indicate that a membrane wet ESP was more effective at collecting fine particulates, acid aerosols, and oxidized mercury than the metal-plate wet ESP, even with {approximately}15% less collecting area. 15 refs., 7 figs., 6 tabs.

  6. Achieving low particulate emissions with electrostatic precipitators

    SciTech Connect

    Mastropietro, R.A.

    1994-12-31

    A great deal of literature has been published in recent years maligning electrostatic precipitators (ESP) as not being effective in achieving low emissions, or as being less effective than fabric filters in collecting fine particulate. This observation is not valid, provided the ESP is properly sized. The misconception comes from comparing modern high efficiency fabric filters, with 1950-1970`s vintage ESP`s. ESP`s were sized much smaller in that era, basically just for {open_quotes}good-neighbor{close_quotes} policies. Figure 1 shows the historical sizing practices for coal-fired utility boilers. From this, it can be seen that ESP`s from the 50`s through the early 1970`s were only about one-fourth to one-half the size of modern ESP`s. These undersized ESP`s, often in the presence of a coal switch to low sulfur coal, sometimes perform poorly. When replaced with a fabric filter, the claim is made that the ESP did not work and that a fabric filter does work properly. Had the ESP been increased in size to modern standards, it too would work properly.

  7. Direct impact aerosol sampling by electrostatic precipitation

    DOEpatents

    Braden, Jason D.; Harter, Andrew G.; Stinson, Brad J.; Sullivan, Nicholas M.

    2016-02-02

    The present disclosure provides apparatuses for collecting aerosol samples by ionizing an air sample at different degrees. An air flow is generated through a cavity in which at least one corona wire is disposed and electrically charged to form a corona therearound. At least one grounded sample collection plate is provided downstream of the at least one corona wire so that aerosol ions generated within the corona are deposited on the at least one grounded sample collection plate. A plurality of aerosol samples ionized to different degrees can be generated. The at least one corona wire may be perpendicular to the direction of the flow, or may be parallel to the direction of the flow. The apparatus can include a serial connection of a plurality of stages such that each stage is capable of generating at least one aerosol sample, and the air flow passes through the plurality of stages serially.

  8. MULTI-POLLUTANT CONTROL USING MEMBRANE-BASED UP-FLOW WET ELECTROSTATIC PRECIPITATION

    SciTech Connect

    James Reynolds

    2003-01-01

    This is the first quarterly report of the ''Multi-Pollutant Control Using Membrane--Based Upflow Wet Electrostatic Precipitation'' project funded by the US Department of Energy's National Energy Technology Laboratory under DOE Award No. DE-FC26-02NT41592 to Croll-Reynolds Clean Air Technologies (CRCAT). In this 18 month project, CRCAT and its team members will conduct detailed emission tests of metallic and new membrane collection material within a wet electrostatic precipitator (WESP) at First Energy's Penn Power's Bruce Mansfield (BMP) plant in Shippingport, Pa. Test results performed on the existing metallic WESP during November of 2002 showed consistent results with previous test results. Average collection efficiency of 89% on SO{sub 3} mist was achieved. Additionally, removal efficiencies of 62% were achieved at very high velocity, greater than 15 ft./sec.

  9. MULTI-POLLUTANT CONTROL USING MEMBRANE--BASED UP-FLOW WET ELECTROSTATIC PRECIPITATION

    SciTech Connect

    James Reynolds

    2003-04-30

    This is the second quarterly report of the ''Multi-Pollutant Control Using Membrane-Based Upflow Wet Electrostatic Precipitation'' project funded by the US Department of Energy's National Energy Technology Laboratory under DOE Award No. DE-FC26-02NT41592 to Croll-Reynolds Clean Air Technologies (CRCAT). In this 18 month project, CRCAT and its team members will conduct detailed emission tests of metallic and new membrane collection material within a wet electrostatic precipitator (WESP) at First Energy's Penn Power's Bruce Mansfield (BMP) plant in Shippingport, Pa. Test results performed on the existing metallic WESP during November of 2002 showed consistent results with previous test results. Average collection efficiency of 89% on SO{sub 3} mist was achieved. Additionally, removal efficiencies of 62% were achieved at very high velocity, greater than 15 ft./sec. During the first quarter of 2003 final design and start of fabrication of the membrane wet ESP was undertaken.

  10. Subtask 2.11 - An Investigation into the EERC Staged Electrostatic Precipitator Concept

    SciTech Connect

    Ye Zhuang; Jay Almlie; Stanley Miller

    2008-03-31

    A new concept of electrostatic precipitator (ESP), named a Staged ESP (an Energy & Environmental Research Center proprietary), was conceived in June 2004. The concept is based on a simple design that can be retrofitted on existing coal-fired power plants to provide high particulate matter (PM) collection efficiency without compromising reliability. A prototype of Staged ESP was designed, fabricated, and tested in two different combustion coal flue gases with different fly ash resistivities. Several design parameters of the Staged ESP were evaluated under various operating conditions to optimize PM collection performance. A set of particulate sampling data, including aerodynamic particle sizer, scanning mobility particle sizer, and U.S. Environmental Protection Agency Method 5 data, was collected to determine PM emissions of the Staged ESP configurations. These data were compared against data collected with a conventional ESP configuration. Compared to PM capture performance in conventional ESPs, an additional 30% to 70% reductions on total PM emissions were achieved for Staged ESPs in flue gas with medium- to high-resistivity fly ashes. Experimental data proved that the Staged ESP concept is capable of achieving higher PM collection efficiency, especially for particles in the submicrometer size range typically thought difficult to capture in an ESP.

  11. Mercury capture within coal-fired power plant electrostatic precipitators: model evaluation

    SciTech Connect

    Clack, H.L.

    2009-03-01

    Efforts to reduce anthropogenic mercury emissions worldwide have recently focused on a variety of sources, including mercury emitted during coal combustion. Toward that end, much research has been ongoing seeking to develop new processes for reducing coal combustion mercury emissions. Among air pollution control processes that can be applied to coal-fired boilers, electrostatic precipitators (ESPs) are by far the most common, both on a global scale and among the principal countries of India, China, and the U.S. that burn coal for electric power generation. A previously reported theoretical model of in-flight mercury capture within ESPs is herein evaluated against data from a number of full-scale tests of activated carbon injection for mercury emissions control. By using the established particle size distribution of the activated carbon and actual or estimated values of its equilibrium mercury adsorption capacity, the incremental reduction in mercury concentration across each ESP can be predicted and compared to experimental results. Because the model does not incorporate kinetics associated with gas-phase mercury transformation or surface adsorption, the model predictions represent the mass-transfer-limited performance. Comparing field data to model results reveals many facilities performing at or near the predicted mass-transfer-limited maximum, particularly at low rates of sorbent injection. Where agreement is poor between field data and model predictions, additional chemical or physical phenomena may be responsible for reducing mercury removal efficiencies. 26 refs., 5 figs., 1 tab.

  12. Enhanced performance of electrostatic precipitators through chemical modification of particle resistivity and cohesion

    SciTech Connect

    Durham, M.D.; Baldrey, K.E.; Bustard, C.J.

    1995-11-01

    Control of fine particles, including particulate air toxics, from utility boilers is required near-term by state and federal air regulations. Electrostatic precipitators (ESP) serve as the primary air pollution control device for the majority of coal-fired utility boilers in the Eastern and Midwestern united States. Cost-effective retrofit technologies for fine particle control, including flue gas conditioning, are needed for the large base of existing ESPs. Flue has conditioning is an attractive option because it requires minimal structural changes and lower capital costs. For flue gas conditioning to be effective for fine particle control, cohesive and particle agglomerating agents are needed to reduce reentrainment losses, since a large percentage of particulate emissions from well-performing ESPs are due to erosion, rapping, and non-rapping reentrainment. A related and somewhat ironic development is that emissions reductions of SO{sub 2} from utility boilers, as required by the Title IV acid rain program of the 1990 Clean Air Act amendments, has the potential to substantially increase particulate air toxics from existing ESPs. The switch to low-sulfur coals as an SO{sub 2} control strategy by many utilities has exacerbated ESP performance problems associated with high resistivity flyash. The use of flue gas conditioning has increased in the past several years to maintain adequate performance in ESPs which were not designed for high resistivity ash. However, commercially available flue gas conditioning systems, including NH{sub 3}/SO{sub 3} dual gas conditioning systems, have problems and inherent drawbacks which create a need for alternative conditioning agents. in particular, NH{sub 3}/SO{sub 3} systems can create odor and ash disposal problems due to ammonia outgassing. In addition, there are concerns over chemical handling safety and the potential for accidental releases.

  13. ESP VI 4. 0 Electrostatic Precipitator VI and performance-prediction model. Final report, Aug 89-Feb 92

    SciTech Connect

    Lawless, P.A.

    1992-06-01

    The manual is the companion document for the microcomputer program ESPVI 4.0, Electrostatic Precipitation V-I and Performance Model (PB92-502251). The program was developed to provide a user-friendly interface to an advanced model of electrostatic precipitation (ESP) performance. The program is capable of modeling standard ESP configurations as well as those that might be proposed for improved performance. It incorporates many of the latest developments in prediction of ESP performance, including electrical waveform effects, non-rapping reentrainment, and electrode misalignment. The manual provides the documentation needed to load the program from its disk, sets up the computer configuration for optimal operation, and introduces the operation of the program. The user is expected to be familiar with the operation of an ESP and know the important factors that affect it. An example ESP is provided with the program to help with the manual's exposition: it provides a direct comparison of the model's predictions. The program consists of a series of menu screens; the document is similarly organized, with increasing levels of detail provided as the menus become more specific. Finally, a section on the underlying algorithms discusses typical values that might be encountered with the model.

  14. MULTI-POLLUTANT CONTROL USING MEMBRANE--BASED UP-FLOW WET ELECTROSTATIC PRECIPITATION

    SciTech Connect

    James Reynolds

    2004-10-29

    This is the Final Report of the ''Multi-Pollutant Control Using Membrane-Based Up-flow Wet Electrostatic Precipitation'' project funded by the US Department of Energy's National Energy Technology Laboratory under DOE Award No. DE-FC26-02NT41592 to Croll-Reynolds Clean Air Technologies (CRCAT). In this 18 month project, CRCAT and its team members conducted detailed emission tests of metallic and new membrane collection material within a wet electrostatic precipitator (WESP) at First Energy's Penn Power's Bruce Mansfield (BMP) plant in Shippingport, Pa. The Membrane WESP was designed to be as similar as the metallic WESP in terms of collection area, air-flow, and electrical characteristics. Both units are two-field units. The membrane unit was installed during the 2nd and 3rd quarters of 2003. Testing of the metallic unit was performed to create a baseline since the Mansfield plant had installed selective catalytic reduction equipment for NOx control and a sodium bisulfate injection system for SO3 control during the spring of 2003. Tests results on the metallic WESP were consistent with previous testing for PM2.5, SO3 mist and mercury. Testing on the membrane WESP demonstrated no adverse impact and equivalent removal efficiencies as that of the metallic WESP. Testing on both units was performed at 8,000 acfm and 15,000 acfm. Summary results are shown.

  15. Influence of the inlet velocity profiles on the prediction of velocity distribution inside an electrostatic precipitator

    SciTech Connect

    Haque, Shah M.E.; Deev, A.V.; Subaschandar, N.; Rasul, M.G.; Khan, M.M.K.

    2009-01-15

    The influence of the velocity profile at the inlet boundary on the simulation of air velocity distribution inside an electrostatic precipitator is presented in this study. Measurements and simulations were performed in a duct and an electrostatic precipitator (ESP). A four-hole cobra probe was used for the measurement of velocity distribution. The flow simulation was performed by using the computational fluid dynamics (CFD) code FLUENT. Numerical calculations for the air flow were carried out by solving the Reynolds-averaged Navier-Stokes equations coupled with the realizable k-{epsilon} turbulence model equations. Simulations were performed with two different velocity profiles at the inlet boundary - one with a uniform (ideal) velocity profile and the other with a non-uniform (real) velocity profile to demonstrate the effect of velocity inlet boundary condition on the flow simulation results inside an ESP. The real velocity profile was obtained from the velocity measured at different points of the inlet boundary whereas the ideal velocity profile was obtained by calculating the mean value of the measured data. Simulation with the real velocity profile at the inlet boundary was found to predict better the velocity distribution inside the ESP suggesting that an experimentally measured velocity profile could be used as velocity inlet boundary condition for an accurate numerical simulation of the ESP. (author)

  16. Economic comparison of pulsed electrostatic precipitators and fabric filters in coal fired utility plants

    SciTech Connect

    Caputo, A.C.; Pelagagge, P.M.

    1997-12-31

    Electrostatic precipitators (ESP) and fabric filters (FF) are the main air pollution control systems utilized to clean dust laden fumes from utility boilers. The choice among these systems depends from the specific site conditions such as dust characteristics, required efficiency, gas flowrate and temperature. ESP are generally characterized by higher capital investments and lower operating charges, while the opposite may be said for baghouses. As a consequence, ESP present higher total costs when high specific collection areas are required, as happens in the case of low-sulfur high-resistivity dust. However, significant reductions in both capital investment and operating charges may be obtained with pulsed energization of precipitators working in severe back corona conditions. This possibility greatly enlarges the field of applications in which SP are a lower cost option compared to fabric filters. In the paper an economic comparison of pulse energized ESP, with conventional ESP, reverse-air, shaker, and pulse-jet baghouses is performed. A mapping of the operating conditions in which the adoption of each examined control technology is economically convenient is also defined.

  17. Submicron fly ash penetration through electrostatic precipitators at two coal power plants

    SciTech Connect

    Mohr, M.; Burtscher, H. |; Ylaetalo, S.; Kauppinen, E.I.; Klippel, N.; Riccius, O.

    1996-04-01

    Simultaneous measurements of the size distribution were performed for fine particulate matter (diameter d < 0.5 {mu}m) at the inlet and outlet of the electrostatic precipitators (ESP) of two full-scale pulverized coal power stations (615 MW, 510 MW). For a comparative study of the performance of the ESP the same high resistivity coal was burned at both sites. In addition, measurements were carried out for an easy to handle coal at the newer state-of-the-art power station. Effects on the size distribution caused by nonintermittent pulse energization of the ESP were also investigated. The results revealed a significantly stronger influence of the boiler than of the coal type on the size distribution at the inlet of the ESPs. In all cases the distribution was unimodal and a pronounced peak could be observed around 100 nm particle diameter. The ESP outlet distributions varied much more and showed also a dependence on the coal type. The maximum of the penetration through the ESP was determined in the range from 300 to 400 nm for all configurations. At the newer power station the number of ultrafine particles (< 30 nm) at the ESP outlet exceeded the inlet concentration under certain conditions. This effect was strongly influenced by the ESP energization and seemed to be related to the denitrification unit (DeNO{sub x}) installed upstream of the ESP where ammonia is injected as reducing agent. 14 refs., 8 figs., 3 tabs.

  18. Collection efficiency of ultrafine particles by an electrostatic precipitator under DC and pulse operating modes

    SciTech Connect

    Zukeran, Akinori; Looy, P.C.; Chakrabarti, A.; Berezin, A.A.; Jayaram, S.; Cross, J.D.; Ito, Tairo; Chang, J.S.

    1999-10-01

    High particle collection efficiency in terms of particle weight/volume mg/m{sup 3} is well achieved by a conventional electrostatic precipitator (ESP). However, the collection efficiencies in terms of number density for the ultrafine (particle size between 0.01--0.1 {micro}m) or submicrometer particles by a conventional ESP are still relatively low. Therefore, it is necessary to improve the collection efficiency for ultrafine particles. In this paper, attempts have been made to improve the ultrafine particle collection efficiency by controlling dust loading, as well as using the short pulse energizations. The present version of the ESP consists of three sets of wire-plate-type electrodes. For the ESP under dc operation modes, experimental results show that the collection efficiency for dc applied voltage decreases with increasing dust loading when particle density is larger than 2.5 x 10{sup 10} particles/m{sup 3} due to inefficient collections of ultrafine particles. However, under pulse operating modes without dc bias, high particle collection efficiency for ultrafine particles was obtained, which is thought to be due to the enhancement of particle charging by electrons.

  19. Two-stage-type electrostatic precipitator re-entrainment phenomena under diesel flue gases

    SciTech Connect

    Zukeran, Akinori; Ehara, Yoshiyasu; Ito, Tairo; Matsuyama, M.; Ikeda, Yasushi; Kawakami, Hitomi; Takahashi, Takeo; Takamatsu, Takeshi

    1999-03-01

    One of the applications of the electrostatic precipitator (ESP) is the cleaning of air to increase the visibility index in highway tunnels. Particles floating in air in highway tunnels are mainly carbon. Collection efficiency of a large particle diameter in an ESP often decreases when the ESP collects carbon particles which have low electric resistance. Collection efficiency often becomes negative in an experimental ESP. The negative collection efficiency means that the particle concentration flowing downstream is greater than that upstream in the ESP. The negative collection efficiency means that the particle concentration flowing downstream is greater than that upstream in the ESP. This phenomenon is explained as the re-entrainment of particles. In this paper, experiments were carried out to investigate the cause of the decrease in efficiency of particle collection of the ESP. The time characteristic of the collection efficiency and the distribution of particle size on the collection electrodes were studied. Experimental results showed that the decrease in the collection efficiency and the distribution of particle size on the collection electrodes were studied. Experimental results showed that the decrease in the collection efficiency was caused by re-entrainment of particles during the ESP operation. The effect of gas-flow velocity on the collection efficiency of the ESP was also investigated to study the cause of re-entrainment phenomena. The result showed that the re-entrainment phenomena depended on the gas-flow velocity.

  20. Mass transfer within electrostatic precipitators: trace gas adsorption by sorbent-covered plate electrodes

    SciTech Connect

    Herek L. Clack

    2006-06-15

    Varying degrees of mercury (Hg) capture have been reported within the electrostatic precipitators (ESPs) of coal-fired electric utility boilers. There has been some speculation that the adsorption takes place on the particulate-covered plate electrodes. This convective mass transfer analysis of laminar and turbulent channel flows provides the maximum potential for Hg adsorption by the plate electrodes within an ESP under those conditions. Mass transfer calculations, neglecting electro hydrodynamic (EHD) effects, reveal 65% removal of elemental Hg for a laminar flow within a 15-m-long channel of 0.2-m spacing and 42% removal for turbulent flow within a similar configuration. Both configurations represent specific collection areas (SCAs) that are significantly larger than conventional ESPs in use. Results reflecting more representative SCA values generally returned removal efficiencies of {lt}20%. EHD effects, although potentially substantial at low Reynolds numbers, diminish rapidly with increasing Reynolds number and become negligible at typical ESP operating conditions. The present results indicate maximum Hg removal efficiencies for ESPs that are much less than those observed in practice for comparable ESP operating conditions. Considering Hg adsorption kinetics and finite sorbent capacity in addition to the present mass transfer analyses would yield even lower adsorption efficiencies than the present results. In a subsequent paper, the author addresses the mass transfer potential presented by the charged, suspended particulates during their collection within an ESP and the role they potentially play in Hg capture within ESPs. 28 refs., 4 figs.

  1. Mass transfer within electrostatic precipitators: in-flight adsorption of mercury by charged suspended particulates

    SciTech Connect

    Herek L. Clack

    2006-06-01

    Electrostatic precipitation is the dominant method of particulate control used for coal combustion, and varying degrees of mercury capture and transformation have been reported across ESPs. Nevertheless, the fate of gas-phase mercury within an ESP remains poorly understood. The present analysis focuses on the gas-particle mass transfer that occurs within a charged aerosol in an ESP. As a necessary step in gas-phase mercury adsorption or transformation, gas-particle mass transfer - particularly in configurations other than fixed beds - has received far less attention than studies of adsorption kinetics. Our previous analysis showed that only a small fraction of gas-phase mercury entering an ESP is likely to be adsorbed by collected particulate matter on the plate electrodes. The present simplified analysis provides insight into gas-particle mass transfer within an ESP under two limiting conditions: laminar and turbulent fluid flows. The analysis reveals that during the process of particulate collection, gas-particle mass transfer can be quite high, easily exceeding the mass transfer to ESP plate electrodes in most cases. Decreasing particle size, increasing particle mass loading, and increasing temperature all result in increased gas-particle mass transfer. The analysis predicts significantly greater gas-particle mass transfer in the laminar limit than in the turbulent limit; however, the differences become negligible under conditions where other factors, such as total mass of suspended particulates, are the controlling mass transfer parameters. Results are compared to selected pilot- and full-scale sorbent injection data. 41 refs., 5 figs.

  2. Performance of electrostatic precipitators and fabric filter particulate controls on oil-fired electric utility boilers. Final report

    SciTech Connect

    McRanie, R.D.; Baker, S.S. Jr.

    1995-09-01

    Of the 189 hazardous air pollutants (HAPs) listed in Title III of the 1990 Clean Air Act Amendments, 11 are metals commonly found in particulate emissions from oil-fired boilers. In light of the potential future need for additional control of particulate emissions from oil-fired units, a white paper was prepared documenting the extent of particulate and HAPs emissions and the state-of-the-art in the use of electrostatic precipitator (ESP) and fabric filter (FF) technologies to control their emissions from oil-fired boilers. The white paper is based on EPRI research on particulate emissions from oil-fired boilers and a survey of ESP and FF manufacturers. The EPRI ESPM{trademark} performance model was used to estimate the particulate control effectiveness of oil-fired ESPs. The white paper describes the characteristics of oil ash, summarizes particulate and HAPs emission rates for oil-fired boilers, and projects the particulate and HAPs removal effectiveness for baghouses and different sized ESPs. Information on oil-fired ESP operation and maintenance requirements and overall costs is included.

  3. Electrostatic precipitator V-I (ESPVI 4.0) and performance prediction model (for microcomputers). Model-Simulation

    SciTech Connect

    1996-02-01

    The microcomputer program ESPVI 4.0 was developed to provide a user-friendly interface to an advanced model of electrostatic precipitation (ESP) performance. The program is capable of modeling standard ESP configurations as well as those that might be proposed for improved performance. It incorporates many of the latest developments in prediction of ESP performance, including electrical waveform effects, non-rapping reentrainment, and electrode misalignment. The program is organized by a series of menu screens with increasing levels of detail provided as the menus become more specific. The user`s manual provides the documentation needed to load the program from its disk, set up the computer configuration for optimal operation, and introduces the operation of the program. The user is expected to be familiar with the operation of an ESP and know the important factors that affect it. An example ESP is provided with the program to help with the manual`s exposition. It is taken from a report describing measurement of the unit`s performance and so provides a direct comparison of the models predictions.

  4. Association of the sites of heavy metals with nanoscale carbon in a Kentucky electrostatic precipitator fly ash

    SciTech Connect

    James C. Hower; Uschi M. Graham; Alan Dozier; Michael T. Tseng; Rajesh A. Khatri

    2008-11-15

    A combination of high-resolution transmission electron microscopy, scanning transmission electron microscopy, and electron energy-loss spectroscopy (HRTEM-STEM-EELS) was used to study fly ashes produced from the combustion of an eastern Kentucky coal at a southeastern-Kentucky wall-fired pulverized coal utility boiler retrofitted for low-NOx combustion. Fly ash was collected from individual hoppers in each row of the electrostatic precipitators (ESP) pollution-control system, with multiple hoppers sampled within each of the three rows. Temperatures within the ESP array range from about 200 {degree}C at the entry to the first row to <150{degree}C at the exit of the third row. HRTEM-STEM-EELS study demonstrated the presence of nanoscale (10 s nm) C agglomerates with typical soot-like appearance and others with graphitic fullerene-like nanocarbon structures. The minute carbon agglomerates are typically juxtaposed and intergrown with slightly larger aluminosilicate spheres and often form an ultrathin halo or deposit on the fly ash particles. The STEM-EELS analyses revealed that the nanocarbon agglomerates host even finer (<3 nm) metal and metal oxide particles. Elemental analysis indicated an association of Hg with the nanocarbon. Arsenic, Se, Pb, Co, and traces of Ti and Ba are often associated with Fe-rich particles within the nanocarbon deposits. 57 refs., 5 figs.

  5. Measurement and capture of fine and ultrafine particles from a pilot-scale pulverized coal combustor with an electrostatic precipitator

    SciTech Connect

    Ying Li; Achariya Suriyawong; Michael Daukoru; Ye Zhuang; Pratim Biswas

    2009-05-15

    Experiments were carried out in a pilot-scale pulverized coal combustor at the Energy and Environmental Research Center (EERC) burning a Powder River Basin (PRB) subbituminous coal. A scanning mobility particle sizer (SMPS) and an electrical low-pressure impactor (ELPI) were used to measure the particle size distributions (PSDs) in the range of 17 nm to 10 m at the inlet and outlet of the electrostatic precipitator (ESP). At the ESP inlet, a high number concentration of ultrafine particles was found, with the peak at approximately 75 nm. A trimodal PSD for mass concentration was observed with the modes at approximately 80-100 nm, 1-2 {mu}m, and 10 {mu}m. The penetration of ultrafine particles through the ESP increased dramatically as particle size decreased below 70 nm, attributable to insufficient or partial charging of the ultrafine particles. Injection of nanostructured fine-particle sorbents for capture of toxic metals in the flue gas caused high penetration of the ultrafine particles through the ESP. The conventional ESP was modified to enhance charging using soft X-ray irradiation. A slipstream of flue gas was introduced from the pilot-scale facility and passed through this modified ESP. Enhancement of particle capture was observed with the soft X-ray irradiation when moderate voltages were used in the ESP, indicating more efficient charging of fine particles. 32 refs., 5 figs., 1 tab.

  6. Polycyclic aromatic hydrocarbon emission profiles and removal efficiency by electrostatic precipitator and wetfine scrubber in an iron ore sintering plant

    SciTech Connect

    Ettore Guerriero; Antonina Lutri; Rosanna Mabilia; Maria Concetta Tomasi Sciano; Mauro Rotatori

    2008-11-15

    A monitoring campaign of polychlorinated dibenzo-p-dioxins and dibenzofurans, polyaromatic hydrocarbons (PAHs), and polychlorinated biphenyl was carried out in an Italian iron ore sintering plant by sampling the combustion gases at the electrostatic precipitator (ESP) outlet, at the Wetfine scrubber (WS) outlet, and by collecting the ESP dust. Few data are available on these micropollutants produced in iron ore sintering plants, particularly from Italian plants. This study investigates the PAH emission profiles and the removal efficiency of ESPs and WS. PAHs were determined at the stack, ESP outlet flue gases, and in ESP dust to characterize the emission profiles and the performance of the ESP and the WS for reducing PAH emission. The 11 PAHs monitored are listed in the Italian legislative decree 152/2006. The mean total PAH sum concentration in the stack flue gases is 3.96 {mu}g/N m{sup 3}, in ESP outlet flue gases is 9.73 {mu}g/N m{sup 3}, and in ESP dust is 0.53 {mu}g/g. Regarding the emission profiles, the most abundant compound is benzo(b)fluoranthene, which has a relative low BaP toxic equivalency factors (TEF) value, followed by dibenzo(a,l)pyrene, which has a very high BaP(TEF) value. The emission profiles in ESP dust and in the flue gases after the ESP show some changes, whereas the fingerprint in ESP and stack flue gases is very similar. The removal efficiency of the ESP and of WS on the total PAH concentration is 5.2 and 59.5%, respectively. 2 figs., 5 tabs.

  7. Apparatus and method for improving electrostatic precipitator performance by plasma reactor conversion of SO.sub.2 to SO.sub.3

    DOEpatents

    Huang, Hann-Sheng; Gorski, Anthony J.

    1999-01-01

    An apparatus and process that utilize a low temperature nonequilibrium plasma reactor, for improving the particulate removal efficiency of an electrostatic precipitator (ESP) are disclosed. A portion of the flue gas, that contains a low level of SO.sub.2 O.sub.2 H.sub.2 O, and particulate matter, is passed through a low temperature plasma reactor, which defines a plasma volume, thereby oxidizing a portion of the SO.sub.2 present in the flue gas into SO.sub.3. An SO.sub.2 rich flue gas is thereby generated. The SO.sub.3 rich flue gas is then returned to the primary flow of the flue gas in the exhaust treatment system prior to the ESP. This allows the SO.sub.3 to react with water to form H.sub.2 SO.sub.4 that is in turn is absorbed by fly ash in the gas stream in order to improve the removal efficiency of the EPS.

  8. Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems

    SciTech Connect

    Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan

    2009-09-15

    A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

  9. Electrostatically screened, voltage-controlled electrostatic chuck

    DOEpatents

    Klebanoff, Leonard Elliott

    2001-01-01

    Employing an electrostatically screened, voltage-controlled electrostatic chuck particularly suited for holding wafers and masks in sub-atmospheric operations will significantly reduce the likelihood of contaminant deposition on the substrates. The electrostatic chuck includes (1) an insulator block having a outer perimeter and a planar surface adapted to support the substrate and comprising at least one electrode (typically a pair of electrodes that are embedded in the insulator block), (2) a source of voltage that is connected to the at least one electrode, (3) a support base to which the insulator block is attached, and (4) a primary electrostatic shield ring member that is positioned around the outer perimeter of the insulator block. The electrostatic chuck permits control of the voltage of the lithographic substrate; in addition, it provides electrostatic shielding of the stray electric fields issuing from the sides of the electrostatic chuck. The shielding effectively prevents electric fields from wrapping around to the upper or front surface of the substrate, thereby eliminating electrostatic particle deposition.

  10. Energy Efficient Clothes Dryer with IR Heating and Electrostatic...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The dryer is unique as it uses an electrostatic precipitator (ESP) to remove humidity from ... In addition, it is envisioned that the proposed ESP, when successful, would find ...

  11. Electrostatic monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2001-01-01

    The apparatus and method provide a technique for more simply measuring alpha and/or beta emissions arising from items or locations. The technique uses indirect monitoring of the emissions by detecting ions generated by the emissions, the ions being attracted electrostatically to electrodes for discharge of collection. The apparatus and method employ a chamber which is sealed around the item or location during monitoring with no air being drawn into or expelled from the chamber during the monitoring process. A simplified structure and operations arises as a result, but without impairing the efficiency and accuracy of the detection technique.

  12. Energy Efficient Clothes Dryer with IR Heating and Electrostatic

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Precipitator | Department of Energy Clothes Dryer with IR Heating and Electrostatic Precipitator Energy Efficient Clothes Dryer with IR Heating and Electrostatic Precipitator This project seeks to demonstrate a ventless residential dryer with an energy factor greater than 4.04.<br /> Photo credit: GE Global Research This project seeks to demonstrate a ventless residential dryer with an energy factor greater than 4.04. Photo credit: GE Global Research Project team members left to right

  13. Biobriefcase electrostatic aerosol collector

    DOEpatents

    Bell, Perry M.; Christian, Allen T.; Bailey, Christopher G.; Willis, Ladona; Masquelier, Donald A.; Nasarabadi, Shanavaz L.

    2009-03-17

    A system for sampling air and collecting particles entrained in the air comprising a receiving surface, a liquid input that directs liquid to the receiving surface and produces a liquid surface, an air input that directs the air so that the air with particles entrained in the air impact the liquid surface, and an electrostatic contact connected to the liquid that imparts an electric charge to the liquid. The particles potentially including bioagents become captured in the liquid by the air with particles entrained in the air impacting the liquid surface. Collection efficiency is improved by the electrostatic contact electrically charging the liquid. The effects of impaction and adhesion due to electrically charging the liquid allows a unique combination in a particle capture medium that has a low fluid consumption rate while maintaining high efficiency.

  14. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  15. Electrostatic thin film chemical and biological sensor

    DOEpatents

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  16. Electrostatically actuatable light modulating device

    DOEpatents

    Koehler, Dale R.

    1991-01-01

    The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

  17. Electrostatic generator/motor configurations

    DOEpatents

    Post, Richard F

    2014-02-04

    Electrostatic generators/motors designs are provided that generally may include a first cylindrical stator centered about a longitudinal axis; a second cylindrical stator centered about the axis, a first cylindrical rotor centered about the axis and located between the first cylindrical stator and the second cylindrical stator. The first cylindrical stator, the second cylindrical stator and the first cylindrical rotor may be concentrically aligned. A magnetic field having field lines about parallel with the longitudinal axis is provided.

  18. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  19. Precipitating clouds

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A suggestion for a new focus on cloud microphysical process study in the ARM program 1. Retrieving precipitating mixed- phase cloud properties Zhien Wang University of Wyoming zwang@uwyo.edu Retrieving Precipitating Mixed-phase Cloud Properties Global distribution of supercooled water topped stratiform clouds (top > 1 km and length> 14km) Most of them are mixed-phase with precipitation or virga An multiple sensor based approach to provide water phase as well as ice phase properties

  20. Electrostatic generator/motor configurations

    DOEpatents

    Post, Richard Freeman

    2012-09-11

    Electrostatic generators/motors designs are provided that include a stator fixedly connected to a first central support centered about a central axis. The stator elements are attached to the first central support. Similarly, a second stator is connected to a central support centered about the central axis, and the second stator has stator elements attached to the second central support. A rotor is located between the first stator and the second stator and includes an outer support, where the rotor is rotatably centered about the central axis, the rotor having elements in contact with the outer support, each rotor element having an extending rotor portion that extends radially from the outer support toward the axis of rotation.

  1. STRONTIUM PRECIPITATION

    DOEpatents

    McKenzie, T.R.

    1960-09-13

    A process is given for improving the precipitation of strontium from an aqueous phosphoric-acid-containing solution with nickel or cobalt ferrocyanide by simultaneously precipitating strontium or calcium phosphate. This is accomplished by adding to the ferrocyanide-containing solution calcium or strontium nitrate in a quantity to yield a concentration of from 0.004 to 0.03 and adjusting the pH of the solution to a value of above 8.

  2. ELECTROSTATIC MEMORY SYSTEM

    DOEpatents

    Chu, J.C.

    1958-09-23

    An improved electrostatic memory system is de scribed fer a digital computer wherein a plarality of storage tubes are adapted to operate in either of two possible modes. According to the present irvention, duplicate storage tubes are provided fur each denominational order of the several binary digits. A single discriminator system is provided between corresponding duplicate tubes to determine the character of the infurmation stored in each. If either tube produces the selected type signal, corresponding to binazy "1" in the preferred embodiment, a "1" is regenerated in both tubes. In one mode of operation each bit of information is stored in two corresponding tubes, while in the other mode of operation each bit is stored in only one tube in the conventional manner.

  3. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, R.A.; Seager, C.H.

    1996-12-10

    An electrostatic chuck is faced with a patterned silicon plate, created by micromachining a silicon wafer, which is attached to a metallic base plate. Direct electrical contact between the chuck face (patterned silicon plate`s surface) and the silicon wafer it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands that protrude less than 5 micrometers from the otherwise flat surface of the chuck face. The islands may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face and wafer contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face, typically 0.5 to 5 percent. The pattern of the islands, together with at least one hole bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas. 6 figs.

  4. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, Robert A.; Seager, Carleton H.

    1996-01-01

    An electrostatic chuck is faced with a patterned silicon plate 11, created y micromachining a silicon wafer, which is attached to a metallic base plate 13. Direct electrical contact between the chuck face 15 (patterned silicon plate's surface) and the silicon wafer 17 it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands 19 that protrude less than 5 micrometers from the otherwise flat surface of the chuck face 15. The islands 19 may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face 15 and wafer 17 contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands 19 are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face 15, typically 0.5 to 5 percent. The pattern of the islands 19, together with at least one hole 12 bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas.

  5. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, A.W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelerating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome. 4 figs.

  6. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, Alfred W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelarating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome.

  7. High volume, multiple use, portable precipitator

    DOEpatents

    Carlson, Duane C.

    2011-10-25

    A portable high air volume electrostatic collection precipitator for analyzing air is provided which is a relatively small, self-contained device. The device has a collection electrode adapted to carry a variety of collecting media. An air intake is provided such that air to be analyzed flows through an ionization section with a transversely positioned ionization wire to ionize analytes in the air, and then flows over the collection electrode where ionized analytes are collected. Air flow is maintained at but below turbulent flow, Ionizable constituents in the air are ionized, attracted to the collection electrode, and precipitated in the selected medium which can be removed for analysis.

  8. Sandia National Laboratories: Electrostatic Discharge (ESD) Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electrostatic Discharge (ESD) Laboratory We have field and laboratory capabilities to measure electrostatic environment generation, storage, and charge transfer effects. Non-contact electrostatic field surveillance techniques are available to monitor charge generation of conductors or dielectrics, and induction or physical contact charging of wiring or pin voltage for electrical system components. The Sandia severe personnel electrostatic discharge simulator, with a maximum charge voltage of 25

  9. Electrostatic dust detector

    DOEpatents

    Skinner, Charles H.

    2006-05-02

    An apparatus for detecting dust in a variety of environments which can include radioactive and other hostile environments both in a vacuum and in a pressurized system. The apparatus consists of a grid coupled to a selected bias voltage. The signal generated when dust impacts and shorts out the grid is electrically filtered, and then analyzed by a signal analyzer which is then sent to a counter. For fine grids a correlation can be developed to relate the number of counts observed to the amount of dust which impacts the grid.

  10. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2008-10-21

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  11. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2006-10-10

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  12. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2006-03-21

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  13. SPARCLE: Electrostatic Tool for Lunar Dust Control

    SciTech Connect

    Clark, P. E.; Curtis, S. A.; Minetto, F.; Cheung, C. Y.; Keller, J. F.; Moore, M.; Calle, C. I.

    2009-03-16

    Successful exploration of most planetary surfaces, with their impact-generated dusty regoliths, will depend on the capabilities to keep surfaces free of the dust which could compromise performance and to collect dust for characterization. Solving the dust problem is essential before we return to the Moon. During the Apollo missions, the discovery was made that regolith fines, or dust, behaved like abrasive velcro, coating surfaces, clogging mechanisms, and making movement progressively more difficult as it was mechanically stirred up during surface operations, and abrading surfaces, including spacesuits, when attempts were made to remove it manually. In addition, some of the astronauts experienced breathing difficulties when exposed to dust that got into the crew compartment. The successful strategy will deal with dust dynamics resulting from interaction between mechanical and electrostatic forces. Here we will describe the surface properties of dust particles, the basis for their behavior, and an electrostatically-based approach and methodology for addressing this issue confirmed by our preliminary results. Our device concept utilizes a focused electron beam to control the electrostatic potential of the surface. A plate of the opposite potential is then used to induce dust migration in the presence of an electrical field. Our goal is a compact device of <5 kg mass and using <5 watts of power to be operational in <5 years with heritage from ionic sweepers for active spacecraft potential control (e.g., on POLAR). Rovers could be fitted with devices that could harness the removal of dust for sampling as part of the extended exploration process on Mercury, Mars, asteroids or outer solar system satellites, as well as the Moon.

  14. Electrostatic particle trap for ion beam sputter deposition ...

    Office of Scientific and Technical Information (OSTI)

    The electrostatic particle trap consists of an array of electrode surfaces, each ... particle; trap; consists; array; electrode; surfaces; maintained; electrostatic; ...

  15. Electrode geometry for electrostatic generators and motors

    DOEpatents

    Post, Richard F.

    2016-02-23

    An electrostatic (ES) device is described with electrodes that improve its performance metrics. Devices include ES generators and ES motors, which are comprised of one or more stators (stationary members) and one or more rotors (rotatable members). The stator and rotors are configured as a pair of concentric cylindrical structures and aligned about a common axis. The stator and rotor are comprised of an ensemble of discrete, longitudinal electrodes, which are axially oriented in an annular arrangement. The shape of the electrodes described herein enables the ES device to function at voltages significantly greater than that of the existing art, resulting in devices with greater power-handling capability and overall efficiency. Electrode shapes include, but are not limited to, rods, corrugated sheets and emulations thereof.

  16. DISSOLUTION OF PLUTONIUM CONTAINING CARRIER PRECIPITATE BY CARBONATE METATHESIS AND SEPARATION OF SULFIDE IMPURITIES THEREFROM BY SULFIDE PRECIPITATION

    DOEpatents

    Duffield, R.B.

    1959-07-14

    A process is described for recovering plutonium from foreign products wherein a carrier precipitate of lanthanum fluoride containing plutonium is obtained and includes the steps of dissolving the carrier precipitate in an alkali metal carbonate solution, adding a soluble sulfide, separating the sulfide precipitate, adding an alkali metal hydroxide, separating the resulting precipitate, washing, and dissolving in a strong acid.

  17. Electrostatic Transfor of Patterned Epitaxial Graphene from SiC...

    Office of Scientific and Technical Information (OSTI)

    Electrostatic Transfor of Patterned Epitaxial Graphene from SiC (001) to Glass. Citation Details In-Document Search Title: Electrostatic Transfor of Patterned Epitaxial Graphene ...

  18. CPIC: A Parallel Electrostatic Particle-In-Cell Code (Conference...

    Office of Scientific and Technical Information (OSTI)

    Electrostatic Particle-In-Cell Code Citation Details In-Document Search Title: CPIC: A Parallel Electrostatic Particle-In-Cell Code Authors: Meierbachtol, Collin S. 1 ; Delzanno, ...

  19. Electrostatic Graphene Loudspeaker - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Electrostatic Graphene Loudspeaker Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Alex Zettl and Qin Zhou of Berkeley Lab have developed a miniaturized graphene-based electrostatic audio transducer. The speaker / earphone is straightforward in design and operation and has excellent frequency response across the entire audio frequency range (20 Hz - 20k Hz) with

  20. An improved proximity force approximation for electrostatics

    SciTech Connect

    Fosco, Cesar D.; Instituto Balseiro, Universidad Nacional de Cuyo, R8402AGP Bariloche ; Lombardo, Fernando C.; IFIBA ; Mazzitelli, Francisco D.

    2012-08-15

    A quite straightforward approximation for the electrostatic interaction between two perfectly conducting surfaces suggests itself when the distance between them is much smaller than the characteristic lengths associated with their shapes. Indeed, in the so called 'proximity force approximation' the electrostatic force is evaluated by first dividing each surface into a set of small flat patches, and then adding up the forces due two opposite pairs, the contributions of which are approximated as due to pairs of parallel planes. This approximation has been widely and successfully applied in different contexts, ranging from nuclear physics to Casimir effect calculations. We present here an improvement on this approximation, based on a derivative expansion for the electrostatic energy contained between the surfaces. The results obtained could be useful for discussing the geometric dependence of the electrostatic force, and also as a convenient benchmark for numerical analyses of the tip-sample electrostatic interaction in atomic force microscopes. - Highlights: Black-Right-Pointing-Pointer The proximity force approximation (PFA) has been widely used in different areas. Black-Right-Pointing-Pointer The PFA can be improved using a derivative expansion in the shape of the surfaces. Black-Right-Pointing-Pointer We use the improved PFA to compute electrostatic forces between conductors. Black-Right-Pointing-Pointer The results can be used as an analytic benchmark for numerical calculations in AFM. Black-Right-Pointing-Pointer Insight is provided for people who use the PFA to compute nuclear and Casimir forces.

  1. Electrostatic dispersion lenses and ion beam dispersion methods

    DOEpatents

    Dahl, David A. [Idaho Falls, ID; Appelhans, Anthony D. [Idaho Falls, ID

    2010-12-28

    An EDL includes a case surface and at least one electrode surface. The EDL is configured to receive through the EDL a plurality of ion beams, to generate an electrostatic field between the one electrode surface and either the case surface or another electrode surface, and to increase the separation between the beams using the field. Other than an optional mid-plane intended to contain trajectories of the beams, the electrode surface or surfaces do not exhibit a plane of symmetry through which any beam received through the EDL must pass. In addition or in the alternative, the one electrode surface and either the case surface or the other electrode surface have geometries configured to shape the field to exhibit a less abrupt entrance and/or exit field transition in comparison to another electrostatic field shaped by two nested, one-quarter section, right cylindrical electrode surfaces with a constant gap width.

  2. Apparatus for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2006-10-31

    An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  3. Apparatus for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2006-04-11

    An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  4. Apparatus for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2013-06-11

    An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  5. PRECIPITATION OF PROTACTINIUM

    DOEpatents

    Moore, R.L.

    1958-07-15

    An lmprovement in the separation of protactinium from aqueous nitric acid solutions is described. 1t covers the use of lead dioxide and tin dioxide as carrier precipitates for the protactinium. In carrying out the process, divalent lead or divalent tin is addcd to the solution and oxidized, causing formation of a carrier precipitate of lead dioxide or stannic oxide, respectively.

  6. ARM - Word Seek: Precipitation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Precipitation Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Word Seek: Precipitation

  7. Electrostatic shape-shifting ion optics

    DOEpatents

    Dahl, David A.; Scott, Jill R.; Appelhans, Anthony D.

    2006-05-02

    Electrostatic shape-shifting ion optics includes an outer electrode that defines an interior region between first and second opposed open ends. A first inner electrode is positioned within the interior region of the outer electrode at about the first open end. A second inner electrode is positioned within the interior region of the outer electrode at about the second open end. A first end cap electrode is positioned at about a first open end of the first inner electrode so that the first end cap electrode substantially encloses the first open end of the first inner electrode. A second end cap electrode is positioned at about a second open end of the second inner electrode so that the second end cap electrode substantially encloses the second open end of the second inner electrode. A voltage source operatively connected to each of the electrodes applies voltage functions to each of the electrodes to produce an electric field within an interior space enclosed by the electrodes.

  8. ARM - Measurement - Precipitation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    govMeasurementsPrecipitation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Precipitation All liquid or solid phase aqueous particles that originate in the atmosphere and fall to the earth's surface. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  9. The sensitivity of energetic materials to friction, impact, and electrostatic stimuli

    SciTech Connect

    Vannet, M.D.

    1992-09-24

    Friction, impact, and electrostatic tests were conducted on materials that had not previously been tested at Mound, including PETN, BTF, HNS-IV, and pyrotechnic and thermite powders. Results are presented. Tables and charts including previous results are also included. 6 figs, 8 refs, 8 tabs.

  10. Electrostatic MEMS devices with high reliability

    DOEpatents

    Goldsmith, Charles L; Auciello, Orlando H; Sumant, Anirudha V; Mancini, Derrick C; Gudeman, Chris; Sampath, Suresh; Carlilse, John A; Carpick, Robert W; Hwang, James

    2015-02-24

    The present invention provides for an electrostatic microelectromechanical (MEMS) device comprising a dielectric layer separating a first conductor and a second conductor. The first conductor is moveable towards the second conductor, when a voltage is applied to the MEMS device. The dielectric layer recovers from dielectric charging failure almost immediately upon removal of the voltage from the MEMS device.

  11. CPIC: A Parallel Electrostatic Particle-In-Cell Code (Conference...

    Office of Scientific and Technical Information (OSTI)

    Electrostatic Particle-In-Cell Code Citation Details In-Document Search Title: CPIC: A Parallel Electrostatic Particle-In-Cell Code You are accessing a document from the ...

  12. URANIUM PRECIPITATION PROCESS

    DOEpatents

    Thunaes, A.; Brown, E.A.; Smith, H.W.; Simard, R.

    1957-12-01

    A method for the recovery of uranium from sulfuric acid solutions is described. In the present process, sulfuric acid is added to the uranium bearing solution to bring the pH to between 1 and 1.8, preferably to about 1.4, and aluminum metal is then used as a reducing agent to convert hexavalent uranium to the tetravalent state. As the reaction proceeds, the pH rises amd a selective precipitation of uranium occurs resulting in a high grade precipitate. This process is an improvement over the process using metallic iron, in that metallic aluminum reacts less readily than metallic iron with sulfuric acid, thus avoiding consumption of the reducing agent and a raising of the pH without accomplishing the desired reduction of the hexavalent uranium in the solution. Another disadvantage to the use of iron is that positive ferric ions will precipitate with negative phosphate and arsenate ions at the pH range employed.

  13. ARM - Measurement - Precipitable water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    govMeasurementsPrecipitable water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Precipitable water Total amount of water vapor in a vertical column of air, often expressed as the depth of the layer of water that would be formed if all the water vapor were condensed to liquid water. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following

  14. Precipitation hardening austenitic superalloys

    DOEpatents

    Korenko, Michael K. (Wexford, PA)

    1985-01-01

    Precipitation hardening, austenitic type superalloys are described. These alloys contain 0.5 to 1.5 weight percent silicon in combination with about 0.05 to 0.5 weight percent of a post irradiation ductility enhancing agent selected from the group of hafnium, yttrium, lanthanum and scandium, alone or in combination with each other. In addition, when hafnium or yttrium are selected, reductions in irradiation induced swelling have been noted.

  15. Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration)

    SciTech Connect

    Quimby, J.M.

    1992-02-01

    The objective of this contract is to investigate the removal of So{sub x} and particulate matter from direct coal-fired combustion gas streams at high temperature and high pressure conditions. This investigation will be accomplished through a bench-scale testing and evaluation program employing sorbent mixed with a coal-water slurry for So{sub x} removal, and an innovative particulate control concept. The particulate control device utilizes electrostatic agglomeration followed by a high efficiency mechanical collector (cyclone). The process goal is to achieve particulate collection efficiency better than that required by the 1979 new source performance standards. An additional goal is to demonstrate 70% So{sub x} removal efficiency. This research project is now in the second of a 3 phase (Phase II) project. Phase II is to fabricate the combustor and particulate control devices and install the system at a test facility located at Research-Cottrell's, KVB Western Laboratory, Santa Ana, CA. There are three functional categories, or tasks which are to be completed in sequence. These tasks are itemized as follows: Design, procurement, and installation; Shakedown and startup; Reporting. Attempts to validate the concept of electrostatic agglomeration were not possible in the shakedown program before budget constraints halted the program. What was learned was that electrostatic precipitation is feasible in the temperature range of 1600--1800{degrees}F and at pressures above 10 atmospheres.

  16. Electrostatic spherically symmetric configurations in gravitating nonlinear electrodynamics

    SciTech Connect

    Diaz-Alonso, J.; Rubiera-Garcia, D.

    2010-03-15

    We perform a study of the gravitating electrostatic spherically symmetric (G-ESS) solutions of Einstein field equations minimally coupled to generalized nonlinear Abelian gauge models in three space dimensions. These models are defined by Lagrangian densities which are general functions of the gauge field invariants, restricted by some physical conditions of admissibility. They include the class of nonlinear electrodynamics supporting electrostatic spherically symmetric (ESS) nontopological soliton solutions in absence of gravity. We establish that the qualitative structure of the G-ESS solutions of admissible models is fully characterized by the asymptotic and central-field behaviors of their ESS solutions in flat space (or, equivalently, by the behavior of the Lagrangian densities in vacuum and on the point of the boundary of their domain of definition, where the second gauge invariant vanishes). The structure of these G-ESS configurations for admissible models supporting divergent-energy ESS solutions in flat space is qualitatively the same as in the Reissner-Nordstroem case. In contrast, the G-ESS configurations of the models supporting finite-energy ESS solutions in flat space exhibit new qualitative features, which are discussed in terms of the Arnowitt-Deser-Misner mass, the charge, and the soliton energy. Most of the results concerning well-known models, such as the electrodynamics of Maxwell, Born-Infeld, and the Euler-Heisenberg effective Lagrangian of QED, minimally coupled to gravitation, are shown to be corollaries of general statements of this analysis.

  17. Desensitizing nano powders to electrostatic discharge ignition

    SciTech Connect

    Steelman, Ryan; Clark, Billy; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-01

    Electrostatic discharge (ESD) is a main cause for ignition in powder media ranging from grain silos to fireworks. Nanoscale particles are orders of magnitude more ESD ignition sensitive than their micron scale counterparts. This study shows that at least 13 vol. % carbon nanotubes (CNT) added to nano-aluminum and nano-copper oxide particles (nAl + CuO) eliminates ESD ignition sensitivity. The CNT act as a conduit for electric energy and directs electric charge through the powder to desensitize the reactive mixture to ignition. For nanoparticles, the required CNT concentration for desensitizing ESD ignition acts as a diluent to quench energy propagation.

  18. ELECTROSTATIC AIR CLEANING DEVICE AND METHOD

    DOEpatents

    Silverman, L.; Anderson, D.M.

    1961-07-18

    A method and apparatus for utilizing friction-charged particulate material from an aerosol are described. A bed of the plastic spheres is prepared, and the aerosol is passed upwardly through the bed at a rate just large enough to maintain the bed in a fluidized state wim over-all circulation of the balls. Wire members criss-crossing through the bed rub against the balls and maintain their surfaces with electrostatic charges. The particulate material in the aerosol adheres to the surfaces of the balls.

  19. Electrostatic particle trap for ion beam sputter deposition

    DOEpatents

    Vernon, Stephen P.; Burkhart, Scott C.

    2002-01-01

    A method and apparatus for the interception and trapping of or reflection of charged particulate matter generated in ion beam sputter deposition. The apparatus involves an electrostatic particle trap which generates electrostatic fields in the vicinity of the substrate on which target material is being deposited. The electrostatic particle trap consists of an array of electrode surfaces, each maintained at an electrostatic potential, and with their surfaces parallel or perpendicular to the surface of the substrate. The method involves interception and trapping of or reflection of charged particles achieved by generating electrostatic fields in the vicinity of the substrate, and configuring the fields to force the charged particulate material away from the substrate. The electrostatic charged particle trap enables prevention of charged particles from being deposited on the substrate thereby enabling the deposition of extremely low defect density films, such as required for reflective masks of an extreme ultraviolet lithography (EUVL) system.

  20. Geometric and electrostatic modeling using molecular rigidity functions

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | DOE PAGES Geometric and electrostatic modeling using molecular rigidity functions This content will become publicly available on March 1, 2018 Title: Geometric and electrostatic modeling using molecular rigidity functions Geometric and electrostatic modeling is an essential component in computational biophysics and molecular biology. Commonly used geometric representations admit geometric singularities such as cusps, tips and self-intersecting facets that lead to

  1. Electrostatic discharge testing of electroexplosive devices

    SciTech Connect

    Hingorani, S.L.

    1990-01-01

    Electrostatic discharge (ESD) testing of electroexplosive devices has previously been regarded as single pulse, go/no-go testing, the emphasis being on the safety of the devices when exposed to human handling. For some components it has been found to be a destructive test; for others the test is performed 100% in production product-acceptance testing and is considered a nondestructive and nondegrading test if the component does not fire. Recent studies performed by R. J. Fisher at Sandia have resulted in a new model of the worst case human body electrostatic discharge that is more accurate than the model that is currently in use for testing electroexplosive components. In addition, recent requirements for no degradation or loss of reliability after multiple exposures (up to 100) have changed the go/no-go nature of the test. Several components have been tested to the new ESD model; results regarding both safety and reliability will be presented and discussed. 9 refs., 7 figs., 2 tabs.

  2. Nonlinear frequency shift of electrostatic waves in general collisionl...

    Office of Scientific and Technical Information (OSTI)

    Nonlinear frequency shift of electrostatic waves in general collisionless plasma: Unifying theory of fluid and kinetic nonlinearities Citation Details In-Document Search This...

  3. Real-space formulation of the electrostatic potential and total...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Real-space formulation of the electrostatic potential and total energy of solids Citation Details In-Document Search Title: Real-space formulation of the ...

  4. On the response of large systems to electrostatic fields

    SciTech Connect

    Springborg, Michael; Kirtman, Bernard

    2015-01-22

    By modifying the surfaces of a macroscopic regular system it is possible to modify the dipole moment per unit by an amount equal to a lattice vector times the elementary charge. Alternatively, we may ignore the surfaces and treat the system as being infinite and periodic. In that event the dipole moment per unit is determined only up to an additive term equal to a lattice vector times the elementary charge. Beyond mathematical arguments we show, through model calculations, that the two cases are completely equivalent, even though the origin of the additive term is very different. The response of extended systems to electrostatic fields — including internal structure, piezoelectricity, bulk charge density, and (hyper)polarizabilities — depends upon this term and is, thereby, surface-dependent. The case of piezoelectricity is analyzed in some detail.

  5. Electrostatic Discharge testing of propellants and primers

    SciTech Connect

    Berry, R.B.

    1994-02-01

    This report presents the results of testing of selected propellants and primers to Electrostatic Discharge (ESD) characteristic of the human body. It describes the tests and the fixturing built to accommodate loose material (propellants) and the packed energetic material of the primer. The results indicate that all powders passed and some primers, especially the electric primers, failed to pass established requirements which delineate insensitive energetic components. This report details the testing of components and materials to four ESD environments (Standard ESD, Severe ESD, Modified Standard ESD, and Modified Severe ESD). The purpose of this study was to collect data based on the customer requirements as defined in the Sandia Environmental Safety & Health (ES&H) Manual, Chapter 9, and to define static sensitive and insensitive propellants and primers.

  6. Friction, impact, and electrostatic discharge sensitivities of energetic materials

    SciTech Connect

    Wang, P.S.; Hall, G.F.

    1985-05-31

    Impact, friction, and electrostatic discharge sensitivities of energetic materials (explosives and pyrotechnics) used or manufactured at Mound were tested by the ''one-shot'' method. The Bruceton statistical method was used to derive 50% initiation levels, and the results were compared. The materials tested include: PETN, HMX, Plastic Bonded Explosives (PBX), CP, TATB, RX26BB, RX26BH, barium styphnate, LX-15, LX-16, Ti/KClO/sub 4/, TiH/sub 0.65//KClO/sub 4/, TiH/sub 1.65//KClO/sub 4/, Fe/KClO/sub 4/, TiH/sub 1.75//B/CaCrO/sub 4/, Ti/B/CaCrO/sub 4/, B/CaCrO/sub 4/, TiH/sub 0.65//2B, TiH/sub 0.65//3B, 2Ti/B, TiH/sub 1.67//2B, Ti/2B, TiH/sub 1/67//3B, Ti/B, and Ti/3B. Some samples were investigated for aging effects, physical variables, and the effect of manufacturing paramters on sensitivities. The results show that in both friction and impact tests, CP and barium styphnate are the most sensitive; TiH/sub 1.65/KClO/sub 4/, LX-15, TATB and its related materials are the least sensitive; and other materials such as PETN and HMX are in the mid-range. In the electrostatic tests of Ti-based pyrotechnics, a decrease of sensitivity with increasing hydrogen concentration was observed. 20 refs., 12 figs., 7 tabs.

  7. Precipitation Process and Apparatus Therefor

    DOEpatents

    Stang, Jr, L C

    1950-12-05

    This invention concerns an apparatus for remotely-controlled precipitation and filtration operations. Liquid within a precipitation chamber is maintained above a porous member by introducing air beneath the member; pressure beneath the porous member is reduced to suck the liquid through the member and effect filtration.

  8. An optimal merging technique for high-resolution precipitation products

    SciTech Connect

    Houser, Paul

    2011-01-01

    Precipitation products are currently available from various sources at higher spatial and temporal resolution than any time in the past. Each of the precipitation products has its strengths and weaknesses in availability, accuracy, resolution, retrieval techniques and quality control. By merging the precipitation data obtained from multiple sources, one can improve its information content by minimizing these issues. However, precipitation data merging poses challenges of scale-mismatch, and accurate error and bias assessment. In this paper we present Optimal Merging of Precipitation (OMP), a new method to merge precipitation data from multiple sources that are of different spatial and temporal resolutions and accuracies. This method is a combination of scale conversion and merging weight optimization, involving performance-tracing based on Bayesian statistics and trend-analysis, which yields merging weights for each precipitation data source. The weights are optimized at multiple scales to facilitate multiscale merging and better precipitation downscaling. Precipitation data used in the experiment include products from the 12-km resolution North American Land Data Assimilation (NLDAS) system, the 8-km resolution CMORPH and the 4-km resolution National Stage-IV QPE. The test cases demonstrate that the OMP method is capable of identifying a better data source and allocating a higher priority for them in the merging procedure, dynamically over the region and time period. This method is also effective in filtering out poor quality data introduced into the merging process.

  9. AC Electrostatic Field Study : Final Report.

    SciTech Connect

    Lebby, Gary L.

    1990-08-28

    The phenomenon of fast transients propagating to the outer sheath of a gas insulated substation (GIS) during switching and disconnect operations as well as the distortion of the electric field gradient around an electric transmission line in the presence of field measuring equipment are examples of electrostatic and electromagnetic field problems that are very much on the minds of both power engineers and maintenance personnel alike. Maintenance personnel working on high voltage equipment want to know the areas that have the highest electric field strength gradients and they want to reduce the risk of being shocked when touching a conventionally 60 Hz grounded GIS enclosure due to fast transients initiated by faults and switching operations. In studying these phenomena during the performance period of this grant, tower configurations for the electric field strength gradient measurements were tested with the ESURF3D program acquired from BPA and gas insulated substation test pole (GISTP) models were tested using the Alternative Transients Program (ATP) version Electromagnets Transients Program (EMTP). The results of these two modeling paradigms are presented in this report not as the last word on these subjects, but as a couple of the many ways one can approach two classical electromagnetic waves problems. 19 refs., 13 figs., 3 tabs.

  10. Pump apparatus including deconsolidator

    SciTech Connect

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  11. Small-scale self-excited-rotor electrostatic generator

    SciTech Connect

    Kalganov, A.F.

    1985-04-15

    Electrostatic generators, as sources of high direct-current voltage, are being used more and more extensively in science and technology. Rotor electrostatic generators with conductor-carriers occupy a significant place among these generators; rotor electrostatic generators develop a voltage in the hundreds of kV and have the advantage that they can be made self-exciting. This considerably simplifies servicing and operation of the generators and is especially important in a small-scale design. Theoretical and experimental works on electrostatic generators with conductor-carriers in the last 20 years have led to the development of various types of such generators. Soviet scientists have made a great contribution to these works. However, the procedure for engineering calculation of certain types of generators still has not been adequately developed. In particular, the Zan calculation does not take into account the effect of parasitic capacitances in generators of disc and cylinder types.

  12. Alternative Electrostatic Green's Function for a Long Tube

    SciTech Connect

    Barlow, Stephan E.

    2003-11-01

    This note describes an expression for the electrostatic Green's function in a long conducting tube. The expression allows one to readily compute the potentials and fields at and in the vicinity of the singularity where other methods have difficulty.

  13. Silica Precipitation and Lithium Sorption

    SciTech Connect

    Jay Renew

    2015-09-20

    This file contains silica precipitation and lithium sorption data from the project. The silica removal data is corrected from the previous submission. The previous submission did not take into account the limit of detection of the ICP-MS procedure.

  14. Optical modulator including grapene

    DOEpatents

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  15. Fabrication of miniaturized electrostatic deflectors using LIGA

    SciTech Connect

    Jackson, K.H.; Khan-Malek, C.; Muray, L.P.

    1997-04-01

    Miniaturized electron beam columns ({open_quotes}microcolumns{close_quotes}) have been demonstrated to be suitable candidates for scanning electron microscopy (SEM), e-beam lithography and other high resolution, low voltage applications. In the present technology, microcolumns consist of {open_quotes}selectively scaled{close_quotes} micro-sized lenses and apertures, fabricated from silicon membranes with e-beam lithography, reactive ion beam etching and other semiconductor thin-film techniques. These miniaturized electron-optical elements provide significant advantages over conventional optics in performance and ease of fabrication. Since lens aberrations scale roughly with size, it is possible to fabricate simple microcolumns with extremely high brightness sources and electrostatic objective lenses, with resolution and beam current comparable to conventional e-beam columns. Moreover since microcolumns typically operate at low voltages (1 KeV), the proximity effects encountered in e-beam lithography become negligible. For high throughput applications, batch fabrication methods may be used to build large parallel arrays of microcolumns. To date, the best reported performance with a 1 keV cold field emission cathode, is 30 nm resolution at a working distance of 2mm in a 3.5mm column. Fabrication of the microcolumn deflector and stigmator, however, have remained beyond the capabilities of conventional machining operations and semiconductor processing technology. This work examines the LIGA process as a superior alternative to fabrication of the deflectors, especially in terms of degree of miniaturization, dimensional control, placement accuracy, run-out, facet smoothness and choice of suitable materials. LIGA is a combination of deep X-ray lithography, electroplating, and injection molding processes which allow the fabrication of microstructures.

  16. Electrostatic Dust Detection and Removal for ITER

    SciTech Connect

    C.H. Skinner; A. Campos; H. Kugel; J. Leisure; A.L. Roquemore; S. Wagner

    2008-09-01

    We present some recent results on two innovative applications of microelectronics technology to dust inventory measurement and dust removal in ITER. A novel device to detect the settling of dust particles on a remote surface has been developed in the laboratory. A circuit board with a grid of two interlocking conductive traces with 25 μm spacing is biased to 30 – 50 V. Carbon particles landing on the energized grid create a transient short circuit. The current flowing through the short circuit creates a voltage pulse that is recorded by standard nuclear counting electronics and the total number of counts is related to the mass of dust impinging on the grid. The particles typically vaporize in a few seconds restoring the previous voltage standoff. Experience on NSTX however, showed that in a tokamak environment it was still possible for large particles or fibers to remain on the grid causing a long term short circuit. We report on the development of a gas puff system that uses helium to clear such particles. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have given an optimal configuration that effectively removes particles from an area up to 25 cm² with a single nozzle. In a separate experiment we are developing an advanced circuit grid of three interlocking traces that can generate a miniature electrostatic traveling wave for transporting dust to a suitable exit port. We have fabricated such a 3-pole circuit board with 25 micron insulated traces that operates with voltages up to 200 V. Recent results showed motion of dust particles with the application of only 50 V bias voltage. Such a device could potentially remove dust continuously without dedicated interventions and without loss of machine availability for plasma operations.

  17. Electrostatic quadrupole array for focusing parallel beams of charged particles

    DOEpatents

    Brodowski, John

    1982-11-23

    An array of electrostatic quadrupoles, capable of providing strong electrostatic focusing simultaneously on multiple beams, is easily fabricated from a single array element comprising a support rod and multiple electrodes spaced at intervals along the rod. The rods are secured to four terminals which are isolated by only four insulators. This structure requires bias voltage to be supplied to only two terminals and eliminates the need for individual electrode bias and insulators, as well as increases life by eliminating beam plating of insulators.

  18. APPARATUS FOR CLEANING GASES WITH ELECTROSTATICALLY CHARGED PARTICLES

    DOEpatents

    Johnstone, H.F.

    1960-02-01

    An apparatus is described for cleaning gases with the help of electrostatically charged pellets. The pellets are blown past baffles in a conduit and into the center of a rotuting body of the gas to be cleaned. The pellets are charged electrostatically by impinging on the baffles. The pellets collect the particles suspended in the gas in their passage from the center of the rotating body to its edge.

  19. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2003-12-16

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  20. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2007-02-20

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  1. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2006-02-07

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  2. Timber Mountain Precipitation Monitoring Station

    SciTech Connect

    Lyles, Brad; McCurdy, Greg; Chapman, Jenny; Miller, Julianne

    2012-01-01

    A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in

  3. Geometric and electrostatic modeling using molecular rigidity functions

    DOE PAGES [OSTI]

    Mu, Lin; Xia, Kelin; Wei, Guowei

    2017-03-01

    Geometric and electrostatic modeling is an essential component in computational biophysics and molecular biology. Commonly used geometric representations admit geometric singularities such as cusps, tips and self-intersecting facets that lead to computational instabilities in the molecular modeling. Our present work explores the use of flexibility and rigidity index (FRI), which has a proved superiority in protein B-factor prediction, for biomolecular geometric representation and associated electrostatic analysis. FRI rigidity surfaces are free of geometric singularities. We propose a rigidity based Poisson–Boltzmann equation for biomolecular electrostatic analysis. These approaches to surface and electrostatic modeling are validated by a set of 21 proteins.more » Our results are compared with those of established methods. Finally, being smooth and analytically differentiable, FRI rigidity functions offer excellent curvature analysis, which characterizes concave and convex regions on protein surfaces. Polarized curvatures constructed by using the product of minimum curvature and electrostatic potential is shown to predict potential protein–ligand binding sites.« less

  4. An Improved Plutonium Trifluoride Precipitation Flowsheet

    SciTech Connect

    Harmon, H.D.

    2001-06-26

    This report discusses results of the plutonium trifluoride two-stage precipitation study. A series of precipitation experiments was used to identify the significant process variables affecting precipitation performance. A mathematical model of the precipitation process was developed which is based on the formation of plutonium fluoride complexes. The precipitation model relates all process variables, in a single equation, to a single parameter which can be used to control the performance of the plutonium trifluoride precipitation process. Recommendations have been made which will optimize the FB-Line plutonium trifluoride precipitation process.

  5. ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan

    SciTech Connect

    Leung, L. R.; Prather, K.; Ralph, R.; Rosenfeld, D.; Spackman, R.; DeMott, P.; Fairall, C.; Fan, J.; Hagos, S.; Hughes, M.; Long, C.; Rutledge, S.; Waliser, D.; Wang, H.

    2014-09-01

    The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Understanding and modeling the fundamental processes that govern the large precipitation variability and extremes in the western U.S. is a critical test for the ability of climate models to predict the regional water cycle, including floods and droughts. Two elements of significant importance in predicting precipitation variability in the western U.S. are atmospheric rivers and aerosols. Atmospheric rivers (ARs) are narrow bands of enhanced water vapor associated with the warm sector of extratropical cyclones over the Pacific and Atlantic oceans. Because of the large lower-tropospheric water vapor content, strong atmospheric winds and neutral moist static stability, some ARs can produce heavy precipitation by orographic enhancement during landfall on the U.S. West Coast. While ARs are responsible for a large fraction of heavy precipitation in that region during winter, much of the rest of the orographic precipitation occurs in post-frontal clouds, which are typically quite shallow, with tops just high enough to pass the mountain barrier. Such clouds are inherently quite susceptible to aerosol effects on both warm rain and ice precipitation-forming processes.

  6. Phenomenology of electrostatically charged droplet combustion in normal gravity

    SciTech Connect

    Anderson, Eric K.; Koch, Jeremy A.; Kyritsis, Dimitrios C.

    2008-08-15

    Experimental findings are provided on the effect of electrostatically charging a fuel on single-burning droplet combustion in normal gravity. It was established that significant modification of the flame morphology and the droplet burning time could be achieved, solely by the droplet charge, without the application of external electric fields. Negative charging of the droplets of mixtures of isooctane with either ethanol or a commercially available anti-static additive generated intense motion of the flame and abbreviated the droplet burning time by as much as 40% for certain blend compositions. Positive charging of the droplets generated almost spherical flames, because electrostatic attraction toward the droplets countered the effect of buoyancy. By comparing combustion of droplets of the same conductivity but different compositions, coupling of electrostatics with combustion chemistry was established. (author)

  7. Electrostatic stabilizer for a passive magnetic bearing system

    DOEpatents

    Post, Richard F.

    2015-11-24

    Electrostatic stabilizers are provided for passive bearing systems composed of annular magnets having a net positive stiffness against radial displacements and that have a negative stiffness for vertical displacements, resulting in a vertical instability. Further embodiments are shown of a radial electrostatic stabilizer geometry (using circuitry similar to that employed in the vertical stabilizer). This version is suitable for stabilizing radial (lateral) displacements of a rotor that is levitated by annular permanent magnets that are stable against vertical displacements but are unstable against radial displacements.

  8. Electrostatic stabilizer for a passive magnetic bearing system

    DOEpatents

    Post, Richard F.

    2015-12-01

    Electrostatic stabilizers are provided for passive bearing systems composed of annular magnets having a net positive stiffness against radial displacements and that have a negative stiffness for vertical displacements, resulting in a vertical instability. Further embodiments are shown of a radial electrostatic stabilizer geometry (using circuitry similar to that employed in the vertical stabilizer). This version is suitable for stabilizing radial (lateral) displacements of a rotor that is levitated by annular permanent magnets that are stable against vertical displacements but are unstable against radial displacements.

  9. Laboratory Measurements of Electrostatic Solitary Structures Generated by Beam Injection

    SciTech Connect

    Lefebvre, Bertrand; Chen, Li-Jen; Gekelman, Walter; Pribyl, Patrick; Vincena, Stephen; Kintner, Paul; Pickett, Jolene; Chiang, Franklin; Judy, Jack

    2010-09-10

    Electrostatic solitary structures are generated by injection of a suprathermal electron beam parallel to the magnetic field in a laboratory plasma. Electric microprobes with tips smaller than the Debye length ({lambda}{sub De}) enabled the measurement of positive potential pulses with half-widths 4 to 25{lambda}{sub De} and velocities 1 to 3 times the background electron thermal speed. Nonlinear wave packets of similar velocities and scales are also observed, indicating that the two descend from the same mode which is consistent with the electrostatic whistler mode and result from an instability likely to be driven by field-aligned currents.

  10. Transverse-structure electrostatic charged particle beam lens

    DOEpatents

    Moran, M.J.

    1998-10-13

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility. 7 figs.

  11. Transverse-structure electrostatic charged particle beam lens

    DOEpatents

    Moran, Michael J.

    1998-01-01

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility.

  12. Few multi-year precipitation-reduction experiments find a shift in the productivity-precipitation relationship

    DOE PAGES [OSTI]

    Estiarte, Marc; Vicca, Sara; Penuelas, Josep; Bahn, Michael; Beier, Claus; Emmett, Bridget; Fay, Phillip A.; Hanson, Paul J.; Hasibeder, Roland; Kigel, Jaime; et al

    2016-04-06

    for experiments with multiple, including more extreme, dry treatments, to identify the precipitation boundaries within which the current temporal fits remain valid.« less

  13. The Effect of CO2 on the Measurement of 220Rn and 222Rn with Instruments Utilising Electrostatic Precipitation

    DOE PAGES [OSTI]

    Lane-Smith, Derek; Sims, Kenneth

    2013-06-09

    In some volcanic systems, thoron and radon activity and CO2 flux, in soil and fumaroles, show a relationship between (220Rn/222Rn) and CO2 efflux. It is theorized that deep, magmatic sources of gas are characterized by high 222Rn activity and high CO2 efflux, whereas shallow sources are indicated by high 220Rn activity and relatively low CO2 efflux. In this paper we evaluate whether the observed inverse relationship is a true geochemical signal, or potentially an analytical artifact of high CO2 concentrations. We report results from a laboratory experiment using the RAD7 radon detector, known 222Rn (radon) and 220Rn (thorn), and amore » controllable percentage of CO2 in the carrier gas. Our results show that for every percentage of CO2, the 220Rn reading should be multiplied by 1.019, the 222Rn radon should be multiplied by 1.003 and the 220Rn/222Rn ratio should be multiplied by 1.016 to correct for the presence of the CO2.« less

  14. Methods and sorbents for utilizing a hot-side electrostatic precipitator for removal of mercury from combustion gases

    SciTech Connect

    Nelson, Sidney

    2011-02-15

    Methods are provided for reducing emission of mercury from a gas stream by treating the gas with carbonaceous mercury sorbent particles to reduce the mercury content of the gas; collecting the carbonaceous mercury sorbent particles on collection plates of a hot-side ESP; periodically rapping the collection plates to release a substantial portion of the collected carbonaceous mercury sorbent particles into hoppers; and periodically emptying the hoppers, wherein such rapping and emptying are done at rates such that less than 70% of mercury adsorbed onto the mercury sorbent desorbs from the collected mercury sorbent into the gas stream.

  15. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  16. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  17. Improving the treatment of coarse-grain electrostatics: CVCEL

    SciTech Connect

    Ceres, N.; Lavery, R.

    2015-12-28

    We propose an analytic approach for calculating the electrostatic energy of proteins or protein complexes in aqueous solution. This method, termed CVCEL (Circular Variance Continuum ELectrostatics), is fitted to Poisson calculations and is able to reproduce the corresponding energies for different choices of solute dielectric constant. CVCEL thus treats both solute charge interactions and charge self-energies, and it can also deal with salt solutions. Electrostatic damping notably depends on the degree of solvent exposure of the charges, quantified here in terms of circular variance, a measure that reflects the vectorial distribution of the neighbors around a given center. CVCEL energies can be calculated rapidly and have simple analytical derivatives. This approach avoids the need for calculating effective atomic volumes or Born radii. After describing how the method was developed, we present test results for coarse-grain proteins of different shapes and sizes, using different internal dielectric constants and different salt concentrations and also compare the results with those from simple distance-dependent models. We also show that the CVCEL approach can be used successfully to calculate the changes in electrostatic energy associated with changes in protein conformation or with protein-protein binding.

  18. Inducing Mineral Precipitation in Groundwater by Addition of Phosphate

    SciTech Connect

    Karen E. Wright; Yoshiko Fujita; Thomas Hartmann; Mark Conrad

    2011-10-01

    Induced precipitation of phosphate minerals to scavenge trace metals and radionuclides from groundwater is a potential remediation approach for contaminated aquifers. Phosphate minerals can sequester trace elements by primary mineral formation, solid solution formation and/or adsorption, and they are poorly soluble under many environmental conditions, making them attractive for long-term sustainable remediation. The success of such engineered schemes will depend on the particular mineral phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the precipitation of calcium phosphate minerals under conditions representative of a natural groundwater. Because microorganisms are present in groundwater, and because some proposed schemes for induced phosphate mineral precipitation rely on the stimulation of native groundwater populations, we also tested the effect of bacterial cells (initial densities of 105 and 107 ml-1) within the precipitation medium. We also tested the effect of a trace mixture of propionic, isovaleric, formic and butyric acids (total concentration 0.035 mM). The experiments showed that the general progression of mineral precipitation was similar under all of the conditions, with initial formation of amorphous calcium carbonate, and transformation to poorly crystalline hydroxyapatite (HAP) by the end of the week-long experiments. The presence of the bacterial cells appeared to delay precipitation, although by the end of 7 days the overall extent of precipitation was similar for all of the treatments. The stoichiometry of the final precipitates as well as results of Rietveld refinement of x-ray diffraction data indicated that the treatments including organic acids and bacterial cells resulted in increased distortion of the HAP crystal lattice, with the higher concentration of cells resulting in the greatest distortion. Uptake of Sr into the phosphate minerals was decreased in the treatments

  19. Electrostatic force assisted deposition of graphene

    DOEpatents

    Liang, Xiaogan

    2011-11-15

    An embodiment of a method of depositing graphene includes bringing a stamp into contact with a substrate over a contact area. The stamp has at least a few layers of the graphene covering the contact area. An electric field is developed over the contact area. The stamp is removed from the vicinity of the substrate which leaves at least a layer of the graphene substantially covering the contact area.

  20. The role of precipitation size distributions in km-scale NWP simulations of intense precipitation: Evaluation of cloud properties and surface precipitation

    SciTech Connect

    VanWeverberg K.; Vogelmann A.; vanLipzig, N. P. M.; Delobbec, L.

    2012-04-01

    We investigate the sensitivity of simulated cloud properties and surface precipitation to assumptions regarding the size distributions of the precipitating hydrometeors in a one-moment bulk microphysics scheme. Three sensitivity experiments were applied to two composites of 15 convective and 15 frontal stratiform intense precipitation events observed in a coastal midlatitude region (Belgium), which were evaluated against satellite-retrieved cloud properties and radar-rain-gauge derived surface precipitation. It is found that the cloud optical thickness distribution was well captured by all experiments, although a significant underestimation of cloudiness occurred in the convective composite. The cloud-top-pressure distribution was improved most by more realistic snow size distributions (including a temperature-dependent intercept parameter and non-spherical snow for the calculation of the slope parameter), due to increased snow depositional growth at high altitudes. Surface precipitation was far less sensitive to whether graupel or hail was chosen as the rimed ice species, as compared to previous idealized experiments. This smaller difference in sensitivity could be explained by the stronger updraught velocities and higher freezing levels in the idealized experiments compared to typical coastal midlatitude environmental conditions.

  1. Study on plasma parameters and dust charging in an electrostatically plugged multicusp plasma device

    SciTech Connect

    Kakati, B.; Kausik, S. S.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur-782 402, Kamrup, Assam (India); Bandyopadhyay, M. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar- 382 428 (India)

    2011-06-15

    The effect of the electrostatic confinement potential on the charging of dust grains and its relationship with the plasma parameters has been studied in an electrostatically plugged multicusp dusty plasma device. Electrostatic plugging is implemented by biasing the electrically isolated magnetic multicusp channel walls. The experimental results show that voltage applied to the channel walls can be a controlling parameter for dust charging.

  2. ARM: 1290-MHz Beam-Steered Radar Wind Profiler: Precipitation...

    Office of Scientific and Technical Information (OSTI)

    Precipitation Datastream Title: ARM: 1290-MHz Beam-Steered Radar Wind Profiler: Precipitation Datastream 1290-MHz Beam-Steered Radar Wind Profiler: Precipitation Datastream ...

  3. ARM: 1290-MHz Radar Wind Profiler, precipitation moments data...

    Office of Scientific and Technical Information (OSTI)

    1290-MHz Radar Wind Profiler, precipitation moments data Title: ARM: 1290-MHz Radar Wind Profiler, precipitation moments data 1290-MHz Radar Wind Profiler, precipitation moments ...

  4. Electrostatic lens to focus an ion beam to uniform density

    DOEpatents

    Johnson, Cleland H.

    1977-01-11

    A focusing lens for an ion beam having a gaussian or similar density profile is provided. The lens is constructed to provide an inner zero electrostatic field, and an outer electrostatic field such that ions entering this outer field are deflected by an amount that is a function of their distance from the edge of the inner field. The result is a beam that focuses to a uniform density in a manner analogous to that of an optical ring lens. In one embodiment, a conically-shaped network of fine wires is enclosed within a cylindrical anode. The wire net together with the anode produces a voltage field that re-directs the outer particles of the beam while the axial particles pass undeflected through a zero field inside the wire net. The result is a focused beam having a uniform intensity over a given target area and at a given distance from the lens.

  5. Energy conservation in electrostatic fabric filtration of industrial dust

    SciTech Connect

    Ariman, T.

    1981-12-01

    Conservation in energy consumption in industrial fabric filtration systems has become very important due to the substantial increase in energy costs. Recently, an external electric field was utilized in the industrial dust control by fabric filters with very promising initial results. A substantial decrease in the pressure drop and an increase in collection efficiency were observed. The detailed outcome of the experimental research program in electrostatic fabric filtration was presented. The results show that pressure drop decreases substantially with the increased electrostatic field strength for all relevant parameters. Furthermore, the data of the experimental program was utilized to develop a semi-empirical model for the determination of the pressure drop and to establish an Energy-Optimized Design Criteria.

  6. Coupling of transit time instabilities in electrostatic confinement fusion devices

    SciTech Connect

    Gruenwald, J. Fröhlich, M.

    2015-07-15

    A model of the behavior of transit time instabilities in an electrostatic confinement fusion reactor is presented in this letter. It is demonstrated that different modes are excited within the spherical cathode of a Farnsworth fusor. Each of these modes is dependent on the fusion products as well as the acceleration voltage applied between the two electrodes and they couple to a resulting oscillation showing non-linear beat phenomena. This type of instability is similar to the transit time instability of electrons between two resonant surfaces but the presence of ions and the occurring fusion reactions alter the physics of this instability considerably. The physics of this plasma instability is examined in detail for typical physical parameter ranges of electrostatic confinement fusion devices.

  7. Microturbulence in DIII-D tokamak pedestal. I. Electrostatic instabilities

    SciTech Connect

    Fulton, D. P.; Holod, I.; Lin, Z.; Xiao, Y.

    2014-04-15

    Gyrokinetic simulations of electrostatic driftwave instabilities in a tokamak edge have been carried out to study the turbulent transport in the pedestal of an H-mode plasma. The simulations use annulus geometry and focus on two radial regions of a DIII-D experiment: the pedestal top with a mild pressure gradient and the middle of the pedestal with a steep pressure gradient. A reactive trapped electron instability with a typical ballooning mode structure is excited by trapped electrons in the pedestal top. In the middle of the pedestal, the electrostatic instability exhibits an unusual mode structure, which peaks at the poloidal angle ?=?/2. The simulations find that this unusual mode structure is due to the steep pressure gradients in the pedestal but not due to the particular DIII-D magnetic geometry. Realistic DIII-D geometry appears to have a stabilizing effect on the instability when compared to a simple circular tokamak geometry.

  8. Electrostatically Tuned Self-Assembly of Branched Amphiphilic Peptides

    DOE PAGES [OSTI]

    Ting, Christina L.; Frischknecht, Amalie L.; Stevens, Mark J.; Spoerke, Erik D.

    2014-06-19

    Electrostatics plays an important role in the self-assembly of amphiphilic peptides. To develop a molecular understanding of the role of the electrostatic interactions, we develop a coarse-grained model peptide and apply self-consistent field theory to investigate the peptide assembly into a variety of aggregate nanostructures. We find that the presence and distribution of charged groups on the hydrophilic branches of the peptide can modify the molecular configuration from extended to collapsed. This change in molecular configuration influences the packing into spherical micelles, cylindrical micelles (nanofibers), or planar bilayers. The effects of charge distribution therefore has important implications for the designmore » and utility of functional materials based on peptides.« less

  9. ELECTROSTATIC MODELING OF THE JEFFERSON LABORATORY INVERTED CERAMIC GUN

    SciTech Connect

    P. Evtushenko ,F.E. Hannon, C. Hernandez-Garcia

    2010-05-01

    Jefferson Laboratory (JLab) is currently developing a new 500kV DC electron gun for future use with the FEL. The design consists of two inverted ceramics which support a central cathode electrode. This layout allows for a load-lock system to be located behind the gun chamber. The electrostatic geometry of the gun has been designed to minimize surface electric field gradients and also to provide some transverse focusing to the electron beam during transit between the cathode and anode. This paper discusses the electrode design philosophy and presents the results of electrostatic simulations. The electric field information obtained through modeling was used with particle tracking codes to predict the effects on the electron beam.

  10. Method of precipitating uranium from an aqueous solution and/or sediment

    DOEpatents

    Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

    2013-08-20

    A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

  11. Electrostatic ion beam trap for electron collision studies

    SciTech Connect

    Heber, O.; Witte, P.D.; Diner, A.; Bhushan, K.G.; Strasser, D.; Toker, Y.; Rappaport, M.L.; Ben-Itzhak, I.; Altstein, N.; Schwalm, D.; Wolf, A.; Zajfman, D.

    2005-01-01

    We describe a system combining an ion beam trap and a low energy electron target in which the interaction between electrons and vibrationally cold molecular ions and clusters can be studied. The entire system uses only electrostatic fields for both trapping and focusing, thus being able to store particles without a mass limit. Preliminary results for the electron impact neutralization of C{sub 2}{sup -} ions and aluminum clusters are presented.

  12. Electrostatic waves in carbon nanotubes with an axial magnetic field

    SciTech Connect

    Abdikian, Alireza; Bagheri, Mehran

    2013-10-15

    Based on a linearized hydrodynamic model and within the quasi-static approximation, the dispersion relation of electrostatic waves propagating through single-walled carbon nanotubes subject to an axial magnetic field is theoretically explored. In the classical limit, we obtain two main possible waves which in turn are divided into two branches, a low-frequency acoustical and a high-frequency optical plasmon branch. In the quantum case, we have found that the dispersion relation is substantially modified when the electron wavelength becomes large enough compared to the propagation wavelength of the electrostatic waves in the quantum plasma. We also show that the axial magnetic field manifest itself on the perturbed electron density through the quantum term and gives rise to the propagation of the electrostatic waves within the quantum plasma. As a result, the effect of the magnetic field is pronounced in the plasma dispersion relations in such a way that their curves approach to zero when the magnetic field is weak; and for the strong magnetic field, they asymptotically meet the constant lines.

  13. Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations

    SciTech Connect

    Ojeda-May, Pedro; Pu, Jingzhi

    2015-11-07

    The Wolf summation approach [D. Wolf et al., J. Chem. Phys. 110, 8254 (1999)], in the damped shifted force (DSF) formalism [C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006)], is extended for treating electrostatics in combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations. In this development, we split the QM/MM electrostatic potential energy function into the conventional Coulomb r{sup −1} term and a term that contains the DSF contribution. The former is handled by the standard machinery of cutoff-based QM/MM simulations whereas the latter is incorporated into the QM/MM interaction Hamiltonian as a Fock matrix correction. We tested the resulting QM/MM-DSF method for two solution-phase reactions, i.e., the association of ammonium and chloride ions and a symmetric SN{sub 2} reaction in which a methyl group is exchanged between two chloride ions. The performance of the QM/MM-DSF method was assessed by comparing the potential of mean force (PMF) profiles with those from the QM/MM-Ewald and QM/MM-isotropic periodic sum (IPS) methods, both of which include long-range electrostatics explicitly. For ion association, the QM/MM-DSF method successfully eliminates the artificial free energy drift observed in the QM/MM-Cutoff simulations, in a remarkable agreement with the two long-range-containing methods. For the SN{sub 2} reaction, the free energy of activation obtained by the QM/MM-DSF method agrees well with both the QM/MM-Ewald and QM/MM-IPS results. The latter, however, requires a greater cutoff distance than QM/MM-DSF for a proper convergence of the PMF. Avoiding time-consuming lattice summation, the QM/MM-DSF method yields a 55% reduction in computational cost compared with the QM/MM-Ewald method. These results suggest that, in addition to QM/MM-IPS, the QM/MM-DSF method may serve as another efficient and accurate alternative to QM/MM-Ewald for treating electrostatics in condensed-phase simulations of chemical

  14. Mesoscale modeling of solute precipitation and radiation damage

    SciTech Connect

    Zhang, Yongfeng; Schwen, Daniel; Ke, Huibin; Bai, Xianming; Hales, Jason

    2015-09-01

    This report summarizes the low length scale effort during FY 2014 in developing mesoscale capabilities for microstructure evolution in reactor pressure vessels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation-induced defect accumulation and irradiation-enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering-scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulation and solute precipitation are summarized. Atomic-scale efforts that supply information for the mesoscale capabilities are also included.

  15. Dynamic simulation of the in-tank precipitation process

    SciTech Connect

    Hang, T.; Shanahan, K.L.; Gregory, M.V.; Walker, D.D.

    1993-12-31

    As part of the High-Level Waste Tank Farm at the Savannah River Site (SRS), the In-Tank Precipitation (ITP) facility was designed to decontaminate the radioactive waste supernate by removing cesium as precipitated cesium tetraphenylborate. A dynamic computer model of the ITP process was developed using SPEEDUP{sup TM} software to provide guidance in the areas of operation and production forecast, production scheduling, safety, air emission, and process improvements. The model performs material balance calculations in all phase (solid, liquid, and gas) for 50 key chemical constituents to account for inventory accumulation, depletion, and dilution. Calculations include precipitation, benzene radiolytic reactions, evaporation, dissolution, adsorption, filtration, and stripping. To control the ITP batch operation a customized FORTRAN program was generated and linked to SPEEDUP{sup TM} simulation This paper summarizes the model development and initial results of the simulation study.

  16. METATHESIS OF PLUTONIUM CARRIER LANTHANUM FLUORIDE PRECIPITATE WITH AN ALKALI

    DOEpatents

    Duffield, R.B.

    1960-04-01

    A plutonium fluoride precipitate is converted to plutonium hydroxide by digesting the precipitate with an aqueous alkali metal hydroxide solution.

  17. Mechanisms affecting swelling in alloys with precipitates

    SciTech Connect

    Mansur, L.K.; Haynes, M.R.; Lee, E.H.

    1980-01-01

    In alloys under irradiation many mechanisms exist that couple phase instability to cavity swelling. These are compounded with the more familiar mechanisms associated with point defect behavior and the evolution of microstructure. The mechanisms may be classified according to three modes of operation. Some affect cavity swelling directly by cavity-precipitate particle association, others operate indirectly by precipitate-induced changes in sinks other than cavities and finally there are mechanisms that are mediated by precipitate-induced changes in the host matrix. The physics of one mechanism of each type is developed in detail and the results compared where possible to experimental measurements. In particular, we develop the theory necessary to treat the effects on swelling of precipitation-induced changes in overall sink density; precipitation-induced changes in point defect trapping by solute depletion and creation of precipitate particle-matrix interfacial trap sites.

  18. Aqueous precipitation: Population balance modeling and control in multi-cation systems

    SciTech Connect

    Voigt, J.A.

    1996-03-01

    Efficient separation of metal species from aqueous streams by precipitation techniques requires a fundamental understanding of the processes that occur during precipitation. These processes include particle nucleation, particle growth by solute deposition, agglomerate formation, and agglomerate breakup. Population balance method has been used to develop a kinetic model that accounts for these competing kinetic processes. The usefulness of the model is illustrated through its application to precipitation of yttrium hydroxynitrate, YHN. Kinetic parameters calculated from the model equations and system-specific solution chemistry are used to describe several aspects of the effect of pH on YHN precipitation. Implications for simultaneous precipitation of more than one cation type are discussed with examples. Effects of solution chemistry, precipitator design, and solvent choice are considered.

  19. Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration). Project quarterly report, September 1, 1991--December 31, 1991

    SciTech Connect

    Quimby, J.M.

    1992-02-01

    The objective of this contract is to investigate the removal of SO{sub x} and particulate matter from direct coal-fired combustion gas streams at high temperature and high pressure conditions. This investigation will be accomplished through a bench-scale testing and evaluation program employing sorbent mixed with a coal-water slurry for SO{sub x} removal, and an innovative particulate control concept. The particulate control device utilizes electrostatic agglomeration followed by a high efficiency mechanical collector (cyclone). The process goal is to achieve particulate collection efficiency better than that required by the 1979 new source performance standards. An additional goal is to demonstrate 70% SO{sub x} removal efficiency. This research project is now in the second of a 3 phase (Phase II) project. Phase II is to fabricate the combustor and particulate control devices and install the system at a test facility located at Research-Cottrell`s, KVB Western Laboratory, Santa Ana, CA. There are three functional categories, or tasks which are to be completed in sequence. These tasks are itemized as follows: Design, procurement, and installation; Shakedown and startup; Reporting. Attempts to validate the concept of electrostatic agglomeration were not possible in the shakedown program before budget constraints halted the program. What was learned was that electrostatic precipitation is feasible in the temperature range of 1600--1800{degrees}F and at pressures above 10 atmospheres.

  20. ARM - Will There be Increased Global Precipitation?

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Will There be Increased Global Precipitation? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Will There be Increased Global Precipitation? Very probable. Along with an increase in air temperature might be an increase in evaporation, which could lead to greater global precipitation. The

  1. METHOD FOR REMOVING CONTAMINATION FROM PRECIPITATES

    DOEpatents

    Stahl, G.W.

    1959-01-01

    An improvement in the bismuth phosphate carrier precipitation process is presented for the recovery and purification of plutonium. When plutonium, in the tetravalent state, is carried on a bismuth phosphate precipitate, amounts of centain of the fission products are carried along with the plutonium. The improvement consists in washing such fission product contaminated preeipitates with an aqueous solution of ammonium hydrogen fluoride. since this solution has been found to be uniquely effective in washing fission production contamination from the bismuth phosphate precipitate.

  2. Stratocumulus Precipitation and Entrainment Experiment (SPEE) Field

    Office of Scientific and Technical Information (OSTI)

    Campaign Report (Technical Report) | SciTech Connect Stratocumulus Precipitation and Entrainment Experiment (SPEE) Field Campaign Report Citation Details In-Document Search Title: Stratocumulus Precipitation and Entrainment Experiment (SPEE) Field Campaign Report The scientific focus of this project was to examine precipitation and entrainment processes in marine stratocumulus clouds. The entrainment studies focused on characterizing cloud turbulence at cloud top using Doppler cloud radar

  3. A nonlinear MEMS electrostatic kinetic energy harvester for human-powered biomedical devices

    SciTech Connect

    Lu, Y.; Cottone, F.; Marty, F.; Basset, P.; Galayko, D.

    2015-12-21

    This article proposes a silicon-based electrostatic kinetic energy harvester with an ultra-wide operating frequency bandwidth from 1 Hz to 160 Hz. This large bandwidth is obtained, thanks to a miniature tungsten ball impacting with a movable proof mass of silicon. The motion of the silicon proof mass is confined by nonlinear elastic stoppers on the fixed part standing against two protrusions of the proof mass. The electrostatic transducer is made of interdigited-combs with a gap-closing variable capacitance that includes vertical electrets obtained by corona discharge. Below 10 Hz, the e-KEH offers 30.6 nJ per mechanical oscillation at 2 g{sub rms}, which makes it suitable for powering biomedical devices from human motion. Above 10 Hz and up to 162 Hz, the harvested power is more than 0.5 μW with a maximum of 4.5 μW at 160 Hz. The highest power of 6.6 μW is obtained without the ball at 432 Hz, in accordance with a power density of 142 μW/cm{sup 3}. We also demonstrate the charging of a 47-μF capacitor to 3.5 V used to power a battery-less wireless temperature sensor node.

  4. ARM - Evaluation Product - Corrected Precipitation Radar Moments...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ProductsCorrected Precipitation Radar Moments in Antenna Coordinates Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would...

  5. Stratocumulus Precipitation and Entrainment Experiment (SPEE...

    Office of Scientific and Technical Information (OSTI)

    and the macroscopic properties (cloud thickness, and liquid water path) of the clouds. ... radar; precipitation; entrainment; liquid water path Word Cloud More Like This Full Text ...

  6. Radioactivity in Precipitation: Methods and Observations from...

    Office of Environmental Management (EM)

    Radioactivity in Precipitation: Methods & Observations from Savannah River Site Dennis Jackson ...operatingops- experiencetritiumplant-info.html 14 15 DOE Nuclear & NRC ...

  7. Electrostatic Cooperativity of Hydroxyl Groups at Metal Oxide Surfaces

    SciTech Connect

    Boily, Jean F.; Lins, Roberto D.

    2009-09-24

    The O-H bond distribution of hydroxyl groups at the {110} goethite (R-FeOOH) surface was investigated by molecular dynamics. This distribution was strongly affected by electrostatic interactions with neighboring oxo and hydroxo groups. The effects of proton surface loading, simulated by emplacing two protons at different distances of separation, were diverse and generated several sets of O-H bond distributions. DFT calculations of a representative molecular cluster were also carried out to demonstrate the impact of these effects on the orientation of oxygen lone pairs in neighboring oxo groups. These effects should have strong repercussions on O-H stretching vibrations of metal oxide surfaces.h

  8. Asymmetric spectral broadening of modulated electrostatic ion-cyclotron waves

    SciTech Connect

    Koepke, M.E.; Alport, M.J.; Sheridan, T.E.; Amatucci, W.E.; Carroll, J.J. III

    1994-06-01

    Modulated, current-driven, electrostatic ion-cyclotron (CDEIC) waves are shown to exhibit amplitude and frequency modulation, spectral broadening, and time-averaged frequency pulling. The observed spectral broadening is asymmetric and sensitively dependent on the driving frequency. Qualitative features of the experimental data are reproduced by the forced van der Pol equation and are explainable using processes associated with driven self oscillations. These results may be relevant to ionospheric modification experiments involving the controlled modulation of the natural electrojet. 31 refs., 4 figs.

  9. Electrostatic plasma lens for focusing negatively charged particle beams

    SciTech Connect

    Goncharov, A. A.; Dobrovolskiy, A. M.; Dunets, S. M.; Litovko, I. V.; Gushenets, V. I.; Oks, E. M.

    2012-02-15

    We describe the current status of ongoing research and development of the electrostatic plasma lens for focusing and manipulating intense negatively charged particle beams, electrons, and negative ions. The physical principle of this kind of plasma lens is based on magnetic isolation electrons providing creation of a dynamical positive space charge cloud in shortly restricted volume propagating beam. Here, the new results of experimental investigations and computer simulations of wide-aperture, intense electron beam focusing by plasma lens with positive space charge cloud produced due to the cylindrical anode layer accelerator creating a positive ion stream towards an axis system is presented.

  10. Evaluation of Global Monsoon Precipitation Changes based on Five Reanalysis Datasets

    SciTech Connect

    Lin, Renping; Zhou, Tianjun; Qian, Yun

    2014-02-01

    With the motivation to identify whether or not a reasonably simulated atmospheric circulation would necessarily lead to a successful reproduction of monsoon precipitation, the performances of five sets of reanalysis data (NCEP2, ERA40, JRA25, ERA-Interim and MERRA) in reproducing the climatology, interannual variation and long-term trend of global monsoon (GM) precipitation are comprehensively evaluated. In order to better understand the variability and long-term trend of GM precipitation, we also examined the major components of water budget, including evaporation, water vapor convergence and the change in local water vapor storage, based on five reanalysis datasets. The results show that all five reanalysis data reasonably reproduce the climatology of GM precipitation. The ERA-Interim (NCEP2) shows the highest (lowest) skill among the five datasets. The observed GM precipitation shows an increasing tendency during 1979-2001 along with a strong interannual variability, which is reasonably reproduced by the five sets of reanalysis data. The observed increasing trend of GM precipitation is dominated by the contribution from the North African, North American and Australian monsoons. All five data fail in reproducing the increasing tendency of North African monsoon precipitation. The wind convergence term in water budget equation dominate the GM precipitation variation, indicating a consistency between the GM precipitation and the seasonal change of prevailing wind.

  11. Electrostatically tunable resonance frequency beam utilizing a stress-sensitive film

    DOEpatents

    Thundat, Thomas G.; Wachter, Eric A.; Davis, J. Kenneth

    2001-01-01

    Methods and apparatus for detecting particular frequencies of acoustic vibration utilize an electrostatically-tunable beam element having a stress-sensitive coating and means for providing electrostatic force to controllably deflect the beam element thereby changing its stiffness and its resonance frequency. It is then determined from the response of the electrostatically-tunable beam element to the acoustical vibration to which the beam is exposed whether or not a particular frequency or frequencies of acoustic vibration are detected.

  12. Food waste management using an electrostatic separator with corona discharge

    SciTech Connect

    Lai, Koonchun; Teh, Pehchiong; Lim, Sooking

    2015-05-15

    In Malaysia, municipal solid waste contains a high portion of organic matters, typically contributed by food waste. It is estimated that about 45% of the municipal waste are food waste, followed by the non-food waste such as plastics, metals, glass and others. Food waste, while being properly sorted and contamination free from non-food waste, can be reused (e.g. fertiliser) instead of being landfilled. Therefore, recycling of food waste is crucial not only from the view point of waste management, but also with respect to the reduction of resource losses and greenhouse gases emission. A new waste separation process involved food particles, non-food particles and electrostatic discharge was investigated in this study. The empirical results reveal that the corona electrostatic separation is an environmental-friendly way in recovering foods from municipal waste. The efficiency of the separator, under same operating conditions, varies with the particle size of the food and non-food particles. The highest efficiency of 82% is recorded for the particle sizes between 1.5 and 3.0 mm.

  13. Magnetometry of micro-magnets with electrostatically defined Hall bars

    SciTech Connect

    Lachance-Quirion, Dany; Camirand Lemyre, Julien; Bergeron, Laurent; Sarra-Bournet, Christian; Pioro-Ladrière, Michel

    2015-11-30

    Micro-magnets are key components for quantum information processing with individual spins, enabling arbitrary rotations and addressability. In this work, characterization of sub-micrometer sized CoFe ferromagnets is performed with Hall bars electrostatically defined in a two-dimensional electron gas. Due to the ballistic nature of electron transport in the cross junction of the Hall bar, anomalies such as the quenched Hall effect appear near zero external magnetic field, thus hindering the sensitivity of the magnetometer to small magnetic fields. However, it is shown that the sensitivity of the diffusive limit can be almost completely restored at low temperatures using a large current density in the Hall bar of about 10 A/m. Overcoming the size limitation of conventional etched Hall bars with electrostatic gating enables the measurement of magnetization curves of 440 nm wide micro-magnets with a signal-to-noise ratio above 10{sup 3}. Furthermore, the inhomogeneity of the stray magnetic field created by the micro-magnets is directly measured using the gate-voltage-dependent width of the sensitive area of the Hall bar.

  14. Electrostatic rogue-waves in relativistically degenerate plasmas

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2014-10-15

    In this paper, we investigate the modulational instability and the possibility of electrostatic rogue-wave propagations in a completely degenerate plasma with arbitrary degree of degeneracy, i.e., relativistically degenerate plasma, ranging from solid density to the astrophysical compact stars. The hydrodynamic approach along with the perturbation method is used to reduce the governing equations to the nonlinear Schrdinger equation from which the modulational instability, the growth rate of envelope excitations and the occurrence of rogue as well as super-rogue waves in the plasma, is evaluated. It is observed that the modulational instability in a fully degenerate plasma can be quite sensitive to the plasma number-density and the wavenumber of envelop excitations. It is further revealed that the relativistically degeneracy plasmas (R{sub 0}?>?1) are almost always modulationally unstable. It is found, however, that the highly energetic sharply localized electrostatic rogue as well as super-rogue waves can exist in the astrophysical compact objects like white dwarfs and neutron star crusts. The later may provide a link to understand many physical processes in such stars and it may lead us to the origin of the random-localized intense short gamma-ray bursts, which appear from nowhere and disappear without a trace quite similar to oceanic rogue structures.

  15. Two-stage precipitation of neptunium (IV) oxalate

    SciTech Connect

    Luerkens, D. W.

    1983-07-01

    Neptunium (IV) oxalate was precipitated using a two-stage precipitation system. A series of precipitation experiments was used to identify the significant process variables affecting precipitate characteristics. Process variables tested were input concentrations, solubility conditions in the first stage precipitator, precipitation temperatures, and residence time in the first stage precipitator. A procedure has been demonstrated that produces neptunium (IV) oxalate particles that filter well and readily calcine to the oxide.

  16. Very compact, high-stability electrostatic actuator featuring contact-free self-limiting displacement

    DOEpatents

    Rodgers, M. Steven (Albuquerque, NM); Miller, Samuel L. (Albuquerque, NM)

    2003-01-01

    A compact electrostatic actuator is disclosed for microelectromechanical (MEM) applications. The actuator utilizes stationary and moveable electrodes, with the stationary electrodes being formed on a substrate and the moveable electrodes being supported above the substrate on a frame. The frame provides a rigid structure which allows the electrostatic actuator to be operated at high voltages (up to 190 Volts) to provide a relatively large actuation force compared to conventional electrostatic comb actuators which are much larger in size. For operation at its maximum displacement, the electrostatic actuator is relatively insensitive to the exact value of the applied voltage and provides a self-limiting displacement.

  17. A particle-in-cell approach to obliquely propagating electrostatic waves

    SciTech Connect

    Koen, Etienne J.; Collier, Andrew B.; Maharaj, Shimul K.

    2014-09-15

    The electron-acoustic and beam-driven modes associated with electron beams have previously been identified and studied numerically. These modes are associated with Broadband Electrostatic Noise found in the Earth's auroral and polar cusp regions. Using a 1-D spatial Particle-in-Cell simulation, the electron-acoustic instability is studied for a magnetized plasma, which includes cool ions, cool electrons and a hot, drifting electron beam. Both the weakly and strongly magnetized regimes with varying wave propagation angle, θ, with respect to the magnetic field are studied. The amplitude and frequency of the electron-acoustic mode are found to decrease with increasing θ. The amplitude of the electron-acoustic mode is found to significantly grow at intermediate wavenumber ranges. It reaches a saturation level at the point, where a plateau forms in the hot electron velocity distribution after which the amplitude of the electron-acoustic mode decays.

  18. Head-on collisions of electrostatic solitons in multi-ion plasmas

    SciTech Connect

    Verheest, Frank; Hellberg, Manfred A.; Hereman, Willy A.

    2012-09-15

    Head-on collisions between two electrostatic solitons are dealt with by the Poincare-Lighthill-Kuo method of strained coordinates, for a plasma composed of a number of cold (positive and negative) ion species and Boltzmann electrons. The nonlinear evolution equations for both solitons and their phase shift due to the collision, resulting in time delays, are established. A Korteweg-de Vries description is the generic conclusion, except when the plasma composition is special enough to replace the quadratic by a cubic nonlinearity in the evolution equations, with concomitant repercussions on the phase shifts. Applications include different two-ion plasmas, showing positive or negative polarity solitons in the generic case. At critical composition, a combination of a positive and a negative polarity soliton is possible.

  19. Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part I: Structure determination of the precipitates in AlZnMg(Cu) alloys

    SciTech Connect

    Liu, J.Z.; Chen, J.H.; Yuan, D.W.; Wu, C.L.; Zhu, J.; Cheng, Z.Y.

    2015-01-15

    Although they are among the most important precipitation-hardened materials for industry applications, the high-strength AlZnMg(Cu) alloys have thus far not yet been understood adequately about their underlying precipitation scenarios in relation with the properties. This is partly due to the fact that the structures of a number of different precipitates involved in electron microscopy in association with quantitative image simulations have to be employed; a systematic study of these hardening precipitates in different alloys is also necessary. In Part I of the present study, it is shown that there are five types of structurally different precipitates including the equilibrium η-phase precipitate. Using two state-of-the-art atomic-resolution imaging techniques in electron microscopy in association with quantitative image simulations, we have determined and clarified all the unknown precipitate structures. It is demonstrated that atomic-resolution imaging can directly suggest approximate structure models, whereas quantitative image analysis can refine the structure details that are much smaller than the resolution of the microscope. This combination is crucially important for solving the difficult structure problems of the strengthening precipitates in AlZnMg(Cu) alloys. - Highlights: Part I: • We determine and verify all the key precipitate structures in AlMgZn(Cu) alloys. • We employ aberration-corrected scanning transmission electron microscopy (STEM). • We use aberration-corrected high-resolution TEM (HRTEM) for the investigations. • We obtain atomic-resolution images of the precipitates and model their structures. • We refine all precipitate structures with quantitative image simulation analysis. Part II: • The hardening precipitates in AlZnMg alloys shall be classified into two groups. • Two precipitation scenarios coexist in the alloys. • The precipitation behavior of such an alloy depends on the alloy's composition. • Very detailed phase

  20. Critical analysis of atmospheric turbidity and precipitable water at five Canadian stations

    SciTech Connect

    Garrison, J.; Gueymard, C.

    1997-12-31

    Global and diffuse radiation and surface meteorological measurements at Edmonton, Montreal, Port Hardy, Toronto and Winnipeg for the years 1977--1984 are analyzed to yield estimates of atmospheric precipitable water and turbidity. Three methods of estimating the precipitable water and two methods of estimating the turbidity are used and compared. Measurements of pyranometer response as a function of zenith angle are used to correct the global radiation measurements. Turbidity is corrected for the effect of circumsolar radiation included in the direct radiation obtained from the global and diffuse radiation measurements. A comparison with earlier precipitable water and turbidity results is included.

  1. Electrostatic attraction of charged drops of water inside dropwise cluster

    SciTech Connect

    Shavlov, A. V.; Tyumen State Oil and Gas University, 38, Volodarskogo Str., Tyumen 625000 ; Dzhumandzhi, V. A.

    2013-08-15

    Based on the analytical solution of the Poisson-Boltzmann equation, we demonstrate that inside the electrically neutral system of charges an electrostatic attraction can occur between the like-charged particles, where charge Z ? 1 (in terms of elementary charge) and radius R > 0, whereas according to the literature, only repulsion is possible inside non-electrically neutral systems. We calculate the free energy of the charged particles of water inside a cluster and demonstrate that its minimum is when the interdroplet distance equals several Debye radii defined based on the light plasma component. The deepest minimum depth is in a cluster with close spatial packing of drops by type, in a face-centered cubic lattice, if almost all the electric charge of one sign is concentrated on the drops and that of the other sign is concentrated on the light compensation carriers of charge, where the charge moved by equilibrium carriers is rather small.

  2. Auroral electrostatic solitons and supersolitons in a magnetized nonthermal plasma

    SciTech Connect

    Rufai, O. R.

    2015-05-15

    Exploiting the spacecraft measurements in the auroral region, finite amplitude nonlinear low frequency electrostatic solitons and supersolitons in a magnetized plasma consisting of cold ions fluid, Boltzmann protons, and nonthermal hot electrons are studied by applying a pseudo-potential technique. The localized solution of the nonlinear structures is obtained through the charge neutrality condition. Further numerical investigation shows the existence of supersoliton solutions at supersonic Mach numbers regime. The amplitude of ion-acoustic structures decreased with an increase in nonthermal electrons and ion density ratio. For the plasma parameters relevant to the auroral zone of the Earth's magnetosphere, the electric field amplitude of supersolitons is found to be about 9 mV/m, which is in agreement with satellite observations.

  3. On the nature of kinetic electrostatic electron nonlinear (KEEN) waves

    SciTech Connect

    Dodin, I. Y.; Fisch, N. J.

    2014-03-15

    An analytical theory is proposed for the kinetic electrostatic electron nonlinear (KEEN) waves originally found in simulations by Afeyan et al. [arXiv:1210.8105]. We suggest that KEEN waves represent saturated states of the negative mass instability (NMI) reported recently by Dodin et al. [Phys. Rev. Lett. 110, 215006 (2013)]. Due to the NMI, trapped electrons form macroparticles that produce field oscillations at harmonics of the bounce frequency. At large enough amplitudes, these harmonics can phase-lock to the main wave and form stable nonlinear dissipationless structures that are nonstationary but otherwise similar to Bernstein-Greene-Kruskal modes. The theory explains why the formation of KEEN modes is sensitive to the excitation scenario and yields estimates that agree with the numerical results of Afeyan et al. A new type of KEEN wave may be possible at even larger amplitudes of the driving field than those used in simulations so far.

  4. IMPROVED PROCESS OF PLUTONIUM CARRIER PRECIPITATION

    DOEpatents

    Faris, B.F.

    1959-06-30

    This patent relates to an improvement in the bismuth phosphate process for separating and recovering plutonium from neutron irradiated uranium, resulting in improved decontamination even without the use of scavenging precipitates in the by-product precipitation step and subsequently more complete recovery of the plutonium in the product precipitation step. This improvement is achieved by addition of fluomolybdic acid, or a water soluble fluomolybdate, such as the ammonium, sodium, or potassium salt thereof, to the aqueous nitric acid solution containing tetravalent plutonium ions and contaminating fission products, so as to establish a fluomolybdate ion concentration of about 0.05 M. The solution is then treated to form the bismuth phosphate plutonium carrying precipitate.

  5. Electrostatically focused addressable field emission array chips (AFEA's) for high-speed massively parallel maskless digital E-beam direct write lithography and scanning electron microscopy

    DOEpatents

    Thomas, Clarence E.; Baylor, Larry R.; Voelkl, Edgar; Simpson, Michael L.; Paulus, Michael J.; Lowndes, Douglas H.; Whealton, John H.; Whitson, John C.; Wilgen, John B.

    2002-12-24

    Systems and methods are described for addressable field emission array (AFEA) chips. A method of operating an addressable field-emission array, includes: generating a plurality of electron beams from a pluralitly of emitters that compose the addressable field-emission array; and focusing at least one of the plurality of electron beams with an on-chip electrostatic focusing stack. The systems and methods provide advantages including the avoidance of space-charge blow-up.

  6. ARM Data Help Improve Precipitation in Global Climate Models...

    Office of Science (SC)

    ARM Data Help Improve Precipitation in Global Climate Models Biological and Environmental ... ARM Data Help Improve Precipitation in Global Climate Models Cloud, radiation, and drizzle ...

  7. Parametric Sensitivity Analysis for the Asian Summer Monsoon Precipitation Simulation in the Beijing Climate Center AGCM Version 2.1

    SciTech Connect

    Yang, Ben; Zhang, Yaocun; Qian, Yun; Wu, Tongwen; Huang, Anning; Fang, Yongjie

    2015-07-15

    In this study, we apply an efficient sampling approach and conduct a large number of simulations to explore the sensitivity of the simulated Asian summer monsoon (ASM) precipitation, including the climatological state and interannual variability, to eight parameters related to the cloud and precipitation processes in the Beijing Climate Center AGCM version 2.1 (BCC_AGCM2.1). Our results show that BCC_AGCM2.1 has large biases in simulating the ASM precipitation. The precipitation efficiency and evaporation coefficient for deep convection are the most sensitive parameters in simulating the ASM precipitation. With optimal parameter values, the simulated precipitation climatology could be remarkably improved, e.g. increased precipitation over the equator Indian Ocean, suppressed precipitation over the Philippine Sea, and more realistic Meiyu distribution over Eastern China. The ASM precipitation interannual variability is further analyzed, with a focus on the ENSO impacts. It shows the simulations with better ASM precipitation climatology can also produce more realistic precipitation anomalies during El Niño decaying summer. In the low-skill experiments for precipitation climatology, the ENSO-induced precipitation anomalies are most significant over continents (vs. over ocean in observation) in the South Asian monsoon region. More realistic results are derived from the higher-skill experiments with stronger anomalies over the Indian Ocean and weaker anomalies over India and the western Pacific, favoring more evident easterly anomalies forced by the tropical Indian Ocean warming and stronger Indian Ocean-western Pacific tele-connection as observed. Our model results reveal a strong connection between the simulated ASM precipitation climatological state and interannual variability in BCC_AGCM2.1 when key parameters are perturbed.

  8. Mechanisms of gas precipitation in plasma-exposed tungsten

    SciTech Connect

    R. D. Kolasinski; D. F. Cowgill; D. C. Donovan; M. Shimada

    2012-05-01

    Precipitation in subsurface bubbles is a key process that governs how hydrogen isotopes migrate through and become trapped within plasma-exposed tungsten. We describe a continuum-scale model of hydrogen diffusion in plasma-exposed materials that includes the effects of precipitation. The model can account for bubble expansion via dislocation loop punching, using an accurate equation of state to determine the internal pressure. This information is used to predict amount of hydrogen trapped by bubbles, as well as the conditions where the bubbles become saturated. In an effort to validate the underlying assumptions, we compare our results with published positron annihilation and thermal desorption spectroscopy data, as well as our own measurements using the tritium plasma experiment (TPE).

  9. Late Quaternary glacier sensitivity to temperature and precipitation distribution in the Southern Alps of New Zealand

    SciTech Connect

    Ann V. Rowan; Simon H. Brocklehurst; David M. Schultz; Mitchell A. Plummer; Leif S. Anderson; Neil F. Glasser

    2014-05-01

    Glaciers respond to climate variations and leave geomorphic evidence that represents an important terrestrial paleoclimate record. However, the accuracy of paleoclimate reconstructions from glacial geology is limited by the challenge of representing mountain meteorology in numerical models. Precipitation is usually treated in a simple manner and yet represents difficult-to-characterize variables such as amount, distribution, and phase. Furthermore, precipitation distributions during a glacial probably differed from present-day interglacial patterns. We applied two models to investigate glacier sensitivity to temperature and precipitation in the eastern Southern Alps of New Zealand. A 2-D model was used to quantify variations in the length of the reconstructed glaciers resulting from plausible precipitation distributions compared to variations in length resulting from change in mean annual air temperature and precipitation amount. A 1-D model was used to quantify variations in length resulting from interannual climate variability. Assuming that present-day interglacial values represent precipitation distributions during the last glacial, a range of plausible present-day precipitation distributions resulted in uncertainty in the Last Glacial Maximum length of the Pukaki Glacier of 17.1?km (24%) and the Rakaia Glacier of 9.3?km (25%), corresponding to a 0.5°C difference in temperature. Smaller changes in glacier length resulted from a 50% decrease in precipitation amount from present-day values (-14% and -18%) and from a 50% increase in precipitation amount (5% and 9%). Our results demonstrate that precipitation distribution can produce considerable variation in simulated glacier extents and that reconstructions of paleoglaciers should include this uncertainty.

  10. Geochemical and isotopic results for groundwater, drainage waters, snowmelt, permafrost, precipitation in Barrow, Alaska (USA) 2012-2013

    DOE Data Explorer

    Wilson, Cathy; Newman, Brent; Heikoop, Jeff

    2012-07-18

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  11. Geochemical and isotopic results for groundwater, drainage waters, snowmelt, permafrost, precipitation in Barrow, Alaska (USA) 2012-2013

    DOE Data Explorer

    Wilson, Cathy; Newman, Brent; Heikoop, Jeff

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  12. Methods of producing adsorption media including a metal oxide

    SciTech Connect

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  13. Precipitation of metal nitrides from chloride melts

    SciTech Connect

    Slater, S.A.; Miller, W.E.; Willit, J.L.

    1996-12-31

    Precipitation of actinides, lanthanides, and fission products as nitrides from molten chloride melts is being investigated for use as a final cleanup step in treating radioactive salt wastes generated by electrometallurgical processing of spent nuclear fuel. The radioactive components (eg, fission products) need to be removed to reduce the volume of high-level waste that requires disposal. To extract the fission products from the salt, a nitride precipitation process is being developed. The salt waste is first contacted with a molten metal; after equilibrium is reached, a nitride is added to the metal phase. The insoluble nitrides can be recovered and converted to a borosilicate glass after air oxidation. For a bench-scale experimental setup, a crucible was designed to contact the salt and metal phases. Solubility tests were performed with candidate nitrides and metal nitrides for which there are no solubility data. Experiments were performed to assess feasibility of precipitation of metal nitrides from chloride melts.

  14. Evaluation of precipitates used in strainer head loss testing : Part III. Long-term aluminum hydroxide precipitation tests in borated water.

    SciTech Connect

    Bahn, C. B.; Kasza, K. E.; Shack, W. J.; Natesan, K.; Klein, P.

    2011-05-01

    Long-term aluminum (Al) hydroxide precipitation tests were conducted in slightly alkaline solutions containing 2500 ppm boron. The solution temperature was cycled to obtain a temperature history more representative of emergency core cooling system temperatures after a loss-of-coolant accident. The observed Al precipitation boundary was close to predicted results for amorphous precipitates, which are higher than the solubility expected for crystalline forms. Bench-scale and loop head loss test results under various conditions were successfully combined into single map in a temperature - 'pH + p[Al]{sub T}' domain, which yielded two bounding lines for Al hydroxide solubility in borated alkaline water that depend on whether or not loop head loss tests with Al alloy coupons are included. Precipitates were observed to form either as fine, cloudy suspensions, which showed very little tendency to settle, or as flocculated precipitates. The flocculation tendency of the precipitates can be qualitatively explained by a colloid stability theory or a phase diagram for protein solutions.

  15. Electrostatic turbulence intermittence driven by biasing in Texas Helimak

    SciTech Connect

    Toufen, D. L.; Pereira, F. A. C.; Guimarães-Filho, Z. O.; Caldas, I. L.; Gentle, K. W.

    2014-12-15

    We investigate changes in the intermittent sequence of bursts in the electrostatic turbulence due to imposed positive bias voltage applied to control the plasma radial electric field in Texas Helimak [K. W. Gentle and H. He, Plasma Sci. Technol. 10, 284 (2008)]—a toroidal plasma device with a one-dimensional equilibrium, magnetic curvature, and shear. We identify the burst characteristics by analyzing ion saturation current fluctuations collected in a large set of Langmuir probes. The number of bursts increase with positive biasing, giving rise to a long tailed skewed turbulence probability distribution function. The burst shape does not change much with the applied bias voltage, while their vertical velocity increases monotonically. For high values of bias voltage, the bursts propagate mainly in the vertical direction which is perpendicular to the radial density gradient and the toroidal magnetic field. Moreover, in contrast with the bursts in tokamaks, the burst velocity agrees with the phase velocity of the overall turbulence in both vertical and radial directions. For a fixed bias voltage, the time interval between bursts and their amplitudes follows exponential distributions. Altogether, these burst characteristics indicate that their production can be modelled by a stochastic process.

  16. Electrostatic coalescence system with independent AC and DC hydrophilic electrodes

    DOEpatents

    Hovarongkura, A. David; Henry, Jr., Joseph D.

    1981-01-01

    An improved electrostatic coalescence system is provided in which independent AC and DC hydrophilic electrodes are employed to provide more complete dehydration of an oil emulsion. The AC field is produced between an AC electrode array and the water-oil interface wherein the AC electrode array is positioned parallel to the interface which acts as a grounded electrode. The emulsion is introduced into the AC field in an evenly distributed manner at the interface. The AC field promotes drop-drop and drop-interface coalescence of the water phase in the entering emulsion. The continuous oil phase passes upward through the perforated AC electrode array and enters a strong DC field produced between closely spaced DC electrodes in which small dispersed droplets of water entrained in the continuous phase are removed primarily by collection at hydrophilic DC electrodes. Large droplets of water collected by the electrodes migrate downward through the AC electrode array to the interface. All phase separation mechanisms are utilized to accomplish more complete phase separation.

  17. Eulerian simulations of collisional effects on electrostatic plasma waves

    SciTech Connect

    Pezzi, Oreste; Valentini, Francesco; Perrone, Denise; Veltri, Pierluigi [Dipartimento di Fisica and CNISM, Universit della Calabria, 87036 Rende (CS) (Italy)] [Dipartimento di Fisica and CNISM, Universit della Calabria, 87036 Rende (CS) (Italy)

    2013-09-15

    The problem of collisions in a plasma is a wide subject with a huge historical literature. In fact, the description of realistic plasmas is a tough problem to attack, both from the theoretical and the numerical point of view. In this paper, a Eulerian time-splitting algorithm for the study of the propagation of electrostatic waves in collisional plasmas is presented. Collisions are modeled through one-dimensional operators of the Fokker-Planck type, both in linear and nonlinear forms. The accuracy of the numerical code is discussed by comparing the numerical results to the analytical predictions obtained in some limit cases when trying to evaluate the effects of collisions in the phenomenon of wave plasma echo and collisional dissipation of Bernstein-Greene-Kruskal waves. Particular attention is devoted to the study of the nonlinear Dougherty collisional operator, recently used to describe the collisional dissipation of electron plasma waves in a pure electron plasma column [M. W. Anderson and T. M. O'Neil, Phys. Plasmas 14, 112110 (2007)]. Finally, for the study of collisional plasmas, a recipe to set the simulation parameters in order to prevent the filamentation problem can be provided, by exploiting the property of velocity diffusion operators to smooth out small velocity scales.

  18. Nonlinear parallel momentum transport in strong electrostatic turbulence

    SciTech Connect

    Wang, Lu Wen, Tiliang; Diamond, P. H.

    2015-05-15

    Most existing theoretical studies of momentum transport focus on calculating the Reynolds stress based on quasilinear theory, without considering the nonlinear momentum flux-〈v{sup ~}{sub r}n{sup ~}u{sup ~}{sub ∥}〉. However, a recent experiment on TORPEX found that the nonlinear toroidal momentum flux induced by blobs makes a significant contribution as compared to the Reynolds stress [Labit et al., Phys. Plasmas 18, 032308 (2011)]. In this work, the nonlinear parallel momentum flux in strong electrostatic turbulence is calculated by using a three dimensional Hasegawa-Mima equation, which is relevant for tokamak edge turbulence. It is shown that the nonlinear diffusivity is smaller than the quasilinear diffusivity from Reynolds stress. However, the leading order nonlinear residual stress can be comparable to the quasilinear residual stress, and so may be important to intrinsic rotation in tokamak edge plasmas. A key difference from the quasilinear residual stress is that parallel fluctuation spectrum asymmetry is not required for nonlinear residual stress.

  19. Electrostatic solitary waves in dusty pair-ion plasmas

    SciTech Connect

    Misra, A. P.; Adhikary, N. C.

    2013-10-15

    The propagation of electrostatic waves in an unmagnetized collisionless pair-ion plasma with immobile positively charged dusts is studied for both large- and small-amplitude perturbations. Using a two-fluid model for pair-ions, it is shown that there appear two linear ion modes, namely the “fast” and “slow” waves in dusty pair-ion plasmas. The properties of these wave modes are studied with different mass (m) and temperature (T) ratios of negative to positive ions, as well as the effects of immobile charged dusts (δ). For large-amplitude waves, the pseudopotential approach is performed, whereas the standard reductive perturbation technique is used to study the small-amplitude Korteweg-de Vries (KdV) solitons. The profiles of the pseudopotential, the large amplitude solitons as well as the dynamical evolution of KdV solitons, are numerically studied with the system parameters as above. It is found that the pair-ion plasmas with positively charged dusts support the propagation of solitary waves (SWs) with only the negative potential. The results may be useful for the excitation of SWs in laboratory dusty pair-ion plasmas, electron-free industrial plasmas as well as for observation in space plasmas where electron density is negligibly small compared to that of negative ions.

  20. Electrostatic steering and beamlet aiming in large neutral beam injectors

    SciTech Connect

    Veltri, P. Chitarin, G.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P.; Cavenago, M.

    2015-04-08

    Neutral beam injection is the main method for plasma heating in magnetic confinement fusion devices. In high energy injector (E>100 keV/amu), neutrals are obtained with reasonable efficiency by conversion of negative ions (H- or D-) via electron detachment reactions. In the case of ITER injectors, which shall operate at 1 MeV, a total ion current of ∼ 40 A is required to satisfy the heating power demand. Gridded electrodes are therefore used in the accelerator, so that 1280 negative ion beamlets are accelerated together. A carefully designed aiming system is required to control the beamlet trajectories, and to deliver their power on a focal point located several meters away from the beam source. In nowadays injectors, the aiming is typically obtained by aperture offset technique or by grid shaping. This paper discuss an alternative concept of beamlets aiming, based on an electrostatic ”steerer” to be placed at the end of the accelerator. A feasibility study of this component is also presented, and its main advantages and drawbacks with respect to other methods are discussed.

  1. Hohenberg-Kohn theorems in electrostatic and uniform magnetostatic fields

    SciTech Connect

    Pan, Xiao-Yin; Sahni, Viraht

    2015-11-07

    The Hohenberg-Kohn (HK) theorems of bijectivity between the external scalar potential and the gauge invariant nondegenerate ground state density, and the consequent Euler variational principle for the density, are proved for arbitrary electrostatic field and the constraint of fixed electron number. The HK theorems are generalized for spinless electrons to the added presence of an external uniform magnetostatic field by introducing the new constraint of fixed canonical orbital angular momentum. Thereby, a bijective relationship between the external scalar and vector potentials, and the gauge invariant nondegenerate ground state density and physical current density, is proved. A corresponding Euler variational principle in terms of these densities is also developed. These theorems are further generalized to electrons with spin by imposing the added constraint of fixed canonical orbital and spin angular momenta. The proofs differ from the original HK proof and explicitly account for the many-to-one relationship between the potentials and the nondegenerate ground state wave function. A Percus-Levy-Lieb constrained-search proof expanding the domain of validity to N-representable functions, and to degenerate states, again for fixed electron number and angular momentum, is also provided.

  2. Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part II: Fine precipitation scenarios in AlZnMg(Cu) alloys

    SciTech Connect

    Liu, J.Z.; Chen, J.H.; Liu, Z.R.; Wu, C.L.

    2015-01-15

    Although they are among the most important precipitation-hardened materials for industry applications, the high-strength AlZnMg(Cu) alloys have thus far not yet been understood adequately about their underlying precipitation scenarios in relation with the properties. This is partly due to the fact that the structures of a number of different precipitates involved in the alloys are unknown, and partly due to the complexity that the precipitation behaviors of the alloys may be closely related to the alloy's composition. In Part I of the present study, we have determined all the unknown precipitate structures in the alloys. Here in Part II, using atomic-resolution electron microscopy in association with the first principles energy calculations, we further studied and correlated the phase/structure transformation/evolution among these hardening precipitates in relation with the alloy's composition. It is shown that there are actually two coexisting classes of hardening precipitates in these alloys: the first class includes the η′-precipitates and their early-stage Guinier–Preston (GP-η′) zones; the second class includes the precursors of the equilibrium η-phase (referred to η{sub p}, or η-precursor) and their early-stage Guinier–Preston (GP-η{sub p}) zones. The two coexisting classes of precipitates correspond to two precipitation scenarios. - Highlights: • We determine and verify all the key precipitate structures in AlMgZn(Cu) alloys. • We employ aberration-corrected scanning transmission electron microscopy (STEM). • We use aberration-corrected high-resolution TEM (HRTEM) for the investigations. • We obtain atomic-resolution images of the precipitates and model their structures. • We refine all precipitate structures with quantitative image simulation analysis. • The hardening precipitates in AlZnMg alloys shall be classified into two groups. • Two precipitation scenarios coexist in the alloys. • The precipitation behavior of such an

  3. The polarized Debye sheath effect on Kadomtsev-Petviashvili electrostatic structures in strongly coupled dusty plasma

    SciTech Connect

    Shahmansouri, M.; Alinejad, H.

    2015-04-15

    We give a theoretical investigation on the dynamics of nonlinear electrostatic waves in a strongly coupled dusty plasma with strong electrostatic interaction between dust grains in the presence of the polarization force (i.e., the force due to the polarized Debye sheath). Adopting a reductive perturbation method, we derived a three-dimensional Kadomtsev-Petviashvili equation that describes the evolution of weakly nonlinear electrostatic localized waves. The energy integral equation is used to study the existence domains of the localized structures. The analysis provides the localized structure existence region, in terms of the effects of strong interaction between the dust particles and polarization force.

  4. Precipitation in pores: A geochemical frontier

    SciTech Connect

    Stack, Andrew G.

    2015-07-29

    This article's purpose is to review some of the recent research in which geochemists have examined precipitation of solid phases in porous media, particularly in pores a few nanometers in diameter (nanopores). While this is a “review,” it is actually more forward-looking in that the list of things about this phenomenon that we do not know or cannot control at this time is likely longer than what we do know and can control. For example, there are three directly contradictory theories on how to predict how precipitation proceeds in a medium of varying pore size, as will be discussed below. The confusion on this subject likely stems from the complexity of the phenomenon itself: One can easily clog a porous medium by inducing a rapid, homogeneous precipitation directly from solution, or have limited precipitation occur that does not affect permeability or even porosity substantially. It is more difficult to engineer mineral precipitation in order to obtain a specific outcome, such as filling all available pore space over a targeted area for the purposes of contaminant sequestration. However, breakthrough discoveries could occur in the next five to ten years that enhance our ability to predict robustly and finely control precipitation in porous media by understanding how porosity and permeability evolve in response to system perturbations. These discoveries will likely stem (at least in part) from advances in our ability to 1) perform and interpret X-ray/neutron scattering experiments that reveal the extent of precipitation and its locales within porous media (Anovitz and Cole 2015, this volume), and 2) utilize increasingly powerful simulations to test concepts and models about the evolution of porosity and permeability as precipitation occurs (Steefel et al. 2015, this volume). A further important technique to isolate specific phenomena and understand reactivity is also microfluidics cell experiments that allow specific control of flow paths and fluid velocities

  5. Precipitation in pores: A geochemical frontier

    DOE PAGES [OSTI]

    Stack, Andrew G.

    2015-07-29

    This article's purpose is to review some of the recent research in which geochemists have examined precipitation of solid phases in porous media, particularly in pores a few nanometers in diameter (nanopores). While this is a “review,” it is actually more forward-looking in that the list of things about this phenomenon that we do not know or cannot control at this time is likely longer than what we do know and can control. For example, there are three directly contradictory theories on how to predict how precipitation proceeds in a medium of varying pore size, as will be discussed below.more » The confusion on this subject likely stems from the complexity of the phenomenon itself: One can easily clog a porous medium by inducing a rapid, homogeneous precipitation directly from solution, or have limited precipitation occur that does not affect permeability or even porosity substantially. It is more difficult to engineer mineral precipitation in order to obtain a specific outcome, such as filling all available pore space over a targeted area for the purposes of contaminant sequestration. However, breakthrough discoveries could occur in the next five to ten years that enhance our ability to predict robustly and finely control precipitation in porous media by understanding how porosity and permeability evolve in response to system perturbations. These discoveries will likely stem (at least in part) from advances in our ability to 1) perform and interpret X-ray/neutron scattering experiments that reveal the extent of precipitation and its locales within porous media (Anovitz and Cole 2015, this volume), and 2) utilize increasingly powerful simulations to test concepts and models about the evolution of porosity and permeability as precipitation occurs (Steefel et al. 2015, this volume). A further important technique to isolate specific phenomena and understand reactivity is also microfluidics cell experiments that allow specific control of flow paths and fluid

  6. HLW flowsheet material balance for DWPF rad operation with Tank 51 sludge and ITP Cycle 1 precipitate

    SciTech Connect

    Choi, A.S.

    1995-04-19

    This document presents the details of the Savannah River Plant Flowsheet for the Rad Operation with Tank Sludge and ITP Cycle 1 Precipitate. Topics discussed include: material balance; radiolysis chemistry of tank precipitates; algorithm for ESP washing; chemistry of hydrogen and ammonia generation in CPC; batch sizes for processing feed; and total throughput of a streams during one cycle of operation.

  7. Integrated Precipitation and Hydrology Experiment (IPHEx)/Orographic

    Office of Scientific and Technical Information (OSTI)

    Precipitation Processes Study Field Campaign Report (Technical Report) | SciTech Connect Integrated Precipitation and Hydrology Experiment (IPHEx)/Orographic Precipitation Processes Study Field Campaign Report Citation Details In-Document Search Title: Integrated Precipitation and Hydrology Experiment (IPHEx)/Orographic Precipitation Processes Study Field Campaign Report Three Microwave Radiometers (two 3-channel and one 2-channel) were deployed in the Southern Appalachian Mountains in

  8. G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics

    DOE PAGES [OSTI]

    Collins, Liam; Belianinov, Alex; Proksch, Roger; Zuo, Tingting; Zhang, Yong; Liaw, Peter K.; Kalinin, Sergei V.; Jesse, Stephen

    2016-05-09

    We develop a full information capture approach for Magnetic Force Microscopy (MFM), referred to as generalized mode (G-Mode) MFM. G-Mode MFM acquires and stores the full data stream from the photodetector at sampling rates approaching the intrinsic photodiode limit. The data can be subsequently compressed, denoised, and analyzed, without information loss. Also, 3 G-Mode MFM is implemented and compared to traditional heterodyne based MFM on model systems including domain structures in ferromagnetic Yttrium Iron Garnet (YIG) and electronically and magnetically inhomogeneous high entropy alloy, CoFeMnNiSn. We investigate the use of information theory to mine the G-Mode MFM data and demonstratemore » its usefulness for extracting information which may be hidden in traditional MFM modes, including signatures of nonlinearities and mode coupling phenomena. Finally we demonstrate detection and separation of magnetic and electrostatic tip-sample interactions from a single G-Mode image, by analyzing the entire frequency response of the cantilever. G-Mode MFM is immediately implementable on any AFM platform and as such is expected to be a useful technique for probing spatiotemporal cantilever dynamics and mapping material properties as well as their mutual interactions.« less

  9. Superconductor precursor mixtures made by precipitation method

    DOEpatents

    Bunker, Bruce C.; Lamppa, Diana L.; Voigt, James A.

    1989-01-01

    Method and apparatus for preparing highly pure homogeneous precursor powder mixtures for metal oxide superconductive ceramics. The mixes are prepared by instantaneous precipitation from stoichiometric solutions of metal salts such as nitrates at controlled pH's within the 9 to 12 range, by addition of solutions of non-complexing pyrolyzable cations, such as alkyammonium and carbonate ions.

  10. Finite-Element Modeling of Electrostatic Sensors for the Flow Measurement of Particles in Pneumatic Pipelines

    SciTech Connect

    Krabicka, J.; Yan, Y.

    2009-08-15

    Electrostatic sensors are used in certain industries for the flow measurement of pneumatically conveyed solids. However, despite various advances that have been made in recent years, relatively little information is known about the exact nature of the electrostatic charge induced onto the sensor electrode due to moving particles, which is dependent on electrode geometry, particle distribution, and particle velocity. This paper presents a novel approach to the study of the charge induced onto electrostatic sensors based on fitting a Lorentzian curve to the results of a finite-element model of the electrostatic sensor and pipeline. The modeling method is validated by comparing the modeling results of a nonintrusive circular electrode with an established analytical solution. The modeling results are used for in-depth analysis and informed design of a particular sensor configuration.

  11. Electrostatic microvalves utilizing conductive nanoparticles for improved speed, lower power, and higher force actuation.

    SciTech Connect

    Ten Eyck, Gregory A.; Branson, Eric D.; Kenis, Paul J. A.; Desai, Amit; Schudel, Ben; Givler, Richard C.; Tice, Josh; Collord, Andrew; Apblett, Christopher Alan; Cook, Adam W.

    2009-09-01

    We have designed and built electrostatically actuated microvalves compatible with integration into a PDMS based microfluidic system. The key innovation for electrostatic actuation was the incorporation of carbon nanotubes into the PDMS valve membrane, allowing for electrostatic charging of the PDMS layer and subsequent discharging, while still allowing for significant distention of the valveseat for low voltage control of the system. Nanoparticles were applied to semi-cured PDMS using a stamp transfer method, and then cured fully to make the valve seats. DC actuation in air of these valves yielded operational voltages as low as 15V, by using a supporting structure above the valve seat that allowed sufficient restoring forces to be applied while not enhancing actuation forces to raise the valve actuation potential. Both actuate to open and actuate to close valves have been demonstrated, and integrated into a microfluidic platform, and demonstrated fluidic control using electrostatic valves.

  12. Electrostatic analyzer measurements of ionospheric thermal ion populations

    DOE PAGES [OSTI]

    Fernandes, P. A.; Lynch, K. A.

    2016-07-09

    Here, we define the observational parameter regime necessary for observing low-altitude ionospheric origins of high-latitude ion up ow/out ow. We present measurement challenges and identify a new analysis technique which mitigates these impediments. To probe the initiation of auroral ion up ow, it is necessary to examine the thermal ion population at 200{350 km, where typical thermal energies are tenths of eV. Interpretation of the thermal ion distribution function measurement requires removal of payload sheath and ram effects. We use a 3-D Maxwellian model to quantify how observed ionospheric parameters such as density, temperature, and flows affect in situ measurementsmore » of the thermal ion distribution function. We define the viable acceptance window of a typical top-hat electrostatic analyzer in this regime and show that the instrument's energy resolution prohibits it from directly observing the shape of the particle spectra. To extract detailed information about measured particle population, we define two intermediate parameters from the measured distribution function, then use a Maxwellian model to replicate possible measured parameters for comparison to the data. Liouville's theorem and the thin-sheath approximation allow us to couple the measured and modeled intermediate parameters such that measurements inside the sheath provide information about plasma out- side the sheath. We apply this technique to sounding rocket data to show that careful windowing of the data and Maxwellian models allows for extraction of the best choice of geophysical parameters. More widespread use of this analysis technique will help our community expand its observational database of the seed regions of ionospheric outflows.« less

  13. Development and application of LEESA (Low Energy Electrostatic Sensitivity Apparatus)

    SciTech Connect

    Carlson, R.S. ); Wood, R.L. )

    1990-01-01

    A precision Low Energy Electrostatic Sensitivity Apparatus (LEESA) was developed in the voltage range 0--3000 volts dc and was employed over a capacitance range of 25--50,000 pF on sensitive, very sensitive, and extremely sensitive pyrotechnic fuels and compositions. Zirconium powder, Zr/KClO{sub 4} pyrotechnic, titanium powder, Ti/KClO{sub 4} and TiH{sub x}/KClO{sub 4} pyrotechnics (x = 0.65, 1.65) and several other sensitive materials were evaluated. LEESA simulates casual human contact with potentially hazardous materials. In operation, a hand-held probe is applied to the sample to discharge the capacitance. As the probe approaches the sample, a spark jumps from the probe tip to the sample when the gap closes to the appropriate distance. This is analagous to a finger or a tool touching a sensitive material during which maneuver a spark jumps to the material. LEESA defines the probability of ignition over a voltage or energy range and is capable of thousands of trials on a test material in the span of a few hours. In addition to evaluating static sensitivity, the effect of electrode polarity, individual differences between operators, test method, humidity, sample size, particle size, capacitance, time constant RC, and voltage versus energy have been determined. The equipment is inexpensive and easy to build and use and is a low risk method because of the small quantities of sensitive material being tested at any one time. The accuracy and precision of the results surpasses that of methods currently in use. 7 refs., 11 figs., 1 tab.

  14. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, Jr., Holt; Harris, Ian D.; Ratka, John O.; Spiegelberg, William D.

    1994-01-01

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined.

  15. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, H. Jr.; Harris, I.D.; Ratka, J.O.; Spiegelberg, W.D.

    1994-06-28

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined. 5 figures.

  16. PLUVIUS: a generalized one-dimensional model of reactive pollutant behavior, including dry deposition, precipitation formation, and wet removal

    SciTech Connect

    Hales, J.M.

    1981-09-01

    The program is subdivided into basic modules, whose coordination within the code is presented in flow-chart form. Input and output variables are given in consistent units, and the program listings are documented at critical points. In addition, two example code executions are described, along with corresponding input and representative output. As a first step in code application the user should execute these examples on his own machine. Progressive modifications from these base cases will lead to the creation of working versions for user application in the most rapid and expedient manner. The high versatility of the code has precluded the comprehensive testing of all combinations of features.

  17. High-Power Electrostatic Discharges in PETN: Threshold and Scaling Experiments

    SciTech Connect

    Liou, W; McCarrick, J F; Hodgin, R L; Phillips, D F

    2010-03-05

    There is a considerable set of data establishing the safety of PETN-based detonators that are insulted by electrostatic discharge (ESD) from a human body. However, the subject of ESD safety has garnered renewed interest because of the sparse data on high-power, low-impedance discharges that result when the source is a metallic object such as a tool. Experiments on as-built components, using pin-to-cap fault circuits through PETN-based detonators, showed significant evidence of a power dependence but with a very broad energy threshold and some uncertainty in the breakdown path. We have performed a series of experiments using a well-defined arc discharge path and a well-characterized source that is capable of independent variation of energy and power. Studies include threshold variation with power, arc length, powder surface area, and surface vs. bulk discharge paths. We find that an energy threshold variation with power does not appear to exist in the tested range of fractions to tens of MW, and that there are many subtleties to proper energy and power bookkeeping. We also present some test results for PBX 9407.

  18. Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism

    SciTech Connect

    Ding, Fei; Xu, Wu; Graff, Gordon L.; Zhang, Jian; Sushko, Maria L.; Chen, Xilin; Shao, Yuyan; Engelhard, Mark H.; Nie, Zimin; Xiao, Jie; Liu, Xingjiang; Sushko, P. V.; Liu, Jun; Zhang, Jiguang

    2013-02-28

    Lithium metal batteries are called the “holy grail” of energy storage systems. However, lithium dendrite growth in these batteries has prevented their practical applications in the last 40 years. Here we show a novel mechanism which can fundamentally change the dendritic morphology of lithium deposition. A low concentration of the second cations (including ions of cesium, rubidium, potassium, and strontium) exhibits an effective reduction potential lower than the standard reduction potential of lithium ions when the chemical activities of these second cations are much lower than that of lithium ions. During lithium deposition, these second cations will form a self-healing electrostatic shield around the initial tip of lithium whenever it is formed. This shield will repel the incoming lithium ions and force them to deposit in the smoother region of the anode so a dendrite-free film is obtained. This mechanism is effective on dendrite prevention in both lithium metal and lithium ion batteries. They may also prevent dendrite growth in other metal batteries and have transformational impact on the smooth deposition in general electrodeposition processes.

  19. Electronic coupling calculations with transition charges, dipoles, and quadrupoles derived from electrostatic potential fitting

    SciTech Connect

    Fujimoto, Kazuhiro J.

    2014-12-07

    A transition charge, dipole, and quadrupole from electrostatic potential (TrESP-CDQ) method for electronic coupling calculations is proposed. The TrESP method is based on the classical description of electronic Coulomb interaction between transition densities for individual molecules. In the original TrESP method, only the transition charge interactions were considered as the electronic coupling. In the present study, the TrESP method is extended to include the contributions from the transition dipoles and quadrupoles as well as the transition charges. Hence, the self-consistent transition density is employed in the ESP fitting procedure. To check the accuracy of the present approach, several test calculations are performed to a helium dimer, a methane dimer, and an ethylene dimer. As a result, the TrESP-CDQ method gives a much improved description of the electronic coupling, compared with the original TrESP method. The calculated results also show that the self-consistent treatment to the transition densities contributes significantly to the accuracy of the electronic coupling calculations. Based on the successful description of the electronic coupling, the contributions to the electronic coupling are also analyzed. This analysis clearly shows a negligible contribution of the transition charge interaction to the electronic coupling. Hence, the distribution of the transition density is found to strongly influence the magnitudes of the transition charges, dipoles, and quadrupoles. The present approach is useful for analyzing and understanding the mechanism of excitation-energy transfer.

  20. Biologically produced acid precipitable polymeric lignin

    DOEpatents

    Crawford, Don L.; Pometto, III, Anthony L.

    1984-01-01

    A water soluble, acid precipitable polymeric degraded lignin (APPL), having a molecular weight of at least 12,000 daltons, and comprising, by percentage of total weight, at least three times the number of phenolic hydroxyl groups and carboxylic acid groups present in native lignin. The APPL may be modified by chemical oxidation and reduction to increase its phenolic hydroxyl content and reduce the number of its antioxidant inhibitory side chains, thereby improving antioxidant properties.

  1. Changes in Concurrent Precipitation and Temperature Extremes

    DOE PAGES [OSTI]

    Hao, Zengchao; AghaKouchak, Amir; Phillips, Thomas J.

    2013-08-01

    While numerous studies have addressed changes in climate extremes, analyses of concurrence of climate extremes are scarce, and climate change effects on joint extremes are rarely considered. This study assesses the occurrence of joint (concurrent) monthly continental precipitation and temperature extremes in Climate Research Unit (CRU) and University of Delaware (UD) observations, and in 13 Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate simulations. Moreover, the joint occurrences of precipitation and temperature extremes simulated by CMIP5 climate models are compared with those derived from the CRU and UD observations for warm/wet, warm/dry, cold/wet, and cold/dry combinations of joint extremes.more » The number of occurrences of these four combinations during the second half of the 20th century (1951–2004) is assessed on a common global grid. CRU and UD observations show substantial increases in the occurrence of joint warm/dry and warm/wet combinations for the period 1978–2004 relative to 1951–1977. The results show that with respect to the sign of change in the concurrent extremes, the CMIP5 climate model simulations are in reasonable overall agreement with observations. The results reveal notable discrepancies between regional patterns and the magnitude of change in individual climate model simulations relative to the observations of precipitation and temperature.« less

  2. Changes in Concurrent Precipitation and Temperature Extremes

    SciTech Connect

    Hao, Zengchao; AghaKouchak, Amir; Phillips, Thomas J.

    2013-08-01

    While numerous studies have addressed changes in climate extremes, analyses of concurrence of climate extremes are scarce, and climate change effects on joint extremes are rarely considered. This study assesses the occurrence of joint (concurrent) monthly continental precipitation and temperature extremes in Climate Research Unit (CRU) and University of Delaware (UD) observations, and in 13 Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate simulations. Moreover, the joint occurrences of precipitation and temperature extremes simulated by CMIP5 climate models are compared with those derived from the CRU and UD observations for warm/wet, warm/dry, cold/wet, and cold/dry combinations of joint extremes. The number of occurrences of these four combinations during the second half of the 20th century (1951–2004) is assessed on a common global grid. CRU and UD observations show substantial increases in the occurrence of joint warm/dry and warm/wet combinations for the period 1978–2004 relative to 1951–1977. The results show that with respect to the sign of change in the concurrent extremes, the CMIP5 climate model simulations are in reasonable overall agreement with observations. The results reveal notable discrepancies between regional patterns and the magnitude of change in individual climate model simulations relative to the observations of precipitation and temperature.

  3. Characteristics of optical emissions and particle precipitation in mid/low-latitude aurorae

    SciTech Connect

    Rassoul K., H.R.

    1987-01-01

    Ground-based optical observations have been made at low/mid latitudes to study the auroral effects of particle precipitation. The measured optical emissions include (OI) 5577 {Angstrom}, (OI) 6300 {Angstrom}, and (OI) 7774 {Angstrom} of atomic oxygen, the Balmer-{beta} line of Hydrogen at 4861 {Angstrom}; and the emission bands from the first negative nitrogen system at 3914 {Angstrom} and 4278 {Angstrom}. Spectral characteristics of low-latitude aurorae, the correlation of optical data with geomagnetic field variations, and the nature of the precipitating particles were established. The observed auroral emissions have characteristics appropriate to the precipitation into the thermosphere of heavy energetic (keV energy) particles and/or electrons of energy of the order of eV rather than the keV electron precipitation as in the high-latitude auroral zone. The latitude variation of optical emissions shows a strong increase from low to mid latitudes, and the strongest emissions occur in the evening to midnight local time period. The particle precipitation enhances at times when there is a populated and/or energized ring current and there exists a strong magnetic perturbation near the local meridian of the precipitation.

  4. PRECIPITATION METHOD FOR THE SEPARATION OF PLUTONIUM AND RARE EARTHS

    DOEpatents

    Thompson, S.G.

    1960-04-26

    A method of purifying plutonium is given. Tetravalent plutonium is precipitated with thorium pyrophosphate, the plutonium is oxidized to the tetravalent state, and then impurities are precipitated with thorium pyrophosphate.

  5. G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value...

    Office of Scientific and Technical Information (OSTI)

    G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product Citation Details In-Document Search Title: G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) ...

  6. Nonlinear electrostatic excitations in magnetized dense plasmas with nonrelativistic and ultra-relativistic degenerate electrons

    SciTech Connect

    Mahmood, S.; Sadiq, Safeer; Haque, Q.

    2013-12-15

    Linear and nonlinear electrostatic waves in magnetized dense electron-ion plasmas are studied with nonrelativistic and ultra-relativistic degenerate and singly, doubly charged helium (He{sup +}, He{sup ++}) and hydrogen (H{sup +}) ions, respectively. The dispersion relation of electrostatic waves in magnetized dense plasmas is obtained under both the energy limits of degenerate electrons. Using reductive perturbation method, the Zakharov-Kuznetsov equation for nonlinear propagation of electrostatic solitons in magnetized dense plasmas is derived for both nonrelativistic and ultra-relativistic degenerate electrons. It is found that variations in plasma density, magnetic field intensity, different mass, and charge number of ions play significant role in the formation of electrostatic solitons in magnetized dense plasmas. The numerical plots are also presented for illustration using the parameters of dense astrophysical plasma situations such as white dwarfs and neutron stars exist in the literature. The present investigation is important for understanding the electrostatic waves propagation in the outer periphery of compact stars which mostly consists of hydrogen and helium ions with degenerate electrons in dense magnetized plasmas.

  7. Radioactive demonstration of the late wash'' Precipitate Hydrolysis Process

    SciTech Connect

    Bibler, N.E.; Ferrara, D.M.; Ha, B.C.

    1992-06-30

    This report presents results of the radioactive demonstration of the DWPF Precipitate Hydrolysis Process as it would occur in the late wash'' flowsheet in the absence of hydroxylamine nitrate. Radioactive precipitate containing Cs-137 from the April, 1983, in-tank precipitation demonstration in Tank 48 was used for these tests.

  8. Technical bases for precipitate hydrolysis process operating parameters

    SciTech Connect

    Bannochie, C.J.

    1992-10-05

    This report provides the experimental data and rationale in support of the operating parameters for precipitate hydrolysis specified in WSRC-RP-92737. The report is divided into two sections, the first dealing with lab-scale precipitate hydrolysis experimentation while the second part addresses large-scale runs conducted to demonstrate the revised operating parameters in the Precipitate Hydrolysis Experimental Facility (PHEF).

  9. Radioactive demonstration of the ``late wash`` Precipitate Hydrolysis Process

    SciTech Connect

    Bibler, N.E.; Ferrara, D.M.; Ha, B.C.

    1992-06-30

    This report presents results of the radioactive demonstration of the DWPF Precipitate Hydrolysis Process as it would occur in the ``late wash`` flowsheet in the absence of hydroxylamine nitrate. Radioactive precipitate containing Cs-137 from the April, 1983, in-tank precipitation demonstration in Tank 48 was used for these tests.

  10. On stochastic heating of electrons by intense laser radiation in the presence of electrostatic potential well

    SciTech Connect

    Krasheninnikov, S. I.

    2014-10-15

    A simple model developed by Paradkar et al. [Phys. Plasmas 19, 060703 (2012)] for the study of synergistic effects of electrostatic potential well and laser radiation is extended for the case where electric field of the well is accelerating electrons moving in the direction of the laser field propagation. It was found that in these cases, the rate of stochastic heating of energetic electrons remains virtually the same as in Paradkar et al. [Phys. Plasmas 19, 060703 (2012)], where electric field in electrostatic potential was slowing down electrons moving in the direction of the laser field propagation. However, the heating of electrons with relatively low energy can be sensitive to the orientation of the electrostatic potential well with respect to the direction of the laser radiation propagation.

  11. Precipitation of neptunium dioxide from aqueous solution

    SciTech Connect

    Roberts, K E

    1999-12-01

    Tens of thousands of metric tons of highly radioactive, nuclear waste have been generated in the US. Currently, there is no treatment or disposal facility for these wastes. Of the radioactive elements in high-level nuclear waste, neptunium (Np) is of particular concern because it has a long half-life and may potentially be very mobile in groundwaters associated with a proposed underground disposal site at Yucca Mountain, Nevada. Aqueous Np concentrations observed in previous, short-term solubility experiments led to calculated potential doses exceeding proposed long-term regulatory limits. However, thermodynamic data for Np at 25 C showed that these observed aqueous Np concentrations were supersaturated with respect to crystalline NpO{sub 2}. It was hypothesized that NpO{sub 2} is the thermodynamically stable solid phase in aqueous solution, but it is slow to form in an aqueous solution of NpO{sub 2}{sup +} on the time scale of previous experiments. The precipitation of NpO{sub 2} would provide significantly lower aqueous Np concentrations leading to calculated doses below proposed regulatory limits. To test this hypothesis, solubility experiments were performed at elevated temperature to accelerate any slow precipitation kinetics. Ionic NpO{sub 2}{sup +} (aq) was introduced into very dilute aqueous solutions of NaCl with initial pH values ranging from 6 to 10. The reaction vessels were placed in an oven and allowed to react at 200 C until steady-state aqueous Np concentrations were observed. In all cases, aqueous Np concentrations decreased significantly from the initial value of 10{sup {minus}4} M. The solids that formed were analyzed by x-ray powder diffraction, x-ray absorption spectroscopy, and scanning electron microscopy. The solids were determined to be high-purity crystals of NpO{sub 2}. This is the first time that crystalline NpO{sub 2} has been observed to precipitate from NpO{sub 2}{sup +}(aq) in near-neutral aqueous solutions. The results obtained

  12. The development of precipitated iron catalysts with improved stability

    SciTech Connect

    Not Available

    1990-01-01

    The goal of this program is to identify the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and to use these chemical principles in the design of catalysts suitable for slurry reactors. This report covers testing an iron catalyst. During the last quarter, a new precipitated iron catalyst was prepared and tested in the slurry autoclave reactor at various conditions. This catalyst did not noticeably deactivate during 1250 hours of testing. This quarter, the test was extended to include performance evaluations at different conversion levels ranging from 35 to 88% at 265 and 275{degree}C. The conversion levels were varied by changing the feed rate. The catalytic performance at different conversion intervals was then integrated to approximately predict performance in a bubble column reactor. The run was shut down at the end of 1996 hours because of a 24-hour-power outage. When the power was back on, the run was restarted from room temperature. Catalytic performance during the first 300 hours after the restart-up was monitored. Overall product distributions are being tabulated as analytical laboratory data are obtained. 34 figs., 3 tabs.

  13. Computational modeling of electrostatic charge and fields produced by hypervelocity impact

    SciTech Connect

    Crawford, David A.

    2015-05-19

    Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effect at larger scales, higher impact velocities, or both.

  14. Electrostatic removal of lithium fluoride from field-emitter tips at elevated temperatures

    SciTech Connect

    Panitz, J.A. )

    1994-09-01

    The electrostatic removal of lithium fluoride (LiF) from field-emitter tips has been visualized at elevated temperatures in the transmission electron microscope (TEM). The apex of a field-emitter tip coated with [similar to]1500 A of LiF provides a unique substrate for observing the removal process in the TEM in real time, and its curvature generates the required electrostatic field strength. The influence of the imaging electron beam on coating morphology has been visually assessed. A LiF coating can tolerate an electron dose of [similar to]2000 [ital e][sup [minus

  15. Disordered amorphous calcium carbonate from direct precipitation

    SciTech Connect

    Farhadi Khouzani, Masoud; Chevrier, Daniel M.; Güttlein, Patricia; Hauser, Karin; Zhang, Peng; Hedin, Niklas; Gebauer, Denis

    2015-06-01

    Amorphous calcium carbonate (ACC) is known to play a prominent role in biomineralization. Different studies on the structure of biogenic ACCs have illustrated that they can have distinct short-range orders. However, the origin of so-called proto-structures in synthetic and additive-free ACCs is not well understood. In the current work, ACC has been synthesised in iso-propanolic media by direct precipitation from ionic precursors, and analysed utilising a range of different techniques. The data suggest that this additive-free type of ACC does not resemble clear proto-structural motifs relating to any crystalline polymorph. This can be explained by the undefined pH value in iso-propanolic media, and the virtually instantaneous precipitation. Altogether, this work suggests that aqueous systems and pathways involving pre-nucleation clusters are required for the generation of clear proto-structural features in ACC. Experiments on the ACC-to-crystalline transformation in solution with and without ethanol highlight that polymorph selection is under kinetic control, while the presence of ethanol can control dissolution re-crystallisation pathways.

  16. Disordered amorphous calcium carbonate from direct precipitation

    DOE PAGES [OSTI]

    Farhadi Khouzani, Masoud; Chevrier, Daniel M.; Güttlein, Patricia; Hauser, Karin; Zhang, Peng; Hedin, Niklas; Gebauer, Denis

    2015-06-01

    Amorphous calcium carbonate (ACC) is known to play a prominent role in biomineralization. Different studies on the structure of biogenic ACCs have illustrated that they can have distinct short-range orders. However, the origin of so-called proto-structures in synthetic and additive-free ACCs is not well understood. In the current work, ACC has been synthesised in iso-propanolic media by direct precipitation from ionic precursors, and analysed utilising a range of different techniques. The data suggest that this additive-free type of ACC does not resemble clear proto-structural motifs relating to any crystalline polymorph. This can be explained by the undefined pH value inmore » iso-propanolic media, and the virtually instantaneous precipitation. Altogether, this work suggests that aqueous systems and pathways involving pre-nucleation clusters are required for the generation of clear proto-structural features in ACC. Experiments on the ACC-to-crystalline transformation in solution with and without ethanol highlight that polymorph selection is under kinetic control, while the presence of ethanol can control dissolution re-crystallisation pathways.« less

  17. Impacts of Microphysical Scheme on Convective and Stratiform Characteristics in Two High Precipitation Squall Line Events

    SciTech Connect

    Wu, Di; Dong, Xiquan; Xi, Baike; Feng, Zhe; Kennedy, Aaron; Mullendore, Gretchen; Gilmore, Matthew; Tao, Wei-Kuo

    2013-10-04

    This study investigates the impact of snow, graupel, and hail processes on the simulated squall lines over the Southern Great Plains in the United States. Weather Research and Forecasting (WRF) model is used to simulate two squall line events in May 2007, and the results are validated against radar and surface observations in Oklahoma. Several microphysics schemes are tested in this study, including WRF 5-Class Microphysics Scheme (WSM5), WRF 6-Class Microphysics Scheme (WSM6), Goddard Three Ice scheme (Goddard 3-ice) with graupel, Goddard Two Ice scheme (Goddard 2-ice), and Goddard 3-ice hail scheme. The simulated surface precipitation is sensitive to the microphysics scheme, and especially to whether graupel or hail category is included. All of the three ice (3-ice) schemes overestimated the total precipitation, within which WSM6 has the highest overestimation. Two ice (2-ice) schemes, missing a graupel/hail category, produced less total precipitation than 3-ice schemes. By applying a radar-based convective/stratiform partitioning algorithm, we find that by including the graupel/hail processes, there is an increase in areal coverage, precipitation intensity, updraft and downdraft intensity in convective region and a reduction of areal coverage and its precipitation intensity in stratiform region. For vertical structures, all the bulk schemes, especially 2-ice schemes, have the highest reflectivity located at upper levels (~8 km), which is unrealistic compared to observations. In addition, this study shows the radar-based convective/stratiform partitioning algorithm can reasonably identify WRF simulated precipitation, wind and microphysics fields in both convective and stratiform regions.

  18. High post-irradiation ductility thermomechanical treatment for precipitation strengthened austenitic alloys

    DOEpatents

    Laidler, James J.; Borisch, Ronald R.; Korenko, Michael K.

    1982-01-01

    A method for improving the post-irradiation ductility is described which prises a solution heat treatment following which the materials are cold worked. They are included to demonstrate the beneficial effect of this treatment on the swelling resistance and the ductility of these austenitic precipitation hardenable alloys.

  19. Eutectic precipitation of melt quenched titanium-silicon-neodymium alloy

    SciTech Connect

    Li, G.P.; Liu, Y.Y.; Li, D.; Hu, Z.Q. . Inst. of Metal Research)

    1995-01-15

    Titanium based metallic glasses have attracted keen interest because of the promise of industrial applications owing to their improves corrosion resistance, better mechanical properties, occurrence of superconductivity and superior magnetic properties. The titanium alloy systems where metallic glass has been obtained include Ti-Cu, Ti-Be, Ti-Si, Ti-B. Polk et al. had reported that they were able to produce an amorphous phase in binary Ti[sub 80]Si[sub 20] alloy system by using an arc-melting piston and anvil apparatus. In the present study, the authors have investigated the effect of adding rare earth element Nd on eutective precipitation of the amorphous Ti[sub 80]Si[sub 20] alloy and the orientation relationship which exists between the [beta]-Ti and Ti[sub 5]Si[sub 3].

  20. Concepts for the development of nanoscale stable precipitation-strengthened steels manufactured by conventional methods

    DOE PAGES [OSTI]

    Yablinsky, C. A.; Tippey, K. E.; Vaynman, S.; Anderoglu, O.; Fine, M. E.; Chung, Y. -W.; Speer, J. G.; Findley, K. O.; Dogan, O. N.; Jablonski, P. D.; et al

    2014-11-11

    In this study, the development of oxide dispersion strengthened ferrous alloys has shown that microstructures designed for excellent irradiation resistance and thermal stability ideally contain stable nanoscale precipitates and dislocation sinks. Based upon this understanding, the microstructures of conventionally manufactured ferritic and ferritic-martensitic steels can be designed to include controlled volume fractions of fine, stable precipitates and dislocation sinks via specific alloying and processing paths. The concepts proposed here are categorized as advanced high-Cr ferritic-martensitic (AHCr-FM) and novel tailored precipitate ferritic (TPF) steels, which have the potential to improve the in-reactor performance of conventionally manufactured alloys. AHCr-FM steels have modifiedmore » alloy content relative to current reactor materials (such as alloy NF616/P92) to maximize desirable precipitates and control phase stability. TPF steels are designed to incorporate nickel aluminides, in addition to microalloy carbides, in a ferritic matrix to produce fine precipitate arrays with good thermal stability. Both alloying concepts may also benefit from thermomechanical processing to establish dislocation sinks and modify phase transformation behaviors. Alloying and processing paths toward designed microstructures are discussed for both AHCr-FM and TPF material classes.« less

  1. Concepts for the development of nanoscale stable precipitation-strengthened steels manufactured by conventional methods

    SciTech Connect

    Yablinsky, C. A.; Tippey, K. E.; Vaynman, S.; Anderoglu, O.; Fine, M. E.; Chung, Y. -W.; Speer, J. G.; Findley, K. O.; Dogan, O. N.; Jablonski, P. D.; Maloy, S. A.; Hackenberg, R. E.; Clarke, A. J.; Clarke, K. D.

    2014-11-11

    In this study, the development of oxide dispersion strengthened ferrous alloys has shown that microstructures designed for excellent irradiation resistance and thermal stability ideally contain stable nanoscale precipitates and dislocation sinks. Based upon this understanding, the microstructures of conventionally manufactured ferritic and ferritic-martensitic steels can be designed to include controlled volume fractions of fine, stable precipitates and dislocation sinks via specific alloying and processing paths. The concepts proposed here are categorized as advanced high-Cr ferritic-martensitic (AHCr-FM) and novel tailored precipitate ferritic (TPF) steels, which have the potential to improve the in-reactor performance of conventionally manufactured alloys. AHCr-FM steels have modified alloy content relative to current reactor materials (such as alloy NF616/P92) to maximize desirable precipitates and control phase stability. TPF steels are designed to incorporate nickel aluminides, in addition to microalloy carbides, in a ferritic matrix to produce fine precipitate arrays with good thermal stability. Both alloying concepts may also benefit from thermomechanical processing to establish dislocation sinks and modify phase transformation behaviors. Alloying and processing paths toward designed microstructures are discussed for both AHCr-FM and TPF material classes.

  2. Analysis and planning for precipitation augmentation for crops experiment. September 1990-August 1991. Annual report

    SciTech Connect

    Changnon, S.A.; Czys, R.R.; Hollinger, S.E.; Huff, F.A.; Kunkel, K.E.

    1991-11-01

    The scientific research described herein was conducted within the context of the Precipitation-Cloud Changes and Impacts Project (PreCCIP) of the Illinois State Water Survey during the period September 1, 1990 to August 31, 1991. PreCCIP is an ongoing research effort, originally entitled Precipitation Augmentation for Crops Experiment (PACE). Findings from the PreCCIP research concerning atmospheric processes and the effects of changed conditions are key inputs into a myriad of individual and institutional decisions affecting Illinois. They include major questions about (1) the application of cloud seeding to try to alter precipitation; (2) the magnitude and factors causing inadvertent climate change at the local and regional scales; (3) the types and importance of physical effects and socioeconomic impacts caused by altered weather; and (4) the monitoring, control, and regulation of activities leading to either purposeful or inadvertent modification of weather and climate.

  3. DECONTAMINATION OF PLUTONIUM FOR FLUORIDE AND CHLORIDE DURING OXALATE PRECIPITATION, FILTRATION AND CALCINATION PROCESSES

    SciTech Connect

    Kyser, E.

    2012-07-25

    Due to analytical limitations for the determination of fluoride (F) and chloride (Cl) in a previous anion exchange study, an additional study of the decontamination of Pu from F and Cl by oxalate precipitation, filtration and calcination was performed. Anion product solution from the previous impurity study was precipitated as an oxalate, filtered, and calcined to produce an oxide for analysis by pyrohydrolysis for total Cl and F. Analysis of samples from this experiment achieved the purity specification for Cl and F for the proposed AFS-2 process. Decontamination factors (DF's) for the overall process (including anion exchange) achieved a DF of {approx}5000 for F and a DF of {approx}100 for Cl. Similar experiments where both HF and HCl were spiked into the anion product solution to a {approx}5000 {micro}g /g Pu concentration showed a DF of 5 for F and a DF of 35 for Cl across the combined precipitation-filtration-calcination process steps.

  4. Powerful electrostatic FEL: Regime of operation, recovery of the spent electron beam and high voltage generator

    SciTech Connect

    Boscolo, I.; Gong, J.

    1995-02-01

    FEL, driven by a Cockcroft-Walton electrostatic accelerator with the recovery of the spent electron beam, is proposed as powerful radiation source for plasma heating. The low gain and high gain regimes are compared in view of the recovery problem and the high gain regime is shown to be much more favourable. A new design of the onion Cockcroft-Walton is presented.

  5. Tailored Ink For Piston-Driven Electrostatic Liquid Drop Modulator

    DOEpatents

    Wong, Raymond W.; Breton, Marcel P.; Bedford, Christine E.; Carreira, Leonard M.; Gooray, Arthur M.; Roller, George J.; Zavadil, Kevin; Galambos, Paul; Crowley, Joseph

    2005-04-19

    The present invention relates to an ink composition including water, a solvent, a solvent-soluble dye, and a surfactant, where the ink exhibits a stable liquid microemulsion phase at a first temperature and a second temperature higher than the first temperature and has a conductivity of at most about 200 .mu.S/cm and a dielectric constant of at least about 60, and methods of making such ink compositions. The present invention also relates to a method of making an ink composition for use in a microelectromechanical system-based fluid ejector. The method involves providing a solution or dispersion including a dye or a pigment and adding to the solution or dispersion an additive which includes a material that enhances dielectric permittivity and/or reduces conductivity under conditions effective to produce an ink composition having a conductivity of at most about 200 .mu.S/cm and a dielectric constant of at least about 60.

  6. Document

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... The plant is equipped with air pollution control equipment including an electrostatic precipitator (ESP) for particulate control, selective catalytic reduction (SCR) for nitrogen ...

  7. Method for Removing Precipitates in Biofuel - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Method for Removing Precipitates in Biofuel Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryAt ORNL the application of ultrasonic energy, or sonication, has been shown to successfully remove or prevent the formation of 50-90% of the precipitates in biofuels. Precipitates can plug filters as biodiesel is transported from one location to another, and often cannot be detected

  8. ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report

    Office of Scientific and Technical Information (OSTI)

    (Program Document) | SciTech Connect ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report Citation Details In-Document Search Title: ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report The U.S. Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Climate Research Facility's ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) field campaign contributes to CalWater 2015, a multi-agency field campaign that aims to improve understanding

  9. ARM: 1290-MHz Radar Wind Profiler, precipitation moments data (Dataset) |

    Office of Scientific and Technical Information (OSTI)

    Data Explorer ARM: 1290-MHz Radar Wind Profiler, precipitation moments data Title: ARM: 1290-MHz Radar Wind Profiler, precipitation moments data 1290-MHz Radar Wind Profiler, precipitation moments data Authors: Timothy Martin ; Paytsar Muradyan ; Richard Coulter Publication Date: 2014-03-05 OSTI Identifier: 1256461 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory

  10. ARM: Auxiliary data for the Total Precipitation Sensor (Dataset) | Data

    Office of Scientific and Technical Information (OSTI)

    Explorer Auxiliary data for the Total Precipitation Sensor Title: ARM: Auxiliary data for the Total Precipitation Sensor Auxiliary data for the Total Precipitation Sensor Authors: Jessica Cherry Publication Date: 2015-01-09 OSTI Identifier: 1150276 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (US); Sponsoring Org: USDOE Office of Science

  11. ARM: Ka ARM Zenith Radar (KAZR): precipitation mode (Dataset) | Data

    Office of Scientific and Technical Information (OSTI)

    Explorer ARM: Ka ARM Zenith Radar (KAZR): precipitation mode Title: ARM: Ka ARM Zenith Radar (KAZR): precipitation mode Ka ARM Zenith Radar (KAZR): precipitation mode Authors: Joseph Hardin ; Dan Nelson ; Iosif [1] ; Bradley Isom ; Karen Johnson ; Alyssa Matthews ; Nitin Bharadwaj + Show Author Affiliations (Andrei) Lindenmaier Publication Date: 2015-04-15 OSTI Identifier: 1213419 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric

  12. A new ionospheric electron precipitation module coupled with RAM-SCB within the geospace general circulation model

    DOE PAGES [OSTI]

    Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.; Albert, Jay M.; Horne, Richard B.; Jeffery, Christopher A.

    2016-09-17

    . Furthermore, for the precipitated electrons, the lifetime method hardly captures any precipitation in the large L shell (i.e., 4 < L < 6.5) region, while the diffusion coefficient method produces much better agreement with NOAA/POES measurements, including the spatial distribution and temporal evolution of electron precipitation in the region from the premidnight through the dawn to the dayside. Further comparisons of the precipitation energy flux to DMSP observations indicates that the new physics-based precipitation approach using diffusion coefficients for the ring current electron loss can explain the diffuse electron precipitation in the dawn sector, such as the enhanced precipitation flux at auroral latitudes and flux drop near the subauroral latitudes, but the traditional MHD approach largely overestimates the precipitation flux at lower latitudes.« less

  13. ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign...

    Office of Scientific and Technical Information (OSTI)

    2015, a multi-agency field campaign that aims to improve understanding of atmospheric rivers and aerosol sources and transport that influence cloud and precipitation processes. ...

  14. Separating Cloud and Drizzle Radar Moments during Precipitation...

    Office of Scientific and Technical Information (OSTI)

    Onset using Doppler Spectra Citation Details In-Document Search Title: Separating Cloud and Drizzle Radar Moments during Precipitation Onset using Doppler Spectra Authors: ...

  15. Integrated Precipitation and Hydrology Experiment (IPHEx)/Orographic...

    Office of Scientific and Technical Information (OSTI)

    and Space Administration (NASA) Global Precipitation Mission (GPM) Ground Validation (GV) field campaign after the launch of the GPM Core Satellite (Barros et al. 2014). ...

  16. Streamflow and selected precipitation data for Yucca Mountain...

    Office of Scientific and Technical Information (OSTI)

    water years 1983--85 Citation Details In-Document Search Title: Streamflow and selected precipitation data for Yucca Mountain and vicinity, Nye County, Nevada, water years ...

  17. Detecting vegetation-precipitation feedbacks in mid-Holocene...

    Office of Scientific and Technical Information (OSTI)

    North Africa from two climate models Citation Details In-Document Search Title: Detecting vegetation-precipitation feedbacks in mid-Holocene North Africa from two ...

  18. Precipitation and Hydrology Experiment Counter-Flow Spectrometer...

    Office of Scientific and Technical Information (OSTI)

    (NASA) Global Precipitation Measurement validation campaign. The CSI was added to the Citation instrument suite to support the involvement of Jay Mace through the NASA ...

  19. ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan...

    Office of Scientific and Technical Information (OSTI)

    Because of the large lower-tropospheric water vapor content, strong atmospheric winds and neutral moist static stability, some ARs can produce heavy precipitation by orographic ...

  20. ARM: Auxiliary data for the Total Precipitation Sensor (Dataset...

    Office of Scientific and Technical Information (OSTI)

    Availability: ORNL Language: English Subject: 54 Environmental Sciences Atmospheric temperature; Horizontal wind; Precipitation Dataset File size NAView Dataset View Dataset DOI: ...

  1. Comparison of Uncertainty of Two Precipitation Prediction Models...

    Office of Scientific and Technical Information (OSTI)

    Prediction Models at Los Alamos National Lab Technical Area 54 Citation Details In-Document Search Title: Comparison of Uncertainty of Two Precipitation Prediction Models ...

  2. Microbial Activity and Precipitation at Solution-Solution Mixing...

    Office of Scientific and Technical Information (OSTI)

    Media -- Subsurface Biogeochemical Research Citation Details In-Document Search Title: Microbial Activity and Precipitation at Solution-Solution Mixing Zones in Porous Media -- ...

  3. Flowsheet Development for the New Neptunium Oxalate Precipitation System

    SciTech Connect

    Luerkens, D.W.

    2001-08-16

    This report summarizes laboratory development work and provides flowsheet guidelines for neptunium (IV) oxalate precipitation in the new HB-Line.

  4. Mechanisms Contributing to Suppressed Precipitation in Mt. Hua...

    Office of Scientific and Technical Information (OSTI)

    Consistent with the increase of air pollution in these regions, it has been argued that the precipitation trend is linked to aerosol microphysical effect on suppressing warm rain. ...

  5. Insights from modeling and observational evaluation of a precipitating...

    Office of Scientific and Technical Information (OSTI)

    Insights from modeling and observational evaluation of a precipitating continental cumulus event observed during the MC3E field campaign Title: Insights from modeling and ...

  6. Contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication

    DOEpatents

    Sopori, Bhushan

    2014-05-27

    Methods for contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication are provided. In one embodiment, a method for fabricating an electrical semiconductor device comprises: a first step that includes gettering of impurities from a semiconductor wafer and forming a backsurface field; and a second step that includes forming a front contact for the semiconductor wafer, wherein the second step is performed after completion of the first step.

  7. Quantitative Analysis of Biofuel Sustainability, Including Land...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions ...

  8. Collaborative research: Dynamics of electrostatic solitary waves and their effects on current layers

    SciTech Connect

    Chen, Li-Jen

    2014-04-18

    The project has accomplished the following achievements including the goals outlined in the original proposal. Generation and measurements of Debye-scale electron holes in laboratory: We have generated by beam injections electron solitary waves in the LAPD experiments. The measurements were made possible by the fabrication of the state-of-the-art microprobes at UCLA to measure Debye-scale electric fields [Chiang et al., 2011]. We obtained a result that challenged the state of knowledge about electron hole generation. We found that the electron holes were not due to two-stream instability, but generated by a current-driven instability that also generated whistler-mode waves [Lefebvre et al., 2011, 2010b]. Most of the grant supported a young research scientist Bertrand Lefebvre who led the dissemination of the laboratory experimental results. In addition to two publications, our work relevant to the laboratory experiments on electron holes has resulted in 7 invited talks [Chen, 2007, 2009; Pickett et al., 2009a; Lefebvre et al., 2010a; Pickett et al., 2010; Chen et al., 2011c, b] (including those given by the co-I Jolene Pickett) and 2 contributed talks [Lefebvre et al., 2009b, a]. Discovery of elecctron phase-space-hole structure in the reconnection electron layer: Our theoretical analyses and simulations under this project led to the discovery of an inversion electric field layer whose phase-space signature is an electron hole within the electron diffusion layer in 2D anti-parallel reconnection [Chen et al., 2011a]. We carried out particle tracing studies to understand the electron orbits that result in the phase-space hole structure. Most importantly, we showed that the current density in the electron layer is limited in collisionless reconnection with negligible guide field by the cyclotron turning of meandering electrons. Comparison of electrostatic solitary waves in current layers observed by Cluster and in LAPD: We compared the ESWs observed in a supersubstorm

  9. On the complex conductivity signatures of calcite precipitation

    SciTech Connect

    Wu, Yuxin; Hubbard, Susan; Williams, Kenneth Hurst; Ajo-Franklin, Jonathan

    2009-11-01

    Calcite is a mineral phase that frequently precipitates during subsurface remediation or geotechnical engineering processes. This precipitation can lead to changes in the overall behavior of the system, such as flow alternation and soil strengthening. Because induced calcite precipitation is typically quite variable in space and time, monitoring its distribution in the subsurface is a challenge. In this research, we conducted a laboratory column experiment to investigate the potential of complex conductivity as a mean to remotely monitor calcite precipitation. Calcite precipitation was induced in a glass bead (3 mm) packed column through abiotic mixing of CaCl{sub 2} and Na{sub 2}CO{sub 3} solutions. The experiment continued for 12 days with a constant precipitation rate of {approx}0.6 milimole/d. Visual observations and scanning electron microscopy imaging revealed two distinct phases of precipitation: an earlier phase dominated by well distributed, discrete precipitates and a later phase characterized by localized precipitate aggregation and associated pore clogging. Complex conductivity measurements exhibited polarization signals that were characteristic of both phases of calcite precipitation, with the precipitation volume and crystal size controlling the overall polarization magnitude and relaxation time constant. We attribute the observed responses to polarization at the electrical double layer surrounding calcite crystals. Our experiment illustrates the potential of electrical methods for characterizing the distribution and aggregation state of nonconductive minerals like calcite. Advancing our ability to quantify geochemical transformations using such noninvasive methods is expected to facilitate our understanding of complex processes associated with natural subsurface systems as well as processes induced through engineered treatments (such as environmental remediation and carbon sequestration).

  10. Topic A Note: Includes STEPS Subtopic

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Topic A Note: Includes STEPS Subtopic 33 Total Projects Developing and Enhancing Workforce Training Programs...

  11. Estimating Annual Precipitation in the Fenner Basin of the Eastern Mojave Desert, California

    SciTech Connect

    Davisson, M.L.; Rose, T.P.

    2000-05-15

    Metropolitan Water District (MWD) of southern California and Cadiz Inc. investigated the feasibility of storing Colorado River water in groundwater aquifers of the eastern Mojave Desert as a future drought mitigation strategy. This culminated in the public release of the Cadiz Groundwater Storage and Dry-Year Supply program Draft EIR, which included pilot percolation studies, groundwater modeling, and precipitation/runoff analysis in the Fenner groundwater basin, which overlies the proposed storage site. The project proposes to store and withdrawal Colorado River water over a 50-year period, but will not exceed the natural replenishment rates of the groundwater basin. Several independent analyses were conducted to estimate the rates of natural groundwater replenishment to the Fenner Groundwater Basin which was included in the Draft EIR. The US Geologic Survey, Water Resources Division (WRD) officially submitted comments during public review and concluded that the natural groundwater replenishment rates calculated for the Draft EIR were too high. In the WRD review, they provided a much lower recharge calculation based on a Maxey-Eakin estimation approach. This approach estimates annual precipitation over an entire basin as a function of elevation, followed by calibration against annual recharge rates. Previous attempts to create precipitation-elevation functions in western Nevada have been difficult and result in large uncertainty. In the WRD data analysis, the effect of geographic scale on the precipitation-elevation function was overlooked. This contributed to an erroneous Maxey-Eakin recharge estimate.

  12. Rotational motion based, electrostatic power source and methods thereof

    DOEpatents

    Potter, Michael D. (Churchville, NY)

    2007-05-01

    A power system includes a member with two or more sections and at least one pair of electrodes. Each of the two or more sections has a stored static charge. Each of the pair of electrodes is spaced from and on substantially opposing sides of the member from the other electrode and is at least partially in alignment with the other electode. At least one of the member and the at least one pair of electrodes is moveable with respect to the other. When at least one of the sections is at least partially between the pair of electrodes, the at least one of the sections has the stored static electric charge closer to one of the pair of electrodes. When at least one of the other sections is at least partially between the pair of electrodes, the other section has the stored static electric charge closer to the other one of the pair of electrodes.

  13. Method and apparatus for electrostatically sorting biological cells

    DOEpatents

    Merrill, John T.

    1982-01-01

    An improved method of sorting biological cells in a conventional cell sorter apparatus includes generating a fluid jet containing cells to be sorted, measuring the distance between the centers of adjacent droplets in a zone thereof defined at the point where the fluid jet separates into descrete droplets, setting the distance between the center of a droplet in said separation zone and the position along said fluid jet at which the cell is optically sensed for specific characteristics to be an integral multiple of said center-to-center distance, and disabling a charger from electrically charging a specific droplet if a cell is detected by the optical sensor in a position wherein it will be in the neck area between droplets during droplet formation rather than within a predetermined distance from the droplet center.

  14. PRECIPITATION OF ZIRCONIUM, NIOBIUM, AND RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Wilson, A.S.

    1958-08-12

    An improvement on the"head end process" for decontaminating dissolver solutions of their Zr, Ni. and Ru values. The process consists in adding a water soluble symmetrical dialkyl ketone. e.g. acetone, before the formation of the manganese dioxide precipitate. The effect is that upon digestion, the ruthenium oxide does not volatilize, but is carried on the manganese dioxide precipitate.

  15. SEPARATION OF FISSION PRODUCTS FROM PLUTONIUM BY PRECIPITATION

    DOEpatents

    Seaborg, G.T.; Thompson, S.G.; Davidson, N.R.

    1959-09-01

    Fission product separation from hexavalent plutonium by bismuth phosphate precipitation of the fission products is described. The precipitation, according to this invention, is improved by coprecipitating ceric and zirconium phosphates (0.05 to 2.5 grams/liter) with the bismuth phosphate.

  16. Thermodynamic micellization model of asphaltene precipitation from petroleum fluids

    SciTech Connect

    Victorov, A.I.; Firoozabadi, A.

    1996-06-01

    A thermodynamic micellization model is proposed for the description of asphaltene precipitation from petroleum fluids. It describes the solubilization of asphaltene polar species by resin bipolar molecules in the micelles. A simple form of the standard Gibbs free energy of micellization is used. The petroleum fluid is assumed to be a dilute solution with respect to the monomeric asphaltenes, resins, and micelles. The Peng-Robinson equation of state (PR-EOS) is applied to describe the fugacity of monomeric asphaltene in the bulk of the petroleum fluid. Intermicellar interactions as well as osmotic pressure effects are neglected. The proposed model shows promising results to describe asphaltene deposition from crude mixtures. It predicts the change in precipitation power of different alkane precipitants and the effect of pressure on asphaltene precipitation. The amount and the onset of predicted asphaltene precipitation are sensitive to the amount of resins in the crude. All these results are in line with laboratory observations and oil-field data.

  17. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description

    SciTech Connect

    Bauer, Sebastian; Mathias, Gerald; Tavan, Paul

    2014-03-14

    We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ε(r) is close to one everywhere inside the protein. The Gaussian widths σ{sub i} of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σ{sub i}. A summarizing discussion highlights the achievements of the new theory and of its approximate solution

  18. Electrostatically transparent graphene quantum-dot trap layers for efficient nonvolatile memory

    SciTech Connect

    Kim, Young Rae; Jo, Yong Eun; Sung, Yeo Hyun; Won, Ui Yeon; Shin, Yong Seon; Kang, Won Tae; Yu, Woo Jong E-mail: micco21@skku.edu; Lee, Young Hee E-mail: micco21@skku.edu

    2015-03-09

    In this study, we have demonstrated nonvolatile memory devices using graphene quantum-dots (GQDs) trap layers with indium zinc oxide (IZO) semiconductor channel. The Fermi-level of GQD was effectively modulated by tunneling electrons near the Dirac point because of limited density of states and weak electrostatic screening in monolayer graphene. As a result, large gate modulation was driven in IZO channel to achieve a subthreshold swing of 5.21 V/dec (300 nm SiO{sub 2} gate insulator), while Au quantum-dots memory shows 15.52 V/dec because of strong electrostatic screening in metal quantum-dots. Together, discrete charge traps of GQDs enable stable performance in the endurance test beyond 800 cycles of programming and erasing. Our study suggests the exciting potential of GQD trap layers to be used for a highly promising material in non-volatile memory devices.

  19. Effect of the electrostatic plasma lens on the emittance of ahigh-current heavy ion beam

    SciTech Connect

    Chekh, Yu.; Goncharov, A.; Protsenko, I.; Brown, I.G.

    2004-01-10

    We describe measurements we have made of the emittance of a high-current, moderate-energy ion beam after transport through a permanent-magnet electrostatic plasma lens. The results indicate the absence of emittance growth due to the lens, when the lens is adjusted for optimal beam focusing. The measured emittance for a 16 keV Cu{sup 2+} ion beam formed by a vacuum arc ion source was about 0.4 {pi} {center_dot} mm {center_dot} mrad at a beam current of 50 mA rising more-or-less linearly to 1.5 {pi} {center_dot} mm {center_dot} mrad at 250 mA, and was conserved in beam transport through the lens. These results have significance for the application of high-current ion sources and the electrostatic plasma lens to particle accelerator injection.

  20. Implosion and explosion of electrostatic cylindrical and spherical shocks in asymmetric pair-ion plasmas

    SciTech Connect

    Masood, W.; Rizvi, H.

    2011-04-15

    Nonlinear electrostatic shock waves are studied in unmagnetized, dissipative pair-ion plasmas. The dissipation in the system is taken into account by considering the effect of kinematic viscosity of both positive and negative ions in plasmas. The system of fluid equations for asymmetric pair-ion plasma is reduced to Korteweg-deVries-Burgers equation in the limit of small amplitude perturbation. It is observed that the system under consideration admits rarefactive shocks. Keeping in view the practical applications, the nonlinear propagation of both the exploding and imploding shocks is investigated and the differences are expounded in detail. The present study may have relevance in the study of the formation of electrostatic shocks in laser-induced implosion devices, star formation, supernovae explosion, etc.

  1. Systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators

    DOEpatents

    Grisham, Larry R

    2013-12-17

    The present invention provides systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators. Advantageously, the systems and methods of the present invention improve the practically obtainable performance of these electrostatic accelerators by addressing, among other things, voltage holding problems and conditioning issues. The problems and issues are addressed by flowing electric currents along these accelerator electrodes to produce magnetic fields that envelope the accelerator electrodes and their support structures, so as to prevent very low energy electrons from leaving the surfaces of the accelerator electrodes and subsequently picking up energy from the surrounding electric field. In various applications, this magnetic insulation must only produce modest gains in voltage holding capability to represent a significant achievement.

  2. Dispersion relation of electrostatic ion cyclotron waves in multi-component magneto-plasma

    SciTech Connect

    Khaira, Vibhooti Ahirwar, G.

    2015-07-31

    Electrostatic ion cyclotron waves in multi component plasma composed of electrons (denoted by e{sup −}), hydrogen ions (denoted by H{sup +}), helium ions (denoted by He{sup +}) and positively charged oxygen ions (denoted by O{sup +})in magnetized cold plasma. The wave is assumed to propagate perpendicular to the static magnetic field. It is found that the addition of heavy ions in the plasma dispersion modified the lower hybrid mode and also allowed an ion-ion mode. The frequencies of the lower hybrid and ion- ion hybrid modes are derived using cold plasma theory. It is observed that the effect of multi-ionfor different plasma densities on electrostatic ion cyclotron waves is to enhance the wave frequencies. The results are interpreted for the magnetosphere has been applied parameters by auroral acceleration region.

  3. Computational modeling of electrostatic charge and fields produced by hypervelocity impact

    DOE PAGES [OSTI]

    Crawford, David A.

    2015-05-19

    Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effectmore » at larger scales, higher impact velocities, or both.« less

  4. Results from electrostatic calibrations for measuring the Casimir force in the cylinder-plane geometry

    SciTech Connect

    Wei, Q.; Dalvit, D. A. R.; Lombardo, F. C.; Mazzitelli, F. D.; Onofrio, R.

    2010-05-15

    We report on measurements performed on an apparatus aimed to study the Casimir force in the cylinder-plane configuration. The electrostatic calibrations evidence anomalous behaviors in the dependence of the electrostatic force and the minimizing potential upon distance. We discuss analogies and differences of these anomalies with respect to those already observed in the sphere-plane configuration. At the smallest explored distances we observe frequency shifts of non-Coulombian nature preventing the measurement of the Casimir force in the same range. We also report on measurements performed in the parallel-plane configuration, showing that the dependence on distance of the minimizing potential, if present at all, is milder than in the sphere-plane or cylinder-plane geometries. General considerations on the interplay between the distance-dependent minimizing potential and the precision of Casimir force measurements in the range relevant to detect the thermal corrections for all geometries are finally reported.

  5. Quantitative assessment of electrostatic embedding in Density Functional Theory calculations of biomolecular systems

    SciTech Connect

    Fattebert, J; Law, R J; Bennion, B; Lau, E Y; Schwegler, E; Lightstone, F C

    2009-04-24

    We evaluate the accuracy of density functional theory quantum calculations of biomolecular subsystems using a simple electrostatic embedding scheme. Our scheme is based on dividing the system of interest into a primary and secondary subsystem. A finite difference discretization of the Kohn-Sham equations is used for the primary subsystem, while its electrostatic environment is modeled with a simple one-electron potential. Force-field atomic partial charges are used to generate smeared Gaussian charge densities and to model the secondary subsystem. We illustrate the utility of this approach with calculations of truncated dipeptide chains. We analyze quantitatively the accuracy of this approach by calculating atomic forces and comparing results with fullQMcalculations. The impact of the choice made in terminating dangling bonds at the frontier of the QM region is also investigated.

  6. Electrostatic self-assembly of graphene oxide wrapped sulfur particles for lithium–sulfur batteries

    SciTech Connect

    Wu, Haiwei; Huang, Ying Zong, Meng; Ding, Xiao; Ding, Juan; Sun, Xu

    2015-04-15

    Highlights: • Researched graphene oxide wrapped sulfur particles for lithium–sulfur batteries. • New approach for core–shell GO/S composites by electrostatic self-assembly method. • Both core–shell structure and the GO support help to retard the diffusion of polysulfides during the electrochemical cycling process of GO/S cathode. - Abstract: A novel graphene oxide (GO)/sulfur (S) composite is developed by electrostatic self-assembly method. Remarkably, the core–shell structure of the composite and the GO support helps to retard the diffusion of polysulfides during the electrochemical cycling process. The GO/sulfur cathode presents enhanced cycling ability. Specific discharge capacities up to 494.7 mAh g{sup −1} over 200 cycles at 0.1 C is achieved with enhanced columbic efficiency around 95%, representing a good cathode material for lithium–sulfur batteries.

  7. The mechanical design and dynamic testing of the IBEX-H1 electrostatic analyzer spacecraft instrument

    SciTech Connect

    Bernardin, John D; Baca, Allen G

    2009-01-01

    This paper presents the mechanical design, fabrication and dynamic testing of an electrostatic analyzer spacecraft instrument. The functional and environmental requirements combined with limited spacecraft accommodations, resulted in complex component geometries, unique material selections, and difficult fabrication processes. The challenging aspects of the mechanical design and several of the more difficult production processes are discussed. In addition, the successes, failures, and lessons learned from acoustic and random vibration testing of a full-scale prototype instrument are presented.

  8. Ionization of polarized 3He+ ions in EBIS trap with slanted electrostatic mirror.

    SciTech Connect

    Pikin,A.; Zelenski, A.; Kponou, A.; Alessi, J.; Beebe, E.; Prelee, K.; Raparia, D.

    2007-09-10

    Methods of producing the nuclear polarized {sup 3}He{sup +} ions and their ionization to {sup 3}H{sup ++} in ion trap of the electron Beam Ion Source (EBIS) are discussed. Computer simulations show that injection and accumulation of {sup 3}He{sup +} ions in the EBIS trap with slanted electrostatic mirror can be very effective for injection times longer than the ion traversal time through the trap.

  9. In-Drift Precipitates/Salts Model

    SciTech Connect

    P. Mariner

    2004-11-09

    This report documents the development and validation of the in-drift precipitates/salts (IDPS) model. The IDPS model is a geochemical model designed to predict the postclosure effects of evaporation and deliquescence on the chemical composition of water within the Engineered Barrier System (EBS) in support of the Total System Performance Assessment for the License Application (TSPA-LA). Application of the model in support of TSPA-LA is documented in ''Engineered Barrier System: Physical and Chemical Environment Model'' (BSC 2004 [DIRS 169860]). Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration (BSC 2004 [DIRS 171156]) is the technical work plan (TWP) for this report. It called for a revision of the previous version of the report (BSC 2004 [DIRS 167734]) to achieve greater transparency, readability, data traceability, and report integration. The intended use of the IDPS model is to estimate and tabulate, within an appropriate level of confidence, the effects of evaporation, deliquescence, and potential environmental conditions on the pH, ionic strength, and chemical compositions of water and minerals on the drip shield or other location within the drift during the postclosure period. Specifically, the intended use is as follows: (1) To estimate, within an appropriate level of confidence, the effects of evaporation and deliquescence on the presence and composition of water occurring within the repository during the postclosure period (i.e., effects on pH, ionic strength, deliquescence relative humidity, total concentrations of dissolved components in the system Na-K-H-Mg-Ca-Al-Cl-F-NO{sub 3}-SO{sub 4}-Br-CO{sub 3}-SiO{sub 2}-CO{sub 2}-O{sub 2}-H{sub 2}O, and concentrations of the following aqueous species that potentially affect acid neutralizing capacity: HCO{sub 3}{sup -}, CO{sub 3}{sup 2-}, OH{sup -}, H{sup +}, HSO{sub 4}{sup -}, Ca{sup 2+}, Mg{sup 2+}, CaHCO{sub 3}{sup +}, MgHCO{sub 3}{sup +}, HSiO{sub 3

  10. Modular apparatus for electrostatic actuation of common atomic force microscope cantilevers

    SciTech Connect

    Long, Christian J.; Cannara, Rachel J.

    2015-07-15

    Piezoelectric actuation of atomic force microscope (AFM) cantilevers often suffers from spurious mechanical resonances in the loop between the signal driving the cantilever and the actual tip motion. These spurious resonances can reduce the accuracy of AFM measurements and in some cases completely obscure the cantilever response. To address these limitations, we developed a specialized AFM cantilever holder for electrostatic actuation of AFM cantilevers. The holder contains electrical contacts for the AFM cantilever chip, as well as an electrode (or electrodes) that may be precisely positioned with respect to the back of the cantilever. By controlling the voltages on the AFM cantilever and the actuation electrode(s), an electrostatic force is applied directly to the cantilever, providing a near-ideal transfer function from drive signal to tip motion. We demonstrate both static and dynamic actuations, achieved through the application of direct current and alternating current voltage schemes, respectively. As an example application, we explore contact resonance atomic force microscopy, which is a technique for measuring the mechanical properties of surfaces on the sub-micron length scale. Using multiple electrodes, we also show that the torsional resonances of the AFM cantilever may be excited electrostatically, opening the door for advanced dynamic lateral force measurements with improved accuracy and precision.

  11. Web servers and services for electrostatics calculations with APBS and PDB2PQR

    SciTech Connect

    Unni, Samir; Huang, Yong; Hanson, Robert M.; Tobias, Malcolm; Krishnan, Sriram; Li, Wilfred; Nielsen, Jens E.; Baker, Nathan A.

    2011-04-02

    APBS and PDB2PQR are widely utilized free software packages for biomolecular electrostatics calculations. Using the Opal toolkit, we have developed a web services framework for these software packages that enables the use of APBS and PDB2PQR by users who do not have local access to the necessary amount of computational capabilities. This not only increases accessibility of the software to a wider range of scientists, educators, and students but it also increases the availability of electrostatics calculations on portable computing platforms. Users can access this new functionality in two ways. First, an Opal-enabled version of APBS is provided in current distributions, available freely on the web. Second, we have extended the PDB2PQR web server to provide an interface for the setup, execution, and visualization electrostatics potentials as calculated by APBS. This web interface also uses the Opal framework which ensures the scalability needed to support the large APBS user community. Both of these resources are available from the APBS/PDB2PQR website: http://www.poissonboltzmann.org/.

  12. Edge gradient and safety factor effects on electrostatic turbulent transport in tokamaks

    SciTech Connect

    Tan, Ing Hwie

    1992-05-01

    Electrostatic turbulence and transport measurements are performed on the Tokapole-II tokamak at the University of Wisconsin-Madison, as the safety-factor and the edge equilibrium gradients and varied substantially. Tokapole-II is a poloidal divertor tokamak capable of operating at a wide range of safety factors due to its unique magnetic limiter configuration. It also has retractable material limiters in a large scrape-off region, which permits the study of edge boundary conditions like density and temperature gradients. The turbulence is independent of safety factor, but strongly sensitive to the local density gradient, which itself depends upon the limiter configuration. When a material limiter is inserted in a high discharge, the density gradient is increased locally together with a local increase of the turbulence. On the other hand, limiter insertion in low discharges did not increase the density gradient as much and the turbulence properties are unchanged with respect to the magnetic limiter case. It is conducted then, that electrostatic turbulence is caused by the density gradient. Although the electrostatic fluctuation driven transport is enhanced in the large density gradient case, it is in all cases to small to explain the observed energy confinement times. To explore instabilities with small wavelengths, a 0.5 mm diameter shperical Langmuir probe was constructed, and its power compared with the power measured by larger cylindrical probes.

  13. Biosensors Fabricated through Electrostatic Assembly of Enzymes/Polyelectrolyte Hybrid Layers on Carbon Nanotubes

    SciTech Connect

    Lin, Yuehe; Liu, Guodong; Wang, Jun

    2006-06-01

    Carbon nanotubes (CNTs) have emerged as new class of nanomaterials that is receiving considerable interest because of their unique structure, mechanical, and electronic properties. One promising application of CNTs is to fabricate highly sensitive chemo/biosensors.1-4 For construction of these CNT-based sensors, the CNTs first have to be modified with some molecules specific to the interests. Generally, covalent binding, affinity, and electrostatic interaction have been utilized for the modification of CNTs. Among them, the electrostatic method is attractive due to its simplicity and high efficiency. In present work, we have developed highly sensitively amperometric biosensors for glucose, choline, organophosphate pesticide (OPP) and nerve agents (NAs) based on electrostatically assembling enzymes on the surface of CNTs. All these biosensors were fabricated by immobilization of enzymes on the negatively charged CNTs surface through alternately assembling a cationic poly(diallydimethylammonium chloride) (PDDA) layer and an enzyme layer. Using this layer-by-layer (LBL) technique, a bioactive nanocomposite film was fabricated on the electrode surface. Owing to the electrocatalytic effect of CNTs, an amplified electrochemical signal was achieved, which leads to low detections limits for glucose, choline, and OPP and NAs.

  14. Coarse-grained electrostatic interactions of coronene: Towards the crystalline phase

    SciTech Connect

    Heinemann, Thomas Klapp, Sabine H. L.; Palczynski, Karol Dzubiella, Joachim

    2015-11-07

    In this article, we present and compare two different, coarse-grained approaches to model electrostatic interactions of disc-shaped aromatic molecules, specifically coronene. Our study builds on our previous work [T. Heinemann et al., J. Chem. Phys. 141, 214110 (2014)], where we proposed, based on a systematic coarse-graining procedure starting from the atomistic level, an anisotropic effective (Gay-Berne-like) potential capable of describing van der Waals contributions to the interaction energy. To take into account electrostatics, we introduce, first, a linear quadrupole moment along the symmetry axis of the coronene disc. The second approach takes into account the fact that the partial charges within the molecules are distributed in a ring-like fashion. We then reparametrize the effective Gay-Berne-like potential such that it matches, at short distances, the ring-ring potential. To investigate the validity of these two approaches, we perform many-particle molecular dynamics simulations, focusing on the crystalline phase (karpatite) where electrostatic interaction effects are expected to be particularly relevant for the formation of tilted stacked columns. Specifically, we investigate various structural parameters as well as the melting transition. We find that the second approach yields consistent results with those from experiments despite the fact that the underlying potential decays with the wrong distance dependence at large molecule separations. Our strategy can be transferred to a broader class of molecules, such as benzene or hexabenzocoronene.

  15. California Wintertime Precipitation in Regional and Global Climate Models

    SciTech Connect

    Caldwell, P M

    2009-04-27

    In this paper, wintertime precipitation from a variety of observational datasets, regional climate models (RCMs), and general circulation models (GCMs) is averaged over the state of California (CA) and compared. Several averaging methodologies are considered and all are found to give similar values when model grid spacing is less than 3{sup o}. This suggests that CA is a reasonable size for regional intercomparisons using modern GCMs. Results show that reanalysis-forced RCMs tend to significantly overpredict CA precipitation. This appears to be due mainly to overprediction of extreme events; RCM precipitation frequency is generally underpredicted. Overprediction is also reflected in wintertime precipitation variability, which tends to be too high for RCMs on both daily and interannual scales. Wintertime precipitation in most (but not all) GCMs is underestimated. This is in contrast to previous studies based on global blended gauge/satellite observations which are shown here to underestimate precipitation relative to higher-resolution gauge-only datasets. Several GCMs provide reasonable daily precipitation distributions, a trait which doesn't seem tied to model resolution. GCM daily and interannual variability is generally underpredicted.

  16. INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION

    Office of Scientific and Technical Information (OSTI)

    interval technical basis document Chiaro, P.J. Jr. 44 INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION DETECTORS; RADIATION MONITORS; DOSEMETERS;...

  17. In-Drift Precipitates/Salts Model

    SciTech Connect

    P. Mariner

    2003-10-21

    As directed by ''Technical Work Plan For: Engineered Barrier System Department Modeling and Testing FY03 Work Activities'' (BSC 2003 [165601]), the In-Drift Precipitates/Salts (IDPS) model is developed and refined to predict the aqueous geochemical effects of evaporation in the proposed repository. The purpose of this work is to provide a model for describing and predicting the postclosure effects of evaporation and deliquescence on the chemical composition of water within the proposed Engineered Barrier System (EBS). Application of this model is to be documented elsewhere for the Total System Performance Assessment License Application (TSPA-LA). The principal application of this model is to be documented in REV 02 of ''Engineered Barrier System: Physical and Chemical Environment Model'' (BSC 2003 [165601]). The scope of this document is to develop, describe, and validate the IDPS model. This model is a quasi-equilibrium model. All reactions proceed to equilibrium except for several suppressed minerals in the thermodynamic database not expected to form under the proposed repository conditions within the modeling timeframe. In this revision, upgrades to the EQ3/6 code (Version 8.0) and Pitzer thermodynamic database improve the applicable range of the model. These new additions allow equilibrium and reaction-path modeling of evaporation to highly concentrated brines for potential water compositions of the system Na-K-H-Mg-Ca-Al-Cl-F-NO{sub 3}-SO{sub 4}-Br-CO{sub 3}-SiO{sub 2}-CO{sub 2}-O{sub 2}-H{sub 2}O at temperatures in the range of 0 C to 125 C, pressures in the atmospheric range, and relative humidity in the range of 0 to 100 percent. This system applies to oxidizing conditions only, and therefore limits the model to applications involving oxidizing conditions. A number of thermodynamic parameters in the Pitzer database have values that have not been determined or verified for the entire temperature range. In these cases, the known values are used to approximate

  18. ARM - Evaluation Product - Precipitation Radar Moments Mapped to a

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Cartesian Grid ProductsPrecipitation Radar Moments Mapped to a Cartesian Grid ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Precipitation Radar Moments Mapped to a Cartesian Grid The Scanning ARM precipitation radars produce measurements of raw radar moments in antenna coordinates of range from and

  19. ARM - Evaluation Product - Quantitative Precipitation Estimates (QPE) from

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the CSAPR ProductsQuantitative Precipitation Estimates (QPE) from the CSAPR ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Quantitative Precipitation Estimates (QPE) from the CSAPR Precipitation rates from cloud systems can give a fundamental insight into the processes occurring in-cloud. While rain

  20. ARM - Field Campaign - IPHEX/Orographic Precipitation Processes Study

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    govCampaignsIPHEX/Orographic Precipitation Processes Study Campaign Links Field Campaign Report IPHEX Web Page ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : IPHEX/Orographic Precipitation Processes Study 2013.12.01 - 2014.12.31 Lead Scientist : Ana Barros For data sets, see below. Abstract IPHEX - Integrated Precipitation and Hydrology Experiment (IPHEX Science Plan, 2013) is a field campaign led by

  1. The chemical enhancement of the triboelectric separation of coal from pyrite and ash: A novel approach for electrostatic separation of mineral matter from coal

    SciTech Connect

    Gustafson, R.M.; DiMare, S.; Sabatini, J.

    1992-02-01

    Arthur D. Little, Inc., under contract to the US DOE Pittsburgh Energy Technology Center, has developed a triboelectric separation device for coal beneficiation, that employs an entrained-flow, rotating-cylinder concept. The described apparatus has been used to test the efficacy of chemical pretreatment and in-situ treatment of coal on separation efficiency. Coal particle entrainment is achieved with gaseous carbon dioxide and particle collection is accomplished by an electrostatic plate separator. The triboelectric separation device incorporates instrumentation for the direct measurement of charge in the dilute-phase particle stream. Some of the pretreatment materials investigated under this project to modify the surface charging characteristics of the coal included oleic acid, sodium oleate, quinoline and dicyclohexylamine. Ammonia and sulfur dioxide at a concentration up to 1000 ppM was used for in-situ treatment of the coal, with carbon dioxide as the carrier/inerting gas. Nitrogen was used earlier in the test program as the carrier/inerting gas for the coal, but a severe arcing problem was encountered in the electrostatic collector with nitrogen as the carrier gas. This problem did not occur when carbon dioxide was used. The report covers the chemical treatment employed, and summarizes and interprets the results achieved. In addition, an economic analysis of a full scale system based on this concept is presented.

  2. The chemical enhancement of the triboelectric separation of coal from pyrite and ash: A novel approach for electrostatic separation of mineral matter from coal. Final report

    SciTech Connect

    Gustafson, R.M.; DiMare, S.; Sabatini, J.

    1992-02-01

    Arthur D. Little, Inc., under contract to the US DOE Pittsburgh Energy Technology Center, has developed a triboelectric separation device for coal beneficiation, that employs an entrained-flow, rotating-cylinder concept. The described apparatus has been used to test the efficacy of chemical pretreatment and in-situ treatment of coal on separation efficiency. Coal particle entrainment is achieved with gaseous carbon dioxide and particle collection is accomplished by an electrostatic plate separator. The triboelectric separation device incorporates instrumentation for the direct measurement of charge in the dilute-phase particle stream. Some of the pretreatment materials investigated under this project to modify the surface charging characteristics of the coal included oleic acid, sodium oleate, quinoline and dicyclohexylamine. Ammonia and sulfur dioxide at a concentration up to 1000 ppM was used for in-situ treatment of the coal, with carbon dioxide as the carrier/inerting gas. Nitrogen was used earlier in the test program as the carrier/inerting gas for the coal, but a severe arcing problem was encountered in the electrostatic collector with nitrogen as the carrier gas. This problem did not occur when carbon dioxide was used. The report covers the chemical treatment employed, and summarizes and interprets the results achieved. In addition, an economic analysis of a full scale system based on this concept is presented.

  3. Anomalous momentum and energy transfer rates for electrostatic ion-cyclotron turbulence in downward auroral-current regions of the Earth's magnetosphere. III

    SciTech Connect

    Jasperse, John R.; Basu, Bamandas; Lund, Eric J.; Grossbard, Neil

    2010-06-15

    Recently, a new multimoment fluid theory was developed for inhomogeneous, nonuniformly magnetized plasma in the guiding-center and gyrotropic approximation that includes the effect of electrostatic, turbulent, wave-particle interactions (see Jasperse et al. [Phys. Plasmas 13, 072903 (2006); ibid.13, 112902 (2006)]). In the present paper, which is intended as a sequel, it is concluded from FAST satellite data that the electrostatic ion-cyclotron turbulence that appears is due to the operation of an electron, bump-on-tail-driven ion-cyclotron instability for downward currents in the long-range potential region of the Earth's magnetosphere. Approximate closed-form expressions for the anomalous momentum and energy transfer rates for the ion-cyclotron turbulence are obtained. The turbulent, inhomogeneous, nonuniformly magnetized, multimoment fluid theory given above, in the limit of a turbulent, homogeneous, uniformly magnetized, quasisteady plasma, yields the well-known formula for the anomalous resistivity given by Gary and Paul [Phys. Rev. Lett. 26, 1097 (1971)] and Tange and Ichimaru [J. Phys. Soc. Jpn. 36, 1437 (1974)].

  4. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Cloud Aerosol Precipitation Experiment (ACAPEX) 2015.01.14 - 2015.02.12 Lead...

  5. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Cloud Aerosol Precipitation Experiment (ACAPEX): Aerial Observations 2015.01.14...

  6. University of Oregon: GPS-based Precipitable Water Vapor (PWV)

    DOE Data Explorer

    Vignola, F.; Andreas, A.

    2013-08-22

    A partnership with the University of Oregon and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect Precipitable Water Vapor (PWV) data to compliment existing resource assessment data collection by the university.

  7. University of Oregon: GPS-based Precipitable Water Vapor (PWV)

    DOE Data Explorer

    Vignola, F.; Andreas, A.

    A partnership with the University of Oregon and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect Precipitable Water Vapor (PWV) data to compliment existing resource assessment data collection by the university.

  8. BASIC PEROXIDE PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINANTS

    DOEpatents

    Seaborg, G.T.; Perlman, I.

    1959-02-10

    A process is described for the separation from each other of uranyl values, tetravalent plutonium values and fission products contained in an aqueous acidic solution. First the pH of the solution is adjusted to between 2.5 and 8 and hydrogen peroxide is then added to the solution causing precipitation of uranium peroxide which carries any plutonium values present, while the fission products remain in solution. Separation of the uranium and plutonium values is then effected by dissolving the peroxide precipitate in an acidic solution and incorporating a second carrier precipitate, selective for plutonium. The plutonium values are thus carried from the solution while the uranium remains flissolved. The second carrier precipitate may be selected from among the group consisting of rare earth fluorides, and oxalates, zirconium phosphate, and bismuth lihosphate.

  9. Future changes in regional precipitation simulated by a half-degree coupled climate model: Sensitivity to horizontal resolution

    DOE PAGES [OSTI]

    Shields, Christine A.; Kiehl, Jeffrey T.; Meehl, Gerald A.

    2016-06-02

    The global fully coupled half-degree Community Climate System Model Version 4 (CCSM4) was integrated for a suite of climate change ensemble simulations including five historical runs, five Representative Concentration Pathway 8.5 [RCP8.5) runs, and a long Pre-Industrial control run. This study focuses on precipitation at regional scales and its sensitivity to horizontal resolution. The half-degree historical CCSM4 simulations are compared to observations, where relevant, and to the standard 1° CCSM4. Both the halfdegree and 1° resolutions are coupled to a nominal 1° ocean. North American and South Asian/Indian monsoon regimes are highlighted because these regimes demonstrate improvements due to highermore » resolution, primarily because of better-resolved topography. Agriculturally sensitive areas are analyzed and include Southwest, Central, and Southeast U.S., Southern Europe, and Australia. Both mean and extreme precipitation is discussed for convective and large-scale precipitation processes. Convective precipitation tends to decrease with increasing resolution and large-scale precipitation tends to increase. Improvements for the half-degree agricultural regions can be found for mean and extreme precipitation in the Southeast U.S., Southern Europe, and Australian regions. Climate change responses differ between the model resolutions for the U.S. Southwest/Central regions and are seasonally dependent in the Southeast and Australian regions. Both resolutions project a clear drying signal across Southern Europe due to increased greenhouse warming. As a result, differences between resolutions tied to the representation of convective and large-scale precipitation play an important role in the character of the climate change and depend on regional influences.« less

  10. Gas storage materials, including hydrogen storage materials

    DOEpatents

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  11. Communications circuit including a linear quadratic estimator

    SciTech Connect

    Ferguson, Dennis D.

    2015-07-07

    A circuit includes a linear quadratic estimator (LQE) configured to receive a plurality of measurements a signal. The LQE is configured to weight the measurements based on their respective uncertainties to produce weighted averages. The circuit further includes a controller coupled to the LQE and configured to selectively adjust at least one data link parameter associated with a communication channel in response to receiving the weighted averages.

  12. Gas storage materials, including hydrogen storage materials

    DOEpatents

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  13. Simulation and optimization of a 10 A electron gun with electrostatic compression for the electron beam ion source

    SciTech Connect

    Pikin, A.; Beebe, E. N.; Raparia, D.

    2013-03-15

    Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions' charge states, and therefore, the ions' energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current up to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 Division-Sign 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 Division-Sign 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.

  14. ARM - Field Campaign - Integrated Precipitation and Hydrology Experiment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    (IPHEX): Cloud Spectrometer and Impactor (CSI) govCampaignsIntegrated Precipitation and Hydrology Experiment (IPHEX): Cloud Spectrometer and Impactor (CSI) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Integrated Precipitation and Hydrology Experiment (IPHEX): Cloud Spectrometer and Impactor (CSI) 2014.03.01 - 2014.07.01 Lead Scientist : Gerald Mace For data sets, see below. Abstract IPHEX -

  15. Precipitation and Hydrology Experiment Counter-Flow Spectrometer and

    Office of Scientific and Technical Information (OSTI)

    Impactor Field Campaign Report (Program Document) | SciTech Connect Precipitation and Hydrology Experiment Counter-Flow Spectrometer and Impactor Field Campaign Report Citation Details In-Document Search Title: Precipitation and Hydrology Experiment Counter-Flow Spectrometer and Impactor Field Campaign Report The U.S. Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerial Facility (ARM AAF) counter-flow spectrometer and impactor (CSI) probe was

  16. Precipitation and Air Pollution at Mountain and Plain Stations in Northern China: Insights Gained from Observations and Modeling

    SciTech Connect

    Guo, Jianping; Deng, Minjun; Fan, Jiwen; Li, Zhanqing; Chen, Qian; Zhai, Panmao; Dai, Zhijian; Li, Xiaowen

    2014-04-27

    We analyzed 40 year data sets of daily average visibility (a proxy for surface aerosol concentration) and hourly precipitation at seven weather stations, including three stations located on the Taihang Mountains, during the summertime in northern China. There was no significant trend in summertime total precipitation at almost all stations. However, light rain decreased, whereas heavy rain increased as visibility decreased over the period studied. The decrease in light rain was seen in both orographic-forced shallow clouds and mesoscale stratiform clouds. The consistent trends in observed changes in visibility, precipitation, and orographic factor appear to be a testimony to the effects of aerosols. The potential impact of large-scale environmental factors, such as precipitable water, convective available potential energy, and vertical wind shear, on precipitation was investigated. No direct links were found. To validate our observational hypothesis about aerosol effects, Weather Research and Forecasting model simulations with spectral-bin microphysics at the cloud-resolving scale were conducted. Model results confirmed the role of aerosol indirect effects in reducing the light rain amount and frequency in the mountainous area for both orographic-forced shallow clouds and mesoscale stratiform clouds and in eliciting a different response in the neighboring plains. The opposite response of light rain to the increase in pollution when there is no terrain included in the model suggests that orography is likely a significant factor contributing to the opposite trends in light rain seen in mountainous and plain areas.

  17. IN-SITU CHEMICAL STABILIZATION OF METALS AND RADIONUCLIDES THROUGH ENHANCED ANAEROBIC REDUCTIVE PRECIPITATION

    SciTech Connect

    Christopher C. Lutes; Angela Frizzell, PG; Todd A. Thornton; James M. Harrington

    2003-08-01

    The objective of this NETL sponsored bench-scale study was to demonstrate the efficacy of enhanced anaerobic reductive precipitation (EARP) technology for precipitating uranium using samples from contaminated groundwater at the Fernald Closure Project (FCP) in Cincinnati, Ohio. EARP enhances the natural biological reactions in the groundwater through addition of food grade substrates (typically molasses) to drive the oxidative-reductive potential of the groundwater to a lower, more reduced state, thereby precipitating uranium from solution. In order for this in-situ technology to be successful in the long term, the precipitated uranium must not be re-dissolved at an unacceptable rate once groundwater geochemical conditions return to their pretreatment, aerobic state. The approach for this study is based on the premise that redissolution of precipitated uranium will be slowed by several mechanisms including the presence of iron sulfide precipitates and coatings, and sorption onto fresh iron oxides. A bench-scale study of the technology was performed using columns packed with site soil and subjected to a continuous flow of uranium-contaminated site groundwater (476 {micro}g/L). The ''treated'' column received a steady stream of dilute food grade molasses injected into the contaminated influent. Upon attainment of a consistently reducing environment and demonstrated removal of uranium, an iron sulfate amendment was added along with the molasses in the influent solution. After a month long period of iron addition, the treatments were halted, and uncontaminated, aerobic, unamended water was introduced to the treated column to assess rebound of uranium concentrations. In the first two months of treatment, the uranium concentration in the treated column decreased to the clean-up level (30 {micro}g/L) or below, and remained there for the remainder of the treatment period. A brief period of resolubilization of uranium was observed as the treated column returned to aerobic

  18. Scramjet including integrated inlet and combustor

    SciTech Connect

    Kutschenreuter, P.H. Jr.; Blanton, J.C.

    1992-02-04

    This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.

  19. Electric Power Monthly, August 1990. [Glossary included

    SciTech Connect

    Not Available

    1990-11-29

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  20. Protein Viability on Au Nanoparticles during an Electrospray and Electrostatic-Force-Directed Assembly Process

    DOE PAGES [OSTI]

    Mao, Shun; Lu, Ganhua; Yu, Kehan; Chen, Junhong

    2010-01-01

    We study the protein viability on Au nanoparticles during an electrospray and electrostatic-force-directed assembly process, through which Au nanoparticle-antibody conjugates are assembled onto the surface of carbon nanotubes (CNTs) to fabricate carbon nanotube field-effect transistor (CNTFET) biosensors. Enzyme-linked immunosorbent assay (ELISA) and field-effect transistor (FET) measurements have been used to investigate the antibody activity after the nanoparticle assembly. Upon the introduction of matching antigens, the colored reaction from the ELISA and the change in the electrical characteristic of the CNTFET device confirm that the antibody activity is preserved during the assembly process.

  1. Controlling the Electrostatic Discharge Ignition Sensitivity of Composite Energetic Materials Using Carbon Nanotube Additives

    SciTech Connect

    Kade H. Poper; Eric S. Collins; Michelle L. Pantoya; Michael Daniels

    2014-10-01

    Powder energetic materials are highly sensitive to electrostatic discharge (ESD) ignition. This study shows that small concentrations of carbon nanotubes (CNT) added to the highly reactive mixture of aluminum and copper oxide (Al + CuO) significantly reduces ESD ignition sensitivity. CNT act as a conduit for electric energy, bypassing energy buildup and desensitizing the mixture to ESD ignition. The lowest CNT concentration needed to desensitize ignition is 3.8 vol.% corresponding to percolation corresponding to an electrical conductivity of 0.04 S/cm. Conversely, added CNT increased Al + CuO thermal ignition sensitivity to a hot wire igniter.

  2. Phase-mixing of electrostatic modes in a cold magnetized electron-positron plasma

    SciTech Connect

    Maity, Chandan; Chakrabarti, Nikhil

    2013-08-15

    In a fluid description, we study space-time evolution of electrostatic oscillations in a cold magnetized electron-positron plasma. Nonlinear results up to third order, obtained by employing a simple perturbation technique, indicate phase-mixing and thus breaking of excited oscillations, and provide an expression for the phase-mixing time. It is shown that an increase in the strength of ambient magnetic field results in an increase in the phase-mixing time. The results of our investigation will be of relevance to astrophysical environments as well as laboratory experiments.

  3. Simulation and measurement of the electrostatic beam kicker in the low-energy undulator test line.

    SciTech Connect

    Waldschmidt, G. J.

    1998-10-27

    An electrostatic kicker has been constructed for use in the Low-Energy Undulator Test Line (LEUTL) at the Advanced Photon Source (APS). The function of the kicker is to limit the amount of beam current to be accelerated by the APS linac. Two electrodes within the kicker create an electric field that adjusts the trajectory of the beam. This paper will explore the static fields that are set up between the offset electrode plates and determine the reaction of the beam to this field. The kicker was numerically simulated using the electromagnetic solver package MAFIA [1].

  4. Passive Electrostatic Recycling Spectrometer of Desk-Top Size for Charged Particles of Low Kinetic Energy

    SciTech Connect

    Tessier, D. R.; Niu, Y.; Seccombe, D. P.; Reddish, T. J.; Alderman, A. J.; Birdsey, B. G.; Hammond, P.; Read, F. H.

    2007-12-21

    A passive electrostatic recycling spectrometer for charged particles is described and demonstrated to store electrons with typical kinetic energies of tens of eV. The design of the charged particle optics and the basic operating characteristics of the storage ring are discussed. The storage lifetime achieved is {approx}50 {mu}s, which is target gas pressure limited and corresponds to {approx}200 orbits of the 0.65 m orbital circumference. The storage ring also has controllable energy dispersive elements enabling it to operate as a spectroscopic device.

  5. In-tank precipitation with tetraphenylborate: recent process and research results

    SciTech Connect

    Walker, D.D.; Barnes, M.J.; Crawford, C.L.; Peterson, R.A.; Swingle, R.F.; Fink, S.D.

    1997-09-01

    At the Savannah River Site, the In-Tank Precipitation process uses sodium tetraphenylborate to decontaminate soluble waste by precipitating cesium-137.

  6. Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials

    SciTech Connect

    Collins, Emory D; Voit, Stewart L; Vedder, Raymond James

    2011-06-01

    The focus of this report is the evaluation of various co-precipitation processes for use in the synthesis of mixed oxide feedstock powders for the Ceramic Fuels Technology Area within the Fuels Cycle R&D (FCR&D) Program's Advanced Fuels Campaign. The evaluation will include a comparison with standard mechanical mixing of dry powders and as well as other co-conversion methods. The end result will be the down selection of a preferred sequence of co-precipitation process for the preparation of nuclear fuel feedstock materials to be used for comparison with other feedstock preparation methods. A review of the literature was done to identify potential nitrate-to-oxide co-conversion processes which have been applied to mixtures of uranium and plutonium to achieve recycle fuel homogeneity. Recent studies have begun to study the options for co-converting all of the plutonium and neptunium recovered from used nuclear fuels, together with appropriate portions of recovered uranium to produce the desired mixed oxide recycle fuel. The addition of recycled uranium will help reduce the safeguard attractiveness level and improve proliferation resistance of the recycled fuel. The inclusion of neptunium is primarily driven by its chemical similarity to plutonium, thus enabling a simple quick path to recycle. For recycle fuel to thermal-spectrum light water reactors (LWRs), the uranium concentration can be {approx}90% (wt.), and for fast spectrum reactors, the uranium concentration can typically exceed 70% (wt.). However, some of the co-conversion/recycle fuel fabrication processes being developed utilize a two-step process to reach the desired uranium concentration. In these processes, a 50-50 'master-mix' MOX powder is produced by the co-conversion process, and the uranium concentration is adjusted to the desired level for MOX fuel recycle by powder blending (milling) the 'master-mix' with depleted uranium oxide. In general, parameters that must be controlled for co-precipitation

  7. High-resolution dynamically downscaled projections of precipitation in the mid and late 21st century over North America

    DOE PAGES [OSTI]

    none,

    2015-07-29

    This study performs high-spatial-resolution (12 km) Weather Research and Forecasting (WRF) simulations over a very large domain (7200 km × 6180 km, covering much of North America) to explore changes in mean and extreme precipitation in the mid and late 21st century under Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5). We evaluate WRF model performance for a historical simulation and future projections, applying the Community Climate System Model version 4 (CCSM4) as initial and boundary conditions with and without a bias correction. WRF simulations using boundary and initial conditions from both versions of CCSM4 show smaller biasesmore » versus evaluation data sets than does CCSM4 over western North America. WRF simulations also improve spatial details of precipitation over much of North America. However, driving the WRF with the bias-corrected CCSM4 does not always reduce the bias. WRF-projected changes in precipitation include decreasing intensity over the southwestern United States, increasing intensity over the eastern United States and most of Canada, and an increase in the number of days with heavy precipitation over much of North America. Projected precipitation changes are more evident in the late 21st century than the mid 21st century, and they are more evident under RCP 8.5 than under RCP 4.5 in the late 21st century. Uncertainties in the projected changes in precipitation due to different warming scenarios are non-negligible. Differences in summer precipitation changes between WRF and CCSM4 are significant over most of the United States.« less

  8. Oil recovery improvement through profile modification by thermal precipitation. Final report, October 1, 1991--August 27, 1993

    SciTech Connect

    Reis, J.C.

    1994-04-01

    The objective of this research project has been to investigate the potential for using temperature-dependent (thermal) precipitation of chemicals to reduce the porosity and permeability of porous rocks. The method consists of injecting hot water that is saturated in a chemical that will precipitate upon cooling. Through this process, the permeability of thief zones in oil reservoirs could be reduced, allowing improved recovery by secondary and tertiary recovery processes. The chemical literature was reviewed for environmentally safe chemicals that have a suitable temperature-dependent solubility for the thermal precipitation process. Four suitable chemicals were identified: boron oxide, potassium carbonate, sodium borate, and potassium chloride. An experimental apparatus was constructed to test the thermal precipitation process at high temperatures and pressures. Data was collected with clastic Berea sandstone cores using two chemicals: potassium carbonate and sodium borate. Data was also collected with limestone cores using potassium carbonate. The porosities and permeabilities were measured before and after being treated by the thermal precipitation process. A theoretical study of the process was also conducted. A model for predicting the fractional reduction in porosity was developed that is based on the temperature-dependent solubility of the chemical used. An empirical model that predicts the fractional reduction in permeability in terms of the fractional reduction in porosity was then developed for Berea sandstone. Existing theoretical models for estimating the permeability of porous media were tested against the measured data. The existing models, including the widely-used Carman-Kozeny equation, underpredicted the reduction in permeability for the thermal precipitation process. This study has shown that the thermal precipitation process has considerable potential for the controlled reduction in porosity and permeability in geologic formations.

  9. High-resolution dynamically downscaled projections of precipitation in the mid and late 21st century over North America

    SciTech Connect

    none,

    2015-07-29

    This study performs high-spatial-resolution (12 km) Weather Research and Forecasting (WRF) simulations over a very large domain (7200 km × 6180 km, covering much of North America) to explore changes in mean and extreme precipitation in the mid and late 21st century under Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5). We evaluate WRF model performance for a historical simulation and future projections, applying the Community Climate System Model version 4 (CCSM4) as initial and boundary conditions with and without a bias correction. WRF simulations using boundary and initial conditions from both versions of CCSM4 show smaller biases versus evaluation data sets than does CCSM4 over western North America. WRF simulations also improve spatial details of precipitation over much of North America. However, driving the WRF with the bias-corrected CCSM4 does not always reduce the bias. WRF-projected changes in precipitation include decreasing intensity over the southwestern United States, increasing intensity over the eastern United States and most of Canada, and an increase in the number of days with heavy precipitation over much of North America. Projected precipitation changes are more evident in the late 21st century than the mid 21st century, and they are more evident under RCP 8.5 than under RCP 4.5 in the late 21st century. Uncertainties in the projected changes in precipitation due to different warming scenarios are non-negligible. Differences in summer precipitation changes between WRF and CCSM4 are significant over most of the United States.

  10. Photoactive devices including porphyrinoids with coordinating additives

    DOEpatents

    Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K; Thompson, Mark E; Trinh, Cong; Whited, Matthew; Diev, Vlacheslav

    2015-05-12

    Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.

  11. Subterranean barriers including at least one weld

    DOEpatents

    Nickelson, Reva A.; Sloan, Paul A.; Richardson, John G.; Walsh, Stephanie; Kostelnik, Kevin M.

    2007-01-09

    A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.

  12. Rotor assembly including superconducting magnetic coil

    DOEpatents

    Snitchler, Gregory L.; Gamble, Bruce B.; Voccio, John P.

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  13. Nuclear reactor shield including magnesium oxide

    DOEpatents

    Rouse, Carl A.; Simnad, Massoud T.

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  14. Electric power monthly, September 1990. [Glossary included

    SciTech Connect

    Not Available

    1990-12-17

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  15. Power generation method including membrane separation

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  16. Inhomogeneities of plasma density and electric field as sources of electrostatic turbulence in the auroral region

    SciTech Connect

    Ilyasov, Askar A.; Chernyshov, Alexander A. Mogilevsky, Mikhail M.; Golovchanskaya, Irina V. Kozelov, Boris V.

    2015-03-15

    Inhomogeneities of plasma density and non-uniform electric fields are compared as possible sources of a sort of electrostatic ion cyclotron waves that can be identified with broadband extremely low frequency electrostatic turbulence in the topside auroral ionosphere. Such waves are excited by inhomogeneous energy-density-driven instability. To gain a deeper insight in generation of these waves, computational modeling is performed with various plasma parameters. It is demonstrated that inhomogeneities of plasma density can give rise to this instability even in the absence of electric fields. By using both satellite-observed and model spatial distributions of plasma density and electric field in our modeling, we show that specific details of the spatial distributions are of minor importance for the wave generation. The solutions of the nonlocal inhomogeneous energy-density-driven dispersion relation are investigated for various ion-to-electron temperature ratios and directions of wave propagation. The relevance of the solutions to the observed spectra of broadband extremely low frequency emissions is shown.

  17. THE NONLINEAR AND NONLOCAL LINK BETWEEN MACROSCOPIC ALFVNIC AND MICROSCOPIC ELECTROSTATIC SCALES IN THE SOLAR WIND

    SciTech Connect

    Valentini, F.; Vecchio, A.; Donato, S.; Carbone, V.; Veltri, P.; Briand, C.; Bougeret, J.

    2014-06-10

    The local heating of the solar-wind gas during its expansion represents one of the most intriguing problems in space plasma physics and is at present the subject of a relevant scientific effort. The possible mechanisms that could account for local heat production in the interplanetary medium are most likely related to the turbulent character of the solar-wind plasma. Nowadays, many observational and numerical analyses are devoted to the identification of fluctuation channels along which energy is carried from large to short wavelengths during the development of the turbulent cascade; these fluctuation channels establish the link between macroscopic and microscopic scales. In this Letter, by means of a quantitative comparison between in situ measurements in the solar wind from the STEREO spacecraft and numerical results from kinetic simulations, we identify an electrostatic channel of fluctuations that develops along the turbulent cascade in a direction parallel to the ambient magnetic field. This channel appears to be efficient in transferring the energy from large Alfvnic to short electrostatic acoustic-like scales up to a range of wavelengths where it can finally be turned into heat, even when the electron to proton temperature ratio is of the order of unity.

  18. Exploring Local Electrostatic Effects with Scanning Probe Microscopy: Implications for Piezoresponse Force Microscopy and Triboelectricity

    DOE PAGES [OSTI]

    Balke, Nina; Maksymovych, Petro; Jesse, Stephen; Kravchenko, Ivan I.; Li, Qian; Kalinin, Sergei V.

    2014-09-25

    The implementation of contact mode Kelvin probe force microscopy (KPFM) utilizes the electrostatic interactions between tip and sample when the tip and sample are in contact with each other. Surprisingly, the electrostatic forces in contact are large enough to be measured even with tips as stiff as 4.5 N/m. As for traditional non-contact KPFM, the signal depends strongly on electrical properties of the sample, such as the dielectric constant, and the tip-properties, such as the stiffness. Since the tip is in contact with the sample, bias-induced changes in the junction potential between tip and sample can be measured with highermore » lateral and temporal resolution compared to traditional non-contact KPFM. Significant and reproducible variations of tip-surface capacitance are observed and attributed to surface electrochemical phenomena. Lastly, observations of significant surface charge states at zero bias and strong hysteretic electromechanical responses at non-ferroelectric surface have significant implications for fields such as triboelectricity and piezoresponse force microscopy.« less

  19. Characterization of a plasma produced by pulsed arc using an electrostatic double probe

    SciTech Connect

    Garcia, L.A.; Pulzara, A.O.; Devia, A.; Restrepo, E.

    2005-05-01

    In this work the determination of plasma parameters of a pulsed-arc discharge by using an electrostatic double probe is presented. The system to generate the plasma is composed mainly of a reaction chamber, where the electrodes of different materials (Ti, Zr, Al) were placed in order to identify the variation of the plasma parameters when the cathode material is changed. An automatic system has been implemented for acquiring data starting from the bias of a double electrostatic probe. This system allowed registering complete curves of current-voltage in relatively short times ({approx_equal}30 ms). The electron density n{sub e} and electron temperature T{sub e} can be extracted from the I-V characteristic curves obtained. The advantage of this technique is its facility to provide the whole quantity of 'in situ' information, which can be compared with the theoretical results using numeric methods for the I-V curves simulation. By means of a suitable fit this allowed the determination of the plasma parameters. The values obtained for T{sub e} were in the order of 1 eV and for n{sub e} of about 10{sup 13} cm{sup -3}. A significant variation for n{sub e} was not found.

  20. The effect of a dust size distribution on electrostatic sheaths in unmagnetized dusty plasmas

    SciTech Connect

    Benlemdjaldi, D.; Tahraoui, A.; Hugon, R.; Bougdira, J.

    2013-04-15

    In this work, the structure of plasma sheaths in presence of dust particles with different sizes is investigated numerically in a multifluid framework, where the dust size distribution is modeled by Gauss' law. For this, we have established a 1D, stationary, unmagnetized, and weakly collisional electronegative dusty plasma sheath model. The electrons and negative ions are considered in a local thermodynamic equilibrium, therefore, described by a Boltzmann distribution. On the other hand, positive ions and dust grains are described by fluid equations. The charging process is described by the orbit motion limited model. It is shown that taking into account dust grains with different sizes reduces considerably the sheath thickness. The behavior of dust surface potential is not affected, but the dust charge number is reduced, as well as the electrostatic force. It results in a decrease of layered structure. The presence of negative ions makes the structure of the electrostatic potential more oscillatory. The other physical parameters are also analyzed and discussed.

  1. Characterization of extreme precipitation within atmospheric river events over California

    DOE PAGES [OSTI]

    Jeon, S.; Prabhat,; Byna, S.; Gu, J.; Collins, W. D.; Wehner, M. F.

    2015-11-17

    Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less

  2. Plasmon modes of metallic nanowires including quantum nonlocal effects

    SciTech Connect

    Moradi, Afshin

    2015-03-15

    The properties of electrostatic surface and bulk plasmon modes of cylindrical metallic nanowires are investigated, using the quantum hydrodynamic theory of plasmon excitation which allows an analytical study of quantum tunneling effects through the Bohm potential term. New dispersion relations are obtained for each type of mode and their differences with previous treatments based on the standard hydrodynamic model are analyzed in detail. Numerical results show by considering the quantum effects, as the value of wave number increases, the surface modes are slightly red-shifted first and then blue-shifted while the bulk modes are blue-shifted.

  3. Thermovoltaic semiconductor device including a plasma filter

    DOEpatents

    Baldasaro, Paul F.

    1999-01-01

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  4. Optical panel system including stackable waveguides

    DOEpatents

    DeSanto, Leonard; Veligdan, James T.

    2007-03-06

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  5. Optical panel system including stackable waveguides

    DOEpatents

    DeSanto, Leonard; Veligdan, James T.

    2007-11-20

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  6. Drapery assembly including insulated drapery liner

    DOEpatents

    Cukierski, Gwendolyn (Ithaca, NY)

    1983-01-01

    A drapery assembly is disclosed for covering a framed wall opening, the assembly including drapery panels hung on a horizontal traverse rod, the rod having a pair of master slides and means for displacing the master slides between open and closed positions. A pair of insulating liner panels are positioned behind the drapery, the remote side edges of the liner panels being connected with the side portions of the opening frame, and the adjacent side edges of the liner panels being connected with a pair of vertically arranged center support members adapted for sliding movement longitudinally of a horizontal track member secured to the upper horizontal portion of the opening frame. Pivotally arranged brackets connect the center support members with the master slides of the traverse rod whereby movement of the master slides to effect opening and closing of the drapery panels effects simultaneous opening and closing of the liner panels.

  7. Biogenicity of silica precipitation around geysers and hot-spring vents, North Island, New Zealand

    SciTech Connect

    Jones, B.; Renaut, R.W.; Rosen, M.R.

    1997-01-01

    Before anthropogenic modifications, Ohaaki Pool (Broadlands-Ohaaki) and Dragon`s Mouth Geyser (Wairakei) emitted waters at temperatures of 93--98 C. The siliceous sinter that precipitated around their vents has the characteristics of geyserite, a dense laminated deposit of presumed abiogenic origin, that was precipitated from waters too hot (>73C) to support microbes other than thermophilic bacteria. Petrographic and SEM examinations of the sinters show that they incorporate columnar stromatolites and silicified, laminated stromatolitic mats that contain well-preserved filamentous microbes. At both localities the microbes lack evidence of desiccation or shrinkage, which implies that they were silicified rapidly at or shortly after their death. Although boiling and very hot (>90 C) waters were discharged, temperatures at many sites surrounding the vents remained sufficiently low and moist to support a microbial community that included thermophilic bacteria and cyanobacteria. In these cooler niches, the microbes and their biofilms served as highly favorable templates for the nucleation and growth of amorphous silica, and collectively provided a microbial framework for the laminated accretionary sinter. Some columnar, spicular, and stratiform geyserites are probably not abiotic precipitates, but are true silica stromatolites.

  8. Fabrication of anatase precipitated glass-ceramics possessing high transparency

    SciTech Connect

    Masai, Hirokazu; Toda, Tatsuya; Takahashi, Yoshihiro; Fujiwara, Takumi

    2009-04-13

    Transparent anatase precipitated glass-ceramics were fabricated using ZnO as a component. The particle size of precipitated anatase is several nanometers enough to possess high transparency. The preparation of the Bi-free transparent TiO{sub 2} glass-ceramic was attained by substitution of two different kinds of oxides for bismuth oxide. It is also noteworthy that we have demonstrated the crystallization of metastable anatase in the glass-ceramics as a main phase. The present bulk anatase glass-ceramics will open up an application field for a TiO{sub 2}-containing photocatalyst.

  9. National Atmospheric Deposition Program (NADP) Networks: Data on the chemistry of precipitation

    DOE Data Explorer

    The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) is a nationwide network of sites collecting data on the chemistry of precipitation for monitoring of geographical and temporal long-term trends. The precipitation at each station is collected weekly according to strict clean-handling procedures. It is then sent to the Central Analytical Laboratory where it is analyzed for hydrogen (acidity as pH), sulfate, nitrate, ammonium, chloride, and base cations (such as calcium, magnesium, potassium and sodium). The network is a cooperative effort between many different groups, including the State Agricultural Experiment Stations, U.S. Geological Survey, U.S. Department of Agriculture, and numerous other governmental and private entities. DOE is one of these cooperating agencies, though it plays a smaller funding role than some of the other federal sources. Since 1978, the NADP/NTN has grown from 22 stations to over 250 sites spanning the continental United States, Alaska, and Puerto Rico, and the Virgin Islands. The National Atmospheric Deposition Program has also expanded its sampling to two additional networks: 1) the Mercury Deposition Network (MDN), currently with over 90 sites, was formed in 1995 to collect weekly samples of precipitation which are analyzed by Frontier Geosciences for total mercury, and 2) the Atmospheric Integrated Research Monitoring Network (AIRMoN), formed for the purpose of studying precipitation chemistry trends with greater temporal resolution than the NTN. [taken from the NADP History and Overview page at http://nadp.sws.uiuc.edu/nadpoverview.asp] Data from these networks are freely available in via customized search interfaces linked to interactive maps of the stations in the three networks. Animated Isopleth maps in Flash and PowerPoint are also available to display concentrations and depositions various substances such as sulfate, nitrate, etc. (Specialized Interface)

  10. Articles including thin film monolayers and multilayers

    DOEpatents

    Li, DeQuan; Swanson, Basil I.

    1995-01-01

    Articles of manufacture including: (a) a base substrate having an oxide surface layer, and a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, (b) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, and a metal species attached to the multidentate ligand, (c) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, and a multifunctional organic ligand attached to the metal species, and (d) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, a multifunctional organic ligand attached to the metal species, and a second metal species attached to the multifunctional organic ligand, are provided, such articles useful in detecting the presence of a selected target species, as nonliear optical materials, or as scavengers for selected target species.

  11. Engine lubrication circuit including two pumps

    DOEpatents

    Lane, William H.

    2006-10-03

    A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.

  12. Dynamic stall simulation including turbulence modeling

    SciTech Connect

    Allet, A.; Halle, S.; Paraschivoiu, I.

    1995-09-01

    The objective of this study is to investigate the two-dimensional unsteady flow around an airfoil undergoing a Darrieus motion in dynamic stall conditions. For this purpose, a numerical solver based on the solution of the Reynolds-averaged Navier-Stokes equations expressed in a streamfunction-vorticity formulation in a non-inertial frame of reference was developed. The governing equations are solved by the streamline upwind Petrov-Galerkin finite element method (FEM). Temporal discretization is achieved by second-order-accurate finite differences. The resulting global matrix system is linearized by the Newton method and solved by the generalized minimum residual method (GMRES) with an incomplete triangular factorization preconditioning (ILU). Turbulence effects are introduced in the solver by an eddy viscosity model. The investigation centers on an evaluation of the possibilities of several turbulence models, including the algebraic Cebeci-Smith model (CSM) and the nonequilibrium Johnson-King model (JKM). In an effort to predict dynamic stall features on rotating airfoils, first the authors present some testing results concerning the performance of both turbulence models for the flat plate case. Then, computed flow structure together with aerodynamic coefficients for a NACA 0015 airfoil in Darrieus motion under stall conditions are presented.

  13. A Non-Electrostatic Surface Complexation Approach to Modeling Radionuclide Migration at the Nevada Test Site: II. Aluminosilicates

    SciTech Connect

    Zavarin, M; Bruton, C J

    2004-12-16

    Reliable quantitative prediction of contaminant transport in subsurface environments is critical to evaluating the risks associated with radionuclide migration. As part of the Underground Test Area (UGTA) program, radionuclide transport away from selected underground nuclear tests conducted in the saturated zone at the Nevada Test Site (NTS) is being examined. In the near-field environment, reactive transport simulations must account for changes in water chemistry and mineralogy as a function of time and their effect on radionuclide migration. Unlike the Kd approach, surface complexation reactions, in conjunction with ion exchange and precipitation, can be used to describe radionuclide reactive transport as a function of changing environmental conditions. They provide a more robust basis for describing radionuclide retardation in geochemically dynamic environments. In a companion report (Zavarin and Bruton, 2004), a database of radionuclide surface complexation reactions for calcite and iron oxide minerals was developed. In this report, a second set of reactions is developed: surface complexation (SC) and ion exchange (IE) to aluminosilicate minerals. The most simplified surface complexation model, the one-site non-electrostatic model (NEM), and the Vanselow IE model were used to fit a large number of published sorption data and a reaction constant database was developed. Surface complexation of Am(III), Eu(III), Np(V), Pu(IV), Pu(V), and U(VI) to aluminum oxide, silica, and aluminosilicate minerals was modeled using a generalized approach in which surface complexation to aluminosilicate >SiOH or >AlOH reactive sites was considered equivalent to the reactivity of aluminum oxide and silica reactive sites. Ion exchange was allowed to be mineral-dependent. The generalized NEM approach, in conjunction with Vanselow IE, was able to fit most published sorption data well. Fitting results indicate that surface complexation will dominate over ion exchange at pH >7 for the

  14. Potential structure of discharge plasma inside liquid directly measured by an electrostatic probe

    SciTech Connect

    Chen, Qiang; Hatakeyama, Rikizo; Kaneko, Toshiro; CREST Matsuda, Naoki

    2013-06-17

    Potential structures of a discharge plasma inside a liquid are investigated by an electrostatic probe measurement. The time evolution of radial profiles of the floating potential for the plasma inside liquid reveals that the dominant negative charges in the plasma are the negative ion species such as OH{sup -} and O{sub 2}{sup -} rather than electrons. In addition, a positive potential gradient exists at the plasma-liquid interface due to the presence of an electrical double layer which is caused by the separation of low-mass positive ion of H{sup +} and high-mass negative ions of OH{sup -} and O{sub 2}{sup -} near the plasma-liquid interface.

  15. Evaluation of an Electrostatic Dust Removal System with Potential Application in Next-Step Fusion Devices

    SciTech Connect

    Friesen, F. Q.L.; John, B.; Skinner, C. H.; Roquemore, A. L.; Calle, C. I.

    2011-01-20

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 mm3 volume of carbon and tungsten particles were moved in under 5 seconds. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon, and the change in particle distribution over short timescales (<1 s).

  16. Evaluation of an electrostatic dust removal system with potential application in next-step fusion devices

    SciTech Connect

    Friesen, F. Q. L.; John, B.; Skinner, C. H.; Roquemore, A. L.; Calle, C. I.

    2011-05-15

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass, and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 mm{sup 3} volume of carbon and tungsten particles were moved in under 5 s. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon and the change in particle distribution over short timescales (<1 s).

  17. Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm

    DOE PAGES [OSTI]

    Huang, C. -K.; Zeng, Y.; Wang, Y.; Meyers, M. D.; Yi, S.; Albright, B. J.

    2016-06-07

    The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical systemmore » due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.« less

  18. Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests

    SciTech Connect

    Brombin, M. Spolaore, M.; Serianni, G.; Barzon, A.; Franchin, L.; Pasqualotto, R.; Pomaro, N.; Taliercio, C.; Trevisan, L.; Schiesko, L.

    2014-02-15

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.

  19. Large-Scale First-Principles Molecular Dynamics Simulations with Electrostatic Embedding: Application to Acetylcholinesterase Catalysis

    SciTech Connect

    Fattebert, Jean-Luc; Lau, Edmond Y.; Bennion, Brian J.; Huang, Patrick; Lightstone, Felice C.

    2015-10-22

    Enzymes are complicated solvated systems that typically require many atoms to simulate their function with any degree of accuracy. We have recently developed numerical techniques for large scale First-Principles molecular dynamics simulations and applied them to study the enzymatic reaction catalyzed by acetylcholinesterase. We carried out Density functional theory calculations for a quantum mechanical (QM) sub- system consisting of 612 atoms with an O(N) complexity finite-difference approach. The QM sub-system is embedded inside an external potential field representing the electrostatic effect due to the environment. We obtained finite temperature sampling by First-Principles molecular dynamics for the acylation reaction of acetylcholine catalyzed by acetylcholinesterase. Our calculations shows two energies barriers along the reaction coordinate for the enzyme catalyzed acylation of acetylcholine. In conclusion, the second barrier (8.5 kcal/mole) is rate-limiting for the acylation reaction and in good agreement with experiment.

  20. Models Ion Trajectories in 2D and 3D Electrostatic and Magnetic Fields

    Energy Science and Technology Software Center

    2000-02-21

    SIMION3D7.0REV is a C based ion optics simulation program that can model complex problems using Laplace equation solutions for potential fields. The program uses an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 50,000,000 points. SIMION3D7.0''s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut awaymore » to inspect ion trajectories and potential energy surfaces. User programs allow the user to customize the program for specific simulations. A geometry file option supports the definition of highly complex array geometry. Algorithm modifications have improved this version''s computational speed and accuracy.« less

  1. Large-Scale First-Principles Molecular Dynamics Simulations with Electrostatic Embedding: Application to Acetylcholinesterase Catalysis

    DOE PAGES [OSTI]

    Fattebert, Jean-Luc; Lau, Edmond Y.; Bennion, Brian J.; Huang, Patrick; Lightstone, Felice C.

    2015-10-22

    Enzymes are complicated solvated systems that typically require many atoms to simulate their function with any degree of accuracy. We have recently developed numerical techniques for large scale First-Principles molecular dynamics simulations and applied them to study the enzymatic reaction catalyzed by acetylcholinesterase. We carried out Density functional theory calculations for a quantum mechanical (QM) sub- system consisting of 612 atoms with an O(N) complexity finite-difference approach. The QM sub-system is embedded inside an external potential field representing the electrostatic effect due to the environment. We obtained finite temperature sampling by First-Principles molecular dynamics for the acylation reaction of acetylcholinemore » catalyzed by acetylcholinesterase. Our calculations shows two energies barriers along the reaction coordinate for the enzyme catalyzed acylation of acetylcholine. In conclusion, the second barrier (8.5 kcal/mole) is rate-limiting for the acylation reaction and in good agreement with experiment.« less

  2. Study on space charge effect in an electrostatic ion analyzer applied to measure laser produced ions

    SciTech Connect

    Jin, Q. Y.; Li, Zh. M.; Liu, W.; Zhao, H. Y. Sha, S.; Zhang, J. J.; Zhang, X. Zh.; Sun, L. T.; Zhao, H. W.

    2014-03-15

    The abundance of different ions produced by laser ion sources is usually analyzed by an electrostatic ion analyzer (EIA). Ion current intensities in the range of several mA/cm{sup 2} at the position of the EIA have been achieved from the laser ion source developed by the Institute of Modern Physics; this indicates that a noticeable influence of space charge effect during the ion transmission will occur. Hence, while the parameters of the EIA or the beams are changed, such as ion species, current intensity, the ions’ transmission efficiency through the EIA is different, which will result in an uncertainty in the estimation of the ions’ yields. Special attention is focused on this issue in this paper. Ion's transmissions through the EIA under different circumstances are studied with simulations and experiments, the results of which are consistent with each other.

  3. Effects of chamber pressure variation on the grid temperature in an inertial electrostatic confinement device

    SciTech Connect

    Murali, S. Krupakar; Emmert, G. A.; Santarius, J. F.; Kulcinski, G. L.

    2010-10-15

    Inertial electrostatic confinement fusion devices are compact sources of neutrons, protons, electrons, and x rays. Such sources have many applications. Improving the efficiency of the device also increases the applications of this device. Hence a thorough understanding of the operation of this device is needed. In this paper, we study the effect of chamber pressure on the temperature of the cathode. Experimentally, the grid temperature decreases as the chamber pressure increases; numerical simulations suggest that this is caused by the reduction of the hot ion current to the cathode as the pressure increases for constant power supply current. Such an understanding further supports the conclusion that the asymmetric heating of the cathode can be decreased by homogenizing the ion flow around the cathode.

  4. A unified electrostatic and cavitation model for first-principles molecular dynamics in solution

    SciTech Connect

    Scherlis, D A; Fattebert, J; Gygi, F; Cococcioni, M; Marzari, N

    2005-11-14

    The electrostatic continuum solvent model developed by Fattebert and Gygi is combined with a first-principles formulation of the cavitation energy based on a natural quantum-mechanical definition for the surface of a solute. Despite its simplicity, the cavitation contribution calculated by this approach is found to be in remarkable agreement with that obtained by more complex algorithms relying on a large set of parameters. The model allows for very efficient Car-Parrinello simulations of finite or extended systems in solution, and demonstrates a level of accuracy as good as that of established quantum-chemistry continuum solvent methods. They apply this approach to the study of tetracyanoethylene dimers in dichloromethane, providing valuable structural and dynamical insights on the dimerization phenomenon.

  5. Technique for enhancing the power output of an electrostatic generator employing parametric resonance

    DOEpatents

    Post, Richard F.

    2016-02-23

    A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.

  6. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

    DOEpatents

    Duffield, R.B.

    1959-02-24

    S>A method is described for separating plutonium, in a valence state of less than five, from an aqueous solution in which it is dissolved. The niethod consists in adding potassium and sulfate ions to such a solution while maintaining the solution at a pH of less than 7.1, and isolating the precipitate of potassium plutonium sulfate thus formed.

  7. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    SciTech Connect

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.

  8. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    DOE PAGES [OSTI]

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; et al

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones.more » These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.« less

  9. METHOD OF IMPROVING THE CARRIER PRECIPITATION OF PLUTONIUM

    DOEpatents

    Kamack, H.J.; Balthis, J.H.

    1958-12-01

    Plutonium values can be recovered from acidic solutlons by adding lead nitrate, hydrogen fluoride, lantha num nitrate, and sulfurlc acid to the solution to form a carrler preclpitate. The lead sulfate formed improves the separatlon characteristics of the lanthanum fluoride carrier precipitate,

  10. Aerosol Impacts on California Winter Clouds and Precipitation during CalWater 2011: Local Pollution versus Long-Range Transported Dust

    SciTech Connect

    Fan, Jiwen; Leung, Lai-Yung R.; DeMott, Paul J.; Comstock, Jennifer M.; Singh, Balwinder; Rosenfeld, Daniel; Tomlinson, Jason M.; White, Allen B.; Prather, Kimberly; Minnis, Patrick; Ayers, J. K.; Min, Qilong

    2014-01-03

    Mineral dust aerosols often observed over California in winter and spring, associated with long-range transport from Asia and Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical model coupled with the Weather Research and Forecasting (WRF) model, to examine the relative and combined impacts of dust and local pollution particles on cloud properties and precipitation type and intensity. Simulations are carried out for two cloud cases with contrasting meteorology and cloud dynamics that occurred on February 16 (FEB16) and March 02 (MAR02) from the CalWater 2011 field campaign. In both cases, observations show the presence of dust and biological particles in a relative pristine environment. The simulated cloud microphysical properties and precipitation show reasonable agreement with aircraft and surface measurements. Model sensitivity experiments indicate that in the pristine environment, the dust and biological aerosol layers increase the accumulated precipitation by 10-20% from the Central Valley to the Sierra Nevada Mountains for both FEB16 and MAR02 due to a ~40% increase in snow formation, validating the observational hypothesis. Model results show that local pollution increases precipitation over the windward slope of the mountains by few percent due to increased snow formation when dust is present but reduces precipitation by 5-8% if dust is removed on FEB16. The effects of local pollution on cloud microphysics and precipitation strongly depend on meteorology including the strength of the Sierra Barrier Jet, and cloud dynamics. This study further underscores the importance of the interactions between local pollution, dust, and environmental conditions for

  11. Precipitation in 18 wt% Ni maraging steel of grade 350

    SciTech Connect

    Tewari, R.; Mazumder, S.; Batra, I.S.; Dey, G.K.; Banerjee, S.

    2000-03-14

    The evolution of precipitates in maraging steel of grade 350 was studied using the complementary techniques of small angle X-ray scattering (SACS) and transmission electron microscopy (TEM). These investigations revealed that ageing the steel at 703 K involved a rhombohedral distortion of the supersaturated b.c.c. martensite accompanied by the appearance of diffuse {omega}-like structures. This was followed by the appearance of well-defined {omega} particles containing chemical order. At the ageing temperature of 783 K, Ni{sub 3}(Ti,Mo) precipitates were the first to appear with a growth exponent of 1/3. The values of the Pored exponent obtained from the SAXS profiles indicated that the {omega} particles, formed below 723 K, had diffuse interfaces up to an ageing time of 48 h. On the other hand, Ni{sub 3}(Ti,Mo) precipitates, formed above 723 K, developed sharp interfaces in just about an hour. Also, the steel exhibited scaling in phase separation both at 703 and 783 K, but only during the early stages. Through this study it was established that at temperatures of ageing less than 723 K, evolution of {omega} particles takes place through the collapse of the unstable b.c.c. lattice and, at temperatures above 723 K, precipitation of A{sub 3}B type of phases through the mechanism of clustering and ordering of atomic species. Sharp interfaces develop rather quickly when the mechanism of precipitation involves development and amplification of a concentration wave along as in the nucleation of Ni{sub 3}(Ti,Mo) at 783 K than when an interplay of both the displacement and concentration waves is required as in the evolution of {omega} at 703 K. These results indicate towards the possibility of existence of two separate time-temperature-transformation (TTT) curves, one for the evolution of {omega}-phase and another for nucleation and growth of Ni{sub 3}(Ti,Mo).

  12. Interdecadal Connection Between Artic Temperature and Summer Precipitation Over the Yangtze River Valley in the CMIP5 Historical Simulations

    SciTech Connect

    Li, Yuefeng; Leung, Lai-Yung R.; Xiao, Ziniu; Wei, Min; Li, Qingquan

    2013-10-01

    This study assesses the ability of the Phase 5 Coupled Model Intercomparison Project (CMIP5) simulations in capturing the interdecadal precipitation enhancement over the Yangtze River valley (YRV) and investigates the contributions of Arctic warming to the interdecadal variability of the East Asian summer monsoon rainfall. Six CMIP5 historical simulations including models from Canada (CCCma), China (BCC), Germany (MPI-M), Japan (MRI), United Kingdom (MOHC), and United States (NCAR) are used. The NCEP/NCAR reanalysis and observed precipitation are also used for comparison. Among the six CMIP5 simulations, only CCCma can approximately simulate the enhancement of interdecadal summer precipitation over the YRV in 1990-2005 relative to 1960-1975, and the relationships between the summer precipitation with surface temperature (Ts), the 850hPa winds, and 500hPa height field (H500), and between Ts and H500 using regression, correlation, and SVD analyses. It is found that CCCma can reasonably simulate the interdecadal surface warming over the boreal mid-to high latitudes and the Arctic in winter, spring and summer. The summer Baikal blocking appears to be the bridge that links the winter and spring surface warming over the mid-to high latitude and Arctic with the enhancement of summer precipitation over the YRV. Models that missed some or all of these relationships found in CCCma and the reanalysis failed to simulate the interdecadal enhancement of precipitation over the YRV. This points to the importance of high latitude and Arctic processes on interdecadal variability of the East Asian summer monsoon and the challenge for global climate models to correctly simulate the linkages.

  13. Multi-dimensional modelling of electrostatic force distance curve over dielectric surface: Influence of tip geometry and correlation with experiment

    SciTech Connect

    Boularas, A. Baudoin, F.; Villeneuve-Faure, C.; Clain, S.; Teyssedre, G.

    2014-08-28

    Electric Force-Distance Curves (EFDC) is one of the ways whereby electrical charges trapped at the surface of dielectric materials can be probed. To reach a quantitative analysis of stored charge quantities, measurements using an Atomic Force Microscope (AFM) must go with an appropriate simulation of electrostatic forces at play in the method. This is the objective of this work, where simulation results for the electrostatic force between an AFM sensor and the dielectric surface are presented for different bias voltages on the tip. The aim is to analyse force-distance curves modification induced by electrostatic charges. The sensor is composed by a cantilever supporting a pyramidal tip terminated by a spherical apex. The contribution to force from cantilever is neglected here. A model of force curve has been developed using the Finite Volume Method. The scheme is based on the Polynomial Reconstruction OperatorPRO-scheme. First results of the computation of electrostatic force for different tipsample distances (from 0 to 600?nm) and for different DC voltages applied to the tip (6 to 20?V) are shown and compared with experimental data in order to validate our approach.

  14. The role of electrostatic charge in the adhesion of spherical particles onto planar surfaces in atmospheric systems

    SciTech Connect

    Kweon, Hyojin; Yiacoumi, Sotira Z.; Tsouris, Costas

    2015-06-19

    In this study, the influence of electrostatic charge on the adhesive force between spherical particles and planar surfaces in atmospheric systems was studied using atomic force microscopy. Electrical bias was applied to modify the surface charge, and it was found that application of a stronger positive bias to a particle induces a stronger total adhesive force. The sensitivity of the system to changes in the bias depended on the surface charge density. For larger-size particles, the contribution of the electrostatic force decreased, and the capillary force became the major contributor to the total adhesive force. The influence of water adsorption on the total adhesive force and, specifically, on the contribution of the electrostatic force depended on the hydrophobicity of interacting surfaces. For a hydrophilic surface, water adsorption either attenuated the surface charge or screened the effect of surface potential. An excessive amount of adsorbed water provided a path to surface charge leakage, which might cancel out the electrostatic force, leading to a reduction in the adhesive force. Theoretically calculated forces were comparable with measured adhesive forces except for mica which has a highly localized surface potential. The results of this study provide information on the behavior of charged colloidal particles in atmospheric systems.

  15. The role of electrostatic charge in the adhesion of spherical particles onto planar surfaces in atmospheric systems

    DOE PAGES [OSTI]

    Kweon, Hyojin; Yiacoumi, Sotira Z.; Tsouris, Costas

    2015-06-19

    In this study, the influence of electrostatic charge on the adhesive force between spherical particles and planar surfaces in atmospheric systems was studied using atomic force microscopy. Electrical bias was applied to modify the surface charge, and it was found that application of a stronger positive bias to a particle induces a stronger total adhesive force. The sensitivity of the system to changes in the bias depended on the surface charge density. For larger-size particles, the contribution of the electrostatic force decreased, and the capillary force became the major contributor to the total adhesive force. The influence of water adsorptionmore » on the total adhesive force and, specifically, on the contribution of the electrostatic force depended on the hydrophobicity of interacting surfaces. For a hydrophilic surface, water adsorption either attenuated the surface charge or screened the effect of surface potential. An excessive amount of adsorbed water provided a path to surface charge leakage, which might cancel out the electrostatic force, leading to a reduction in the adhesive force. Theoretically calculated forces were comparable with measured adhesive forces except for mica which has a highly localized surface potential. The results of this study provide information on the behavior of charged colloidal particles in atmospheric systems.« less

  16. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    SciTech Connect

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  17. PLUVIUS: a generalized one-dimensional model of reactive pollutant behavior, including dry deposition, precipitation formation, and wet removal. Second edition

    SciTech Connect

    Easter, R.C.; Hales, J.M.

    1984-11-01

    This report is a second-edition user's manual for the PLUVIUS reactive-storm model. The PLUVIUS code simulates the formation of storm systems of a variety of types, and characterizes the behavior of air pollutants as they flow through, react within, and are scavenged by the storms. The computer code supplied with this report is known as PLUVIUS MOD 5.0, and is a substantial improvement over the MOD 3.1 version given in the original user's manual. Example applications of MOD 5.0 are given in the report to facilitate rapid application of the code for a variety of specific uses. 22 references, 7 figures, 48 tables.

  18. Performance of Evapotranspirative Covers Under Enhanced Precipitation: Preliminary Data

    SciTech Connect

    David C. Anderson, Lloyd T. Desotell, David B. Hudson, Gregory J. Shott, Vefa Yucel

    2007-02-01

    Since January 2001, drainage lysimeter studies have been conducted at Yucca Flat, on the Nevada Test Site, in support of an evapotranspirative cover design. Yucca Flat has an arid climate with average precipitation of 16.5 cm annually. The facility consists of six drainage lysimeters 3 m in diameter, 2.4 m deep, and backfilled with a single layer of native soil. The bottom of each lysimeter is sealed and equipped with a small drain that enables direct measurement of saturated drainage. Each lysimeter has eight time-domain reflectometer probes to measure moisture content-depth profiles paired with eight heat-dissipation probes to measure soil-water potential depth profiles. Sensors are connected to dataloggers which are remotely accessed via a phone line. The six lysimeters have three different surface treatments: two are bare-soil; two were revegetated with native species (primarily shadscale, winterfat, ephedra, and Indian rice grass); and two were allowed to revegetate naturally with such species as Russian thistle, halogeton, tumblemustard and cheatgrass. Beginning in October 2003, one half of the paired cover treatments (one bare soil, one invader species, and one native species) were irrigated with an amount of water equal to two times the natural precipitation to achieve a three times natural precipitation treatment. From October 2003 through December 2005, all lysimeters received 52.8 cm precipitation, and the four irrigated lysimeters received an extra 105.6 cm of irrigation. No drainage has occurred from any of the nonirrigated lysimeters, but moisture has accumulated at the bottom of the bare-soil lysimeter and the native-plant lysimeter. All irrigated lysimeters had some drainage. The irrigated baresoil lysimeter had 48.3 cm of drainage or 26.4 percent of the combined precipitation and applied irrigation for the entire monitoring record. The irrigated invader species lysimeter had 5.8 cm of drainage, about 3.2 percent of the combined precipitation and

  19. The precipitation synthesis of broad-spectrum UV absorber nanoceria

    SciTech Connect

    Nurhasanah, Iis; Sutanto, Heri; Puspaningrum, Nurul Wahyu

    2013-09-09

    In this paper the possibility of nanoceria as broad-spectrum UV absorber was evaluated. Nanoceria were synthesized by precipitation process from cerium nitrate solution and ammonium hydroxide as precipitant agent. Isopropanol was mixed with water as solvent to prevent hard agglomeration. The structure of resulting nanoceria was characterized by x-ray diffractometer (XRD). The transparency in the visible light and efficiency of protection in UV A region were studied using ultraviolet-visible (UV - Vis) spectrophotometer. The results show that nanoceria possess good tranparency in visible light and high UV light absorption. The critical absorption wavelenght of 368 nm was obtained which is desirable for excellent broad-spectrum protection absorbers. Moreover, analysis of photodegradation nanoceria to methylene blue solution shows poor photocatalytic activity. It indicates that nanoceria suitable for used as UV absorber in personal care products.

  20. Cloud and Precipitation Fields Around Darwin in the Transition Season

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Precipitation Fields Around Darwin in the Transition Season P. T. May Bureau of Meteorology Research Centre Melbourne, 3001, Victoria, Australia Introduction An interesting, and very relevant question, for the Atmospheric Radiation Measurement (ARM) Program is how cloud characteristics and their seasonal and diurnal variation changes across the tropics. In particular, how does he cloud field around the new SRCS site compare with nearby regions. Thus, the aim of this study is to look at the

  1. Apparatus and methods for regeneration of precipitating solvent

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang; Bonsu, Alexander

    2015-08-25

    A regenerator that can handle rich loaded chemical solvent containing precipitated absorption reaction products is disclosed. The invention is particularly suitable for separating CO.sub.2 from large gas streams that are typical of power plant processes. The internally circulating liquid stream in the regenerator (ICLS regenerator) rapidly heats-up the in-coming rich solvent stream in a downcomer standpipe as well as decreases the overall concentration of CO.sub.2 in the mixed stream. Both these actions lead to dissolution of precipitates. Any remaining precipitate further dissolves as heat is transferred to the mixed solution with an inverted bayonet tube heat exchanger in the riser portion of the regenerator. The evolving CO.sub.2 bubbles in the riser portion of the regenerator lead to substantial gas hold-up and the large density difference between the solutions in the downcomer standpipe and riser portions promotes internal circulation of the liquid stream in the regenerator. As minor amounts of solvent components present in the exit gas stream are condensed and returned back to the regenerator, pure CO.sub.2 gas stream exits the disclosed regenerator and condenser system.

  2. Exact evaluation of the rates of electrostatic decay and scattering off thermal ions for an unmagnetized Maxwellian plasma

    SciTech Connect

    Layden, B.; Cairns, Iver H.; Robinson, P. A.

    2013-08-15

    Electrostatic decay of Langmuir waves into Langmuir and ion sound waves (L?L?+S) and scattering of Langmuir waves off thermal ions (L+i?L?+i?, also called nonlinear Landau damping) are important nonlinear weak-turbulence processes. The rates for these processes depend on the quadratic longitudinal response function ?{sup (2)} (or, equivalently, the quadratic longitudinal susceptibility ?{sup (2)}), which describes the second-order response of a plasma to electrostatic wave fields. Previous calculations of these rates for an unmagnetized Maxwellian plasma have relied upon an approximate form for ?{sup (2)} that is valid where two of the wave fields are fast (i.e., v{sub ?}=?/k?V{sub e} where ? is the angular frequency, k is the wavenumber, and V{sub e} is the electron thermal speed) and one is slow (v{sub ?}?V{sub e}). Recently, an exact expression was derived for ?{sup (2)} that is valid for any phase speeds of the three waves in an unmagnetized Maxwellian plasma. Here, this exact ?{sup (2)} is applied to the calculation of the three-dimensional rates for electrostatic decay and scattering off thermal ions, and the resulting exact rates are compared with the approximate rates. The calculations are performed using previously derived three-dimensional rates for electrostatic decay given in terms of a general ?{sup (2)}, and newly derived three-dimensional rates for scattering off thermal ions; the scattering rate is derived assuming a Maxwellian ion distribution, and both rates are derived assuming arc distributions for the wave spectra. For most space plasma conditions, the approximate rate is found to be accurate to better than 20%; however, for sufficiently low Langmuir phase speeds (v{sub ?}/V{sub e}?3) appropriate to some spatial domains of the foreshock regions of planetary bow shocks and type II solar radio bursts, the use of the exact rate may be necessary for accurate calculations. The relative rates of electrostatic decay and scattering off thermal ions

  3. METHOD FOR RECOVERING PLUTONIUM VALUES FROM SOLUTION USING A BISMUTH HYDROXIDE CARRIER PRECIPITATE

    DOEpatents

    Faris, B.F.

    1961-04-25

    Carrier precipitation processes for separating plutonium values from aqueous solutions are described. In accordance with the invention a bismuth hydroxide precipitate is formed in the plutonium-containing solution, thereby carrying plutonium values from the solution.

  4. X-band Scanning ARM Precipitation Radar (X-SAPR) Instrument Handbook...

    Office of Scientific and Technical Information (OSTI)

    X-band Scanning ARM Precipitation Radar (X-SAPR) Instrument Handbook Citation Details In-Document Search Title: X-band Scanning ARM Precipitation Radar (X-SAPR) Instrument Handbook ...

  5. C-Band Scanning ARM Precipitation Radar (C-SAPR) Handbook (Technical...

    Office of Scientific and Technical Information (OSTI)

    C-Band Scanning ARM Precipitation Radar (C-SAPR) Handbook Citation Details In-Document Search Title: C-Band Scanning ARM Precipitation Radar (C-SAPR) Handbook The C-band scanning ...

  6. Spin orbit splitting of the photon induced Fano resonance in an oscillating graphene electrostatic barrier

    SciTech Connect

    Biswas, R.; Sinha, C.

    2014-04-07

    We investigate theoretically the effect of a time dependent oscillating potential on the transport property of the Dirac Fermion through a monolayer graphene electrostatic barrier under the influence of the Rashba spin orbit interaction. The time dependent problem is solved in the frame work of the non-perturbative Floquet approach. It is noted that the dynamic condition of the barrier may be controlled by tuning the Rashba parameter. Introduction of the spin orbit interaction causes splitting of the Fano resonance (FR), a characteristic feature in photon assisted tunneling. The separation between the spin split FR's gives an indirect measure of the fine structure of the quasi-hole bound state inside the barrier. The present findings on the Rashba splitting of the FR and its external control by tuning the oscillating field parameters might have potential for applications in spintronic devices, especially in the spin field effect transistors. The spin polarization of different Floquet sidebands is found to be quite sensitive to the spin-pseudospin interaction.

  7. Impurities, temperature, and density in a miniature electrostatic plasma and current source

    SciTech Connect

    Den Hartog, D.J.; Craig, D.J.; Fiksel, G.; Sarff, J.S.

    1996-10-01

    We have spectroscopically investigated the Sterling Scientific miniature electrostatic plasma source-a plasma gun. This gun is a clean source of high density (10{sup 19} - 10{sup 20} m{sup -3}), low temperature (5 - 15 eV) plasma. A key result of our investigation is that molybdenum from the gun electrodes is largely trapped in the internal gun discharge; only a small amount escapes in the plasma flowing out of the gun. In addition, the gun plasma parameters actually improve (even lower impurity contamination and higher ion temperature) when up to 1 kA of electron current is extracted from the gun via the application of an external bias. This improvement occurs because the internal gun anode no longer acts as the current return for the internal gun discharge. The gun plasma is a virtual plasma electrode capable of sourcing an electron emission current density of 1 kA/cm{sup 2}. The high emission current, small size (3 - 4 cm diameter), and low impurity generation make this gun attractive for a variety of fusion and plasma technology applications.

  8. Zero-multipole summation method for efficiently estimating electrostatic interactions in molecular system

    SciTech Connect

    Fukuda, Ikuo

    2013-11-07

    The zero-multipole summation method has been developed to efficiently evaluate the electrostatic Coulombic interactions of a point charge system. This summation prevents the electrically non-neutral multipole states that may artificially be generated by a simple cutoff truncation, which often causes large amounts of energetic noise and significant artifacts. The resulting energy function is represented by a constant term plus a simple pairwise summation, using a damped or undamped Coulombic pair potential function along with a polynomial of the distance between each particle pair. Thus, the implementation is straightforward and enables facile applications to high-performance computations. Any higher-order multipole moment can be taken into account in the neutrality principle, and it only affects the degree and coefficients of the polynomial and the constant term. The lowest and second moments correspond respectively to the Wolf zero-charge scheme and the zero-dipole summation scheme, which was previously proposed. Relationships with other non-Ewald methods are discussed, to validate the current method in their contexts. Good numerical efficiencies were easily obtained in the evaluation of Madelung constants of sodium chloride and cesium chloride crystals.

  9. Electron-scale dissipative electrostatic solitons in multi-species plasmas

    SciTech Connect

    Sultana, S.; Kourakis, I.

    2015-10-15

    The linear and nonlinear properties of small-amplitude electron-acoustic solitary waves are investigated via the fluid dynamical approach. A three-component plasma is considered, composed of hot electrons, cold electrons, and ions (considered stationary at the scale of interest). A dissipative (wave damping) effect is assumed due to electron-neutral collisions. The background (hot) electrons are characterized by an energetic (excessively superthermal) population and are thus modeled via a κ-type nonthermal distribution. The linear characteristics of electron-acoustic excitations are discussed, for different values of the plasma parameters (superthermality index κ and cold versus hot electron population concentration β). Large wavelengths (beyond a threshold value) are shown to be overdamped. The reductive perturbation technique is used to derive a dissipative Korteweg de-Vries (KdV) equation for small-amplitude electrostatic potential disturbances. These are expressed by exact solutions in the form of dissipative solitary waves, whose dynamics is investigated analytically and numerically. Our results should be useful in elucidating the behavior of space and experimental plasmas characterized by a coexistence of electron populations at different temperatures, where electron-neutral collisions are of relevance.

  10. Development of ion beam figuring system with electrostatic deflection for ultraprecise X-ray reflective optics

    SciTech Connect

    Yamada, Jumpei; Matsuyama, Satoshi Sano, Yasuhisa; Yamauchi, Kazuto

    2015-09-15

    We developed an ion beam figuring system that utilizes electrostatic deflection. The system can produce an arbitrary shape by deterministically scanning the ion beam. The scan of the ion beam, which can be precisely controlled using only an electrical signal, enables us to avoid degradation of the mirror shape caused by imperfect acceleration or deceleration of a mechanically scanning stage. Additionally, this surface figuring method can easily be combined with X-ray metrology because the workpiece remains fixed during the figuring. We evaluated the figuring accuracy of the system by fabricating a plano-elliptical mirror for X-ray focusing. A mirror with a shape error of 1.4 nm root mean square (RMS) with a maximum removal depth of 992 nm, which corresponds to figuring accuracy of 0.14% RMS, was achieved. After the second shape corrections, an elliptical shape with a shape error of approximately 1 nm peak-to-valley, 0.48 nm RMS could be fabricated. Then, the mirror surface was smoothed by a low-energy ion beam. Consequently, a micro-roughness of 0.117 nm RMS, measured by atomic force microscopy, was achieved over an area of 1 × 1 μm{sup 2}.

  11. Electrostatic soliton and double layer structures in unmagnetized degenerate pair plasmas

    SciTech Connect

    Mahmood, S.; Khan, S. A.; Ur-Rehman, H.

    2010-11-15

    The acoustic solitons and double layers are studied in unmagnetized quantum electron-positron plasmas in the presence of stationary ions. The quantum hydrodynamic model is employed and reductive perturbation method is used to derive the Korteweg-de Vries (KdV) and extended KdV equations for solitons and double layers, respectively. It is found that in the linear limit both slow acoustic and fast Langmuir waves can propagate in such type of quantum plasmas like in classical pair-ion or pair plasmas. The amplitude and width of the electrostatic solitons are found to be decreasing with the increase in concentration of positrons (or decrease in the concentration of ions) in degenerate electron-positron-ion plasmas. It is found that only rarefactive double layer can exist in such plasmas which depend on various parameters. The dependence of double layer structure on ion concentration and quantum diffraction effects of electrons and positrons are also discussed. The results are also elaborated graphically by considering dense plasma parameters in the outer layers of astrophysical objects such as white dwarfs and neutron stars.

  12. Amperometric Choline Biosensor Fabricated through Electrostatic Assembly of Bienzyme/Polyelectrolyte Hybrid Layers on Carbon Nanotubes

    SciTech Connect

    Wang, Jun; Liu, Guodong; Lin, Yuehe

    2006-03-01

    We report a flow injection amperometric choline biosensors based on the electrostatic assembly of an enzyme of choline oxidase (ChO) and a bi-enzyme of ChO and horseradish peroxidase (HRP) onto multi-wall carbon nanotubes (MWCNT) modified glassy carbon (GC) electrodes. These choline biosensors were fabricated by immobilization of enzymes on the negatively charged MWCNT surface through alternatively assembling a cationic polydiallydiimethylammonium chloride (PDDA) layer and an enzyme layer. Using this layer-by-layer assembling approach, bioactive nanocomposite film of a PDDA/ChO/PDDA/HRP/PDDA/CNT (ChO/HRP/CNT) and a PDDA/ChO/PDDA/ CNT (ChO/ CNT) were fabricated on GC surface, respectively. Owning to the electrocatalytic effect of carbon nanotubes, the measurement of faradic responses resulting from enzymatic reactions has been realized at low potential with acceptable sensitivity. It is found the ChO/HRP/CNT biosensor is more sensitive than the ChO/CNT one. Experimental parameters affecting the sensitivity of biosensors, e.g. applied potential, flow rate, etc. were optimized and potential interference was examined. The response time for this choline biosensor is fast (less than a few seconds). The linear range of detection for the choline biosensor is from 5 x 10-5 to 5 x 10-3 M and the detection limit is determined to be about 1.0 x 10-5 M.

  13. Electrostatic wave structures in a magnetized superthermal plasma with two-temperature electrons

    SciTech Connect

    Shahmansouri, M.; Alinejad, H.

    2013-08-15

    The linear and nonlinear excitation of arbitrary amplitude ion-acoustic (IA) solitary waves in a magnetized plasma comprising two-temperature electrons and cold ions are studied. The oblique propagation properties of two possible modes (in the linear regime) are investigated. It is found that the electron superthermality reduces the phase velocities of both modes, whereas obliqueness leads to an increase in the separation between two modes. In the nonlinear regime, an energy-like equation describes the evolution of IA solitary waves in the present model. The combined effects of the electron superthermality, magnitude of magnetic field, obliqueness and electron population are incorporated in the study of the existence domain of solitary waves and the soliton characteristics. It is shown that the small values of the hot electron population shift the permitted interval of Mach number to the lower values. Both compressive and rarefactive solitary structures are found to exist in the presence of two temperature electrons. The present investigation contributes to the physics of electrostatic wave structures in Saturn's magnetosphere in which two temperature electrons with kappa distribution exist.

  14. Cross-sectional electrostatic force microscopy of thin-film solar cells

    SciTech Connect

    Ballif, C.; Moutinho, H. R.; Al-Jassim, M. M.

    2001-01-15

    In a recent work, we showed that atomic force microscopy (AFM) is a powerful technique to image cross sections of polycrystalline thin films. In this work, we apply a modification of AFM, namely, electrostatic force microscopy (EFM), to investigate the electronic properties of cleaved II--VI and multijunction thin-film solar cells. We cleave the devices in such a way that they are still working with their nominal photovoltaic efficiencies and can be polarized for the measurements. This allows us to differentiate between surface effects (work function and surface band bending) and bulk device properties. In the case of polycrystalline CdTe/CdS/SnO{sub 2}/glass solar cells, we find a drop of the EFM signal in the area of the CdTe/CdS interface ({+-}50 nm). This drop varies in amplitude and sign according to the applied external bias and is compatible with an n-CdS/p-CdTe heterojunction model, thereby invalidating the possibility of a deeply buried n-p CdTe homojunction. In the case of a triple-junction GaInP/GaAs/Ge device, we observe a variation of the EFM signal linked to both the material work-function differences and to the voltage bias applied to the cell. We attempt a qualitative explanation of the results and discuss the implications and difficulties of the EFM technique for the study of such thin-film devices.

  15. Charge trapping by anionic quinones electrostatically bound to a highly charged cationic quinone-viologen polymer or a cationic poly(3-viologen-thiophene)

    SciTech Connect

    Hable, C.T.; Crooks, R.M.; Valentine, J.R.; Giasson, R.; Wrighton, M.S. )

    1993-06-03

    Charge associated with quinone reduction is trapped at low pH in systems composed of sulfonated anthraquinones electrostatically bound to a polymer derived from a monomer consisting of a quinone unit flanked by two viologen units. Each monomer repeat unit carries 6 equiv of positive charge which can be charge compensated by monosulfonated anthraquinone to yield a quinone-viologen ratio of nearly 7:2. At low pH, electrostatic binding is persistent, and the amount of trapped charge is 90% of the theoretical maximum. Some of the electrostatically bound quinine can be replaced with Fe(CN)[sub 6][sup 3[minus

  16. United States Historical Climatology Network Daily Temperature and Precipitation Data (1871-1997)

    SciTech Connect

    Easterling, D.R.

    2002-10-28

    This document describes a database containing daily observations of maximum and minimum temperature, precipitation amount, snowfall amount, and snow depth from 1062 observing stations across the contiguous US. This database is an expansion and update of the original 138-station database previously released by the Carbon Dioxide Information Analysis Center (CDIAC) as CDIAC numeric data package NDP-042. These 1062 stations are a subset of the 1221-station US Historical Climatology Network (HCN), a monthly database compiled by the National Climatic Data Center (Asheville, North Carolina) that has been widely used in analyzing US climate. Data from 1050 of these daily records extend into the 1990s, while 990 of these extend through 1997. Most station records are essentially complete for at least 40 years; the latest beginning year of record is 1948. Records from 158 stations begin prior to 1900, with that of Charleston, South Carolina beginning the earliest (1871). The daily resolution of these data makes them extremely valuable for studies attempting to detect and monitor long-term climatic changes on a regional scale. Studies using daily data may be able to detect changes in regional climate that would not be apparent from analysis of monthly temperature and precipitation data. Such studies may include analyses of trends in maximum and minimum temperatures, temperature extremes, daily temperature range, precipitation ''event size'' frequency, and the magnitude and duration of wet and dry periods. The data are also valuable in areas such as regional climate model validation and climate change impact assessment. This database is available free of charge from CDIAC as a numeric data package (NDP).

  17. PURIFICATION OF PLUTONIUM USING A CERIUM PRECIPITATE AS A CARRIER FOR FISSION PRODUCTS

    DOEpatents

    Faris, B.F.; Olson, C.M.

    1961-07-01

    Bismuth phosphate carrier precipitation processes are described for the separation of plutonium from fission products wherein in at least one step bismuth phosphate is precipitated in the presence of hexavalent plutonium thereby carrying a portion of the fission products from soluble plu tonium values. In this step, a cerium phosphate precipitate is formed in conjunction with the bismuth phosphate precipitate, thereby increasing the amount of fission products removed from solution.

  18. An electrostatic nanogenerator based on ZnO/ZnS core/shell electrets with stabilized quasi-permanent charge

    SciTech Connect

    Wang, Chao; Cai, Liang; Feng, Yajuan; Chen, Lin; Yan, Wensheng E-mail: zhsun@ustc.edu.cn; Liu, Qinghua; Yao, Tao; Hu, Fengchun; Pan, Zhiyun; Sun, Zhihu E-mail: zhsun@ustc.edu.cn; Wei, Shiqiang

    2014-06-16

    ZnO-based nanogenerators with excellent performance and convenient functionalization are particularly desirable for self-powered technology, which is however difficult to achieve simultaneously in traditional piezoelectric ZnO nanogenerators. Here, we report a design of electrostatic ZnO nanogenerator by virtue of a type-II ZnO/ZnS core/shell nanostructure electrets, which can turn acoustic waves into electric power with an energy conversion efficiency of 2.2%. The ZnO/ZnS core/shell electrets are charged by ultraviolet irradiation with a long-term stability of the electrostatic charges under ambient condition. The electronic and atomic structure evolution in the charged ZnO/ZnS core/shell electrets are also discussed by detailed experimental and theoretical investigations. This design opens up an alternative path for fabricating robust ZnO-based nanogenerator for future nanotechnology application.

  19. Electrostatic carrier doping of GdTiO{sub 3}/SrTiO{sub 3} interfaces

    SciTech Connect

    Moetakef, Pouya; Cain, Tyler A.; Zhang, Jack Y.; Janotti, Anderson; Van de Walle, Chris G.; Stemmer, Susanne; Ouellette, Daniel G.; Allen, S. James; Klenov, Dmitri O.; Rajan, Siddharth

    2011-12-05

    Heterostructures and superlattices consisting of a prototype Mott insulator, GdTiO{sub 3}, and the band insulator SrTiO{sub 3} are grown by molecular beam epitaxy and show intrinsic electronic reconstruction, approximately 1/2 electron per surface unit cell at each GdTiO{sub 3}/SrTiO{sub 3} interface. The sheet carrier densities in all structures containing more than one unit cell of SrTiO{sub 3} are independent of layer thicknesses and growth sequences, indicating that the mobile carriers are in a high concentration, two-dimensional electron gas bound to the interface. These carrier densities closely meet the electrostatic requirements for compensating the fixed charge at these polar interfaces. Based on the experimental results, insights into interfacial band alignments, charge distribution, and the influence of different electrostatic boundary conditions are obtained.

  20. PRECIPITATION OF URANIUM PEROXIDE OF LOW FLUORIDE CONTENT FROM SOLUTIONS CONTAINING FLUORIDES

    DOEpatents

    King, E.J.; Clark, H.M.

    1958-08-12

    S>A method is described for the preparation of fluoride free uraniunn peroxide precipitates, even though the solution from which the precipitation is made is contaminated with fluorides. This is accomplished by add ing aluminum ions to the solution, where they complex any fluoride present and prevent its precipitation with the uramum peroxide.

  1. Optimization of the conditions for the precipitation of thorium oxalate. II. Minimization of the product losses

    SciTech Connect

    Pazukhin, E.M.; Smirnova, E.A.; Krivokhatskii, A.S.; Pazukhina, Yu.L.; Kiselev, P.P.

    1987-05-01

    The precipitation of thorium as a poorly soluble oxalate was investigated. An equation relating the concentrations of the metal and nitric acid in the initial solution and the amount of precipitant required to minimize the product losses was derived. A graphical solution of the equation is presented for the case where the precipitant is oxalic acid at a concentration of 0.78 M.

  2. Excitation of electrostatic waves in the electron cyclotron frequency range during magnetic reconnection in laboratory overdense plasmas

    SciTech Connect

    Kuwahata, A.; Igami, H.; Kawamori, E.; Kogi, Y.; Inomoto, M.; Ono, Y.

    2014-10-15

    We report the observation of electromagnetic radiation at high harmonics of the electron cyclotron frequency that was considered to be converted from electrostatic waves called electron Bernstein waves (EBWs) during magnetic reconnection in laboratory overdense plasmas. The excitation of EBWs was attributed to the thermalization of electrons accelerated by the reconnection electric field around the X-point. The radiative process discussed here is an acceptable explanation for observed radio waves pulsation associated with major flares.

  3. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    SciTech Connect

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Piefer, G. R.

    2013-03-15

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  4. Radar-Derived Characteristics of Precipitation in South East Queensland

    SciTech Connect

    Peter, Justin R; May, Peter T; Potts, Rodney J; Collis, Scott M.; Manton, Michael J; Wilson, Louise

    2015-10-01

    Statistics of radar-retrievals of precipitation are presented. A K-means clustering algorithm is applied to an historical record of radiosonde measurements which identified three major synoptic regimes; a dry, stable regime with mainly westerly winds prevalent during winter, a moist south easterly trade wind regime and a moist northerly regime both prevalent during summer. These are referred to as westerly, trade wind and northerly regimes, respectively. Cell statistics are calculated using an objective cell identification and tracking methodology on data obtained from a nearby S-band radar. Cell statistics are investigated for the entire radar observational period and also during sub-periods corresponding to the three major synoptic regimes. The statistics investigated are cell initiation location, area, rainrate, volume, height, height of the maximum reflectivity, volume greater than 40 dBZ and storm speed and direction. Cells are found predominantly along the elevated topography. The cell statistics reveal that storms which form in the dry, stable westerly regime are of comparable size to the deep cells which form in the northerly regime, larger than those in the trade regime and, furthermore, have the largest rainrate. However, they occur less frequently and have shorter lifetimes than cells in the other regimes. Diurnal statistics of precipitation area and rainrate exhibit early morning and mid afternoon peaks, although the areal coverage lags the rainrate by several hours indicative of a transition from convective to stratiform precipitation. The probability distributions of cell area, rainrate, volume, height and height of the maximum re ectivity are found to follow lognormal distributions.

  5. Plutonium oxalate precipitation for trace elemental determination in plutonium materials

    SciTech Connect

    Xu, Ning; Gallimore, David; Lujan, Elmer; Garduno, Katherine; Walker, Laurie; Taylor, Fiona; Thompson, Pam; Tandon, Lav

    2015-05-26

    In this study, an analytical chemistry method has been developed that removes the plutonium (Pu) matrix from the dissolved Pu metal or oxide solution prior to the determination of trace impurities that are present in the metal or oxide. In this study, a Pu oxalate approach was employed to separate Pu from trace impurities. After Pu(III) was precipitated with oxalic acid and separated by centrifugation, trace elemental constituents in the supernatant were analyzed by inductively coupled plasma-optical emission spectroscopy with minimized spectral interferences from the sample matrix.

  6. Benzene/nitrous oxide flammability in the precipitate hydrolysis process

    SciTech Connect

    Jacobs, R A

    1989-09-18

    The HAN (hydroxylamine nitrate) process for destruction of nitrite in precipitate hydrolysis produces nitrous oxide (N2O) gas as one of the products. N2O can form flammable mixtures with benzene which is also present due to radiolysis and hydrolysis of tetraphenylborate. Extensive flame modeling and explosion testing was undertaken to define the minimum oxidant for combustion of N2O/benzene using both nitrogen and carbon dioxide as diluents. The attached memorandum interprets and documents the results of the studies.

  7. Phosphorous adsorption and precipitation in a permeable reactive wall: Applications for wastewater disposal systems

    SciTech Connect

    Baker, M.J.; Blowes, D.W. |; Placek, C.J. |

    1997-12-31

    A permeable reactive mixture has been developed using low cost, readily available materials that is capable of providing effective, long-term phosphorous treatment in areas impacted by on-land wastewater disposal. The reactive mixture creates a geochemical environment suitable for P-attenuation by both adsorption and precipitation reactions. Potential benefits include significant reductions in phosphorous loading to receiving groundwater and surface water systems, and the accumulation of P-mass in a finite and accessible volume of material. The mixture may be applied as a component within surface treatment systems or in subsurface applications such as horizontal or vertical permeable reactive walls. The mixture averaged > 90% treatment efficiency over 3.6 years of continuous-flow laboratory column experiments. The mixture was further evaluated at the pilot-scale to treat municipal wastewater, and the field-scale to treat a well-characterized septic system plume using an in situ funnel and gate system. Average PO{sub 4}-P concentrations in effluent exiting the reactive mixture range between 0 - 0.3 mg/L. Mineralogical analyses have isolated the phases responsible for phosphorous uptake, and discrete phosphate precipitates have been identified.

  8. Irradiation-induced nano-voids in strained tin precipitates in silicon

    SciTech Connect

    Gaiduk, P. I., E-mail: gaiduk@phys.au.dk [Department of Physics and Astronomy/iNANO, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C (Denmark); Department of Physical Electronics and Nanotechnology, Belarusian State University, prosp. Nezavisimosti, 4, 220030 Minsk (Belarus); Lundsgaard Hansen, J., E-mail: johnlh@phys.au.dk; Nylandsted Larsen, A., E-mail: anl@phys.au.dk [Department of Physics and Astronomy/iNANO, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C (Denmark)

    2014-04-14

    We report on self-assembling of spherically shaped voids in nanometer size strained Sn precipitates after irradiation with He{sup +} ions in different conditions. It is found that high-temperature irradiation induces vacancies which are collected by compressively strained Sn precipitates enhancing of out-diffusion of Sn atoms from the precipitates. Nano-voids formation takes place simultaneously with a ?- to ?-phase transformation in the Sn precipitates. Post-irradiation thermal treatment leads to the removal of voids and a backward transformation of the Sn phase to ?-phase. Strain-enhanced separation of point defects along with vacancy assisted Sn out-diffusion and precipitate dissolution are discussed.

  9. A Case Study of Truncated Electrostatics for Simulation of Polyelectrolyte Brushes on GPU Accelerators

    SciTech Connect

    Nguyen, Trung D; Carrillo, Jan-Michael; Dobrynin, Andrey; Brown, W Michael

    2013-01-01

    Numerous issues have disrupted the trend for increasing computational performance with faster CPU clock frequencies. In order to exploit the potential performance of new computers, it is becoming increasingly desirable to re-evaluate computational physics methods and models with an eye towards towards approaches that allow for increased concurrency and data locality. The evaluation of long-range Coulombic interactions is a common bottleneck for molecular dynamics simulations. Enhanced truncation approaches have been proposed as an alternative method and are particularly well suited for many-core architectures and GPUs due to the inherent fine-grain parallelism that can be exploited. In this paper, we compare efficient truncation-based approximations to evaluation of electrostatic forces with the more traditional particle-particle particle-mesh (P3M) method for molecular dynamics simulation of polyelectrolyte brush layers. We show that with the use of GPU accelerators, large parallel simulations using P3M can be greater than 3 times faster due to a reduction in the mesh-size required. Alternatively, using a truncation-based scheme can improve performance even further. This approach can be up to 3.9 times faster than GPU-accelerated P3M for many polymer systems and results in accurate calculation of shear velocities and disjoining pressures for brush layers. For configurations with highly non-uniform charge distributions, however, we find that it is more efficient to use P3M; for these systems, computationally efficient parameterizations of the truncation-based approach do not produce accurate counterion density profiles or brush morphologies.

  10. Precipitation of sigma and chi phases in ?-ferrite of Type 316FR weld metals

    SciTech Connect

    Chun, Eun Joon; Baba, Hayato; Nishimoto, Kazutoshi; Saida, Kazuyoshi

    2013-12-15

    The decomposition behavior and kinetics of ?-ferrite are examined using aging treatments between 873 and 1073 K for Type 316FR stainless steel weld metals with different solidification modes (316FR AF, 316FR FA). The dominant precipitates are sigma, chi, and secondary austenite nucleated at ?-ferrite/austenite interfaces or in the interior of the ferrite grains. These precipitates consume all the ferrite during isothermal aging in both 316FR AF and FA weld metals. Differences in the precipitation behavior (precipitation initiation time and precipitation speed) between weld metals can be explained by i) the degree of Cr and Mo microsegregation within ?-ferrite or austenite near ferrite and ii) the nucleation sites induced due to the solidification mode (AF or FA), such as the ferrite amount. For both weld materials, a JohnsonMehl-type equation can express the precipitation behavior of the sigma + chi phases and quantitatively predict the behavior at the service-exposure temperatures of a fast breed reactor. - Highlights: Precipitation of ? and ? phase in Type 316FR welds (two solidification modes) Different precipitation behaviors: precipitation initiation time and growth speed Johnson-Mehltype equation is the most applicable to the precipitation behaviors Precipitation behaviors are predicted under service conditions of FBRs.

  11. Satellite estimates of precipitation susceptibility in low-level marine stratiform clouds

    DOE PAGES [OSTI]

    Terai, C. R.; Wood, R.; Kubar, T. L.

    2015-09-05

    Quantifying the sensitivity of warm rain to aerosols is important for constraining climate model estimates of aerosol indirect effects. In this study, the precipitation sensitivity to cloud droplet number concentration (Nd) in satellite retrievals is quantified by applying the precipitation susceptibility metric to a combined CloudSat/Moderate Resolution Imaging Spectroradiometer data set of stratus and stratocumulus clouds that cover the tropical and subtropical Pacific Ocean and Gulf of Mexico. We note that consistent with previous observational studies of marine stratocumulus, precipitation susceptibility decreases with increasing liquid water path (LWP), and the susceptibility of the mean precipitation rate R is nearly equalmore » to the sum of the susceptibilities of precipitation intensity and of probability of precipitation. Consistent with previous modeling studies, the satellite retrievals reveal that precipitation susceptibility varies not only with LWP but also with Nd. Puzzlingly, negative values of precipitation susceptibility are found at low LWP and high Nd. There is marked regional variation in precipitation susceptibility values that cannot simply be explained by regional variations in LWP and Nd. This suggests other controls on precipitation apart from LWP and Nd and that precipitation susceptibility will need to be quantified and understood at the regional scale when relating to its role in controlling possible aerosol-induced cloud lifetime effects.« less

  12. Satellite estimates of precipitation susceptibility in low-level marine stratiform clouds

    SciTech Connect

    Terai, C. R.; Wood, R.; Kubar, T. L.

    2015-09-05

    Quantifying the sensitivity of warm rain to aerosols is important for constraining climate model estimates of aerosol indirect effects. In this study, the precipitation sensitivity to cloud droplet number concentration (Nd) in satellite retrievals is quantified by applying the precipitation susceptibility metric to a combined CloudSat/Moderate Resolution Imaging Spectroradiometer data set of stratus and stratocumulus clouds that cover the tropical and subtropical Pacific Ocean and Gulf of Mexico. We note that consistent with previous observational studies of marine stratocumulus, precipitation susceptibility decreases with increasing liquid water path (LWP), and the susceptibility of the mean precipitation rate R is nearly equal to the sum of the susceptibilities of precipitation intensity and of probability of precipitation. Consistent with previous modeling studies, the satellite retrievals reveal that precipitation susceptibility varies not only with LWP but also with Nd. Puzzlingly, negative values of precipitation susceptibility are found at low LWP and high Nd. There is marked regional variation in precipitation susceptibility values that cannot simply be explained by regional variations in LWP and Nd. This suggests other controls on precipitation apart from LWP and Nd and that precipitation susceptibility will need to be quantified and understood at the regional scale when relating to its role in controlling possible aerosol-induced cloud lifetime effects.

  13. Modeling investigation of the stability and irradiation-induced evolution of nanoscale precipitates in advanced structural materials

    SciTech Connect

    Wirth, Brian

    2015-04-08

    Materials used in extremely hostile environment such as nuclear reactors are subject to a high flux of neutron irradiation, and thus vast concentrations of vacancy and interstitial point defects are produced because of collisions of energetic neutrons with host lattice atoms. The fate of these defects depends on various reaction mechanisms which occur immediately following the displacement cascade evolution and during the longer-time kinetically dominated evolution such as annihilation, recombination, clustering or trapping at sinks of vacancies, interstitials and their clusters. The long-range diffusional transport and evolution of point defects and self-defect clusters drive a microstructural and microchemical evolution that are known to produce degradation of mechanical properties including the creep rate, yield strength, ductility, or fracture toughness, and correspondingly affect material serviceability and lifetimes in nuclear applications. Therefore, a detailed understanding of microstructural evolution in materials at different time and length scales is of significant importance. The primary objective of this work is to utilize a hierarchical computational modeling approach i) to evaluate the potential for nanoscale precipitates to enhance point defect recombination rates and thereby the self-healing ability of advanced structural materials, and ii) to evaluate the stability and irradiation-induced evolution of such nanoscale precipitates resulting from enhanced point defect transport to and annihilation at precipitate interfaces. This project will utilize, and as necessary develop, computational materials modeling techniques within a hierarchical computational modeling approach, principally including molecular dynamics, kinetic Monte Carlo and spatially-dependent cluster dynamics modeling, to identify and understand the most important physical processes relevant to promoting the “selfhealing” or radiation resistance in advanced materials containing

  14. FOHI-D: An iterative Hirshfeld procedure including atomic dipoles

    SciTech Connect

    Geldof, D.; Blockhuys, F.; Van Alsenoy, C.; Krishtal, A.

    2014-04-14

    In this work, a new partitioning method based on the FOHI method (fractional occupation Hirshfeld-I method) will be discussed. The new FOHI-D method uses an iterative scheme in which both the atomic charge and atomic dipole are calculated self-consistently. In order to induce the dipole moment on the atom, an electric field is applied during the atomic SCF calculations. Based on two sets of molecules, the atomic charge and intrinsic atomic dipole moment of hydrogen and chlorine atoms are compared using the iterative Hirshfeld (HI) method, the iterative Stockholder atoms (ISA) method, the FOHI method, and the FOHI-D method. The results obtained are further analyzed as a function of the group electronegativity of Boyd et al. [J. Am. Chem. Soc. 110, 4182 (1988); Boyd et al., J. Am. Chem. Soc. 114, 1652 (1992)] and De Proft et al. [J. Phys. Chem. 97, 1826 (1993)]. The molecular electrostatic potential (ESP) based on the HI, ISA, FOHI, and FOHI-D charges is compared with the ab initio ESP. Finally, the effect of adding HI, ISA, FOHI, and FOHI-D atomic dipoles to the multipole expansion as a function of the precision of the ESP is analyzed.

  15. Stable isotopic study of precipitation and spring discharge on the Nevada Test Site

    SciTech Connect

    Ingraham, N.L.; Jacobson, R.L.; Hess, J.W.; Lyles, B.F. . Water Resources Center Nevada Univ., Reno, NV . Water Resources Center)

    1990-07-01

    Precipitation was collected in southern Nevada (on the Nevada Test Site) on a semi-regular monthly basis at 41 locations for six years for stable isotopic analysis. The precipitation record shows two time-based regimes. For the first three years of collection, the precipitation was highly variable with several large events and several dry periods. During the last three years of collection, the precipitation was much more even with no large events. However, there is no correlation between the variability in the amount of precipitation and the stable isotopic composition of precipitation. In addition, the oxygen isotope composition and discharge of two springs, Whiterock Spring and Cane Spring, issuing from perched water tables, were monitored for five years in a similar time frame as for the precipitation. 17 refs., 42 figs., 3 tabs.

  16. Potential impacts of the Arctic on interannual and interdecadal summer precipitation over China

    SciTech Connect

    Li, Yuefeng; Leung, Lai-Yung R.

    2013-02-01

    After the end of the 1970s, there has been a tendency for enhanced summer precipitation over South China and the Yangtze River valley and drought over North China and Northeastern China. Coincidentally, Arctic ice concentration has decreased since the late 1970s, with larger reduction in summer than spring. However, the Arctic warming is more significant in spring than summer, suggesting that spring Arctic conditions could be more important in their remote impacts. This study investigates the potential impacts of the Arctic on summer precipitation in China. The leading spatial patterns and time coefficients of the unfiltered, interannual, and interdecadal precipitation (1960-2008) modes were analyzed and compared using empirical orthogonal function (EOF) analysis, which shows that the first three EOFs can capture the principal precipitation patterns (northern, central and southern patterns) over eastern China. Regression of the Arctic spring and summer temperature onto the time coefficients of the leading interannual and interdecadal precipitation modes shows that interdecadal summer precipitation in China is related to the Arctic spring warming, but the relationship with Arctic summer temperature is weak. Moreover, no notable relationships were found between the first three modes of interannual precipitation and Arctic spring or summer temperatures. Finally, correlations between summer precipitation and the Arctic Oscillation (AO) index from January to August were investigated, which indicate that summer precipitation in China correlates with AO only to some extent. Overall, this study suggests important relationships between the Arctic spring temperature and summer precipitation over China at the interdecadal time scale.

  17. Precipitation of calcium carbonate and calcium phosphate under diffusion controlled mixing

    SciTech Connect

    Tsigabu Gebrehiwet; James R. Henriksen; Luanjing Guo; Don T. Fox; Hai Huang; Lee Tu; Yoshiko Fujita; Robert W. Smith; George Redden

    2014-07-01

    Multi-component mineral precipitation in porous, subsurface environments is challenging to simulate or engineer when in situ reactant mixing is controlled by diffusion. In contrast to well-mixed systems, the conditions that favor mineral precipitation in porous media are distributed along chemical gradients, which evolve spatially due to concurrent mineral precipitation and modification of solute transport in the media. The resulting physical and chemical characteristics of a mixing/precipitation zone are a consequence of coupling between transport and chemical processes, and the distinctive properties of individual chemical systems. We examined the spatial distribution of precipitates formed in “double diffusion” columns for two chemical systems, calcium carbonate and calcium phosphate. Polyacrylamide hydrogel was used as a low permeability, high porosity medium to maximize diffusive mixing and minimize pressure- and density-driven flow between reactant solutions. In the calcium phosphate system, multiple, visually dense and narrow bands of precipitates were observed that were reminiscent of previously reported Liesegang patterns. In the calcium carbonate system, wider precipitation zones characterized by more sparse distributions of precipitates and a more open channel structure were observed. In both cases, formation of precipitates inhibited, but did not necessarily eliminate, continued transport and mixing of the reactants. A reactive transport model with fully implicit coupling between diffusion, chemical speciation and precipitation kinetics, but where explicit details of nucleation processes were neglected, was able to qualitatively simulate properties of the precipitation zones. The results help to illustrate how changes in the physical properties of a precipitation zone depend on coupling between diffusion-controlled reactant mixing and chemistry-specific details of precipitation kinetics.

  18. Dynamic interplay between uranyl phosphate precipitation, sorption, and phase evolution

    SciTech Connect

    Munasinghe, P. Sumudu; Elwood Madden, Megan E.; Brooks, Scott C.; Elwood Madden, Andrew S.

    2015-04-17

    We report that natural examples demonstrate uranyl-phosphate minerals can maintain extremely low levels of aqueous uranium in groundwaters due to their low solubility. Thus, greater understanding of the geochemical factors leading to uranyl phosphate precipitation may lead to successful application of phosphate-based remediation methods. However, the solubility of uranyl phosphate phases varies over >3 orders of magnitude, with the most soluble phases typically observed in lab experiments. To understand the role of common soil/sediment mineral surfaces in the nucleation and transformation of uranyl phosphate minerals under environmentally relevant conditions, we carried out batch experiments with goethite and mica at pH 6 in mixed electrolyte solutions ranging from 1–800 μM U and 1–800 μM P. All experiments ended with uranium concentrations below the USEPA MCL for U, but with 2–3 orders of magnitude difference in uranium concentrations.

  19. Simulation of the kinetics of precipitation reactions in ferritic steels

    SciTech Connect

    Schneider, A. . E-mail: schneider@mpie.de; Inden, G.

    2005-01-10

    Computer simulations of diffusion-controlled phase transformations in model alloys of Fe-Cr-C, Fe-Cr-W-C, Fe-Cr-Si-C, and Fe-Cr-Co-V-C are presented. The compositions considered are typical for ferritic steels. The simulations are performed using the software DICTRA and the thermodynamic calculations of phase equilibria are performed using Thermo-Calc. The thermodynamic driving forces and the kinetics of diffusion-controlled precipitation reactions of M{sub 23}C{sub 6}, M{sub 7}C{sub 3}, cementite and Laves-phase (Fe, Cr){sub 2}W are discussed. The simultaneous growth of stable and metastable phases is treated in a multi-cell approach. The results show remarkable effects on the growth kinetics due to the competition during simultaneous growth.

  20. Dynamic interplay between uranyl phosphate precipitation, sorption, and phase evolution

    DOE PAGES [OSTI]

    Munasinghe, P. Sumudu; Elwood Madden, Megan E.; Brooks, Scott C.; Elwood Madden, Andrew S.

    2015-04-17

    We report that natural examples demonstrate uranyl-phosphate minerals can maintain extremely low levels of aqueous uranium in groundwaters due to their low solubility. Thus, greater understanding of the geochemical factors leading to uranyl phosphate precipitation may lead to successful application of phosphate-based remediation methods. However, the solubility of uranyl phosphate phases varies over >3 orders of magnitude, with the most soluble phases typically observed in lab experiments. To understand the role of common soil/sediment mineral surfaces in the nucleation and transformation of uranyl phosphate minerals under environmentally relevant conditions, we carried out batch experiments with goethite and mica at pHmore » 6 in mixed electrolyte solutions ranging from 1–800 μM U and 1–800 μM P. All experiments ended with uranium concentrations below the USEPA MCL for U, but with 2–3 orders of magnitude difference in uranium concentrations.« less

  1. A Small Area In-Situ MEMS Test Structure to Accurately Measure Fracture Strength by Electrostatic Probing

    SciTech Connect

    Bitsie, Fernando; Jensen, Brian D.; de Boer, Maarten

    1999-07-15

    We have designed, fabricated, tested and modeled a first generation small area test structure for MEMS fracture studies by electrostatic rather than mechanical probing. Because of its small area, this device has potential applications as a lot monitor of strength or fatigue of the MEMS structural material. By matching deflection versus applied voltage data to a 3-D model of the test structure, we develop high confidence that the local stresses achieved in the gage section are greater than 1 GPa. Brittle failure of the polycrystalline silicon was observed.

  2. ARM: 1290-MHz Beam-Steered Radar Wind Profiler: Precipitation Datastream

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer Precipitation Datastream Title: ARM: 1290-MHz Beam-Steered Radar Wind Profiler: Precipitation Datastream 1290-MHz Beam-Steered Radar Wind Profiler: Precipitation Datastream Authors: Timothy Martin ; Paytsar Muradyan ; Richard Coulter Publication Date: 2012-12-12 OSTI Identifier: 1095572 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory

  3. Mineral-Surfactant Interactions for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery

    SciTech Connect

    P. Somasundaran

    2008-09-20

    Chemical EOR can be an effective method for increasing oil recovery and reducing the amount of produced water; however, reservoir fluids are chemically complex and may react adversely to the polymers and surfactants injected into the reservoir. While a major goal is to alter rock wettability and interfacial tension between oil and water, rock-fluid and fluid-fluid interactions must be understood and controlled to minimize reagent loss, maximize recovery and mitigate costly failures. The overall objective of this project was to elucidate the mechanisms of interactions between polymers/surfactants and the mineral surfaces responsible for determining the chemical loss due to adsorption and precipitation in EOR processes. The role of dissolved inorganic species that are dependent on the mineralogy is investigated with respect to their effects on adsorption. Adsorption, wettability and interfacial tension are studied with the aim to control chemical losses, the ultimate goal being to devise schemes to develop guidelines for surfactant and polymer selection in EOR. The adsorption behavior of mixed polymer/surfactant and surfactant/surfactant systems on typical reservoir minerals (quartz, alumina, calcite, dolomite, kaolinite, gypsum, pyrite, etc.) was correlated to their molecular structures, intermolecular interactions and the solution conditions such as pH and/or salinity. Predictive models as well as general guidelines for the use of polymer/surfactant surfactant/surfactant system in EOR have been developed The following tasks have been completed under the scope of the project: (1) Mineral characterization, in terms of SEM, BET, size, surface charge, and point zero charge. (2) Study of the interactions among typical reservoir minerals (quartz, alumina, calcite, dolomite, kaolinite, gypsum, pyrite, etc.) and surfactants and/or polymers in terms of adsorption properties that include both macroscopic (adsorption density, wettability) and microscopic (orientation

  4. Recovery of carboxylic acids from water by precipitation from organic solutions

    DOEpatents

    King, C. Judson; Starr, John

    1992-01-01

    Carboxylic acids are recovered from wet organic solutions by reducing the solutions' water content thus causing the acids to precipitate as recoverable crystals.

  5. Precipitation in a Cu–Cr–Zr–Mg alloy during aging

    SciTech Connect

    Cheng, J.Y. Shen, B.; Yu, F.X.

    2013-07-15

    The precipitation processes in a Cu-0.69Cr-0.10Zr-0.02Mg alloy aged at 450 °C and 550 °C have been investigated by transmission electron microscopy and high resolution transmission electron microscopy. The precipitation sequence in this alloy aged at 450 °C is: supersaturated solid solution → Guinier–Preston zone (fcc Cr-rich phase) → ordered fcc Cr-rich phase → ordered bcc Cr-rich phase. The precipitation sequence in this alloy aged at 550 °C is: supersaturated solid solution → ordered fcc Cr-rich phase → ordered bcc Cr-rich phase. In the evolution of decomposition, the orientation relationship between the precipitates and the Cu matrix changes from cube-on-cube to Nishiyama–Wassermann orientation. The ordering of Cr-rich precipitates facilitates the formation of the bcc precipitates and promotes the development of Nishiyama–Wassermann orientation. - Highlights: • Two different precipitation sequences in the Cu–Cr–Zr–Mg alloy are proposed. • The changes in orientation relationship of the precipitates are presented. • The roles of ordering and coherent interface of the precipitates are discussed.

  6. Method and means for continuous precipitation of easy-dry, granular uranium peroxide

    DOEpatents

    Cahill, Allen E.; Burkhart, deceased, Lawrence E.

    1992-02-28

    A method and means for continuous precipitation of granular uranium peroxide. The reaction vessel and agitation method practiced in it avoid filter plugging and caking problems.

  7. Precipitates in a quasicrystal-strengthened Al–Mn–Be–Cu alloy

    SciTech Connect

    Zupanič, Franc; Wang, Di; Gspan, Cristian; Bončina, Tonica

    2015-08-15

    In this work, an Al–Mn–Be–Cu alloy was studied containing a primary and eutectic icosahedral quasicrystalline phase in the as-cast microstructure. Special attention was given to a transmission electron microscopy investigation of precipitates formed within the aluminium solid solution (Al{sub ss}) at different temperatures. At 200 °C, only binary Al–Cu precipitates (θ′) were formed. At 300 °C, icosahedral quasicrystalline (IQC) precipitates prevailed with a crystallographic orientation relationship with the Al{sub ss.} The rods of the T-phase (Al{sub 20}Mn{sub 3}Cu{sub 2}) which were precipitated above 400 °C, also had a specific orientation relationship with the Al{sub ss}. The primary and eutectic IQC microstructural constituent started to transform rapidly to the T-phase and Be{sub 4}Al(Mn,Cu) at 500 °C. - Highlights: • In a quasicrystal-strengthened Al-alloy several types of precipitates can form. • At 200 °C, only binary Al–Cu precipitates formed (Al{sub 2}Cu-θ′). • The icosahedral quasicrystalline (IQC) precipitates prevailed at 300 °C. • T-phase (Al{sub 20}Mn{sub 3}Cu{sub 2}) precipitated at temperatures above 400 °C. • The precipitation of different phases did not have a strong effect on hardness.

  8. Nuclear Arms Control R&D Consortium includes Los Alamos

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Arms Control R&D Consortium includes Los Alamos Nuclear Arms Control R&D Consortium includes Los Alamos A consortium led by the University of Michigan that includes LANL as ...

  9. Should Title 24 Ventilation Requirements Be Amended to include...

    Office of Scientific and Technical Information (OSTI)

    include an Indoor Air Quality Procedure? Citation Details In-Document Search Title: Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure? ...

  10. Natural Gas Delivered to Consumers in California (Including Vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    California (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in California (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun ...

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the U.S. (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel ...

  12. Solar Energy Education. Reader, Part II. Sun story. [Includes...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reader, Part II. Sun story. Includes glossary Citation Details In-Document Search Title: Solar Energy Education. Reader, Part II. Sun story. Includes glossary You are ...

  13. Microfluidic devices and methods including porous polymer monoliths...

    Office of Scientific and Technical Information (OSTI)

    Microfluidic devices and methods including porous polymer monoliths Title: Microfluidic devices and methods including porous polymer monoliths Microfluidic devices and methods ...

  14. Microfluidic devices and methods including porous polymer monoliths...

    Office of Scientific and Technical Information (OSTI)

    Microfluidic devices and methods including porous polymer monoliths Citation Details In-Document Search Title: Microfluidic devices and methods including porous polymer monoliths ...

  15. Newport News in Review, ch. 47, segment includes TEDF groundbreaking...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    https:www.jlab.orgnewsarticlesnewport-news-review-ch-47-segment-includes-tedf-groundbreaking-event Newport News in Review, ch. 47, segment includes TEDF groundbreaking event...

  16. Property:Number of Plants included in Capacity Estimate | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Plants included in Capacity Estimate Jump to: navigation, search Property Name Number of Plants included in Capacity Estimate Property Type Number Retrieved from "http:...

  17. Property:Number of Plants Included in Planned Estimate | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Number of Plants Included in Planned Estimate Jump to: navigation, search Property Name Number of Plants Included in Planned Estimate Property Type String Description Number of...

  18. FEMP Expands ESPC ENABLE Program to Include More Energy Conservation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Expands ESPC ENABLE Program to Include More Energy Conservation Measures FEMP Expands ESPC ENABLE Program to Include More Energy Conservation Measures November 13, 2013 - 12:00am...

  19. Natural Gas Delivered to Consumers in Minnesota (Including Vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Minnesota (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in Minnesota (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun ...

  20. Effect of particles attachment to multi-sized dust grains present in electrostatic sheaths of discharge plasmas

    SciTech Connect

    Zaham, B.; Tahraoui, A. Chekour, S.; Benlemdjaldi, D.

    2014-12-15

    The loss of electrons and ions due to their attachment to a Gauss-distributed sizes of dust grains present in electrostatic sheaths of discharge plasmas is investigated. A uni-dimensional, unmagnetized, and stationary multi-fluid model is proposed. Forces acting on the dust grain along with its charge are self-consistently calculated, within the limits of the orbit motion limited model. The dynamic analysis of dust grains shows that the contribution of the neutral drag force in the net force acting on the dust grain is negligible, whereas the contribution of the gravity force is found considerable only for micrometer particles. The dust grains trapping is only possible when the electrostatic force is balanced by the ion drag and the gravity forces. This trapping occurs for a limited radius interval of micrometer dust grains, which is around the most probable dust grain radius. The effect of electron temperature and ion density at the sheath edge is also discussed. It is shown that the attachment of particles reduces considerably the sheath thickness and induces dust grain deceleration. The increase of the lower limit as well as the upper limit of the dust radius reduces also the sheath thickness.

  1. Bond-valence methods for pKa prediction. II. Bond-valence, electrostatic, molecular geometry, and solvation effects

    SciTech Connect

    Bickmore, Barry R.; Rosso, Kevin M.; Tadanier, Christopher J.; Bylaska, Eric J.; Doud, Darrin

    2006-08-15

    In a previous contribution, we outlined a method for predicting (hydr)oxy-acid and oxide surface acidity constants based on three main factors: bond valence, Me?O bond ionicity, and molecular shape. Here electrostatics calculations and ab initio molecular dynamics simulations are used to qualitatively show that Me?O bond ionicity controls the extent to which the electrostatic work of proton removal departs from ideality, bond valence controls the extent of solvation of individual functional groups, and bond valence and molecular shape controls local dielectric response. These results are consistent with our model of acidity, but completely at odds with other methods of predicting acidity constants for use in multisite complexation models. In particular, our ab initio molecular dynamics simulations of solvated monomers clearly indicate that hydrogen bonding between (hydr)oxo-groups and water molecules adjusts to obey the valence sum rule, rather than maintaining a fixed valence based on the coordination of the oxygen atom as predicted by the standard MUSIC model.

  2. A Case Study of Urbanization Impact on Summer Precipitation in the Greater Beijing Metropolitan Area. Urban Heat Island Versus Aerosol Effects

    SciTech Connect

    Zhong, Shi; Qian, Yun; Zhao, Chun; Leung, Lai-Yung R.; Yang, Xiuqun

    2015-10-23

    Convection-resolving ensemble simulations using the WRF-Chem model coupled with a single-layer Urban Canopy Model (UCM) are conducted to investigate the individual and combined impacts of land use and anthropogenic pollutant emissions from urbanization on a heavy rainfall event in the Greater Beijing Metropolitan Area (GBMA) in China. The simulation with the urbanization effect included generally captures the spatial pattern and temporal variation of the rainfall event. An improvement of precipitation is found in the experiment including aerosol effect on both clouds and radiation. The expanded urban land cover and increased aerosols have an opposite effect on precipitation processes, with the latter playing a more dominant role, leading to suppressed convection and rainfall over the upstream (northwest) area, and enhanced convection and more precipitation in the downstream (southeast) region of the GBMA. In addition, the influence of aerosol indirect effect is found to overwhelm that of direct effect on precipitation in this rainfall event. Increased aerosols induce more cloud droplets with smaller size, which favors evaporative cooling and reduce updrafts and suppress convection over the upstream (northwest) region in the early stage of the rainfall event. As the rainfall system propagates southeastward, more latent heat is released due to the freezing of larger number of smaller cloud drops that are lofted above the freezing level, which is responsible for the increased updraft strength and convective invigoration over the downstream (southeast) area.

  3. Airborne soil organic particles generated by precipitation

    DOE PAGES [OSTI]

    Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.; Piens, Dominique S.; China, Swarup; Kovarik, Libor; Keiluweit, Marco; Arey, Bruce W.; Gilles, Mary K.; Laskin, Alexander

    2016-05-02

    Airborne organic particles play a critical role in Earth’s climate1, public health2, air quality3, and hydrological and carbon cycles4. However, sources and formation mechanisms for semi-solid and solid organic particles5 are poorly understood and typically neglected in atmospheric models6. Laboratory evidence suggests that fine particles can be formed from impaction of mineral surfaces by droplets7. Here, we use chemical imaging of particles collected following rain events in the Southern Great Plains, Oklahoma, USA and after experimental irrigation to show that raindrop impaction of soils generates solid organic particles. We find that after rain events, sub-micrometre solid particles, with a chemicalmore » composition consistent with soil organic matter, contributed up to 60% of atmospheric particles. Our irrigation experiments indicate that intensive water impaction is sufficient to cause ejection of airborne soil organic particles from the soil surface. Chemical imaging and micro-spectroscopy analysis of particle physico-chemical properties suggest that these particles may have important impacts on cloud formation and efficiently absorb solar radiation. Lastly, we suggest that raindrop-induced formation of solid organic particles from soils may be a widespread phenomenon in ecosystems such as agricultural systems and grasslands where soils are exposed to strong, episodic precipitation events8.« less

  4. Alternative washing strategy during in-tank precipitation processing

    SciTech Connect

    Walker, D.D.; Hobbs, D.T.

    1992-10-30

    If late washing of precipitate is available, it is possible to modify the normal washing phase of the ITP process so that tank corrosion is prevented by inhibiting with sodium hydroxide rather than sodium nitrite. Hydroxide inhibition has numerous advantages to a hydroxide/nitrite flowsheet.1 However, the rate of hydroxide depletion due to radiolysis and C0{sub 2} absorption were uncertainties. Based on recent experiments and calculations: hydroxide consumption by radiolysis will be 0.01 molar per month during Tank 49 storage, hydroxide depletion due to C0{sub 2} absorption will vary from 0.0006 to 0.025 molar per month for waste volumes between 50,000 and 1 million gallons and air flowrates between 100 and 200 cfm. A nominal rate of 0.006 molar/month (or less) is expected in Tank 49 after the first two ITP cycles have been completed. A material balance for the ITP process based on hydroxide inhibition has been calculated and the potential savings have been estimated.

  5. Alternative washing strategy during in-tank precipitation processing

    SciTech Connect

    Walker, D.D.; Hobbs, D.T.

    1992-10-30

    If late washing of precipitate is available, it is possible to modify the normal washing phase of the ITP process so that tank corrosion is prevented by inhibiting with sodium hydroxide rather than sodium nitrite. Hydroxide inhibition has numerous advantages to a hydroxide/nitrite flowsheet.1 However, the rate of hydroxide depletion due to radiolysis and C0[sub 2] absorption were uncertainties. Based on recent experiments and calculations: hydroxide consumption by radiolysis will be 0.01 molar per month during Tank 49 storage, hydroxide depletion due to C0[sub 2] absorption will vary from 0.0006 to 0.025 molar per month for waste volumes between 50,000 and 1 million gallons and air flowrates between 100 and 200 cfm. A nominal rate of 0.006 molar/month (or less) is expected in Tank 49 after the first two ITP cycles have been completed. A material balance for the ITP process based on hydroxide inhibition has been calculated and the potential savings have been estimated.

  6. Modeling precipitation from concentrated solutions with the EQ3/6 chemical speciation codes

    SciTech Connect

    Brown, L.F.; Ebinger, M.H.

    1995-01-13

    One of the more important uncertainties of using chemical speciation codes to study dissolution and precipitation of compounds is the results of modeling which depends on the particular thermodynamic database being used. The authors goal is to investigate the effects of different thermodynamic databases on modeling precipitation from concentrated solutions. They used the EQ3/6 codes and the supplied databases to model precipitation in this paper. One aspect of this goal is to compare predictions of precipitation from ideal solutions to similar predictions from nonideal solutions. The largest thermodynamic databases available for use by EQ3/6 assume that solutions behave ideally. However, two databases exist that allow modeling nonideal solutions. The two databases are much less extensive than the ideal solution data, and they investigated the comparability of modeling ideal solutions and nonideal solutions. They defined four fundamental problems to test the EQ3/6 codes in concentrated solutions. Two problems precipitate Ca(OH){sub 2} from solutions concentrated in Ca{sup ++}. One problem tests the precipitation of Ca(OH){sub 2} from high ionic strength (high concentration) solutions that are low in the concentrations of precipitating species (Ca{sup ++} in this case). The fourth problem evaporates the supernatant of the problem with low concentrations of precipitating species. The specific problems are discussed.

  7. G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product

    SciTech Connect

    Koontz, A; Cadeddu, M

    2012-12-05

    The G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) value-added product (VAP) computes precipitable water vapor using neural network techniques from data measured by the GVR. The GVR reports time-series measurements of brightness temperatures for four channels located at 183.3 ± 1, 3, 7, and 14 GHz.

  8. SEPARATION OF FISSION PRODUCT VALUES FROM THE HEXAVALENT PLUTONIUM BY CARRIER PRECIPITATION

    DOEpatents

    Davies, T.H.

    1959-12-15

    An improved precipitation of fission products on bismuth phosphate from an aqueous mineral acid solution also containing hexavalent plutonium by incorporating, prior to bismuth phosphate precipitation, from 0.05 to 2.5 grams/ liter of zirconium phosphate, niobium oxide. and/or lanthanum fluoride is described. The plutonium remains in solution.

  9. Optimization of conditions for precipitation of thorium oxalate. IV. State of thorium in oxalate solutions

    SciTech Connect

    Pazukhin, E.M.; Smirnova, E.A.; Pazurkhina, Yu.L.; Kiselev, P.P.

    1989-01-01

    The paper gives the algorithm and the results from computer treatment of data on the solubility of a thorium oxalate hexahydrate precipitate in solutions with various compositions. A new method is proposed for the determination of the solubility product of the precipitate by means of the solubility curve. The stability constants were calculated. The calculations were made on an Elektronika-60 computer.

  10. U.S.DOE Global Monthly Station Temperature and Precipitation, 1738-1980

    DOE Data Explorer

    The global monthly station temperature and precipitation data from the U.S. Department of Energy, a dataset hosted at, covers the time period from January, 1738 to December, 1980. The air temperature and precipitation levels are platform observations from ground and water surfaces. The data are maintained in the Research Data Archive at the National Center for Atmospheric Research.

  11. Precipitation process for the removal of technetium values from nuclear waste solutions

    DOEpatents

    Walker, D.D.; Ebra, M.A.

    1985-11-21

    High efficiency removal of techetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  12. Theoretical studies of Ir5Th and Ir5Ce nanoscale precipitates in Ir

    SciTech Connect

    Morris, James R; Averill, Frank; Cooper, Valentino R

    2014-01-01

    Experimentally, it is known that very small amounts of thorium and/or cerium added to iridium metal form a precipitate, Ir5Th / Ir5Ce, which improves the high temperature mechanical properties of the resulting alloys. We demonstrate that there are low-energy configurations for nano-scale precipitates of these phases in Ir, and that these coherent arrangements may assist in producing improved mechanical properties. One precipitate/matrix orientation gives a particularly low interfacial energy, and a low lattice misfit. Nanolayer precipitates with this orientation are found to be likely to form, with little driving force to coarsen. The predicted morphology of the precipitates and their orientation with the matrix phase provide a potential experiment that could be used to test these predictions.

  13. Hydride precipitation kinetics in Zircaloy-4 studied using synchrotron X-ray diffraction

    SciTech Connect

    Courty, Olivier Fabrice; Motta, Arthur T.; Piotrowski, Christopher J.; Almer, Jonathan D.

    2015-01-01

    As a result of in-reactor corrosion during operation in nuclear reactors, hydrogen can enter the zirconium fuel cladding and precipitate as brittle hydride particles, which may reduce cladding ductility. Dissolved hydrogen responds to temperature gradients, resulting in transport and precipitation into cold spots so that the distribution of hydrides in the cladding is inhomogeneous. The hydrogen precipitation kinetics plays a strong role in the spatial distribution of the hydrides in the cladding. The precipitation rate is normally described as proportional to the supersaturation of hydrogen in solid solution. The proportionality constant, α2, for hydride precipitation in Zircaloy-4 is measured directly using in situ synchrotron X-Ray diffraction, at different temperatures and with three different initial hydrogen concentrations. The results validate the linear approximation of the phenomenological model and a near constant value of α2 = 4.5 × 10-4 s-1 was determined for the temperature range studied.

  14. Example Retro-Commissioning Scope of Work to Include Services...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Retro-Commissioning Scope of Work to Include Services as Part of an ESPC Investment-Grade Audit Example Retro-Commissioning Scope of Work to Include Services as Part of an ESPC ...

  15. SWS Online Tool now includes Multifamily Content, plus a How...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SWS Online Tool now includes Multifamily Content, plus a How-To Webinar SWS Online Tool now includes Multifamily Content, plus a How-To Webinar This announcement contains ...

  16. Natural Gas Delivered to Consumers in New Mexico (Including Vehicle...

    Energy Information Administration (EIA) (indexed site)

    Mexico (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in New Mexico (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul ...

  17. LAB-SCALE DEMONSTRATION OF PLUTONIUM PURIFICATION BY ANION EXCHANGE, PLUTONIUM (IV) OXALATE PRECIPITATION, AND CALCINATION TO PLUTONIUM OXIDE TO SUPPORT THE MOX FEED MISSION

    SciTech Connect

    Crowder, M.; Pierce, R.

    2012-08-22

    H-Canyon and HB-Line are tasked with the production of PuO{sub 2} from a feed of plutonium metal. The PuO{sub 2} will provide feed material for the MOX Fuel Fabrication Facility. After dissolution of the Pu metal in H-Canyon, the solution will be transferred to HB-Line for purification by anion exchange. Subsequent unit operations include Pu(IV) oxalate precipitation, filtration and calcination to form PuO{sub 2}. This report details the results from SRNL anion exchange, precipitation, filtration, calcination, and characterization tests, as requested by HB-Line1 and described in the task plan. This study involved an 80-g batch of Pu and employed test conditions prototypical of HB-Line conditions, wherever feasible. In addition, this study integrated lessons learned from earlier anion exchange and precipitation and calcination studies. H-Area Engineering selected direct strike Pu(IV) oxalate precipitation to produce a more dense PuO{sub 2} product than expected from Pu(III) oxalate precipitation. One benefit of the Pu(IV) approach is that it eliminates the need for reduction by ascorbic acid. The proposed HB-Line precipitation process involves a digestion time of 5 minutes after the time (44 min) required for oxalic acid addition. These were the conditions during HB-line production of neptunium oxide (NpO{sub 2}). In addition, a series of small Pu(IV) oxalate precipitation tests with different digestion times were conducted to better understand the effect of digestion time on particle size, filtration efficiency and other factors. To test the recommended process conditions, researchers performed two nearly-identical larger-scale precipitation and calcination tests. The calcined batches of PuO{sub 2} were characterized for density, specific surface area (SSA), particle size, moisture content, and impurities. Because the 3013 Standard requires that the calcination (or stabilization) process eliminate organics, characterization of PuO{sub 2} batches monitored the

  18. Microfluidic devices and methods including porous polymer monoliths

    Office of Scientific and Technical Information (OSTI)

    (Patent) | DOEPatents devices and methods including porous polymer monoliths Title: Microfluidic devices and methods including porous polymer monoliths Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with

  19. Daily temperature and precipitation data for 223 USSR Stations

    SciTech Connect

    Razuvaev, V.N.; Apasova, E.G.; Martuganov, R.A.; Vose, R.S.; Steurer, P.M.

    1993-11-01

    On- May 23, 1972, the United States and the USSR established a bilateral initiative known as the Agreement on Protection of the Environment. Given recent interest in possible greenhouse gas-induced climate change, Working Group VIII (Influence of Environmental Changes on Climate) has become particularly useful to the scientific communities of both nations. Among its many achievements, Working Group VIII has been instrumental in the exchange of climatological information between the principal climate data centers of each country [i.e., the National Climatic Data Center (NCDC) in Asheville, North Carolina, and the Research Institute of Hydrometeorological Information in Obninsk, Russia]. Considering the relative lack of climate records previously available for the USSR, data obtained via this bilateral exchange are particularly valuable to researchers outside the former Soviet Union. To expedite the dissemination of these data, NOAA`s Climate and Global Change Program funded the Carbon Dioxide Information Analysis Center (CDIAC) and NCDC to distribute one of the more useful archives acquired through this exchange: a 223-station daily data set covering the period 1881-1989. This data set contains: (1) daily mean, minimum, and maximum temperature data; (2) daily precipitation data; (3) station inventory information (WMO No., name, coordinates, and elevation); (4) station history information (station relocation and rain gauge replacement dates); and (5) quality assurance information (i.e., flag codes that were assigned as a result of various data checks). The data set is available, free of charge, as a Numeric Data Package (NDP) from CDIAC. The NDP consists of 18 data files and a printed document which describes both the data files and the 223-station network in detail.

  20. Long-range electrostatics-induced two-proton transfer captured by neutron crystallography in an enzyme catalytic site

    DOE PAGES [OSTI]

    Gerlits, Oksana; Wymore, Troy; Das, Amit; Shen, Chen -Hsiang; Parks, Jerry M.; Smith, Jeremy C.; Weiss, Kevin L.; Keen, David A.; Blakeley, Matthew P.; Louis, John M.; et al

    2016-03-09

    Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other asparticmore » proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.« less

  1. Electronic responses of long chains to electrostatic fields: Hartree-Fock vs. density-functional theory: A model study

    SciTech Connect

    Vargas, Jorge; Springborg, Michael; Kirtman, Bernard

    2014-02-07

    The response to an electrostatic field is determined through simple model calculations, within both the restricted Hartree-Fock and density functional theory methods, for long, finite as well as infinite, periodic chains. The permanent dipole moment, μ{sub 0}, the polarizability, α, and the hyperpolarizabilities β and γ, calculated using a finite-field approach, are extensively analyzed. Our simple model allows for treatment of large systems and for separation of the properties into atomic and unit-cell contributions. That part of the response properties attributable to the terminations of the finite system change into delocalized current contributions in the corresponding infinite periodic system. Special emphasis is placed on analyzing the reasons behind the dramatic overestimation of the response properties found with density functional theory methods presently in common use.

  2. Deformation mechanisms in a precipitation-strengthened ferritic...

    Office of Scientific and Technical Information (OSTI)

    room-temperature ductility, the creep resistance of this material at high temperatures ... Subject: nuclear (including radiation effects), defects, mechanical behavior, spin ...

  3. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    DOE PAGES [OSTI]

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; Johnson, M. L.; Rustan, G. E.; Quirinale, D. G.; Kreyssig, A.; Lokshin, K. A.; Neuefeind, J. C.; An, Ke; et al

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elasticmore » and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).« less

  4. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    SciTech Connect

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; Johnson, M. L.; Rustan, G. E.; Quirinale, D. G.; Kreyssig, A.; Lokshin, K. A.; Neuefeind, J. C.; An, Ke; Wang, Xun-Li; Goldman, A. I.; Egami, T.; Kelton, K. F.

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).

  5. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    Energy Information Administration (EIA) (indexed site)

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History U.S.

  6. Percentage of Total Natural Gas Residential Deliveries included in Prices

    Energy Information Administration (EIA) (indexed site)

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History U.S.

  7. Microfluidic devices and methods including porous polymer monoliths

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Patent: Microfluidic devices and methods including porous polymer monoliths Citation Details In-Document Search Title: Microfluidic devices and methods including porous polymer monoliths Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting

  8. Intensity, duration, and frequency of precipitation extremes under 21st-century warming scenarios

    SciTech Connect

    Kao, Shih-Chieh; Ganguly, Auroop R

    2011-01-01

    Recent research on the projection of precipitation extremes has either focused on conceptual physical mechanisms that generate heavy precipitation or rigorous statistical methods that extrapolate tail behavior. However, informing both climate prediction and impact assessment requires concurrent physically and statistically oriented analysis. A combined examination of climate model simulations and observation-based reanalysis data sets suggests more intense and frequent precipitation extremes under 21st-century warming scenarios. Utilization of statistical extreme value theory and resampling-based uncertainty quantification combined with consideration of the Clausius-Clapeyron relationship reveals consistently intensifying trends for precipitation extremes at a global-average scale. However, regional and decadal analyses reveal specific discrepancies in the physical mechanisms governing precipitation extremes, as well as their statistical trends, especially in the tropics. The intensifying trend of precipitation extremes has quantifiable impacts on intensity-duration-frequency curves, which in turn have direct implications for hydraulic engineering design and water-resources management. The larger uncertainties at regional and decadal scales suggest the need for caution during regional-scale adaptation or preparedness decisions. Future research needs to explore the possibility of uncertainty reduction through higher resolution global climate models, statistical or dynamical downscaling, as well as improved understanding of precipitation extremes processes.

  9. Introduction to Small-Scale Photovoltaic Systems (Including RETScreen...

    OpenEI (Open Energy Information) [EERE & EIA]

    Photovoltaic Systems (Including RETScreen Case Study) (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Introduction to Small-Scale Photovoltaic Systems...

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    California (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in California (Million Cubic Feet) Year Jan Feb Mar Apr May Jun ...

  11. DOE Releases Request for Information on Critical Materials, Including...

    Energy.gov [DOE] (indexed site)

    including fuel cell platinum group metal catalysts. ... on issues related to the demand, supply, opportunities for ... Announces Second RFI on Rare Earth Metals DOE Announces RFI ...

  12. Numerical simulations for low energy nuclear reactions including...

    Office of Scientific and Technical Information (OSTI)

    Numerical simulations for low energy nuclear reactions including direct channels to validate statistical models Citation Details In-Document Search Title: Numerical simulations for ...

  13. U-182: Microsoft Windows Includes Some Invalid Certificates

    Energy.gov [DOE]

    The operating system includes some invalid intermediate certificates. The vulnerability is due to the certificate authorities and not the operating system itself.

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Virginia (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Virginia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  15. Numerical simulations for low energy nuclear reactions including...

    Office of Scientific and Technical Information (OSTI)

    Numerical simulations for low energy nuclear reactions including direct channels to ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  16. Microfluidic devices and methods including porous polymer monoliths...

    Office of Scientific and Technical Information (OSTI)

    The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to ...

  17. Introduction to Small-Scale Wind Energy Systems (Including RETScreen...

    OpenEI (Open Energy Information) [EERE & EIA]

    Case Study) (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Introduction to Small-Scale Wind Energy Systems (Including RETScreen Case Study) (Webinar) Focus...

  18. Percentage of Total Natural Gas Industrial Deliveries included...

    Gasoline and Diesel Fuel Update

    Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series ...

  19. Search for Earth-like planets includes LANL star analysis

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    their interiors. Consortium team members at Los Alamos include Joyce Ann Guzik, Paul Bradley, Arthur N. Cox, and Kim Simmons. They will help interpret the stellar oscillation...

  20. Including Retro-Commissioning in Federal Energy Savings Performance Contracts

    Energy.gov [DOE]

    Document describes guidance on the importance of (and steps to) including retro-commissioning in federal energy savings performance contracts (ESPCs).

  1. Comparison of Joint Modeling Approaches Including Eulerian Sliding...

    Office of Scientific and Technical Information (OSTI)

    Eulerian Sliding Interfaces Citation Details In-Document Search Title: Comparison of Joint Modeling Approaches Including Eulerian Sliding Interfaces You are accessing a ...

  2. Measuring and modeling the lifetime of nitrous oxide including...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Measuring and modeling the lifetime of nitrous oxide including its variability: NITROUS OXIDE AND ITS CHANGING LIFETIME Prev Next Title: Measuring and ...

  3. Advanced particulate matter control apparatus and methods

    DOEpatents

    Miller, Stanley J.; Zhuang, Ye; Almlie, Jay C.

    2012-01-10

    Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

  4. Stratiform and Convective Precipitation Observed by Multiple Radars during the DYNAMO/AMIE Experiment

    SciTech Connect

    Deng, Min; Kollias, Pavlos; Feng, Zhe; Zhang, Chidong; Long, Charles N.; Kalesse, Heike; Chandra, Arunchandra; Kumar, Vickal; Protat, Alain

    2014-11-01

    The motivation for this research is to develop a precipitation classification and rain rate estimation method using cloud radar-only measurements for Atmospheric Radiation Measurement (ARM) long-term cloud observation analysis, which are crucial and unique for studying cloud lifecycle and precipitation features under different weather and climate regimes. Based on simultaneous and collocated observations of the Ka-band ARM zenith radar (KAZR), two precipitation radars (NCAR S-PolKa and Texas A&M University SMART-R), and surface precipitation during the DYNAMO/AMIE field campaign, a new cloud radar-only based precipitation classification and rain rate estimation method has been developed and evaluated. The resulting precipitation classification is equivalent to those collocated SMART-R and S-PolKa observations. Both cloud and precipitation radars detected about 5% precipitation occurrence during this period. The convective (stratiform) precipitation fraction is about 18% (82%). The 2-day collocated disdrometer observations show an increased number concentration of large raindrops in convective rain compared to dominant concentration of small raindrops in stratiform rain. The composite distributions of KAZR reflectivity and Doppler velocity also show two distinct structures for convective and stratiform rain. These indicate that the method produces physically consistent results for two types of rain. The cloud radar-only rainfall estimation is developed based on the gradient of accumulative radar reflectivity below 1 km, near-surface Ze, and collocated surface rainfall (R) measurement. The parameterization is compared with the Z-R exponential relation. The relative difference between estimated and surface measured rainfall rate shows that the two-parameter relation can improve rainfall estimation.

  5. Precipitation of aluminum nitride in a high strength maraging steel with low nitrogen content

    SciTech Connect

    Jeanmaire, G.; Dehmas, M.; Redjamia, A.; Puech, S.; Fribourg, G.

    2014-12-15

    In the present work, aluminum nitride (AlN) precipitation was investigated in a X23NiCoCrMoAl13-6-3 maraging steel with low nitrogen content (wt.% N = 5.5 ppm). A reliable and robust automatic method by scanning electron microscopy observations coupled with energy dispersive X-ray spectroscopy was developed for the quantification of AlN precipitates. The first stage was to identify the solvus temperature and to develop a heat treatment able to dissolve the AlN precipitates. The experimental determination of equilibrium conditions and solvus temperature show good agreement with ThermoCalc simulation. Then, from this AlN-free state, the cooling rate, isothermal holding time and temperature were the subject of an intensive investigation in the austenite region of this maraging steel. In spite of the high temperatures used during heat treatments, the growth kinetic of the largest AlN precipitates (> 1 ?m) is slow. The cooling rate has a major effect on the size and the number density of AlN due to a higher driving force for nucleation at low temperatures. At last, quenching prior to isothermal annealing at high temperatures leads to fine and dense AlN precipitation, resulting from the martensite to austenite transformation. Experimental results will be discussed and compared with kinetic data obtained with the mobility database MobFe2 implemented in Dictra software. - Highlights: Slow dissolution kinetic of AlN precipitates due to both their large size and small chemical driving force Significant effects of cooling rate prior isothermal heat treatment, holding time and temperature on AlN precipitation Size of AlN precipitates can be reduced by quenching prior isothermal holding. Fine precipitation of AlN related to the ? ? ? transformation.

  6. Effects of obliqueness and strong electrostatic interaction on linear and nonlinear propagation of dust-acoustic waves in a magnetized strongly coupled dusty plasma

    SciTech Connect

    Shahmansouri, M.; Mamun, A. A.

    2014-03-15

    Linear and nonlinear propagation of dust-acoustic waves in a magnetized strongly coupled dusty plasma is theoretically investigated. The normal mode analysis (reductive perturbation method) is employed to investigate the role of ambient/external magnetic field, obliqueness, and effective electrostatic dust-temperature in modifying the properties of linear (nonlinear) dust-acoustic waves propagating in such a strongly coupled dusty plasma. The effective electrostatic dust-temperature, which arises from strong electrostatic interactions among highly charged dust, is considered as a dynamical variable. The linear dispersion relation (describing the linear propagation characteristics) for the obliquely propagating dust-acoustic waves is derived and analyzed. On the other hand, the Korteweg-de Vries equation describing the nonlinear propagation of the dust-acoustic waves (particularly, propagation of dust-acoustic solitary waves) is derived and solved. It is shown that the combined effects of obliqueness, magnitude of the ambient/external magnetic field, and effective electrostatic dust-temperature significantly modify the basic properties of linear and nonlinear dust-acoustic waves. The results of this work are compared with those observed by some laboratory experiments.

  7. Electrostrictive and electrostatic responses in contact mode voltage modulated Scanning Probe Microscopies

    SciTech Connect

    Eliseev, E. A.; Morozovska, A. N.; Ievlev, Anton; Balke, Nina; Maksymovych, Petro; Tselev, Alexander; Kalinin, Sergei V

    2014-01-01

    Electromechanical response of solids underpins image formation mechanism of several scanning probe microscopy techniques including the piezoresponse force microscopy (PFM) and electrochemical strain microscopy (ESM). While the theory of linear piezoelectric and ionic responses are well developed, the contributions of quadratic effects including electrostriction and capacitive tip-surface forces to measured signal remain poorly understood. Here we analyze the electrostrictive and capacitive contributions to the PFM and ESM signals and discuss the implications of the dielectric tip-surface gap on these interactions.

  8. Effect of solution annealing temperature on precipitation in 2205 duplex stainless steel

    SciTech Connect

    Kashiwar, A.; Vennela, N. Phani; Kamath, S.L.; Khatirkar, R.K.

    2012-12-15

    In the present study, effect of solution annealing temperature (1050 Degree-Sign C and 1100 Degree-Sign C) and isothermal ageing (700 Degree-Sign C: 15 min to 6 h) on the microstructural changes in 2205 duplex stainless steel has been investigated systematically. Scanning electron microscopy and X-ray diffraction were adopted to follow the microstructural evolution, while an energy dispersive spectrometer attached to scanning electron microscope was used to obtain localised chemical information of various phases. The ferritic matrix of the two phase 2205 duplex stainless steel ({approx} 45% ferrite and {approx} 55% austenite) undergoes a series of metallurgical transformations during ageing-formation of secondary austenite ({gamma}{sub 2}) and precipitation of Cr and Mo rich intermetallic (chi-{chi} and sigma-{sigma}) phases. For solution annealing at 1050 Degree-Sign C, significant amount of carbides were observed in the ferrite grains after 1 h of ageing at 700 Degree-Sign C. {chi} Phase precipitated after the precipitation of carbides-preferentially at the ferrite-ferrite and also at the ferrite-austenite boundaries. {sigma} Phase was not observed in significant quantity even after 6 h of ageing. The sequence of precipitation in samples solution annealed at 1050 Degree-Sign C was found to be carbides {yields} {chi} {yields} {sigma}. On the contrary, for samples solution annealed at 1100 Degree-Sign C, the precipitation of {chi} phase was negligible. {chi} Phase precipitated before {sigma} phase, preferentially along the ferrite-ferrite grain boundaries and was later consumed in the {sigma} phase precipitation. The {sigma} phase precipitated via the eutectoid transformation of ferrite to yield secondary austenite {gamma}{sub 2} and {sigma} phase in the ferrite and along the ferrite-austenite grain boundaries. An increase in the volume fraction of {gamma}{sub 2} and {sigma} phase with simultaneous decrease in the ferrite was evidenced with ageing. - Highlights

  9. Microbial Activity and Precipitation at Solution-Solution Mixing Zones in Porous Media Subsurface Biogeochemical Research

    SciTech Connect

    Colwell, Frederick; Wildenschild, Dorthe; Wood, Brian; Gerlach, Robin; Redden, George

    2014-08-29

    The goal for this research was to understand how best to add compounds to receptive microbial communities in porous media in order to achieve optimal calcite precipitation in a volumetrically significant space and to understand the physiological health of the cells that are responsible for the calcite precipitation. The specific objectives were to: (1) develop better tools for visually examining biofilms in porous media and calcium carbonate precipitation being mediated by microbes in porous media, and (2) demonstrate the effectiveness of using that tool within a flow cell model system.

  10. Solar Energy Education. Reader, Part II. Sun story. [Includes glossary

    SciTech Connect

    Not Available

    1981-05-01

    Magazine articles which focus on the subject of solar energy are presented. The booklet prepared is the second of a four part series of the Solar Energy Reader. Excerpts from the magazines include the history of solar energy, mythology and tales, and selected poetry on the sun. A glossary of energy related terms is included. (BCS)

  11. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V.; Sommer, Gregory j.; Singh, Anup K.; Wang, Ying-Chih; Abhyankar, Vinay

    2015-12-01

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  12. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  13. Articles which include chevron film cooling holes, and related processes

    DOEpatents

    Bunker, Ronald Scott; Lacy, Benjamin Paul

    2014-12-09

    An article is described, including an inner surface which can be exposed to a first fluid; an inlet; and an outer surface spaced from the inner surface, which can be exposed to a hotter second fluid. The article further includes at least one row or other pattern of passage holes. Each passage hole includes an inlet bore extending through the substrate from the inlet at the inner surface to a passage hole-exit proximate to the outer surface, with the inlet bore terminating in a chevron outlet adjacent the hole-exit. The chevron outlet includes a pair of wing troughs having a common surface region between them. The common surface region includes a valley which is adjacent the hole-exit; and a plateau adjacent the valley. The article can be an airfoil. Related methods for preparing the passage holes are also described.

  14. ARM: Spectra from 1290-MHz Beam-Steered Radar Wind Profiler (BSRWP) operating in low-low precipitation mode

    DOE Data Explorer

    Timothy Martin; Paytsar Muradyan; Richard Coulter

    2014-01-28

    Spectra from 1290-MHz Beam-Steered Radar Wind Profiler (BSRWP) operating in low-low precipitation mode

  15. Hybrid (particle in cell-fluid) simulation of ion-acoustic soliton generation including super-thermal and trapped electrons

    SciTech Connect

    Nopoush, M.; Abbasi, H.

    2011-08-15

    The present paper is devoted to the simulation of the nonlinear disintegration of a localized perturbation into an ion-acoustic soliton in a plasma. Recently, this problem was studied by a simple model [H. Abbasi et al., Plasma Phys. Controlled Fusion 50, 095007 (2008)]. The main assumptions were (i) in the electron velocity distribution function (DF), the ion-acoustic soliton velocity was neglected in comparison to the electron thermal velocity, (ii) on the ion-acoustic evolution time-scale, the electron velocity DF was assumed to be stationary, and (iii) the calculation was restricted to the small amplitude case. In order to generalize the model, one has to consider the evolution of the electron velocity DF for finite amplitudes. For this purpose, a one dimensional electrostatic hybrid code, particle in cell (PIC)-fluid, was designed. It simulates the electrons dynamics by the PIC method and the cold ions dynamics by the fluid equations. The plasma contains a population of super-thermal electrons and, therefore, a Lorentzian (kappa) velocity DF is used to model the high energy tail in the electron velocity DF. Electron trapping is included in the simulation in view of their nonlinear resonant interaction with the localized perturbation. A Gaussian initial perturbation is used to model the localized perturbation. The influence of both the trapped and the super-thermal electrons on this process is studied and compared with the previous model.

  16. National Acid Precipitation Assessment Program Report to Congress: An Integrated Assessment

    SciTech Connect

    Uhart, M.; et al,

    2005-08-01

    Under Title IX of the 1990 Clean Air Act Amendments, Congress reauthorized the National Acid Precipitation Assessment Program (NAPAP) to continue coordinating acid rain research and monitoring, as it had done during the previous decade, and to provide Congress with periodic reports. In particular, Congress asked NAPAP to assess all available data and information to answer two questions: (1) What are the costs, benefits, and effectiveness of Title IV? This question addresses the costs and economic impacts of complying with the Acid Rain Program as well as benefit analyses associated with the various human health and welfare effects, including reduced visibility, damages to materials and cultural resources, and effects on ecosystems. (2) What reductions in deposition rates are needed to prevent adverse ecological effects? This complex questions addresses ecological systems and the deposition levels at which they experience harmful effects. The results of the assessment of the effects of Title IV and of the relationship between acid deposition rates and ecological effects were to be reported to Congress quadrennially, beginning with the 1996 report to Congress. The objective of this Report is to address the two main questions posed by Congress and fully communicate the results of the assessment to decision-makers. Given the primary audience, most of this report is not written as a technical document, although information supporting the conclusions is provided along with references.

  17. Turbomachine injection nozzle including a coolant delivery system

    DOEpatents

    Zuo, Baifang (Simpsonville, SC)

    2012-02-14

    An injection nozzle for a turbomachine includes a main body having a first end portion that extends to a second end portion defining an exterior wall having an outer surface. A plurality of fluid delivery tubes extend through the main body. Each of the plurality of fluid delivery tubes includes a first fluid inlet for receiving a first fluid, a second fluid inlet for receiving a second fluid and an outlet. The injection nozzle further includes a coolant delivery system arranged within the main body. The coolant delivery system guides a coolant along at least one of a portion of the exterior wall and around the plurality of fluid delivery tubes.

  18. The Solubility of 242PuO2 in the Presence of Aqueous Fe(II): The Impact of Precipitate Preparation

    SciTech Connect

    Felmy, Andrew R.; Moore, Dean A.; Buck, Edgar C.; Conradson, Steven D.; Kukkadapu, Ravi K.; Sweet, Lucas E.; Abrecht, David G.; Ilton, Eugene S.

    2014-01-28

    The solubility of different forms of precipitated 242PuO2(am) were examined in solutions containing aqueous Fe(II) over a range of pH values. The first series of 242PuO2(am) suspensions were prepared from a 242Pu(IV) stock that had been treated with thenoyltrifluoroacetone (TTA) to remove the 241Am originating from the decay of 241Pu. These 242PuO2(am) suspensions showed much higher solubilities at the same pH value and Fe(II) concentration than previous studies using 239PuO2(am). X ray absorption fine structure (XAFS) spectroscopy of the precipitates showed a substantially reduced Pu-Pu backscatter over that previously observed in 242PuO2(am) precipitates, indicating that the 242PuO2(am) precipitates purified using TTA lacked the long range order previously found in 239PuO2(am) precipitates. The Pu(IV) stock solution was subsequently repurified using an ion exchange resin and an additional series of 242PuO2(am) precipitates prepared. These suspensions showed higher redox potentials and total aqueous Pu concentrations than the TTA purified stock solution. The higher redox potential and aqueous Pu concentrations were in general agreement with previous studies on 242PuO2(am) precipitates, presumably due to the removal of possible organic compounds originally present in the TTA purified stock. 242PuO2(am) suspensions prepared with both stock solutions showed almost identical solubilities in Fe(II) containing solutions even though the initial aqueous Pu concentrations before the addition of Fe(II) were orders of magnitude different. By examining the solubility of 242PuO2(am) prepared from both stocks in this way we have essentially approached equilibrium from both the undersaturated and oversaturated

  19. Removal of mineral matter including pyrite from coal

    DOEpatents

    Reggel, Leslie; Raymond, Raphael; Blaustein, Bernard D.

    1976-11-23

    Mineral matter, including pyrite, is removed from coal by treatment of the coal with aqueous alkali at a temperature of about 175.degree. to 350.degree. C, followed by acidification with strong acid.

  20. Virginia Senate Approves Budget Deal to Include Money for FEL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Virginia Senate Approves Budget Deal to Include Money for FEL (Daily Press) External Link: http:articles.dailypress.com2012-04-18newsdp-nws-general-assembly-budget-da... By ...

  1. T-603: Mac OS X Includes Some Invalid Comodo Certificates

    Office of Energy Efficiency and Renewable Energy (EERE)

    The operating system includes some invalid certificates. The vulnerability is due to the invalid certificates and not the operating system itself. Other browsers, applications, and operating systems are affected.

  2. Energy Department Expands Gas Gouging Reporting System to Include...

    Energy Saver

    Expands Gas Gouging Reporting System to Include 1-800 Number: 1-800-244-3301 Energy Department Expands Gas ... of reformulated gasoline in storage and is already helping to ...

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Energy Information Administration (EIA) (indexed site)

    Mexico (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in New Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul ...

  4. Including Retro-Commissioning in Federal Energy Savings Performance...

    Energy Saver

    the cost of the survey. Developing a detailed scope of work and a fixed price for this work is important to eliminate risk to the Agency and the ESCo. Including a detailed scope...

  5. Natural Gas Delivered to Consumers in Ohio (Including Vehicle...

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Delivered to Consumers in Ohio (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 136,340 110,078 102,451 66,525 ...

  6. Method for inhibiting silica precipitation and scaling in geothermal flow systems

    DOEpatents

    Harrar, J.E.; Lorensen, L.E.; Locke, F.E.

    1980-06-13

    A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds is described.

  7. Method for inhibiting silica precipitation and scaling in geothermal flow systems

    DOEpatents

    Harrar, Jackson E.; Lorensen, Lyman E.; Locke, Frank E.

    1982-01-01

    A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds.

  8. PROCESS USING BISMUTH PHOSPHATE AS A CARRIER PRECIPITATE FOR FISSION PRODUCTS AND PLUTONIUM VALUES

    DOEpatents

    Finzel, T.G.

    1959-03-10

    A process is described for separating plutonium from fission products carried therewith when plutonium in the reduced oxidation state is removed from a nitric acid solution of irradiated uranium by means of bismuth phosphate as a carrier precipitate. The bismuth phosphate carrier precipitate is dissolved by treatment with nitric acid and the plutonium therein is oxidized to the hexavalent oxidation state by means of potassium dichromate. Separation of the plutonium from the fission products is accomplished by again precipitating bismuth phosphate and removing the precipitate which now carries the fission products and a small percentage of the plutonium present. The amount of plutonium carried in this last step may be minimized by addition of sodium fluoride, so as to make the solution 0.03N in NaF, prior to the oxidation and prccipitation step.

  9. Radioactive Testing Results in Support of the In-Tank Precipitation Facility

    SciTech Connect

    Hobbs, D.T.; Barnes, M.J.; Peterson, R.A.; Crawford, C.L.

    1998-04-01

    A series of twelve tests examined benzene generation rates with radioactive materials simulating the planned Batches 2 through 4 that complete Cycle 1 for the In-Tank Precipitation (ITP) facility.

  10. ARSENATE CARRIER PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM NEUTRON IRRADIATED URANIUM AND RADIOACTIVE FISSION PRODUCTS

    DOEpatents

    Thompson, S.G.; Miller, D.R.; James, R.A.

    1961-06-20

    A process is described for precipitating Pu from an aqueous solution as the arsenate, either per se or on a bismuth arsenate carrier, whereby a separation from uranium and fission products, if present in solution, is accomplished.

  11. Nucleation of Cr precipitates in Fe-Cr alloy under irradiation

    SciTech Connect

    Dai, Y. Y.; Ao, L.; Sun, Qing- Qiang; Yang, L.; Nie, JL; Peng, SM; Long, XG; Zhou, X. S.; Zu, Xiaotao; Liu, L.; Sun, Xin; Terentyev, Dimtry; Gao, Fei

    2015-04-01

    The nucleation of Cr precipitates induced by overlapping of displacement cascades in Fe-Cr alloys has been investigated using the combination of molecular dynamics (MD) and Metropolis Monte Carlo (MMC) simulations. The results reveal that the number of Frenkel pairs increases with the increasing of overlapped cascades. Overlapping cascades could promote the formation of Cr precipitates in Fe-Cr alloys, as analyzed using short range order (SRO) parameters to quantify the degree of ordering and clustering of Cr atoms. In addition, the simulations using MMC approach show that the presence of small Cr clusters and vacancy clusters formed within cascade overlapped region enhance the nucleation of Cr precipitates, leading to the formation of large Cr dilute precipitates.

  12. DOE-SC-ARM-16-012 ARM Cloud-Aerosol-Precipitation Experiment...

    Office of Scientific and Technical Information (OSTI)

    ... Atmospheric Chemistry and Physics 14: 81-101, doi: 10.5194acp-14-81-2014. Givati, A, and D Rosenfeld. 2004. "Quantifying precipitation suppression due to air pollution." Journal ...

  13. Giant two-phonon Raman scattering from nanoscale NbC precipitates...

    Office of Scientific and Technical Information (OSTI)

    Giant two-phonon Raman scattering from nanoscale NbC precipitates in Nb Not Available Temp HTML Storage 2: Cao, C.; Tao, R.; Ford, D. C.; Klie, R. F.; Proslier, T.; Cooley, L. D.; ...

  14. Optimization of thorium oxalate precipitation conditions relative to thorium oxide sinterability

    SciTech Connect

    White, G.D.; Bray, L.A.; Hart, P.E.

    1980-01-01

    The effect of thorium oxalate precipitation conditions on derived oxide sinterability was investigated with the objective of producing ThO/sub 2/ powder that could be sintered to high density without premilling. Precipitation conditions examined were temperature, digestion time and agitation method which were employed in a two-level factorial experimental design to delineate their effects. The two levels for each of the factors, respectively, were 10/sup 0/C and 70/sup 0/C, 15 min and 360 min, and mechanical stirrer and a homogenizer that imparted both mechanical and ultrasonic agitation. The ThO/sub 2/ derived from each of the precipitation trials was characterized with respect to morphology, surface area, and crystallite size as well as sinterability. Only precipitation temperature had a significant effect upon all the properties of the derived oxide powders.

  15. THEORY OF A QUODON GAS WITH APPLICATION TO PRECIPITATION KINETICS IN SOLIDS UNDER IRRADIATION

    SciTech Connect

    Dubinko, Volodymyr; Shapovalov, Roman V.

    2014-06-17

    Rate theory of the radiation-induced precipitation in solids is modified with account of non-equilibrium fluctuations driven by the gas of lattice solitons (a.k.a. quodons) produced by irradiation. According to quantitative estimations, a steady-state density of the quodon gas under sufficiently intense irradiation can be comparable to the density of classical phonon gas. The modified rate theory is applied to modelling of copper precipitation in FeCu binary alloys under electron irradiation. In contrast to the classical rate theory, which disagrees strongly with experimental data on all precipitation parameters, the modified rate theory describes quite well both the evolution of precipitates and the matrix concentration of copper measured by different methods.

  16. Hybrid powertrain system including smooth shifting automated transmission

    DOEpatents

    Beaty, Kevin D.; Nellums, Richard A.

    2006-10-24

    A powertrain system is provided that includes a prime mover and a change-gear transmission having an input, at least two gear ratios, and an output. The powertrain system also includes a power shunt configured to route power applied to the transmission by one of the input and the output to the other one of the input and the output. A transmission system and a method for facilitating shifting of a transmission system are also provided.

  17. Prevention of Harassment (Including Sexual Harassment) and Retaliation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Policy Statement | Department of Energy Prevention of Harassment (Including Sexual Harassment) and Retaliation Policy Statement Prevention of Harassment (Including Sexual Harassment) and Retaliation Policy Statement DOE Policy for Preventing Harassment in the Workplace Harassment Policy July 2011.pdf (112.57 KB) More Documents & Publications Policy Statement on Equal Employment Opportunity, Harassment, and Retaliation Equal Employment Opportunity and Diversity Policy Statement VWA-0039 -

  18. Limited Personal Use of Government Office Equipment including Information Technology

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2005-01-07

    The Order establishes requirements and assigns responsibilities for employees' limited personal use of Government resources (office equipment and other resources including information technology) within DOE, including NNSA. The Order is required to provide guidance on appropriate and inappropriate uses of Government resources. This Order was certified 04/23/2009 as accurate and continues to be relevant and appropriate for use by the Department. Certified 4-23-09. No cancellation.

  19. Precipitation hardening in nickel-copper base alloy Monel K 500

    SciTech Connect

    Dey, G.K.; Tewari, R.; Wadekar, S.L.; Mukhopadhyay, P.; Rao, P.

    1993-12-01

    The occurrence of a significant amount of age hardening, due to the precipitation of the {gamma}{prime} phase, has been demonstrated in the nickel-copper base alloy MONEL K 500. The microstructure of the precipitation-hardened and deformed alloy has been examined in peak-aged, underaged and overaged conditions. An attempt has been made to compare the observed increments in strength in these three aged conditions to those predicted on the basis of relevant theoretical models.

  20. The MAP3S Precipitation Chemistry Network: Data and quality control summary for 1986 and 1987

    SciTech Connect

    Dana, M.T.; Barchet, W.R.

    1989-05-01

    This report, the tenth in a series documenting results from the MAP3S Precipitation Chemistry Network, contains a statistical summary of daily precipitation chemistry data from the nine-site network in the eastern United States, both for the years 1986 and 1987 individually and for the period 1977 through 1987. In addition, external quality assurance results for 1986 and 1987 are summarized. 17 refs., 21 figs., 20 tabs.