National Library of Energy BETA

Sample records for improve electric grid

  1. Coming Full Circle in Florida: Improving Electric Grid Reliability...

    Energy Saver

    Coming Full Circle in Florida: Improving Electric Grid Reliability and Resiliency Coming Full Circle in Florida: Improving Electric Grid Reliability and Resiliency May 2, 2013 - ...

  2. Coming Full Circle in Florida: Improving Electric Grid Reliability and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resiliency | Department of Energy Coming Full Circle in Florida: Improving Electric Grid Reliability and Resiliency Coming Full Circle in Florida: Improving Electric Grid Reliability and Resiliency May 2, 2013 - 11:16am Addthis Inside Florida Power & Light's Transmission Performance Diagnostic Center. | Photo courtesy of Florida Power & Light. Inside Florida Power & Light's Transmission Performance Diagnostic Center. | Photo courtesy of Florida Power & Light. In 2009, at the

  3. Battery Second Use Offsets Electric Vehicle Expenses, Improves Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stability - News Feature | NREL Battery Second Use Offsets Electric Vehicle Expenses, Improves Grid Stability June 22, 2015 Photo of a man in a lab, holding cables. NREL's Jeremy Neubauer measures battery voltage in an environmental chamber at the Thermal Test Facility. NREL is identifying battery second use (B2U) strategies capable of offsetting vehicle expenses while improving utility grid stability. Photo by Dennis Schroeder Plug-in electric vehicles (PEVs) have the potential to

  4. Improving the Reliability and Resiliency of the US Electric Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The quarterly magazine Metering International is a resource for information on trends and developments in the industry. Issue 1 2012 (March) featured an article on DOE's Smart Grid ...

  5. Electrical Core Transformer for Grid Improvement Incorporating Wire Magnetic Components

    SciTech Connect

    Harrie R. Buswell, PhD; Dennis Jacobs, PhD; Steve Meng

    2012-03-26

    The research reported herein adds to the understanding of oil-immersed distribution transformers by exploring and demonstrating potential improvements in efficiency and cost utilizing the unique Buswell approach wherein the unit is redesigned, replacing magnetic sheet with wire allowing for improvements in configuration and increased simplicity in the build process. Exploration of new designs is a critical component in our drive to assure reduction of energy waste, adequate delivery to the citizenry, and the robustness of U.S. manufacturing. By moving that conversation forward, this exploration adds greatly to our base of knowledge and clearly outlines an important avenue for further exploration. This final report shows several advantages of this new transformer type (outlined in a report signed by all of our collaborating partners and included in this document). Although materials development is required to achieve commercial potential, the clear benefits of the technology if that development were a given is established. Exploration of new transformer types and further work on the Buswell design approach is in the best interest of the public, industry, and the United States. Public benefits accrue from design alternatives that reduce the overall use of energy, but it must be acknowledged that new DOE energy efficiency standards have provided some assurance in that regard. Nonetheless the burden of achieving these new standards has been largely shifted to the manufacturers of oil-immersed distribution transformers with cost increasing up to 20% of some units versus 2006 when this investigation was started. Further, rising costs have forced the industry to look closely are far more expensive technologies which may threaten U.S. competitiveness in the distribution transformer market. This concern is coupled with the realization that many units in the nation's grid are beyond their optimal life which suggests that the nation may be headed for an infrastructure crisis

  6. An Advanced Framework for Improving Situational Awareness in Electric Power Grid Operation

    SciTech Connect

    Chen, Yousu; Huang, Zhenyu; Zhou, Ning

    2011-10-17

    With the deployment of new smart grid technologies and the penetration of renewable energy in power systems, significant uncertainty and variability is being introduced into power grid operation. Traditionally, the Energy Management System (EMS) operates the power grid in a deterministic mode, and thus will not be sufficient for the future control center in a stochastic environment with faster dynamics. One of the main challenges is to improve situational awareness. This paper reviews the current status of power grid operation and presents a vision of improving wide-area situational awareness for a future control center. An advanced framework, consisting of parallel state estimation, state prediction, parallel contingency selection, parallel contingency analysis, and advanced visual analytics, is proposed to provide capabilities needed for better decision support by utilizing high performance computing (HPC) techniques and advanced visual analytic techniques. Research results are presented to support the proposed vision and framework.

  7. Smart Grid Investments Improve Grid Reliability, Resilience,...

    Energy.gov [DOE] (indexed site)

    reliability to reduce customer losses from power disruptions. This report presents findings on smart grid improvements in outage management from OE's Smart Grid Investment ...

  8. electricity grid | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  9. ARPA-E: Advancing the Electric Grid

    ScienceCinema

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2016-07-12

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  10. ARPA-E: Advancing the Electric Grid

    SciTech Connect

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2014-02-24

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  11. "Artificial" brains, electrical grids, and disease modeling:...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science discoveries unveiled "Artificial" brains, electrical grids, and disease modeling: ... Highlights include cutting-edge research on "artificial" brains, electrical grids, disease ...

  12. Tribal Renewable Energy Foundational Course: Electricity Grid...

    Energy Saver

    Electricity Grid Basics Tribal Renewable Energy Foundational Course: Electricity Grid Basics Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar ...

  13. Now Available: Smart Grid Investments Improve Grid Reliability...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses ...

  14. Smart Grid Week: Working to Modernize the Nation's Electric Grid |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Working to Modernize the Nation's Electric Grid Smart Grid Week: Working to Modernize the Nation's Electric Grid June 3, 2013 - 11:00am Addthis Introducing Smart Grid Week. | Photo courtesy of Pacific Northwest National Laboratory. Introducing Smart Grid Week. | Photo courtesy of Pacific Northwest National Laboratory. Erin R. Pierce Erin R. Pierce Former Digital Communications Specialist, Office of Public Affairs Learn More about the Smart Grid Visit smartgrid.gov for

  15. Electricity Advisory Committee Smart Grid Subcommittee

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electricity Advisory Committee Smart Grid Subcommittee Update to the 2008 EAC Report Smart Grid: Enabler of the New Energy Economy Report Recommendations May 10, 2011 Recommendations from the 2008 EAC Smart Grid Report (http://www.oe.energy.gov/DocumentsandMedia/final-smart-grid-report.pdf) 1. Create a Smart Grid Program office within DOE. Update: Completed. DOE's Office of Electricity Delivery and Energy Reliability (OE) has an active Smart Grid Program, which includes the Smart Grid Investment

  16. Waukesha Electric Systems Smart Grid Demonstration Project |...

    OpenEI (Open Energy Information) [EERE & EIA]

    transformer, lower power consumption through reduction of losses, and increase the reliability of the electrical grid. References ARRA Smart Grid Demonstration Projects...

  17. Convectively cooled electrical grid structure

    DOEpatents

    Paterson, J.A.; Koehler, G.W.

    1980-11-10

    Undesirable distortions of electrical grid conductors from thermal cycling are minimized and related problems such as unwanted thermionic emission and structural failure from overheating are avoided by providing for a flow of fluid coolant within each conductor. The conductors are secured at each end to separate flexible support elements which accommodate to individual longitudinal expansion and contraction of each conductor while resisting lateral displacements, the coolant flow preferably being directed into and out of each conductor through passages in the flexible support elements. The grid may have a modular or divided construction which facilitates manufacture and repairs.

  18. Department of Energy Announces 12 New Projects to Accelerate Technologies that Improve the Efficiency and Reliability of the U.S. Electric Grid

    Energy.gov [DOE]

    ARPA-E Awards $33 Million to Fund Innovative Technologies for Real-time Management of the Electric Grid

  19. Western Electricity Coordinating Council Smart Grid Project ...

    OpenEI (Open Energy Information) [EERE & EIA]

    your syntax: * Display map References ARRA Smart Grid Investment Grants1 Western Electricity Award2 Western Electricity Coordinating Council, located in Salt Lake City, Utah,...

  20. TITLE XIII- SMART GRID SEC. 1301- 1308 STATEMENT OF POLICY ON MODERNIZATION OF ELECTRICITY GRID

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    XIII--SMART GRID SEC. 1301. STATEMENT OF POLICY ON MODERNIZATION OF ELECTRICITY GRID. It is the policy of the United States to support the modernization of the Nation's electricity transmission and distribution system to maintain a reliable and secure electricity infrastructure that can meet future demand growth and to achieve each of the following, which together characterize a Smart Grid: (1) Increased use of digital information and controls technology to improve reliability, security, and

  1. Electrical vehicles impacts on the grids (Smart Grid Project...

    OpenEI (Open Energy Information) [EERE & EIA]

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Home application Smart Grid Projects - Customer...

  2. Smart Grid Investments Improve Grid Reliability, Resilience, and Storm

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Responses (November 2014) | Department of Energy Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart grid technologies are helping utilities to speed outage restoration following major storm events, reduce the total number of affected customers, and improve overall service reliability to reduce customer losses from power disruptions. This report presents

  3. electricity supplied by Hickam's solar-powered electric grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    supplied by Hickam's solar-powered electric grid - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy ...

  4. Updating the Electric Grid: An Introduction to Non-Transmission

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Alternatives for Policymakers | Department of Energy Updating the Electric Grid: An Introduction to Non-Transmission Alternatives for Policymakers Updating the Electric Grid: An Introduction to Non-Transmission Alternatives for Policymakers Throughout the United States a consensus has emerged that an improved transmission system is in the interest of the country as a whole.1 However, decisions to implement new transmission lines may face significant cost, environmental, and public acceptance

  5. Los Alamos physicists discuss electrical grid in journal article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Physicists discuss electrical grid in journal article Los Alamos physicists discuss electrical grid in journal article Scott Backhaus and Michael Chertkov are authors of an article ...

  6. Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC...

    Energy Saver

    Electric Grid Integration - Advanced Concepts (SEGIS-AC) Funding Opportunity Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC) Funding Opportunity Through the Solar ...

  7. A National Grid Energy Storage Strategy - Electricity Advisory...

    Energy Saver

    A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 The ...

  8. NREL: Transportation Research - Electric Vehicle Grid Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electric Vehicle Grid Integration Illustration of a house with a roof-top photovoltaic system. A wind turbine and utility towers appear in the background. A car, parked in the ...

  9. Improving the Reliability and Resiliency of the US Electric Grid: SGIG Article in Metering International, March 2012

    Energy.gov [DOE]

    The quarterly magazine Metering International is a resource for information on trends and developments in the industry. Issue 1 2012 (March) featured an article on DOE's Smart Grid Investment Grant...

  10. DOE Announces $11 Million for Seven New Projects to Test New Options for Optimal Efficiency of the U.S. Electric Grid

    Office of Energy Efficiency and Renewable Energy (EERE)

    ARPA-E’s GRID DATA Projects will Develop Innovative Models and Data Repositories to Improve Transmission and Distribution of Electricity on the U.S. Electric Grid

  11. Case Study - National Rural Electric Cooperative Association Smart Grid Investment Grant

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    National Rural Electric Cooperative Association Smart Grid Investment Grant 1 Helping America's Electric Cooperatives Build a Smarter Grid to Streamline Operations and Improve Service Electric cooperatives play an important role in the U.S. energy infrastructure, delivering electricity to 44 million consumers across over 70% of the geography of the country every day. Implementing smart grid technology is seen by co-ops as a cost-effective way to improve reliability, streamline the restoration of

  12. Category:Smart Grid Projects - Electric Distributions Systems...

    OpenEI (Open Energy Information) [EERE & EIA]

    Systems" The following 13 pages are in this category, out of 13 total. A Atlantic City Electric Company Smart Grid Project Avista Utilities Smart Grid Project C...

  13. Electric Power Industry Needs for Grid-Scale Storage Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industry Needs for Grid-Scale Storage Applications Electric Power Industry Needs for Grid-Scale Storage Applications Stationary energy storage technologies will address the growing ...

  14. Smart Grid: Transforming the Electric System

    SciTech Connect

    Widergren, Steven E.

    2010-04-13

    This paper introduces smart grid concepts, summarizes the status of current smart grid related efforts, and explains smart grid priorities.

  15. Improved nuclear fuel assembly grid spacer

    DOEpatents

    Marshall, John; Kaplan, Samuel

    1977-01-01

    An improved fuel assembly grid spacer and method of retaining the basic fuel rod support elements in position within the fuel assembly containment channel. The improvement involves attachment of the grids to the hexagonal channel and of forming the basic fuel rod support element into a grid structure, which provides a design which is insensitive to potential channel distortion (ballooning) at high fluence levels. In addition the improved method eliminates problems associated with component fabrication and assembly.

  16. NREL + SolarCity: Maximizing Solar Power on Electrical Grids...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Maximizing Solar Power on Electrical Grids (Text Version) This is a text version of the video "NREL + SolarCity: Maximizing Solar Power on Electrical Grids." RYAN HANLEY: The ...

  17. Moving Forward in Protecting the Nation's Electric Grid | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Moving Forward in Protecting the Nation's Electric Grid Moving Forward in Protecting the Nation's Electric Grid January 16, 2015 - 2:10pm Addthis Patricia A. Hoffman Patricia A....

  18. Electricity Grid Basics Webinar Presentation Slides and Text...

    Energy.gov [DOE] (indexed site)

    Download presentation slides and a text version of the audio from the DOE Office of Indian Energy webinar on electricity grid basics. DOE-IE FoundationalElectricityGridBasicsP...

  19. US Recovery Act Smart Grid Projects - Electric Distributions...

    OpenEI (Open Energy Information) [EERE & EIA]

    York New York 136,170,899 272,341,798 New Jersey El Paso Electric Smart Grid Project El Paso Texas 1,014,414 2,085,095 New Mexico Hawaii Electric Co. Inc. Smart Grid Project Oahu...

  20. Connecting the world's electrical grids

    SciTech Connect

    Valenti, M.

    1994-01-01

    This article examines the technology available for transmission of bulk power over long distances for global energy networks. The topics of the article include former Soviet Union technology in HVAC systems, Brazil's HVDC link, Italy's multiterminal HVDC systems, the Quebec to New England multiterminal HVDC link, improvements in thyristors for more controllable AC systems using thyristor controlled series compensators, and continued thyristor development.

  1. "GRID 2030" A NATIONAL VISION FOR ELECTRICITY'S SECOND 100 YEARS...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    America's electric delivery system" and the 51 recommendations contained in the National Transmission Grid Study. Various stakeholders, including industry practitioners, ...

  2. LANL physicists discuss electrical grid in journal article

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Physicists discuss electrical grid in journal article LANL physicists discuss electrical grid in journal article Scott Backhaus and Michael Chertkov are authors of an article for Physics Today that outlines the physics of several phenomena associated with power grid behavior. October 17, 2013 High voltage transmission lines carry electrical power. High voltage transmission lines carry electrical power. Calling upon their physics experience, Backhaus and Chertkov present an overview of grid

  3. Modeling Grid-Connected Hybrid Electric Vehicles Using ADVISOR

    SciTech Connect

    Markel, T.; Wipke, K.

    2001-01-01

    Presents an electric utility grid-connected energy management strategy for a parallel hybrid electric vehicle using ADVISOR, a modeling tool.

  4. Energy Storage Activities in the United States Electricity Grid...

    Energy.gov [DOE] (indexed site)

    Energy Storage Activities in the United States Electricity Grid Electricity Advisory Committee Energy Storage Technologies Subcommittee Members Ralph Masiello, Subcommittee Chair ...

  5. Chapter III: Modernizing the Electric Grid

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3-34 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 Chapter III: Modernizing the Electric Grid QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 4-1 Chapter IV This chapter addresses the role of infrastructure in ensuring U.S. energy security in a global marketplace. It first describes the evolution of the concept of U.S. energy security in response to interconnected global energy markets. It then discusses the security

  6. U.S.-India Collaboration Expands Indian Market for U.S. Technologies, Improves Grid Reliability

    Energy.gov [DOE]

    The Energy Department and several corporate partners are working with the nation of India to improve its electrical grid's efficiency and reliability through Demand Response management technologies.

  7. DOE: Quantifying the Value of Hydropower in the Electric Grid

    SciTech Connect

    2012-12-31

    The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms

  8. National Electrical Manufacturers Association (NEMA) Response to Smart Grid

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    RFI | Department of Energy Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical Manufacturers Association (NEMA) submits the enclised comments regarding the Smart Grid RFI: Addressing Policy and Logistical Challeneges National Electrical Manufacturers Association (NEMA) (1.24 MB) More Documents & Publications City Utilities of Springfield Missouri Comments on Smart

  9. Promise of Solar Energy is Boundless: A Smarter Electric Grid Delivers on that Promise

    SciTech Connect

    Not Available

    2008-10-01

    This brochure summarizes the benefits of a smart electric grid, the Solar Program's Solar Energy Grid Intergration Systems efforts, and the Office of Electricity's "The Smart Grid" booklet.

  10. Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs

    Energy.gov [DOE]

    OE has released a new Smart Grid report describing the activities of three municipal utilities that received funding through the Recovery Act Smart Grid Investment Grant program. "Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs" reports on the benefits of the cities' investments, including improved operating efficiencies, lower costs, shorter outages, and reduced peak demands and electricity consumption.

  11. Economic Benefits of Increasing Electric Grid Resilience to Weather Outages

    Energy.gov [DOE]

    In June 2011, President Obama released A Policy Framework for the 21st Century Grid which set out a four-pillared strategy for modernizing the electric grid. The initiative directed billions of...

  12. National Electric Delivery Technologies Roadmap: Transforming the Grid to

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Revolutionize Electric Power in North America | Department of Energy Delivery Technologies Roadmap: Transforming the Grid to Revolutionize Electric Power in North America National Electric Delivery Technologies Roadmap: Transforming the Grid to Revolutionize Electric Power in North America This Roadmap provides a framework for all of the stakeholders that comprise the electric industry to work together to achieve common aims. National Electric Delivery Technologies Roadmap: Transforming the

  13. Tribal Renewable Energy Foundational Course: Electricity Grid Basics |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Electricity Grid Basics Tribal Renewable Energy Foundational Course: Electricity Grid Basics Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on electricity grid basics by clicking on the .swf link below. You can also download the PowerPoint slides and a text version of the audio. See the full list of DOE Office of Indian Energy educational webinars and provide your feedback on the National Training & Education Resource (NTER)

  14. Oncor Electric Delivery Company, LLC Smart Grid Demonstration...

    OpenEI (Open Energy Information) [EERE & EIA]

    Grid Demonstration Project Jump to: navigation, search Project Lead Oncor Electric Delivery Company, LLC Country United States Headquarters Location Dallas, Texas Recovery Act...

  15. Electricity Grid Basics Webinar Presentation Slides and Text Version

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download presentation slides and a text version of the audio from the DOE Office of Indian Energy webinar on electricity grid basics.

  16. Resilient Electric Distribution Grid R&D Workshop - June 11,...

    Energy.gov [DOE] (indexed site)

    2 Report (444.76 KB) More Documents & Publications Resilient Electric Distribution Grid R&D Workshop - June 11, 2014 Assorted OE Articles Microgrid Workshop Report August 2011

  17. Renewable Electricity Grid Integration Roadmap for Mexico: Supplement...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    FOR LOW EMISSION DEVELOPMENT STRATEGIES Renewable Electricity Grid Integration Roadmap for Mexico: Supplement to the IEA Expert Group Report on Recommended Practices for...

  18. Electric Vehicle Grid Integration for Sustainable Military Installations (Presentation)

    SciTech Connect

    Simpson, M.

    2011-05-05

    This presentation discusses electric vehicle grid integration for sustainable military installations. Fort Carson Military Reservation in Colorado Springs is used as a case study.

  19. Updating the Electric Grid: An Introduction to Non-Transmission...

    Energy Saver

    Updating the Electric Grid: An Introduction to Non-Transmission Alternatives for Policymakers Updating ... October 17, 2012 QER - Comment of Energy Innovation 1 QER - Comment of ...

  20. Talquin Electric Cooperative, Inc. Smart Grid Project | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    also installs automated distribution grid equipment expected to: (1) enhance the reliability and quality of electric delivery, and (2) reduce operations and maintenance...

  1. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    INLEXT-11-23221 Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report Final Report Kevin Morrow Dimitri Hochard Jeff Wishart ...

  2. Grid-Interactive Electric Vehicle DC-Link Photovoltaic Charging...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Find More Like This Return to Search Grid-Interactive Electric Vehicle DC-Link Photovoltaic Charging System University of Colorado Contact CU About This Technology Publications: ...

  3. Request for Information on the Electric Grid Resilience Self...

    Energy Saver

    Grid Resilience Self-Assessment Tool for Distribution Systems: Federal Register Notice, Volume 80, No. 126 - Jul. 1, 2015 The Department of Energy (DOE) Office of Electricity ...

  4. GROWDERS Demonstration of Grid Connected Electricity Systems...

    OpenEI (Open Energy Information) [EERE & EIA]

    2011 References EU Smart Grid Projects Map1 Overview The GROWDERS project (Grid Reliability and Operability with Distributed Generation using Flexible Storage) investigates...

  5. Energy Department Invests Over $10 Million to Improve Grid Reliability and Resiliency

    Energy.gov [DOE]

    As part of the Obama Administration’s commitment to a strong and secure power grid, the Energy Department today announced more than $10 million for projects that will improve the reliability and resiliency of the U.S. electric grid and facilitate quick and effective response to grid conditions.

  6. A National Grid Energy Storage Strategy - Electricity Advisory Committee -

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    January 2014 | Department of Energy A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 The Electricity Advisory Committee (EAC) represents a wide cross section of electricity industry stakeholders. This document presents the EAC's vision for a national energy storage strategic plan. It provides an outline for guidance, alignment, coordination, and inspiration for

  7. DOE Announces New Projects to Modernize America's Electric Grid |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Buildings | NREL DOE Announces New Projects to Modernize America's Electric Grid NREL to co-lead DOE's multi-lab Grid Modernization Laboratory Consortium January 14, 2016 Today, U.S. Department of Energy Secretary Ernest Moniz announced up to $220 million in new funding for a consortium of DOE national laboratories and partners to support critical research and development over the next three years to help modernize our nation's electrical power grid. The secretary also announced the release

  8. DOE Announces New Projects to Modernize America's Electric Grid | Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Systems Integration | NREL DOE Announces New Projects to Modernize America's Electric Grid NREL to co-lead DOE's multi-lab Grid Modernization Laboratory Consortium January 14, 2016 Today, U.S. Department of Energy Secretary Ernest Moniz announced up to $220 million in new funding for a consortium of DOE national laboratories and partners to support critical research and development over the next three years to help modernize our nation's electrical power grid. The secretary also announced

  9. DOE Announces New Projects to Modernize America's Electric Grid | PV |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL DOE Announces New Projects to Modernize America's Electric Grid NREL to co-lead DOE's multi-lab Grid Modernization Laboratory Consortium January 14, 2016 Today, U.S. Department of Energy Secretary Ernest Moniz announced up to $220 million in new funding for a consortium of DOE national laboratories and partners to support critical research and development over the next three years to help modernize our nation's electrical power grid. The secretary also announced the release of DOE's

  10. DOE Announces New Projects to Modernize America's Electric Grid | Solar |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL DOE Announces New Projects to Modernize America's Electric Grid NREL to co-lead DOE's multi-lab Grid Modernization Laboratory Consortium January 14, 2016 Today, U.S. Department of Energy Secretary Ernest Moniz announced up to $220 million in new funding for a consortium of DOE national laboratories and partners to support critical research and development over the next three years to help modernize our nation's electrical power grid. The secretary also announced the release of DOE's

  11. DOE Announces New Projects to Modernize America's Electric Grid - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Releases | NREL DOE Announces New Projects to Modernize America's Electric Grid NREL to co-lead DOE's multi-lab Grid Modernization Laboratory Consortium January 14, 2016 Today, U.S. Department of Energy Secretary Ernest Moniz announced up to $220 million in new funding for a consortium of DOE national laboratories and partners to support critical research and development over the next three years to help modernize our nation's electrical power grid. The secretary also announced the release

  12. Moving Forward in Protecting the Nation's Electric Grid | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Moving Forward in Protecting the Nation's Electric Grid Moving Forward in Protecting the Nation's Electric Grid January 16, 2015 - 2:10pm Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability Over the past week, the Energy Department has unveiled several new measures, including funding, newly-commercialized technology, and practical guidance, that will further strengthen the cybersecurity of the nation's energy

  13. Now Available: Smart Grid Investments Improve Grid Reliability...

    Energy Saver

    Department of Energy in Washington, D.C., May 8, 2013. | Official White House Photo by Pete Souza. Smart Grid Week: Hurricane Season and the Department's Efforts to Make the Grid ...

  14. DOE Explores Potential of Wind Power to Stabilize Electric Grids |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Explores Potential of Wind Power to Stabilize Electric Grids DOE Explores Potential of Wind Power to Stabilize Electric Grids March 28, 2016 - 10:31am Addthis DOE’s 1.5-MW wind turbine at the National Wind Technology Center is being used to demonstrate that wind farms can provide the frequency-responsive back-up or “ancillary services” currently supplied to the electrical grid by conventional power plants. (Photo by Dennis Schroeder/National Renewable

  15. Graphical Contingency Analysis for the Nation's Electric Grid

    ScienceCinema

    Zhenyu (Henry) Huang

    2016-07-12

    PNNL has developed a new tool to manage the electric grid more effectively, helping prevent blackouts and brownouts--and possibly avoiding millions of dollars in fines for system violations. The Graphical Contingency Analysis tool monitors grid performance, shows prioritized lists of problems, provides visualizations of potential consequences, and helps operators identify the most effective courses of action. This technology yields faster, better decisions and a more stable and reliable power grid.

  16. Graphical Contingency Analysis for the Nation's Electric Grid

    SciTech Connect

    Zhenyu Huang

    2011-04-01

    PNNL has developed a new tool to manage the electric grid more effectively, helping prevent blackouts and brownouts--and possibly avoiding millions of dollars in fines for system violations. The Graphical Contingency Analysis tool monitors grid performance, shows prioritized lists of problems, provides visualizations of potential consequences, and helps operators identify the most effective courses of action. This technology yields faster, better decisions and a more stable and reliable power grid.

  17. Solar Power and the Electric Grid, Energy Analysis (Fact Sheet)

    SciTech Connect

    Not Available

    2010-03-01

    In today's electricity generation system, different resources make different contributions to the electricity grid. This fact sheet illustrates the roles of distributed and centralized renewable energy technologies, particularly solar power, and how they will contribute to the future electricity system. The advantages of a diversified mix of power generation systems are highlighted.

  18. Innovation in Improving Visibility into the Health of the Grid | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Innovation in Improving Visibility into the Health of the Grid Innovation in Improving Visibility into the Health of the Grid October 29, 2015 - 3:12pm Addthis David Ortiz David Ortiz Former Deputy Assistant Secretary, Energy Infrastructure Modeling and Analysis I have previously written about synchrophasors. These are systems that measure the status of the electric power grid at high resolution and enable a wide range of applications that allow operators to manage their systems

  19. NSTAR Electric & Gas Corporation Smart Grid Demonstration Project...

    OpenEI (Open Energy Information) [EERE & EIA]

    on low voltage (secondary) networks in downtown Boston to improve grid reliability and safety. The project will provide additional visibility for operators, which...

  20. El Paso Electric Smart Grid Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    distribution management software platform. El Paso expects these upgrades to improve reliability and power quality and reduce truck rolls for grid maintenance, operating costs, and...

  1. Protecting the Electric Grid from Increasingly Severe Weather...

    Energy.gov [DOE] (indexed site)

    of power outages and calls for increased cross-sector investment to make the electric grid more resilient in the face of increasingly severe weather events due to climate change. ...

  2. Module Embedded Microninverter Smart Grid Ready Residential Solar Electric System

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Impact $3/W total installed price vs. GE base residential system @ $4/W; $0.13/kWh LCOE (< average EIA 2015 retail electricity price) $0.10/W (30%) reduction of microinverter cost, and >$0.25/W reduction of installed price; Safety, MPPT and grid support functions including Volt/VAR support Module Embedded Microninverter Smart Grid Ready Residential Solar Electric System RUI ZHOU/ GE GLOBAL RESEARCH Develop and demonstrate power electronics technologies that address the following

  3. NREL: Transmission Grid Integration - Wholesale Electricity Market...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wholesale Electricity Market Operations Researchers at NREL are studying wholesale electricity market operations to understand how they currently maximize competition, efficiency, ...

  4. Interstate Grid Electrification Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Interstate Grid Electrification Improvement Project Interstate Grid Electrification Improvement Project 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt070_vss_gustafson_2012_o.pdf (3.62 MB) More Documents & Publications Interstate Grid Electrification Improvement Project Interstate Grid Electrification Improvement Project Vehicle Technologies Office: 2011 Vehicle and Systems Simulation and Testing R&D Annual

  5. Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014)

    Energy.gov [DOE]

    A new report from OE's Smart Grid Investment Grant (SGIG) program presents findings on smart grid improvements in outage management, based on the recent experiences of three SGIG projects.

  6. Protecting the Nation's Electric Grid from Cyber Threats

    Energy.gov [DOE]

    The Electric Sector Cybersecurity Risk Maturity Model Pilot is a new White House initiative led by the Department of Energy to develop a model to help us identify how secure the electric grid is from cyber threats and to test that model with participating utilities.

  7. Wide-area situation awareness in electric power grid

    SciTech Connect

    Greitzer, Frank L.

    2010-04-28

    Two primary elements of the US energy policy are demand management and efficiency and renewable sources. Major objectives are clean energy transmission and integration, reliable energy transmission, and grid cyber security. Development of the Smart Grid seeks to achieve these goals by lowering energy costs for consumers, achieving energy independence and reducing greenhouse gas emissions. The Smart Grid is expected to enable real time wide-area situation awareness (SA) for operators. Requirements for wide-area SA have been identified among interoperability standards proposed by the Federal Energy Regulatory Commission and the National Institute of Standards and Technology to ensure smart-grid functionality. Wide-area SA and enhanced decision support and visualization tools are key elements in the transformation to the Smart Grid. This paper discusses human factors research to promote SA in the electric power grid and the Smart Grid. Topics that will be discussed include the role of human factors in meeting US energy policy goals, the impact and challenges for Smart Grid development, and cyber security challenges.

  8. Opportunity to Plug Your Car Into the Electric Grid is Arriving

    SciTech Connect

    Griego, G.

    2010-06-01

    Plug-in hybrid electric vehicles are hitting the U.S. market for the first time this year. Similar to hybrid electric vehicles, they feature a larger battery and plug-in charger that allows consumers to replace a portion of their fossil fuel by simply plugging their cars into standard 110-volt outlets at home or wherever outlets are available. If these vehicles become widely accepted, consumers and the environment will benefit, according to a computer modeling study by Xcel Energy and the Department of Energy's National Renewable Energy Laboratory. Researchers found that each PHEV would cut carbon dioxide emissions in half and save owners up to $450 in annual fuel costs and up to 240 gallons of gasoline. The study also looked at the impact of PHEVs on the electric grid in Colorado if used on a large scale. Integrating large numbers of these vehicles will depend on the adoption of smart-grid technology - adding digital elements to the electric power system to improve efficiency and enable more dynamic communication between consumers and producers of electricity. Using an intelligent monitoring system that keeps track of all electricity flowing in the system, a smart grid could enable optimal PHEV battery-charging much the same way it would enable users to manage their energy use in household appliances and factory processes to reduce energy costs. When a smart grid is implemented, consumers will have many low-cost opportunities to charge PHEVs at different times of the day. Plug-in vehicles could contribute electricity at peak times, such as summer evenings, while taking electricity from the grid at low-use times such as the middle of the night. Electricity rates could offer incentives for drivers to 'give back' electricity when it is most needed and to 'take' it when it is plentiful. The integration of PHEVs, solar arrays and wind turbines into the grid at larger scales will require a more modern electricity system. Technology already exists to allow customers to

  9. ECONOMIC BENEFITS OF INCREASING ELECTRIC GRID RESILIENCE TO

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ECONOMIC BENEFITS OF INCREASING ELECTRIC GRID RESILIENCE TO WEATHER OUTAGES Executive Office of the President August 2013 2 This report was prepared by the President's Council of Economic Advisers and the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability, with assistance from the White House Office of Science and Technology 3 Executive Summary Severe weather is the leading cause of power outages in the United States. Between 2003 and 2012, an estimated 679

  10. OE Announces Investment in New Research to Improve Grid Reliability through

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enhanced Visibility | Department of Energy OE Announces Investment in New Research to Improve Grid Reliability through Enhanced Visibility OE Announces Investment in New Research to Improve Grid Reliability through Enhanced Visibility October 19, 2016 - 12:00pm Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability Today, at the North American SynchroPhasor Initiative (NASPI) meeting in Seattle, I announced over $5 million

  11. A Novel Visualization Technique for Electric Power Grid Analytics

    SciTech Connect

    Wong, Pak C.; Schneider, Kevin P.; Mackey, Patrick S.; Foote, Harlan P.; Chin, George; Guttromson, Ross T.; Thomas, James J.

    2009-05-01

    The application of information visualization holds tremendous promise for the electric power industry, and yet its potential has not been sufficiently exploited by the visualization community. Prior work on visualizing electric power systems has been limited to depicting raw or processed information on top of a geographic layout. Little effort has been devoted to maximize the analytical strengths naturally gained by the visualization itself. This paper introduces a visualization system prototype, known as GreenGrid, that explores the planning and monitoring of the North American Electricity Infrastructure. For the purposes of visualization, the power infrastructure can be described as a network of nodes and links. The nodes represent the electrical buses where generators and loads are connected, while the links represent the transmission lines that interconnect the buses. This paper focuses mainly on a customized technique within GreenGrid that is designed to visually identify abnormal characteristics of the electricity infrastructure. In particular, we examine an extreme event that occurred within the Western United States power grid on August 10, 1996. We compare our study results with the conclusion of the post-disturbance analysis and find that many of the disturbance characteristics can be readily identified with the proper form of visualization. The paper includes a lessons learned discussion to evaluate the visualization application.

  12. Smart Grid Week: Hurricane Season and the Department’s Efforts to Make the Grid More Resilient to Power Outages

    Energy.gov [DOE]

    Next up in our Smart Grid Week series -- improving electric grid technologies to adequately prepare for emergencies with power outages.

  13. NREL + SolarCity: Maximizing Solar Power on Electrical Grids

    SciTech Connect

    Hannegan, Bryan; Hanley, Ryan; Symko-Davies, Martha

    2015-06-03

    Learn how NREL is partnering with SolarCity to study how to better integrate rooftop solar onto the grid. The work includes collaboration with the Hawaiian Electric Companies (HECO) to analyze high-penetration solar scenarios using advanced modeling and inverter testing at the Energy Systems Integration Facility (ESIF) on NREL’s campus. Results to date have been so promising that HECO has more than doubled the amount of rooftop solar it allows on its grid, showing utilities across the country that distributed solar is not a liability for reliability—and can even be an asset.

  14. Category:Smart Grid Projects - Electric Transmission Systems...

    OpenEI (Open Energy Information) [EERE & EIA]

    Carolinas, LLC Smart Grid Project E Entergy Services, Inc. Smart Grid Project I ISO New England, Incorporated Smart Grid Project M Midwest Energy Inc. Smart Grid Project...

  15. EAC Recommendations for DOE Action Regarding U.S. Electric Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    U.S. Electric Grid Resiliency - March 2014 EAC Recommendations for DOE Action Regarding U.S. Electric Grid Resiliency - March 2014 EAC Recommendations for DOE Action Regarding U.S. ...

  16. Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint

    SciTech Connect

    Markel, T.; Simpson, A.

    2005-09-01

    This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

  17. Update to Large Power Transformers and the U.S. Electric Grid Report Now Available

    Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability has released an update to its 2012 Large Power Transformers and the U.S. Electric Grid report.

  18. Large Power Transformers and the U.S. Electric Grid Report Update (April 2014)

    Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability has released an update to its 2012 Large Power Transformers and the U.S. Electric Grid report.

  19. ARPA-E Project Takes an Innovative Approach to the Electrical Grid |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Project Takes an Innovative Approach to the Electrical Grid ARPA-E Project Takes an Innovative Approach to the Electrical Grid September 10, 2014 - 4:38pm Addthis With support from ARPA-E, AutoGrid Systems developed software to monitor the flow of power through the electric grid and help utilities better meet real-time electricity demands. | Graphic courtesy of AutoGrids. With support from ARPA-E, AutoGrid Systems developed software to monitor the flow of power through

  20. NSTAR Electric Company Smart Grid Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Indicators Equipment Condition Monitors Targeted Benefits Improved Electric Service Reliability and Power Quality Reduced Costs from Equipment Failures, Distribution, and Line...

  1. Black Hills/Colorado Electric Utility Co. Smart Grid Project...

    OpenEI (Open Energy Information) [EERE & EIA]

    Thermostats Targeted Benefits Reduced Meter Reading Costs Improved Electric Service Reliability Reduced Ancillary Service Cost Reduced Truck Fleet Fuel Usage Reduced Greenhouse...

  2. South Mississippi Electric Power Association (SMEPA) Smart Grid...

    OpenEI (Open Energy Information) [EERE & EIA]

    Network Targeted Benefits Reduced Meter Reading Costs Improved Electric Service Reliability and Power Quality Reduced Costs from Distribution Line Losses and Theft Reduced...

  3. Lakeland Electric Smart Grid Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    for Customers Reduced Operating and Maintenance Costs Improved Electric Service Reliability Reduced Costs from Distribution Line Losses Reduced Truck Fleet Fuel Usage Reduced...

  4. AVTA: ARRA EV Project Electric Grid Impact Report

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following report describes lessons learned about the impact on the electrical grid from the EV Project. The EV Project partnered with city, regional and state governments, utilities, and other organizations in 16 cities to deploy about 14,000 Level 2 PEV chargers and 300 DC fast chargers. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. This research was conducted by Idaho National Laboratory.

  5. Computational Needs for the Next Generation Electric Grid Proceedings

    SciTech Connect

    Birman, Kenneth; Ganesh, Lakshmi; Renessee, Robbert van; Ferris, Michael; Hofmann, Andreas; Williams, Brian; Sztipanovits, Janos; Hemingway, Graham; University, Vanderbilt; Bose, Anjan; Stivastava, Anurag; Grijalva, Santiago; Grijalva, Santiago; Ryan, Sarah M.; McCalley, James D.; Woodruff, David L.; Xiong, Jinjun; Acar, Emrah; Agrawal, Bhavna; Conn, Andrew R.; Ditlow, Gary; Feldmann, Peter; Finkler, Ulrich; Gaucher, Brian; Gupta, Anshul; Heng, Fook-Luen; Kalagnanam, Jayant R; Koc, Ali; Kung, David; Phan, Dung; Singhee, Amith; Smith, Basil

    2011-10-05

    The April 2011 DOE workshop, 'Computational Needs for the Next Generation Electric Grid', was the culmination of a year-long process to bring together some of the Nation's leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system. The attached papers provide a journey into these experts' insights, highlighting a class of mathematical and computational problems relevant for potential power systems research. While each paper defines a specific problem area, there were several recurrent themes. First, the breadth and depth of power system data has expanded tremendously over the past decade. This provides the potential for new control approaches and operator tools that can enhance system efficiencies and improve reliability. However, the large volume of data poses its own challenges, and could benefit from application of advances in computer networking and architecture, as well as data base structures. Second, the computational complexity of the underlying system problems is growing. Transmitting electricity from clean, domestic energy resources in remote regions to urban consumers, for example, requires broader, regional planning over multi-decade time horizons. Yet, it may also mean operational focus on local solutions and shorter timescales, as reactive power and system dynamics (including fast switching and controls) play an increasingly critical role in achieving stability and ultimately reliability. The expected growth in reliance on variable renewable sources of electricity generation places an exclamation point on both of these observations, and highlights the need for new focus in areas such as stochastic optimization to accommodate the increased uncertainty that is occurring in both planning and operations. Application of research advances in algorithms (especially related to optimization techniques and uncertainty quantification) could accelerate power system software tool

  6. EIA's Energy in Brief: What is the electric power grid and what are some

    Gasoline and Diesel Fuel Update

    challenges it faces? is the electric power grid and what are some challenges it faces? Last Updated: December 22, 2015 The U.S. power grid is the electrical system that connects electricity producers and consumers by transmission and distribution lines and related facilities. The U.S. power grid has evolved into three large interconnected systems that move electricity around the country. Mandatory reliability standards have been developed by the electric power industry and have been approved

  7. Quantifying the Value of Hydropower in the Electric Grid: Final Report |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Quantifying the Value of Hydropower in the Electric Grid: Final Report Quantifying the Value of Hydropower in the Electric Grid: Final Report This report summarizes a 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. The study looked at existing large hydropower operations in the U.S., models for different electricity futures, markets, costs of existing and new technologies as well as trends related to hydropower investments in

  8. Smart Grid Projects Are Improving Performance and Helping Consumers Better

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manage their Energy Use | Department of Energy Projects Are Improving Performance and Helping Consumers Better Manage their Energy Use Smart Grid Projects Are Improving Performance and Helping Consumers Better Manage their Energy Use November 14, 2014 - 5:07pm Addthis Hank Kenchington Hank Kenchington Deputy Assistant Secretary, Cybersecurity and Emerging Threats Research and Development After nearly five years, the 131 smart grid projects funded through the 2009 Recovery Act are nearing

  9. Provably secure time distribution for the electric grid

    SciTech Connect

    Smith IV, Amos M; Evans, Philip G; Williams, Brian P; Grice, Warren P

    2015-01-01

    We demonstrate a quantum time distribution (QTD) method that combines the precision of optical timing techniques with the integrity of quantum key distribution (QKD). Critical infrastructure is dependent on microprocessor- and programmable logic-based monitoring and control systems. The distribution of timing information across the electric grid is accomplished by GPS signals which are known to be vulnerable to spoofing. We demonstrate a method for synchronizing remote clocks based on the arrival time of photons in a modifed QKD system. This has the advantage that the signal can be veried by examining the quantum states of the photons similar to QKD.

  10. The Electricity Transmission System Future Vision & Grid Challenges

    Office of Environmental Management (EM)

    ... C Grid Flexibility 3. Transforming the Grid: Roles and Use of FACTSEnergy StorageDSRsHVDC? How Might We Need to Change How the Grid Works? a) Adaptation and re-configurability ...

  11. Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles

    SciTech Connect

    Dick Cirillo; Guenter Conzelmann

    2013-03-20

    Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

  12. EAC Recommendations for DOE Action Regarding U.S. Electric Grid Resiliency- March 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    EAC Recommendations for DOE Action Regarding U.S. Electric Grid Resiliency, approved at the March 12-13, 2014 meeting.

  13. Transmission and Grid Integration: Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect

    Not Available

    2009-09-01

    Factsheet developed to describe the activites of the Transmission and Grid Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  14. Transmission and Grid Integration: Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect

    2009-09-01

    Factsheet developed to describe the activities of the Transmission and Grid Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  15. Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles

    ScienceCinema

    Dick Cirillo; Guenter Conzelmann

    2016-07-12

    Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

  16. Update to Large Power Transformers and the U.S. Electric Grid...

    Energy.gov [DOE] (indexed site)

    Delivery and Energy Reliability has released an update to its 2012 Large Power Transformers and the U.S. Electric Grid report. The new report includes updated information...

  17. ARRA Grid Modernization Investment Highlights - Fact Sheet |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    were successfully managed by the Office of Electricity Delivery and Energy Reliability. ... Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November ...

  18. Energy Department Partners with EU on Electric Vehicle and Smart Grid Coordination

    Office of Energy Efficiency and Renewable Energy (EERE)

    As electric vehicle sales continue to grow, vehicles, charging stations and communication systems will need to work in unison with the electric grid. Learn what the Energy Department is doing to ensure this happens.

  19. "Large Power Transformers and the U.S. Electric Grid" Report (June 2012)

    Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability has released the "Large Power Transformers and the U.S. Electric Grid" report, an assessment of the procurement and supply environment of...

  20. Energy Storage Activities in the United States Electricity Grid. May 2011 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Activities in the United States Electricity Grid. May 2011 Energy Storage Activities in the United States Electricity Grid. May 2011 Energy storage technologies offer cost-effective flexibility and ancillary services needed by the U.S power grid. As policy reforms and decreasing technology costs facilitate market penetration, energy storage technologies offer increasingly competitive alternative means for utilities to engage these ancillary services. This report prepared

  1. Secretary Chu to Discuss Importance of Electric Grid Modernization to U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Competitiveness at Gridwise Global Forum | Department of Energy Discuss Importance of Electric Grid Modernization to U.S. Competitiveness at Gridwise Global Forum Secretary Chu to Discuss Importance of Electric Grid Modernization to U.S. Competitiveness at Gridwise Global Forum November 7, 2011 - 4:43pm Addthis Washington D.C. - U.S. Energy Secretary Steven Chu will join Israeli Minster of National Infrastructures, Uzi Landau, in opening the second annual GridWise Global Forum on Tuesday,

  2. Assessment of Future Vehicle Transportation Options and their Impact on the Electric Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Future Vehicle Transportation Options and Their Impact on the Electric Grid January 10, 2010 New Analysis of Alternative Transportation Technologies 3 What's New? * Additional Alternative Transportation Vehicles - Compressed Air Vehicles (CAVs) * Use electricity from the grid to power air compressor that stores compressed air - Natural Gas Vehicles (NGVs) * Connection to grid is in competing demand for fuel * Still an internal combustion engine (ICE) - Hydrogen Vehicles * Use fuel cell

  3. National Grid (Electric) Commercial and Industrial Rebate Program

    Energy.gov [DOE]

    National Grid offers various rebate programs for industrial and commercial customers to install energy efficiency measures. 

  4. Distributed Energy Alternative to Electrical Distribution Grid Expansion in Consolidated Edison Service Territory

    SciTech Connect

    Kingston, Tim; Kelly, John

    2008-08-01

    The nation's power grid, specifically the New York region, faces burgeoning energy demand and suffers from congested corridors and aging equipment that cost New York consumers millions of dollars. Compounding the problem is high-density buildup in urban areas that limits available space to expand grid capacity. Coincidently, these urban areas are precisely where additional power is required. DER in this study refers to combined heat and power (CHP) technology, which simultaneously generates heat and electricity at or near the point where the energy will be consumed. There are multiple CHP options available that, combined with a portfolio of other building energy efficiency (EE) strategies, can help achieve a more efficient supply-demand balance than what the grid can currently provide. As an alternative to expanding grid capacity, CHP and EE strategies can be deployed in a flexible manner at virtually any point on the grid to relieve load. What's more, utilities and customers can install them in a variety of potentially profitable applications that are more environmentally friendly. Under the auspices of the New York State Energy Research and Development Authority (NYSERDA) and the Oak Ridge National Laboratory representing the Office of Electricity of the U.S. Department of Energy, Gas Technology Institute (GTI) conducted this study in cooperation with Consolidated Edison to help broaden the market penetration of EE and DER. This study provides realistic load models and identifies the impacts that EE and DER can have on the electrical distribution grid; specifically within the current economic and regulatory environment of a high load growth area of New York City called Hudson Yards in Midtown Manhattan. These models can be used to guide new policies that improve market penetration of appropriate CHP and EE technologies in new buildings. The following load modeling scenarios were investigated: (1) Baseline: All buildings are built per the Energy Conservation

  5. Dynamic Line Rating Oncor Electric Delivery Smart Grid Program

    SciTech Connect

    Johnson, Justin; Smith, Cale; Young, Mike; Donohoo, Ken; Owen, Ross; Clark, Eddit; Espejo, Raul; Aivaliotis, Sandy; Stelmak, Ron; Mohr, Ron; Barba, Cristian; Gonzalez, Guillermo; Malkin, Stuart; Dimitrova, Vessela; Ragsdale, Gary; Mitchem, Sean; Jeirath, Nakul; Loomis, Joe; Trevino, Gerardo; Syracuse, Steve; Hurst, Neil; Mereness, Matt; Johnson, Chad; Bivens, Carrie

    2013-05-04

    Electric transmission lines are the lifeline of the electric utility industry, delivering its product from source to consumer. This critical infrastructure is often constrained such that there is inadequate capacity on existing transmission lines to efficiently deliver the power to meet demand in certain areas or to transport energy from high-generation areas to high-consumption regions. When this happens, the cost of the energy rises; more costly sources of power are used to meet the demand or the system operates less reliably. These economic impacts are known as congestion, and they can amount to substantial dollars for any time frame of reference: hour, day or year. There are several solutions to the transmission constraint problem, including: construction of new generation, construction of new transmission facilities, rebuilding and reconductoring of existing transmission assets, and Dynamic Line Rating (DLR). All of these options except DLR are capital intensive, have long lead times and often experience strong public and regulatory opposition. The Smart Grid Demonstration Program (SGDP) project co-funded by the Department of Energy (DOE) and Oncor Electric Delivery Company developed and deployed the most extensive and advanced DLR installation to demonstrate that DLR technology is capable of resolving many transmission capacity constraint problems with a system that is reliable, safe and very cost competitive. The SGDP DLR deployment is the first application of DLR technology to feed transmission line real-time dynamic ratings directly into the system operation’s State Estimator and load dispatch program, which optimizes the matching of generation with load demand on a security, reliability and economic basis. The integrated Dynamic Line Rating (iDLR)1 collects transmission line parameters at remote locations on the lines, calculates the real-time line rating based on the equivalent conductor temperature, ambient temperature and influence of wind and solar

  6. Final report: Task 4a.2 20% wind scenario assessment of electric grid operational features

    SciTech Connect

    Toole, Gasper L.

    2009-01-01

    Wind integration modeling in electricity generation capacity expansion models is important in that these models are often used to inform political or managerial decisions. Poor representation of wind technology leads to under-estimation of wind's contribution to future energy scenarios which may hamper growth of the industry. The NREL's Wind Energy Deployment System (WinDS) model provides the most detailed representation of geographically disperse renewable resources and the optimization of transmission expansion to access these resources. Because WinDS was selected as the primary modeling tool for the 20% Wind Energy by 2030 study, it is the ideal tool for supplemental studies of the transmission expansion results. However, as the wind industry grows and knowledge related to the wind resource and integration of wind energy into the electric system develops, the WinDS model must be continually improved through additional data and innovative algorithms to capture the primary effects of variable wind generation. The detailed representation of wind technology in the WinDS model can be used to provide improvements to the simplified representation of wind technology in other capacity expansion models. This task did not employ the WinDS model, but builds from it and its results. Task 4a.2 provides an assessment of the electric grid operational features of the 20% Wind scenario and was conducted using power flow models accepted by the utility industry. Tasks 2 provides information regarding the physical flow of electricity on the electric grid which is a critical aspect of infrastructure expansion scenarios. Expanding transmission infrastructure to access remote wind resource in a physically realizable way is essential to achieving 20% wind energy by 2030.

  7. Quantifying the Impact of Adverse Events on the Electricity Grid as a Function of Grid Topology

    SciTech Connect

    Coles, Garill A.; Sadovsky, Artyom; Du, Pengwei

    2011-11-30

    Abstract--Traditional approaches to the study of grid vulnerability have taken an asset based approach, which seeks to identify those assets most likely to result in grid-wide failures or disruptions in the event that they are compromised. We propose an alternative approach to the study of grid vulnerability, one based on the topological structure of the entire grid. We propose a method that will identify topological parameters most closely related to the ability of the grid to withstand an adverse event. We compare these topological parameters in terms of their impact on the vulnerability metric we have defined, referred to as the grid’s “survivability”. Our approach is motivated by Paul Baran’s work on communications networks, which also studied vulnerability in terms of network-wide parameters. Our approach is useful both as a planning model for evaluating proposed changes to a grid and as a risk assessment tool.

  8. US Recovery Act Smart Grid Projects - Electric Transmission Systems...

    OpenEI (Open Energy Information) [EERE & EIA]

    "icon":"","group":"","inlineLabel":"","visitedicon":"","text":"GridProject" title"ISO New England, Incorporated Smart...

  9. NSTAR Electric & Gas Corporation Smart Grid Demonstration Project...

    OpenEI (Open Energy Information) [EERE & EIA]

    Project which is based in Westwood, Massachusetts. Overview Develop and implement a Smart Grid pilot program that will examine technologies to leverage existing automated...

  10. DOE Provides up to $51.8 Million to Modernize the U.S. Electric Grid

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    System. June 27, 2007 | Department of Energy Provides up to $51.8 Million to Modernize the U.S. Electric Grid System. June 27, 2007 DOE Provides up to $51.8 Million to Modernize the U.S. Electric Grid System. June 27, 2007 U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will provide up to $51.8 million for five cost-shared projects that will help accelerate much-needed modernization of our Nation's electricity grid. This research will advance the

  11. Smart electric vehicle (EV) charging and grid integration apparatus and methods

    SciTech Connect

    Gadh, Rajit; Mal, Siddhartha; Prabhu, Shivanand; Chu, Chi-Cheng; Sheikh, Omar; Chung, Ching-Yen; He, Lei; Xiao, Bingjun; Shi, Yiyu

    2015-05-05

    An expert system manages a power grid wherein charging stations are connected to the power grid, with electric vehicles connected to the charging stations, whereby the expert system selectively backfills power from connected electric vehicles to the power grid through a grid tie inverter (if present) within the charging stations. In more traditional usage, the expert system allows for electric vehicle charging, coupled with user preferences as to charge time, charge cost, and charging station capabilities, without exceeding the power grid capacity at any point. A robust yet accurate state of charge (SOC) calculation method is also presented, whereby initially an open circuit voltage (OCV) based on sampled battery voltages and currents is calculated, and then the SOC is obtained based on a mapping between a previously measured reference OCV (ROCV) and SOC. The OCV-SOC calculation method accommodates likely any battery type with any current profile.

  12. Energy Storage Activities in the United States Electricity Grid. May 2011

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Storage Activities in the United States Electricity Grid Electricity Advisory Committee Energy Storage Technologies Subcommittee Members Ralph Masiello, Subcommittee Chair Senior Vice President, Transmission KEMA Honorable Lauren Azar Commissioner Wisconsin Public Utilities Commission Frederick Butler President & Chief Executive Officer Butler Advisory Services Richard Cowart Principal Regulatory Assistance Project and Chair, Electricity Advisory Committee Roger Duncan General Manager

  13. Resilient Electric Distribution Grid R&D Workshop- June 11, 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    On June 11, 2014, the Department of Energy held a half-day workshop to identify key R&D activities for enhancing the resilience of electric distribution grids to natural disasters.

  14. Energy Department Announces $15 Million to Integrate Affordable Solar Energy into Nation’s Electrical Grid

    Energy.gov [DOE]

    Supporting the goals of the Obama Administration’s Climate Action Plan, the Energy Department today announced $15 million in available funding to help integrate distributed, on-site solar energy systems into the nation’s electrical grid.

  15. Solar Electric Grid Integration- Advanced Concepts (SEGIS-AC) Funding Opportunity

    Energy.gov [DOE]

    Through the Solar Electric Grid Integration – Advanced Concepts (SEGIS-AC) program, DOE is funding solar projects that are targeting ways to develop power electronics and build smarter, more...

  16. shared Smart Grid Investment Grant

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Under the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy and the electricity industry have jointly invested about $7.9 billion in 99 cost- shared Smart Grid Investment Grant projects and about $1.6 billion in 32 Smart Grid Demonstration Program projects to modernize the electric grid, strengthen cyber security, improve interoperability, and collect an unprecedented level of data on smart grid and customer operations. The Smart Grid Experience: Applying Results,

  17. April 5 PSERC Webinar: Seamless Bulk Electric Grid Management: A Platform

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Designing the Next Generation EMS | Department of Energy 5 PSERC Webinar: Seamless Bulk Electric Grid Management: A Platform for Designing the Next Generation EMS April 5 PSERC Webinar: Seamless Bulk Electric Grid Management: A Platform for Designing the Next Generation EMS March 21, 2016 - 1:27pm Addthis The DOE-funded Power Systems Engineering Research Center (PSERC) is offering a free public webinar that will address the feasibility of a flexible platform that is needed when designing

  18. EERE Success Story-Nevada Deploys Grid-Connected Electricity from

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enhanced Geothermal Systems | Department of Energy Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems EERE Success Story-Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems May 16, 2013 - 12:00am Addthis The Southeast Propane Autogas Development Program, an $8.6 million Clean Cities Recovery Act project, finished bringing 1,200 propane vehicles and 11 new stations to support them to the road in October 2013. The Virginia Department of Mines,

  19. Getting a grip on the electrical grid (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Getting a grip on the electrical grid Citation Details In-Document Search Title: Getting a grip on the electrical grid Authors: Backhaus, Scott N. [1] ; Chertkov, Michael [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-04-11 OSTI Identifier: 1073732 Report Number(s): LA-UR-13-22610 DOE Contract Number: AC52-06NA25396 Resource Type: Technical Report Research Org: Los Alamos National Laboratory (LANL) Sponsoring Org: LDRD Country of Publication: United States

  20. Resilient Electric Distribution Grid R&D Workshop - June 11, 2014 -

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Breakout Sessions Notes and Reports | Department of Energy Breakout Sessions Notes and Reports Resilient Electric Distribution Grid R&D Workshop - June 11, 2014 - Breakout Sessions Notes and Reports On June 11, 2014, the Department of Energy held a half-day workshop to identify key R&D activities for enhancing the resilience of electric distribution grids to natural disasters. Notes and presentations from two concurrent breakout sessions are available for download, below. The final

  1. Resilient Electric Distribution Grid R&D Workshop - June 11, 2014 - Plenary

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentations | Department of Energy Plenary Presentations Resilient Electric Distribution Grid R&D Workshop - June 11, 2014 - Plenary Presentations On June 11, 2014, the Department of Energy held a half-day workshop to identify key R&D activities for enhancing the resilience of electric distribution grids to natural disasters. The four presentations from the opening plenary session are available for download, below. The final agenda and notes and reports from two concurrent breakout

  2. Secure Information Exchange Gateway for Electric Grid Operations

    SciTech Connect

    Robertson, F. Russell; Carroll, J. Ritchie; Sanders, William; Yardley, Timothy; Heine, Erich; Hadley, Mark; McKinnon, David; Motteler, Barbara; Giri, Jay; Walker, William; McCartha, Esrick

    2014-09-30

    The major objectives of the SIEGate project were to improve the security posture and minimize the cyber-attack surface of electric utility control centers and to reduce the cost of maintaining control-room-to-control-room information exchange. Major project goals included the design, development, testing, and commercialization of a single security-hardened appliance that could meet industry needs for resisting cyber-attacks while protecting the confidentiality and integrity of a growing volume of real-time information needed to ensure the reliability of the bulk electric system and interoperating with existing data formats and networking technologies. The SIEGate project has achieved its goals and objectives. The SIEGate Design Document, issued in March 2012, presented SIEGate use cases, provided SIEGate requirements, established SIEGate design principles, and prescribed design functionality of SIEGate as well as the components that make up SIEGate. SIEGate Release Version 1.0 was posted in January 2014. Release Version 1.0.83, which was posted on March 28, 2014, fixed many issues discovered by early adopters and added several new features. Release Candidate 1.1, which added additional improvements and bug fixes, was posted in June 2014. SIEGate executables have been downloaded more than 300 times. SIEGate has been tested at PJM, Entergy, TVA, and Southern. Security testing and analysis of SIEGate has been conducted at PNNL and PJM. Alstom has provided a summary of recommended steps for commercialization of the SIEGate Appliance and identified two deployment models with immediate commercial application.

  3. Secretary Chu to Discuss Importance of Electric Grid Modernization...

    Office of Environmental Management (EM)

    WHAT: Energy Secretary Steven Chu to deliver remarks at the GridWise Global Forum WHEN: Tuesday, November 8, 2011 12:30 PM EST WHERE: Ronald Reagan Building and International Trade ...

  4. Compact, Interactive Electric Vehicle Charger: Gallium-Nitride Switch Technology for Bi-directional Battery-to-Grid Charger Applications

    SciTech Connect

    2010-10-01

    ADEPT Project: HRL Laboratories is using gallium nitride (GaN) semiconductors to create battery chargers for electric vehicles (EVs) that are more compact and efficient than traditional EV chargers. Reducing the size and weight of the battery charger is important because it would help improve the overall performance of the EV. GaN semiconductors process electricity faster than the silicon semiconductors used in most conventional EV battery chargers. These high-speed semiconductors can be paired with lighter-weight electrical circuit components, which helps decrease the overall weight of the EV battery charger. HRL Laboratories is combining the performance advantages of GaN semiconductors with an innovative, interactive battery-to-grid energy distribution design. This design would support 2-way power flow, enabling EV battery chargers to not only draw energy from the power grid, but also store and feed energy back into it.

  5. Mastering Uncertainty and Risk at Multiple Time Scales in the Future Electrical Grid

    SciTech Connect

    Chertkov, Michael; Bent, Russell W.; Backhaus, Scott N.

    2012-07-10

    Today's electrical grids enjoy a relatively clean separation of spatio-temporal scales yielding a compartmentalization of grid design, optimization, control and risk assessment allowing for the use of conventional mathematical tools within each area. In contrast, the future grid will incorporate time-intermittent renewable generation, operate via faster electrical markets, and tap the latent control capability at finer grid modeling scales; creating a fundamentally new set of couplings across spatiotemporal scales and requiring revolutionary advances in mathematics techniques to bridge these scales. One example is found in decade-scale grid expansion planning in which today's algorithms assume accurate load forecasts and well-controlled generation. Incorporating intermittent renewable generation creates fluctuating network flows at the hourly time scale, inherently linking the ability of a transmission line to deliver electrical power to hourly operational decisions. New operations-based planning algorithms are required, creating new mathematical challenges. Spatio-temporal scales are also crossed when the future grid's minute-scale fluctuations in network flows (due to intermittent generation) create a disordered state upon which second-scale transient grid dynamics propagate effectively invalidating today's on-line dynamic stability analyses. Addressing this challenge requires new on-line algorithms that use large data streams from new grid sensing technologies to physically aggregate across many spatial scales to create responsive, data-driven dynamic models. Here, we sketch the mathematical foundations of these problems and potential solutions.

  6. First-Ever Demonstration of Quantum Cryptography to Improve Security...

    Energy Saver

    First-Ever Demonstration of Quantum Cryptography to Improve Security of the Electric Grid First-Ever Demonstration of Quantum Cryptography to Improve Security of the Electric Grid ...

  7. Electric Vehicle-Smart Grid Interoperability | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electrical Contractors Plug-In Electric Vehicle Handbook for Electrical Contractors 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Installing and Maintaining EVSE . . . . . . . 9 EVSE Training for Electrical Contractors . . . . . . . . . . . . . . . . 18 Electrifying the Future . . . . . . . . . . . . . . . 19 Clean Cities Helps Deploy PEV

  8. Smart Grid Primer (Smart Grid Books) | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    sponsored by DOE's Office of Electricity Delivery and Energy Reliability that ... Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) ...

  9. Eastern Seaboard Electric Grid Fragility Maps Supporting Persistent Availability

    SciTech Connect

    Walker, Kimberly A; Weigand, Gilbert G; Fernandez, Steven J

    2012-11-01

    Persistently available power transmission can be disrupted by weather causing power outages with economic and social consequences. This research investigated the effects on the national power grid from a specific weather event, Hurricane Irene, that caused approximately 5.7 million customer power outages along the Eastern Seaboard in August of 2011. The objective was to describe the geographic differences in the grid s vulnerability to these events. Individual factors, such as wind speed or precipitation, were correlated with the number of outages to determine the greatest mechanism of power failure in hopes of strengthening the future power grid. The resulting fragility maps not only depicted 18 counties that were less robust than the design-standard robustness model and three counties that were more robust, but also drew new damage contours with correlated wind speeds and county features.

  10. Exploring Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Souhern California Edison Service Territory

    SciTech Connect

    Stovall, Therese K; Kingston, Tim

    2005-12-01

    Distributed energy (DE) technologies have received much attention for the energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention have been the desires to globally reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and concerns with interconnection on the distribution system. This study assesses the costs and benefits of DE to both consumers and distribution utilities and expands upon a precursory study done with Detroit Edison (DTE)1, by evaluating the combined impact of DE, energy-efficiency, photovoltaics (a use of solar energy), and demand response that will shape the grid of the future. This study was funded by the U.S. Department of Energy (DOE), Gas Research Institute (GRI), American Electric Power (AEP), and Gas Technology Institute's (GTI) Distributed Energy Collaborative Program (DECP). It focuses on two real Southern California Edison (SCE) circuits, a 13 MW suburban circuit fictitiously named Justice on the Lincoln substation, and an 8 MW rural circuit fictitiously named Prosper on the Washington Substation. The primary objectives of the study were threefold: (1) Evaluate the potential for using advanced energy technologies, including DE, energy-efficiency (EE), demand response, electricity storage, and photovoltaics (PV), to reshape electric load curves by reducing peak demand, for real circuits. (2) Investigate the potential impact on guiding technology deployment and managing operation in a way that benefits both utilities and their customers by: (a) Improving grid load factor for utilities; (b) Reducing energy costs for customers; and (c) Optimizing electric demand growth. (3) Demonstrate benefits by reporting on a recently installed advanced energy system at a utility customer site. This

  11. Workshop Outline Resilient Electric Distribution Grid R&D

    Energy.gov [DOE] (indexed site)

    R&D Office of Electricity Delivery and Energy Reliability (OE) U.S. Department of Energy (DOE) Purpose To identify key R&D activities for enhancing resilience of electric ...

  12. Proceedings of the April 2011 Computational Needs for the Next Generation Electric Grid Workshop Available

    Energy.gov [DOE]

    The proceedings from the DOE's April 2011 workshop, “Computational Needs for the Next Generation Electric Grid,” are now available. The workshop brought together some of the Nation’s leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system.

  13. Quantifying the Value of Hydropower in the Electric Grid. Final Report

    SciTech Connect

    Key, T.

    2013-02-01

    The report summarizes a 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. The study looked at existing large hydropower operations in the U.S., models for different electricity futures, markets, costs of existing and new technologies as well as trends related to hydropower investments in other parts of the world.

  14. PNNL Expert Landis Kannberg Discusses the Electrical Grid of the Future

    ScienceCinema

    Landis Kannberg

    2013-06-10

    Mechanical Engineer Landis Kannberg discusses how PNNL is improving the nation's electricity infrastructure.

  15. PNNL Expert Landis Kannberg Discusses the Electrical Grid of the Future

    SciTech Connect

    Landis Kannberg

    2011-10-11

    Mechanical Engineer Landis Kannberg discusses how PNNL is improving the nation's electricity infrastructure.

  16. Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications

    SciTech Connect

    Chakraborty, S.; Kramer, W.; Kroposki, B.; Martin, G.; McNutt, P.; Kuss, M.; Markel, T.; Hoke, A.

    2011-06-01

    The objective of this report is to provide a test plan for V2G testing. The test plan is designed to test and evaluate the vehicle's power electronics capability to provide power to the grid, and to evaluate the vehicle's ability to connect and disconnect from the utility according to a subset of the IEEE Std. 1547 tests.

  17. Towards High Performance Discrete-Event Simulations of Smart Electric Grids

    SciTech Connect

    Perumalla, Kalyan S; Nutaro, James J; Yoginath, Srikanth B

    2011-01-01

    Future electric grid technology is envisioned on the notion of a smart grid in which responsive end-user devices play an integral part of the transmission and distribution control systems. Detailed simulation is often the primary choice in analyzing small network designs, and the only choice in analyzing large-scale electric network designs. Here, we identify and articulate the high-performance computing needs underlying high-resolution discrete event simulation of smart electric grid operation large network scenarios such as the entire Eastern Interconnect. We focus on the simulator's most computationally intensive operation, namely, the dynamic numerical solution for the electric grid state, for both time-integration as well as event-detection. We explore solution approaches using general-purpose dense and sparse solvers, and propose a scalable solver specialized for the sparse structures of actual electric networks. Based on experiments with an implementation in the THYME simulator, we identify performance issues and possible solution approaches for smart grid experimentation in the large.

  18. Towards Effective Clustering Techniques for the Analysis of Electric Power Grids

    SciTech Connect

    Hogan, Emilie A.; Cotilla Sanchez, Jose E.; Halappanavar, Mahantesh; Wang, Shaobu; Mackey, Patrick S.; Hines, Paul; Huang, Zhenyu

    2013-11-30

    Clustering is an important data analysis technique with numerous applications in the analysis of electric power grids. Standard clustering techniques are oblivious to the rich structural and dynamic information available for power grids. Therefore, by exploiting the inherent topological and electrical structure in the power grid data, we propose new methods for clustering with applications to model reduction, locational marginal pricing, phasor measurement unit (PMU or synchrophasor) placement, and power system protection. We focus our attention on model reduction for analysis based on time-series information from synchrophasor measurement devices, and spectral techniques for clustering. By comparing different clustering techniques on two instances of realistic power grids we show that the solutions are related and therefore one could leverage that relationship for a computational advantage. Thus, by contrasting different clustering techniques we make a case for exploiting structure inherent in the data with implications for several domains including power systems.

  19. Resilient Electric Distribution Grid R&D Workshop - June 11,...

    Energy.gov [DOE] (indexed site)

    The final agenda and notes and reports from two concurrent breakout sessions are also available. Electric Power Distribution System Resilience: Federal Government and National Lab ...

  20. Request for Comments on the Electric Grid Integration Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Notice is hereby given that two documents are publicly available and the Department of Energy is requesting public comments. The documents are the Electricity Distribution System ...

  1. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Grid Integration

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  2. Solar Power and the Electric Grid, Energy Analysis (Fact Sheet...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    particularly solar power, and how they will contribute to the future electricity system. ... Utility-scale solar and wind power plants are conceptually similar to conventional ...

  3. Hawaii Electric Co. Inc. Smart Grid Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Reliability and Power Quality Reduced Operating and Maintenance Costs Reduced Electricity Costs for Customers Reduced Truck Fleet Fuel Usage Reduced Greenhouse Gas and...

  4. Rappahannock Electric Cooperative Smart Grid Project | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    for Customers Reduced Operating and Maintenance Costs Increased Electric Service Reliability and Power Quality Reduced Costs from Equipment Failures, Line Losses, and Theft...

  5. Quantum cryptography put to work for electric grid security

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    LANL's quantum cryptography team successfully completed the first-ever demonstration of ... successfully completed the first-ever demonstration of securing control data for electric ...

  6. Madison Gas and Electric Company Smart Grid Project | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    installation of advanced metering infrastructure (AMI), deployment of a new distribution management system, and installation of electric vehicle charging stations. These...

  7. Grid Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Integration HomeGrid Integration epri-presentations-av... and the Electric Power Research Institute (EPRI) ... Events, Renewable Energy, Solar Newsletter|Comments Off on ...

  8. The Emerging Interdependence of the Electric Power Grid & Information and Communication Technology

    SciTech Connect

    Taft, Jeffrey D.; Becker-Dippmann, Angela S.

    2015-08-01

    This paper examines the implications of emerging interdependencies between the electric power grid and Information and Communication Technology (ICT). Over the past two decades, electricity and ICT infrastructure have become increasingly interdependent, driven by a combination of factors including advances in sensor, network and software technologies and progress in their deployment, the need to provide increasing levels of wide-area situational awareness regarding grid conditions, and the promise of enhanced operational efficiencies. Grid operators’ ability to utilize new and closer-to-real-time data generated by sensors throughout the system is providing early returns, particularly with respect to management of the transmission system for purposes of reliability, coordination, congestion management, and integration of variable electricity resources such as wind generation.

  9. Urban Electric Power Takes Energy Storage from Startup to Grid-Scale |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Urban Electric Power Takes Energy Storage from Startup to Grid-Scale Urban Electric Power Takes Energy Storage from Startup to Grid-Scale June 25, 2013 - 12:42pm Addthis Learn how the CUNY Energy Institute is creating safe, low cost, rechargeable, long lifecycle batteries that could be used to store renewable energy. | Video courtesy of the Energy Department. Alexa McClanahan Communications Support Contractor to ARPA-E What are the key facts? The CUNY Energy Institute

  10. Transatlantic Workshop on Electric Vehicles and Grid Connectivity

    Energy.gov [DOE]

    The U.S.-EU Energy Council convened equipment suppliers and manufacturers, utilities, policymakers, standards organizations, and government agencies to discuss mutually beneficial near-term actions to accelerate the introduction of electric vehicles to the market.

  11. April 5 PSERC Webinar: Seamless Bulk Electric Grid Management...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    where he also serves as the Site Director of PSERC. He has worked in the electric power industry as well as academe for over 40 years, and from 2012 to 2013, he served the US ...

  12. Energy Department Announces $8 Million to Improve Resiliency of the Grid |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy $8 Million to Improve Resiliency of the Grid Energy Department Announces $8 Million to Improve Resiliency of the Grid September 8, 2014 - 9:00am Addthis News Media Contact 202-586-4940 Projects in Seven States to Help Communities Become More Adaptive With Microgrids WASHINGTON - In support of President Obama's Climate Action Plan and the Administration's commitment to improve national power grid resiliency, today the Energy Department announced more than $8 million for

  13. The CUNY Energy Institute Electrical Energy Storage Development for Grid Applications

    SciTech Connect

    Banerjee, Sanjoy

    2013-03-31

    1. Project Objectives The objectives of the project are to elucidate science issues intrinsic to high energy density electricity storage (battery) systems for smart-grid applications, research improvements in such systems to enable scale-up to grid-scale and demonstrate a large 200 kWh battery to facilitate transfer of the technology to industry. 2. Background Complex and difficult to control interfacial phenomena are intrinsic to high energy density electrical energy storage systems, since they are typically operated far from equilibrium. One example of such phenomena is the formation of dendrites. Such dendrites occur on battery electrodes as they cycle, and can lead to internal short circuits, reducing cycle life. An improved understanding of the formation of dendrites and their control can improve the cycle life and safety of many energy storage systems, including rechargeable lithium and zinc batteries. Another area where improved understanding is desirable is the application of ionic liquids as electrolytes in energy storage systems. An ionic liquid is typically thought of as a material that is fully ionized (consisting only of anions and cations) and is fluid at or near room temperature. Some features of ionic liquids include a generally high thermal stability (up to 450 °C), a high electrochemical window (up to 6 V) and relatively high intrinsic conductivities. Such features make them attractive as battery or capacitor electrolytes, and may enable batteries which are safer (due to the good thermal stability) and of much higher energy density (due to the higher voltage electrode materials which may be employed) than state of the art secondary (rechargeable) batteries. Of particular interest is the use of such liquids as electrolytes in metal air batteries, where energy densities on the order of 1-2,000 Wh / kg are possible; this is 5-10 times that of existing state of the art lithium battery technology. The Energy Institute has been engaged in the

  14. Statistical Analysis of Abnormal Electric Power Grid Behavior

    SciTech Connect

    Ferryman, Thomas A.; Amidan, Brett G.

    2010-10-30

    Pacific Northwest National Laboratory is developing a technique to analyze Phasor Measurement Unit data to identify typical patterns, atypical events and precursors to a blackout or other undesirable event. The approach combines a data-driven multivariate analysis with an engineering-model approach. The method identifies atypical events, provides a plane English description of the event, and the capability to use drill-down graphics for detailed investigations. The tool can be applied to the entire grid, individual organizations (e.g. TVA, BPA), or specific substations (e.g., TVA_CUMB). The tool is envisioned for (1) event investigations, (2) overnight processing to generate a Morning Report that characterizes the previous days activity with respect to previous activity over the previous 10-30 days, and (3) potentially near-real-time operation to support the grid operators. This paper presents the current status of the tool and illustrations of its application to real world PMU data collected in three 10-day periods in 2007.

  15. Energy Department Invests Over $10 Million to Improve Grid Reliability...

    Office of Environmental Management (EM)

    "Through advanced sensors and monitoring devices, U.S. utilities now have unprecedented insight into the power grid - helping industry make decisions that may prevent power outages ...

  16. Municipal Utilities' Investment in Smart Grid Technologies Improves...

    Office of Environmental Management (EM)

    Three municipal utilities that received funding through the Recovery Act Smart Grid Investment Grant program are featured in this report. Burbank, California; Glendale, California; ...

  17. Energy Department Announces Funding to Improve Grid Resiliency...

    Office of Environmental Management (EM)

    for communities to deploy smart grid tools and technologies to advance climate ... Reliability Patricia Hoffman. "Deploying tools and technologies that can help prevent ...

  18. Estimating the maximum potential revenue for grid connected electricity storage :

    SciTech Connect

    Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.

    2012-12-01

    The valuation of an electricity storage device is based on the expected future cash flow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participating in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the

  19. Department of Energy Official Touts Bush Administration's Efforts to Modernize our Nation's Electric Grid

    Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) newly confirmed Assistant Secretary for the Office of Electricity Delivery and Energy Reliability Kevin M. Kolevar today highlighted the Bush Administration's efforts to increase the use of advanced technologies in the Nation's power delivery system equipment, as well as DOE's recent announcement to invest up to $51.8 million to modernize and secure our nation's electric grid.

  20. First Electric Cooperative- Home Improvement Loans

    Energy.gov [DOE]

    First Electric Cooperative, a Touchstone Energy® Cooperative, serves over 85,000 member accounts throughout parts of seventeen counties in central and southeast Arkansas. The Home Improvement Loan...

  1. Maui Smart Grid Demonstration Project Managing Distribution System Resources for Improved Service Quality and Reliability, Transmission Congestion Relief, and Grid Support Functions

    SciTech Connect

    none,

    2014-09-30

    The Maui Smart Grid Project (MSGP) is under the leadership of the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii at Manoa. The project team includes Maui Electric Company, Ltd. (MECO), Hawaiian Electric Company, Inc. (HECO), Sentech (a division of SRA International, Inc.), Silver Spring Networks (SSN), Alstom Grid, Maui Economic Development Board (MEDB), University of Hawaii-Maui College (UHMC), and the County of Maui. MSGP was supported by the U.S. Department of Energy (DOE) under Cooperative Agreement Number DE-FC26-08NT02871, with approximately 50% co-funding supplied by MECO. The project was designed to develop and demonstrate an integrated monitoring, communications, database, applications, and decision support solution that aggregates renewable energy (RE), other distributed generation (DG), energy storage, and demand response technologies in a distribution system to achieve both distribution and transmission-level benefits. The application of these new technologies and procedures will increase MECO’s visibility into system conditions, with the expected benefits of enabling more renewable energy resources to be integrated into the grid, improving service quality, increasing overall reliability of the power system, and ultimately reducing costs to both MECO and its customers.

  2. Coupling Electric Vehicles and Power Grid through Charging-In-Motion and Connected Vehicle Technology

    SciTech Connect

    Li, Jan-Mou; Jones, Perry T; Onar, Omer C; Starke, Michael R

    2014-01-01

    A traffic-assignment-based framework is proposed to model the coupling of transportation network and power grid for analyzing impacts of energy demand from electric vehicles on the operation of power distribution. Although the reverse can be investigated with the proposed framework as well, electricity flowing from a power grid to electric vehicles is the focus of this paper. Major variables in transportation network (including link flows) and power grid (including electricity transmitted) are introduced for the coupling. Roles of charging-in-motion technology and connected vehicle technology have been identified in the framework of supernetwork. A linkage (i.e. individual energy demand) between the two networks is defined to construct the supernetwork. To determine equilibrium of the supernetwork can also answer how many drivers are going to use the charging-in-motion services, in which locations, and at what time frame. An optimal operation plan of power distribution will be decided along the determination simultaneously by which we have a picture about what level of power demand from the grid is expected in locations during an analyzed period. Caveat of the framework and possible applications have also been discussed.

  3. Modeling Electric Vehicle Benefits Connected to Smart Grids

    SciTech Connect

    Stadler, Michael; Marnay, Chris; Mendes, Goncalo; Kloess, Maximillian; Cardoso, Goncalo; Mégel, Olivier; Siddiqui, Afzal

    2011-07-01

    Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

  4. Reducing the Vulnerability of Electric Power Grids to Terrorist Attacks

    SciTech Connect

    Ross Baldick; Thekla Boutsika; Jin Hur; Manho Joung; Yin Wu; Minqi Zhong

    2009-01-31

    This report describes the development of a cascading outage analyzer that, given an initial disturbance on an electric power system, checks for thermal overloads, under-frequency and over-frequency conditions, and under-voltage conditions that would result in removal of elements from the system. The analyzer simulates the successive tripping of elements due to protective actions until a post-event steady state or a system blackout is reached.

  5. Renewable Electricity-to-Grid Integration | Energy Systems Integration |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption &

  6. Municipal Electric Authority of Georgia Smart Grid Project |...

    OpenEI (Open Energy Information) [EERE & EIA]

    This project aims to reduce operating and maintenance costs, while improving the reliability of the transmission and distribution assets owned and operated by MEAG. The...

  7. Potomac Electric Power Company (PEPCO) Smart Grid Project | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    automated distribution circuit switches and transformer monitors that improve the reliability of the distribution system while decreasing operations and maintenance costs.3...

  8. Potomac Electric Power Company (PEPCO) Smart Grid Project (Maryland...

    OpenEI (Open Energy Information) [EERE & EIA]

    distribution circuit switches and transformer monitors that can improve the reliability of the distribution system while decreasing the cost of operations and...

  9. Woodruff Electric Smart Grid Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    outage information, and distribution load data, which is used to improve system reliability. In addition to the meters, Woodruff provides remote disconnectreconnect switches...

  10. Atlantic City Electric Company Smart Grid Project | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    monitors, equipment condition monitors, and automated feeder switches improve the reliability and power quality of the distribution system. These systems also reduce operation...

  11. Northern Virginia Electric Cooperative Smart Grid Project | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    and enhance situational awareness of the system and critical components to improve reliability and lower operating costs.3 Equipment Distribution System AutomationUpgrade for...

  12. Tri State Electric Membership Corporation Smart Grid Project...

    OpenEI (Open Energy Information) [EERE & EIA]

    their energy consumption at their convenience through the customer Web portal, 2) provide time-based rate programs to customers, 3) provide information and tools to improve outage...

  13. Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    October 2014 Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs Page 1 U.S. Department of Energy |October 2014 Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs Page ii Table of Contents Executive Summary ...................................................................................................................................... iii 1. Introduction

  14. Advancing Visibility of Grid Operations to Improve Reliability...

    Energy Saver

    and tripped, causing many power plants to shut down as well. ... into conditions on the grid contributed to this outage. ... and current and other data on a transmission line and ...

  15. Strategies, Protections and Mitigations for Electric Grid Affets from Electro-Magnetic Pulse

    SciTech Connect

    Foster, Rita Ann; Frickey, Steven Jay

    2016-01-01

    The mission of DOE’s Office of Electricity Delivery and Energy Reliability (OE) is to lead national efforts to modernize the electricity delivery system, enhance the security and reliability of America’s energy infrastructure and facilitate recovery from disruptions to the energy supply. One of the threats OE is concerned about is a high-altitude electro-magnetic pulse (HEMP) from a nuclear explosion and eletro-magnetic pulse (EMP) or E1 pulse can be generated by EMP weapons. DOE-OE provides federal leadership and technical guidance in addressing electric grid issues. The Idaho National Laboratory (INL) was chosen to conduct the EMP study for DOE-OE due to its capabilities and experience in setting up EMP experiments on the electric grid and conducting vulnerability assessments and developing innovative technology to increase infrastructure resiliency. This report identifies known impacts to EMP threats, known mitigations and effectiveness of mitigations, potential cost of mitigation, areas for government and private partnerships in protecting the electric grid to EMP, and identifying gaps in our knowledge and protection strategies.

  16. Analysis Insights: Energy Storage - Possibilities for Expanding Electric Grid Flexibility (Brochure), NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    764 F E B R U A R Y 2 0 1 6 A N A LY S I S I N S I G H T S ENERGY STORAGE Possibilities for Expanding Electric Grid Flexibility POTENTIAL GRID APPLICATIONS STORAGE TECHNOLOGY CHARACTERISTICS 0.1 1 10 100 1000 Seconds Minutes Hours Days Generation Transmission & Distribution End Use E ciency 85-100% 70-85% 45-70% 30-45% Energy Management Operating & Ramping Reserves Frequency Response & Regulation Provide uninterruptable power supply-provide back-up power Optimize time of use retail

  17. Results from the Operational Testing of the General Electric Smart Grid Capable Electric Vehicle Supply Equipment (EVSE)

    SciTech Connect

    Richard Barney Carlson; Don Scoffield; Brion Bennett

    2013-12-01

    The Idaho National Laboratory conducted testing and analysis of the General Electric (GE) smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from GE for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the GE smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  18. Electricity storage for grid-connected household dwellings with PV panels

    SciTech Connect

    Mulder, Grietus; Six, Daan; Ridder, Fjo De

    2010-07-15

    Classically electricity storage for PV panels is mostly designed for stand-alone applications. In contrast, we focus in this article on houses connected to the grid with a small-scale storage to store a part of the solar power for postponed consumption within the day or the next days. In this way the house owner becomes less dependent on the grid and does only pay for the net shortage of his energy production. Local storage solutions pave the way for many new applications like omitting over-voltage of the line and bridging periods of power-line black-out. Since 2009 using self-consumption of PV energy is publicly encouraged in Germany, which can be realised by electric storage. This paper develops methods to determine the optimal storage size for grid-connected dwellings with PV panels. From measurements in houses we were able to establish calculation rules for sizing the storage. Two situations for electricity storage are covered: - the storage system is an optimum to cover most of the electricity needs; - it is an optimum for covering the peak power need of a dwelling. After these calculation rules a second step is needed to determine the size of the real battery. The article treats the aspects that should be taken into consideration before buying a specific battery like lead-acid and lithium-ion batteries. (author)

  19. Unique Carbon-Coated Cathodes Improve Electrical Conductivity...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Unique Carbon-Coated Cathodes Improve Electrical Conductivity (ANL-IN-09-043) Procedure ... have developed a coating process for cathodes that improves their electrical conductivity. ...

  20. A Method to Improve Voltage Holding Across Vacuum Electrical...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A Method to Improve Voltage Holding Across Vacuum Electrical Gaps to Improve the ... accelerators, X-ray machines, vacuum tubes, and vacuum electrical breakers. No.: M-845

  1. National Critical Infrastructure Security and Resilience Month: Improving the Security and Resilience of the Nation’s Grid

    Energy.gov [DOE]

    November is National Critical Infrastructure Security and Resilience Month, and our Office of Electricity (OE) is hard at work safeguarding the power grid.

  2. Magnitude and Variability of Controllable Charge Capacity Provided by Grid Connected Plug-in Electric Vehicles

    SciTech Connect

    Scoffield, Don R; Smart, John; Salisbury, Shawn

    2015-03-01

    As market penetration of plug-in electric vehicles (PEV) increases over time, the number of PEVs charging on the electric grid will also increase. As the number of PEVs increases, their ability to collectively impact the grid increases. The idea of a large body of PEVs connected to the grid presents an intriguing possibility. If utilities can control PEV charging, it is possible that PEVs could act as a distributed resource to provide grid services. The technology required to control charging is available for modern PEVs. However, a system for wide-spread implementation of controllable charging, including robust communication between vehicles and utilities, is not currently present. Therefore, the value of controllable charging must be assessed and weighed against the cost of building and operating such as system. In order to grasp the value of PEV charge control to the utility, the following must be understood: 1. The amount of controllable energy and power capacity available to the utility 2. The variability of the controllable capacity from day to day and as the number of PEVs in the market increases.

  3. A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in the EV Project

    SciTech Connect

    Stephen L. Schey; John G. Smart; Don R. Scoffield

    2012-05-01

    ECOtality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle charging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North America, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over 5,000 Nissan LEAFsTM and Chevrolet Volts and over 10,000 charging systems in 18 regions across the United States. This paper summarizes usage of residential charging units in The EV Project, based on data collected through the end of 2011. This information is provided to help analysts assess the impact on the electric grid of early adopter charging of grid-connected electric drive vehicles. A method of data aggregation was developed to summarize charging unit usage by the means of two metrics: charging availability and charging demand. Charging availability is plotted to show the percentage of charging units connected to a vehicle over time. Charging demand is plotted to show charging demand on the electric gird over time. Charging availability for residential charging units is similar in each EV Project region. It is low during the day, steadily increases in evening, and remains high at night. Charging demand, however, varies by region. Two EV Project regions were examined to identify regional differences. In Nashville, where EV Project participants do not have time-of-use electricity rates, demand increases each evening as charging availability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In San Francisco, where the majority of EV Project participants have the option of choosing a time-of-use rate plan from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak electricity rate period. Demand peaks at 01:00.

  4. "Artificial" brains, electrical grids, and disease modeling: Los Alamos

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    science discoveries unveiled September 15 Science discoveries unveiled "Artificial" brains, electrical grids, and disease modeling: Los Alamos science discoveries unveiled September 15 The event is an opportunity for business leaders and community members to learn about where science is heading, as well as for students to discover potential new career directions. September 8, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez

  5. Quantifying the value of hydropower in the electric grid : role of hydropower in existing markets.

    SciTech Connect

    Loose, Verne W.

    2011-01-01

    The electrical power industry is facing the prospect of integrating a significant addition of variable generation technologies in the next several decades, primarily from wind and solar facilities. Overall, transmission and generation reserve levels are decreasing and power system infrastructure in general is aging. To maintain grid reliability modernization and expansion of the power system as well as more optimized use of existing resources will be required. Conventional and pumped storage hydroelectric facilities can provide an increasingly significant contribution to power system reliability by providing energy, capacity and other ancillary services. However, the potential role of hydroelectric power will be affected by another transition that the industry currently experiences - the evolution and expansion of electricity markets. This evolution to market-based acquisition of generation resources and grid management is taking place in a heterogeneous manner. Some North American regions are moving toward full-featured markets while other regions operate without formal markets. Yet other U.S. regions are partially evolved. This report examines the current structure of electric industry acquisition of energy and ancillary services in different regions organized along different structures, reports on the current role of hydroelectric facilities in various regions, and attempts to identify features of market and scheduling areas that either promote or thwart the increased role that hydroelectric power can play in the future. This report is part of a larger effort led by the Electric Power Research Institute with purpose of examining the potential for hydroelectric facilities to play a greater role in balancing the grid in an era of greater penetration of variable renewable energy technologies. Other topics that will be addressed in this larger effort include industry case studies of specific conventional and hydro-electric facilities, systemic operating constraints

  6. Probability-Based Software for Grid Optimization: Improved Power System Operations Using Advanced Stochastic Optimization

    SciTech Connect

    2012-02-24

    GENI Project: Sandia National Laboratories is working with several commercial and university partners to develop software for market management systems (MMSs) that enable greater use of renewable energy sources throughout the grid. MMSs are used to securely and optimally determine which energy resources should be used to service energy demand across the country. Contributions of electricity to the grid from renewable energy sources such as wind and solar are intermittent, introducing complications for MMSs, which have trouble accommodating the multiple sources of price and supply uncertainties associated with bringing these new types of energy into the grid. Sandia’s software will bring a new, probability-based formulation to account for these uncertainties. By factoring in various probability scenarios for electricity production from renewable energy sources in real time, Sandia’s formula can reduce the risk of inefficient electricity transmission, save ratepayers money, conserve power, and support the future use of renewable energy.

  7. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid

    SciTech Connect

    Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

    2013-02-15

    Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

  8. Electrical Power Grid Delivery Dynamic Analysis: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect

    Diana K. Grauer; Michael E. Reed

    2011-11-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  9. Alternative Fuels Data Center: Innovations Improve Electric Vehicle

    Alternative Fuels and Advanced Vehicles Data Center

    Charging Infrastructure Innovations Improve Electric Vehicle Charging Infrastructure to someone by E-mail Share Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Facebook Tweet about Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Twitter Bookmark Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Google Bookmark Alternative Fuels Data Center: Innovations

  10. Final Report and Other Materials from 2014 Resilient Electric Distribution Grid R&D Workshop Now Available

    Energy.gov [DOE]

    On June 11, 2014, the Department of Energy held a half-day workshop to identify key R&D activities for enhancing the resilience of electric distribution grids to natural disasters.

  11. White House Council of Economic Advisers and Energy Department Release New Report on Resiliency of Electric Grid During Natural Disasters

    Energy.gov [DOE]

    The White House Council of Economic Advisers and the U.S. Department of Energy today released a new report that assesses how to best protect the nation’s electric grid from power outages that occur during natural disasters.

  12. Pilot evaluation of electricity-reliability and power-quality monitoring in California's Silicon Valley with the I-Grid(R) system

    SciTech Connect

    Eto, Joseph; Divan, Deepak; Brumsickle, William

    2004-02-01

    Power-quality events are of increasing concern for the economy because today's equipment, particularly computers and automated manufacturing devices, is susceptible to these imperceptible voltage changes. A small variation in voltage can cause this equipment to shut down for long periods, resulting in significant business losses. Tiny variations in power quality are difficult to detect except with expensive monitoring equipment used by trained technicians, so many electricity customers are unaware of the role of power-quality events in equipment malfunctioning. This report describes the findings from a pilot study coordinated through the Silicon Valley Manufacturers Group in California to explore the capabilities of I-Grid(R), a new power-quality monitoring system. This system is designed to improve the accessibility of power-quality in formation and to increase understanding of the growing importance of electricity reliability and power quality to the economy. The study used data collected by I-Grid sensors at seven Silicon Valley firms to investigate the impacts of power quality on individual study participants as well as to explore the capabilities of the I-Grid system to detect events on the larger electricity grid by means of correlation of data from the sensors at the different sites. In addition, study participants were interviewed about the value they place on power quality, and their efforts to address electricity-reliability and power-quality problems. Issues were identified that should be taken into consideration in developing a larger, potentially nationwide, network of power-quality sensors.

  13. Energy Department Offers Funding to Improve the Electric Grid...

    Energy Saver

    million in funding to advance the design of technologies that will help communities become more adaptive and prepared for power outages caused by severe weather and other events. ...

  14. IEEE 1547 and 2030 Standards for Distributed Energy Resources Interconnection and Interoperability with the Electricity Grid

    SciTech Connect

    Basso, T.

    2014-12-01

    Public-private partnerships have been a mainstay of the U.S. Department of Energy and the National Renewable Energy Laboratory (DOE/NREL) approach to research and development. These partnerships also include technology development that enables grid modernization and distributed energy resources (DER) advancement, especially renewable energy systems integration with the grid. Through DOE/NREL and industry support of Institute of Electrical and Electronics Engineers (IEEE) standards development, the IEEE 1547 series of standards has helped shape the way utilities and other businesses have worked together to realize increasing amounts of DER interconnected with the distribution grid. And more recently, the IEEE 2030 series of standards is helping to further realize greater implementation of communications and information technologies that provide interoperability solutions for enhanced integration of DER and loads with the grid. For these standards development partnerships, for approximately $1 of federal funding, industry partnering has contributed $5. In this report, the status update is presented for the American National Standards IEEE 1547 and IEEE 2030 series of standards. A short synopsis of the history of the 1547 standards is first presented, then the current status and future direction of the ongoing standards development activities are discussed.

  15. Optimization Strategies for the Vulnerability Analysis of the Electric Power Grid

    SciTech Connect

    Pinar, A.; Meza, J.; Donde, V.; Lesieutre, B.

    2007-11-13

    Identifying small groups of lines, whose removal would cause a severe blackout, is critical for the secure operation of the electric power grid. We show how power grid vulnerability analysis can be studied as a mixed integer nonlinear programming (MINLP) problem. Our analysis reveals a special structure in the formulation that can be exploited to avoid nonlinearity and approximate the original problem as a pure combinatorial problem. The key new observation behind our analysis is the correspondence between the Jacobian matrix (a representation of the feasibility boundary of the equations that describe the flow of power in the network) and the Laplacian matrix in spectral graph theory (a representation of the graph of the power grid). The reduced combinatorial problem is known as the network inhibition problem, for which we present a mixed integer linear programming formulation. Our experiments on benchmark power grids show that the reduced combinatorial model provides an accurate approximation, to enable vulnerability analyses of real-sized problems with more than 10,000 power lines.

  16. Optimization strategies for the vulnerability analysis of the electric power grid.

    SciTech Connect

    Meza, Juan C.; Pinar, Ali; Lesieutre, Bernard; Donde, Vaibhav

    2009-03-01

    Identifying small groups of lines, whose removal would cause a severe blackout, is critical for the secure operation of the electric power grid. We show how power grid vulnerability analysis can be studied as a mixed integer nonlinear programming (minlp) problem. Our analysis reveals a special structure in the formulation that can be exploited to avoid nonlinearity and approximate the original problem as a pure combinatorial problem. The key new observation behind our analysis is the correspondence between the Jacobian matrix (a representation of the feasibility boundary of the equations that describe the flow of power in the network) and the Laplacian matrix in spectral graph theory (a representation of the graph of the power grid). The reduced combinatorial problem is known as the network inhibition problem, for which we present a mixed integer linear programming formulation. Our experiments on benchmark power grids show that the reduced combinatorial model provides an accurate approximation, to enable vulnerability analyses of real-sized problems with more than 10,000 power lines.

  17. Using System Dynamics to Define, Study, and Implement Smart Control Strategies on the Electric Power Grid

    SciTech Connect

    Lyle G. Roybal; Robert F Jeffers

    2013-07-01

    The United States electric power grid is the most complex and expansive control system in the world. Local generation control occurs at individual units based on response time and unit economics, larger regional control coordinates unit response to error conditions, and high level large-area regional control is ultimately administered by a network of humans guided by economic and resiliency related factors. Under normal operating conditions, the grid is a relatively slow moving entity that exhibits high inertia to outside stimuli, and behaves along repeatable diurnal and seasonal patterns. However, that paradigm is quickly changing because of the increasing implementation of renewable generation sources. Renewable generators by nature cannot be tightly controlled or scheduled. They appear like a negative load to the system with all of the variability associated with load on a larger scale. Also, grid-reactive loads (i.e. smart devices) can alter their consumption based on price or demand rules adding more variability to system behavior. This paper demonstrates how a systems dynamic modeling approach capable of operating over multiple time scales, can provide valuable insight into developing new “smart-grid” control strategies and devices needed to accommodate renewable generation and regulate the frequency of the grid.

  18. Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality

    Alternative Fuels and Advanced Vehicles Data Center

    in Minnesota Electric Ice Resurfacers Improve Air Quality in Minnesota to someone by E-mail Share Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Facebook Tweet about Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Twitter Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Google Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air

  19. Energy Department Announces Funding to Improve Grid Resiliency and Climate Preparedness

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department’s Office of Electricity Delivery and Energy Reliability announced that it is making up to $3.5 million in funding available for communities to deploy smart grid tools and technologies to advance climate preparedness and resiliency of the electricity delivery infrastructure. This Funding Opportunity supports the goals of other initiatives by the Administration to prepare the Nation for the impacts of climate change by providing funding to local and tribal governments.

  20. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electricity Delivery and Energy Reliability Joe Miller, Modern Grid Strategy Team Lead Grid Econ - The Economics of a Smarter Electric Grid March 16, 2009 Office of Electricity ...

  1. Results from Operational Testing of the Siemens Smart Grid-Capable Electric Vehicle Supply Equipment

    SciTech Connect

    Bennett, Brion

    2015-05-01

    The Idaho National Laboratory conducted testing and analysis of the Siemens smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Siemens for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Siemens smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  2. Results from the Operational Testing of the Eaton Smart Grid Capable Electric Vehicle Supply Equipment

    SciTech Connect

    Bennett, Brion

    2014-10-01

    The Idaho National Laboratory conducted testing and analysis of the Eaton smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Eaton for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Eaton smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  3. Smart Grid

    Energy.gov [DOE]

    The Energy Department is investing in strategic partnerships to accelerate the Smart Grid -- a two-way, intuitive system that will result in more efficient and reliable electricity for all grid users.

  4. Impact of Plug-in Hybrid Vehicles on the Electric Grid

    SciTech Connect

    Hadley, Stanton W

    2006-11-01

    Plug-in hybrid vehicles (PHEVs) are being developed around the world; much work is going on to optimize engine and battery operations for efficient operation, both during discharge and when grid electricity is available for recharging. However, there has generally been the expectation that the grid will not be greatly affected by the use of the vehicles, because the recharging would only occur during offpeak hours, or the number of vehicles will grow slowly enough that capacity planning will respond adequately. But this expectation does not incorporate that endusers will have control of the time of recharging and the inclination for people will be to plug in when convenient for them, rather than when utilities would prefer. It is important to understand the ramifications of introducing a number of plug-in hybrid vehicles onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require both the addition of new electric capacity along with an increase in the utilization of existing capacity. Local distribution grids will see a change in their utilization pattern, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to recharge the vehicles will be different depending on the region of the country and timing when the PHEVs recharge. We conducted an analysis of what the grid impact may be in 2018 with one million PHEVs added to the VACAR sub-region of the Southeast Electric Reliability Council, a region that includes South Carolina, North Carolina, and much of Virginia. To do this, we used the Oak Ridge Competitive Electricity Dispatch model, which simulates the hourly dispatch of power generators to meet demand for a region over a given year. Depending on the vehicle, its battery, the charger voltage level, amperage, and duration, the impact on regional electricity demand varied from 1,400 to 6,000 MW. If recharging

  5. VOLTTRON™: An Agent Platform for Integrating Electric Vehicles and Smart Grid

    SciTech Connect

    Haack, Jereme N.; Akyol, Bora A.; Tenney, Nathan D.; Carpenter, Brandon J.; Pratt, Richard M.; Carroll, Thomas E.

    2013-12-06

    The VOLTTRON™ platform provides a secure environment for the deployment of intelligent applications in the smart grid. VOLTTRON design is based on the needs of control applications running on small form factor devices, namely security and resource guarantees. Services such as resource discovery, secure agent mobility, and interacting with smart and legacy devices are provided by the platform to ease the development of control applications and accelerate their deployment. VOLTTRON platform has been demonstrated in several different domains that influenced and enhanced its capabilities. This paper will discuss the features of VOLTTRON and highlight its usage to coordinate electric vehicle charging with home energy usage

  6. EAC Recommendations on Smart Grid Research and Development Needs |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy on Smart Grid Research and Development Needs EAC Recommendations on Smart Grid Research and Development Needs The Smart Grid is envisioned to provide the enhancements needed to improve the security, reliability, and availability of electricity, improve economic productivity and quality of life, reduce environmental impacts, improve system efficiency and asset utilization, and facilitate the integration of renewable resources onto the electric grid. The attached

  7. EA-1750: Smart Grid, Center for Commercialization of Electric Technology, Technology Solutions for Wind Integration in ERCOT, Houston, Texas

    Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 to the Center for Commercialization of Electric Technology to facilitate the development and demonstration of a multi-faceted, synergistic approach to managing fluctuations in wind power within the Electric Reliability Council of Texas transmission grid.

  8. DOE Selects Projects for up to $50 Million of Federal Funding to Modernize the Nation's Electricity Grid

    Energy.gov [DOE]

    Department of Energy (DOE) Assistant Secretary for Electricity Delivery and Energy Reliability Kevin Kolevar today announced the Department's plans to invest up to $50 million over five years (Fiscal Years 2008 - 2012), subject to appropriations from Congress, in nine demonstration projects competitively selected to increase efficiency in the nation's electricity grid.

  9. Novel 3-D Printed Inverters for Electric Vehicles Can Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency April...

  10. Electric Vehicle Grid Interaction Exploration: Cooperative Research and Development Final Report, CRADA Number CRD-11-431

    SciTech Connect

    Simpson, Mike

    2013-09-01

    Under this agreement NREL plans to collect, analyze, and share with Xcel Energy data regarding the driving and charging performance of plug-in electric vehicles. NREL will research activities critical to energy storage, electric propulsion, and the emerging issues surrounding the integration of vehicles into the current and future grid. It will provide NREL with access to one of the firstall-electric vehicles available in the market as part of NREL's Advanced Technology Vehicle Fleet (ATVF).

  11. VersiCharge-SG - Smart Grid Capable Electric Vehicle Supply Equipment (EVSE) for Residential Applications

    SciTech Connect

    Wei, Dong; Haas, Harry; Terricciano, Paul

    2015-09-30

    In his 2011 State of the Union address, President Obama called for one million electric vehicles on the road by 2015 [1]. With large-scale Electric Vehicle (EV) or Plug-in Electric Vehicle (PEV or EV for short) or Plug-in Hybrid Electric Vehicle (PHEV) penetration into the US market, there will be drastic reduction in fossil fuel consumption, thus significantly reducing our dependency on foreign oil [2-6]. There will also be significant reduction on Green House Gas (GHG) emissions and smog in the major US cities [3, 7, 8]. Similar studies have also been done other industrial counties [9]. For the fuel cost, with the home electricity rate around $0.13 per kWh, it would cost about $0.05 per mile for DC operation and $0.03 cents per mile for AC operation. But, assuming 25 miles per gallon for a typical vehicle and $4 per gallon, fossil fuel will cost $0.16 per mile [10]. The overall lifecycle cost of PEVs will be several folds lower than the existing fossil fueled vehicles. Despite the above advantages of the EVs, the current cost of EVSE is not affordable for the average consumer. Presently, the cost of installing state-of-the-art residential EVSE ranges from $1500 to $2500 [11]. Low priced EVSE technology, which is easy to install, and affordable to operate and maintain by an average consumer, is essential for the large-scale market penetration of EVs. In addition, the long-term success of this technology is contingent on the PEVs having minimal excessive load and shift impact on the grid, especially at peak times. In a report [2] published by the Pacific Northwest National Laboratory (PNNL), the exiting electric power generation infrastructure, if used at its full capacity 24 hours a day, would support up to 84% of the nation’s cars, pickup trucks and SUVs for an average daily drive of 33 miles. This mileage estimate is certainly much below what an average driver would drive his/her vehicle per day. Another report [3] by the National Renewable Energy Laboratory

  12. Energy Department Invests Over $2 Million to Improve Grid Resiliency and Climate Preparedness

    Office of Energy Efficiency and Renewable Energy (EERE)

    On August 10, 2015, OE announced up to $2.5 million in funding to help four communities that have suffered a Presidentially Declared Major Disaster over the past 30 years better prepare for the future effects of a changing climate. This investment, funded through the Resilient Electricity Delivery Infrastructure Funding Opportunity Announcement, will allow communities in California, Colorado, Florida, and New York to deploy smart grid tools and technologies that can help prevent power outages, reduce storm impacts, and restore service faster.

  13. Powder River Energy Corporation Smart Grid Project | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    monitor and respond to grid disturbances, PRECorp expects improvements in electric reliability and reductions in operating costs and emissions from truck rolls for site...

  14. OpenEI Community - Smart Grid

    OpenEI (Open Energy Information) [EERE & EIA]

    p> http:en.openei.orgcommunityblogwhat-do-you-know-about-gridcomments black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  15. Improved Electrical Contact For Dowhhole Drilling Networks

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron

    2005-08-16

    An electrical contact system for transmitting information across tool joints while minimizing signal reflections that occur at the tool joints includes a first electrical contact comprising an annular resilient material. An annular conductor is embedded within the annular resilient material and has a surface exposed from the annular resilient material. A second electrical contact is provided that is substantially equal to the first electrical contact. Likewise, the second electrical contact has an annular resilient material and an annular conductor. The two electrical contacts configured to contact one another such that the annular conductors of each come into physical contact. The annular resilient materials of each electrical contact each have dielectric characteristics and dimensions that are adjusted to provide desired impedance to the electrical contacts.

  16. SunShot-funded Advanced Inverter Testing Enables 2,500 Solar Energy Systems to Connect to Hawaiis Electric Grid

    Energy.gov [DOE]

    Thanks to a SunShot collaboration at the Energy Departments National Renewable Energy Laboratory (NREL) more than 2,500 Hawaiian Electric customers will connect solar power to the electrical grid...

  17. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    SciTech Connect

    Kevin Morrow; Dimitri Hochard; Jeff Wishart

    2011-09-01

    Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

  18. Results from an investigation of the integration of wind energy into the El Paso Electric grid system

    SciTech Connect

    Moroz, E.M.; Parks, N.J.; Swift, A.H.; Traichal, P.A.

    1997-12-31

    This paper documents some preliminary results from an evaluation of the costs and benefits to be gained from the integration of wind generated electricity into the El Paso Electric grid system. The study focused on the utilization of the considerable known wind potential of the Guadalupe/Delaware Mountains region, but also looked at other energetic wind resources within 15 miles of El Paso Electric`s Grid. The original project`s goal was to identify the added value of wind in terms of jobs, line support, risk reduction etc., that wind energy could bring to El Paso Electric. Although these goals have not yet been achieved the potential for water savings and reductions in gaseous emissions have been documented. Thus this paper focuses mainly on the water consumption and criteria pollutant emissions that could be avoided by adding wind energy to El Paso Electric`s generation mix. Preliminary data from a renewables attitude survey indicates that, from the 338 respondents, there is overwhelming public support for utilizing such renewable sources of electricity. This case study, which should be of direct relevance to the arid southwestern states and beyond, was sponsored by the Environmental Protection Agency (EPA) and conducted in cooperation with El Paso Electric.

  19. Energy Department Co-Hosts Workshops to Develop an Industry-Driven Vision of the Nation’s Future Electric Grid

    Energy.gov [DOE]

    The U.S. electric grid provides the foundation for America’s economic success. Our digital economy, our national security, and our day-to-day lives are highly dependent on reliable, safe, and affordable electricity. To take advantage of technological advances and to meet society’s changing expectations and preferences, our nation’s grid must evolve, as well.

  20. Grid Modernization Research | Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Modernization Research NREL addresses the challenges of modernizing the electric grid through high-impact research and development in power systems engineering and resource assessment. The future electric grid must deliver reliable, affordable, and clean electricity to consumers where they want it, when they want it, and how they want it. As part of NREL's energy systems integration activities, grid modernization researchers work with the electricity industry, academia, and other research

  1. Autonomous, Decentralized Grid Architecture: Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Networks

    SciTech Connect

    2012-01-11

    GENI Project: Georgia Tech is developing a decentralized, autonomous, internet-like control architecture and control software system for the electric power grid. Georgia Tech’s new architecture is based on the emerging concept of electricity prosumers—economically motivated actors that can produce, consume, or store electricity. Under Georgia Tech’s architecture, all of the actors in an energy system are empowered to offer associated energy services based on their capabilities. The actors achieve their sustainability, efficiency, reliability, and economic objectives, while contributing to system-wide reliability and efficiency goals. This is in marked contrast to the current one-way, centralized control paradigm.

  2. GENI: Grid Hardware and Software

    SciTech Connect

    2012-01-09

    GENI Project: The 15 projects in ARPA-E’s GENI program, short for “Green Electricity Network Integration,” aim to modernize the way electricity is transmitted in the U.S. through advances in hardware and software for the electric grid. These advances will improve the efficiency and reliability of electricity transmission, increase the amount of renewable energy the grid can utilize, and provide energy suppliers and consumers with greater control over their power flows in order to better manage peak power demand and cost.

  3. Minimization of Impact from Electric Vehicle Supply Equipment to the Electric Grid Using a Dynamically Controlled Battery Bank for Peak Load Shaving

    SciTech Connect

    Castello, Charles C

    2013-01-01

    This research presents a comparison of two control systems for peak load shaving using local solar power generation (i.e., photovoltaic array) and local energy storage (i.e., battery bank). The purpose is to minimize load demand of electric vehicle supply equipment (EVSE) on the electric grid. A static and dynamic control system is compared to decrease demand from EVSE. Static control of the battery bank is based on charging and discharging to the electric grid at fixed times. Dynamic control, with 15-minute resolution, forecasts EVSE load based on data analysis of collected data. In the proposed dynamic control system, the sigmoid function is used to shave peak loads while limiting scenarios that can quickly drain the battery bank. These control systems are applied to Oak Ridge National Laboratory s (ORNL) solar-assisted electric vehicle (EV) charging stations. This installation is composed of three independently grid-tied sub-systems: (1) 25 EVSE; (2) 47 kW photovoltaic (PV) array; and (3) 60 kWh battery bank. The dynamic control system achieved the greatest peak load shaving, up to 34% on a cloudy day and 38% on a sunny day. The static control system was not ideal; peak load shaving was 14.6% on a cloudy day and 12.7% on a sunny day. Simulations based on ORNL data shows solar-assisted EV charging stations combined with the proposed dynamic battery control system can negate up to 89% of EVSE load demand on sunny days.

  4. National Electrical Manufacturers Association (NEMA) Vids for Grids. New Media for the New Energy Workforce

    SciTech Connect

    Eckhart, Gene

    2012-02-29

    The objective of this program was to use a new media videos posted on YouTube to augment education about the emerging Smart Grid. All of the specific tasks have been completed per plan, with twelve videos and three podcasts posted on YouTube on the NEMA Vids4Grids channel.

  5. Grid Cyber Vulnerability & Assessments

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... to increase power grid reliability and resilience, but also provides adversaries with the ... in industrial control systems for electricity generationtransmissiondistribution ...

  6. Dynamic Analysis of Electrical Power Grid Delivery: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect

    Diana K. Grauer

    2011-10-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  7. An Advanced Framework for Improving Situational Awareness in...

    Office of Scientific and Technical Information (OSTI)

    Situational Awareness in Electric Power Grid Operation Citation Details In-Document Search Title: An Advanced Framework for Improving Situational Awareness in Electric Power ...

  8. Smart Grid | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    all rely on it but what do you really know about our electricity grid? Tags: black out, brown out, bulk power system, electricity grid, future grid, grid history, security, Smart...

  9. SMART GRID:

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the SMART GRID: an introduction. Exploring the imperative of revitalizing America's electric infrastructure. How a smarter grid works as an enabling engine for our economy, our environment and our future. prepared for the U.S. Department of Energy by Litos Strategic Communication under contract No. DE-AC26-04NT41817, Subtask 560.01.04 the SMART GRID: an introduction. the SMART GRID: an introduction. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United

  10. grid history | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  11. future grid | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  12. Smart Grid | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  13. NREL Innovation Improves Safety of Electric Vehicle Batteries...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Innovation Improves Safety of Electric Vehicle Batteries October 30, 2015 A man holds a sheet of copper discs. NREL Senior Engineer Mathew Keyser holds a sheet of copper discs, one ...

  14. Power Marketing Administrations Leading the Nation’s Transition to a 21st Century Electric Grid

    Energy.gov [DOE]

    A team of experts from DOE and Western Area Power Administration is working to identify opportunities and develop strategies that will ensure the viability, sustainability and resiliency of our nation's power grid.

  15. Agent Concept for Intelligent Distributed Coordination in the Electric Power Grid

    SciTech Connect

    SMATHERS, DOUGLAS C.; GOLDSMITH, STEVEN Y.

    2001-03-01

    Intelligent agents and multi-agent systems promise to take information management for real-time control of the power grid to a new level. This report presents our concept for intelligent agents to mediate and coordinate communications between Control Areas and Security Coordinators for real-time control of the power grid. An appendix describes the organizations and publications that deal with agent technologies.

  16. Opportunities for Efficiency Improvements in the U.S. Electricity Transmission and Distribution System

    SciTech Connect

    Jackson, Roderick K.; Onar, Omer C.; Kirkham, Harold; Fisher, Emily; Burkes, Klaehn; Starke, Michael R.; Mohammed, Olama; Weeks, George

    2015-04-01

    Since 2000, more than 172 quads of electricity have been transmitted on the US transmission and distribution (T&D) grid. Given this significant amount of energy flow, establishing and maintaining an efficient T&D grid is paramount. As shown in the figure below, the total percentage of overall losses in the US electric grid is approximately 6% (5.12% in 2012) (30% lower than the world average since 2000). While these efficiency losses appear to be relatively small from a percentage perspective, the total estimated electricity loss during this time is 10.8 quads.

  17. DOE National Power Grid recommendations: unreliable guides for the future organization of the bulk electric-power industry

    SciTech Connect

    Miller, J.T. Jr.

    1980-01-01

    The bulk electric power supply industry needs leadership to meet its problems effectively, economically, and with the least injury to the environment during the rest of the century. The industry's pluralistic character, which is one of its strengths, and the range of the federal antitrust laws have blunted industry response to the challenge of supplying adequate bulk power. DOE failed to recognize the leadership vacuum and to use the opportunity provided by its Final Report on the National Power Grid Study to adopt a more effective role. DOE can still recover and urge Congress to pass the necessary enabling legislation to establish a regional bulk power supply corporation that would generate and transmit electric power for sale to federally chartered, privately owned electric utilities having no corporate links to their wholesale customers. 87 references.

  18. National Transmission Grid Study

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grid Study U.S. Department of Energy The Honorable Spencer Abraham Secretary of Energy May 2002 ii National Transmission Grid Study National Transmission Grid Study i ii National Transmission Grid Study National Transmission Grid Study iii How This Study Was Conducted The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures

  19. OE Announces New Funding to Improve the Cybersecurity of the Nation's

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Grid | Department of Energy New Funding to Improve the Cybersecurity of the Nation's Electric Grid OE Announces New Funding to Improve the Cybersecurity of the Nation's Electric Grid March 9, 2015 - 5:06pm Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability As part of the Administration's commitment to a strong and secure power grid, the Office of Electricity Delivery and Energy Reliability today announced up

  20. An Explainer: How “Grid Modernization” Could Improve Your Life

    Energy.gov [DOE]

    This month the Department of Energy is making a series of announcements to support its Grid Modernization Initiative. But what does grid modernization mean for you? We've broken it down.

  1. Value of a Smart Grid System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Value of a Smart Grid System Value of a Smart Grid System Implementing a Smart Grid is the effort to move the electric grid from a "static" to a "dynamic" state. Doing so improves the efficiency, reliability and cost-effectiveness of the electrical system's operations, planning and maintenance and creates a system that is interactive with consumers and markets, allowing better energy and dollar savings. Below we summarize the value of the Smart Grid from six perspectives.

  2. Tool Improves Electricity Demand Predictions to Make More Room for Renewables

    Energy.gov [DOE]

    A new tool is available to help integrate wind and solar power into the electric grid by predicting the ranges in which power demand could increase or decrease in the immediate future.

  3. Grid Architecture

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report describes the discipline of grid architecture and shows how it has been adapted from the combination of system architecture, network theory, and control engineering to apply to the issues of grid modernization. It shows how grid architecture aids in managing complexity, supports stakeholder communication about the grid, supplies methods to identify gaps and constraints, and provides the ability to compare architectural choices analytically. This approach views the grid as a network of structures, including electrical structure, industry, regulatory, and market structure, information systems and communications, and control and coordination structures and provides the means to understand and plan their interactions. The report then provides architectural views of the existing US power grid structures, with regional and other specializations. It illustrates how organized central wholesale markets are integrated with bulk system control, how distribution level changes related to penetration of Distributed Energy Resources impact both distribution and bulk systems operations, and how certain existing grid structures limit the ability to implement forward-looking changes to the grid. Finally the report provides selected forward looking architectural views for advanced distribution, integrated storage, and wide scale coordination via layered decomposition. The report contains a number of explicitly labeled architectural insights to aid in managing the complexity of grid modernization.

  4. Electric power grid control using a market-based resource allocation system

    SciTech Connect

    Chassin, David P.

    2015-07-21

    Disclosed herein are representative embodiments of methods, apparatus, and systems for distributing a resource (such as electricity) using a resource allocation system. In one exemplary embodiment, a plurality of requests for electricity are received from a plurality of end-use consumers. The requests indicate a requested quantity of electricity and a consumer-requested index value indicative of a maximum price a respective end-use consumer will pay for the requested quantity of electricity. A plurality of offers for supplying electricity are received from a plurality of resource suppliers. The offers indicate an offered quantity of electricity and a supplier-requested index value indicative of a minimum price for which a respective supplier will produce the offered quantity of electricity. A dispatched index value is computed at which electricity is to be supplied based at least in part on the consumer-requested index values and the supplier-requested index values.

  5. Electric power grid control using a market-based resource allocation system

    SciTech Connect

    Chassin, David P

    2014-01-28

    Disclosed herein are representative embodiments of methods, apparatus, and systems for distributing a resource (such as electricity) using a resource allocation system. In one exemplary embodiment, a plurality of requests for electricity are received from a plurality of end-use consumers. The requests indicate a requested quantity of electricity and a consumer-requested index value indicative of a maximum price a respective end-use consumer will pay for the requested quantity of electricity. A plurality of offers for supplying electricity are received from a plurality of resource suppliers. The offers indicate an offered quantity of electricity and a supplier-requested index value indicative of a minimum price for which a respective supplier will produce the offered quantity of electricity. A dispatched index value is computed at which electricity is to be supplied based at least in part on the consumer-requested index values and the supplier-requested index values.

  6. Request for Information on the Electric Grid Resilience Self-Assessment Tool for Distribution Systems: Federal Register Notice, Volume 80, No. 126- Jul. 1, 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) is seeking comments and information from interested parties to inform the development of a pilot project concerning an interactive self-assessment tool to understand the relative resilience level of national electric grid distribution systems to extreme weather events.

  7. Energy Storage System Considerations for Grid-Charged Hybrid Electric Vehicles (Presentation)

    SciTech Connect

    Markel, T.; Simpson, A.

    2005-09-01

    Provides an overview of a study regarding energy storage system considerations for a plug-in hybrid electric vehicle.

  8. From Ions to Wires to the Grid: The Transformational Science of LANL Research in High-Tc Superconducting Tapes and Electric Power Applications

    ScienceCinema

    Marken, Ken [Superconductivity Technology Center, Los Alamos, New Mexico, United States

    2016-07-12

    The Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) has been tasked to lead national efforts to modernize the electric grid, enhance security and reliability of the energy infrastructure, and facilitate recovery from disruptions to energy supplies. LANL has pioneered the development of coated conductors – high-temperature superconducting (HTS) tapes – which permit dramatically greater current densities than conventional copper cable, and enable new technologies to secure the national electric grid. Sustained world-class research from concept, demonstration, transfer, and ongoing industrial support has moved this idea from the laboratory to the commercial marketplace.

  9. Opportunities for Energy Efficiency Improvements in the U.S. Electricity Transmission and Distribution System

    Office of Energy Efficiency and Renewable Energy (EERE)

    From 2000-2012, about 6% of U.S. electricity generation did not reach any customer, instead being lost in the transmission and distribution system. This report describes sources of energy loss in the transmission and distribution of electricity, and reviews research on both the magnitude and potential for reducing these losses. Strategies to improve energy efficiency on the grid include upgrades in physical infrastructure as well as information technologies and operational strategies that can help grid operators make the system run more efficiently. The report also describes engineering, economic, and policy barriers to implementing these loss reduction strategies. For transmission, emerging technologies such as superconductors and power flow control technologies can reduce transmission loss 50% or more, but these technologies may not be cost-effective in all areas. On the distribution system, theoretical studies of reducing overloading lines through reconfiguration have identified loss reductions of up to 40%; however, studies of real systems have observed loss reductions of only 5-20%.

  10. Using Smart Grid Technologies to Modernize Distribution Infrastructure in New York

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Under the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy and the electricity industry have jointly invested over $7.9 billion in 99 cost-shared Smart Grid Investment Grant projects to modernize the electric grid, strengthen cybersecurity, improve interoperability, and collect an unprecedented level of data on smart grid and customer operations. 1. Summary Consolidated Edison's (Con Edison) Smart Grid Investment Grant (SGIG) project focuses on the modernization of

  11. GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    reliability, flexibility, and efficiency of our electric grid. PDF icon GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical Challenges More Documents & ...

  12. Electric motor systems in developing countries: Opportunities for efficiency improvement

    SciTech Connect

    Meyers, S.; Monahan, P.; Lewis, P.; Greenberg, S.; Nadel, S.

    1993-08-01

    This report presents an overview of the current status and efficiency improvement potential of industrial motor systems in developing countries. Better management of electric motor systems is of particular relevance in developing countries, where improved efficiency can lead to increased productivity and slower growth in electricity demand. Motor systems currently consume some 65--80% of the industrial electricity in developing countries. Drawing on studies from Thailand, India, Brazil, China, Pakistan, and Costa Rica, we describe potential efficiency gains in various parts of the motor system, from the electricity delivery system through the motor to the point where useful work is performed. We report evidence of a significant electricity conservation potential. Most of the efficiency improvement methods we examine are very cost-effective from a societal viewpoint, but are generally not implemented due to various barriers that deter their adoption. Drawing on experiences in North America, we discuss a range of policies to overcome these barriers, including education, training, minimum efficiency standards, motor efficiency testing protocols, technical assistance programs, and financial incentives.

  13. Homeowners Guide to Financing a Grid-Connected Solar Electric System (Brochure)

    SciTech Connect

    Not Available

    2010-10-01

    This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

  14. Homeowners Guide to Financing a Grid-Connected Solar Electric System

    SciTech Connect

    Solar Energy Technologies Program

    2010-10-11

    This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

  15. Large Power Transformers and the U.S. Electric Grid Report Update...

    Office of Environmental Management (EM)

    The new report includes updated information about global electrical steel supply conditions and discusses the increased domestic production of large power transformers resulting ...

  16. Why Do Electricity Policy and Competitive Markets Fail to Use Advanced PV Systems to Improve Distribution Power Quality?

    DOE PAGES [OSTI]

    McHenry, Mark P.; Johnson, Jay; Hightower, Mike

    2016-01-01

    The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the networkmore » characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. We discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.« less

  17. Joint transmission system projects to improve system reliability

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    County PUD, 425-783-8444 Joint transmission system projects to improve system reliability First major regional electric grid improvements in decades prepare the area for the...

  18. Grid Modeling | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Modeling Grid Modeling The smart grid - an updated, futuristic electric power grid - will employ real-time, two-way communication technologies that allow consumers to connect directly with power suppliers. Customers will be able to choose where their electricity comes from and when they want it delivered. The smart grid is a key element in the national plan to lower energy costs for consumers, achieve energy independence and reduce greenhouse gases. Argonne's Advanced Power Grid Modeling

  19. First-Ever Demonstration of Quantum Cryptography to Improve Security of the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Grid | Department of Energy First-Ever Demonstration of Quantum Cryptography to Improve Security of the Electric Grid First-Ever Demonstration of Quantum Cryptography to Improve Security of the Electric Grid March 19, 2013 - 4:21pm Addthis A Los Alamos National Laboratory (LANL) team has successfully completed the first-ever demonstration of securing control data for electric grids using quantum cryptography. The demonstration was conducted in the test bed that is part of the

  20. Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs (October 2014)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Three municipal utilities that received funding through the Recovery Act Smart Grid Investment Grant program are featured in this report. Burbank, California; Glendale, California; and Danvers, Massachusetts are mid-sized cities that implemented grid modernization activities in multiple areas including advanced metering infrastructure, distribution automation, and customer systems.

  1. Grid-Integrated Fleet & Workplace Charging for Plug-in Electric...

    Energy.gov [DOE] (indexed site)

    Education * 2 San Diego Regional EV Growth * 11,278 EVs (56% BEV) * 677 public charging stations (199 locations) * 28 DC fast-chargers (10 in progress) * 380 All-electric Car2Go ...

  2. NREL: Distributed Grid Integration - Vehicle-to-Grid Project

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL engineers test and analyze electrical vehicle charging and discharging to the electric grid, known as Vehicle-to-Grid (V2G). Testing is conducted at NREL's Distributed Energy ...

  3. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid

    SciTech Connect

    Stankovic, Uros; Herk, Marcel van; Ploeger, Lennert S.; Sonke, Jan-Jakob

    2014-06-15

    acquisition scenarios. Parameters used in the phantom study weret{sub cup} for nonuniformity and contrast-to-noise ratio (CNR) for soft tissue visibility. Clinical scans were evaluated in an observer study in which four experienced radiotherapy technologists rated soft tissue visibility and uniformity of scans with and without the grid. Results: The proposed angle dependent gain correction algorithm suppressed the visible ring artifacts. Grid had a beneficial impact on nonuniformity, contrast to noise ratio, and Hounsfield unit accuracy for both scanning geometries. The nonuniformity reduced by 90% for head sized object and 91% for pelvic-sized object. CNR improved compared to no corrections on average by a factor 2.8 for the head sized object, and 2.2 for the pelvic sized phantom. Grid outperformed software correction alone, but adding additional software correction to the grid was overall the best strategy. In the observer study, a significant improvement was found in both soft tissue visibility and nonuniformity of scans when grid is used. Conclusions: The evaluated fiber-interspaced grid improved the image quality of the CBCT system for broad range of imaging conditions. Clinical scans show significant improvement in soft tissue visibility and uniformity without the need to increase the imaging dose.

  4. Method for improving performance of highly stressed electrical insulating structures

    DOEpatents

    Wilson, Michael J.; Goerz, David A.

    2002-01-01

    Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.

  5. Apparatus for improving performance of electrical insulating structures

    DOEpatents

    Wilson, Michael J.; Goerz, David A.

    2002-01-01

    Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.

  6. Apparatus for improving performance of electrical insulating structures

    DOEpatents

    Wilson, Michael J.; Goerz, David A.

    2004-08-31

    Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.

  7. Cyber Security Summer School: Lessons for the Modern Grid

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department has partnered with a university-based project performing cutting-edge research to improve the way electric infrastructure is built, increasing the security and reliability of the grid.

  8. What the Smart Grid Means to America's Future

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) is charged under the Energy Independence and Security Act of 2007 (EISA 2007) with modernizing the nation’s electricity grid to improve its reliability and...

  9. Smart Grid Status and Metrics Report Appendices

    SciTech Connect

    Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

    2014-07-01

    A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

  10. Electric Vehicle Grid Integration for Sustainable Military Installations (Presentation), National Renewable Energy Laboratory (NREL)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Administration All Electricity Reports Electric Sales, Revenue, and Average Price With Data for 2015 | Release Date: October 06, 2016 | Next Release Date: October 2017 | CORRECTION Previous editions 2001-2014 are Excel zipped files & 1994-2000 are PDF files Year: 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 Go Data Tables All tables (zip file) Summary Tables T1 Number of consumers (bundled and unbundled) by sector, Census

  11. Building the Distribution Grid

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2013 * Industry leader in renewable energy procurement, electric transportation, demand response, energy efficiency and Smart Grid * Significant system investments 2014 - 2017 ...

  12. OAK RIDGE NATIONAL LABORATORY SPALLATION NEUTRON SOURCE ELECTRICAL SYSTEMS AVAILABILITY AND IMPROVEMENTS

    SciTech Connect

    Cutler, Roy I; Peplov, Vladimir V; Wezensky, Mark W; Norris, Kevin Paul; Barnett, William E; Hicks, Jim; Weaver, Joey T; Moss, John; Rust, Kenneth R; Mize, Jeffery J; Anderson, David E

    2011-01-01

    SNS electrical systems have been operational for 4 years. System availability statistics and improvements are presented for AC electrical systems, DC and pulsed power supplies and klystron modulators.

  13. A design approach for improving the performance of single-grid planar retarding potential analyzers

    SciTech Connect

    Davidson, R. L.; Earle, G. D. [William B. Hanson Center for Space Sciences, University of Texas at Dallas, 800 W. Campbell Rd. WT15, Richardson, Texas 75080 (United States)

    2011-01-15

    Planar retarding potential analyzers (RPAs) have a long flight history and have been included on numerous spaceflight missions including Dynamics Explorer, the Defense Meteorological Satellite Program, and the Communications/Navigation Outage Forecast System. RPAs allow for simultaneous measurement of plasma composition, density, temperature, and the component of the velocity vector normal to the aperture plane. Internal conductive grids are used to approximate ideal potential planes within the instrument, but these grids introduce perturbations to the potential map inside the RPA and cause errors in the measurement of the parameters listed above. A numerical technique is presented herein for minimizing these grid errors for a specific mission by varying the depth and spacing of the grid wires. The example mission selected concentrates on plasma dynamics near the sunset terminator in the equatorial region. The international reference ionosphere model is used to discern the average conditions expected for this mission, and a numerical model of the grid-particle interaction is used to choose a grid design that will best fulfill the mission goals.

  14. Quiz: Test Your Grid IQ | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Test Your Grid IQ Quiz: Test Your Grid IQ Test your Power Grid IQ Do you know your synchrophasors from your microgrids? Test your knowledge of the electric grid with our grid IQ ...

  15. Integrating High Levels of Renewables in to the Lanai Electric Grid

    SciTech Connect

    Kroposki, B.; Burman, K.; Keller, J.; Kandt, A.; Glassmire, J.; Lilienthal, P.

    2012-06-01

    The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and Sandia National Laboratory (Sandia) to assess the economic and technical feasibility of increasing the contribution of renewable energy sources on the island of Lanai with a stated goal of reaching 100% renewable energy. NREL and Sandia partnered with Castle & Cooke, Maui Electric Company (MECO), and SRA International to perform the assessment.

  16. NREL's Controllable Grid Interface Saves Time and Resources, Improves Reliability of Renewable Energy Technologies (Fact Sheet), NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Researchers at the National Renewable Energy Laboratory (NREL) developed a controllable grid interface (CGI) test system that can significantly reduce certification testing time and costs. The CGI also provides system engineers with a better understanding of how wind turbines, photovoltaic (PV) inverters, and energy storage systems interact with the grid and react to grid disturbances. For the energy industry, this will save time and resources while minimizing integration issues, improve

  17. Grid Architecture 2

    SciTech Connect

    Taft, Jeffrey D.

    2016-01-01

    The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.

  18. Micro Climate Assessment of Grid-Connected Electric Drive Vehicles and Charging Infrastructure. Final Report

    SciTech Connect

    Schey, Stephen; Francfort, Jim

    2015-12-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s advanced vehicle testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America to conduct several U.S. Department of Defense-based micro-climate studies to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). The study included Joint Base Lewis McChord, located in Washington State; Naval Air Station Whidbey Island, located in Washington State; and United States Marine Corp Base Camp Lejeune, located in North Carolina. The project was divided into four tasks for each of the three bases studied. Task 1 consisted of surveying the non-tactical fleet of vehicles to begin review of vehicle mission assignments and types of vehicles in service. In Task 2, the daily operational characteristics of the vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. Results of the data analysis and observations were provided. Individual observations of these selected vehicles provided the basis for recommendations related to PEV adoption (i.e., whether a battery electric vehicle or plug-in hybrid electric vehicle [collectively referred to as PEVs] can fulfill the mission requirements). It also provided the basis for recommendations related to placement of PEV charging infrastructure. In Task 4, an implementation approach was provided for near-term adoption of PEVs into the respective fleets. Each facility was provided detailed reports on each of these tasks. This paper summarizes and provides observations on the project and completes Intertek’s required actions.

  19. Grid Integration | Water Power | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research & Development » Grid Integration Grid Integration Grid Integration The Wind Program works with electric grid operators, utilities, regulators, and industry to create new strategies for incorporating increasing amounts of wind energy into the power system while maintaining economic and reliable operation of the grid. Utilities have been increasingly deploying wind power to provide larger portions of electricity generation. However, many utilities also express concerns about wind

  20. Grid Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research & Development » Grid Integration Grid Integration Grid Integration The Wind Program works with electric grid operators, utilities, regulators, and industry to create new strategies for incorporating increasing amounts of wind energy into the power system while maintaining economic and reliable operation of the grid. Utilities have been increasingly deploying wind power to provide larger portions of electricity generation. However, many utilities also express concerns about wind

  1. Smart Grid RFI: Addressing Policy and Logistical Challenges,...

    Energy.gov [DOE] (indexed site)

    Reliability and Resiliency of the US Electric Grid: SGIG Article in Metering International, March 2012 Smart Grid Consortium, Response of New York State Smart Grid Addressing ...

  2. Smart Grid e-Forum | Department of Energy

    Office of Environmental Management (EM)

    Electricity Advisory Committee Technology Development Smart Grid Demand Response Federal Smart Grid Task Force Microgrids Energy Storage TRAC Program Advanced Modeling Grid ...

  3. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Environmental Management (EM)

    Grid-Connected Renewable Energy Systems Grid-Connected Renewable Energy Systems When connecting a home energy system to the electric grid, research and consider equipment required...

  4. Case Study - EPB Smart Grid Investment Grant

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EPB Smart Grid Investment Grant 1 Smart switches installed in EPB service territory A Smarter Electric Circuit: Electric Power Board of Chattanooga Makes the Switch EPB of Chattanooga, Tennessee, is one of the largest publicly owned providers of electric power in the country. Established in 1935, EPB covers about 600 square miles and serves about 170,000 customers in Tennessee and Georgia. Chattanooga is making its distribution system more robust while improving operations with the deployment of

  5. Flywheel Project Escalates Grid Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Flywheel Project Escalates Grid Efficiency Flywheel Project Escalates Grid Efficiency August 9, 2010 - 1:18pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What does this project do? It's estimated to create 60 jobs in New York and Massachusetts (where Beacon Power is headquartered) and help bring clean technologies to market by improving the stability and reliability of the state's electric grid. More good news for New

  6. Building Tomorrow's Smart Grid Workforce Today | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Building Tomorrow's Smart Grid Workforce Today Building Tomorrow's Smart Grid Workforce Today Colleges, universities, utilities, and manufacturers are working together to create new training, development, and enhancement programs in schools and businesses across the country. New technologies are emerging to improve the nation's electric grid, and the sector workforce must reflect the increased skills and knowledge to install, monitor, and maintain the infrastructure. Supported by DOE Recovery

  7. Smart Grid Demonstration Project

    SciTech Connect

    Miller, Craig; Carroll, Paul; Bell, Abigail

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and

  8. Smart Grid System Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    August 2014 2014 Smart Grid System Report Report to Congress August 2014 United States Department of Energy Washington, DC 20585 Department of Energy | August 2014 THIS PAGE INTENTIONALLY LEFT BLANK 2014 Smart Grid System Report Department of Energy | August 2014 Message from the Assistant Secretary Office of Electricity Delivery and Energy Reliability I am pleased to present the 2014 Smart Grid System Report, which is intended to provide an update on the status of smart grid deployment

  9. MANGO – Modal Analysis for Grid Operation: A Method for Damping Improvement through Operating Point Adjustment

    SciTech Connect

    Huang, Zhenyu; Zhou, Ning; Tuffner, Francis K.; Chen, Yousu; Trudnowski, Daniel J.; Diao, Ruisheng; Fuller, Jason C.; Mittelstadt, William A.; Hauer, John F.; Dagle, Jeffery E.

    2010-10-18

    Small signal stability problems are one of the major threats to grid stability and reliability in the U.S. power grid. An undamped mode can cause large-amplitude oscillations and may result in system breakups and large-scale blackouts. There have been several incidents of system-wide oscillations. Of those incidents, the most notable is the August 10, 1996 western system breakup, a result of undamped system-wide oscillations. Significant efforts have been devoted to monitoring system oscillatory behaviors from measurements in the past 20 years. The deployment of phasor measurement units (PMU) provides high-precision, time-synchronized data needed for detecting oscillation modes. Measurement-based modal analysis, also known as ModeMeter, uses real-time phasor measurements to identify system oscillation modes and their damping. Low damping indicates potential system stability issues. Modal analysis has been demonstrated with phasor measurements to have the capability of estimating system modes from both oscillation signals and ambient data. With more and more phasor measurements available and ModeMeter techniques maturing, there is yet a need for methods to bring modal analysis from monitoring to actions. The methods should be able to associate low damping with grid operating conditions, so operators or automated operation schemes can respond when low damping is observed. The work presented in this report aims to develop such a method and establish a Modal Analysis for Grid Operation (MANGO) procedure to aid grid operation decision making to increase inter-area modal damping. The procedure can provide operation suggestions (such as increasing generation or decreasing load) for mitigating inter-area oscillations.

  10. NOTICE OF PROPOSED RULEMAKING ON THE INTEGRATED INTERAGENCY PRE-APPLICATION PROCESS (IIP) ON ELECTRIC GRID TRANSMISSION

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy (DOE) proposes to amend its regulations for the timely coordination of Federal Authorizations for proposed interstate electric transmission facilities pursuant to section 216(h) of the Federal Power Act (FPA). The proposed amendments are intended to improve the preapplication procedures and result in more efficient processing of applications. Public comment on this proposed rule will be accepted until April 4, 2016.

  11. Automating Natural Disaster Impact Analysis: An Open Resource to Visually Estimate a Hurricane s Impact on the Electric Grid

    SciTech Connect

    Barker, Alan M; Freer, Eva B; Omitaomu, Olufemi A; Fernandez, Steven J; Chinthavali, Supriya; Kodysh, Jeffrey B

    2013-01-01

    An ORNL team working on the Energy Awareness and Resiliency Standardized Services (EARSS) project developed a fully automated procedure to take wind speed and location estimates provided by hurricane forecasters and provide a geospatial estimate on the impact to the electric grid in terms of outage areas and projected duration of outages. Hurricane Sandy was one of the worst US storms ever, with reported injuries and deaths, millions of people without power for several days, and billions of dollars in economic impact. Hurricane advisories were released for Sandy from October 22 through 31, 2012. The fact that the geoprocessing was automated was significant there were 64 advisories for Sandy. Manual analysis typically takes about one hour for each advisory. During a storm event, advisories are released every two to three hours around the clock, and an analyst capable of performing the manual analysis has other tasks they would like to focus on. Initial predictions of a big impact and landfall usually occur three days in advance, so time is of the essence to prepare for utility repair. Automated processing developed at ORNL allowed this analysis to be completed and made publicly available within minutes of each new advisory being released.

  12. Smart Grid Investment Grant Recipient Information | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act SGIG Smart Grid Investment Grant Recipient Information Smart Grid Investment Grant Recipient Information BACKGROUND The Department of Energy's Office of Electricity ...

  13. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Energy Reliability Steve Pullins, Modern Grid Strategy Team Utility Field Services 2009 29 April 2009 Office of Electricity Delivery and Energy Reliability MODERN GRID S T ...

  14. Opportunities for Energy Efficiency Improvements in the U.S....

    Energy.gov [DOE] (indexed site)

    This report describes sources of energy loss in the transmission and distribution of electricity, and ... Strategies to improve energy efficiency on the grid include upgrades in ...

  15. Automated Grid Disruption Response System: Robust Adaptive Topology Control (RATC)

    SciTech Connect

    2012-03-01

    GENI Project: The RATC research team is using topology control as a mechanism to improve system operations and manage disruptions within the electric grid. The grid is subject to interruption from cascading faults caused by extreme operating conditions, malicious external attacks, and intermittent electricity generation from renewable energy sources. The RATC system is capable of detecting, classifying, and responding to grid disturbances by reconfiguring the grid in order to maintain economically efficient operations while guaranteeing reliability. The RATC system would help prevent future power outages, which account for roughly $80 billion in losses for businesses and consumers each year. Minimizing the time it takes for the grid to respond to expensive interruptions will also make it easier to integrate intermittent renewable energy sources into the grid.

  16. Cyber-Security Considerations for the Smart Grid

    SciTech Connect

    Clements, Samuel L.; Kirkham, Harold

    2010-07-26

    The electrical power grid is evolving into the “smart grid”. The goal of the smart grid is to improve efficiency and availability of power by adding more monitoring and control capabilities. These new technologies and mechanisms are certain to introduce vulnerabilities into the power grid. In this paper we provide an overview of the cyber security state of the electrical power grid. We highlight some of the vulnerabilities that already exist in the power grid including limited capacity systems, implicit trust and the lack of authentication. We also address challenges of complexity, scale, added capabilities and the move to multipurpose hardware and software as the power grid is upgraded. These changes create vulnerabilities that did not exist before and bring increased risks. We conclude the paper by showing that there are a number mitigation strategies that can help keep the risk at an acceptable level.

  17. Grid Certificates

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Certificates Grid Certificates Grid certificates allow you to access NERSC (and other Grid enabled computing facilities) via grid interfaces. Grid certificates are credentials that must be initialized for use with grid tools. Once a certificate is initialized it is automatically used by the grid tools to authenticate the user to the grid resource. Getting a Short Lived NERSC CA Certificate The NERSC Online CA now offers a quick and painless way to obtain grid certificates. You can obtain a

  18. Secretary Chu Presents Smart Grid Vision and Announces $144 Million...

    Energy Saver

    smart grid and modernizing America's electrical system: a stronger, smarter, more ... foundation for a modernized, resilient electrical grid," said Secretary Chu. "By working ...

  19. Smart Grid Technology Interactive Model | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Smart Grid Technology Interactive Model Share Description As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid...

  20. Integration Technology for PHEV-Grid-Connectivity, with Support...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards Integration Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards 2010...

  1. Interactive Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Interactive Grid Interactive Grid Each time you flick a light switch or press a power button, you enjoy the benefits of the nation's incredible electric grid. The grid is a complex network of people and machinery working around the clock to produce and deliver electricity to millions of homes across the nation. The electric grid works so well, Americans often think about it only when they receive their electric bills, or in those rare instances when there is a power outage. By taking the time to

  2. Energy Department Announces Progress, Next Steps on Improving the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reliability of the Nation's Electric Grid with Synchrophasor Technology | Department of Energy Announces Progress, Next Steps on Improving the Reliability of the Nation's Electric Grid with Synchrophasor Technology Energy Department Announces Progress, Next Steps on Improving the Reliability of the Nation's Electric Grid with Synchrophasor Technology March 22, 2016 - 12:07pm Addthis Washington, DC - Today, as the first-ever International Synchrophasor Symposium continues in Atlanta, GA, the

  3. Smart Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Power Smart Grid Smart Grid Rows of battery racks at the Salem Smart Power Center in Salem, Oregon. The Battelle-led Pacific Northwest Smart ...

  4. GRIDS: Grid-Scale Rampable Intermittent Dispatchable Storage

    SciTech Connect

    2010-09-01

    GRIDS Project: The 12 projects that comprise ARPA-Es GRIDS Project, short for Grid-Scale Rampable Intermittent Dispatchable Storage, are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.

  5. Grid Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Centers Grid Integration HomeTag:Grid Integration Matt ... Research & Capabilities, Solar Sandia Labs Presents Grid ... Engineers convenes the Power Energy Society to address ...

  6. Improving Cyber-Security of Smart Grid Systems via Anomaly Detection and Linguistic Domain Knowledge

    SciTech Connect

    Ondrej Linda; Todd Vollmer; Milos Manic

    2012-08-01

    The planned large scale deployment of smart grid network devices will generate a large amount of information exchanged over various types of communication networks. The implementation of these critical systems will require appropriate cyber-security measures. A network anomaly detection solution is considered in this work. In common network architectures multiple communications streams are simultaneously present, making it difficult to build an anomaly detection solution for the entire system. In addition, common anomaly detection algorithms require specification of a sensitivity threshold, which inevitably leads to a tradeoff between false positives and false negatives rates. In order to alleviate these issues, this paper proposes a novel anomaly detection architecture. The designed system applies the previously developed network security cyber-sensor method to individual selected communication streams allowing for learning accurate normal network behavior models. Furthermore, the developed system dynamically adjusts the sensitivity threshold of each anomaly detection algorithm based on domain knowledge about the specific network system. It is proposed to model this domain knowledge using Interval Type-2 Fuzzy Logic rules, which linguistically describe the relationship between various features of the network communication and the possibility of a cyber attack. The proposed method was tested on experimental smart grid system demonstrating enhanced cyber-security.

  7. gridFTP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    gridFTP gridFTP Currently only the archive.nersc.gov system is capable of handling GridFTP transfers to HPSS. It accomplishes this by using a special GSI enabled pftp server. Data transfers are multi-threaded but are handled with a single FTP server. Improvements are planned for the future. The pftp server handling GridFTP transfers is garchive.nersc.gov. GridFTP clients must authenticate/transfer to this server to send data to archive.nersc.gov. There are numerous GridFTP clients available that

  8. Electricity Supply Infrastructure Improvements: Final Technical Status Report, December 2010

    SciTech Connect

    Piekarski, D.; Brad, D.

    2011-02-01

    This report is about a work effort where the overall objectives were to establish a methodology and approach for selected transmission and distribution (T&D) grid modernization; monitor the results; and report on the findings, recommendations, and lessons learned. The work reported addressed T&D problems and solutions, related reliability issues, equipment and operation upgrades, and respective field testing.

  9. GridLAB-D/SG

    Energy Science and Technology Software Center

    2011-08-30

    GridLAB-D is a new power system simulation tool that provides valuable information to users who design and operate electric power transmission and distribution systems, and to utilities that wish to take advantage of the latest smart grid technology. This special release of GridLAB-D was developed to study the proposed Smart Grid technology that is used by Battelle Memorial Institute in the AEP gridSMART demonstration project in Northeast Columbus, Ohio.

  10. Colorado Electrical Transmission Grid

    DOE Data Explorer

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Xcel Energy Publication Date: 2012 Title: Colorado XcelEnergy NonXcel Transmission Network Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains transmission network of Colorado Spatial Domain: Extent: Top: 4540689.017558 m Left: 160606.141934 m Right: 758715.946645 m Bottom: 4098910.893397m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shapefile

  11. Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ELECTRICITY ADVISORY COMMITTEE MISSION The mission of the Electricity Advisory Committee is to provide advice to the U.S. Department of Energy in implementing the Energy Policy Act of 2005, executing the Energy Independence and Security Act of 2007, and modernizing the nation's electricity delivery infrastructure. ELECTRICITY ADVISORY COMMITTEE GOALS The goals of the Electricity Advisory Committee are to provide advice on: * Electricity policy issues pertaining to the U.S. Department of Energy

  12. U.S. Department of Energy and SuperPower, Inc. Increase Energy Efficiency in the Nation's Electric Grid

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) and SuperPower, Inc. today commemorated the Albany High-Temperature Superconducting (HTS) Cable Project, the world's first use of second-generation HTS wire on the grid.

  13. Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Photo of an engineer working with grid hardware in a laboratory NREL conducts high-impact research and development of technologies and strategies to modernize the nation's electrical infrastructure, making it more flexible, resilient, and sustainable. The 21st century needs a 21st-century grid. As part of the U.S. Department of Energy's Grid Modernization Initiative, NREL researchers work with industry, government, and academia to solve the challenges of integrating renewable power sources and

  14. Understanding The Smart Grid

    SciTech Connect

    2007-11-15

    The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology

  15. VP 100: A Smart Grid Initiative in an Eco-Conscious Town

    Energy.gov [DOE]

    Naperville, Illinois is improving their long-term electricity distribution through the implementation of the Naperville Smart Grid Initiative (NSGI) -- to the tune of $3million in savings over a 15-year period.

  16. NREL: Distributed Grid Integration - Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL's distributed energy projects support the integration of new technologies into the electric power grid. This work involves industry, academia, other national laboratories, and ...

  17. Smart Grid | Department of Energy

    Energy.gov [DOE] (indexed site)

    ... November is National Critical Infrastructure Security and Resilience Month, and our Office of Electricity (OE) is hard at work safeguarding the power grid. April 20, 2015 Quiz: ...

  18. Renewable Energy and a Smart Grid

    Energy.gov [DOE]

    A diagram of how smarter technologies enable more reliable, renewable energy sources to be integrated onto our electrical grid.

  19. smart grid | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    smart grid smart-grid.jpg The U.S. electric power grid provides electricity to over three hundred million people every day. This electricity powers some of the most advanced technologies in the world but is surprisingly delivered through a mostly aging, outmoded and over-stressed network. A need exists for greater consumer participation, greater reliability and power quality, and affordability-all critical components for the stable, secure electric power grid of the future. Currently, NETL is

  20. NREL: Transmission Grid Integration - Hawaii Solar Integration...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wholesale Electricity Market Operations Energy Imbalance Markets FESTIV Model Active Power Controls Generator Modeling Forecasting Grid Simulation Transmission Planning & Analysis

  1. NREL: Transmission Grid Integration - Transmission Planning and...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Printable Version Transmission Grid Integration Home Issues Projects Western Wind & Solar ... Electricity Market Operations Energy Imbalance Markets FESTIV Model Active ...

  2. NREL: Distributed Grid Integration - Working with Us

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    facilities for electric infrastructure systems ... research. Bill Kramer (303) 275-3844 Printable Version Distributed Grid Integration Home Capabilities ...

  3. Smart Grid Technology Interactive Model | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    batteries --Electricity transmission --Smart Grid Environment -Biology --Computational biology --Environmental biology ---Metagenomics ---Terrestrial ecology --Molecular ...

  4. WHAT THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU REPRESENT. | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU REPRESENT. WHAT THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU REPRESENT. The U.S. Department of Energy (DOE) is charged under the Energy Independence and Security Act of 2007 (EISA 2007) with modernizing the nation's electricity grid to improve its reliability and efficiency. As part of this effort, DOE is also responsible for increasing awareness of our nation's Smart Grid. Building upon The Smart Grid: An Introduction, a

  5. EFlex (Smart Grid Project) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    with mobilization of private customers' flexible energy consumption, especially from electric cars, electric heating and heat pumps. References "EU Smart Grid Projects...

  6. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Energy, Office of Electricity Delivery and Energy Reliability Steve Pullins, Modern Grid Strategy Team Morgantown, WV March 20, 2009 Office of Electricity Delivery and Energy ...

  7. Impacts of Improved Day-Ahead Wind Forecasts on Power Grid Operations: September 2011

    SciTech Connect

    Piwko, R.; Jordan, G.

    2011-11-01

    This study analyzed the potential benefits of improving the accuracy (reducing the error) of day-ahead wind forecasts on power system operations, assuming that wind forecasts were used for day ahead security constrained unit commitment.

  8. Forecasting Wind and Solar Generation: Improving System Operations, Greening the Grid

    SciTech Connect

    Tian; Tian; Chernyakhovskiy, Ilya

    2016-01-01

    This document discusses improving system operations with forecasting and solar generation. By integrating variable renewable energy (VRE) forecasts into system operations, power system operators can anticipate up- and down-ramps in VRE generation in order to cost-effectively balance load and generation in intra-day and day-ahead scheduling. This leads to reduced fuel costs, improved system reliability, and maximum use of renewable resources.

  9. What do you know about the grid? | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Grid Dc's picture Submitted by Dc(266) Contributor 31 October, 2014 - 10:58 black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  10. THE NARRAGANSETT ELECTRIC COMPANY d/b/a NATIONAL GRID- FE DKT. NO. 16-49-LNG

    Energy.gov [DOE]

    The Narragansett Electric Company (DOE/FE Dkt. No. 16-49-LNG) - The Office of Fossil Energy gives notice of receipt of an Application filed April 11, 2016 by The Narragansett Electric Company d/b/a...

  11. Renewable Electricity Grid Integration Roadmap for Mexico. Supplement to the IEA Expert Group Report on Recommended Practices for Wind Integration Studies

    SciTech Connect

    Parsons, Brian; Cochran, Jaquelin; Watson, Andrea; Katz, Jessica; Bracho, Ricardo

    2015-08-19

    As a recognized leader in efforts to mitigate global climate change, the Government of Mexico (GOM) works proactively to reduce emissions, demonstrating strong political will and capacity to comprehensively address climate change. Since 2010, the U.S. government (USG) has supported these efforts by partnering with Mexico under the Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program. Through the program, the USG has partnered with Mexico’s Ministry of Energy (SENER), as well as other government agencies, to support GOM in reaching its clean energy and climate change goals. Specifically, the EC-LEDS program is supporting GOM’s clean energy goal of generating 35% of its electricity from renewable energy (RE) by 2024. EC-LEDS, through the U.S. Agency for International Development (USAID) and the U.S Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL), has been collaborating with SENER and GOM interagency working group—the Consejo Consultivo para las Energías Renovables (Consultative Council on Renewable Energy)—to create a grid integration roadmap for variable RE. 1 A key objective in creating a grid integration roadmap is assessing likely impacts of wind and solar energy on the power system and modifying planning and operations accordingly. This paper applies best practices in conducting a grid integration study to the Mexican context.

  12. Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.

    SciTech Connect

    Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.

    2011-02-01

    Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

  13. Ames Laboratory receives $350K to improve electric motors | The Ames

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Laboratory receives $350K to improve electric motors Ames Tribune staff writer Dan Mika talks with Ames Laboratory researchers Iver Anderson and Emma White about their $350,000 grant from the Department of Energy to fund development of new magnets for use in motors for automotive applications. News Link: Ames Laboratory receives $350,000 to improve electric motor parts

  14. TITLE XIII- SMART GRID SEC. 1301- 1308 STATEMENT OF POLICY ON MODERNIZATION

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    OF ELECTRICITY GRID | Department of Energy TITLE XIII- SMART GRID SEC. 1301- 1308 STATEMENT OF POLICY ON MODERNIZATION OF ELECTRICITY GRID TITLE XIII- SMART GRID SEC. 1301- 1308 STATEMENT OF POLICY ON MODERNIZATION OF ELECTRICITY GRID Energy Independence and Security Act of 2007 - SEC. 1301 - 1308 TITLE XIII- SMART GRID SEC. 1301- 1308 STATEMENT OF POLICY ON MODERNIZATION OF ELECTRICITY GRID (125.69 KB) More Documents & Publications 2009 Smart Grid System Report (July 2009) Energy Policy

  15. An improved bi-level algorithm for partitioning dynamic grid hierarchies.

    SciTech Connect

    Deiterding, Ralf (California Institute of Technology, Pasadena, CA); Johansson, Henrik (Uppsala University, Uppsala, Sweden); Steensland, Johan; Ray, Jaideep

    2006-05-01

    Structured adaptive mesh refinement methods are being widely used for computer simulations of various physical phenomena. Parallel implementations potentially offer realistic simulations of complex three-dimensional applications. But achieving good scalability for large-scale applications is non-trivial. Performance is limited by the partitioner's ability to efficiently use the underlying parallel computer's resources. Designed on sound SAMR principles, Nature+Fable is a hybrid, dedicated SAMR partitioning tool that brings together the advantages of both domain-based and patch-based techniques while avoiding their drawbacks. But the original bi-level partitioning approach in Nature+Fable is insufficient as it for realistic applications regards frequently occurring bi-levels as ''impossible'' and fails. This document describes an improved bi-level partitioning algorithm that successfully copes with all possible bi-levels. The improved algorithm uses the original approach side-by-side with a new, complementing approach. By using a new, customized classification method, the improved algorithm switches automatically between the two approaches. This document describes the algorithms, discusses implementation issues, and presents experimental results. The improved version of Nature+Fable was found to be able to handle realistic applications and also to generate less imbalances, similar box count, but more communication as compared to the native, domain-based partitioner in the SAMR framework AMROC.

  16. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    SciTech Connect

    Jakeman, J.D. Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.

  17. Department of Energy - Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    opportunities and challenges that lie ahead. Secretary Moniz headed down to Florida to talk about Grid Modernization. Learn more about our nation's electric grid in this fact...

  18. TITLE XIII- SMART GRID SEC. 1301- 1308 STATEMENT OF POLICY ON...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    TITLE XIII- SMART GRID SEC. 1301- 1308 STATEMENT OF POLICY ON MODERNIZATION OF ELECTRICITY GRID TITLE XIII- SMART GRID SEC. 1301- 1308 STATEMENT OF POLICY ON MODERNIZATION OF ...

  19. The Modern Grid Strategy THE TRANSMISSION SMART GRID IMPERATIVE

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Modern Grid Strategy THE TRANSMISSION SMART GRID IMPERATIVE Developed for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability by the National Energy Technology Laboratory September 2009 Office of Electricity Delivery and Energy Reliability Transmission Smart Grid Imperative 1 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

  20. Opening Remarks, Grid Integration Initiative Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lynn Grid Integration Initiative Hydrogen Energy Storage for Grid Integration and Transportation Services May 14, 2014 2 Other DOE? 2 The GTT is a DOE inter-office work group established in April 2011 by the Undersecretary of Energy to: - Coordinate and leverage DOE grid resources and activities - Identify pathways to enable grid modernization - Develop a long-term strategic vision of the U.S. electricity grid Value to the DOE * Holistic systems perspective * Align internal grid activities *

  1. Grid Architecture

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... happen to be connected to the grid, ... of aspirational requirements in the form of desired system (grid) qualities. ... 2. Scalability 3. Minimum environmental ...

  2. Homeowners Guide to Financing a Grid-Connected Solar Electric System (Brochure), Solar Energy Technologies Program (SETP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

  3. Improvements in geothermal electric power and silica production

    DOEpatents

    Hill, J.H.; Fulk, M.M.

    Electricity is generated from hot geothermal solution by extracting heat therefrom, mineral solids which form in a so cooled geothermal solution are separated to recover minerals and facilitate reinjection of the solution into the ground. The separated solids are treated to recover silica by addition of an acid (amorphous silica precipitates) or a base (other minerals precipitate and soulble silicates are formed which are subsequently precipitated by acid neutralization). If desired, after silica is separated, other minerals can be separated and recovered.

  4. Energy storage for the electricity grid : benefits and market potential assessment guide : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Eyer, James M.; Corey, Garth P.

    2010-02-01

    This guide describes a high-level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric-utility-related applications. The overarching theme addressed is the concept of combining applications/benefits into attractive value propositions that include use of energy storage, possibly including distributed and/or modular systems. Other topics addressed include: high-level estimates of application-specific lifecycle benefit (10 years) in $/kW and maximum market potential (10 years) in MW. Combined, these criteria indicate the economic potential (in $Millions) for a given energy storage application/benefit. The benefits and value propositions characterized provide an important indication of storage system cost targets for system and subsystem developers, vendors, and prospective users. Maximum market potential estimates provide developers, vendors, and energy policymakers with an indication of the upper bound of the potential demand for storage. The combination of the value of an individual benefit (in $/kW) and the corresponding maximum market potential estimate (in MW) indicates the possible impact that storage could have on the U.S. economy. The intended audience for this document includes persons or organizations needing a framework for making first-cut or high-level estimates of benefits for a specific storage project and/or those seeking a high-level estimate of viable price points and/or maximum market potential for their products. Thus, the intended audience includes: electric utility planners, electricity end users, non-utility electric energy and electric services providers, electric utility regulators and policymakers, intermittent renewables advocates and developers, Smart Grid advocates and developers, storage technology and project developers, and energy storage advocates.

  5. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    DOE PAGES [OSTI]

    Jakeman, J. D.; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less

  6. The Green Grid | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Grid Jump to: navigation, search Name: The Green Grid Place: Oregon Zip: 97006 Sector: Efficiency Product: Oregan-based consortium that seeks to improve energy efficiency in data...

  7. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    FERC - NARUC Smart Grid Collaborative Meeting Joe Miller - Modern Grid Strategy Team July 23, 2008 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Today's topics Smart Grid Background What is the Smart Grid? Some closing thoughts Questions 3 MODERN GRID S T R A T E G Y Smart Grid Background 4 Office of

  8. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Smart Grid - What's so Smart About It? An Educational Forum on Smart Grids Joe Miller - Modern Grid Strategy Team June 24, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Agenda What is the Smart Grid? EISA 2007 Highlights DOE Activities Questions MODERN GRID S T R A T E G Y What is the Smart Grid? 4

  9. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid: Features, Benefits and Costs Illinois Smart Grid Initiative Joe Miller - Modern Grid Strategy Team July 8, 2008 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Today's topics Why modernize the grid? What is the Smart Grid? What is the value proposition? Questions 3 MODERN GRID S T R A T E G Y Why modernize

  10. ADELE Project AACAES (Smart Grid Project) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Dec 2009 Dec 2013 References EU Smart Grid Projects Map1 Overview Compressesair energy storage (case) as buffer for electricity from wind and sun. References "EU Smart Grid...

  11. This Thursday: Google+ Hangout on Securing the Smart Grid | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Panelists from across the power systems industry will discuss a critical element of a secure and resilient electric power system, the smart grid cybersecurity workforce. Grid ...

  12. Protecting the Grid from All Hazards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    An article on cybersecurity for the grid in the October issue of The Electricity Journal by OE's Carol Hawk and Akhlesh Kaushiva profiles four Smart Grid Investment Grant...

  13. Category:Smart Grid Projects - Regional Demonstrations | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    L cont. Los Angeles Department of Water and Power Smart Grid Demonstration Project N National Rural Electric Cooperative Association Smart Grid Demonstration Project NSTAR...

  14. Modernizing the Grid: Keeping the Dialogue Going | Department...

    Energy Saver

    investments in smart grid, broadband and health care IT. Michigan, meanwhile, is leading the way on incorporating electric vehicle charging infrastructure into the smart grid. ...

  15. PSERC Webinar Series on the Future Grid Initiative Begins January...

    Office of Environmental Management (EM)

    Future Grid to Enable Sustainable Energy Systems. The initiative investigates the requirements of an electric grid with high penetrations of sustainable energy systems and heavy ...

  16. March & April 2013 PSERC Webinars on the Future Grid Initiative...

    Office of Environmental Management (EM)

    Future Grid to Enable Sustainable Energy Systems. The initiative investigates the requirements of an electric grid with high penetrations of sustainable energy systems and heavy ...

  17. QER- Comment of GridWise Alliance 1

    Office of Energy Efficiency and Renewable Energy (EERE)

    Please find attached the GridWise Alliance's Improving Electric Grid Reliability and Resilience report and my comments from today's workshop. Thank to the QER Task Force and the DOE for engaging the stakeholders in your efforts to develop our Federal energy policy objectives. The GridWise Alliance stands ready to assist with this major undertaking. Our members represent the ecosystem of players that must come together to collaborate and participate in the development of innovative solutions to evolve from the system of today to the system of the future.

  18. Sharing Smart Grid Experiences

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sharing Smart Grid Experiences through Performance Feedback March 31, 2011 DOE/NETL- DE-FE0004001 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Sharing Smart Grid Experiences through Performance Feedback v1.0 Page ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

  19. Grid Connected Functionality

    DOE Data Explorer

    Baker, Kyri; Jin, Xin; Vaidynathan, Deepthi; Jones, Wesley; Christensen, Dane; Sparn, Bethany; Woods, Jason; Sorensen, Harry; Lunacek, Monte

    2016-08-04

    Dataset demonstrating the potential benefits that residential buildings can provide for frequency regulation services in the electric power grid. In a hardware-in-the-loop (HIL) implementation, simulated homes along with a physical laboratory home are coordinated via a grid aggregator, and it is shown that their aggregate response has the potential to follow the regulation signal on a timescale of seconds. Connected (communication-enabled), devices in the National Renewable Energy Laboratory's (NREL's) Energy Systems Integration Facility (ESIF) received demand response (DR) requests from a grid aggregator, and the devices responded accordingly to meet the signal while satisfying user comfort bounds and physical hardware limitations.

  20. A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation

    SciTech Connect

    Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies

    2005-06-30

    A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

  1. NREL: Electric Infrastructure Systems Research - Distributed...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    project, which uses electricity from wind turbines and solar panels to produce hydrogen. ... Electricity Integration Research Home Distributed Grid Integration Transmission Grid ...

  2. Studying the Communications Requirements of Electric Utilities...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid ...

  3. National Electric Delivery Technologies Roadmap: Transforming...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Delivery Technologies Roadmap: Transforming the Grid to Revolutionize Electric Power in North America National Electric Delivery Technologies Roadmap: Transforming the Grid to ...

  4. National Grid EnergyWise Financing program

    Energy.gov [DOE]

    National Grid offers 0% financing to its customers to install energy efficient heating equipment in Rhode Island homes. Only residential customers of National Grid (electric or gas) with 1-4 unit...

  5. Quiz: Test Your Grid IQ | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grid IQ Quiz: Test Your Grid IQ April 20, 2015 - 2:20pm Addthis Test your Power Grid IQ Do you know your synchrophasors from your microgrids? Test your knowledge of the electric ...

  6. Consolidated Edison Company of New York, Inc. Smart Grid Project...

    OpenEI (Open Energy Information) [EERE & EIA]

    smart-grid project will deploy a wide-range of grid-related technologies, including automation, monitoring and two-way communications, to make the electric grid function more...

  7. PROJECT PROFILE: An Integrated Tool for Improving Grid Performance and Reliability of Combined Transmission-Distribution with High Solar Penetration (SuNLaMP)

    Energy.gov [DOE]

    High penetration of solar photovoltaics (PV) in electric power grids has created a need for changes to power system planning and operations analysis. Important technical issues such as two-way power flow, coordination of protection devices, transmission-distribution interaction, and reduction in inertia need to be resolved to enable a greater deployment of solar generation. To overcome these technical barriers, this project will develop a suite of software tools that creates a holistic understanding of the steady-state and transient behavior of transmission-distribution networks’ interaction under high PV penetration levels, along with the capability of real-time monitoring of the distribution systems and integration of system protection.

  8. Smart Grid: Powering Our Way to a Greener Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grid: Powering Our Way to a Greener Future Smart Grid: Powering Our Way to a Greener Future April 25, 2013 - 9:28am Addthis Eric Lightner Eric Lightner Director of the Federal Smart Grid Task Force in the Office of Electricity Delivery and Energy Reliability Learning how to be smarter and more efficient about reducing our energy consumption is on the minds of everyone this week. The smart grid, with its improved efficiency and performance, is helping consumers conserve energy and save money

  9. WHAT THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU SERVE | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy SERVE WHAT THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU SERVE The U.S. Department of Energy (DOE) is charged under the Energy Independence and Security Act of 2007 (EISA 2007) with modernizing the nation's electricity grid to improve its reliability and efficiency. As part of this effort, DOE is also responsible for increasing awareness of our nation's Smart Grid. Building upon The Smart Grid: An Introduction, a DOE-sponsored publication released in 2008 and available online at

  10. INFOGRAPHIC: Understanding the Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    INFOGRAPHIC: Understanding the Grid INFOGRAPHIC: Understanding the Grid November 17, 2014 - 2:05pm Addthis Our #GridWeek infographic shows how electricity is generated, transmitted and distributed for use in our homes. | Graphic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department. Our #GridWeek infographic shows how electricity is generated, transmitted and distributed for use in our homes. | Graphic by Sarah Gerrity, Energy Department. Sarah Gerrity Sarah

  11. Grid Performance and Reliability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems Integration » Grid Performance and Reliability Grid Performance and Reliability 2 way power flow orange2.png As the solar industry moves towards achieving the SunShot Initiative goals, the nation's electricity grid must evolve to accommodate increasing amounts of distributed photovoltaic (PV) systems. Effectively interconnecting variable PV generation requires forward thinking and dynamic solutions to ensure compatibility with the existing grid. Projects in the Grid Performance and

  12. Optimization of Electric Power Systems for Off-Grid Domestic Applications: An Argument for Wind/Photovoltaic Hybrids

    SciTech Connect

    Jennings, W.; Green, J.

    2001-01-01

    The purpose of this research was to determine the optimal configuration of home power systems relevant to different regions in the United States. The hypothesis was that, regardless of region, the optimal system would be a hybrid incorporating wind technology, versus a photovoltaic hybrid system without the use of wind technology. The method used in this research was HOMER, the Hybrid Optimization Model for Electric Renewables. HOMER is a computer program that optimizes electrical configurations under user-defined circumstances. According to HOMER, the optimal system for the four regions studied (Kansas, Massachusetts, Oregon, and Arizona) was a hybrid incorporating wind technology. The cost differences between these regions, however, were dependent upon regional renewable resources. Future studies will be necessary, as it is difficult to estimate meteorological impacts for other regions.

  13. Grid Integration

    SciTech Connect

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

  14. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Wabash Valley Power Joe Miller - Modern Grid Strategy Team July 15, 2008 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Today's topics Smart Grid background Why modernize the grid? What is the Smart Grid? What is the value proposition? How do we get there? What are some of the barriers? Questions 3 MODERN

  15. Advanced Grid Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Grid Research and Development Advanced Grid Research and Development Advanced Grid Research and Development Advanced Grid Research and Development activities accelerate discovery and innovation in electric transmission and distribution technologies and create "next generation" devices, software, tools, and techniques to help modernize the electric grid. Projects are planned and implemented in concert with partners from other Federal programs; electric utilities; equipment

  16. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Joe Miller - Modern Grid Team October 6, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Agenda The Smart Grid - a refresher "Push" drivers - a case for action "Pull" drivers - Smart Grid opportunities Some Smart Grid impacts Office of Electricity Delivery and Energy Reliability MODERN

  17. Redox Flow Batteries for Grid-scale Energy Storage - Energy Innovation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Portal Energy Storage Energy Storage Find More Like This Return to Search Redox Flow Batteries for Grid-scale Energy Storage Pacific Northwest National Laboratory Contact PNNL About This Technology A schematic of an upgraded vanadium redox batter shows how using both hydrochloric and sulfuric acids in the electrolyte significantly improves the battery&#39;s performance and could also improve the electric grid&#39;s reliability and help connect more wind turbines and solar panels to

  18. Improving Batteries for Electric Vehicle Use is Common Goal - News Releases

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    | NREL Improving Batteries for Electric Vehicle Use is Common Goal May 11, 2004 Golden, Colo. - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will collaborate with the Korea Automotive Research Institute (KATECH) on a project to test advanced battery systems that could be used in future generations of electric, hybrid and fuel cell vehicles. The research effort was announced today following the formal signing of a memorandum of understanding by Stan Bull, NREL

  19. Electrolysis on an Island Grid

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electrolysis on an Island Grid Mitch Ewan Hydrogen Systems Program Manager Hawaii Natural Energy Institute School of Ocean Earth Science and Technology University of Hawaii at Manoa 28 February 2014 High Percentages of As-Available Renewable Resources Creates Problems for Grid Systems 1300MW 75MW 5MW 200MW  Good renewable resource mix;  High electricity costs; and  Grid issues.  Provide unique opportunity for validation and deployment of new renewable and enabling technologies. 200MW

  20. NREL: Electricity Integration Research - Webmaster

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electricity Integration Research Home Distributed Grid Integration Transmission Grid ... Office of Energy Efficiency and Renewable Energy, operated by the Alliance for ...

  1. Secretary Chu Announces $620 Million for Smart Grid Demonstration...

    Energy Saver

    systems that will help build a smarter, more efficient, more resilient electrical grid. ... and on-site and renewable energy sources that can be integrated onto the electrical grid. ...

  2. Providing Grid Flexibility in

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Providing Grid Flexibility in Wyoming and Montana Introduction Powder River Energy Corporation (PRECorp) is an electric cooperative serving approximately 11,900 customers in a 16,200 square-mile area of rural Wyoming and Montana. PRECorp's customers frequently experience harsh weather conditions. Severe weather conditions in PRECorp's rural and remote service territory present unique challenges in providing reliable electric service to PRECorp's customers. PRECorp's customers include coal mining

  3. Utility-Scale Power Router: Dynamic Control of Grid Assets Using Direct AC Converter Cells

    SciTech Connect

    2010-09-01

    ADEPT Project: Georgia Tech is developing a cost-effective, utility-scale power router that uses an enhanced transformer to more efficiently direct power on the grid. Existing power routing technologies are too expensive for widespread use, but the ability to route grid power to match real-time demand and power outages would significantly reduce energy costs for utilities, municipalities, and consumers. Georgia Tech is adding a power converter to an existing grid transformer to better control power flows at about 1/10th the cost of existing power routing solutions. Transformers convert the high-voltage electricity that is transmitted through the grid into the low-voltage electricity that is used by homes and businesses. The added converter uses fewer steps to convert some types of power and eliminates unnecessary power storage, among other improvements. The enhanced transformer is more efficient, and it would still work even if the converter fails, ensuring grid reliability.

  4. National Transmission Grid Study: 2002

    Energy.gov [DOE]

    National Transmission Grid Study: The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity...

  5. Smart Grid Pilot Program- Colorado

    Energy.gov [DOE]

    This b-roll shows a pilot program to modernize the electrical distribution system in Fort Collins, Colorado, where a smart grid connects industrial and commercial buildings employing renewable...

  6. Conference Proceedings Available - The Smart Grid Experience...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conference Proceedings Available - The Smart Grid Experience: Applying Results, Reaching Beyond March 23, 2015 - 10:55am Addthis In October 2014, the Electric Power Research ...

  7. Grid Week 2008 | Department of Energy

    Energy Saver

    ... lines . . . to metering devices . . . to customer-side appliances and equipment . . . to the very systems and processes we use to manage the grid and price and market electricity. ...

  8. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... January 2007 Impact of electric vehicles Office of ... AAM helps utilities reduce costs and operate more ... Characteristic - Milestone Map Smart Grid Characteristic CE ...

  9. NREL: Transmission Grid Integration Home Page

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Photo of transmission lines with a city in the background. NREL works with electric utilities, energy policymakers, and ... Researchers study transmission and grid integration issues ...

  10. INFOGRAPHIC: Understanding the Grid | Department of Energy

    Energy.gov [DOE] (indexed site)

    in the infographic above, our power grid is a network of power plants, substations, transformers, wires, sensors and poles that carry electricity sometimes hundreds of miles to be...

  11. Securing the Nation's Grid | Department of Energy

    Energy.gov [DOE] (indexed site)

    Assistant Secretary for the Office of Electricity Delivery and Energy Reliability Our ... Grid resilience encompasses an all-hazard approach that involves protecting the energy ...

  12. Hydrogen Energy Storage for Grid and Transportation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    challenges, benefits and opportunities for commercial hydrogen energy storage applications to support grid services, variable electricity generation, and hydrogen vehicles. ...

  13. Reinventing Batteries for Grid Storage

    SciTech Connect

    Banerjee, Sanjoy

    2012-01-01

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  14. Reinventing Batteries for Grid Storage

    ScienceCinema

    Banerjee, Sanjoy

    2016-07-12

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  15. Smart Wire Grid: Resisting Expectations

    ScienceCinema

    Ramsay, Stewart; Lowe, DeJim

    2014-04-09

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  16. Smart Wire Grid: Resisting Expectations

    SciTech Connect

    Ramsay, Stewart; Lowe, DeJim

    2014-03-03

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  17. DOE Science Showcase - DOE's Smart Grid Research | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    & Energy Reliability A modernized electrical smart grid is needed to handle the ... and security of the country's electrical system; encourage consumers to manage ...

  18. Category:Smart Grid Projects | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    con":"","text":"ElectricalEnergySURE(SmartGridProject)" title"Advanced Systems of Efficient Use of Electrical...

  19. The Department's Management of the Smart Grid Investment Grant...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    establishing the Smart Grid Investment Grant (SGIG) program. ... Department's Office of Electricity Delivery and Energy ... of the electric transmission and distribution system. ...

  20. Launch of the Grid Modernization Laboratory Consortium | Department...

    Office of Environmental Management (EM)

    A modern electric grid must deliver reliable, affordable and clean electricity to ... efficiency, and resilience against disruptions due to natural disaster or attack. ...

  1. Grid Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Sandia, DOE Energy Storage Program, GeneSiC Semiconductor, U.S. Army ARDEC: Ultra-High-Voltage Silicon Carbide Thyristors Capabilities, Distribution Grid Integration, Energy, ...

  2. Grid Modernization

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management ...

  3. Grid Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    CO2 Geothermal Natural Gas Safety, Security & ... Hydrogen Production Market Transformation Fuel Cells ... Google + Vimeo Newsletter Signup SlideShare Grid Integration ...

  4. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    SciTech Connect

    2012-02-08

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.

  5. Motor Assembly Plant Saves $85,000 with Compressed Air System Improvements (Bodine Electric's Chicago Facility)

    SciTech Connect

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the Bodine Electric motor assembly plant project.

  6. Overture: The grid classes

    SciTech Connect

    Brislawn, K.; Brown, D.; Chesshire, G.; Henshaw, W.

    1997-01-01

    Overture is a library containing classes for grids, overlapping grid generation and the discretization and solution of PDEs on overlapping grids. This document describes the Overture grid classes, including classes for single grids and classes for collections of grids.

  7. Sensing, Measurement, and Forecasting | Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sensing, Measurement, and Forecasting NREL measures weather resources and power systems, forecasts renewable resources and grid conditions, and converts measurements into operational intelligence to support a modern grid. Photo of solar resource monitoring equipment Modernizing the grid involves assessing its health in real time, predicting its behavior and potential disruptions, and quickly responding to events-which requires understanding vital parameters throughout the electric

  8. Protecting Consumer Privacy while Building a Smarter Grid

    Energy.gov [DOE]

    Smart grid technologies have the capacity to create tremendous new value for electricity consumers: from advanced IT and communication technologies that improve the overall operation of our nation’s electricity transmission and distribution networks; to smart meters and digital sensors that help utilities quickly identify and minimize the extent of outages when they do occur. In addition, consumers now have the ability to monitor and manage their electricity use in far greater detail by tapping into the data generated by smart meters. Many of these emerging technologies—which provide tremendous benefits not only for the nation’s electric system but for consumers throughout the United States—will result in an increase in the amount of data collected regarding grid operating characteristics, including customer energy use data. As the nation’s electric infrastructure is modernized, it is critically important to ensure that the collection of data is performed in a manner that yields the greatest benefits for consumers, while continuing to rigorously protect their privacy. Much progress has been made toward this goal to date. Earlier this month, the U.S. Department of Energy’s (DOE’s) Office of Electricity Delivery and Energy Reliability, in coordination with the Federal Smart Grid Task Force, finalized a 22-month multi-stakeholder effort to develop a Voluntary Code of Conduct (VCC) for utilities and third parties on protecting electricity consumers’ Customer Data which includes energy usage information.

  9. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    What is the Smart Grid? Illinois Smart Grid Initiative Joe Miller - Modern Grid Strategy Team June 3, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 What is the role of the MGS? Define a vision for the Modern Grid Reach out to stakeholders to gain consensus Assist in the identification and resolution of

  10. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PSC Missouri - Utility Meeting Joe Miller, Steve Pullins - Modern Grid Team January 9, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y Agenda Topics What is the Modern Grid Strategy? What is the Modern Grid? Why do we need to modernize the grid? What are some of the benefits? How do we achieve a Modern

  11. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Modern Grid Wisconsin Public Utility Institute and UW Energy Institute Joe Miller, Steve Pullins, Steve Bossart - Modern Grid Team April 29, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y Today's Objectives To share our views on several Modern Grid concepts: What is the Modern Grid Strategy? What is the

  12. Grid Software and Services

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    allow you to access NERSC (and other Grid enabled computing facilities) via grid interfaces. Grid certificates are credentials that must be initialized for use with grid tools. ...

  13. Potential Benefits from Improved Energy Efficiency of KeyElectrical Products: The Case of India

    SciTech Connect

    McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert,Virginie; McMahon, James E.

    2005-12-20

    The goal of this project was to estimate the net benefits that cost-effective improvements in energy efficiency can bring to developing countries. The study focused on four major electrical products in the world's second largest developing country, India. These products--refrigerators, room air conditioners, electric motors, and distribution transformers--are important targets for efficiency improvement in India and in other developing countries. India is an interesting subject of study because of it's size and rapid economic growth. Implementation of efficient technologies in India would save billions in energy costs, and avoid hundreds of megatons of greenhouse gas emissions. India also serves as an example of the kinds of improvement opportunities that could be pursued in other developing countries.

  14. Elforsk Smart grid programme (Smart Grid Project) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Grid Automation Transmission Smart Grid Projects - Grid Automation Distribution Smart Grid Projects...

  15. Armor for the Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Armor for the Grid Armor for the Grid September 23, 2016 - 10:32am Addthis Armor for the Grid Karen Bass Idaho National Laboratory The grid is vulnerable to attack. Scientists at Idaho National Laboratory designed this ballistic barrier system to protect it. Until 2013, an electricity substation in California was surrounded by nothing more than a chain link fence, just like thousands of others across the United States. That fence proved ineffective when gunmen fired up to 150 rounds at the

  16. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NETL Modern Grid Strategy Overview ABB 2008 Power World Conference Bruce Renz January 14, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y The Modern Grid Strategy (MGS) President Bush has asked the U.S. Department of Energy to lead a national effort to modernize and expand the electric grid. The Office of

  17. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Basics 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Joe Miller, Modern Grid Strategy Team Lead Grid Econ - The Economics of a Smarter Electric Grid March 16, 2009 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y This material is based upon work supported by the Department of Energy under Award Number DE-AC26- 04NT41817 This presentation was prepared as an

  18. Cybersecurity and the Smarter Grid (October 2014) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and the Smarter Grid (October 2014) Cybersecurity and the Smarter Grid (October 2014) An article by OE's Carol Hawk and Akhlesh Kaushiva in The Electricity Journal discusses cybersecurity for the power grid and how DOE and the energy sector are partnering to keep the smart grid reliable and secure. The article also presents insights of four Smart Grid Investment Grant (SGIG) recipients that are advancing state of the art of power grid security by designing cybersecurity into the foundation of

  19. Case Study - Minnesota Power - Accelerating Grid Modernization in Minnesota - November 2012.pdf

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Study-Minnesota Power November 2012 1 SGIG Accelerates Grid Modernization in Minnesota Headquartered in Duluth, Minnesota Power (MP) serves approximately 144,000 customers and manages almost 9,000 miles of power lines and over 160 substations. Grid modernization is a top corporate priority and is driven by needs to upgrade the company's electric distribution and metering systems, load control programs, and customer engagement strategies for improved reliability and energy efficiency, lower

  20. Intelligent Grid Technologies - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Intelligent Grid Technologies Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (611 KB) Technology Marketing Summary With the increasing demand for new energy distribution methods including increased efficiency and alternative sources, Intelligent Grid technologies are on the cutting edge of demand. The

  1. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Structuring the Smart Grid Framework: Application of Complex Systems Engineering Joe Miller - DOE / NETL Modern Grid Team Lead Committee on Science, Engineering, and Public Policy May 15, 2009 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y This material is based upon work supported by the Department of Energy

  2. Method and apparatus for improving the performance of a nuclear power electrical generation system

    DOEpatents

    Tsiklauri, Georgi V.; Durst, Bruce M.

    1995-01-01

    A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.

  3. Off-Grid or Stand-Alone Renewable Energy Systems | Department...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    energy systems Grid-connected home energy systems Small solar electric systems Small wind electric systems Microhydropower systems Hybrid wind and solar electric systems...

  4. Duke Energy Carolinas, LLC Smart Grid Project | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    grid operators' ability to visualize and manage the transmission system, improving reliability and grid operations. Equipment Synchrophasor...

  5. Welcome to #GridWeek on Energy.gov | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Our GridWeek infographic shows how electricity is generated, transmitted and ... Understanding the Grid Partnering with Vermont for an Innovative Approach to Resilience

  6. Smart Grid Integration Laboratory

    SciTech Connect

    Troxell, Wade

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of

  7. Department of Energy Offers $17 Million Conditional Commitment to Improve Reliability of New York State's Electrical Grid

    Energy.gov [DOE]

    First Battery-Based Energy Storage System Project to Be Selected by DOE for a Conditional Loan Guarantee Commitment

  8. Argonne National Laboratory Smart Grid Technology Interactive Model

    ScienceCinema

    Ted Bohn

    2016-07-12

    As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid to not only handle the new load, but make electricity cheap and efficient for everyone? Argonne engineer Ted Bohn explains a model of a "smart grid" that gives consumers the power to choose their own prices and sources of electricity.

  9. Argonne National Laboratory Smart Grid Technology Interactive Model

    SciTech Connect

    Ted Bohn

    2009-10-13

    As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid to not only handle the new load, but make electricity cheap and efficient for everyone? Argonne engineer Ted Bohn explains a model of a "smart grid" that gives consumers the power to choose their own prices and sources of electricity.

  10. Electricity Delivery and Energy Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Delivery and Energy Reliability The Office of Electricity Delivery and Energy Reliability ... to energy supply disruptions, such as electricity and fuel outages. * Smart Grid (14.4 ...

  11. Sandia Energy - North American Electric Reliability Corporation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    North American Electric Reliability Corporation (NERC) Report Posted Home Energy Assurance Infrastructure Security Grid Integration News News & Events Transmission Grid Integration...

  12. 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Discussion | Department of Energy Smart Grid Panel Discussion 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel Discussion The Office of Electricity Delivery and Energy Reliability held its bi-annual peer review of the Smart Grid Research and Development Program on June 7-8, 2012. More than 30 projects were presented at San Diego Gas & Electric's Energy Innovation Center. Presentations from the Day 2 Smart Grid panel discussion are below. Moderator: Lee Kreval, SDG&E

  13. 2015 News | Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    5 News Below are news stories related to Grid Modernization. RSS Learn about RSS. December 9, 2015 2014 Data Book Shows Increased Use of Renewable Electricity The 2014 Renewable Energy Data Book shows that U.S. renewable electricity grew to 15.5 percent of total installed capacity and 13.5 percent of total electricity generation. Published annually by the National Renewable Energy Laboratory (NREL) on behalf of the Energy Department's Office of Energy Efficiency and Renewable Energy, the Data

  14. Sandia Energy - Transmission Grid Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transmission Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Transmission Grid Integration Transmission Grid...

  15. Sandia Energy - Distribution Grid Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Distribution Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Distribution Grid Integration Distribution Grid...

  16. Chapter 3: Enabling Modernization of the Electric Power System Technology Assessment | Electric Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Energy Storage Chapter 3: Technology Assessments Introduction Electric energy storage technologies (EESTs) have the potential to significantly improve the operating capabilities of the grid as well as mitigate infrastructure investments. The key characteristic of energy storage technologies is their ability to store electricity produced at one time for use at another time, balancing supply and demand. This capability can be used to address a number of challenges facing the power sector

  17. Scalable Real Time Data Management for Smart Grid

    SciTech Connect

    Yin, Jian; Kulkarni, Anand V.; Purohit, Sumit; Gorton, Ian; Akyol, Bora A.

    2011-12-16

    This paper presents GridMW, a scalable and reliable data middleware for smart grids. Smart grids promise to improve the efficiency of power grid systems and reduce green house emissions through incorporating power generation from renewable sources and shaping demand to match the supply. As a result, power grid systems will become much more dynamic and require constant adjustments, which requires analysis and decision making applications to improve the efficiency and reliability of smart grid systems.

  18. A new approach to power quality and electricity reliability monitoring-case study illustrations of the capabilities of the I-GridTM system

    SciTech Connect

    Divan, Deepak; Brumsickle, William; Eto, Joseph

    2003-04-01

    This report describes a new approach for collecting information on power quality and reliability and making it available in the public domain. Making this information readily available in a form that is meaningful to electricity consumers is necessary for enabling more informed private and public decisions regarding electricity reliability. The system dramatically reduces the cost (and expertise) needed for customers to obtain information on the most significant power quality events, called voltage sags and interruptions. The system also offers widespread access to information on power quality collected from multiple sites and the potential for capturing information on the impacts of power quality problems, together enabling a wide variety of analysis and benchmarking to improve system reliability. Six case studies demonstrate selected functionality and capabilities of the system, including: Linking measured power quality events to process interruption and downtime; Demonstrating the ability to correlate events recorded by multiple monitors to narrow and confirm the causes of power quality events; and Benchmarking power quality and reliability on a firm and regional basis.

  19. Method for protecting an electric generator

    DOEpatents

    Kuehnle, Barry W.; Roberts, Jeffrey B.; Folkers, Ralph W.

    2008-11-18

    A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

  20. OE Announces Funding to Improve the Cybersecurity of the Nation's Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grid | Department of Energy Funding to Improve the Cybersecurity of the Nation's Power Grid OE Announces Funding to Improve the Cybersecurity of the Nation's Power Grid January 20, 2016 - 11:20am Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability Editor's note: the application deadline for the "Industry Partnerships for Cybersecurity of Energy Delivery Systems (CEDS) Research, Development and Demonstration for the

  1. Integrated Devices and Systems | Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Integrated Devices and Systems NREL develops and evaluates devices and integrated systems that can help the electric grid function more efficiently, manage variable generation from renewable sources, and be more resilient under adverse conditions. Photo of a researcher in a lab NREL research focuses on devices and systems on both sides of the electric meter. Devices connect to the electric grid as individual energy generation, storage, delivery, and consumption technologies-such as solar

  2. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2030 Distributed Electricity Environment - independent, sustainable, and sassy International Student Energy Summit Presented by Steve Pullins, Modern Grid Team June 2009 Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Conducted by the National Energy Technology Laboratory Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Powering the 21 st Century Economy This material is based upon work supported by the Department

  3. DOE Grid Tech Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tech Team DOE Grid Tech Team DOE Grid Tech Team Overview Access to reliable, cost-effective electricity is critical for economic growth and continued American prosperity. But our electric infrastructure is facing new stresses as a result of aging assets, environmental sustainability requirements, consumers adding energy back into the electric system, increasing global temperatures, extreme weather events, and growing cybersecurity concerns. We are moving towards a more digitized economy with a

  4. GRID Alternatives

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    w w w. g r i d a l t e r n a t i v e s . o r g GRID Alternatives Tribal Program Project Development for Long-term Tribal Energy July 27, 2016 Tim Willink, Tribal Program Director 303-968-1633 twillink@gridalternatives.org Vision and Mission Mission: Make renewable energy technology and job training accessible to underserved communities Vision: A successful transition to clean energy that includes everyone People. Planet. Employment. GRID Alternatives History 2001: Founded by Erica Mackie and Tim

  5. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY

  6. DOE Electricity Advisory Committee

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electricity Advisory Committee March 2015 1 MEMORANDUM TO: Honorable Patricia Hoffman, Assistant Secretary for Electricity Delivery and Energy Reliability, U.S. Department of Energy FROM: Electricity Advisory Committee (EAC) Richard Cowart, Chair DATE: March 27, 2015 RE: Recommendations on Smart Grid Research and Development Needs _________________________________________________________________________ Overview The Smart Grid is envisioned to provide the enhancements to ensure higher levels of

  7. Improved Limit on the Permanent Electric Dipole Moment of {sup 199}Hg

    SciTech Connect

    Griffith, W. C.; Swallows, M. D.; Loftus, T. H.; Romalis, M. V.; Heckel, B. R.; Fortson, E. N.

    2009-03-13

    We report the results of a new experimental search for a permanent electric dipole moment of {sup 199}Hg utilizing a stack of four vapor cells. We find d({sup 199}Hg)=(0.49{+-}1.29{sub stat}{+-}0.76{sub syst})x10{sup -29} e cm, and interpret this as a new upper bound, |d({sup 199}Hg)|<3.1x10{sup -29} e cm (95% C.L.). This result improves our previous {sup 199}Hg limit by a factor of 7, and can be used to set new constraints on CP violation in physics beyond the standard model.

  8. Customer Value Proposition Smart Grid (KEL) (Smart Grid Project...

    OpenEI (Open Energy Information) [EERE & EIA]

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  9. Department of Energy Launches New Series on Grid Modernization

    Energy.gov [DOE]

    The Department of Energy is highlighting grid modernization efforts this week with a series that explains how investing in the electric power grid is delivering significant benefits to consumers, businesses, and communities across the nation.

  10. Enhancing the Smart Grid: Integrating Clean Distributed and Renewable...

    Energy Saver

    Electricity Advisory Committee Meeting Presentations October 2011 - Microgrids Smart Grid R&D Multi-Year Program Plan (2010-2014) - September 2012 Update Smart Grid R&D Multi-Year ...

  11. "Grid Resilience to Natural Disasters: Challenges and Opportunities...

    Energy.gov [DOE] (indexed site)

    Dan Ton, Program Manager of Smart Grid R&D in the Office of Electricity Delivery and Energy Reliability, has co-authored an article entitled "Grid Resilience to Natural Disasters: ...

  12. NREL Confirms Large Potential for Grid Integration of Wind, Solar Power (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    To fully harvest the nation's bountiful wind and solar resources, it is critical to know how much electrical power from these renewable resources could be integrated reliably into the grid. To inform the discussion about the potential of such variable sources, the National Renewable Energy Laboratory (NREL) launched two key regional studies, examining the east and west sections of the U.S. power grid. The studies show that it is technically possible for U.S. power systems to integrate 20%-35% renewable electricity if infrastructure and operational improvements can be made.

  13. Estimates of achievable potential for electricity efficiency improvements in U.S. residences

    SciTech Connect

    Brown, Richard

    1993-05-01

    This paper investigates the potential for public policies to achieve electricity efficiency improvements in US residences. This estimate of achievable potential builds upon a database of energy-efficient technologies developed for a previous study estimating the technical potential for electricity savings. The savings potential and cost for each efficiency measure in the database is modified to reflect the expected results of policies implemented between 1990 and 2010. Factors included in these modifications are: the market penetration of efficiency measures, the costs of administering policies, and adjustments to the technical potential measures to reflect the actual energy savings and cost experienced in the past. When all adjustment factors are considered, this study estimates that policies can achieve approximately 45% of the technical potential savings during the period from 1990 to 2010. Thus, policies can potentially avoid 18% of the annual frozen-efficiency baseline electricity consumption forecast for the year 2010. This study also investigates the uncertainty in best estimate of achievable potential by estimating two alternative scenarios -- a

  14. The effect of availability improvement of a nuclear power plant on the cost of generating electricity

    SciTech Connect

    Nejat, S.M.R.

    1980-01-01

    The objective of this investigation is to study the economic benefits in operating a nuclear power plant as a result of improving the availabilitty of the secondary (steam) loop of the plant. A new method has been developed to obtain availability, frequency of failure, probability and frequency of operation, cycle time, and uptime for different capacity states of a parallel-series system having components with failure and repair rates distributed exponentially. The method has been applied to different subsystems, systems, and the seconary loop as a whole. The effect of having spare parts for several components, as measured by savings in the generation of electricity, is also studied. The Kettelle algorithm was applied to determine optimal spare part allocation in order to achieve maximum availability or minimum cost of electricity, subject to a fixed spare parts budget. It has been shown that the optimum spare parts allocation and the budget level which gives optimum availability, do not necessarily give minimum electricity cost. The savings per year for optimal spare parts allocation and different spare parts budgets were obtained. The results show that the utilty will save its customers a large amount of money if spare parts are purchased, especially at the beginning of the plant operation, and are allocated judiciously.

  15. Smart Grid Enabled EVSE

    SciTech Connect

    None, None

    2014-10-15

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  16. NSTAR Smart Grid Pilot

    SciTech Connect

    Rabari, Anil; Fadipe, Oloruntomi

    2014-03-31

    NSTAR Electric & Gas Corporation (“the Company”, or “NSTAR”) developed and implemented a Smart Grid pilot program beginning in 2010 to demonstrate the viability of leveraging existing automated meter reading (“AMR”) deployments to provide much of the Smart Grid functionality of advanced metering infrastructure (“AMI”), but without the large capital investment that AMI rollouts typically entail. In particular, a central objective of the Smart Energy Pilot was to enable residential dynamic pricing (time-of-use “TOU” and critical peak rates and rebates) and two-way direct load control (“DLC”) by continually capturing AMR meter data transmissions and communicating through customer-sited broadband connections in conjunction with a standardsbased home area network (“HAN”). The pilot was supported by the U.S. Department of Energy’s (“DOE”) through the Smart Grid Demonstration program. NSTAR was very pleased to not only receive the funding support from DOE, but the guidance and support of the DOE throughout the pilot. NSTAR is also pleased to report to the DOE that it was able to execute and deliver a successful pilot on time and on budget. NSTAR looks for future opportunities to work with the DOE and others in future smart grid projects.

  17. Office of Electricity Delivery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 DOE Resilient Electric Distribution Grid R&D Workshop June 11, 2014 Upton, New York 2014 DOE Resilient Electric Distribution Grid R&D Workshop Report Page i June 24, 2014 Acknowledgment The U.S. Department of Energy (DOE) acknowledges the support provided by the organizations represented at the Resilient Electric Distribution Grid R&D Workshop. The report content is based on the workshop session discussions, with session summary descriptions taken from the report-out presentations

  18. Grid Window Tests on an 805-MHz Pillbox Cavity

    SciTech Connect

    Torun, Y.; Moretti, A.

    2015-06-01

    Muon ionization cooling channel designs use pillbox shaped RF cavities for improved power efficiency and fine control over phasing of individual cavities. For minimum scattering of the muon beam, the ends should be made out of a small thickness of high radiation length material. Good electrical and thermal conductivity are required to reduce power dissipation and remove the heat efficiently. Thin curved beryllium windows with TiN coating have been used successfully in the past. We have built an alternative win- dow set consisting of grids of tubes and tested these on a pillbox cavity previously used with both thin Be and thick Cu windows. The cavity was operated with a pair of grids as well as a single grid against a flat endplate.

  19. Buildings-to-Grid Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Buildings-to-Grid Integration Buildings-to-Grid Integration Integrating buildings and the grid increases energy efficiency, supports incorporation of renewable energy, and balances new loads, such as electric vehicles. Integrating buildings and the grid increases energy efficiency, supports incorporation of renewable energy, and balances new loads, such as electric vehicles. The U.S. Department of Energy's Building Technologies Office is coordinating strategies and activities with stakeholders

  20. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grid-Connected Renewable Energy Systems Grid-Connected Renewable Energy Systems When connecting a home energy system to the electric grid, research and consider equipment required as well as your power provider’s requirements and agreements. | Photo courtesy of Solar Design Associates, Inc. When connecting a home energy system to the electric grid, research and consider equipment required as well as your power provider's requirements and agreements. | Photo courtesy of Solar Design

  1. THE NARRAGANSETT ELECTRIC COMPANY d/b/a NATIONAL GRID- LONG TERM LNG IMPORT- FE DKT. NO. 16-49-LNG

    Energy.gov [DOE]

    The Narragansett Electric Company (DOE/FE Dkt. No. 16-49-LNG) - The Office of Fossil Energy gives notice of receipt of an Application filed April 11, 2016 by The Narragansett Electric Company d/b/a...

  2. Photo of the Week: Grid Friendly | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grid Friendly Photo of the Week: Grid Friendly November 20, 2014 - 4:41pm Addthis Researchers at Pacific Northwest National Laboratory helped develop this integrated circuit to help make home appliances more responsive to the electric grid. When installed in refrigerators, air conditioners, water heaters and other appliances, the 2.5-inch Grid Friendly Appliance Controller can recognize when there's a power grid overload -- and will switch your appliances off and back on again to help conserve

  3. Vision of the Future Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Grid Tech Team » Vision of the Future Grid Vision of the Future Grid Vision of the Future Grid The GTT developed a draft vision (below) which describes a future electricity system and lists several key attributes of that system. In its current form, this vision incorporates comments made by stakeholders during meetings organized by the GTT. The vision will continue to evolve and be refined as the GTT engages with the broader stakeholder community. Vision of the Future Grid A seamless,

  4. Grid Modernization - A View from Abroad | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grid Modernization - A View from Abroad Grid Modernization - A View from Abroad November 21, 2014 - 4:58pm Addthis Thanks for joining us for #GridWeek! | Graphic by Sarah Gerrity, Energy Department. Thanks for joining us for #GridWeek! | Graphic by Sarah Gerrity, Energy Department. Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability While Energy.gov was celebrating #GridWeek this week, I traveled to Japan for the 6th International

  5. Grid-Interactive Renewable Water Heating Economic and Environmental Value

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 Grid-Interactive Renewable Water Heating Economic and Environmental Value Grid-interactive renewable water heaters have smart controls that quickly change their charge rate and charge level, factoring in renewable generation and other critical needs of the grid; thereby significantly reducing carbon emissions and bringing a new dimension of conservation and efficiency to the electric grid. The Steffes grid-interactive renewable water heater controller provides utilities with an affordable and

  6. Building-Grid Integration Research and Development Innovators Program (BIRD IP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Building Technologies Office (BTO) within the Department of Energy (DOE) is seeking graduate students interested in exploring building-grid integration and development (R&D) technology concepts that can improve the operating efficiency of buildings and increase penetration of distributed renewable energy generation, leading to more efficient buildings and cleaner generation of electricity.

  7. Energy Department Invests Over $34 Million to Improve Protection of the Nation’s Energy Infrastructure

    Energy.gov [DOE]

    Energy Department (DOE) today announced more than $34 million for two projects that will improve the protection of the U.S. electric grid and oil and natural gas infrastructure from cyber threats.

  8. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    An Emerging Option Joe Miller - Modern Grid Team IRPS Conference December 10, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Agenda What is it? Where's the value? What does it mean for consumers? Some current activities Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 3

  9. 2012 National Electricity Forum

    Energy Saver

    and Planning, Arizona Public Service * Jan Strack, Grid Planning, Regulatory & Economics Manager, San Diego Gas & Electric * Mario Villar, Vice President, Transmission, NV ...

  10. Electricity | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Under OE's Smart Grid Investment Grant (SGIG) program, six utilities evaluated operations and customer charging behaviors for in-home and public electric vehicle charging stations. ...

  11. To Protect the Grid from Hackers, You Need to Break It | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy To Protect the Grid from Hackers, You Need to Break It To Protect the Grid from Hackers, You Need to Break It June 7, 2016 - 11:39am Addthis As the electric grid becomes smarter, it also becomes more vulnerable to hackers. | Creative Commons. As the electric grid becomes smarter, it also becomes more vulnerable to hackers. | Creative Commons. Kevin Eber National Renewable Energy Laboratory Today's electric grid increasingly uses "smart" devices that can be controlled

  12. NWTC Transmission and Grid Integration (Revised) (Fact Sheet)

    SciTech Connect

    Not Available

    2010-04-01

    The rapid growth of alternative power sources, especially wind power, is creating challenges that affect the existing electric grid. To keep up with this rapid growth, researchers in the Transmission and Grid Integration Group provide scientific, engineering, and analytical expertise to help advance alternative energy and accelerate its integration into the nation's electrical grid. For example, we evaluate U.S. wind energy resources and collect and analyze data about the impact of wind development on the electrical grid. Researchers in the Transmission and Grid Integration Group offer assistance to utility industry partners in the following integration areas.

  13. Smart Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    in your browser. 2010, the Battelle Memorial Institute, 11 electric utilities across five states (Idaho, Montana, Oregon, Washington and Wyoming), six technology partners, two...

  14. ONE of SIX SMART GRID STAKEHOLDER BOOKS

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ONE of SIX SMART GRID STAKEHOLDER BOOKS utilities consumer advocates regulators environmental groups technology providers policymakers WHAT THE SMART GRID MEANS TO AMERICANS. A smarter electrical grid can save us energy, protect consumers, safeguard our environment and ultimately save money for all Americans. 2 DISCLAIMER PRINTED IN THE UNITED STATES OF AMERICA. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

  15. Microsoft Word - Improved Interfaces and Decision Support_FINAL_v2.0.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    B5: A Systems View of the Modern Grid IMPROVED INTERFACES AND DECISION SUPPORT Conducted by the National Energy Technology Laboratory for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability March 2007 Office of Electricity Delivery and Energy Reliability Page B5-1 Modern Grid Systems View: Appendix B5 v2.0 Improved Interfaces and Decision Support TABLE OF CONTENTS Executive Summary........................................................................2 Current

  16. Smart Grid e-Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Development » Smart Grid » Federal Smart Grid Task Force » Smart Grid e-Forum Smart Grid e-Forum DOE conducted a series of Smart Grid E-Forums to discuss various issues surrounding Smart Grid including costs, benefits, value proposition to consumers, implementation, and deployment. Department of Energy-Edison Electric Institute e-Forum: What is a Smart Grid? May 19, 2008, 2:00 pm-4:00 pm The objective of this e-Forum was to share emerging industry views on what constitutes a Smart

  17. Spacer grid assembly and locking mechanism

    DOEpatents

    Snyder, Jr., Harold J.; Veca, Anthony R.; Donck, Harry A.

    1982-01-01

    A spacer grid assembly is disclosed for retaining a plurality of fuel rods in substantially parallel spaced relation, the spacer grids being formed with rhombic openings defining contact means for engaging from one to four fuel rods arranged in each opening, the spacer grids being of symmetric configuration with their rhombic openings being asymmetrically offset to permit inversion and relative rotation of the similar spacer grids for improved support of the fuel rods. An improved locking mechanism includes tie bars having chordal surfaces to facilitate their installation in slotted circular openings of the spacer grids, the tie rods being rotatable into locking engagement with the slotted openings.

  18. Electrical Load Modeling and Simulation

    SciTech Connect

    Chassin, David P.

    2013-01-01

    Electricity consumer demand response and load control are playing an increasingly important role in the development of a smart grid. Smart grid load management technologies such as Grid FriendlyTM controls and real-time pricing are making their way into the conventional model of grid planning and operations. However, the behavior of load both affects, and is affected by load control strategies that are designed to support electric grid planning and operations. This chapter discussed the natural behavior of electric loads, how it interacts with various load control and demand response strategies, what the consequences are for new grid operation concepts and the computing issues these new technologies raise.

  19. NREL Teams with SolarCity to Maximize Solar Power on Electrical...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Teams with SolarCity to Maximize Solar Power on Electrical Grids Both are working together ... issues associated with large amounts of distributed solar energy on electrical grids. ...

  20. Grid Energy Storage - December 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grid Energy Storage - December 2013 Grid Energy Storage - December 2013 Modernizing the electric grid will help the nation meet the challenge of handling projected energy needs-including addressing climate change by relying on more energy from renewable sources-in the coming decades, while maintaining a robust and resilient electricity delivery system. By some estimates, the United States will need somewhere between 4 and 5 tera kilowatt-hours of electricity annually by 2050. Those planning and