National Library of Energy BETA

Sample records for ii solar coordinates

  1. Solar Neutrinos. II. Experimental

    DOE R&D Accomplishments

    Davis, Raymond Jr.

    1964-01-01

    A method is described for observing solar neutrinos from the reaction Cl{sup 37}(nu,e{sup -})Ar{sup 37} in C{sub 2}Cl{sub 4}. Two 5 00-gal tanks of C{sub 2}Cl{sub 4} were placed in a limestone mine (1800 m.w.e.) and the resulting Ar{sup 37} activity induced by cosmic mesons( mu ) was measured to determine the necessary conditions for solar neutrino observations. (R.E.U.)

  2. Luz II | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Jump to: navigation, search Name: Luz II Place: Jerusalem, Israel Zip: 91450 Sector: Solar Product: Jerusalem-based utility-scale solar power plant developer. Coordinates:...

  3. Solar Energy Education. Reader, Part II. Sun story. [Includes...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reader, Part II. Sun story. Includes glossary Citation Details In-Document Search Title: Solar Energy Education. Reader, Part II. Sun story. Includes glossary You are ...

  4. Syntheses, structures and photoelectric properties of a series of Cd(II)/Zn(II) coordination polymers and coordination supramolecules

    SciTech Connect

    Jin Jing; Han Xiao; Meng Qin; Li Dan; Chi Yuxian; Niu Shuyun

    2013-01-15

    Five Cd(II)/Zn(II) complexes [Cd(1,2-bdc)(pz){sub 2}(H{sub 2}O)]{sub n} (1), [Cd1Cd2(btec)(H{sub 2}O){sub 6}]{sub n} (2), [Cd(3,4-pdc) (H{sub 2}O)]{sub n} (3), [Zn(2,5-pdc)(H{sub 2}O){sub 4}]{center_dot}2H{sub 2}O (4) and {l_brace} [Zn(2,5-pdc)(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O{r_brace} {sub n} (5) (H{sub 2}bdc=1,2-benzenedicarboxylic acid, pz=pyrazole, H{sub 4}btec=1,2,4,5-benzenetetracarboxylic acid, H{sub 2}pdc=pyridine-dicarboxylic acid) were hydrothermally synthesized and characterized by single-crystal X-ray diffraction, surface photovoltage spectroscopy, XRD, TG analysis, IR and UV-vis spectra and elemental analysis. Structural analyses show that complexes 1-3 are 1D, 2D and 3D Cd(II) coordination polymers, respectively. Complex 4 is a mononuclear Zn(II) complex. Complex 5 is a 3D Zn(II) coordination polymer. The surface photoelectric properties of complexes were investigated by SPS. The results indicate that all complexes exhibit photoelectric responses in the range of 300-600 nm, which reveals that they all possess certain photoelectric conversion properties. By the comparative analyses, it can be found that the species and coordination micro-environment of central metal ion, the species and property of ligands affect the intensity and scope of photoelectric response. - Graphical abstract: Five Cd(II)/Zn(II) complexes have been hydrothermally synthesized and characterized. The photoelectric properties were studied with SPS. The species and coordination micro-environment of central metal ion, the species and property of ligands all affect the photoelectric responses. Highlights: Black-Right-Pointing-Pointer Five Cd/Zn complexes have been synthesized and characterized. Black-Right-Pointing-Pointer The SPS results indicate they possess obvious photoelectric conversion property. Black-Right-Pointing-Pointer The species and coordination environment of central metal ion affect SPS. Black-Right-Pointing-Pointer The species and property of ligands affect SPS

  5. "Coordinated Solar Energetic Events", Professor Alan M. Title...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The remote triggering makes flare prediction based upon local energy build up models less valuable, but suggests that with proper coverage prediction of solar events with potential ...

  6. Copper Mountain Expansion I and II Solar Power Plant | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Mountain Expansion I and II Solar Power Plant Jump to: navigation, search Name Copper Mountain Expansion I and II Solar Power Plant Facility Copper Mountain Expansion I and II...

  7. "Coordinated Solar Energetic Events", Professor Alan M. Title, Lockheed

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Martin Advance Technology Center/Stanford University | Princeton Plasma Physics Lab September 19, 2012, 4:15pm Colloquia "Coordinated Solar Energetic Events", Professor Alan M. Title, Lockheed Martin Advance Technology Center/Stanford University The Atmospheric Imaging Assembly (AIA) on the Solar Dynamic Observatory with obtains full disk images that span the temperature range from 6000 to 20,000,000K with arcsecond resolution and a 12 second cadence. Because of the enhanced

  8. Five new Mn(II)/Co(II) coordination polymers constructed from flexible multicarboxylate ligands with varying magnetic properties

    SciTech Connect

    Liu, Sui-Jun; Zeng, Yong-Fei; Hu, Xin; Xue, Li; Han, Song-De; Jia, Ji-Min; Hu, Tong-Liang

    2013-08-15

    Five new Mn(II)/Co(II) coordination polymers [Mn{sub 2}(Adi){sub 2}(DMA)]{sub n} (1), [Mn{sub 2}(Adi){sub 2}(DMF)]{sub n} (2), [Mn{sub 4}(Adi){sub 4}(DMF){sub 2}]{sub n} (3), [Co{sub 4}(Adi){sub 4}(DMF){sub 2}]{sub n} (4) and ([Co{sub 3}(Cit){sub 2}(H{sub 2}O){sub 3}]·(H{sub 2}O)){sub n} (5) [Adi=adipate anion, Cit=citrate anion, DMA=N,N′-dimethylacetamide and DMF=N,N′-dimethylformamide] have been successfully constructed from two flexible multicarboxylate ligands under solvothermal conditions. Complexes 1 and 2 exhibit 2-D network featured 1-D Mn{sup II} chain, 3 and 4 are 3-D frameworks containing different 1-D carboxylate–metal chain, while 5 shows a 3-D structure based on Co{sub 6} wheel clusters. Magnetic investigations indicate antiferromagnetic behaviors for 1–4 and weak ferromagnetic behavior for 5 because of distinct linkage modes of metal ions. - Graphical abstract: Five new Mn(II)/Co(II) coordination polymers display 2-D/3-D structures containing 1-D carboxylate–metal chains or wheel clusters. Magnetic analyses reveal that they show antiferromagnetic, canted antiferromagnetic and weak ferromagnetic behaviors, respectively. Highlights: ●Five new Mn(II)/Co(II) coordination polymers have been synthesized. ●A complex-based Co{sub 6} wheel cluster was obtained. ●The different magnetic properties of the complexes are discussed.

  9. Solar Electric Generating System II finite element analysis

    SciTech Connect

    Dohner, J.L.; Anderson, J.R.

    1994-04-01

    On June 2, 1992, Landers` earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) and to redesign these joints so that, in the event of future quakes, costly breakage will be avoided. To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8,560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined. The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers` magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.

  10. Complexation and coordination selectivities of the tetradentate ligand 7-[(2-hydroxy-5-sulfophenyl) azo]-8-hydroxyquinoline-5-sulfonic acid with Fe(II), Ni(II), Zn(II), Cd(II) and VO(IV)

    SciTech Connect

    Huang, Hu; Kai, Fumiaki; Hirohata, Masaaki; Nakamura, Masaaki; Matsuzaki, Susumu; Komori, Kenji; Tsunematsu, Yuriko

    1993-12-31

    The new title tetradentate ligand (SPAHQS), containing both phenylazo and 8-quinolinol fragments, was prepared. Proton-dissociation processes of the ligand and complexing equilibria with Fe(II), Ni(II), Zn(II), Cd(II), and VO(IV) were analyzed spectrophotometrically. Coordination modes of SPAHQS with these metal ions have been investigated by means of polarography and Raman spectroscopy in aqueous solution. It was established that the coordination selectivity of SPAHQS for such metal ions is mainly dependent on steric factors in the chelate ring formed, not on HSAB properties. 18 refs., 6 figs., 2 tabs.

  11. Novel Solar Energy Conversion Materials by Design of Mn(II) Oxides

    SciTech Connect

    Lany, S.; Peng, H.; Ndione, P.; Zakutayev, A.; Ginley, D. S.

    2013-01-01

    Solar energy conversion materials need to fulfill simultaneously a number of requirements in regard of their band-structure, optical properties, carrier transport, and doping. Despite their desirable chemical properties, e.g., for photo-electrocatalysis, transition-metal oxides usually do not have desirable semiconducting properties. Instead, oxides with open cation d-shells are typically Mott or charge-transfer insulators with notoriously poor transport properties, resulting from large effective electron/hole masses or from carrier self-trapping. Based on the notion that the electronic structure features (p-d interaction) supporting the p-type conductivity in d10 oxides like Cu2O and CuAlO2 occurs in a similar fashion also in the d5 (high-spin) oxides, we recently studied theoretically the band-structure and transport properties of the prototypical binary d5 oxides MnO and Fe2O3 [PRB 85, 201202(R)]. We found that MnO tends to self-trap holes by forming Mn+III, whereas Fe2O3 self-traps electrons by forming Fe+II. However, the self-trapping of holes is suppressed by when Mn is tetrahedrally coordinated, which suggests specific routes to design novel solar conversion materials by considering ternary Mn(II) oxides or oxide alloys. We are presenting theory, synthesis, and initial characterization for these novel energy materials.

  12. Reexamination of Lead(II) Coordination Preferences in Sulfur-Rich Sites:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Implications for a Critical Mechanism of Lead Poisoning Reexamination of Lead(II) Coordination Preferences in Sulfur-Rich Sites: Implications for a Critical Mechanism of Lead Poisoning T.-C. Weng, & J.E. Penner-Hahn, University of Michigan J.S. Magyar & H.A. Godwin, Northwestern University Lead poisoning can damage the brain and nervous system and is particularly dangerous for young children who are still developing. It is estimated that ~2.2% of all U.S. children aged 1-5 years

  13. Rational assembly of Pb(II)/Cd(II)/Mn(II) coordination polymers based on flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    SciTech Connect

    Yang, Gao-Shan; Liu, Chong-Bo; Liu, Hong; Robbins, Julianne; Zhang, Z. John; Yin, Hong-Shan; Wen, Hui-Liang; Wang, Yu-Hua

    2015-05-15

    Six new coordination polymers, namely, [Pb(L)(H{sub 2}O)] (1), [Pb(L)(phen)] (2), [Pb{sub 2}(L){sub 2}(4,4′-bipy){sub 0.5}] (3), [Cd(L)(phen)] (4), [Cd(L)(4,4′-bipy)]·H{sub 2}O (5) and [Mn(L)(4,4′-bipy)]·H{sub 2}O (6) have been synthesized by the hydrothermal reaction of 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H{sub 2}L) with Pb(II)/Cd(II)/Mn(II) in the presence of ancillary ligands 4,4′-bipyridine (4,4′-bipy) or 1,10-phenanthroline (phen). Complexes 1 and 4–6 exhibit 2-D structures, and complexes 2–3 display 3-D frameworks, of which L{sup 2−} ligands join metal ions to single-stranded helical chains of 1, 3–6 and double-stranded helical chains of 2. Complexes 2 and 3 also contain double-stranded Metal–O helices. Topology analysis reveals that complexes 1 and 4 both represent 4-connected sql net, 2 represents 6-connected pcu net, 3 exhibits a novel (3,12)-connected net, while 5 and 6 display (3,5)-connected gek1 net. The six complexes exhibit two kinds of inorganic–organic connectivities: I{sup 0}O{sup 2} for 1, 4–6, and I{sup 1}O{sup 2} for 2–3. The photoluminescent properties of 4–5 and the magnetic properties of 6 have been investigated. - Graphical abstract: Six new Pb(II)/Cd(II)/Mn(II) coordination polymers with helical structures based on flexible V-shaped dicarboxylate ligand have been synthesized and structurally characterized. Photoluminescent and magnetic properties have been investigated. - Highlights: • Six novel M(II) coordination polymers with 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid and N-donor ligands. • Complexes 1–6 show diverse intriguing helical characters. • The luminescent properties of complexes 1–5 were investigated. • Complex 6 shows antiferromagnetic coupling.

  14. Measuring solar reflectance Part II: Review of practical methods...

    Office of Scientific and Technical Information (OSTI)

    solar position, and found that clear sky air mass 1 global horizontal (AM1GH) solar ... Rsub g,0more to within 0.006. The air mass 1.5 solar reflectance measured with ...

  15. Solar spectral optical properties of pigments--Part II: survey...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Solar spectral optical properties of ... K (absorption) as functions ofwavelength in the solar spectral range of 300 to 2500 nm. ...

  16. A novel copper(II) coordination at His186 in full-length murine prion protein

    SciTech Connect

    Watanabe, Yasuko; Hiraoka, Wakako; Igarashi, Manabu; Ito, Kimihito; Shimoyama, Yuhei; Horiuchi, Motohiro; Yamamori, Tohru; Yasui, Hironobu; Kuwabara, Mikinori; Inagaki, Fuyuhiko; Inanami, Osamu

    2010-04-09

    To explore Cu(II) ion coordination by His{sup 186} in the C-terminal domain of full-length prion protein (moPrP), we utilized the magnetic dipolar interaction between a paramagnetic metal, Cu(II) ion, and a spin probe introduced in the neighborhood of the postulated binding site by the spin labeling technique (SDSL technique). Six moPrP mutants, moPrP(D143C), moPrP(Y148C), moPrP(E151C), moPrP(Y156C), moPrP(T189C), and moPrP(Y156C,H186A), were reacted with a methane thiosulfonate spin probe and a nitroxide residue (R1) was created in the binding site of each one. Line broadening of the ESR spectra was induced in the presence of Cu(II) ions in moPrP(Y148R1), moPrP(Y151R1), moPrP(Y156R1), and moPrP(T189R1) but not moPrP(D143R1). This line broadening indicated the presence of electron-electron dipolar interaction between Cu(II) and the nitroxide spin probe, suggesting that each interspin distance was within 20 A. The interspin distance ranges between Cu(II) and the spin probes of moPrP(Y148R1), moPrP(Y151R1), moPrP(Y156R1), and moPrP(T189R1) were estimated to be 12.1 A, 18.1 A, 10.7 A, and 8.4 A, respectively. In moPrP(Y156R1,H186A), line broadening between Cu(II) and the spin probe was not observed. These results suggest that a novel Cu(II) binding site is involved in His186 in the Helix2 region of the C-terminal domain of moPrP{sup C}.

  17. SunShot Podcast: Concentrating Solar Power Thermal Storage Part II |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Podcast: Concentrating Solar Power Thermal Storage Part II SunShot Podcast: Concentrating Solar Power Thermal Storage Part II This SunShot Initiative podcast features Ranga Pitchumani of the U.S. Department of Energy Solar Program. In the second segment of a three-part series focused on thermal energy storage for concentrating solar power (CSP), this episode covers the most common storage system in use today and SunShot's role in advancing thermal energy storage

  18. Two coordination polymers of manganese(II) isophthalate and their preparation, structures, and magnetic properties

    SciTech Connect

    Chen Jinxi; Wang Jingjing; Ohba, Masaaki

    2012-01-15

    Two manganese coordination polymers, [Mn{sub 2}(ip){sub 2}(dmf)]{center_dot}dmf (1) and [Mn{sub 4}(ip){sub 4}(dmf){sub 6}]{center_dot}2dmf (2) (ip=isophthalate; dmf=N,N-dimethylformamide), have been synthesized and characterized. X-ray crystal structural data reveal that compound 1 crystallizes in triclinic space group P-1, a=9.716(3) A, b=12.193(3) A, c=12.576(3) A, {alpha}=62.19(2) Degree-Sign , {beta}=66.423(17) Degree-Sign , {gamma}=72.72(2) Degree-Sign , Z=2, while compound 2 crystallizes in monoclinic space group Cc, a=19.80(3) A, b=20.20(2) A, c=18.01(3) A, {beta}=108.40(4) Degree-Sign , Z=4. Variable-temperature magnetic susceptibilities of compounds 1 and 2 exhibit overall weak antiferromagnetic coupling between the adjacent Mn(II) ions. - Graphical abstract: Three-dimensional porous and two-dimensional layered manganese isophthalates have been prepared. Magnetic susceptibility measurements exhibit overall weak antiferromagnetic interactions between the Mn(II) ions in both compounds. Highlights: Black-Right-Pointing-Pointer Two manganese isophthalates have been prepared. Black-Right-Pointing-Pointer Compound 1 adopts a three-dimensional porous structure. Black-Right-Pointing-Pointer Compound 2 adopts a two-dimensional layered structure. Black-Right-Pointing-Pointer Magnetic properties of both compounds are investigated.

  19. Multi-crystalline II-VI based multijunction solar cells and modules

    SciTech Connect

    Hardin, Brian E.; Connor, Stephen T.; Groves, James R.; Peters, Craig H.

    2015-06-30

    Multi-crystalline group II-VI solar cells and methods for fabrication of same are disclosed herein. A multi-crystalline group II-VI solar cell includes a first photovoltaic sub-cell comprising silicon, a tunnel junction, and a multi-crystalline second photovoltaic sub-cell. A plurality of the multi-crystalline group II-VI solar cells can be interconnected to form low cost, high throughput flat panel, low light concentration, and/or medium light concentration photovoltaic modules or devices.

  20. Solar Energy Education. Reader, Part II. Sun story. [Includes glossary

    SciTech Connect

    Not Available

    1981-05-01

    Magazine articles which focus on the subject of solar energy are presented. The booklet prepared is the second of a four part series of the Solar Energy Reader. Excerpts from the magazines include the history of solar energy, mythology and tales, and selected poetry on the sun. A glossary of energy related terms is included. (BCS)

  1. A cobalt(II) bis(salicylate)-based ionic liquid that shows thermoresponsive and selective water coordination

    SciTech Connect

    Kohno, Y; Cowan, MG; Masuda, M; Bhowmick, I; Shores, MP; Gin, DL; Noble, RD

    2014-01-01

    A metal-containing ionic liquid (MCIL) has been prepared in which the [CoII(salicylate)(2)](2-) anion is able to selectively coordinate two water molecules with a visible colour change, even in the presence of alcohols. Upon moderate heating or placement in vacuo, the hydrated MCIL undergoes reversible thermochromism by releasing the bound water molecules.

  2. Measuring solar reflectance - Part II: Review of practical methods

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-09-15

    A companion article explored how solar reflectance varies with surface orientation and solar position, and found that clear sky air mass 1 global horizontal (AM1GH) solar reflectance is a preferred quantity for estimating solar heat gain. In this study we show that AM1GH solar reflectance R{sub g,0} can be accurately measured with a pyranometer, a solar spectrophotometer, or an updated edition of the Solar Spectrum Reflectometer (version 6). Of primary concern are errors that result from variations in the spectral and angular distributions of incident sunlight. Neglecting shadow, background and instrument errors, the conventional pyranometer technique can measure R{sub g,0} to within 0.01 for surface slopes up to 5:12 [23 ], and to within 0.02 for surface slopes up to 12:12 [45 ]. An alternative pyranometer method minimizes shadow errors and can be used to measure R{sub g,0} of a surface as small as 1 m in diameter. The accuracy with which it can measure R{sub g,0} is otherwise comparable to that of the conventional pyranometer technique. A solar spectrophotometer can be used to determine R{sub g,0}{sup *}, a solar reflectance computed by averaging solar spectral reflectance weighted with AM1GH solar spectral irradiance. Neglecting instrument errors, R{sub g,0}{sup *} matches R{sub g,0} to within 0.006. The air mass 1.5 solar reflectance measured with version 5 of the Solar Spectrum Reflectometer can differ from R{sub g,0}{sup *} by as much as 0.08, but the AM1GH output of version 6 of this instrument matches R{sub g,0}{sup *} to within about 0.01. (author)

  3. Measuring solar reflectance Part II: Review of practical methods

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    A companion article explored how solar reflectance varies with surface orientation and solar position, and found that clear sky air mass 1 global horizontal (AM1GH) solar reflectance is a preferred quantity for estimating solar heat gain. In this study we show that AM1GH solar reflectance R{sub g,0} can be accurately measured with a pyranometer, a solar spectrophotometer, or an updated edition of the Solar Spectrum Reflectometer (version 6). Of primary concern are errors that result from variations in the spectral and angular distributions of incident sunlight. Neglecting shadow, background and instrument errors, the conventional pyranometer technique can measure R{sub g,0} to within 0.01 for surface slopes up to 5:12 [23{sup o}], and to within 0.02 for surface slopes up to 12:12 [45{sup o}]. An alternative pyranometer method minimizes shadow errors and can be used to measure R{sub g,0} of a surface as small as 1 m in diameter. The accuracy with which it can measure R{sub g,0} is otherwise comparable to that of the conventional pyranometer technique. A solar spectrophotometer can be used to determine R*{sub g,0}, a solar reflectance computed by averaging solar spectral reflectance weighted with AM1GH solar spectral irradiance. Neglecting instrument errors, R*{sub g,0} matches R{sub g,0} to within 0.006. The air mass 1.5 solar reflectance measured with version 5 of the Solar Spectrum Reflectometer can differ from R*{sub g,0} by as much as 0.08, but the AM1GH output of version 6 of this instrument matches R*{sub g,0} to within about 0.01.

  4. A NEW THREE-DIMENSIONAL SOLAR WIND MODEL IN SPHERICAL COORDINATES WITH A SIX-COMPONENT GRID

    SciTech Connect

    Feng, Xueshang; Zhang, Man; Zhou, Yufen

    2014-09-01

    In this paper, we introduce a new three-dimensional magnetohydrodynamics numerical model to simulate the steady state ambient solar wind from the solar surface to 215 R {sub s} or beyond, and the model adopts a splitting finite-volume scheme based on a six-component grid system in spherical coordinates. By splitting the magnetohydrodynamics equations into a fluid part and a magnetic part, a finite volume method can be used for the fluid part and a constrained-transport method able to maintain the divergence-free constraint on the magnetic field can be used for the magnetic induction part. This new second-order model in space and time is validated when modeling the large-scale structure of the solar wind. The numerical results for Carrington rotation 2064 show its ability to produce structured solar wind in agreement with observations.

  5. Solar/hydrogen systems technologies. Volume II (Part 1 of 2). Solar/hydrogen systems assessment. Final report

    SciTech Connect

    Escher, W. J.D.; Foster, R. W.; Tison, R. R.; Hanson, J. A.

    1980-06-02

    Volume II of the Solar/Hydrogen Systems Assessment contract report (2 volumes) is basically a technological source book. Relying heavily on expert contributions, it comprehensively reviews constituent technologies from which can be assembled a wide range of specific solar/hydrogen systems. Covered here are both direct and indirect solar energy conversion technologies; respectively, those that utilize solar radiant energy input directly and immediately, and those that absorb energy from a physical intermediary, previously energized by the sun. Solar-operated hydrogen energy production technologies are also covered in the report. The single most prominent of these is water electrolysis. Utilization of solar-produced hydrogen is outside the scope of the volume. However, the important hydrogen delivery step is treated under the delivery sub-steps of hydrogen transmission, distribution and storage. An exemplary use of the presented information is in the synthesis and analysis of those solar/hydrogen system candidates documented in the report's Volume I. Morever, it is intended that broad use be made of this technology information in the implementation of future solar/hydrogen systems. Such systems, configured on either a distributed or a central-plant basis, or both, may well be of major significance in effecting an ultimate transition to renewable energy systems.

  6. Cu{sup II} coordination polymers based on 5-methoxyisophthalate and flexible N-donor ligands: Structures and magnetic properties

    SciTech Connect

    Chang, Xin-Hong; Qin, Jian-Hua; Ma, Lu-Fang; Wang, Li-Ya

    2014-04-01

    Three Cu{sup II} coordination polymers, ([Cu{sub 2}(CH{sub 3}O-ip){sub 2}(bmib)]){sub n} (1), ([Cu{sub 2}(CH{sub 3}O-ip){sub 2}(bmib){sub 2}]){sub n} (2) and ([Cu(CH{sub 3}O-ip)(bbip)]∙2H{sub 2}O){sub n} (3) (CH{sub 3}O-H{sub 2}ip is 5-methoxyisophthalic acid, bmib is 1,4-bis(2-methylimidazol-1-yl)butane and bbip is 1,3-bis(1H-benzimidazolyl)propane), have been synthesized by hydrothermal methods. Complexes 1–3 were structurally characterized by elemental analysis, infrared (IR) spectra and X-ray single-crystal diffraction. Complex 1 shows a 3D six-connected self-penetrating network based on paddlewheel secondary building units. Complex 2 has a 3-fold interpenetrating 3D diamond framework. Complex 3 possesses a 1D tube-like chain. Thermo-gravimetric and magnetic properties of 1–3 were also investigated. - Graphical abstract: Structures and magnetic properties of copper(II) coordination polymers constructed from 5-methoxyisophthalate linker and two flexible N-donor ancillary ligands. Three copper(II) coordination polymers with 5-methoxyisophthalate and two related flexible N-donor ancillary ligands have been synthesized and structurally characterized. Moreover, thermal behaviors and magnetic properties of these complexes have also been investigated. - Highlights: • Three Cu(II) coordination polymers were synthesized. • The conformations of N-donor ligands and pH value have an effect on the final structures. • The magnetic properties of 1–3 have been investigated.

  7. Two interpenetrating Cu{sup II}/Ni{sup II}-coordinated polymers based on an unsymmetrical bifunctional N/O-tectonic: Syntheses, structures and magnetic properties

    SciTech Connect

    Liu, Yong-Liang; Wu, Ya-Pan; Li, Dong-Sheng; Dong, Wen-Wen; Zhou, Chun-Sheng

    2015-03-15

    Two new interpenetrating Cu{sup II}/Ni{sup II} coordination polymers, based on a unsymmetrical bifunctional N/O-tectonic 3-(pyrid-4′-yl)-5-(4″-carbonylphenyl)-1,2,4-triazolyl (H{sub 2}pycz), ([Cu-(Hpycz){sub 2}]·2H{sub 2}O){sub n} (1) and ([Ni(Hpycz){sub 2}]·H{sub 2}O){sub n} (2), have been solvothermally synthesized and structure characterization. Single crystal X-ray analysis indicates that compound 1 shows 2-fold parallel interpenetrated 4{sup 4}-sql layers with the same handedness. The overall structure of 1 is achiral—in each layer of doubly interpenetrating nets, the two individual nets have the opposite handedness to the corresponding nets in the adjoining layers—while 2 features a rare 8-fold interpenetrating 6{sup 6}-dia network that belongs to class IIIa interpenetration. In addition, compounds 1 and 2 both show similar paramagnetic characteristic properties. - Graphical abstract: Two new Cu(II)/Ni(II) coordination polymers present 2D parallel 2-fold interpenetrated 4{sup 4}-sql layers and a rare 3D 8-fold interpenetrating 6{sup 6}-dia network. In addition, magnetic susceptibility measurements show similar paramagnetic characteristic for two complexes. - Highlights: • A new unsymmetrical bifunctional N/O-tectonic as 4-connected spacer. • A 2-fold parallel interpenetrated sql layer with the same handedness. • A rare 8-fold interpenetrating dia network (class IIIa)

  8. COLLOQUIUM: Type II Solar Radio Bursts: From Fundamental Plasma Physics to

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Space Weather Research | Princeton Plasma Physics Lab April 8, 2015, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Type II Solar Radio Bursts: From Fundamental Plasma Physics to Space Weather Research Professor Iver Cairns University of Sydney - School of Physics Presentation: File WC08APR2015_ICairns_4.pptx For over 60 years type II solar radio bursts have defied detailed quantitative explanation, despite their promise for predicting space weather at Earth and their status as the

  9. ON POSSIBLE VARIATIONS OF BASAL Ca II K CHROMOSPHERIC LINE PROFILES WITH THE SOLAR CYCLE

    SciTech Connect

    Pevtsov, Alexei A.; Uitenbroek, Han; Bertello, Luca E-mail: huitenbroek@nso.edu

    2013-04-10

    We use daily observations of the Ca II K line profiles of the Sun-as-a-star taken with the Integrated Sunlight Spectrometer from 2006 December through 2011 July to deconvolve the contributions from the quiet (basal) chromosphere and with magnetic network/plage areas. The 0.5 A emission index computed from basal profiles shows a significantly reduced modulation (as compared with one derived from the observed profiles) corresponding to the Sun's rotation. For basal contribution of the Ca II K line, the peak in power spectrum corresponding to solar rotation is broad and not well defined. Power spectra for the plage contribution show two narrow well-defined peaks corresponding to solar rotation at two distinct latitudes, in agreement with the latitudinal distribution of activity on the Sun at the end of Cycle 23 and beginning of Cycle 24. We use the lack of a signature of solar rotation in the basal (quiet Sun) component as an indication of a successful removal of the active Sun (plage) component. Even though the contribution from solar activity is removed from the basal line profiles, we find a weak dependency of intensity in the line core (K3) of basal profiles with the phase of the solar cycle. Such dependency could be the result of changes in thermal properties of basal chromosphere with the solar cycle. As an alternative explanation, we also discuss a possibility that the basal component does not change with the phase of the solar cycle.

  10. In situ ligand generation for novel Mn(II) and Ni(II) coordination polymers with disulfide ligand: Solvothermal syntheses, structures and magnetic properties

    SciTech Connect

    Han, Yinfeng Wang, Chang'an; Zheng, Zebao; Sun, Jiafeng; Nie, Kun; Zuo, Jian; Zhang, Jianping

    2015-07-15

    Two coordination polymers, ([Mn{sub 2}(L1){sub 2}(μ{sub 2}-H{sub 2}O)(H{sub 2}O){sub 4}]·5H{sub 2}O){sub n}1 and ([Ni(L1)(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n}2 (H{sub 2}L1=2,2′-dithiobisnicotinic acid), were prepared by the solvothermal reactions of the Mn(II) or Ni(II) ions with 2-mercaptonanicotinic acid. In 1, the [Mn{sub 2}(COO){sub 4}] units are connected by the 2,2′-dithiobisnicotinic dianion to form a two-dimensional (4,4)-connected network. In 2, the adjacent Ni(II) ions are connected by the carboxyl groups of the 2,2′-dithiobisnicotinic dianion to form an one-dimensional inorganic rod-shaped chain [Ni(COO){sub 2}]{sub n}, which are further interconnected by the 2,2′-dithiobisnicotinic ligand, giving rise to a two-dimensional framework. Variable-temperature magnetic susceptibilities of 1 and 2 exhibit overall weak antiferromagnetic coupling between the adjacent metal ions. - Graphical abstract: Two 2D coordination polymers were synthesized by transition-metal/in-situ oxidation of 2-mercaptonicotinic acid. The compounds pack into 2D frameworks by the carboxyl groups of 2,2′-dithiobisnicotinic dianion and exhibit overall weak antiferromagnetic coupling. - Highlights: • Two 2D coordination polymers containing 2,2′-dithiobisnicotinic dianion. • In situ oxidation and dehydro coupling reaction of 2-mercaptonbenzoic acid. • Two compounds display weak antiferromagnetic exchanges.

  11. Aromatic carboxylate effect on dimensionality of three bis(benzimidazole)-based cobalt(II) coordination polymers: Syntheses, structures and properties

    SciTech Connect

    Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li; Tian, Ai-Xiang; Wang, Xiu-Li

    2013-09-15

    Three new metal-organic coordination polymers [Co(4-bbc){sub 2}(bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H{sub 2}O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H{sub 2}pdc=3,5-pyridinedicarboxylic acid, 1,4-H{sub 2}ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and Co{sup II} ions. Polymer 2 exhibits a 2D network with a (3·4·5)(3{sup 2}·4·5·6{sup 2}·7{sup 4}) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1–3. Moreover, the thermal stability, electrochemical and luminescent properties of 1–3 were investigated. - graphical abstract: Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were hydrothermally synthesized and structurally characterized. The aromatic carboxylates play a key role in the dimensionality of three polymers. The electrochemical and luminescent properties of three polymers were investigated. Display Omitted - Highlights: • Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were obtained. • The aromatic carboxylates have an important influence on the dimensionality of three polymers. • The electrochemical and luminescent properties of three polymers were investigated.

  12. Influence of the steric effect of flexible isomeric phenylenediacetic acids on the resultant lead(II) coordination polymers

    SciTech Connect

    Wu, Yunlong; Zhao, Yanqing; Yang, Guo-Ping Guo, Yanjun; Wang, Yao-Yu Shi, Qi-Zhen

    2015-03-15

    To study the steric effect of the flexible dicarboxylate ligands on the resultant formations of coordination polymers (CPs), four new Pb{sup II} CPs [Pb(1,2-pda)(H{sub 2}O)]{sub n} (1), [Pb(1,3-pda)]{sub n}·nH{sub 2}O (2), [Pb{sub 2}(1,4-pda){sub 2}(H{sub 2}O)]{sub n}·2nH{sub 2}O (3a and 3b) have been produced by the isomeric phenylenediacetic acids (H{sub 2}pda). The X-ray crystallography study reveals that CP 1 is a two-dimensional (2D) 4-connected sql (4{sup 4}.6{sup 2}) network via the weak Pb···O interactions built on 1D chain-like structure. CP 2 crystallizes in orthorhombic system with chiral space group P2{sub 1}2{sub 1}2{sub 1}, showing a 4-connected sra (4{sup 2}.6{sup 3}.8) framework where a left-handed helical motif is formed by Pb{sup II} ions and trans-1,3-pda ligands. More interestingly, CPs 3a and 3b are two true 3D polymorphs and have the different morphology. Topologically, the framework of 3a exhibits a 4-connected lon 6{sup 6} motif, while that of 3b is a (4,6)-connected fsh (4{sup 3}.6{sup 3}){sub 2}(4{sup 6}.6{sup 6}.8{sup 3}) net. It is found that the three isomeric pda anions display the various coordination fashions in four CPs. The different structural arrangements show that the steric effect of the isomeric H{sub 2}pda tectons has a positive role in directing the final products of Pb{sup II} CPs. Also, the fluorescent properties of the CPs were studied in the solid state at room temperature. - Graphical abstract: Four new Pb{sup II}-based CPs have been produced by the isomeric phenylenediacetic acids (H{sub 2}pda). The different structural arrangements show that the steric effect of the isomeric H{sub 2}pda tectons has a positive role in directing the final products of Pb{sup II} CPs. Also, the fluorescent properties of the CPs were studied in the solid state at room temperature. - Highlights: • Four Pb{sup II}-based coordination polymers were produced by phenylenediacetic acids. • The crystal and topological structures of the

  13. Notice of Intent to Issue Solar Energy Evolution and Diffusion Studies II- State Energy Strategies (SEEDSII-SES)

    Energy.gov [DOE]

    The SunShot Initiative intends to release a funding opportunity announcement (FOA) that will address the soft costs of solar energy. The Solar Energy Evolution and Diffusion Studies II - State Energy Strategies (SEEDSII-SES) funding opportunity announcement will contain two topics.

  14. TEMPORAL SPECTRAL SHIFT AND POLARIZATION OF A BAND-SPLITTING SOLAR TYPE II RADIO BURST

    SciTech Connect

    Du, Guohui; Chen, Yao; Lv, Maoshui; Kong, Xiangliang; Feng, Shiwei; Guo, Fan; Li, Gang

    2014-10-01

    In many type II solar radio bursts, the fundamental and/or the harmonic branches of the bursts can split into two almost parallel bands with similar spectral shapes and frequency drifts. However, the mechanisms accounting for this intriguing phenomenon remain elusive. In this study, we report a special band-splitting type II event in which spectral features appear systematically earlier on the upper band (with higher frequencies) than on the lower band (with lower frequencies) by several seconds. Furthermore, the emissions carried by the splitting band are moderately polarized with the left-hand polarized signals stronger than the right-hand ones. The polarization degree varies in a range of 0.3 to 0.6. These novel observational findings provide important constraints on the underlying physical mechanisms of band-splitting of type II radio bursts.

  15. Flare heating and ionization of the low solar chromosphere. II. Observations of five solar flares

    SciTech Connect

    Metcalf, T.R.; Canfield, R.C.; Saba, J.L.R. Hawaii Univ., Honolulu Lockheed Research Laboratories, Palo Alto, CA )

    1990-12-01

    Two neutral Mg spectral lines formed in the temperature-minimum region and the low chromosphere, at 4571 and 5173 A, are used to quantify the changes in the atmospheric structure as a function of time during five solar flares. Eight proposed flare heating and ionization mechanisms and predictions of the effects of each on the temperature minimum region are discussed. Two Mg spectral observations made at the National Solar Observatory (Sacramento Peak), along with observations of hard and soft X-rays from the SMM and GOES satellites, are compared to the predictions of the eight proposed mechanisms. The initial effects in all five flares are consistent with backwarming by enhanced Balmer- and Paschen-continuum radiation originating in the upper chromosphere. Extended heating observed in two of the flares is most likely due to UV irradiation. In all cases heating by the dissipation of nonreversed electric currents, collisions with an electron or proton beam, irradiation by soft X-rays, and dissipation of Alfven waves are eliminated. 61 refs.

  16. Copper(II)-lanthanide(III) coordination polymers constructed from pyridine-2,5-dicarboxylic acid: Preparation, crystal structure and photoluminescence

    SciTech Connect

    Xia Zhengqiang; Wei Qing; Chen Sanping; Feng Xinming; Xie Gang; Qiao Chengfang; Zhang Guochun; Gao Shengli

    2013-01-15

    A series of 3d-4f heterometallic coordination polymers, formulated as {l_brace} [Cu{sub 3}Ln{sub 2}(pydc){sub 6}(H{sub 2}O){sub 12}]{center_dot}4H{sub 2}O{r_brace} {sub n} [Ln=Tb (1), Eu (2), Dy (3), Ho (4), Lu (5)], {l_brace} [CuNd{sub 2}(pydc){sub 4}(H{sub 2}O){sub 3}]{center_dot}H{sub 2}O{r_brace} {sub n} (6) and {l_brace} [Cu{sub 3}Pr{sub 2}(pydc){sub 6}(H{sub 2}O){sub 13}]{center_dot}4H{sub 2}O{r_brace} {sub n} (7) (where H{sub 2}pydc=pyridine-2,5-dicarboxylic acid), have been hydrothermally prepared by reactions of H{sub 2}pydc ligand with lanthanide ions in the presence of Cu(II) ion. X-ray crystal structure analysis reveals that these compounds exhibit rich structural chemistry. 1-5 are isomorphous and present a two-dimensional network constructed from Ln{sub 2}Cu{sub 2}L{sub 2}(H{sub 2}O){sub 2} SBU rings and CuL{sub 2}(H{sub 2}O) building blocks. In 6, two-dimensional ladder-like layers based on Nd(III) belts and CuL{sub 2}O{sub 2} units are assembled by H{sub 2}pydc ligands into a three-dimensional open framework. Polymer 7 displays a two-dimensional wave-like layer structure containing two distinct ring units, in which a new coordination mode of the pydc{sup 2-} ligand is observed. The results indicate that the coordination flexibility of the pydc{sup 2-} ligand and lanthanide contraction effect play cooperative roles in the formation of coordination polymers with different polymeric architectures. Compounds 1-2 exhibit intense green and red luminescence emission characteristics of Tb(III) and Eu(III), respectively. Furthermore, elemental analyses (EA), infrared spectra (IR) and thermogravimetric analyses (TGA) of these compounds were also studied. - Graphical abstract: Seven 3d-4f heterometallic coordination polymers were synthesized by reactions of H{sub 2}pydc with lanthanide metal ions in the presence of Cu{sup 2+}, the effects of Cu{sup 2+} on the structures and photoluminescent properties of Ln-pydc{sup 2-} systems were investigated. Highlights

  17. Luminescent pillared Ln{sup III}–Zn{sup II} heterometallic coordination frameworks with two kinds of N-heterocyclic carboxylate ligands

    SciTech Connect

    Liu, Sui-Jun; Jia, Ji-Min; Cui, Yu; Han, Song-De; Chang, Ze

    2014-04-01

    In our efforts toward rational design and systematic synthesis of ‘pillar-layer’ structure coordination frameworks, four new Ln{sup III}–Zn{sup II} heterometallic coordination polymers (CPs) based on two kinds of N-heterocyclic carboxylic ligands with formula ([LnZn(L1){sub 2}(L2)(H{sub 2}O){sub m}]·nH{sub 2}O){sub ∞} (Ln=La (1), Eu (2), Gd (3) and Dy (4), m=3 (for 1) and 2 (for 2–4), n=8 (for 1) and 7 (for 2–4), H{sub 2}L1=pyridine-2,3-dicarboxylate acid, HL2=isonicotinic acid), have been synthesized under hydrothermal reaction of Ln{sub 2}O{sub 3}, ZnO, H{sub 2}L1 and HL2. CP 1 has a three-dimensional (3D) structure with a (3,6)-connected sit topology network, while CPs 2–4 are isostructural with 3D single-node pcu alpha-Po topology network. Also, luminescent properties of these CPs have also been investigated. The emission of 1 and 3 should be attributed to the coordination-perturbed ligand-centered luminescence and the emission spectra of 2 and 4 show the characteristic bands of the corresponding Ln{sup III} ions. - Graphical abstract: Four new 3D Ln{sup III}–Zn{sup II} coordination frameworks with “pillar-layer” sit or pcu alpha-Po topology have been successfully obtained. Moreover, the photoluminescent properties of compounds 1–4 have also been investigated. - Highlights: • Four new Ln{sup III}–Zn{sup II} heterometallic coordination frameworks with two types of topologies have been synthesized. • Metal oxides and two kinds of N-heterocyclic carboxylate ligands were used for the construction of targeted coordination polymers. • The luminescent properties of the coordination polymers are investigated.

  18. Complexation of Mercury(II) in Soil Organic Matter: EXAFS Evidence for Linear Two-Coordination with Reduced Sulfur Groups

    SciTech Connect

    Skyllberg,U.; Bloom, P.; Qian, J.; Lin, C.; Bleam, W.

    2006-01-01

    The chemical speciation of inorganic mercury (Hg) is to a great extent controlling biologically mediated processes, such as mercury methylation, in soils, sediments, and surface waters. Of utmost importance are complexation reactions with functional groups of natural organic matter (NOM), indirectly determining concentrations of bioavailable, inorganic Hg species. Two previous extended X-ray absorption fine structure (EXAFS) spectroscopic studies have revealed that reduced organic sulfur (S) and oxygen/nitrogen (O/N) groups are involved in the complexation of Hg(II) to humic substances extracted from organic soils. In this work, covering intact organic soils and extending to much lower concentrations of Hg than before, we show that Hg is complexed by two reduced organic S groups (likely thiols) at a distance of 2.33 Angstroms in a linear configuration. Furthermore, a third reduced S (likely an organic sulfide) was indicated to contribute with a weaker second shell attraction at a distance of 2.92-3.08 Angstroms. When all high-affinity S sites, corresponding to 20-30% of total reduced organic S, were saturated, a structure involving one carbonyl-O or amino-N at 2.07 Angstroms and one carboxyl-O at 2.84 Angstroms in the first shell, and two second shell C atoms at an average distance of 3.14 Angstroms, gave the best fit to data. Similar results were obtained for humic acid extracted from an organic wetland soil. We conclude that models that are in current use to describe the biogeochemistry of mercury and to calculate thermodynamic processes need to include a two-coordinated complexation of Hg(II) to reduced organic sulfur groups in NOM in soils and waters.

  19. A solar type II radio burst from coronal mass ejection-coronal ray interaction: Simultaneous radio and extreme ultraviolet imaging

    SciTech Connect

    Chen, Yao; Du, Guohui; Feng, Shiwei; Kong, Xiangliang; Wang, Bing; Feng, Li; Guo, Fan; Li, Gang

    2014-05-20

    Simultaneous radio and extreme ultraviolet (EUV)/white-light imaging data are examined for a solar type II radio burst occurring on 2010 March 18 to deduce its source location. Using a bow-shock model, we reconstruct the three-dimensional EUV wave front (presumably the type-II-emitting shock) based on the imaging data of the two Solar TErrestrial RElations Observatory spacecraft. It is then combined with the Nanay radio imaging data to infer the three-dimensional position of the type II source. It is found that the type II source coincides with the interface between the coronal mass ejection (CME) EUV wave front and a nearby coronal ray structure, providing evidence that the type II emission is physically related to the CME-ray interaction. This result, consistent with those of previous studies, is based on simultaneous radio and EUV imaging data for the first time.

  20. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    SciTech Connect

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni; Xu, Xiao-Wei; Feng, Yun-Long

    2014-07-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL{sub 2}(H{sub 2}O){sub 2}]{sub n}·2nH{sub 2}O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H{sub 2}adbc), terephthalic acid (H{sub 2}tpa), thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) and 1,4-benzenedithioacetic acid (H{sub 2}bdtc), four 3D structures [Co{sub 2}L{sub 2}(adbc)]{sub n}·nH{sub 2}O (2), [Co{sub 2}L{sub 2}(tpa)]{sub n} (3), [Co{sub 2}L{sub 2}(tdc)]{sub n} (4), [Co{sub 2}L{sub 2}(bdtc)(H{sub 2}O)]{sub n} (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions.

  1. Preussen Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Preussen Solar Jump to: navigation, search Name: Preussen Solar Place: Berlin, Germany Zip: 10711 Sector: Solar Product: Involved in solar projects. Coordinates: 52.516074,...

  2. Two three-dimensional coordination polymers of lead(II) with iminodiacetate and naphthalene-dicarboxylate anions: Synthesis, characterization and luminescence behavior

    SciTech Connect

    Hazari, Debdoot; Jana, Swapan Kumar; Fleck, Michel; Zangrando, Ennio; Dalai, Sudipta

    2014-11-15

    Two lead(II) compounds [Pb{sub 3}(idiac){sub 3}(phen){sub 2}(H{sub 2}O)]·2(H{sub 2}O) (1) and [Pb(ndc)]{sub n} (2), where H{sub 2}idiac=iminodiacetic acid, phen=1,10-phenanthroline and H{sub 2}ndc=naphthalene-2,6-dicarboxylic acid, have been synthesized and structurally characterized. Single crystal X-ray diffraction analysis showed that compound 1 is a discrete trinuclear complex (of two-fold symmetry) which evolves to a supramolecular 3D network via π–π interactions, while in compound 2 the naphthalene dicarboxylate anion act as a linker to form a three dimensional architecture, where the anion adopts a bis-(bidentate bridging) coordination mode connecting four Pb(II) centers. The photoluminescence property of the two complexes has been studied. - graphical abstract: Two new topologically different 1D coordination polymers formed by Pb{sub 4} clusters have been synthesized and characterized by x-ray analysis. The luminescence and thermal properties have been studied. - Highlights: • 1 is a trinuclear complex of Pb(II) growing to 3D network via weak interactions. • In 1, layers of (4,4) rhomboidal topology are identified. • In 2, the ndc anion adopts interesting bis-(bidentate bridging) coordination. • In 2, network is reinforced by C–H…π-ring interactions between the ndc rings.

  3. {sup 207}Pb-{sup 1}H two-dimensional NMR spectroscopy: A useful new tool for probing lead(II) coordination chemistry

    SciTech Connect

    Claudio, E.S.; Horst, M.A. ter; Forde, C.E.; Stern, C.L.; Zart, M.K.; Godwin, H.A.

    2000-04-03

    Despite the fact that lead poisoning is the most common disease of environmental origin in the US, the spectroscopic properties of aqueous Pb(II) coordination compounds have not been extensively investigated. Spectroscopic techniques that can be used to probe the fundamental coordination chemistry of Pb(II) will aid in both the development of water-soluble ligands that bind lead both tightly and selectively and the characterization of potential biological targets. Here, the authors report the preparation and characterization of a series of Pb(II) complexes of amido derivatives of EDTA. The {sup 207}Pb chemical shift observed in these complexes (2441, 2189, and 1764 ppm for [Pb(EDTA)]{sup 2{minus}}, Pb(EDTA-N{sub 2}), and [Pb(EDTA-N{sub 4})]{sup 2+}, respectively) provides an extremely sensitive measure of the local environment and the charge on each complex. These shifts help to map out the lead chemical shift range that can be expected for biologically relevant sites. In addition, the authors report the first two-dimensional {sup 207}Pb-{sup 1}H heteronuclear multiple-quantum correlation (HMQC) nuclear magnetic resonance spectra and demonstrate that this experiment can provide useful information about the lead coordination environment in aqueous Pb(II) complexes. Because this technique allows {sup 207}Pb-{sup 1}H couplings through three bonds to be identified readily, {sup 207}Pb-{sup 1}H NMR spectroscopy should prove useful for the investigation of Pb(II) in more complex systems (e.g., biological and environmental samples).

  4. Solar

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  5. The quantum interference effects in the SC II 4247 Å line of the second solar spectrum

    SciTech Connect

    Smitha, H. N.; Nagendra, K. N.; Stenflo, J. O.; Bianda, M.; Ramelli, R. E-mail: knn@iiap.res.in E-mail: mbianda@irsol.ch

    2014-10-10

    The Sc II 4247 Å line formed in the chromosphere is one of the lines well known, like the Na I D{sub 2} and Ba II D{sub 2}, for its prominent triple-peak structure in Q/I and the underlying quantum interference effects governing it. In this paper, we try to study the nature of this triple-peak structure using the theory of F-state interference including the effects of partial frequency redistribution (PRD) and radiative transfer (RT). We compare our results with the observations taken in a quiet region near the solar limb. In spite of accounting for PRD and RT effects, it has not been possible to reproduce the observed triple-peak structure in Q/I. While the two wing PRD peaks (on either side of central peak) and the near wing continuum can be reproduced, the central peak is completely suppressed by the enhanced depolarization resulting from the hyperfine structure splitting. This suppression remains for all the tested widely different one-dimensional model atmospheres or for any multi-component combinations of them. While multidimensional RT effects may improve the fit to the intensity profiles, they do not appear capable of explaining the enigmatic central Q/I peak. This leads us to suspect that some aspect of quantum physics is missing.

  6. Merk Solar Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Merk Solar Energy Jump to: navigation, search Name: Merk Solar Energy Place: Istanbul, Turkey Sector: Solar Product: Istanbul, Turkey based solar project developer. Coordinates:...

  7. Effect of three bis-pyridyl-bis-amide ligands with various spacers on the structural diversity of new multifunctional cobalt(II) coordination polymers

    SciTech Connect

    Lin, Hong-Yan; Lu, Huizhe; Le, Mao; Luan, Jian; Wang, Xiu-Li; Liu, Guocheng; Zhang, Juwen

    2015-03-15

    Three new cobalt(II) coordination polymers [Co{sub 2}(1,4-NDC){sub 2}(3-bpye)(H{sub 2}O)] (1), [Co(1,4-NDC)(3-bpfp)(H{sub 2}O)] (2) and [Co(1,4-NDC)(3-bpcb)] (3) [3-bpye=N,N′-bis(3-pyridinecarboxamide)-1,2-ethane, 3-bpfp=bis(3-pyridylformyl)piperazine, 3-bpcb=N,N′-bis(3-pyridinecarboxamide)-1,4-benzene, and 1,4-H{sub 2}NDC=1,4-naphthalenedicarboxylic acid] have been hydrothermally synthesized. The structures of complexes 1–3 have been determined by X-ray single crystal diffraction analyses and further characterized by infrared spectroscopy (IR), powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup 8}) topology constructed from 3D [Co{sub 2}(1,4-NDC){sub 2}(H{sub 2}O)]{sub n} framework and bidentate 3-bpye ligands. Complex 2 shows 1D “cage+cage”-like chain formed by 1D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} ribbon chains and [Co{sub 2}(3-bpfp){sub 2}] loops, which are further linked by hydrogen bonding interactions to form a 3D supramolecular network. Complex 3 displays a 3D coordination network with a 6-connected (4{sup 12}.6{sup 3}) topology based on 2D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} layers and bidentate 3-bpcb bridging ligands. The influences of different bis-pyridyl-bis-amide ligands with various spacers on the structures of title complexes are studied. Moreover, the fluorescent properties, electrochemical behaviors and magnetic properties of complexes 1–3 have been investigated. - Graphical abstract: Three multifunctional cobalt(II) complexes constructed from three bis-pyridyl-bis-amide and 1,4-naphthalenedicarboxylic acid have been hydrothermally synthesized and characterized. The fluorescent, electrochemical and magnetic properties of 1–3 have been investigated. - Highlights: • Three multifunctional cobalt(II) complexes based on various bis-pyridyl-bis-amide ligands. • Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup 8

  8. Amargosa Farm Road Solar Energy Project Solar Power Plant | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector Solar Facility Type Concentrating Solar Power Developer Solar Millenium, LLC, MAN Ferrostaal Inc Location Nye County, Nevada Coordinates 38.5807111, -116.0413889...

  9. Topaz Solar Farm Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Topaz Solar Farm Sector Solar Facility Type Photovoltaic Developer OptiSolar Location San Luis Obispo County, California Coordinates 35.3102296, -120.4357631 Show Map...

  10. Trinity Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Trinity Solar Place: Freehold, New Jersey Zip: 7728 Sector: Solar Product: A provider of solar energy systems to home and business owners. Coordinates: 42.376865,...

  11. Phototaxis Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cambridge, Massachusetts Sector: Solar Product: Solar start-up planning to construct solar-panel covered roofs over parking lots. Coordinates: 43.003745, -89.017499 Show...

  12. Self-assembled photosynthesis-inspired light harvesting material and solar cells containing the same

    DOEpatents

    Lindsey, Jonathan S.; Chinnasamy, Muthiah; Fan, Dazhong

    2009-12-15

    A solar cell is described that comprises: (a) a semiconductor charge separation material; (b) at least one electrode connected to the charge separation material; and (c) a light-harvesting film on the charge separation material, the light-harvesting film comprising non-covalently coupled, self-assembled units of porphyrinic macrocycles. The porphyrinic macrocycles preferably comprise: (i) an intramolecularly coordinated metal; (ii) a first coordinating substituent; and (iii) a second coordinating substituent opposite the first coordinating substituent. The porphyrinic macrocycles can be assembled by repeating intermolecular coordination complexes of the metal, the first coordinating substituent and the second coordinating substituent.

  13. How to diffuse solar innovations to US consumers. Part II of a series

    SciTech Connect

    Shama, A.

    1982-09-01

    The social change perspective and diffusion perspective of solar energy are discussed. Discussions on product price, promotion, and distribution of renewable energy systems are presented. The conclusions and recommendations are: (1) develop and perfect solar energy products; (2) define solar energy products carefully; (3) rely on relative advantage of solar energy innovations; (4) demonstrate solar energy innovations; (5) target solar energy innovations; (6) introduce regional policies; (7) help the consumer decision-making process; (8) consider the do-it-yourself market; (9) reward the use of solar energy innovations; (10) offer financial services; (11) ensure realistic price comparisons; (12) use penetration price policy; (13) ensure appropriate distribution; (14) discourage energy inefficient practices; (15) promote the use of solar; (16) use flexible mandates. (MJF)

  14. Syntheses, structures, and properties of Co(II)/Zn(II) mixed-ligand coordination polymers based on 4-[(3,5-dinitrobenzoyl)amino]benzoic acid and 1,4-bis(1-imidazolyl) benzene

    SciTech Connect

    Yin, Fei; Chen, Jing; Liang, Yongfeng; Zou, Yang; Yinzhi, Jiang; Xie, Jingli

    2015-05-15

    Two coordination polymers [Co(dnbab){sub 2}(bimb)](H{sub 2}O){sub 4} (1) and [Zn(dnbab){sub 2}(bimb)](H{sub 2}O){sub 5} (2) (Hdnbab=4-[(3,5-dinitrobenzoyl)amino]benzoic acid, bimb=1,4-bis(1-imidazolyl) benzene) have been solvothermally synthesized. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by powder X-ray diffraction (PXRD) and thermogravimetric (TG) analyses. Complexes 1 and 2 are isostructures and each displays an one-dimensional (1D) zigzag chain, which further forms a 3D supramolecular architecture with 1-D channels via inter-chain π–π interactions and hydrogen bonds. Moreover, the magnetic properties of 1 and fluorescent properties of 2 have been investigated. - Graphical abstract: Two coordination supramolecular frameworks [Co(dnbab){sub 2}(bimb)](H{sub 2}O){sub 4}(1) and [Zn(dnbab){sub 2}(bimb)](H{sub 2}O){sub 5}(2) (Hdnbab=4-[(3,5-dinitrobenzoyl)amino]benzoic acid, bimb=1,4-bis(1-imidazolyl) benzene) have been synthesized and characterized by X-ray single-crystal diffraction. Their thermal, magnetic and fluorescent properties have also been studied. - Highlights: • Two isomorphic Co(II)/Zn(II) complexes with the mixed-ligands have been synthesized. • Hydrogen bonds and π–π stacking interactions directed the final 3-D architecture assembly. • Both Co(II) and Zn(II) complexes show good thermal stability. • Co complex exhibits antiferromagnetic interaction. • The fluorescent property of Zn(II) complex has been investigated in the solid state.

  15. Cadmium(II) and Copper(II) coordination polymers based on 5-(Pyrazinyl) tetrazolate ligand: Structure, photoluminescence, theoretical calculations and magnetism

    SciTech Connect

    Chen, Hui-Fen; Yang, Wen-Bin; Lin, Lang; Guo, Xiang-Guang; Dui, Xue-jing; Wu, Xiao-Yuan; Lu, Can-Zhong; Zhang, Cui-Juan

    2013-05-01

    Two μ₂-tetrazolyl bridged metal complexes, ([CdI(PTZ)(H₂O)]·H₂O)ₙ1 and ([Cu(PTZ)₂]·H₂O)ₙ2 (HPTZ=5-(pyrazinyl) tetrazolate), were hydrothermally synthesized and fully characterized by X-ray crystallography, elemental analyses and spectrum techniques. In 1, cadmium ions are bridged by tridentate μ₂-κ²N2,N5:κ¹N1 chelating PTZ⁻ ligand and halide linkers into an infinite 1D chain, while in 2 copper ions are connected by tridentate μ₂-κ²N7,N12:κ¹N8 and bidentate μ₂-κ¹N1:κ¹N2 chelating-bridging PTZ⁻ ligands to form a 1D castellated chain structure. Compound 1 displays phosphorescence with a lifetime of ~7.74 ms in the visible region, and the origin of the luminescent emission is primary assigned to the combination of ligand-centered emission, metal-to-ligand charge transfer and ligand-to-ligand charge transfer, which has been probed by the density of states (DOS) calculations. Magnetic measurement reveals that compound 2 displays an anti-ferromagnetic ordering. - Graphical abstract: Two new complexes based on 5-(pyrazinyl) tertrazolate, namely ([CdI(PTZ)(H2O)]·H2O)n and ([Cu(PTZ)2]·H2O)n have been synthesized and characterized. Compound 1 exhibits interesting green luminescence. Compound 2 displays an anti-ferromagnetic ordering. Highlights: • We report two novel 1D μ₂-tetrazolyl bridged Cd(II) and Cu(II) compounds. • The cadmium(II) compound exhibits a green luminescence. • Theoretical calculations were conducted to elucidate the green luminescence. • The Cu(II) compound exhibits an anti-ferromagnetic ordering.

  16. Transmission Planning Process and Opportunities for Utility-Scale Solar Engagement within the Western Electricity Coordinating Council (WECC)

    SciTech Connect

    Hein, J.; Hurlbut, D.; Milligan, M.; Coles, L.; Green, B.

    2011-11-01

    This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. Market barriers unrelated to technology often limit the expansion of utility-scale solar power, even in areas with exceptional resource potential. Many of these non-technical barriers have to do with policy, regulation, and planning, and hardly ever do they resolve themselves in a timely fashion. In most cases, pre-emptive intervention by interested stakeholders is the easiest way to remove/address such barriers, but it requires knowing how to navigate the institutional waters of the relevant agencies and boards. This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. It focuses on the Western Interconnection (WI), primarily because the quality of solar resources in the Southwest makes utility-scale concentrating solar power (CSP) and photovoltaics (PV) economically feasible, and because the relevant institutions have evolved in a way that has opened up opportunities for removing non-technical market barriers. Developers will find in this report a high-level field manual to identify the venues for mitigating and possibly eliminating systemic market obstacles and ensuring that the economic playing field is reasonably level. Project-specific issues such as siting for transmission and generation resources are beyond the scope of this report. Instead, the aim is to examine issues that pervasively affect all utility-scale PV and CSP in the region regardless of where the project may be. While the focus is on the WI, many of the institutions described here also have their counterparts in the Eastern and the Texas interconnections. Specifically, this report suggests a number of critical engagement points relating to generation and transmission planning.

  17. Solar

    Energy.gov [DOE]

    Learn about the Energy Department's efforts to advance innovative technologies that drive down the cost of solar energy in America.

  18. Diverse assemblies of the (4,4) grid layers exemplified in Zn(II)/Co(II) coordination polymers with dual linear ligands

    SciTech Connect

    Liu, Guang-Zhen; Li, Xiao-Dong; Xin, Ling-Yun; Li, Xiao-Ling; Wang, Li-Ya

    2013-07-15

    Diverse (4,4) grid layers are exemplified in five two-dimensional coordination polymers with dual µ{sub 2}-bridged ligands, namely, ([Zn(cbaa)(bpp)]·H{sub 2}O){sub n} (1), [Zn{sub 2}(cbaa){sub 2}(bpy)]{sub n} (2), [Co{sub 2}(cbaa){sub 2}(bpp){sub 2}]{sub n} (3), [Co(cbaa)(bpp)]{sub n} (4), and [Co(bdaa)(bpp)(H{sub 2}O){sub 2}]{sub n} (5) (H{sub 2}cbaa=4-carboxybenzeneacetic acid, bpp=1,3-di(4-pyridyl)propane, bpy=4,4′-bipyridyl, and H{sub 2}bdaa=1,4-benzenediacrylic acid). For 1, two (4,4) grid layers with [ZnN{sub 2}O{sub 2}] tetrahedron as the node are held together by lattice water forming a H-bonding bilayer. Individual (4,4) grid layer in 2 is based on (Zn{sub 2}(OCO){sub 4}) paddlewheel unit as the node. Two (4,4) grid layers with (Co{sub 2}O(OCO){sub 2}) dimer as the node are covalently interconnected by organic ligands affording a thick bilayer of 3 with new framework topology. The different entanglements between two coincident (4,4) grid layers with [CoN{sub 2}O{sub 4}] octahedron as the node leads to two 2D→2D interpenetrated structures for 4 and 5. Furthermore, fluorescent properties of 1 and 2 as well as magnetic properties of 3 are investigated. - Graphical abstract: Diverse assemblies of the (4,4) grid layers with different network nodes forms five coordination polymers that are well characterized by IR, TGA, element analysis, fluorescent and magnetic measurement. - Highlights: • Diverse assemblies of the (4,4) grid layers with different structural units as the nodes. • A new topology type with the uninodal 6-connected net of (4{sup 12}.5{sup 2}.6) is found. • Intense fluorescence emissions with a rare blue-shift of 55 nm compared to free carboxylate ligand.

  19. Coordinated NO{sub x} control strategies: Phase II Title IV, ozone transport region and ozone transport assessment group

    SciTech Connect

    Frazier, W.F.; Dunn, R.M.; Baublis, D.C.

    1998-12-31

    Many electric utilities are faced with future nitrogen oxides (NO{sub x}) reduction requirements. In some instances, these utilities will be affected by multiple regulatory programs. For example, numerous fossil fired plants must comply with Phase II of Title IV of the Clean Air Act Amendments of 1990 (CAAA), state NO{sub x} rules as a result of the recommendations of the Ozone Transport Commission (OTC) and future requirements of the Proposed Rule for Reducing Regional Transport of Ground-Level Ozone (Ozone Transport SIP Rulemaking). This paper provides an overview of NO{sub x} regulatory programs, NO{sub x} compliance planning concepts, and NO{sub x} control technology options that could be components of an optimized compliance strategy.

  20. Solar

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Applications National Solar Thermal Test Facility ... EnergyWater Nexus EnergyWater History Water Monitoring & ... Market Transformation Fuel Cells Predictive Simulation of ...

  1. Solar

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  2. Dimensional modulation and magnetic properties of triazole- and bis(triazole)-based copper(II) coordination polymers tuned by aromatic polycarboxylates

    SciTech Connect

    Zhang, Ju-Wen; Zhao, Wei; Lu, Qi-Lin; Luan, Jian; Qu, Yun; Wang, Xiu-Li

    2014-04-01

    Five new metal–organic coordination polymers ([Cu{sub 3}(μ{sub 2}-OH){sub 2}(atrz){sub 2}(nph){sub 2}(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n} (1), ([Cu{sub 2}(μ{sub 3}-OH)(atrz)(1,2,4-btc)]·2H{sub 2}O){sub n} (2), ([Cu{sub 2}(μ{sub 3}-OH)(atrz)(1,2,4-btc)(H{sub 2}O)]·H{sub 2}O){sub n} (3), [Cu(dth){sub 0.5}(nph)(H{sub 2}O)]{sub n} (4) and [Cu(dth)(Hnip){sub 2}]{sub n} (5) [atrz=4-amino-1,2,4-triazole, dth=N,N'-di(4H-1,2,4-triazole)hexanamide, H{sub 2}nph=3-nitrophthalic acid, 1,2,4-H{sub 3}btc=1,2,4-benzenetricarboxylic acid and H{sub 2}nip=5-nitroisophthalic acid] were hydrothermally synthesized and structurally characterized. Polymer 1 shows a one-dimensional (1D) chain. Polymers 2 and 3 exhibit similar tetranuclear Cu{sup II}{sub 4} cluster-based three-dimensional (3D) frameworks with the same components. Polymer 4 possesses a 3D framework with a 4{sup 12}·6{sup 3}-pcu topology. Polymer 5 displays a 3D framework with a 4{sup 4}·6{sup 10}·8-mab topology. The magnetic properties of 1–4 were investigated. - Graphical abstract: Five triazole-based copper(II) polymers modulated by polycarboxylates were synthesized. Bis-triazole-bis-amide ligand and polycarboxylates play important roles in tuning dimensionality of polymers. Magnetic properties of polymers were investigated. - Highlights: • Five triazole- and bis(triazole)-based copper(II) coordination polymers tuned by aromatic polycarboxylates were obtained. • The aromatic polycarboxylates have an important influence on the dimensionality of five polymers. • The magnetic properties of four polymers were investigated.

  3. EcoSolar Systems India Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    India Zip: 411030 Sector: Solar Product: Manufactures and distributes own-brand solar water heating systems, solar PV lanterns and a solar cooker. Coordinates: 18.52671,...

  4. Synthesis, structure and properties of zinc(II) coordination polymers with 9H-carbazole-2,7-dicarboxylic acid

    SciTech Connect

    Yi, Xiu-Chun; Xi, Fu-Gui; Wang, Kun; Su, Zhao; Gao, En-Qing

    2013-10-15

    From a new dicarboxylate ligand, 9H-carbazole-2,7-dicarboxylic acid (2,7-H{sub 2}CDC), three Zn(II) metal-organic frameworks were synthesized in the absence or presence of ditopic N-donor ligands. They are formulated as [Zn{sub 5}(μ{sub 3}-OH){sub 2}(2,7-CDC){sub 4}(DEF){sub 2}] (1) (DEF=N,N-diethylformamide), [Zn{sub 2}(2,7-CDC){sub 2}(DABCO)(H{sub 2}O)]·5DMF·H{sub 2}O (2) (DABCO=1-diaza-bicyclo[2.2.2]octane, DMF=N,N-dimethylformamide), and [Zn{sub 2}(2,7-CDC){sub 2}(bpea)]·3DMA·2 H{sub 2}O (3) (bpea=1,2-bis(4-pyridyl)ethylane, DMA=N,N-dimethylacetamide). Compounds 1 and 3 display the 3D pcu frameworks. In 1 the unusual pentanuclear [Zn{sub 5}(μ{sub 3}-OH){sub 2}(COO){sub 8}] secondary building units (SBUs) are linked by dicarboxylate ligands. Differently, in 3 the well-known paddle–wheel [Zn{sub 2}(COO){sub 4}] SBUs are linked by dicarboxylate and dipyridyl ligands. Compound 2 shows the rare self-catenated 3D alb-3,6-C2/c net topology based on the dinuclear paddle–wheel SBU and a mononuclear unit. The stability and fluorescent properties of the compounds have been studied. - Graphical abstract: A new dicarboxylate ligand, 9H-carbazole-2,7-dicarboxylic acid, was used to construct Zn(II) metal-organic frameworks, including a novel self-catenated network with the rare 3D alb-3,6-C2/c net and two pcu-type networks based on an unprecedented pentanuclear clusters and the common paddle–wheel units. The compounds show blue fluorescent properties. Display Omitted - Highlights: • MOFs with a new carbazole-based dicarboxylate ligand. • New pentanuclear [Zn{sub 5}(μ{sub 3}-OH){sub 2}(COO){sub 8}] secondary building unit. • The rare self-catenated 3D alb-3,6-C2/c net.

  5. Aegir II | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Aegir II Jump to: navigation, search Name Aegir II Facility Aegir II Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Location Lake Michigan MI Coordinates...

  6. A HIGH-FREQUENCY TYPE II SOLAR RADIO BURST ASSOCIATED WITH THE 2011 FEBRUARY 13 CORONAL MASS EJECTION

    SciTech Connect

    Cho, K.-S.; Kim, R.-S.; Gopalswamy, N.; Kwon, R.-Y.; Yashiro, S.

    2013-03-10

    We examine the relationship between the high-frequency (425 MHz) type II radio burst and the associated white-light coronal mass ejection (CME) that occurred on 2011 February 13. The radio burst had a drift rate of 2.5 MHz s{sup -1}, indicating a relatively high shock speed. From SDO/AIA observations we find that a loop-like erupting front sweeps across high-density coronal loops near the start time of the burst (17:34:17 UT). The deduced distance of shock formation (0.06 Rs) from the flare center and speed of the shock (1100 km s{sup -1}) using the measured density from SDO/AIA observations are comparable to the height (0.05 Rs, from the solar surface) and speed (700 km s{sup -1}) of the CME leading edge observed by STEREO/EUVI. We conclude that the type II burst originates even in the low corona (<59 Mm or 0.08 Rs, above the solar surface) due to the fast CME shock passing through high-density loops.

  7. Coordination chemistry of two heavy metals: I, Ligand preferences in lead(II) complexation, toward the development of therapeutic agents for lead poisoning: II, Plutonium solubility and speciation relevant to the environment

    SciTech Connect

    Neu, M.P.

    1993-11-01

    The coordination chemistry and solution behavior of the toxic ions lead(II) and plutonium(IV, V, VI) have been investigated. The ligand pK{sub a}s and ligand-lead(II) stability constants of one hydroxamic acid and four thiohydroaxamic acids were determined. Solution thermodynamic results indicate that thiohydroxamic acids are more acidic and slightly better lead chelators than hydroxamates, e.g., N-methylthioaceto-hydroxamic acid, pK{sub a} = 5.94, log{beta}{sub 120} = 10.92; acetohydroxamic acid, pK{sub a} = 9.34, log{beta}{sub l20} = 9.52. The syntheses of lead complexes of two bulky hydroxamate ligands are presented. The X-ray crystal structures show the lead hydroxamates are di-bridged dimers with irregular five-coordinate geometry about the metal atom and a stereochemically active lone pair of electrons. Molecular orbital calculations of a lead hydroxamate and a highly symmetric pseudo octahedral lead complex were performed. The thermodynamic stability of plutonium(IV) complexes of the siderophore, desferrioxamine B (DFO), and two octadentate derivatives of DFO were investigated using competition spectrophotometric titrations. The stability constant measured for the plutonium(IV) complex of DFO-methylterephthalamide is log{beta}{sub 110} = 41.7. The solubility limited speciation of {sup 242}Pu as a function of time in near neutral carbonate solution was measured. Individual solutions of plutonium in a single oxidation state were added to individual solutions at pH = 6.0, T = 30.0, 1.93 mM dissolved carbonate, and sampled over intervals up to 150 days. Plutonium solubility was measured, and speciation was investigated using laser photoacoustic spectroscopy and chemical methods.

  8. Stateline Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Stateline Solar Power Plant Facility Stateline Sector Solar Facility Type Photovoltaic Developer First Solar Location San Bernardino County, California Coordinates...

  9. Blythe Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name Blythe Solar Power Plant Facility Blythe Sector Solar Facility Type Photovoltaic Developer First Solar Location Blythe, California Coordinates 33.6172329,...

  10. SolarNet | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector: Solar Product: Solar project developer with subsidiaries involved in the distribution, installation and financing of solar projects. Coordinates: 38.610645,...

  11. Trina Solar Limited | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Province, China Zip: 213031 Sector: Solar Product: An integrated solar ingot, wafer, solar cell, module and system manufacturer. Coordinates: 31.766211, 119.94722 Show Map...

  12. Lotus Solar Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Name: Lotus Solar Technologies Place: Cairo, Egypt Sector: Solar, Wind energy Product: Solar and wind energy consultants and contractors. Coordinates:...

  13. Magnetohydrostatic equilibrium. II. Three-dimensional multiple open magnetic flux tubes in the stratified solar atmosphere

    SciTech Connect

    Gent, F. A.; Erdélyi, R.; Fedun, V.

    2014-07-01

    A system of multiple open magnetic flux tubes spanning the solar photosphere and lower corona is modeled analytically, within a realistic stratified atmosphere subject to solar gravity. This extends results for a single magnetic flux tube in magnetohydrostatic equilibrium, described in Gent et al. Self-similar magnetic flux tubes are combined to form magnetic structures, which are consistent with high-resolution observations. The observational evidence supports the existence of strands of open flux tubes and loops persisting in a relatively steady state. Self-similar magnetic flux tubes, for which an analytic solution to the plasma density and pressure distribution is possible, are combined. We calculate the appropriate balancing forces, applying to the equations of momentum and energy conservation to preserve equilibrium. Multiplex flux tube configurations are observed to remain relatively stable for up to a day or more, and it is our aim to apply our model as the background condition for numerical studies of energy transport mechanisms from the solar surface to the corona. We apply magnetic field strength, plasma density, pressure, and temperature distributions consistent with observational and theoretical estimates for the lower solar atmosphere. Although each flux tube is identical in construction apart from the location of the radial axis, combinations can be applied to generate a non-axisymmetric magnetic field with multiple non-uniform flux tubes. This is a considerable step forward in modeling the realistic magnetized three-dimensional equilibria of the solar atmosphere.

  14. Capital Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Jump to: navigation, search Name: Capital Solar Place: Lecce, Italy Sector: Solar Product: Lecce-based solar project developer. Coordinates: 40.357955, 18.16801 Show Map...

  15. Basic research needs and priorities in solar energy. Volume II. Technology crosscuts for DOE

    SciTech Connect

    Jayadev, J S; Roessner, D eds.

    1980-01-01

    Priorities for basic research important to the future developments of solar energy are idenified, described, and recommended. SERI surveyed more than 120 leading scientists who were engaged in or knowledgeable of solar-related research. The result is an amalgam of national scientific opinion representing the views of key researchers in relevant disciplines and of SERI staff members. The scientific disciplines included in the report are: chemistry, biology, materials sciences, engineering and mathematics, and the social and behavioral sciences. Each discipline is subdivided into two to five topical areas-and, within each topical area, research needs are described and ranked according to the priorities suggested in the survey. Three categories of priority were established: crucial, important, and needed. A narrative accompanying the description of research needs in each topical area discusses the importance of research in the area for solar energy development and presents the bases for the priority rankings recommended.

  16. Controlling proton movement: electrocatalytic oxidation of hydrogen by a nickel( ii ) complex containing proton relays in the second and outer coordination spheres

    SciTech Connect

    Das, Parthapratim; Ho, Ming-Hsun; O'Hagan, Molly; Shaw, Wendy J.; Morris Bullock, R.; Raugei, Simone; Helm, Monte L.

    2014-01-01

    A nickel bis(diphosphine) complex containing proton relays in the second and outer coordination spheres, Ni(PCy2N(CH2)2OMe)2, (PCy2N(CH2)2OMe = 1,5-di(methoxyethyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane), is an electrocatalyst for hydrogen oxidation. The addition of hydrogen to the Ni(II) complex results in rapid formation of three isomers of the doubly protonated Ni(0) complex, [Ni(PCy2N(CH2)2OMe2H)2]2+. The three isomers show fast intramolecular interconversion at 40 °C, unique to this complex in this class of catalysts. Under conditions of 1.0 atm H2 using H2O as a base, catalytic oxidation proceeds at a turnover frequency of 5 s-1 and an overpotential of 720 mV, as determined from the potential at half of the catalytic current. Compared to the previously reported Ni(PCy2NBn)2 complex, the new complex operates at a faster rate and at a lower overpotential. The results of this study indicate that the presence of the pendant methoxy group in the outer coordination sphere of the catalyst plays a key role, facilitating intramolecular proton movement prior to intermolecular proton removal required to complete the catalytic cycle. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  17. 1D coordination polymers formed by tetranuclear lead(II) building blocks with carboxylate ligands: In situ isomerization of itaconic acid

    SciTech Connect

    Rana, Abhinandan; Jana, Swapan Kumar; Datta, Sayanti; Butcher, Raymond J.; Zangrando, Ennio; Dalai, Sudipta

    2013-11-15

    The synthesis of two new lead(II) coordination polymers, [Pb{sub 2}(mpic){sub 4}(H{sub 2}O)]·0.5H{sub 2}O (1) and [Pb{sub 2}(phen){sub 2}(cit)(mes)]·2H{sub 2}O (2) has been reported, where mpic=3-methyl picolinate, phen=o-phenanthroline, H{sub 2}cit=citraconic acid, H{sub 2}mes mesaconic acid. X-ray single crystal diffraction analyses showed that the complexes comprise topologically different 1D polymeric chains stabilized by weak interactions and both containing tetranuclear Pb{sub 4} units connected by carboxylate groups. In compound 1 3-methylpicolinic acid is formed in situ from 3-methyl piconitrile, and mesaconate and citraconate anions were surprisingly formed from itaconic acid during the synthesis of 2. The photoluminescence and thermal properties of the complexes have been studied. - Graphical abstract: Two new topologically different 1D coordination polymers formed by Pb{sub 4} clusters have been synthesized and characterized by X-ray analysis. The luminescence and thermal properties have been studied. Display Omitted - Highlights: • Both the complexes, made up of different ligands, forms topologycally different 1D polymeric chains containing Pb{sub 4} clusters. • The final structures are stabilized by weak interactions (H-bond, π∙∙∙π stacking). • In complex 1, the 3-methylpicolinic acid is generated in situ from 3-methyl piconitrile. • Mesaconate and citraconate anions are surprisingly formed in situ from itaconic acid during the synthesis of complex 2, indicating an exceptional transformation.

  18. Solar fusion cross sections II: the pp chain and CNO cycles

    SciTech Connect

    Adelberger, E G; Bemmerer, D; Bertulani, C A; Chen, J -W; Costantini, H; Couder, M; Cyburt, R; Davids, B; Freedman, S J; Gai, M; Garcia, A; Gazit, D; Gialanella, L; Greife, U; Hass, M; Heeger, K; Haxton, W C; Imbriani, G; Itahashi, T; Junghans, A; Kubodera, K; Langanke, K; Leitner, D; Leitner, M; Marcucci, L E; Motobayashi, T; Mukhamedzhanov, A; Nollett, Kenneth M; Nunes, F M; Park, T -S; Parker, P D; Prati, P; Ramsey-Musolf, M J; Hamish Robertson, R G; Schiavilla, R; Simpson, E C; Snover, K A; Spitaleri, C; Strieder, F; Suemmerer, K; Trautvetter, R E; Tribble, R E; Typel, S; Uberseder, E; Vetter, P; Wiescher, M; Winslow, L

    2011-04-01

    The available data on nuclear fusion cross sections important to energy generation in the Sun and other hydrogen-burning stars and to solar neutrino production are summarized and critically evaluated. Recommended values and uncertainties are provided for key cross sections, and a recommended spectrum is given for 8B solar neutrinos. Opportunities for further increasing the precision of key rates are also discussed, including new facilities, new experimental techniques, and improvements in theory. This review, which summarizes the conclusions of a workshop held at the Institute for Nuclear Theory, Seattle, in January 2009, is intended as a 10-year update and supplement to 1998, Rev. Mod. Phys. 70, 1265.

  19. II

    Office of Legacy Management (LM)

    . : " + ; . .Z + II . ? 8 . " ~. . . . a a' .; ,. ?> , . ' . : . ., ! , Environmental i r .,' : % , ~ ~ 9 . / ; i.3. -\ ,- I - 'I ' , 2 " .r: 1; . . , ~ . ,&- c . . a , ,, .,I;< . .' , , ? $ ; 1- !'I' . '...~ - .. :, , .I Closure Report for CAU No. 416 1: ' . Project Shoal Area I:' c!';,: .. 7. .. , . ~ 1 I' ,. Controlled Copy No. UNCONTROLLED { -* .. 4'. . 1 " . .. *. *" '.. . . , , ,I +' , ,.f.' I , I" I ', ', ctk;' . , I , '. :C, , I: : , . p . ? .,; .

  20. Adsorption and separation of CO{sub 2} on Fe(II)-MOF-74: Effect of the open metal coordination site

    SciTech Connect

    Lou, Wolong; Yang, Jiangfeng; Li, Libo; Li, Jinping

    2014-05-01

    We describe the successful synthesis of Fe{sub 2}(dobdc) (dobdc{sup 4−}=2, 5-dioxido-1, 4-benzenedicarboxylate), which has an open metal coordination site Fe(II), and investigate the adsorption properties of three important molecules CO{sub 2}, CH{sub 4} and N{sub 2} on Fe{sub 2}(dobdc) and an oxidized analog, Fe{sub 2}(O{sub 2})(dobdc). We found that CO{sub 2} adsorption isotherm of Fe{sub 2}(dobdc) at 10 bar was very different from Fe{sub 2}(O{sub 2})(dobdc), with the capacities of 144.5 cm{sup 3} g{sup −1} and 98.1 cm{sup 3} g{sup −1}, respectively. The adsorption capacities for CH{sub 4} were 75.8 cm{sup 3} g{sup −1} and 36.8 cm{sup 3} g{sup −1}, respectively, at 10 bar in these materials. Using ideal adsorbed solution theory (IAST), we obtain the adsorption selectivity for CO{sub 2} using equimolar mixtures of CO{sub 2}/CH{sub 4} and CO{sub 2}/N{sub 2} with Fe{sub 2}(dobdc) and Fe{sub 2}(O{sub 2})(dobdc) as a function of pressure. Fe{sub 2}(dobdc) has a higher, more stable separation factor. - Graphical abstract: The selectivity of CO{sub 2}/CH{sub 4} mixture (50%/50%) on Fe{sub 2}(dobdc) and Fe{sub 2}(O{sub 2})(dobdc). - Highlights: • We explored the contrastive adsorption of CO{sub 2}, CH{sub 4}, and N{sub 2} in Fe{sub 2}(dobdc) and Fe{sub 2}(O{sub 2})(dobdc) for the first time. • Through IAST, we obtain the adsorption selectivity for CO{sub 2} from the equimolar mixture of CO{sub 2}/CH{sub 4} and CO{sub 2}/N{sub 2} for Fe{sub 2}(dobdc) and Fe{sub 2}(O{sub 2})(dobdc). • We determined that the open coordination site of Fe(II) is the main reason for different adsorption performances.

  1. solar

    National Nuclear Security Administration (NNSA)

    2%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  2. Syntheses, crystal structures and fluorescent properties of Cd(II), Hg(II) and Ag(I) coordination polymers constructed from 1H-1,2,4-triazole-1-acetic acid

    SciTech Connect

    Ding Degang; Xie Lixia; Fan Yaoting; Hou Hongwei; Xu Yan

    2009-06-15

    Three new d{sup 10} coordination polymers, namely [Cd(taa)Cl]{sub n}1, [Hg(taa)Cl]{sub n}2, and [Ag{sub 1.5}(taa)(NO{sub 3}){sub 0.5}]{sub n}3 (taa=1H-1,2,4-triazole-1-acatate anion) have been prepared and characterized by elemental analysis, IR, and single crystal X-ray diffraction. Compound 1 consists of two-dimensional layers constructed by carboxyl-linked helical chains, which are further linked through carboxyl group to generate a unique 3D open framework. Topological analysis reveals that the structure of 1 can be classified as an unprecedented (3,8)-connected network with the Schlaefli symbol (4.5{sup 2}){sub 2}(4{sup 2}.5{sup 8}.6{sup 14}.7{sup 3}.8). Compound 2 manifests a doubly interpenetrated decorated alpha-polonium cubic network with the Schlaefli symbol of (4{sup 10}.6{sup 2}.8{sup 3}). Compound 3 consists of 2D puckered layers made up of Ag centers and taa{sup -} bridges. In addition, all of these compounds are photoluminescent in the solid state with spectra that closely resemble those of the ligand precursor. - Graphical abstract: Three new compounds based on 1H-1,2,4-triazole-1-acetic acid and Cd(II), Hg(II) and Ag(I) salts display luminescent properties and may be potential candidates for luminescent materials.

  3. Selective Binding of O(2) over N(2) in a Redox-Active Metal-Organic Framework with Open Iron(II) Coordination Sites

    SciTech Connect

    Bloch, Eric D.; Murray, Leslie J.; Queen, Wendy L.; Chavan, Sachin; Maximoff, Sergey N.; Bigi, Julian P.; Krishna, Rajamani; Peterson, Vanessa K.; Grandjean, Fernande; Long, Gary J.; Smit, Berend; Bordiga, Silvia; Brown, Craig M.; Long, Jeffrey R.

    2011-09-21

    The air-free reaction between FeCl₂ and H₄dobdc (dobdc{sup 4–} = 2,5-dioxido-1,4-benzenedicarboxylate) in a mixture of N,N-dimethylformamide (DMF) and methanol affords Fe₂(dobdc)·4DMF, a metal–organic framework adopting the MOF-74 (or CPO-27) structure type. The desolvated form of this material displays a Brunauer–Emmett–Teller (BET) surface area of 1360 m²/g and features a hexagonal array of one-dimensional channels lined with coordinatively unsaturated Fe{sup II} centers. Gas adsorption isotherms at 298 K indicate that Fe₂(dobdc) binds O₂ preferentially over N₂, with an irreversible capacity of 9.3 wt %, corresponding to the adsorption of one O₂ molecule per two iron centers. Remarkably, at 211 K, O₂ uptake is fully reversible and the capacity increases to 18.2 wt %, corresponding to the adsorption of one O₂ molecule per iron center. Mössbauer and infrared spectra are consistent with partial charge transfer from iron(II) to O₂ at low temperature and complete charge transfer to form iron(III) and O₂{sup 2–} at room temperature. The results of Rietveld analyses of powder neutron diffraction data (4 K) confirm this interpretation, revealing O₂ bound to iron in a symmetric side-on mode with d{sub O–O} = 1.25(1) Å at low temperature and in a slipped side-on mode with dO–O = 1.6(1) Å when oxidized at room temperature. Application of ideal adsorbed solution theory in simulating breakthrough curves shows Fe₂(dobdc) to be a promising material for the separation of O₂ from air at temperatures well above those currently employed in industrial settings.

  4. Five new Zn(II) and Cd(II) coordination polymers constructed by 3,5-bis-oxyacetate-benzoic acid: Syntheses, crystal structures, network topologies and luminescent properties

    SciTech Connect

    Jiang Xianrong; Yuan Hongyan; Feng Yunlong

    2012-07-15

    Five Zn(II) and Cd(II) coordination polymers, [Zn{sub 2}(BOABA)(bpp)(OH)]{center_dot}0.5H{sub 2}O (1), [Cd{sub 3}(BOABA){sub 2}(bpp){sub 2}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O (2), [Cd{sub 3}(BOABA){sub 2}(2,2 Prime -bipy){sub 3}(H{sub 2}O){sub 4}]{center_dot}5.5H{sub 2}O (3), [CdNa(BOABA)(H{sub 2}O)]{sub 2}{center_dot}H{sub 2}O (4) and [Cd{sub 2}(BOABA)(bimb)Cl(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O (5) (H{sub 3}BOABA=3,5-bis-oxyacetate-benzoic acid, bpp=1,3-bi(4-pyridyl)propane, 2,2 Prime -bipy=2,2 Prime -bipyridine, bimb=1,4-bis(imidazol-1 Prime -yl)butane), have been solvothermally synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra and TG analyses. 1 is an uninodal 4-connected 2D square grid network based on binuclear zinc clusters. 2 is 2D wavelike layer structure and further linked by hydrogen bonds into the final 3D (5,6,6)-connected topology network. 3 is 3-connected 2D topology network and the 2,2 Prime -bipy ligands decorate in two different types. 4 is a (4,8)-connected 2D topology network with heterocaryotic {l_brace}Cd{sub 2}Na{sub 2}{r_brace} clusters and BOABA{sup 3-} ligands. 5 can be rationalized as a (3,10)-connected 3D topology network with tetranuclear {l_brace}Cd{sub 4}Cl{sub 2}{r_brace} clusters and BOABA{sup 3-} ligands. Meanwhile, photoluminescence studies revealed that these five coordination polymers display strong fluorescent emission bands in the solid state at room temperature. - Graphical abstract: Five new d{sup 10} metal(II) coordination polymers based on H{sub 3}BOABA ligand were obtained and characterized. They display different topological structures and luminescent properties. Highlights: Black-Right-Pointing-Pointer Five d{sup 10} metal(II) polymers based on 3,5-bis-oxyacetate-benzoic acid were obtained. Black-Right-Pointing-Pointer The polymers were structurally characterized by single-crystal X-ray diffraction. Black-Right-Pointing-Pointer Polymers 1-5 display different

  5. UNDERSTANDING THE MG II AND Hα SPECTRA IN A HIGHLY DYNAMICAL SOLAR PROMINENCE

    SciTech Connect

    Heinzel, P.; Schmieder, B.; Mein, N.; Gunár, S.

    2015-02-10

    Mg ii h and k and Hα spectra in a dynamical prominence have been obtained along the slit of the Interface Region Imaging Spectrograph (IRIS) and with the Meudon Multi-channel Subtractive Double Pass spectrograph on 2013 September 24, respectively. Single Mg ii line profiles are not much reversed, while at some positions along the IRIS slit the profiles show several discrete peaks that are Doppler-shifted. The intensity of these peaks is generally decreasing with their increasing Doppler shift. We interpret this unusual behavior as being due to the Doppler dimming effect. We discuss the possibility to interpret the unreversed single profiles by using a two-dimensional (2D) model of the entire prominence body with specific radiative boundary conditions. We have performed new 2D isothermal–isobaric modeling of both Hα and Mg ii lines and show the ability of such models to account for the line profile variations as observed. However, the Mg ii line-center intensities require the model with a temperature increase toward the prominence boundary. We show that even simple one-dimensional (1D) models with a prominence-to-corona transition region (PCTR) fit the observed Mg ii and Hα lines quite well, while the isothermal–isobaric models (1D or 2D) are inconsistent with simultaneous observations in the Mg ii h and k and Hα lines, meaning that the Hα line provides a strong additional constraint on the modeling. IRIS far-UV detection of the C ii lines in this prominence seems to provide a direct constraint on the PCTR part of the model.

  6. Synthesis, crystal structure and magnetic characterization of metal(II) coordination polymers based on 2-carboxyethylphosphonic acid and 1,10-phenanthroline (metal=Cu, Co, Cd)

    SciTech Connect

    Fernandez-Zapico, Eva; Montejo-Bernardo, Jose Manuel; D'Vries, Richard; Garcia, Jose R.; Garcia-Granda, Santiago; Rodriguez Fernandez, Jesus; Pedro, Imanol de; Blanco, Jesus A.

    2011-12-15

    Three non-isostructural metal(II) coordination polymers (metal=copper, cobalt, cadmium) were synthesized under the same mild hydrothermal conditions (T=408 K) by mixture of the corresponding metal acetate with 2-carboxyethylphosphonic acid and 1,10-phenanthroline (1:1:1 M ratio) and their structures were determined by single-crystal X-ray diffraction. Cu{sub 2}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 2}(H{sub 2}O){sub 2} and Cd{sub 2}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 2} are triclinic (space group P-1) with a=7.908(5) A, b=10.373(5) A, c=11.515(5) A, {alpha}=111.683(5) Degree-Sign , {beta}=95.801(5) Degree-Sign , {gamma}=110.212(5) Degree-Sign (T=120 K), and a=8.162(5) A, b=9.500(5) A, c=11.148(5) A, {alpha}=102.623(5) Degree-Sign , {beta}=98.607(5) Degree-Sign , {gamma}=113.004(5) Degree-Sign (T=293 K), respectively. In contrast, [Co{sub 2}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 2}({mu}-OH{sub 2})](H{sub 2}O) is orthorhombic (space group Pbcn) with a=21.1057(2) A, b=9.8231(1) A, c=15.4251(1) A (T=120 K). For these three compounds, structural features, including H-bond network and the {pi}-{pi} stacking interactions, and thermal stability are reported and discussed. None of the materials present a long-range magnetic order in the range of temperatures investigated from 300 K down to 1.8 K. - Graphical abstract: In same synthetic conditions, both the chemical and structural features of three transition metal(II) coordination polymers based on 2-carboxyethylphosphonate and 1-10 Prime -phenanthroline are influenced by the metal cation characteristics, leading to non-homologous materials with different properties, which show the high chemical versatility of this interesting system. Highlights: Black-Right-Pointing-Pointer Non-isostructural metal coordination polymers were synthesized under mild hydrothermal conditions. Black-Right-Pointing-Pointer Ligand's flexibility

  7. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume II. Plant specifications

    SciTech Connect

    Price, R. E.

    1983-12-31

    The specifications and design criteria for all plant systems and subsystems used in developing the preliminary design of Carrisa Plains 30-MWe Solar Plant are contained in this volume. The specifications have been organized according to plant systems and levels. The levels are arranged in tiers. Starting at the top tier and proceeding down, the specification levels are the plant, system, subsystem, components, and fabrication. A tab number, listed in the index, has been assigned each document to facilitate document location.

  8. Dalkia Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Agullent, Spain Zip: 46890 Sector: Solar Product: Agullent-based installer of photovoltaic and solar thermal power plants. Coordinates: 38.824755, -0.547039 Show Map...

  9. Elkem Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Product: Norwegian manufacturer of solar grade silicon that uses metallurgical process. Coordinates: 59.91228, 10.74998 Show Map Loading map... "minzoom":false,"map...

  10. Dimas Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Argos, Greece Sector: Solar Product: Makes solar passive systems, particularly collectors and absorbers. Coordinates: 41.23725, -86.245919 Show Map Loading map......

  11. BP Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Maryland Zip: 21703 Sector: Solar Product: Maryland-based subsidiary of BP Alternative Energy dealing with solar power. Website: www.bp.comgenericcountryjump. Coordinates:...

  12. Afghan Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar power systems installer and distributor, including solar powered street lights, inverters and batteries. Coordinates: 34.53091, 69.136749 Show Map Loading map......

  13. Radiant Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    India Zip: 500009 Sector: Solar Product: Solar products company focused on lanterns, lighting systems and water heaters. Coordinates: 17.46071, 78.49298 Show Map Loading...

  14. Green Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Jump to: navigation, search Name: Green Solar Place: Paris, France Zip: 45003 Product: Develops and builds PV systems in Guadeloupe and Mauritius. Coordinates: 48.85693,...

  15. Radiance Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Radiance Solar Jump to: navigation, search Name: Radiance Solar Place: Atlanta, Georgia Zip: 30318 Product: Commercial and residential PV installer based in Atlanta. Coordinates:...

  16. Spire Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Greater Boston Area Sector: Solar Product: Manufactures modules and provides PV manufacturing equipment Website: www.spirecorp.comspire-solar Coordinates: 42.4812912,...

  17. Magnolia Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Magnolia Solar Jump to: navigation, search Name: Magnolia Solar Place: Woburn, Massachusetts Zip: 1801 Product: Massachusetts-based thin-film PV startup. Coordinates: 42.479195,...

  18. ICE Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    India Sector: Solar Product: India-based company focused on solar PV engineering, procurement and construction opportunities. Coordinates: 17.6726, 77.5971 Show Map Loading...

  19. Huanting Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Huanting Solar Jump to: navigation, search Name: Huanting Solar Place: Xiamen, Fujian Province, China Product: Chinese PV power plant developer. Coordinates: 24.45252,...

  20. Lumos Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Place: Boulder, Colorado Zip: 80301 Sector: Solar Product: A supplier of solar passive water heating systems and small PV systems. Coordinates: 42.74962, -109.714163 Show...

  1. FTL Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    FTL Solar develops lightweight, flexible tensile structures embedded with thin-film solar cells. Coordinates: 30.267605, -97.742984 Show Map Loading map......

  2. GA Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Spain Zip: 28045 Sector: Solar Product: Madrid based solar project developer, owned by Spanish industrial group Corporacion Gestamp. Coordinates: 40.4203, -3.705774 Show Map...

  3. II

    Office of Legacy Management (LM)

    II rr r e3 c LI c - r F L - I - c LI c F - 794f zL.28 ORNL/RASA-91/8 OAK RIDGE NATIONAL LABORATORY Results of the Radiological Survey at the New Betatron Building, Granite City Steel Facility, Granite City, Illinois (GSG002) M . E. Murray M . S. Uziel MANAGED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT DF ENERGY FILE f$Q"f ry$ 4 - This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of

  4. II

    Office of Legacy Management (LM)

    II c )3 c F r c L LI L rr c - r I P- c OAK RlDGE NATIONAL LABORATORY h U W -l\ &?ir;; ITi' m . 8 ORNL/RASA-92/l Results of the Radiological Survey at the Former Chapman Valve Manufacturing Company, Indian Orchard, Massachusetts (cIooo1) R. D. Foley M . S. Uziel MANAGED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY ORNLJRASA-92/l /- HEALTH AND SAFETY RESEARCH DIVISION Environmental Restoration and Waste Management Non-Defense Programs (Activity No. EX 20

  5. A BROKEN SOLAR TYPE II RADIO BURST INDUCED BY A CORONAL SHOCK PROPAGATING ACROSS THE STREAMER BOUNDARY

    SciTech Connect

    Kong, X. L.; Chen, Y.; Li, G.; Feng, S. W.; Song, H. Q.; Jiao, F. R.; Guo, F.

    2012-05-10

    We discuss an intriguing type II radio burst that occurred on 2011 March 27. The dynamic spectrum was featured by a sudden break at about 43 MHz on the well-observed harmonic branch. Before the break, the spectrum drifted gradually with a mean rate of about -0.05 MHz s{sup -1}. Following the break, the spectrum jumped to lower frequencies. The post-break emission lasted for about 3 minutes. It consisted of an overall slow drift which appeared to have a few fast-drift sub-bands. Simultaneous observations from the Solar TErrestrial RElations Observatory and the Solar Dynamics Observatory were also available and are examined for this event. We suggest that the slow-drift period before the break was generated inside a streamer by a coronal eruption driven shock, and the spectral break as well as the relatively wide spectrum after the break is a consequence of the shock crossing the streamer boundary where density drops abruptly. It is suggested that this type of radio bursts can be taken as a unique diagnostic tool for inferring the coronal density structure, as well as the radio-emitting source region.

  6. Three Pb{sup II} coordination polymers based on 2-(pyridin-2-yl)-1H-imidazole-4,5-dicarboxylic acid: Syntheses, crystal structures, and fluorescent properties

    SciTech Connect

    Yu, Xiao-Yang; Xin, Rui; Gao, Wei-Ping; Wang, Na; Zhang, Xiao; Yang, Yan-Yan; Qu, Xiao-Shu

    2013-08-15

    Three lead coordination polymers, [PbCl(C{sub 10}H{sub 6}N{sub 3}O{sub 4})(H{sub 2}O)·H{sub 2}O]{sub n} (1), [Pb(C{sub 10}H{sub 6}N{sub 3}O{sub 4}){sub 2}(H{sub 2}O)]{sub n} (2) and [Pb{sub 3}(C{sub 10}H{sub 5}N{sub 3}O{sub 4}){sub 3}]{sub n} (3) (C{sub 10}H{sub 7}N{sub 3}O{sub 4}=2-(pyridin-2-yl)-1H-imidazole-4,5-dicarboxylic acid), have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. In 1, Cl anions connected neighboring wave-like 2D layers, which are constructed with left- and right-handed helical chains, into a 3D network structure with a (6{sup 3})(6{sup 5}·8) topology. In 2, Pb cations are linked into a 3D 6{sup 6} network with left- and right-handed helixes by μ{sub 2}-bridging C{sub 10}H{sub 6}N{sub 3}O{sub 4}{sup −} ligands. In 3, C{sub 10}H{sub 5}N{sub 3}O{sub 4}{sup 2−} ligands link Pb{sub 6}O{sub 12} clusters into a 3D (4{sup 12}·6{sup 3}) network. Their fluorescent properties were also investigated. - Graphical abstract: Three 3D lead compounds based on 2-(pyridin-2-yl)-1H-imidazole-4,5-dicarboxylic acid have been hydrothermally synthesized. Four new coordination modes of the organic ligand are first reported. Display Omitted - Highlights: • Three new Pb(II) complexes have been synthesized and characterized. • Left- and right-handed helical chains can be found in the 3D networks of 1 and 2. • Pb{sub 6}O{sub 12} clusters are connected into (4{sup 12}·6{sup 3}) network in 3.

  7. Sunset Reservoir Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Reservoir Solar Power Plant Facility Sunset Reservoir Sector Solar Facility Type Photovoltaic Developer Recurrent Energy Location San Francisco, California Coordinates...

  8. Photocapacitance study of type-II GaSb/GaAs quantum ring solar cells

    SciTech Connect

    Wagener, M. C.; Botha, J. R.; Carrington, P. J.; Krier, A.

    2014-01-07

    In this study, the density of states associated with the localization of holes in GaSb/GaAs quantum rings are determined by the energy selective charging of the quantum ring distribution. The authors show, using conventional photocapacitance measurements, that the excess charge accumulated within the type-II nanostructures increases with increasing excitation energies for photon energies above 0.9?eV. Optical excitation between the localized hole states and the conduction band is therefore not limited to the ?(k?=?0) point, with pseudo-monochromatic light charging all states lying within the photon energy selected. The energy distribution of the quantum ring states could consequently be accurately related from the excitation dependence of the integrated photocapacitance. The resulting band of localized hole states is shown to be well described by a narrow distribution centered 407?meV above the GaAs valence band maximum.

  9. Emcore/SunPeak Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Power Plant Facility EmcoreSunPeak Sector Solar Facility Type Concentrating Photovoltaic Developer SunPeak Solar Location Albuquerque, New Mexico Coordinates 35.0844909,...

  10. Cimarron I Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Cimarron I Solar Power Plant Facility Cimarron I Sector Solar Facility Type Photovoltaic Developer First Solar Location Colfax County, New Mexico Coordinates 36.5799757,...

  11. Desert Sunlight Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sunlight Solar Power Plant Facility Desert Sunlight Sector Solar Facility Type Photovoltaic Developer First Solar Location Desert Center, California Coordinates 33.7541038,...

  12. Agua Caliente Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Caliente Solar Power Plant Facility Agua Caliente Solar Sector Solar Facility Type Photovoltaic Developer NextLight Renewable Power Location Yuma County, Arizona Coordinates...

  13. Golden Hills Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hills Solar Power Plant Facility Golden Hills Solar Sector Solar Facility Type Photovoltaic Developer PowerWorks Location Alameda County, California Coordinates 37.6016892,...

  14. Don Ana Sun Tower Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Don Ana Sun Tower Sector Solar Facility Type Concentrating Solar Power Developer NRG EnergyeSolar Location Dona Ana County, New Mexico Coordinates 32.485767,...

  15. Premier Solar Systems Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Product: Manufactures PV cells, modules, systems, solar water pumping systems, solar water heating systems and solar garden lights. Coordinates: 17.6726, 77.5971 Show Map...

  16. Shenzhen Topray Solar Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    518108 Sector: Solar Product: Shenzhen Topray Solar Co Ltd produces amorphous silicon solar cells. Coordinates: 22.546789, 114.112556 Show Map Loading map......

  17. Hydrothermal synthesis of zinc(II)-phosphonate coordination polymers with different dimensionality (0D, 2D, 3D) and dimensionality change in the solid phase (0D→3D) induced by temperature

    SciTech Connect

    Fernández-Zapico, Eva; Montejo-Bernardo, Jose; Fernández-González, Alfonso; García, José R. García-Granda, Santiago

    2015-05-15

    Three new zinc(II) coordination polymers, [Zn(HO{sub 3}PCH{sub 2}CH{sub 2}COO)(C{sub 12}H{sub 8}N{sub 2})(H{sub 2}O)] (1), [Zn{sub 3}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2})](H{sub 2}O){sub 3.40} (2) and [Zn{sub 5}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 4}](H{sub 2}O){sub 0.32} (3), with different structural dimensionality (0D, 2D and 3D, respectively) have been prepared by hydrothermal synthesis, and their structures were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system (P2{sub 1}/c) forming discrete dimeric units bonded through H-bonds, while compounds 2 and 3 crystallize in the triclinic (P−1) and the monoclinic (C2/c) systems, respectively. Compound 3, showing three different coordination numbers (4, 5 and 6) for the zinc atoms, has also been obtained by thermal treatment of 1 (probed by high-temperature XRPD experiments). The crystalline features of these compounds, related to the coordination environments for the zinc atoms in each structure, provoke the increase of the relative fluorescence for 2 and 3, compared to the free phenanthroline. Thermal analysis (TG and DSC) and XPS studies have been also carried out for all compounds. - Graphical abstract: Three new coordination compounds of zinc with 2-carboxyethylphosphonic acid (H{sub 2}PPA) and phenanthroline have been obtained by hydrothermal synthesis. The crystalline structure depends on the different coordination environments of the zinc atoms (see two comparative Zn{sub 6}-moieties). The influence of the different coordination modes of H{sub 2}PPA with the central atom in all structures have been studied, being found new coordination modes for this ligand. Several compounds show a significant increase in relative fluorescence with respect to the free phenanthroline. - Highlights: • Compounds have been obtained modifying the reaction time and the rate of

  18. Commercial Solar Ventures | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Product: Portland based company that specializes in commercial scale solar installations throughout Oregon. Coordinates: 45.511795, -122.675629 Show Map Loading map......

  19. Borrego Solar (Massachusetts) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    East Place: Lowell, Massachusetts Zip: 01852 Region: Greater Boston Area Sector: Solar Product: Design and install solar systems Website: www.borregosolar.com Coordinates:...

  20. Buzitka Solar AS | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Buzitka Solar AS Jump to: navigation, search Name: Buzitka Solar AS Place: Buzitka, Slovakia Zip: 985 41 Product: Slovakia based developer of PV projects. Coordinates: 48.307735,...

  1. CSG Solar AG | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Germany Zip: 6766 Sector: Solar Product: Manufacture of solar modules based on Crystalline Silicon on Glass (CSG) technology Coordinates: 50.70348, 12.8498 Show Map...

  2. Korea Solar Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Inc Place: Seoul, Korea (Republic) Sector: Solar Product: Manufacturer of solar collectors, modules, and water heaters. Coordinates: 37.557121, 126.977379 Show Map Loading...

  3. Enertis Solar SL | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Enertis Solar SL Jump to: navigation, search Name: Enertis Solar SL Place: Madrid, Spain Zip: 28703 Product: Spain-based technical consultancy for PV projects. Coordinates:...

  4. QC Solar Suzhou Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jiangsu Province, China Zip: 215123 Sector: Solar Product: Suzhou-based solar PV electronics manufacturing firm. Coordinates: 31.3092, 120.613121 Show Map Loading map......

  5. Ingenia Solar Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ingenia Solar Energy Jump to: navigation, search Name: Ingenia Solar Energy Place: Madrid, Spain Zip: 28034 Product: Spain-based technical consultant for PV projects. Coordinates:...

  6. SolarOne Solutions | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zip: 01702 Region: Greater Boston Area Sector: Solar Product: Solar powered lighting Website: www.solarone.net Coordinates: 42.276902, -71.413567 Show Map Loading...

  7. Wanxiang Solar Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Place: Hangzhou, Zhejiang Province, China Zip: 311215 Sector: Solar Product: A Chinese solar module and cell maker. Coordinates: 30.252501, 120.165024 Show Map Loading...

  8. Denmark Solar Industry DSI | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Copenhagen, Denmark Zip: DK-1550 Sector: Solar Product: Manufactures and distributes solar panels and systems. Coordinates: 55.67631, 12.569355 Show Map Loading map......

  9. Tessera Solar (Texas) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    77002 Region: Texas Area Sector: Solar Product: Developer of utility scale solar power plants based on dish-Stirling engine designs Website: www.tesserasolar.com Coordinates:...

  10. REC Solar (Colorado) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Court Place: Westminster, Colorado Zip: 80030 Region: Rockies Area Sector: Solar Product: Solar panel installer Website: recsolar.com Coordinates: 39.860526, -105.066446 Show...

  11. REC Solar (Oregon) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Place: Portland, Oregon Zip: 97214 Region: Pacific Northwest Area Sector: Solar Product: Solar panel installer Website: recsolar.com Coordinates: 45.5136593, -122.657084 Show...

  12. Guangxi Chengjiyongxin Solar Technology Engineering Co Ltd |...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector: Solar Product: Mainly engages in the research, production, sale, installing, maintenance of solar technology and integration of energy-saving engineering. Coordinates:...

  13. SolarCity | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Drive Place: Foster City, California Zip: 94404 Region: Bay Area Sector: Solar Product: Solar installer Website: www.solarcity.com Coordinates: 37.563247, -122.277403 Show...

  14. North Shore Solar & Windpower | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Massachusetts Zip: 01915 Region: Greater Boston Area Sector: Solar Product: Solar and wind installer Website: www.northshorewind.com Coordinates: 42.543992, -70.8819775 Show...

  15. Module Solar AG | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Module Solar AG Jump to: navigation, search Name: Module Solar AG Place: Baar, Switzerland Product: A Swiss PV module and materials supplier and developer Coordinates: 40.808083,...

  16. FTL Solar LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector: Solar Product: Creator of flexible, tensile structures integrated with thin film solar cells Website: www.ftlsolar.com Coordinates: 40.6498136, -73.9475554 Show Map...

  17. Synthesis, structures and magnetic properties of two 3D 3,4-pyridinedicarboxylate bridged manganese(II) coordination polymers incorporating 1D helical Mn(carboxylate){sub 2} chain or Mn{sub 3}(OH){sub 2} chain

    SciTech Connect

    Tong Mingliang . E-mail: cestml@zsu.edu.cn; Wang Jing; Hu Sheng

    2005-05-15

    The hydrothermal reactions of MnCl{sub 2}.4H{sub 2}O, 3,4-pyridinedicarboxylic acid (3,4-pydaH{sub 2}) and triethylamine in aqueous medium yield two 3D metal-organic hybrid materials, [Mn(3,4-pyda)] (1) and [Mn{sub 3}(OH){sub 2}(3,4-pyda){sub 2}(H{sub 2}O){sub 2}] (2), respectively. In both complexes, each 3,4-pyda acts as a pentadentate ligand to connect five Mn(II) atoms via the pyridyl group and the two {mu}{sub 2}-carboxylate groups (one in syn,anti-mode and one in syn-syn mode for 1 and both in syn,anti-mode for 2). Complex 1 possesses an interesting 3D coordination polymeric structure incorporating 1D helical Mn({mu}{sub 2}-carboxylate){sub 2} chain units, in which each Mn(II) atom is coordinated in less common square pyramidal geometry to four carboxylato oxygen atoms and one pyridyl nitrogen atom. Each 3,4-pyda links three helical Mn({mu}{sub 2}-carboxylate){sub 2} chains and each Mn({mu}{sub 2}-carboxylate){sub 2} chain is linked by other eight helical Mn({mu}{sub 2}-carboxylate){sub 2} chains via sharing 3,4-pyda bridges. Complex 2 is a 3D coordination network consisting of 1D Mn{sub 3}(OH){sub 2} chains and 3,4-pyda bridges. The repeating trimeric structural unit in the manganese(II) hydroxide chain consists of two edge-sharing symmetry-related manganese octahedra linked via {mu}{sub 3}-OH to a vertex of Mn{sub 2} octahedron. Each 3,4-pyda links three Mn{sub 3}(OH){sub 2} chains and each Mn{sub 3}(OH){sub 2} chain is linked by other six Mn{sub 3}(OH){sub 2} chains via 3,4-pyda bridges, resulting in a 3D coordination solid. Magnetic measurements reveal that a weak antiferromagnetic interaction between the Mn{sup II} ions occurs in complex 1 and a 3D magnetic ordering at about 7.0K in complex 2.

  18. CHARGE STATE EVOLUTION IN THE SOLAR WIND. II. PLASMA CHARGE STATE COMPOSITION IN THE INNER CORONA AND ACCELERATING FAST SOLAR WIND

    SciTech Connect

    Landi, E.; Gruesbeck, J. R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2012-12-10

    In the present work, we calculate the evolution of the charge state distribution within the fast solar wind. We use the temperature, density, and velocity profiles predicted by Cranmer et al. to calculate the ionization history of the most important heavy elements in the solar corona and solar wind: C, N, O, Ne, Mg, Si, S, and Fe. The evolution of each charge state is calculated from the source region in the lower chromosphere to the final freeze-in point. We show that the solar wind velocity causes the plasma to experience significant departures from equilibrium at very low heights, well inside the field of view (within 0.6 R{sub sun} from the solar limb) of nearly all the available remote-sensing instrumentation, significantly affecting observed spectral line intensities. We also study the evolution of charge state ratios with distance from the source region, and the temperature they indicate if ionization equilibrium is assumed. We find that virtually every charge state from every element freezes in at a different height, so that the definition of freeze-in height is ambiguous. We also find that calculated freeze-in temperatures indicated by charge state ratios from in situ measurements have little relation to the local coronal temperature of the wind source region, and stop evolving much earlier than their correspondent charge state ratio. We discuss the implication of our results on plasma diagnostics of coronal holes from spectroscopic measurements as well as on theoretical solar wind models relying on coronal temperatures.

  19. pH- and mol-ratio dependent formation of zinc(II) coordination polymers with iminodiacetic acid: Synthesis, spectroscopic, crystal structure and thermal studies

    SciTech Connect

    Ni Lubin; Zhang Ronghua; Liu Qiongxin; Xia Wensheng; Wang Hongxin; Zhou Zhaohui

    2009-10-15

    Three novel zinc coordination polymers (NH{sub 4}){sub n}[Zn(Hida)Cl{sub 2}]{sub n} (1), [Zn(ida)(H{sub 2}O){sub 2}]{sub n} (2), [Zn(Hida){sub 2}]{sub n}.4nH{sub 2}O (3) (H{sub 2}ida=iminodiacetic acid) and a monomeric complex [Zn(ida)(phen)(H{sub 2}O)].2H{sub 2}O (4) (phen=1,10-phenanthroline) have been synthesized and characterized by X-ray diffraction methods. 1 and 2 form one-dimensional (1-D) chain structures, whereas 3 exhibits a three-dimensional (3-D) diamondoid framework with an open channel. The mononuclear complex 4 is extended into a 3-D supramolecular architecture through hydrogen bonds and pi-pi stacking. Interestingly, cyclic nonplanar tetrameric water clusters are observed that encapsulated in the 3-D lattice of 4. Based on {sup 1}H and {sup 13}C NMR observations, there is obvious coordination of complex 2 in solution, while 1 and 3 decompose into free iminodiacetate ligand. Monomer [Zn(ida)(H{sub 2}O){sub 3}] (5) is considered as a possible discrete species from 2. These coordination polymers can serve as good molecular precursors for zinc oxide. - Text3: Reaction of zinc salt with iminodiacetic acid afforded three new coordination polymers 1-3 and a monomer 4, which is dependent on pH value and molar ratio of the reactants.

  20. Synthesis and crystal structure of a novel Mn(II) coordination polymer with 3-(4-(1H-benzo[d]imidazol-1-yl)-4-methoxyphenyl)-1-phenylprop-2-en-1-one ligands

    SciTech Connect

    Wang, G.-F.; Zhang, X.; Sun, S.-W. Han, Q.-P.; Yang, X.; Li, H.; Ma, H.-X.; Yao, C.-Z.; Sun, H.; Dong, H.-B.

    2015-12-15

    3-(4-(1H-Benzo[d]imidazol-1-yl)-4-methoxyphenyl)-1-phenylprop-2-en-1-one (L{sup 1}, 1) and its Mn(II) complex, [Mn(L{sup 1}){sub 2}(SCN){sub 2}]{sub ∞} (2), were synthesized and characterized by elemental analyses, IR spectroscopy and single-crystal X-ray diffraction. The Mn(II) ion in 2 is six-coordinated to four nitrogen atoms of two L{sup 1} ligands, two SCN-ligands, and two oxygen atoms of other two L{sup 1} ligands to form a distorted octahedral geometry. Therefore, each L{sup 1} links Mn ions through the O and N atoms to generate 2D sheet structure.

  1. Interagency Coordination

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Interagency Coordination Image showing the cover of the Interagency brochure. Links to interagency pdf. The multi-faceted issues associated with naturally occurring methane hydrates demand a coordinated approach to studying (1) the potential of this resource as a U.S. fossil energy source, and (2) the possible hazards of tapping the resource. The National Methane Hydrates R&D Act of 2000 requires the development of a national methane hydrate R&D program that utilizes the talents of

  2. Contract to coordinate on-going documentation requirements associated with Title X legislation for DOE active-solar activities. Final project technical report

    SciTech Connect

    Not Available

    1982-06-01

    The objectives of this work were to ensure that Title X Active Solar Program reports complied with all guidance regarding length, format, coverage, tone, tables and schedules; provide necessary Conservation and Renewable Energy Office background and back-up material; follow this activity through to its completion in January 1982; assess information requirements associated with on-going documentation of Federal Buildings Program and its predecessors; establish a method for collecting, maintaining and utilizing appropriate program data specifically related to the preparation of report due in June 1982. Work on this project has generally remained on schedule and within budget. DOE-SAN has been instrumental in keeping us on track, by providing timely guidance as needed. Attached are recommendations and methods for documenting solar heat technologies research and the Title X sunset policy, planning, and evaluation long report for Active Solar Heating and Cooling Program.

  3. Synthesis of CuO by Cu-CPPs with the determination of Cu(II) coordination modes from a novel complex of [Cu(terpyOH){sub 2}]·(HBTC)·2H{sub 2}O

    SciTech Connect

    Wang, Yu Chen, Gang Han, Li; Pei, Jian

    2013-10-15

    In this study, we investigated the synthesis of CuO microrods by simple calcination of copper-based coordination polymer particles (Cu-CPPs) at high temperature in air. The photocatalytic activity of the CuO microrods was tested by the decomposition of aqueous solution of RhB, which was completely decomposed by irradiation with light. To analyze the relationship of metal ions and ligands in the Cu-CPPs, the single crystal of [Cu(terpyOH){sub 2}]∙(HBTC)∙2H{sub 2}O (1) (terpyOH=4′-hydroxy-2,2′:6′,2″-terpyridine, BTC=1,3,5-benzene tricarboxylate) was first prepared and characterized by X-ray single crystal structural analysis. A variety of hydrogen bonds constructing the 3D complex structure in [Cu(terpyOH){sub 2}]∙(HBTC)∙2H{sub 2}O (1) were observed. - Graphical abstract: Demonstrating a general method to synthesize CuO microrods via simple calcination of Cu-CPPs and Cu(II) coordination modes from a novel complex of [Cu(terpyOH){sub 2}]∙(HBTC)·2H{sub 2}O constructed by hydrogen bonding. Display Omitted - Highlights: • The formation of microrods CuO from thermal treatment of Cu-CPPs through an “escape-by-crafty-scheme” strategy has been studied. • Determination of Cu(II) coordination modes in Cu-CPPs from a novel complex of [Cu(terpyOH){sub 2}]∙(HBTC) 2H{sub 2}O. • Invested the behave of hydrogen bonding to construct the 3D complex structure. • Commendable photodegradation performance was observed.

  4. Making a Difference: Solarize Programs Accelerating Solar Adoption |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Solarize Programs Accelerating Solar Adoption Making a Difference: Solarize Programs Accelerating Solar Adoption December 29, 2015 - 12:51pm Addthis Making a Difference: Solarize Programs Accelerating Solar Adoption Dr. Elaine Ulrich Dr. Elaine Ulrich Balance of Systems/Soft Costs Program Manager As a part of their Rooftop Solar Challenge II award, the Midwest Renewable Energy Association has organized group solar buys for 92 families in Milwaukee, WI. Photo credit:

  5. SunShot Podcast: Concentrating Solar Power Thermal Storage Part...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Concentrating Solar Power Thermal Storage Part II SunShot Podcast: Concentrating Solar Power Thermal Storage Part II This SunShot Initiative podcast features Ranga Pitchumani of ...

  6. Rooftop Solar Challenge Award Winners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rooftop Solar Challenge Award Winners Rooftop Solar Challenge Award Winners Select an Awardee Return to map Rooftop Solar Challenge II Award Winners Award Winner Headquarters

  7. EmmVee Solar Systems Pvt Ltd ESSPL | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bangalore, Karnataka, India Zip: 560 024 Sector: Solar Product: Manufactures and markets solar thermal and solar photovoltaic products. Coordinates: 12.97092, 77.60482 Show...

  8. Gaskell Sun Tower and 2 others Solar Power Plant | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector Solar Facility Type Concentrating Solar Power Facility Status Proposed Developer NRG EnergyeSolar Location Kern County, California Coordinates 35.4937274, -118.8596804...

  9. NordStrom Solar GmbH | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    NordStrom Solar GmbH Jump to: navigation, search Name: NordStrom Solar GmbH Place: Husum, Germany Zip: 25813 Sector: Solar Product: Solar PV project developer. Coordinates:...

  10. Saguargo Solar Power Plant Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Type Concentrating Solar Power Facility Status In Service Developer Solargenix Location Red Rock, Arizona Coordinates 32.54795, -111.292887 Show Map Loading map......

  11. REC Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bay Area Sector: Solar Product: Solar installer Website: www.recsolar.comcmHome.html Coordinates: 37.3754586, -122.0085828 Show Map Loading map... "minzoom":false,"map...

  12. Prothea Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Italy Zip: 20100 Sector: Solar Product: Milan-based greenfield developer and turn key provider of solar energy power plants. Coordinates: 45.468945, 9.18103 Show Map...

  13. Aspen Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector: Solar Product: Design, installation & maintenance of active, passive, and photovoltaic energy systems Website: www.aspensolar.com Coordinates: 39.649755, -106.617574...

  14. Kosmo Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    offers installation, repair, consulting, design and project management services for both solar energy and energy conservation projects. Coordinates: 42.640925, -88.413644 Show...

  15. Design, construction, and startup of a concentrating photovoltaic solar energy system in Hawaii: Phase II. Final report

    SciTech Connect

    Spencer, R.; Harper, R.; Maberry, G.; Bedard, R.; Rafinejad, D.

    1982-10-01

    Acurex Corporation has designed, constructed, and is now operating a 35-kWp concentrating photovoltaic solar system located at the G.N. Wilcox Memorial Hospital in Lihue, Kauai, Hawaii. The facility consists of 446 m/sup 2/ (4800 ft/sup 2/) of parabolic trough photovoltaic collectors, an electrical power generation system which converts the direct current field output into grid-compatible alternating current power, and a thermal power subsystem for heating the hospital potable water. This report summarizes the design, construction, startup, and performance of this solar facility.

  16. Synthesis, crystal structures, and luminescent properties of Cd(II) coordination polymers assembled from semi-rigid multi-dentate N-containing ligand

    SciTech Connect

    Yuan, Gang; Shao, Kui-Zhan; Chen, Lei; Liu, Xin-Xin; Su, Zhong-Min; Ma, Jian-Fang

    2012-12-15

    Three new polymers, [Cd(L){sub 2}(H{sub 2}O){sub 2}]{sub n} (1), [Cd{sub 3}(L){sub 2}({mu}{sub 3}-OH){sub 2}({mu}{sub 2}-Cl){sub 2}(H{sub 2}O){sub 2}]{sub n} (2), {l_brace}[Cd{sub 2}(L){sub 2}(nic){sub 2}(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O{r_brace}{sub n} (3) (HL=5-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-1H-tetrazole, Hnic=nicotinic acid) have been prepared and structurally characterized. Compounds 1 and 2 display 2D monomolecular layers built by the inter-linking single helical chains and L{sup -} ligands connecting chain-like [Cd({mu}{sub 3}-OH)({mu}{sub 2}-Cl)]{sub n} secondary building units, respectively. Compound 3 is constructed from the mixed ligands and possesses a (3,4)-connected framework with (4{center_dot}8{sup 2})(4{center_dot}8{sup 2}{center_dot}10{sup 3}) topology. Moreover, the fluorescent properties of HL ligand and compounds 1-3 are also been investigated. - Graphical abstract: Three new coordination polymers based on the semi-rigid multidentate N-donor ligand have been successfully synthesized by hydrothermal reaction. Complexes 1 and 2 exhibit the 2D layers formed by inter-linking single helices and L{sup -} anions bridging 1D chain-like SBUs, respectively. Complex 3 is buit by L{sup -} and assistant nic{sup -} ligands connecting metal centers and possesses a (3,4)-connected framework with (4 Multiplication-Sign 8{sup 2})(4 Multiplication-Sign 8{sup 2} Multiplication-Sign 10{sup 3}) topology. Moreover, these complexes display fluorescent properties indicating that they may have potential applications as optical materials. Highlights: Black-Right-Pointing-Pointer Three Cd-compounds were prepared from semi-rigid HL ligand with different N-containing groups. Black-Right-Pointing-Pointer They exhibit diverse structures from 2D monomolecular layer to 3D covalent framework. Black-Right-Pointing-Pointer The HL ligands displayed various coordination modes under different reaction conditions. Black-Right-Pointing-Pointer These compounds exhibit

  17. CalRENEW-1 Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name CalRENEW-1 Solar Power Plant Facility CalRENEW-1 Sector Solar Facility Type Photovoltaic Developer Cleantech America Location Fresno County, California Coordinates...

  18. Nellis AFB Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Nellis AFB Solar Power Plant Facility Nellis AFB Sector Solar Facility Type Photovoltaic Developer Fotowatio Renewable Ventures Location Clark County, Nevada Coordinates...

  19. High Plains Ranch Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ranch Solar Power Plant Facility High Plains Ranch Sector Solar Facility Type Photovoltaic Developer Sun Power Location Carizzo Plain, California Coordinates 35.1913858,...

  20. Eti Solar Energy Technologies Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    ETI SOLAR is a renewable energy company specializing in designing, manufacturing, marketing and installing solar power systems. Coordinates: 36.979335, -85.610864 Show Map...

  1. Arizona Solar Energy Industries Association | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Arizona Solar Energy Industries Association Name: Arizona Solar Energy Industries Association Place: Arizona Website: www.arizonasolarindustry.org Coordinates: 34.0489281,...

  2. Kinmac Solar formerly Lucky Power Technology Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Taiwan Sector: Solar Product: Taiwan-based manufacturer of solar modules, chargers, inverters, batteries and related products. Coordinates: 24.69389, 121.148064 Show Map...

  3. Jiangsu Huilun Solar Technology Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Huilun Solar Technology Co Ltd Jump to: navigation, search Name: Jiangsu Huilun Solar Technology Co Ltd Place: Nanjing, Jiangsu Province, China Product: PV cell maker. Coordinates:...

  4. SolarOne Solutions Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector: Solar Product: Massachusetts-based manufacturer and retailer of solar powered LED lighting systems. Coordinates: 42.28107, -71.236054 Show Map Loading map......

  5. Veeco Solar Equipment formerly Mill Lane Engineering | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    corporation that designs, builds, and integrates custom solar equipment and flexible solar panel coating systems. Coordinates: 43.33937, -88.817939 Show Map Loading map......

  6. Envitec Solar GmbH | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Austria Sector: Solar Product: Domiciled in Austria, Envitec Solar operates as the thin-film module manufacturing arm of Envitec Energy. Coordinates: 48.056085,...

  7. Baoding Solar Thermal Equipment Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Equipment Company Place: Baoding, Hebei Province, China Sector: Solar Product: Solar water heating system manufacturer. Coordinates: 38.855011, 115.480217 Show Map Loading...

  8. CHINT Solar Co Ltd aka Astronergy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    A subsidiary company of CHINT Group, producing multicrystalline and monocrystalline solar cells, modules, thin-film solar cells and PV application products. Coordinates:...

  9. Synthesis and subsequent rearrangement of chloro(pentafluorophenyl)-1,5-cyclooctadienepalladium(II), an illustrative example of endo attack to a coordinated double bond

    SciTech Connect

    Albeniz, A.C.; Espinet, P. ); Jeannin, Y.; Philoche-Levisalles, M. ); Mann, B.E. )

    1990-08-29

    Pd(C{sub 6}F{sub 5})Cl(1,5-cyclooctadiene) has been prepared in high yield and characterized crystallographically: monoclinic space group P2{sub 1}/c, a = 8.313 (1) {angstrom}, b = 7.7800 (6) {angstrom}, c = 22.292 (4) {angstrom}, {beta} = 95.77 (1){degree} (Z = 4), final R of 0.024 for 2,080 independent reflections. The x-ray structure reveals a high trans influence of the C{sub 6}F{sub 5} groups that weakens the opposite palladium-olefin bond. This complex rearranges slowly in solution by intramolecular double bond insertion into the Pd-C{sub 6}F{sub 5} bond to give an allyl complex Pd{sub 2}({mu}-Cl){sub 2}(6-C{sub 6}F{sub 5}-1-3-{eta}{sup 3}-C{sub 8}H{sub 12}){sub 2} and {sigma},{pi}-complex Pd{sub 2}({mu}-Cl){sub 2}(8-C{sub 6}F{sub 5}-1:4-5-{eta}{sup 3}-C{sub 8}H{sub 12}){sub 2}. A derivative of the latter, Pd(8-C{sub 6}F{sub 5}-1:4-5-{eta}{sup 3}-C{sub 8}H{sub 12})(F6-acac), has been characterized crystallographically: triclinic space group P{anti 1}, a = 10.360 (3) {angstrom}, b = 11.051 (2) {angstrom}, c = 11.084 (4) {angstrom}, {alpha} = 73.70 (2){degree}, {beta} = 61.41 (2){degree}, {gamma} = 66.08 (2){degree}, final R of 0.036 for 3,341 independent reflections. The rearrangement of Pd(C{sub 6}F{sub 5})Cl(1,5-COD) is catalyzed by its products and slowed down in coordinating solvents. Both products are the result of an endo attack of C{sub 6}F{sub 5} to COD and are formed competitively from a common intermediate.

  10. Solar Photocatalytic Hydrogen Production from Water Using a Dual Bed Photosystem - Phase I Final Report and Phase II Proposal

    SciTech Connect

    Clovis A. Linkous; Darlene K. Slattery

    2000-09-11

    In this work we are attempting to perform the highly efficient storage of solar energy in the form of H{sub 2} via photocatalytic decomposition of water. While it has been demonstrated that H{sub 2} and O{sub 2} can be evolved from a single vessel containing a single suspended photocatalyst (Sayama 1994; 1997), we are attempting to perform net water-splitting by using two photocatalysts immobilized in separate containers, or beds. A schematic showing how the device would work is shown.

  11. Hybrid solar thermal-photovoltaic systems demonstration, Phase I and II. Final technical progress report, July 5, 1979-December 1982

    SciTech Connect

    Loferski, J.J.

    1983-12-01

    The purpose of the project is to investigate a system based on combined photovoltaic/thermal (PV/T) panels to supply the energy needs of a small single family residence. The system finally selected and constructed uses PV/T panels which utilize air as the heat transfer medium. Optimization of thermal performance was accomplished by attaching metal fins to the back surface of each cell which significantly increased the heat transfer coefficient from the solar cells to the air stream. The other major components of the selected system are an air-to-air heat pump, a rock bin thermal energy storage bin, a synchronous dc-to-ac converter, a microprocessor to control the system, a heat exchanger for the domestic hot water system and of course the building itself which is a one story, well insulated structure having a floor area of 1200 ft/sup 2/. A prototype collector was constructed and tested. Based on this experience, twenty collectors, containing 2860 four inch diameter solar cells, were constructed and installed on the building. Performance of the system was simulated using a TRNSYS-derived program, modified to accommodate PV/T panels and to include the particular components included in the selected system. Simulation of the performance showed that about 65 percent of the total annual energy needs of the building would be provided by the PV/T system. Of this total, about one half is produced at a time when it can be used in the building and one half must be sold back to the utility.

  12. Hydrothermal syntheses, crystal structures and luminescence properties of zinc(II) and cadmium(II) coordination polymers based on bifunctional 3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid

    SciTech Connect

    Li, Na; Guo, Hui-Lin; Hu, Huai-Ming; Song, Juan; Xu, Bing; Yang, Meng-Lin; Dong, Fa-Xin; Xue, Gang-Lin

    2013-02-15

    Five new coordination polymers, [Zn{sub 2}(ctpy){sub 2}Cl{sub 2}]{sub n} (1), [Zn{sub 2}(ctpy){sub 2}(ox)(H{sub 2}O){sub 2}]{sub n} (2), [Zn{sub 2}(ctpy)(3-btc)(H{sub 2}O)]{sub n}{center_dot}0.5nH{sub 2}O (3), [Cd(ctpy){sub 2}(H{sub 2}O)]{sub n} (4), [Cd{sub 4}(ctpy){sub 2}(2-btc){sub 2}(H{sub 2}O){sub 2}]{sub n}{center_dot}2nH{sub 2}O (5), (Hctpy=3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid, H{sub 2}ox=oxalic acid, H{sub 3}(3-btc)=1,3,5-benzenetricarboxylic acid, H{sub 3}(2-btc)=1,2,4-benzenetricarboxylic acid) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction. Compounds 1-2 are a one-dimensional chain with weak interactions to form 3D supramolecular structures. Compound 3 is a 4-nodal 3D topology framework comprised of binuclear zinc units and (ctpy){sup -} anions. Compound 4 shows two dimensional net. Compound 5 is a (4,5,6)-connected framework with {l_brace}4{sup 4}{center_dot}6{sup 2}{r_brace}{l_brace}4{sup 6}{center_dot}6{sup 4}{r_brace}{sub 2}{l_brace}4{sup 9}{center_dot}6{sup 6}{r_brace} topology. In addition, the thermal stabilities and photoluminescence properties of 1-5 were also studied in the solid state. - Graphical abstract: Five new Zn/Cd compounds with 3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid were prepared. The photoluminescence and thermal stabilities properties of 1-5 were investigated in the solid state. Highlights: Black-Right-Pointing-Pointer Five new zinc/cadmium metal-organic frameworks have been hydrothermal synthesized. Black-Right-Pointing-Pointer The structural variation is attributed to the diverse metal ions and auxiliary ligand. Black-Right-Pointing-Pointer Compounds 1-5 exhibit 1D ring chain, 2D layer and 3D open-framework, respectively. Black-Right-Pointing-Pointer These compounds exhibit strong solid state luminescence emission at room temperature.

  13. Dicarboxylate assisted synthesis of the monoclinic heterometallic tetrathiocyanato bridged copper(II) and mercury(II) coordination polymer {l_brace}Cu[Hg(SCN){sub 4}]{r_brace}{sub n}: Synthesis, structural, vibration, luminescence, EPR studies and DFT calculations

    SciTech Connect

    Khandar, Ali Akbar; Klein, Axel; Bakhtiari, Akbar; Mahjoub, Ali Reza; Pohl, Roland W.H.

    2011-02-15

    The synthesis of the monoclinic polymorph of {l_brace}Cu[Hg(SCN){sub 4}]{r_brace}{sub n} is reported. The compound, as determined by X-ray diffraction of a twinned crystal, consists of mercury and copper atoms linked by {mu}{sub 1,3}-SCN bridges. The crystal packing shows a highly porous infinite 3D structure. Diagnostic resonances for the SCN{sup -} ligand and metal-ligand bonds in the IR, far-IR and Raman spectra are assigned and discussed. The electronic band structure along with density of states (DOS) calculated by the DFT method indicates that the compound is an indirect band gap semiconductor. The DFT calculations show that the observed luminescence of the compound arises mainly from an excited LLCT state with small MLCT contributions (from the copper to unoccupied {pi}{sup *} orbital of the thiocyanate groups). The X-band EPR spectrum of the powdered sample at room temperature reveals an axial signal with anisotropic g factors consistent with the unpaired electron of Cu(II) ion in the d{sub x}{sup 2}{sub -y}{sup 2} orbital. -- Graphical abstract: Synthesis and X-ray structure determination of the monoclinic {l_brace}Cu[Hg(SCN){sub 4}]{r_brace}{sub n} is reported. The IR, far-IR, Raman, photoluminescence as well as EPR spectra of the compound is discussed. Also, the emission and semiconducting behavior of the compound is illustrated through the density functional theory calculation of electronic band structure along with density of states. Display Omitted Research highlights: > The monoclinic {l_brace}Cu[Hg(SCN){sub 4}]{r_brace}{sub n} has been prepared. > The structure of the compound is determined by XRD of a twinned crystal. > The IR, far-IR, Raman, EPR and emission spectra of the compound is investigated. > As shown by DFT calculations, the emission bands of the compound are mainly LLCT. > Small MLCT from the copper to the thiocyanate groups contributes to these bands.

  14. Impact of tax incentives on the commercialization of solar thermal electric technologies. Volume II. Federal revenue considerations

    SciTech Connect

    Bos, P.B.; Morris, G.P.

    1985-11-01

    The purpose of this study was to quantify the impact of the Solar Thermal Central Receiver (STCR) tax incentives and commercialization on the federal treasury revenues. The initial STCR market penetration was assumed to take place in California, because of favorable local conditions. The initial financing was assumed to be underwritten by intermediary partnerships under long-term avoided cost contracts with the local utility companies with subsequent sale of the plants to utilities at competitive prices. To estimate the impacts of these various tax incentives associated with the commercialization of the STCR technology, the tax revenues and costs for the STCR plants were compared with the tax revenues and costs for the displaced conventional power plants. This differential analysis takes into account the different operating expenses, as well as the different depreciation charges, financing costs, and tax credits associated with STCR and conventional plants. The study also evaluated the impact of both the previous (1983) and current (1984) proposed federal energy tax credits. The resulting total annual tax cash flows were subsequently cumulated to determine the aggregate tax revenues and costs throughout the 1985 to 2034 time period. The results of this analysis indicate that the initial federal tax revenues are negative. With increasing market penetration, the installed costs of the STCR plants decrease rapidly and the net present values of the tax revenue cash flows associated with plants constructed after 1995 are positive, and become significantly larger than those for the corresponding displaced conventional plants.

  15. Shenzhen Resun Solar Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Product: Resun Solar is engaged in the R&D, manufacture, sale and service of the solar cells and BIPV systems. Coordinates: 22.546789, 114.112556 Show Map Loading...

  16. Solar Design Workbook

    SciTech Connect

    Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.

    1981-06-01

    This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.

  17. E TON Solar Tech | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Tech Jump to: navigation, search Name: E-TON Solar Tech Place: Tainan, Taiwan Zip: 709 Product: Taiwan-based manufacturer of PV cells. Coordinates: 22.99721, 120.180862...

  18. ICP Solar Technologies Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zip: H3N 1W5 Sector: Solar Product: Manufactures amorphous silicon solar PV cells, and battery chargers using these cells. Coordinates: 45.512293, -73.554407 Show Map Loading...

  19. WPD Solare Energien | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energien Jump to: navigation, search Name: WPD Solare Energien Place: Bremen, Bremen, Germany Zip: 28211 Product: Developer of PV-projects. Coordinates: 53.075166, 8.804667...

  20. Ajit Solar Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Pvt Ltd Place: Jaipur, Rajasthan, India Zip: 302001 Product: Jaipur-based PV module manufacturer. Coordinates: 26.89876, 75.79636 Show Map Loading map......

  1. Moon Solar Light MSL | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Product: developed and distributes solar-based lighting applications using PV panels, LED lights and ultra-capacitors. Coordinates: 31.899309, 34.807999 Show Map Loading...

  2. Eisenbeiss Solar AG | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    domestic heating systems combining solar passive, wood burning, geothermal heat pumps and fossil fuel. Coordinates: 48.370335, 10.897892 Show Map Loading map......

  3. Sierra Nevada Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sierra Nevada Solar Place: Sacramento, California Zip: 95828 Product: Vertically-integrated PV systems integrator and installer. Coordinates: 38.579065, -121.491014 Show Map...

  4. Solar San Jose | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jose Jump to: navigation, search Name: Solar San Jose Place: San Jose, California Zip: 95112 Region: Bay Area Website: www.solarsanjose.com Coordinates: 37.3456227,...

  5. Keahole Solar Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    solar thermal project developer which has partnered with equipment provider Sopogy to build projects in the Hawaiian islands. Coordinates: 19.64014, -155.995678 Show Map...

  6. B Solar Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    B-Solar Ltd Place: Raanana, Israel Product: Israeli manufacturer of bifacial silicon cells and modules. Coordinates: 32.182579, 34.87014 Show Map Loading map......

  7. Logistic Solar SA | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Name: Logistic Solar SA Place: Malaga, Spain Zip: 29004 Product: A Spanish developer of small and medium PV and passive installation. Coordinates: 36.71832,...

  8. San Emidio II Geothermal Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: San Emidio II Geothermal Project Project Location Information Coordinates...

  9. Joint Coordinating Committee | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Joint Coordinating Committee

  10. Innovation and Success in Solar Financing

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar, "Innovation and Success in Solar Financing," was originally presented on July 10, 2013 as part of the DOE SunShot Initiative's Solar Action Webinar Series. After a brief presentation about the SunShot Initiative's overarching goals, three solar coordinators discuss their strategies for solving the financial challenges associated with their state- and local-level solar energy projects.

  11. Career Map: Instrumentation Coordinator

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Wind Program's Career Map provides job description information for Instrumentation Coordinator positions.

  12. Transfer and Transition: Interagency Coordination for Managing Public Lands

    Office of Scientific and Technical Information (OSTI)

    at UMTRCA Title II Sites in Wyoming - 16614 (Conference) | SciTech Connect Conference: Transfer and Transition: Interagency Coordination for Managing Public Lands at UMTRCA Title II Sites in Wyoming - 16614 Citation Details In-Document Search Title: Transfer and Transition: Interagency Coordination for Managing Public Lands at UMTRCA Title II Sites in Wyoming - 16614 By the end of fiscal year 2025, the U.S. Department of Energy (DOE) Office of Legacy Management (LM) is anticipating adding 17

  13. ARM - Field Campaign - ARESE II IOP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Abstract The ARESE II Experiment was coordinated with the Atmospheric Radiation Measurement - Unmanned Aerospace Vehicle (ARM-UAV) Program. Other Contacts Doug Sisterson, SGP CART ...

  14. Transform Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Transform Solar Place: Boise, Idaho Product: Idaho-based PV module maker and joint venture between Micron and Origin Energy. Coordinates: 43.60698, -116.193409...

  15. Gadir Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Gadir Solar Place: Madrid, Spain Zip: 28001 Product: Madrid-based manufacturer of thin-film silicon PV modules. Coordinates: 40.4203, -3.705774 Show Map Loading map......

  16. Primestar Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Unit B Place: Arvada, Colorado Zip: 80004 Region: Rockies Area Sector: Solar Product: Thin-Film PV Website: www.primestarsolar.com Coordinates: 39.816062, -105.159927 Show...

  17. PROJECT PROFILE: Institute for Sustainable Communities (Solar Market

    Energy Saver

    Pathways) | Department of Energy Institute for Sustainable Communities (Solar Market Pathways) PROJECT PROFILE: Institute for Sustainable Communities (Solar Market Pathways) Title: National Coordinator for Solar Market Pathways Institute for Sustainable Communities Logo.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: Montpelier, VT Amount Awarded: $1,872,845 Awardee Cost Share: $311,129 As the National Coordinator for the SunShot Initiative's Solar

  18. Solar collection

    SciTech Connect

    Cole, S.L.

    1984-08-01

    This report contains summaries and pictures of projects funded by the Appropriate Technology Small Grants Program which include the following solar technologies: solar dish; photovoltaics; passive solar building and solar hot water system; Trombe wall; hot air panel; hybrid solar heating system; solar grain dryer; solar greenhouse; solar hot water workshops; and solar workshops.

  19. Community Shared Solar with Solarize | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Community Shared Solar with Solarize Community Shared Solar with Solarize

  20. Concentrating Solar Power Projects by Project Name | Concentrating Solar

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Power | NREL Project Name In this section, you can select a concentrating solar power (CSP) project from the alphabetical listing of project names below. You can then review a profile covering project basics, participating organizations, and power plant configuration data for the solar field, power block, and thermal energy storage. Abhijeet Solar Project ACME Solar Tower Agua Prieta II Airlight Energy Ait-Baha Pilot Plant Alba Nova 1 Andasol-1 (AS-1) Andasol-2 (AS-2) Andasol-3 (AS-3)

  1. Solar neutrinos: theory vs experiment

    SciTech Connect

    Haxton, W.C.

    1991-01-01

    I review the standard solar model, the disparities between its predictions and the solar neutrino flux measurements of the Homestake and Kamioka II collaborations, and possible particle physics resolutions of this puzzle. The effects of matter, including density fluctuations and turbulence, on solar neutrino oscillations are reviewed, including possibilities for generating time variations in the solar neutrino flux. Finally, I consider possible outcomes and implications of the SAGE/GALLEX gallium experiments.

  2. Ligand-controlled assembly of Cd(II) coordination polymers based on mixed ligands of naphthalene-dicarboxylate and dipyrido[3,2-d:2',3'-f]quinoxaline: From 0D+1D cocrystal, 2D rectangular network (4,4), to 3D PtS-type architecture

    SciTech Connect

    Liu Guocheng; Chen Yongqiang; Wang Xiuli Chen Baokuan; Lin Hongyan

    2009-03-15

    Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H{sub 2}O){sub 2}][Cd(Dpq)(1,8-NDC)].2H{sub 2}O (1), [Cd(Dpq)(1,4-NDC)(H{sub 2}O)] (2), and [Cd(Dpq)(2,6-NDC)] (3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H{sub 2}NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H{sub 2}NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H{sub 2}NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and {pi}-{pi} stacking interactions. Compound 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer {pi}-{pi} stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature. - Graphical abstract: Three novel Cd(II) compounds have been synthesized under hydrothermal conditions exhibiting a systematic variation of architecture by the employment of three structurally related naphthalene-dicarboxylate ligands.

  3. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 2. Conceptual design, Sections 5 and 6

    SciTech Connect

    1980-01-01

    The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume contains the detailed conceptual design and cost/performance estimates and an assessment of the commercial scale solar central receiver hybrid power system. (WHK)

  4. Solar Policy Environment: Madison

    Energy.gov [DOE]

    The City of Madison’s Solar America Cities project, “MadiSUN”, will coordinate and galvanize substantial local and state resources to showcase how a U.S. Midwest city can dramatically increase the use of solar energy. Madison’s approach includes a comprehensive review of zoning and land use planning, streamlining the permitting processes, development of the local workforce, and assessment of city-owned buildings for solar PV and thermal applications. The City of Madison objective is to make Madison a green capital city and a national leader in energy efficiency and renewable energy.

  5. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 1. Conceptual design, Sections 1 through 4

    SciTech Connect

    1980-01-01

    The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume presents in detail the market analysis, parametric analysis, and the selection process for the preferred system. (WHK)

  6. Heckert BXT Solar GmbH | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    BXT Solar GmbH Jump to: navigation, search Name: Heckert BXT Solar GmbH Place: Chemnitz, Germany Zip: D-09120 Product: German module manufacturer. Coordinates: 50.836375,...

  7. A O Solar Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Co Ltd Jump to: navigation, search Name: A&O Solar Co Ltd Place: Beijing, China Product: China-based thin-film PV cell and module manufacturer Coordinates: 39.90601,...

  8. Kindness Intelligence Solar Service KIS | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Name: Kindness Intelligence Solar Service (KIS) Place: Nagano-Ken, Japan Zip: 385-0051 Product: Manufacturer of PV silicon modules. Coordinates: 36.11441,...

  9. Indian Country Solar Energy Potential Estimates & DOE IE Updates

    Office of Environmental Management (EM)

    ... Internships IE Policy Initiatives IE Deployment Innovation IE Business Roundtables Solar Energy Prospecting in Remote Alaska Arctic Coordination Sustainable Energy for Rural ...

  10. ENN Solar Energy Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Co Ltd Jump to: navigation, search Name: ENN Solar Energy Co Ltd Place: Langfang, Hebei Province, China Zip: 65001 Product: China-based PV module manufacturer. Coordinates:...

  11. Guangfeng Solar Glass Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Glass Co Ltd Place: Zhangjiagang, Jiangsu Province, China Zip: 215600 Product: Chinese PV glass maker Coordinates: 31.950001, 120.449997 Show Map Loading map......

  12. Zhejiang RICH Solar Technology Corporation Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Technology Corporation Ltd Place: Jinhua, Zhejiang Province, China Product: A Chinese manufacturer of PV modules based in the Zejiang province. Coordinates: 26.5833,...

  13. A new method for predicting the solar heat gain of complex fenestration systems: II, Detailed description of the matrix layer calculation

    SciTech Connect

    Klems, J.H.

    1993-10-01

    A new method of predicting the solar heat gain through complex fenestration systems involving nonspecular layers such as shades or blinds has been examined in a project jointly sponsored by ASHRAE and DOE. In this method, a scanning radiometer is used to measure the bidirectional radiative transmittance and reflectance of each layer of a fenestration system. The properties of systems containing these layers are then built up computationally from the measured layer properties using a transmission/multiple-reflection calculation. The calculation produces the total directional-hemispherical transmittance of the fenestration system and the layer-by-layer absorptances. These properties are in turn combined with layer-specific measurements of the inward-flowing fractions of absorbed solar energy to produce the overall solar heat gain coefficient. A preceding paper outlined the method and provided the physical derivation of the calculation. In this second of a series of related papers the detailed development of the matrix layer calculation is presented.

  14. About Solar Powering America | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    About Solar Powering America About Solar Powering America About Solar Powering America Solar Powering America was formed by the U.S. Department of Energy (DOE), U.S. Department of Agriculture (USDA), Housing and Urban Development (HUD) and the Environmental Protection Agency (EPA) to coordinate their efforts in support of meeting the goals in the President's Climate Action Plan. These goals include doubling U.S. renewable energy deployment between 2012 and 2020 and installing 100 megawatts of

  15. Solar Newsletter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  16. Solar Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  17. California Valley Solar Ranch Biological Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    California Valley Solar Ranch Biological Assessment California Valley Solar Ranch Biological Assessment Biological Assessment for the California Valley Solar Ranch Project San Luis Obispo County, California High Plains Ranch II, LLC (HPR II), a wholly owned subsidiary of SunPower Corporation, Systems ("SunPower") proposes to construct a 250-megawatt (MW) solar photovoltaic (PV) energy plant, the California Valley Solar Ranch Project (CVSR Project or Project), on a 4,747acre site in

  18. Soiling of building envelope surfaces and its effect on solar reflectance – Part II: Development of an accelerated aging method for roofing materials

    SciTech Connect

    Sleiman, Mohamad; Kirchstetter, Thomas W.; Berdahl, Paul; Gilbert, Haley E.; Quelen, Sarah; Marlot, Lea; Preble, Chelsea V.; Chen, Sharon; Montalbano, Amandine; Rosseler, Olivier; Akbari, Hashem; Levinson, Ronnen; Destaillats, Hugo

    2014-01-09

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

  19. The synthesis and characterization of new iron coordination complexes utilizing an asymmetric coordinating chelate ligand

    SciTech Connect

    Watkins, B.E.; Satcher, J.H.

    1995-07-01

    A binuclear, unsymmetric coordinating ligand that is an effective metal chelator has been designed and synthesized. The new ligand has been shown to react readily with iron(II)/(III) forming a variety of coordination complexes. The binuclear complexes are of significant interest since they represent proof-of-principle for the development of coordinatively asymmetric, binuclear metal chelate compounds. Although this structural type of chelator now appears to be common in biological systems, it has not been previously described for inorganic coordination chemistry. The isolation of oxidation products will be helpful in establishing reaction mechanism(s) of these complexes with molecular oxygen. It is expected that this ligand and derivatives of it will play an important role in the development of bioinorganic complexes that aim to mimic enzyme active sites that function by substrate interaction at only one metal site of a multimetal active site.

  20. Geographic coordinates | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Property:BoundingCoordinatesSW C Property:Coordinates F Property:FirstWellCoordinates G Property:GBIGCalculatedCenter G cont. Property:GBIGSelectedCenter H Property:HPBD...

  1. Washington: Integrated Transportation Programs & Coordinated...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Integrated Transportation Programs & Coordinated Regional Planning Washington: Integrated Transportation Programs & Coordinated Regional Planning November 6, 2013 - 5:42pm Addthis ...

  2. National Solar Systems | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    National Solar Systems Place: Al-Khobar, Saudi Arabia Zip: 31952 Product: Leading system intergrator in Saudi Arabia. Coordinates: 26.28665, 50.21434 Show Map Loading map......

  3. GroupSat Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: GroupSat Solar Place: Suzhou, Jiangsu Province, China Product: CIGS PV cell and module maker based in Suzhou in China's Jiangsu Province. Coordinates: 31.3092,...

  4. Solar Thermochemical Hydrogen Production Research (STCH)

    Publication and Product Library

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meet

  5. Solar Thermochemical Hydrogen Production Research (STCH): Thermochemic...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working ...

  6. Desert Peak II Geothermal Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Desert Peak II Sector Geothermal energy Location Information Location Churchill, Nevada Coordinates 39.753854931241, -118.95378112793 Loading map......

  7. Raft River II Geothermal Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Raft River II Geothermal Project Project Location Information Coordinates 42.605555555556,...

  8. Newby Island II Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Facility Newby Island II Sector Biomass Facility Type Landfill Gas Location Santa Clara County, California Coordinates 37.2938907, -121.7195459 Show Map Loading...

  9. National Wind Coordinating Collaborative (NWCC) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Coordinating Collaborative (NWCC) Jump to: navigation, search Logo: National Wind Coordinating Collaborative (NWCC) Name: National Wind Coordinating Collaborative (NWCC) Address:...

  10. Energy balance studies over varying ground cover of the Colorado River riparian zone below Glen Canyon Dam, Part II. Modeling of solar and net radiation

    SciTech Connect

    Brazel, A.J.; Brazel, S.W.; Marcus, M.G.

    1995-06-01

    A numerical radiation model was utilized to investigate the diurnal and seasonal variability of solar input at four sites along the Colorado River below Glen Canyon Dam: river miles -14.5, 43, 55, and 194. These simulations were compared to observations made during the spring growing season (April, 1994), the pre-monsoon dry season (June-July, 1994), the monsoon season (August, 1994), and winter (January 1995). At each river mile above, a main station was established for a 24-36 hour period observing radiation components. This station serves as a reference point to compare with simulations. The model requires specifications of sky horizon effects, albedo, atmospheric attentuation, and nearby terrain emissivity and reflectivity. A combination of field data, surveying information, and radiation theory provides an adequate methodology to yield close agreement between observations and simulations in the canyon environment. Solar shading by canyon topography can be responsible for as much 40% loss of potential photosynthetic radiation in summer months, even more at the equinoxes, and a near total reduction at some sites in winter.

  11. Synthesis, X-ray crystal structure, optical properties and DFT studies of a new 2D layered iodide bridged Pb(II) coordination polymer with 2,3-bis(2-pyridyl)pyrazine

    SciTech Connect

    Saghatforoush, Lotfali Bakhtiari, Akbar; Gheleji, Hojjat

    2015-01-15

    The synthesis of two dimensional (2D) coordination polymer [Pb{sub 2}(µ-I){sub 2}(µ-dpp-N,N,N,N)(µ-dpp-N,N)I{sub 2}]{sub n} (dpp=2,3-bis(2-pyridyl)pyrazine) is reported. As determined by X-ray diffraction of a twinned crystal, the dpp ligand simultaneously adopts a bis–bidentate and bis–monodentate coordination mode in the crystal structure of compound. The electronic band structure along with density of states (DOS) calculated by the DFT method indicates that the compound is an indirect band gap semiconductor. According to the DFT calculations, the observed emission of the compound at 600 nm in solid phase could be attributed to arise from an excited LLCT state (dpp-π{sup ⁎} [C-2p and N-2p states, CBs] to I-6p state [VBs]). The linear optical properties of the compound are also calculated by DFT method. The structure of the compound in solution phase is discussed based on the measured {sup 1}H NMR and fluorescence spectra in DMSO. TGA studies indicate that the compound is thermally stable up to 210 °C. - Graphical abstract: The synthesis, crystal structure and emission spectra of [Pb{sub 2}(µ-I){sub 2}(µ-dpp-N,N,N,N)(µ-dpp-N,N)I{sub 2}]{sub n} is presented. The electronic band structure and linear optical properties of the compound are calculated by the DFT method. - Highlights: • Two dimensional [Pb{sub 2}(µ-I){sub 2}(µ-dpp-N,N,N,N)(µ-dpp-N,N)I{sub 2}]{sub n} has been prepared. • The structure of the compound is determined by XRD of a twinned crystal. • DFT calculations indicate that the compound is an indirect band gap semiconductor. • As shown by DFT calculations, the emission band of the compound is LLCT. • Solution phase structure of compound is explored by {sup 1}H NMR and emission spectra.

  12. Coordinating the competitors

    SciTech Connect

    Paynter, T. )

    1990-11-01

    Independent power production would provide an opportunity for investors who wished to take risks: they would be free to reap great profits if their IPP were exceptionally low-cost; but they would also risk bankruptcy if their IPP proved uncompetitive. However, independent power producers cannot operate independently. On the contrary, their operations must be continuously coordinated with each other and with utility-owned generators, in order to provide reliable power at least cost. To make IPPs a viable alternative to utility-owned generation, the apparently inconsistent requirements of independent ownership and coordinated operation must be reconciled. 1 tab.

  13. Environmental Compliance Issue Coordination

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1993-01-07

    To establish the Department of Energy (DOE) requirements for coordination of significant environmental compliance issues to ensure timely development and consistent application of Departmental environmental policy and guidance. Cancels DOE O 5400.2. Para. 5a(2) and 5a(7) canceled by DOE O 231.1.

  14. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2014-11-11

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  15. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  16. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G.; Matzger, Adam J.; Benin, Annabelle I.; Willis, Richard R.

    2012-12-04

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  17. Solar Easements

    Energy.gov [DOE]

    New Hampshire's "solar skyspace easement" provisions allow property owners to create solar easements in order to create and preserve a right to unobstructed access to solar energy. Easements remain...

  18. Solar Newsletter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Newsletter pvworkshopoct24 Permalink Gallery Register for the PV Performance Modeling and Monitoring Workshop, October 24-25, 2016 News, News & Events, Photovoltaic, Solar, ...

  19. Solar Decathlon

    Energy.gov [DOE]

    The Energy Department's Solar Decathlon challenges collegiate teams to design, build and operate solar-powered houses that are cost effective, energy efficient and attractive.

  20. Trident II | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Trident II Fourth flight test for W88 Alt 370 successful A successful test conducted by the U.S. Navy, in coordination with NNSA, marked the fourth of its kind in support of NNSA's ...

  1. First Solar Manufacturing Solar Modules

    Energy.gov [DOE]

    In this photograph, a First Solar associate handles photovoltaic materials at the company's Ohio manufacturing plant. First Solar is an industry partner with the U.S. Department of Energy Solar...

  2. Region Solar Inc Solar Inc California Renewable Energy Solar...

    OpenEI (Open Energy Information) [EERE & EIA]

    Point Drive Fort Collins Colorado Solar Solar cell passive solar architectural glass solar grid tie inverter semiconductor flat panel display data storage http www advanced...

  3. Petra Fromme | Center for Bio-Inspired Solar Fuel Production

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    evolving complex in Photosystem II. This subtask also investigates integration of the artificial oxygen evolving complex (aOEC) in the complete bioinspired solar conversion system. ...

  4. Suspect Counterfeit Coordinators, April 2015

    Energy.gov [DOE] (indexed site)

    Sandia Site OfficeNNSA Nora Armjio SCI Coordinator 505-845-9855 mnarmij@sandia.gov Adlolfo Bachicha SCI Coordinator 505-844-0133 aabachi@sandia.gov SPR Project...

  5. COORDINATION OF DOE TECHNICAL STANDARDS

    Energy.gov [DOE]

    PurposeThis procedure provides guidance on the formal coordination of DOE Technical Standards in the DOE Technical Standards Program (TSP). The purpose of coordination of draft technical standards...

  6. HEATING SIGNATURES IN THE DISK COUNTERPARTS OF SOLAR SPICULES IN INTERFACE REGION IMAGING SPECTROGRAPH OBSERVATIONS

    SciTech Connect

    Rouppe van der Voort, L.; De Pontieu, B.; Pereira, T. M. D.; Carlsson, M.; Hansteen, V.

    2015-01-20

    We use coordinated observations with the Interface Region Imaging Spectrograph (IRIS) and the Swedish 1 m Solar Telescope to identify the disk counterpart of type II spicules in upper-chromospheric and transition region (TR) diagnostics. These disk counterparts were earlier identified through short-lived asymmetries in chromospheric spectral lines: rapid blue- or red-shifted excursions (RBEs or RREs). We find clear signatures of RBEs and RREs in Mg II h and k, often with excursions of the central h3 and k3 absorption features in concert with asymmetries in co-temporal and co-spatial Hα spectral profiles. We find spectral signatures for RBEs and RREs in C II 1335 and 1336 Å and Si IV 1394 and 1403 Å spectral lines and interpret this as a sign that type II spicules are heated to at least TR temperatures, supporting other recent work. These C II and Si IV spectral signals are weaker for a smaller network region than for more extended network regions in our data. A number of bright features around extended network regions observed in IRIS slit-jaw imagery SJI 1330 and 1400, recently identified as network jets, can be clearly connected to Hα RBEs and/or RREs in our coordinated data. We speculate that at least part of the diffuse halo around network regions in the IRIS SJI 1330 and 1400 images can be attributed to type II spicules with insufficient opacity in the C II and Si IV lines to stand out as single features in these passbands.

  7. Solar Circuitry

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Circuitry" with the Solar Powered Energy Kit Curriculum: Solar Power- (light/electromagnetic radiation, electricity, circuitry, efficiency, energy transformation, subatomic particles) Grade Level: Middle or High School Size: Small groups, depending on ability level. Time: 4 to 5 class periods Summary: Students will learn how the solar cell changes light energy to electrical energy. Students will work in small groups and construct different solar panel configurations to see the

  8. MULTI-WAVELENGTH OBSERVATIONS OF THE SPATIO-TEMPORAL EVOLUTION OF SOLAR FLARES WITH AIA/SDO. II. HYDRODYNAMIC SCALING LAWS AND THERMAL ENERGIES

    SciTech Connect

    Aschwanden, Markus J.; Shimizu, Toshifumi E-mail: shimizu.toshifumi@isas.jaxa.jp

    2013-10-20

    In this study we measure physical parameters of the same set of 155 M- and X-class solar flares observed with AIA/SDO as analyzed in Paper I, by performing a differential emission measure analysis to determine the flare peak emission measure EM{sub p} , peak temperature T{sub p} , electron density n{sub p} , and thermal energy E{sub th}, in addition to the spatial scales L, areas A, and volumes V measured in Paper I. The parameter ranges for M- and X-class flares are log (EM{sub p}) = 47.0-50.5, T{sub p} = 5.0-17.8 MK, n{sub p} = 4 × 10{sup 9}-9 × 10{sup 11} cm{sup –3}, and thermal energies of E{sub th} = 1.6 × 10{sup 28}-1.1 × 10{sup 32} erg. We find that these parameters obey the Rosner-Tucker-Vaiana (RTV) scaling law T{sub p}{sup 2}∝n{sub p} L and H∝T {sup 7/2} L {sup –2} during the peak time t{sub p} of the flare density n{sub p} , when energy balance between the heating rate H and the conductive and radiative loss rates is achieved for a short instant and thus enables the applicability of the RTV scaling law. The application of the RTV scaling law predicts power-law distributions for all physical parameters, which we demonstrate with numerical Monte Carlo simulations as well as with analytical calculations. A consequence of the RTV law is also that we can retrieve the size distribution of heating rates, for which we find N(H)∝H {sup –1.8}, which is consistent with the magnetic flux distribution N(Φ)∝Φ{sup –1.85} observed by Parnell et al. and the heating flux scaling law F{sub H} ∝HL∝B/L of Schrijver et al.. The fractal-diffusive self-organized criticality model in conjunction with the RTV scaling law reproduces the observed power-law distributions and their slopes for all geometrical and physical parameters and can be used to predict the size distributions for other flare data sets, instruments, and detection algorithms.

  9. Funding Opportunity Announcement: Solar Training and Education for Professionals (STEP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Solar Training and Education for Professionals (STEP) funding program will tackle soft costs by addressing gaps in solar training and energy education, both within the solar workforce and in professions that play a crucial role in solar deployment. First, it will support coordination among the Solar Instructor Training Network (SITN), military bases, and the solar industry. This will ensure that solar instructors are well connected to solar employers, the SITN materials are up-to-date, and veterans are connected to solar training institutions. Second, it will establish new credentials in solar operations and maintenance, and mid-scale installations. Third, this funding program will enable solar training and education for professionals in indirect and related fields such as real estate, finance, insurance, fire and code enforcement, and state regulations. Finally, it will support the expansion of the Grid Engineering for Accelerated Renewable Energy Deployment (GEARED) initiative.

  10. AN INTERFACE REGION IMAGING SPECTROGRAPH FIRST VIEW ON SOLAR SPICULES

    SciTech Connect

    Pereira, T. M. D.; De Pontieu, B.; Carlsson, M.; Hansteen, V.; Tarbell, T. D.; Lemen, J.; Title, A.; Boerner, P.; Hurlburt, N.; Wülser, J. P.; Martínez-Sykora, J.; Kleint, L.; Golub, L.; McKillop, S.; Reeves, K. K.; Saar, S.; Testa, P.; Tian, H.; Jaeggli, S.; Kankelborg, C.

    2014-09-01

    Solar spicules have eluded modelers and observers for decades. Since the discovery of the more energetic type II, spicules have become a heated topic but their contribution to the energy balance of the low solar atmosphere remains unknown. Here we give a first glimpse of what quiet-Sun spicules look like when observed with NASA's recently launched Interface Region Imaging Spectrograph (IRIS). Using IRIS spectra and filtergrams that sample the chromosphere and transition region, we compare the properties and evolution of spicules as observed in a coordinated campaign with Hinode and the Atmospheric Imaging Assembly. Our IRIS observations allow us to follow the thermal evolution of type II spicules and finally confirm that the fading of Ca II H spicules appears to be caused by rapid heating to higher temperatures. The IRIS spicules do not fade but continue evolving, reaching higher and falling back down after 500-800 s. Ca II H type II spicules are thus the initial stages of violent and hotter events that mostly remain invisible in Ca II H filtergrams. These events have very different properties from type I spicules, which show lower velocities and no fading from chromospheric passbands. The IRIS spectra of spicules show the same signature as their proposed disk counterparts, reinforcing earlier work. Spectroheliograms from spectral rasters also confirm that quiet-Sun spicules originate in bushes from the magnetic network. Our results suggest that type II spicules are indeed the site of vigorous heating (to at least transition region temperatures) along extensive parts of the upward moving spicular plasma.

  11. Nevada Solar One Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar One Solar Power Plant Jump to: navigation, search Name Nevada Solar One Solar Power Plant Facility Nevada Solar One Sector Solar Facility Type Concentrating Solar Power...

  12. Mojave Solar Park Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Park Solar Power Plant Jump to: navigation, search Name Mojave Solar Park Solar Power Plant Facility Mojave Solar Park Sector Solar Facility Type Concentrating Solar Power...

  13. Starwood Solar I Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Starwood Solar I Solar Power Plant Jump to: navigation, search Name Starwood Solar I Solar Power Plant Facility Starwood Solar I Sector Solar Facility Type Concentrating Solar...

  14. Solar Newsletter | Solar Research | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Market Pathways Solar Market Pathways The Solar Market Pathways program supports 15 SunShot projects that are advancing solar deployment across the United States. These projects take a variety of approaches to develop actionable strategic plans to expand solar electricity use for residential, community, and commercial properties. Awardees use a wide range of tools, including special financing mechanisms like commercial property assessed clean energy, and the integration of solar energy

  15. Rooftop Solar Photovoltaic Technical Potential in the United States: A Detailed Assessment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Rooftop Solar Challenge Award Winners Rooftop Solar Challenge Award Winners Select an Awardee Return to map → Rooftop Solar Challenge II Award Winners Award Winner Headquarters

    Rooftop Solar Challenge Round 1 Rooftop Solar Challenge Round 1 -- These projects are inactive -- The first round of the Rooftop Solar Challenge supported 22 teams working to spur solar power deployment by cutting red tape and improving finance options. By streamlining and standardizing permitting, zoning, metering,

  16. Montana Watershed Coordination Council | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Coordination Council Jump to: navigation, search Logo: Montana Watershed Coordination Council Name: Montana Watershed Coordination Council Place: Helena, Montana Zip: 59604-6873...

  17. Solar Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Power Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWh/sq meter power production potential As the accompanying map of New Mexico shows, the WIPP site enjoys abundant year-round sunshine. With an average solar power production potential of 6-7 kWh/sq meter per day, one exciting project being studied for location at WIPP is a 30-50 MW Solar Power Tower: The American Solar Energy Society (ASES) is is a national trade

  18. ImagineSolar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Workforce training, Corporate consulting - Solar projects, Solar sales, Solar marketing, Solar business development, Solar policy, Solar advocacy, Solar government...

  19. Solar Rights

    Energy.gov [DOE]

    A solar energy system is defined as "a system affixed to a building or buildings that uses solar devices, which are thermally isolated from living space or any other area where the energy is used...

  20. Solar Blog

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    96426 Solar Blog en Solar Energy Jobs Outpace U.S. Economy http:energy.govarticlessolar-energy-jobs-outpace-us-economy

  1. Solar Rights

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cities and counties in North Carolina generally may not adopt ordinances prohibiting the installation of "a solar collector that gathers solar radiation as a substitute for traditional energy for...

  2. Solar Rights

    Energy.gov [DOE]

    In the context of this law, a solar energy device is a system "manufactured and sold for the sole purpose of facilitating the collection and beneficial use of solar energy, including passive...

  3. Solar Forecasting

    Energy.gov [DOE]

    On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

  4. Solar collectors

    SciTech Connect

    Cassidy, V.M.

    1981-11-01

    Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

  5. Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    U.S. Department of Energy Solar Decathlon Sara Farrar-Nagy National Renewable Energy Laboratory sara.farrar-nagy@nrel.gov, 303-384-7514 April 3, 2013 Solar Decathlon 2009 Solar Decathlon 2011 Solar Decathlon 2013 & XPO Washington, D.C. Washington, D.C. Irvine, California 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: How to provide workforce training, improve building science instruction, foster innovation in whole-building design, and educate

  6. CLEERS Coordination & Joint Development of Benchmark Kinetics...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications CLEERS Coordination & Joint Development of Benchmark Kinetics for LNT & SCR CLEERS Coordination & Development of Catalyst Process Kinetic...

  7. Requirements to coordinate agreements, milestones and decision...

    Office of Environmental Management (EM)

    Requirements to coordinate agreements, milestones and decision documents (AMDD) Requirements to coordinate agreements, milestones and decision documents (AMDD) Environmental ...

  8. Coordinating Energy Efficiency with Other Disaster Resiliency...

    Energy Saver

    Coordinating Energy Efficiency with Other Disaster Resiliency Services Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Coordinating Energy ...

  9. Purchasing Solar Collectively with Solarize

    Office of Energy Efficiency and Renewable Energy (EERE)

    This video provides an overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy...

  10. Suspect Counterfeit Coordinators, May 2016

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Anyone identifying names that should be changed are encouraged to provide the update information to Michael Stracka (AU-23) at 301-903-8085 michael.stracka@hq.doe.gov May 2016 Site/PSO DOE SCI Coordinators Title Fed/Contr/Sub Telephone E-mail Albuquerque Service Center Paul Romero SCI Coordinator 505-845-4149 Paul.romero@nnsa.doe.gov Ames Site Office/SC Terry Herrman SCI Program Coordinator 515-294-7896 herrman@ameslab.gov Argonne Site Office/SC Steven Gauthier SCI Coordinator 630-252-6165

  11. Solar Newsletter | Solar Research | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    an electronic newsletter that provides information on NREL's research and development of solar technologies. To receive new issues by email, subscribe to the Solar Newsletter. SUBSCRIBE Golden Rays - November 2016 Hot Topics Graphic of the DuraMAT logo New Consortium to Improve Solar Module Reliability and Performance NREL is leading the DuraMat Consortium to develop PV module materials for reliable, low-cost solar electricity. Photo of three individuals behind two clear beakers in a lab

  12. HelioSphera formerly Next Solar SA | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: HelioSphera (formerly Next Solar SA) Place: Athens, Greece Zip: 11523 Product: Greek thin-film silicon PV module manufacturer with a 60MW plant in Tripolis. Coordinates:...

  13. Tucson's Solar Experience: Developing PV with RFPs and PPAs

    Energy.gov [DOE]

    This presentation was given January 15, 2013, by Bruce Plenk, Solar Coordinator for the City of Tucson, Arizona, as part of the CommRE Developing PV Projects With RFPs and PPAs webinar.

  14. PrimeStar Solar Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PrimeStar Solar Inc Place: Longmont, Colorado Zip: 80504 Product: Intends to produce CdTe thin film PV modules using technology licensed by the NREL. Coordinates: 40.16394,...

  15. MSR Innovations Modular Solar Roofing | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: MSR Innovations (Modular Solar Roofing) Place: Burnaby, British Columbia, Canada Zip: V5J 5H8 Product: British Columbia-based PV roofing systems maker. Coordinates:...

  16. Deming Solar Plant Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic...

  17. SES Calico Solar One Project Solar Power Plant | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Calico Solar One Project Solar Power Plant Jump to: navigation, search Name SES Calico Solar One Project Solar Power Plant Facility SES Calico Solar One Project Sector Solar...

  18. Nvision.Solar - Ravnishte Solar PV Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar - Ravnishte Solar PV Plant Jump to: navigation, search Name Nvision.Solar - Ravnishte Solar PV Plant Facility Ravishte roof and facade mounted solar power plant Sector Solar...

  19. Solar Millenium Palen Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Palen Solar Power Plant Jump to: navigation, search Name Solar Millenium Palen Solar Power Plant Facility Solar Millenium Palen Sector Solar Facility Type Concentrating Solar Power...

  20. SES Solar Two Project Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Two Project Solar Power Plant Jump to: navigation, search Name SES Solar Two Project Solar Power Plant Facility SES Solar Two Project Sector Solar Facility Type Concentrating Solar...

  1. Carrizo Energy Solar Farm Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Carrizo Energy Solar Farm Solar Power Plant Jump to: navigation, search Name Carrizo Energy Solar Farm Solar Power Plant Facility Carrizo Energy Solar Farm Sector Solar Facility...

  2. Beacon Solar Energy Project Solar Power Plant | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Energy Project Solar Power Plant Jump to: navigation, search Name Beacon Solar Energy Project Solar Power Plant Facility Beacon Solar Energy Project Sector Solar Facility...

  3. Prescott Airport Solar Plant Solar Power Plant | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar...

  4. ARM: Baseline Solar Radiation Network (BSRN): solar irradiances...

    Office of Scientific and Technical Information (OSTI)

    Baseline Solar Radiation Network (BSRN): solar irradiances Title: ARM: Baseline Solar Radiation Network (BSRN): solar irradiances Baseline Solar Radiation Network (BSRN): solar ...

  5. El Dorado Solar Project Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Project Solar Power Plant Jump to: navigation, search Name El Dorado Solar Project Solar Power Plant Facility El Dorado Solar Project Sector Solar Facility Type Photovoltaic...

  6. Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Science & Innovation Energy Sources Renewable Energy Solar Solar How much do you know about solar power? Take our quiz and test your solar energy IQ. | Photo courtesy of ...

  7. Solar Renewable Energy Certificates (SREC-II)

    Energy.gov [DOE]

    Massachusetts' renewable portfolio standard (RPS) requires each regulated electricity supplier/provider serving retail customers in the state* to include in the electricity it sells 15% qualifying...

  8. Part II

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    December 31, 2015 Part II Department of Defense General Services Administration National ... Rules and Regulations DEPARTMENT OF DEFENSE GENERAL SERVICES ADMINISTRATION NATIONAL ...

  9. NREL: Concentrating Solar Power Research - Concentrating Solar...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Concentrating Solar Power Resource Maps These direct-normal solar radiation maps-filtered by solar resource and land availability-identify the most economically suitable lands ...

  10. Solar Car

    SciTech Connect

    2010-01-01

    Des Moines Central Academy Middle School students compete in the Solar Car Challenge at the National Science Bowl, May 2 in Washington D.C.

  11. Solar Newsletter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  12. Solar Mapper

    Energy.gov [DOE]

    Interactive, online mapping tool providing access to spatial data related to siting utility-scale solar facilities in the southwestern United States.

  13. Solar Newsletter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  14. Solar Rights

    Energy.gov [DOE]

    Ordinances, bylaws, or regulations may reasonably restrict the installation and use of solar energy devices to protect public health and safety, buildings from damage, historic/aesthetic values (...

  15. Suspect Counterfeit Coordinators | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Coordinators Suspect Counterfeit Coordinators May 2016 Listing of Suspect/Counterfeit Coordinators by Site/Program Secretarial Office (PSO) and title (Federal, Contractor, or Subcontractor). This listing includes email and telephone contacts for each coordinator. Suspect Counterfeit Coordinators - May 2016 (196.36 KB) More Documents & Publications Federal, Contractor, or Subcontractor FTCP Members DOE Hoisting and Rigging Technical Advisory Committee - Membership Roster

  16. Solar Newsletter | Solar Research | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    September 2016 Hot Topics NREL Researchers Leading Perovskite Research A method was developed to improve perovskite solar cells, making them more efficient and reliable with higher reproducibility. Supercomputing Model Provides Insights from Higher Solar Generation NREL Super Computing model provides insights from higher wind and solar generation in the Eastern Power Grid. How Much Storage to Achieve 50% PV in California? NREL analysis examines the role of flexibility and storage in new report.

  17. Suspect Counterfeit Coordinators, October 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Pacific Northwest Site OfficeSC Carrie Swafford- Bennett SCI Coordinator 509-372-4931 carrie.swafford-bennett@pnso.science.doe.gov Vinh T. Nguyen Contractor 509-372-4737 ...

  18. Web Coordinator Meetings May 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation slides and minutes from the May 16, 2013 Web coordinator meeting. Topics include Trish Cozart's presentation on statistics and site analysis, Alex Clayborne's presentation on monthly stats reports, the EERE feedback widget, and an EERE redesign update.

  19. Balancing Area Coordination: Efficiently Integrating Renewable Energy Into the Grid, Greening the Grid

    SciTech Connect

    Katz, Jessica; Denholm, Paul; Cochran, Jaquelin

    2015-06-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. Coordinating balancing area operation can promote more cost and resource efficient integration of variable renewable energy, such as wind and solar, into power systems. This efficiency is achieved by sharing or coordinating balancing resources and operating reserves across larger geographic boundaries.

  20. Unified Solar

    Energy.gov [DOE]

    Unified Solar is an MIT startup that is commercializing an integrated circuit solution that eliminates most of the adverse effects caused by partial shading in photovoltaic power systems. With its patent-pending design, Unified Solar's solution is smaller, cheaper and more powerful than any competing power optimizer in the market.

  1. Sandia Energy - Solar Resource Assessment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  2. Sandia Energy - Solar Market Transformation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Market Transformation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Market TransformationTara...

  3. Russian Health Studies Program - Joint Coordinating Committee...

    Energy.gov [DOE] (indexed site)

    Joint Coordinating Committee for Radiation Effects Research (JCCRER) All About the Joint Coordinating Committee for Radiation Effects Research What is the JCCRER? Why is it ...

  4. Executive Order 13583, Establishing a Coordinated Government...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    13583, Establishing a Coordinated Government-Wide Initiative to Promote Diversity and Inclusion in the Federal Workforce Executive Order 13583, Establishing a Coordinated...

  5. Coordination of Federal Authorizations for Electric Transmission...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Coordination of Federal Authorizations for Electric Transmission Facilities: Federal Register Notice Volume 73, No. 183 - Sep. 19, 2008 Coordination of Federal Authorizations for...

  6. Photosystem II

    ScienceCinema

    James Barber

    2016-07-12

    James Barber, Ernst Chain Professor of Biochemistry at Imperial College, London, gives a BSA Distinguished Lecture titled, "The Structure and Function of Photosystem II: The Water-Splitting Enzyme of Photosynthesis."

  7. PARS II

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... September 9, 2010 (V1.1) PARS II 103 Project Updating and Reporting Page 49 4. Click to begin entering funding values. 5. Click + sign to expand detail for OPC, TEC, and UND, if ...

  8. Photovoltaic Solar Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects LPO_Utility-Scale_PV_Solar_Report_Thumbnail_180.png

  9. Solar Two

    SciTech Connect

    Not Available

    1998-04-01

    Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

  10. Solar Millenium Ridgecrest Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ridgecrest Solar Power Plant Jump to: navigation, search Name Solar Millenium Ridgecrest Solar Power Plant Facility Solar Millenium Ridgecrest Sector Solar Facility Type...

  11. SES Solar Three Project Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Three Project Solar Power Plant Jump to: navigation, search Name SES Solar Three Project Solar Power Plant Facility SES Solar Three Project Sector Solar Facility Type Photovoltaics...

  12. Renewable Energy Concepts Solar Inc REC Solar | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Concepts Solar Inc REC Solar Jump to: navigation, search Name: Renewable Energy Concepts Solar Inc (REC Solar) Place: San Luis Obispo, California Zip: 93401 Sector: Solar Product:...

  13. Solar Ready Vets: Preparing Veterans for the Solar Workforce...

    Office of Environmental Management (EM)

    Solar Ready Vets: Preparing Veterans for the Solar Workforce Solar Ready Vets: Preparing Veterans for the Solar Workforce Addthis Description Solar Ready Vets, created by the ...

  14. Solar Rights

    Energy.gov [DOE]

    In June of 2015, SB 1626 was signed into law. It provides that during the development period, the developer may only prohibit  a property owner from installing solar in developments with 50 or...

  15. solar energy

    National Nuclear Security Administration (NNSA)

    8%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  16. solar power

    National Nuclear Security Administration (NNSA)

    9%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  17. Solar interior and atmosphere

    SciTech Connect

    Cox, A.N.; Livingston, W.C.; Matthews, M.S. National Solar Observatory, Tucson, AZ )

    1991-01-01

    The present work discusses nuclear energy generation in the solar interior, solar neutrino experiments, solar premain-sequence evolution, the computation of standard solar models, radiative-zone mixing, solar element separation by atomic diffusion, the observation and theory of solar oscillations, the solar internal rotation and magnetism implications of oscillations, solar gravity modes, and solar oscillation-mode excitation. Also discussed are the solar spectrum, the role of the solar photosphere and a radiative boundary, high spatial-resolution techniques for solar study, high-resolution observations of the solar granulation, large-scale velocity fields, the solar activity cycle, the magnetic fields of active regions and sunspots, the physics of flux tubes and filigrees, the heating of the solar chromosphere, the fine structure of the solar transition region, coronal activity, the coronal origins of the solar winds, and postmain sequence solar evolution.

  18. Akeena Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Akeena Solar Jump to: navigation, search Logo: Akeena Solar Name: Akeena Solar Address: 16005 Los Gatos Blvd. Place: Los Gatos, California Zip: 95032 Sector: Solar Product: Solar...

  19. Adobe Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Adobe Solar Jump to: navigation, search Logo: Adobe Solar Name: Adobe Solar Place: Denver, Colorado Region: Rockies Area Sector: Solar Product: solar electric systems Phone Number:...

  20. Climatic Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Climatic Solar Jump to: navigation, search Logo: Climatic Solar Name: Climatic Solar Address: 650 2nd Lane Place: Vero Beach, Florida Zip: 32962 Sector: Solar Product: solar energy...

  1. Tejas Solares | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tejas Solares Jump to: navigation, search Name: Tejas Solares Place: Spain Sector: Solar Product: Tejas Solares is a Spain-based company focused on providing solar solutions for...

  2. Oxford Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oxford Solar Jump to: navigation, search Name: Oxford Solar Place: Randolph, New Jersey Zip: 7869 Sector: Solar Product: Oxford Solar provides solar energy consulting and...

  3. SBM Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: SBM Solar Place: North Carolina Sector: Solar Product: SBM Solar is a solar panel manufacturer based in North Carolina. References: SBM Solar1 This article is...

  4. Solar Training | Department of Energy

    Energy.gov [DOE] (indexed site)

    Solar Business Innovation Networking and Solar Technical Assistance Solar Training Solar DATA ANALYSIS Solar jobs have risen rapidly since the start of the SunShot Initiative. ...

  5. Solar Resource Assessment

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE solar resource research focuses on understanding historical solar resource patterns and making future predictions, both of which are needed to support reliable power system operation. As solar...

  6. NREL: Solar STAT Blog -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Outreach Policy Basics Publications Request Assistance Technical Assistance Project Map Solar STAT Blog The Solar STAT blog discusses state and local efforts to develop solar...

  7. Web Coordinator Meetings June 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation slides and minutes from the June 20, 2013 Web coordinator meeting. Topics include an update about the new EERE home page and landing pages, an overview of the mobile guidelines, and updates on the new Success Stories website and the EERE redesign.

  8. Web Coordinator Meetings March 2013

    Energy.gov [DOE]

    Presentation slides from the March 21, 2013 Web Coordinator Meeting. Topics include updates on OMB's limitation on one-question surveys, the new EERE landing pages, and the leadership of the Transition Team, reminder to update links to Energy Saver, and an introduction to the Product Governance Team.

  9. Ms. Maria Galanti Site Coordinator

    Office of Environmental Management (EM)

    ... into the environment any refrigerant or substitute from such appliances. Appliances that contain Class I or II substances used as a refrigerant-applicable 40 CFR 82.154(a)(1) ...

  10. Solar resources

    SciTech Connect

    Hulstrom, R.L.

    1989-01-01

    Following the 1973 oil embargo, the US government initiated a program to develop and use solar energy. This led to individual programs devoted to developing various solar radiation energy conversion technologies: photovoltaic and solar-thermal conversion devices. Nearly concurrently, it was recognized that understanding the available insolation resources was required to develop and deploy solar energy devices and systems. It was also recognized that the insolation information available at that time (1973) was not adequate to meet the specific needs of the solar energy community. Federal efforts were initiated and conducted to produce new and more extensive information and data. The primary federal agencies that undertook such efforts were the Department of Energy (DOE) and the National Oceanic and Atmospheric Administration (NOAA). NOAA's efforts included activities performed by the National Weather Service (NWS) and the National Climatic Data Center (NCDC). This book has two man objectives: to report some of the insolation energy data, information, and products produced by the federal efforts and to describe how they were produced. Products include data bases, models and algorithms, monitoring networks, instrumentation, and scientific techniques. The scope of products and results does not include all those produced by past federal efforts. The book's scope and subject matter are oriented to support the intent and purpose of the other volumes in this series. In some cases, other pertinent material is presented to provide a more complete coverage of a given subject. 385 refs., 149 figs., 50 tabs.

  11. 2012 News | Solar | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL and Solar Junction outsmart the solar spectrum and set a world record with a 44%-efficient solar cell. December 4, 2012 NREL Teams with Berkeley Lab to Analyze Solar Pricing ...

  12. Solar Equipment Certification

    Energy.gov [DOE]

    Under the Solar Energy Standards Act of 1976, the Florida Solar Energy Center (FSEC) is responsible for certifying all solar equipment sold in Florida. A manufacturer who wishes to have their solar...

  13. Solar Neutrinos

    DOE R&D Accomplishments

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  14. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  15. Creating solar media nets solar tools, publicity

    SciTech Connect

    Brewer, B.

    1980-01-01

    The utilization of locally produced solar tool to gain more access to commercial media is discussed. Central is a strategy of (1) giving commercial media something to report, (2) helping educate the media, and (3) simultaneously impacting that portion of the public which is likely to be most interested. Methods for reaching several target audiences include a Solar Calendar, a Passive Solar Film, a local Solar Directory, a local Solar Information Center, an Emergency Coolth brochure and a Conservation/Solar Retrofit Guide.

  16. Final Technical Report Advanced Solar Resource Modeling and Analysis.

    SciTech Connect

    Hansen, Clifford

    2015-12-01

    The SunShot Initiative coordinates research, development, demonstration, and deployment activities aimed at dramatically reducing the total installed cost of solar power. The SunShot Initiative focuses on removing critical technical and non-technical barriers to installing and integrating solar energy into the electricity grid. Uncertainty in projected power and energy production from solar power systems contributes to these barriers by increasing financial risks to photovoltaic (PV) deployment and by exacerbating the technical challenges to integration of solar power on the electricity grid.

  17. Solar Technology Center

    SciTech Connect

    Boehm, Bob

    2011-04-27

    The Department of Energy, Golden Field Office, awarded a grant to the UNLV Research Foundation (UNLVRF) on August 1, 2005 to develop a solar and renewable energy information center. The Solar Technology Center (STC) is to be developed in two phases, with Phase I consisting of all activities necessary to determine feasibility of the project, including design and engineering, identification of land access issues and permitting necessary to determine project viability without permanently disturbing the project site, and completion of a National Environmental Policy Act (NEPA) Environmental Assessment. Phase II is the installation of infrastructure and related structures, which leads to commencement of operations of the STC. The STC is located in the Boulder City designated 3,000-acre Eldorado Valley Energy Zone, approximately 15 miles southwest of downtown Boulder City and fronting on Eldorado Valley Drive. The 33-acre vacant parcel has been leased to the Nevada Test Site Development Corporation (NTSDC) by Boulder City to accommodate a planned facility that will be synergistic with present and planned energy projects in the Zone. The parcel will be developed by the UNLVRF. The NTSDC is the economic development arm of the UNLVRF. UNLVRF will be the entity responsible for overseeing the lease and the development project to assure compliance with the lease stipulations established by Boulder City. The STC will be operated and maintained by University of Nevada, Las Vegas (UNLV) and its Center for Energy Research (UNLV-CER). Land parcels in the Eldorado Valley Energy Zone near the 33-acre lease are committed to the construction and operation of an electrical grid connected solar energy production facility. Other projects supporting renewable and solar technologies have been developed within the energy zone, with several more developments in the horizon.

  18. Concentrating Solar Power

    SciTech Connect

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  19. Solar Electric Propulsion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  20. Concentrating Solar Power (CSP)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  1. Concentrating Solar Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  2. VISUAL-SOLAR

    Energy Science and Technology Software Center

    003661IBMPC00 Visual-SOLAR: Modeling and Visualization of Solar Radiation Potential on Individual Building Rooftops

  3. AN INTERFACE REGION IMAGING SPECTROGRAPH FIRST VIEW ON SOLAR...

    Office of Scientific and Technical Information (OSTI)

    more energetic type II, spicules have become a heated topic but their contribution to the energy balance of the low solar atmosphere remains unknown. Here we give a first glimpse...

  4. Solar Energy Technologies Program: Concentrating Solar Power

    SciTech Connect

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  5. Solar Easements & Local Option Solar Rights Laws

    Energy.gov [DOE]

    Utah's solar easement provision is similar to easement provisions in many other states. Parties may voluntarily enter into written solar easement contracts that are enforceable by law. An...

  6. Porphyrin coordination polymer nanospheres and nanorods

    DOEpatents

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2012-12-04

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  7. Henry Taube and Coordination Chemistry

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Henry Taube and Coordination Chemistry Resources with Additional Information Henry Taube Chuck Painter/Stanford News Service Henry Taube, a Marguerite Blake Wilbur Professor of Chemistry, Emeritus, at Stanford University, received the 1983 Nobel Prize in Chemistry "for his work on the mechanisms of electron transfer reactions, especially in metal complexes" Taube 'received a doctorate from the University of California-Berkeley in 1940 and was an instructor there from 1940-41. "I

  8. Solar Array Tracking Control

    Energy Science and Technology Software Center

    1995-06-22

    SolarTrak used in conjunction with various versions of 68HC11-based SolarTrack hardware boards provides control system for one or two axis solar tracking arrays. Sun position is computed from stored position data and time from an on-board clock/calendar chip. Position feedback can be by one or two offset motor turn counter square wave signals per axis, or by a position potentiometer. A limit of 256 counts resolution is imposed by the on-board analog to digital (A/D)more » convertor. Control is provided for one or two motors. Numerous options are provided to customize the controller for specific applications. Some options are imposed at compile time, some are setable during operation. Software and hardware board designs are provided for Control Board and separate User Interface Board that accesses and displays variables from Control Board. Controller can be used with range of sensor options ranging from a single turn count sensor per motor to systems using dual turn-count sensors, limit sensors, and a zero reference sensor. Dual axis trackers oriented azimuth elevation, east west, north south, or polar declination can be controlled. Misalignments from these orientations can also be accommodated. The software performs a coordinate transformation using six parameters to compute sun position in misaligned coordinates of the tracker. Parameters account for tilt of tracker in two directions, rotation about each axis, and gear ration errors in each axis. The software can even measure and compute these prameters during an initial setup period if current from a sun position sensor or output from photovoltaic array is available as an anlog voltage to the control board''s A/D port. Wind or emergency stow to aj present position is available triggered by digital or analog signals. Night stow is also available. Tracking dead band is adjustable from narrow to wide. Numerous features of the hardware and software conserve energy for use with battery powered systems.« less

  9. Transition metal chemistry of main group hydrazides. 7. Synthesis and coordination chemistry of bis(dichlorophosphino)dimethylhydrazine

    SciTech Connect

    Reddy, V.S.; Katti, K.V.

    1994-06-08

    In continuation of studies on the transition metal chemistry of main groups hydrazides, the authors report herein a novel synthetic route to Cl{sub 2}PN(Me)N(Me)PCl{sub 2} (1). The coordination chemistry of 1 with the Pt(II) and Pd(II) precursors is also described.

  10. BORE II

    Energy Science and Technology Software Center

    2015-08-01

    Bore II, co-developed by Berkeley Lab researchers Frank Hale, Chin-Fu Tsang, and Christine Doughty, provides vital information for solving water quality and supply problems and for improving remediation of contaminated sites. Termed "hydrophysical logging," this technology is based on the concept of measuring repeated depth profiles of fluid electric conductivity in a borehole that is pumping. As fluid enters the wellbore, its distinct electric conductivity causes peaks in the conductivity log that grow and migratemore » upward with time. Analysis of the evolution of the peaks enables characterization of groundwater flow distribution more quickly, more cost effectively, and with higher resolution than ever before. Combining the unique interpretation software Bore II with advanced downhole instrumentation (the hydrophysical logging tool), the method quantifies inflow and outflow locations, their associated flow rates, and the basic water quality parameters of the associated formation waters (e.g., pH, oxidation-reduction potential, temperature). In addition, when applied in conjunction with downhole fluid sampling, Bore II makes possible a complete assessment of contaminant concentration within groundwater.« less

  11. BORE II

    SciTech Connect

    2015-08-01

    Bore II, co-developed by Berkeley Lab researchers Frank Hale, Chin-Fu Tsang, and Christine Doughty, provides vital information for solving water quality and supply problems and for improving remediation of contaminated sites. Termed "hydrophysical logging," this technology is based on the concept of measuring repeated depth profiles of fluid electric conductivity in a borehole that is pumping. As fluid enters the wellbore, its distinct electric conductivity causes peaks in the conductivity log that grow and migrate upward with time. Analysis of the evolution of the peaks enables characterization of groundwater flow distribution more quickly, more cost effectively, and with higher resolution than ever before. Combining the unique interpretation software Bore II with advanced downhole instrumentation (the hydrophysical logging tool), the method quantifies inflow and outflow locations, their associated flow rates, and the basic water quality parameters of the associated formation waters (e.g., pH, oxidation-reduction potential, temperature). In addition, when applied in conjunction with downhole fluid sampling, Bore II makes possible a complete assessment of contaminant concentration within groundwater.

  12. AV Solar Ranch I Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    AV Solar Ranch I Solar Power Plant Jump to: navigation, search Name AV Solar Ranch I Solar Power Plant Facility AV Solar Ranch I Sector Solar Facility Type Photovoltaic Developer...

  13. Ms. Maria Galanti Site Coordinator

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ? 5 2011 PPPO-03-1251788-11 Ohio Environmental Protection Agency Southeast District Office 2195 Front Street Logan, Ohio 43138 Dear Ms. Galanti: TRANSMITTAL OF Dl CONSTRUCTION COMPLETION REPORT FOR PHASES I AND II OF THE REMOVAL OF THE X-760 CHEMICAL ENGINEERING BUILDING AT THE PORTSMOUTH GASEOUS DIFFUSION PLANT, PIKETON, OHIO (DOE/PPPO/03-0196&Dl) Reference: Letter from M. Galanti to J. Bradbume, "Construction Completion Report for Phases I and II ofthe Removal of the X-760 Chemical

  14. Revitalizing American Competitiveness in Solar Technologies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy This PowerPoint slide deck was originally presented at the 2012 SunShot Grand Challenge Summit and Technology Forum. It provides an overview of the SunShot program, including goals, management structure, funding and various solar energy initiatives, including GEARED, SUNPATH II and the creation of a new solar energy ecosystem. sssummit2012_plenary_ramesh.pdf (1.8 MB) More Documents & Publications Revitalizing American Competitiveness in Solar Technologies SunShot SEAB Presentation

  15. ESnet Site Coordinators Committee (ESCC) and Site Coordinators

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ESCC About ESnet Our Mission The Network ESnet History Governance & Policies ESnet Policy Board ESCC Acceptable Use Policy Data Privacy Policy Facility Data Policy Career Opportunities ESnet Staff & Org Chart Contact Us Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net ESnet Site Coordinators Committee (ESCC) and Site

  16. Coordination of Energy Efficiency and Demand Response

    SciTech Connect

    none,

    2010-01-01

    Summarizes existing research and discusses current practices, opportunities, and barriers to coordinating energy efficiency and demand response programs.

  17. Panel Session III: Innovation and Coordination

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lessons Learned for Hydrogen Panel Session III: Innovation Panel Session III: Innovation and Coordination and Coordination ______________________________ Stefan Unnasch Life Cycle Associates 3 April 2008 2 Hydrogen Vision Life Cycle Associates 3 Hydrogen Infrastructure Today Life Cycle Associates Source: Weinert, J. X., et al.. (2005). CA Hydrogen Highway Network Blueprint Plan, Economics Report 4 Innovation and Coordination Life Cycle Associates Innovation Coordination ☯ Slow Fast Cars Codes

  18. Project Management Coordination Office Organization Chart

    Energy.gov [DOE]

    Project Management Coordination Office Organization Chart, U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

  19. Coordinating Permit Office | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Alaska analysis appropriations Categorical Exclusions Coordinating Permit Office Cost Mechanisms Cost Recovery geothermal Hawaii NEPA permitting quarterly meeting White...

  20. Coordinating with Corporate and Institutional Affiliates | Department...

    Energy Saver

    Coordinating with Corporate and Institutional Affiliates Better Buildings Residential ... More Documents & Publications Better Buildings Residential Network Orientation Webinar ...

  1. Coordinating Energy Efficiency With Water Conservation Services...

    Energy Saver

    With Water Conservation Services Coordinating Energy Efficiency With Water Conservation Services Better Buildings Residential Network Program Sustainability Peer Exchange Call ...

  2. Web Coordinator Meetings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Web Governance, Roles, & Responsibilities » Web Coordinator Meetings Web Coordinator Meetings Once a month, the Office of Energy Efficiency and Renewable Energy (EERE) Web coordinators meet to ask questions, share their experiences, announce new sites, and learn about the latest updates on the EERE website. EERE Web coordinators are the main points of contact between the Communications Team staff and EERE programs and offices. Presentations and minutes from the last two years are posted

  3. Pittsburgh, Pennsylvania: Solar in Action (Brochure), Solar America...

    Energy.gov [DOE] (indexed site)

    San Francisco, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Ann Arbor, Michigan: Solar in Action (Brochure), Solar ...

  4. EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9: Solar Millennium Blythe Solar Power Project in Riverside County, CA EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside County, CA December 10, 2010 EIS-0449: ...

  5. EE Solar Energy Efficiency Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EE Solar Energy Efficiency Solar Jump to: navigation, search Name: EE Solar (Energy Efficiency Solar) Place: Ponoma, California Zip: 91768 Product: PV systems installer based in...

  6. Willard Kelsey Solar Group WK Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Willard Kelsey Solar Group WK Solar Jump to: navigation, search Name: Willard & Kelsey Solar Group (WK Solar) Place: Perrysburg, Ohio Zip: 43551 Product: Manufacturer of CdTe...

  7. Innotech Solar AS formerly known as Solar Cell Repower | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Innotech Solar AS formerly known as Solar Cell Repower Jump to: navigation, search Name: Innotech Solar AS (formerly known as Solar Cell Repower) Place: Narvik, Norway Zip: 8512...

  8. Wuxi Jiacheng Solar Energy Technology Co JC Solar | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    JC Solar Jump to: navigation, search Name: Wuxi Jiacheng Solar Energy Technology Co (JC Solar) Place: Yixing, Jiangsu Province, China Zip: 214200 Sector: Solar Product: A Chinese...

  9. Innovative Systems Engineering Solar LLC ISE Solar LLC | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Systems Engineering Solar LLC ISE Solar LLC Jump to: navigation, search Name: Innovative Systems Engineering Solar LLC (ISE Solar LLC) Place: Warminster, Pennsylvania Zip:...

  10. First Solar Electric LLC formerly DT Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Electric LLC formerly DT Solar Jump to: navigation, search Name: First Solar Electric LLC (formerly DT Solar) Place: Branchburg, New Jersey Zip: 8876 Sector: Solar Product: PV...

  11. Aide Solar Jiangsu Aide Solar Energy Technology Co Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Aide Solar Jiangsu Aide Solar Energy Technology Co Ltd Jump to: navigation, search Name: Aide Solar (Jiangsu Aide Solar Energy Technology Co Ltd) Place: Xuzhou, Jiangsu Province,...

  12. AET Solar formerly solar division of GGAM Electrical Services...

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar formerly solar division of GGAM Electrical Services Jump to: navigation, search Name: AET Solar (formerly solar division of GGAM Electrical Services) Place: Limassol, Cyprus...

  13. Creative Energy Solar Investments SA formerly Hellenic Solar...

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Investments SA formerly Hellenic Solar Jump to: navigation, search Name: Creative Energy Solar Investments SA (formerly Hellenic Solar) Place: 18538 Piraeus, Greece Product:...

  14. China Glass Solar aka CG Solar formerly Weihai Bluestar Terra...

    OpenEI (Open Energy Information) [EERE & EIA]

    Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name: China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra...

  15. Siemens Solar formerly ARCO Solar Corporation | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar formerly ARCO Solar Corporation Jump to: navigation, search Name: Siemens Solar (formerly ARCO Solar Corporation) Place: Arizona Product: Built a 6MW CPV project in 1984,...

  16. Siemens Concentrated Solar Power Ltd previously Solel Solar Systems...

    OpenEI (Open Energy Information) [EERE & EIA]

    Siemens Concentrated Solar Power Ltd previously Solel Solar Systems Jump to: navigation, search Name: Siemens Concentrated Solar Power Ltd (previously Solel Solar Systems) Place:...

  17. Guodian Jintech Solar Energy formerly Yixing Jintech Solar Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jintech Solar Energy formerly Yixing Jintech Solar Energy Co Ltd Jump to: navigation, search Name: Guodian Jintech Solar Energy (formerly Yixing Jintech Solar Energy Co Ltd) Place:...

  18. Shanghai Comtec Solar Technology Ltd aka Comtec Solar System...

    OpenEI (Open Energy Information) [EERE & EIA]

    Comtec Solar Technology Ltd aka Comtec Solar System Group Ltd Jump to: navigation, search Name: Shanghai Comtec Solar Technology Ltd (aka Comtec Solar System Group Ltd) Place:...

  19. Ecosystem Solar Electric Corp aka Solar MW Energy Inc | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Electric Corp aka Solar MW Energy Inc Jump to: navigation, search Name: Ecosystem Solar Electric Corp, aka Solar MW Energy Inc Place: Ontario, California Zip: 91761 Product:...

  20. ET Solar Group Formerly CNS Solar Industry | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Group Formerly CNS Solar Industry Jump to: navigation, search Name: ET Solar Group (Formerly CNS Solar Industry) Place: Nanjing, Jiangsu Province, China Zip: 210009 Sector:...

  1. Entech Solar Inc formerly WorldWater Solar Technologies | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Inc formerly WorldWater Solar Technologies Jump to: navigation, search Name: Entech Solar Inc. (formerly WorldWater & Solar Technologies) Place: Fort Worth, Texas Zip: 76177...

  2. San Antonio, Texas: Solar in Action (Brochure), Solar America...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Antonio, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) San Antonio, Texas: Solar in Action (Brochure), Solar America Cities, ...

  3. EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    8: Abengoa Solar's Mojave Solar Project near Barstow, CA EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA July 1, 2011 EA-1798: Final Environmental Assessment Loan ...

  4. edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL...

    Office of Scientific and Technical Information (OSTI)

    Home economics: student activities. Field test edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL TOOLS; CURRICULUM GUIDES; GLAZING; HOUSES; SOLAR COOKERS; SOLAR...

  5. Space Coast Next Generation Solar Energy Center Solar Power Plant...

    OpenEI (Open Energy Information) [EERE & EIA]

    Coast Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Space Coast Next Generation Solar Energy Center Solar Power Plant Facility Space Coast...

  6. Martin Next Generation Solar Energy Center Solar Power Plant...

    OpenEI (Open Energy Information) [EERE & EIA]

    Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Martin Next Generation Solar Energy Center Solar Power Plant Facility Martin Next Generation...

  7. Early solar mass loss, opacity uncertainties, and the solar abundance...

    Office of Scientific and Technical Information (OSTI)

    Early solar mass loss, opacity uncertainties, and the solar abundance problem Citation Details In-Document Search Title: Early solar mass loss, opacity uncertainties, and the solar ...

  8. Portland, Oregon: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Portland, Oregon: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Portland, Oregon: Solar in Action (Brochure), Solar America Cities, ...

  9. Solar Position Algorithm for Solar Radiation Applications (Revised...

    Office of Scientific and Technical Information (OSTI)

    Solar Position Algorithm for Solar Radiation Applications (Revised) Citation Details In-Document Search Title: Solar Position Algorithm for Solar Radiation Applications (Revised) ...

  10. Orlando, Florida: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Orlando, Florida: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Orlando, Florida: Solar in Action (Brochure), Solar America Cities,...

  11. Denver, Colorado: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Denver, Colorado: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Denver, Colorado: Solar in Action (Brochure), Solar America Cities,...

  12. Milwaukee, Wisconsin: Solar in Action (Brochure), Solar America...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Milwaukee, Wisconsin: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Milwaukee, Wisconsin: Solar in Action (Brochure), Solar America ...

  13. Houston, Texas: Solar in Action (Brochure), Solar America Cities...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Houston, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Houston, Texas: Solar in Action (Brochure), Solar America Cities, ...

  14. Kings River Conservation District (KRCD) Solar Farm Solar Power...

    OpenEI (Open Energy Information) [EERE & EIA]

    River Conservation District (KRCD) Solar Farm Solar Power Plant Jump to: navigation, search Name Kings River Conservation District (KRCD) Solar Farm Solar Power Plant Facility...

  15. PROJECT PROFILE: Solar Electric Power Association (Solar Market...

    Office of Environmental Management (EM)

    Electric Power Association (Solar Market Pathways) PROJECT PROFILE: Solar Electric Power Association (Solar Market Pathways) Title: Community Solar Design Models for Consumer, ...

  16. Seattle, Washington: Solar in Action (Brochure), Solar America...

    Energy Saver

    Seattle, Washington: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Seattle, Washington: Solar in Action (Brochure), Solar America ...

  17. Passive Solar Building Design and Solar Thermal Space Heating...

    Energy Saver

    Passive Solar Building Design and Solar Thermal Space Heating Webinar Passive Solar Building Design and Solar Thermal Space Heating Webinar Watch a recording of National Renewable ...

  18. Solar Impulse's Solar-Powered Plane

    ScienceCinema

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2016-07-12

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  19. Solar Impulse's Solar-Powered Plane

    SciTech Connect

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2013-07-08

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  20. Solar Newsletter Archives | Solar Research | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Newsletter Archives Find archives of the previous issues of the Solar Newsletters. September 2016 July 2016

  1. Concentrating Solar Power Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects

  2. Poly[{mu}{sub 4}-sulfido-tris(thiocyanato-{kappa}N)-tris({mu}{sub 3}-1,2,4-triazolato-{kappa}{sup 3}N{sup 1}:N{sup 2}:N{sup 4})-tetrazinc(II)] : a three-dimensional zinc sulfide coordination polymer.

    SciTech Connect

    Park, H.; Geiser, U.; Halder, G. J.; Schlueter, J. A.; Materials Science Division

    2008-01-01

    The title compound, [Zn{sub 4}(C{sub 2}H{sub 2}N{sub 3}){sub 3}(NCS){sub 3}S]{sub n}, is a three-dimensional coordination polymer consisting of tetrahedral SZn{sub 4} clusters bridged by triazole ligands. In the tetrahedral unit, three Zn atoms are connected to six bridging triazolate ligands, whereas the fourth Zn atom (site symmetry 3m) is bonded to three terminal thiocyanate anions that protrude into the void space created by the Zn-triazolate network. The network prototype is simple cubic, but a strong distortion along a body diagonal and the imposition of a polar direction by the arrangement of the molecular constituents lead to the trigonal space group R3m. This study demonstrates the use of the 3-mercapto-1,2,4-triazole ligand as an effective source for sulfide ions in the synthesis of sulfide-based coordination polymers.

  3. Solar engineering 1991

    SciTech Connect

    Mancini, T.R. ); Watanabe, K. ); Klett, D.E. )

    1991-01-01

    This book contains paper presented at the second ASME-JSES-JSME international solar energy conference. It is organized under the following headings: Solar ponds, Energy fundamentals in solar systems, General solar energy, Solar powered cars, Distributed receiver components and systems, Central receiver components and systems, Chemical processes and waste destruction, High flux and innovative applications, Solar thermal space propulsion, Solar dynamic power systems, Analysis methods for monitored building use. Photovoltaics, Testing and measurement.

  4. Solar collector

    SciTech Connect

    Wilhelm, W.G.

    1982-05-04

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  5. Scaled Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Product: Scaled Solar manufacturers and markets utility-grade, concentrated photovoltaic solar energy systems to commercial customers References: Scaled Solar1 This...

  6. Corona Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Jump to: navigation, search Name: Corona Solar Place: Tholey-Theley, Germany Zip: D 66636 Sector: Solar Product: Engaged in solar passive large-size collectors. References:...

  7. Shell Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Jump to: navigation, search Name: Shell Solar Place: The Hague, Netherlands Zip: 2501 AN Sector: Solar Product: Shell Solar is developing non-crystalline PV technology,...

  8. AS Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Jump to: navigation, search Name: AS Solar Address: Am Tnniesberg 4A Place: Hannover, Germany Sector: Solar Product: PV, solar thermal Phone Number: +49 511 475578 - 0...

  9. Abengoa Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Jump to: navigation, search Logo: Abengoa Solar Name: Abengoa Solar Address: 11500 W 13th Ave Place: Lakewood, Colorado Zip: 80215 Region: Rockies Area Sector: Solar Product:...

  10. First Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    First Solar Name: First Solar Address: 350 West Washington Street, Suite 600 Place: Tempe, Arizona Zip: 85281 Sector: Solar Product: Solar energy systems Year Founded: 1999 Phone...

  11. Solar Systems | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Logo: Solar Systems Name: Solar Systems Address: 45 Grosvenor Street Place: Abbotsford, Australia Sector: Solar Product: Solar concentrators Phone Number: +61 3 9413 8000 Website:...

  12. Ascent Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Jump to: navigation, search Logo: Ascent Solar Name: Ascent Solar Address: 12300 Grant Street Place: Thornton, Colorado Zip: 80241 Region: Rockies Area Sector: Solar Product:...

  13. Borrego Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Borrego Solar Jump to: navigation, search Logo: Borrego Solar Name: Borrego Solar Address: 2560 9th Street Place: Berkeley, California Zip: 94710 Region: Bay Area Sector: Solar...

  14. DPW Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    DPW Solar Jump to: navigation, search Logo: DPW Solar Name: DPW Solar Address: 4000 B Vassar Dr. NE Place: Albuquerque, New Mexico Zip: 87107 Sector: Solar Product: Renewable...

  15. Inovateus Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Inovateus Solar Jump to: navigation, search Logo: Inovateus Solar Name: Inovateus Solar Address: 19890 State Line Rd. Place: South Bend, Indiana Zip: 46637 Sector: Solar Product:...

  16. Standard Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Standard Solar Name: Standard Solar Address: 202 Perry Parkway Place: Gaithersburg, Maryland Zip: 20877 Region: Northeast - NY NJ CT PA Area Sector: Solar Product: Solar...

  17. Wasatch Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Jump to: navigation, search Name: Wasatch Solar Address: 4417 S 2950 E Place: Salt Lake City, Utah Zip: 84124 Sector: Solar Product: Solar Year Founded: 2009 Phone...

  18. Solar Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Resource Library Solar Energy Solar Energy Below are resources for Tribes on solar energy technologies. A Guide to Community Solar: Utility, Private, and Nonprofit ...

  19. Sylcom Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sylcom Solar provides the design, research, distribution, construction, operation, maintenance of products and of Photovoltaic Solar, Thermal Solar and Solar Thermoelectric...

  20. Apex Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Apex Solar Place: Sofia, Bulgaria Zip: 1616 Sector: Solar Product: Bulgarian PV and solar thermal project developer and installer. References: Apex Solar1 This article is a...

  1. Atlantic Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Logo: Atlantic Solar Name: Atlantic Solar Place: Cape Town, South Africa Sector: Solar Product: Solar Thermal Technology Year Founded: 1985 Phone Number:...

  2. Declination Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    San Francisco, California Sector: Solar Product: San Francisco solar installation firm acquired by SolarCity in September 2006. References: Declination Solar1 This article...

  3. National Solar Thermal Test Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary PowerEnergy Conversion EfficiencySolar EnergyConcentrating Solar Power (CSP)National Solar Thermal Test Facility National Solar Thermal Test Facility admin ...

  4. Genesis Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Genesis Solar Facility Genesis Solar Sector Solar Facility Type Concentrating solar power Facility Status Under Construction Owner NextEra Developer NextEra Location Blythe,...

  5. Solarize Guidebook | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solarize Guidebook Solarize Guidebook This guidebook is intended to be a roadmap for project planners and solar advocates who want to create their own successful Solarize ...

  6. Solar Easements | Department of Energy

    Energy Saver

    Process Heat Solar Photovoltaics Daylighting Solar Pool Heating Program Info Sector Name State State Kentucky Program Type SolarWind Access Policy Summary In Kentucky, solar ...

  7. Solar PST | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Solar PST Place: Bergondo, Spain Zip: 15 165 Sector: Solar Product: Spanish company producing thermodynamic solar panels. References: Solar PST1 This article...

  8. Immodo Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Immodo Solar Place: Spain Sector: Solar Product: Spanish company which installs and maintains solar panels. References: Immodo Solar1 This...

  9. PARS II TRAINING

    Energy.gov [DOE]

    PARS II 102 Monthly Updating and Reporting Training Workbook (PARS II Release 1.1), September 13, 2010.

  10. Solar cogeneration

    SciTech Connect

    Not Available

    1982-04-01

    After a brief introduction to the operational principles and advantages of solar cogeneration, seven cogeneration studies are summarized covering such applications as sulfur mining, copper smelting, enhanced oil recovery, natural gas processing, sugar mill operations, and space heating and cooling. For each plant is given a brief site description, project summary, conceptual design, and functional description, including a picture of the facility and a flow chart. Also listed are the addresses of the companies involved for obtaining additional information. (LEW)

  11. Solar Contractor Licensing | Department of Energy

    Energy.gov [DOE] (indexed site)

    < Back Eligibility InstallersContractors Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics...

  12. Marketing the solar suburb and beyond

    SciTech Connect

    Miller, C.

    1999-07-01

    New England Solar Homes is an emerging solar home company offering custom architectural services as well as a line of standard house plans to clients across the country. Their standard builder's sets can be used off the shelf or altered to fit varied climates and siting conditions. The Solar Farmhouse concept house was introduced at the Eco-Expo in 1995 as a demonstration of how an American country classic could be adapted and outfitted to be an advanced energy efficient passive and active solar home that would have immediate popular appeal. The inspiration for this design was based on the wisdom and surprisingly skillful design abilities of the American farmer, circa 1800s and onward. The Solonial became the first built demonstration home in Lexington, MA incorporating the energy performance standards of the Solar Farmhouse. Two other homes will start construction this spring--Solar Farmhouse II, and DC Solar I, in Pennsylvania and Maryland, respectively. The Beyond in the title refers to their interest in participating in the New Urbanism movement which is gaining momentum around the country in equal proportion to the loss of habitat from urban sprawl with its impact on quality of life indicators. Solar designers and developers could find some emerging opportunities with this highly unusual American attempt at regional planning.

  13. Solar Innovator | Alta Devices

    ScienceCinema

    Mattos, Laila; Le, Minh

    2016-07-12

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  14. Solar energy collector

    DOEpatents

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  15. NREL-Brazil Bilateral Technical Coordination | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Brazil Bilateral Technical Coordination Jump to: navigation, search Logo: NREL-Brazil Bilateral Technical Coordination Name NREL-Brazil Bilateral Technical Coordination Agency...

  16. Web Coordinator Meetings-February 2016 | Department of Energy

    Energy.gov [DOE] (indexed site)

    the February 2016 Web Coordinators Meeting. Presentation (1.56 MB) Minutes (69.78 KB) More Documents & Publications Web Coordinator Meetings-November 2015 Web Coordinator ...

  17. Web Coordinator Meetings-January 2016 | Department of Energy

    Energy.gov [DOE] (indexed site)

    January 2016 Web Coordinators Meeting. Presentation (2.1 MB) Minutes (69.92 KB) More Documents & Publications Web Coordinator Meetings - April 2015 Web Coordinator Meetings - ...

  18. Web Coordinator Meetings - January 2014 | Department of Energy

    Energy.gov [DOE] (indexed site)

    this monthly meeting of the EERE Web coordinators. Presentation (1.77 MB) Minutes (60.54 KB) More Documents & Publications Web Coordinator Meetings - April 2014 Web Coordinator ...

  19. Solar Easements & Rights Laws

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Solar Recordation Act describes the procedures for filing a solar right through the County Clerk's Office. The property owner seeking the solar right must give advanced notice to the adjacent...

  20. Copper Mountain Solar Farm

    Energy.gov [DOE]

    This b-roll shows a large-scale solar farm in Nevada that generates renewable solar energy using parabolic troughs, a form of concentrating solar power (CSP) technology, and photovoltaic technology.

  1. Solar Neutrino Problem

    DOE R&D Accomplishments

    Davis, R. Jr.; Evans, J. C.; Cleveland, B. T.

    1978-04-28

    A summary of the results of the Brookhaven solar neutrino experiment is given and discussed in relation to solar model calculations. A review is given of the merits of various new solar neutrino detectors that were proposed.

  2. 2009 News | Solar | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    9 News Below are news stories related to Solar. RSS Learn about RSS. October 21, 2009 Solar Technology Acceleration Center is Powering Up Members of the Solar Technology Acceleration Center (SolarTAC) and supporters convened in Aurora, Colo., today, to mark a milestone in "Powering Up" one of the world's largest solar test and demonstration facilities. Since announcing the initial launch of SolarTAC one year ago, the site infrastructure development has progressed to the point where

  3. EA-1840: California Valley Solar Ranch Project in San Luis Obispo County,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CA | Department of Energy 0: California Valley Solar Ranch Project in San Luis Obispo County, CA EA-1840: California Valley Solar Ranch Project in San Luis Obispo County, CA August 3, 2011 EA-1840: Final Environmental Assessment California Valley Solar Ranch Project in San Luis Obispo and Kern Counties, California August 3, 2011 EA-1840: Finding of No Significant Impact Loan Guarantee to High Plains II, LLC for the California Valley Solar Ranch Project in San Luis Obispo County and Kern

  4. Silicon Valley Solar Inc SV Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Inc SV Solar Jump to: navigation, search Name: Silicon Valley Solar Inc (SV Solar) Place: Santa Clara, California Zip: 95051 Sector: Solar Product: A US-based manufacturer of...

  5. Compound Solar Technology CompSolar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Technology CompSolar Jump to: navigation, search Name: Compound Solar Technology (CompSolar) Place: Jhunan, Taiwan Zip: 350 Sector: Solar Product: Producer of glass-based...

  6. First Solar AVSR Solar Ranch Technical Eligibility Re-Evaluation...

    Energy Saver

    First Solar AVSR Solar Ranch Technical Eligibility Re-Evaluation Memo First Solar AVSR Solar Ranch Technical Eligibility Re-Evaluation Memo FirstSolarAVSRSolarRanchOneTechnic...

  7. Rack assembly for mounting solar modules

    DOEpatents

    Plaisted, Joshua Reed; West, Brian

    2014-06-10

    A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures o be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.

  8. Rack assembly for mounting solar modules

    DOEpatents

    Plaisted, Joshua Reed; West, Brian

    2012-09-04

    A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures to be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.

  9. Rack assembly for mounting solar modules

    DOEpatents

    Plaisted, Joshua Reed; West, Brian

    2010-12-28

    A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures o be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.

  10. Phase II Final Report

    SciTech Connect

    Schuknecht, Nate; White, David; Hoste, Graeme

    2014-09-11

    The SkyTrough DSP will advance the state-of-the-art in parabolic troughs for utility applications, with a larger aperture, higher operating temperature, and lower cost. The goal of this project was to develop a parabolic trough collector that enables solar electricity generation in the 2020 marketplace for a 216MWe nameplate baseload power plant. This plant requires an LCOE of 9¢/kWhe, given a capacity factor of 75%, a fossil fuel limit of 15%, a fossil fuel cost of $6.75/MMBtu, $25.00/kWht thermal storage cost, and a domestic installation corresponding to Daggett, CA. The result of our optimization was a trough design of larger aperture and operating temperature than has been fielded in large, utility scale parabolic trough applications: 7.6m width x 150m SCA length (1,118m2 aperture), with four 90mm diameter × 4.7m receivers per mirror module and an operating temperature of 500°C. The results from physical modeling in the System Advisory Model indicate that, for a capacity factor of 75%: The LCOE will be 8.87¢/kWhe. SkyFuel examined the design of almost every parabolic trough component from a perspective of load and performance at aperture areas from 500 to 2,900m2. Aperture-dependent design was combined with fixed quotations for similar parts from the commercialized SkyTrough product, and established an installed cost of $130/m2 in 2020. This project was conducted in two phases. Phase I was a preliminary design, culminating in an optimum trough size and further improvement of an advanced polymeric reflective material. This phase was completed in October of 2011. Phase II has been the detailed engineering design and component testing, which culminated in the fabrication and testing of a single mirror module. Phase II is complete, and this document presents a summary of the comprehensive work.

  11. SunShot Solar PV | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar PV SunShot Solar PV

  12. Solar in Cold, Cloudy Climates

    Energy.gov [DOE]

    Presentation delivered by Chuck Marken during the 2009 Northeastern Solar Cities Conference Solar Survey session.

  13. TVA- Solar Solutions Initiative

    Energy.gov [DOE]

    Solar Solutions Initiative (SSI) is a pilot program that offers additional financial incentives for Solar PV systems participating in the Renewable Standard Offer program. Applications for new...

  14. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  15. Solar Power Basics

    Office of Energy Efficiency and Renewable Energy (EERE)

    This video summarizes the process of generating solar electricity from photovoltaic and concentrating solar power technologies. Research, manufacturing, and usage across the United States is also...

  16. Concentrating Solar Power

    SciTech Connect

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  17. Solar Contractor Licensing

    Energy.gov [DOE]

    Hawaii offers several specialty licenses for solar contractors through Hawaii’s Department of Commerce and Consumer Affairs. The following specialty licenses are available: Solar Power Systems...

  18. Tribal Solar Energy Partnerships

    Energy.gov [DOE] (indexed site)

    SOLAR ENERGY PARTNERSHIPS Chairman Timothy Williams - Fort Mojave Indian Tribe Perry Fontana - First Solar Fort Mojave Indian Reservation Fort Mojave Project Site Mohave Generating ...

  19. 2016 News | Solar | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... New Partnerships Help Utilities Break Down Solar Barriers ... modeling to leveraging community solar finance tools. ... critical questions and challenges to making their states ...

  20. Solar Thermoelectric Energy Conversion

    Office of Energy Efficiency and Renewable Energy (EERE)

    Efficiencies of different types of solar thermoelectric generators were predicted using theoretical modeling and validated with measurements using constructed prototypes under different solar intensities

  1. Solar Energy in Alaska

    Energy.gov [DOE] (indexed site)

    Solar Energy in Alaska Photo by: Cassandra Cerny, GVEA David Lockard, Solar Program Manager Alaska Energy Authority BIA Providers Conference December 2, 2015 Alaska Energy ...

  2. Your Solar Home

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar Schoolhouse Education supplement for the Sacramento Bee to introduce solar to elementary school children and introduce the design and AD contest for local students.

  3. Solar Energy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

  4. Concentrating Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Concentrating Solar Power Concentrating solar power (CSP) technologies use mirrors to focus and concentrate sunlight onto a receiver, from which a heat transfer fluid carries the ...

  5. Making a Solar Oven

    Education - Teach & Learn

    Students make solar ovens. Student background information is provided. The expected outcome is that students will learn about solar energy transfer.

  6. Solarity | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solarity Jump to: navigation, search Name: Solarity Address: 200 Innovation Blvd Suite 260A Place: State College, Pennsylvania Zip: 16801 Region: Northeast - NY NJ CT PA Area...

  7. Solar Kit Lessons

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... 1. Lamp and solar cell positioned as described ... morning. (Daily data on solar altitude vs. time of day for specified ... such hydrocarbons as coal, petroleum, and natural gas. ...

  8. Solar Two Tower System

    Energy.gov [DOE]

    In this photograph of a concentrating solar power (CSP) technology, stretched membrane heliostats with silvered polymer reflectors will be used as demonstration units at the Solar Two central...

  9. Solar skylight

    DOEpatents

    Adamson, James C.

    1984-01-01

    A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directly into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.

  10. Solar collector

    DOEpatents

    Wilhelm, William G.

    1982-01-01

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  11. Photoactive devices including porphyrinoids with coordinating additives

    DOEpatents

    Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K; Thompson, Mark E; Trinh, Cong; Whited, Matthew; Diev, Vlacheslav

    2015-05-12

    Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.

  12. Solar wind samples give insight into birth of solar system

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Department of Energy and Wind Easements & Rights Laws & Local Option Solar Rights Law Solar and Wind Easements & Rights Laws & Local Option Solar Rights Law < Back Eligibility Commercial Industrial Local Government Nonprofit Residential Schools State Government Federal Government Agricultural Institutional Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Wind (All) Solar Pool Heating

  13. Solar Easements & Local Option Solar Rights Laws

    Energy.gov [DOE]

    The New York General City, Town, and Village codes also allow local zoning districts to make regulations regarding solar access that provide for "the accommodation of solar energy systems and...

  14. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  15. Measuring solar reflectance - Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-09-15

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective ''cool colored'' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric R{sub E891BN} can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {<=} 5:12 [23 ]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%. We define clear sky air mass one global horizontal (''AM1GH'') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer. (author)

  16. Solar and supernova neutrino interactions

    SciTech Connect

    Haxton, W.C.

    1990-11-01

    Two topics are addressed, the interactions of neutrinos during a type II supernova and the effect of current eddies on solar neutrino oscillations. The supernova discussion focuses on the nucleosynthesis that accompanies inelastic neutral current interactions of neutrinos in the mantle of a collapsing star, and on the effect of neutrino down-scattering'' and preheating on the explosion mechanism. The second half of the talk deals with the influence of solar turbulence (or density fluctuations) on the neutrino effective mass and the possibility that a time-varying neutrino flux could result. The effects of harmonic density or three-current perturbations on the oscillation probability are explored analytically and numerically. 15 refs., 5 figs.

  17. ANSI Energy Efficiency Standardization Coordination Collaborative (EESCC)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ANSI Energy Efficiency Standardization Coordination Collaborative (EESCC)  The Energy Efficiency Standardization Roadmap is on target for publication in June 2014  Developed by the Energy Efficiency Standardization Coordination Collaborative (EESCC), a cross-sector group of 160 experts chaired by the U.S. Department of Energy and Schneider Electric, and convened by the American National Standards Institute (ANSI)  Establishes a national framework for action and coordination on energy

  18. Spectral Asymmetry Due to Magnetic Coordinates

    SciTech Connect

    Park, Jong-kyu; Boozer, Allen H.; Menard, Jonathan E.

    2008-05-06

    The use of magnetic coordinates is ubiquitous in toroidal plasma physics, but the distortion in Fourier spectra produced by these coordinates is not well known. A spatial symmetry of the field is not always represented by a symmetry in the Fourier spectrum when magnetic coordinates are used because of the distortion of the toroidal angle. The practical importance of spectral distortion is illustrated with a tokamak example.

  19. Project Management Coordination Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Project Management Coordination Office Project Management Coordination Office The Project Management Coordination Office (PMCO) provides guidance, leadership, training, and tools in program and project management to Office of Energy Efficiency and Renewable Energy (EERE) headquarters and field employees. PMCO is an internal Business Operations office with a mission to provide EERE executive managers, line managers, and staff offices the unified corporate tools, products, and services that enable

  20. Flix Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Flix Solar Jump to: navigation, search Name: Flix Solar Place: Spain Sector: Solar Product: Flix solar is developing a 12MW solar park in Flix, Tarragona, Spain. References: Flix...

  1. CLEERS Coordination & Joint Development of Benchmark Kinetics...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Catalyst Process Kinetic Data CLEERS Coordination & Joint Development of Benchmark Kinetics for LNT & SCR Functionality of Commercial NOx Storage-Reduction Catalysts...

  2. Western Electricity Coordinating Council Smart Grid Project ...

    OpenEI (Open Energy Information) [EERE & EIA]

    your syntax: * Display map References ARRA Smart Grid Investment Grants1 Western Electricity Award2 Western Electricity Coordinating Council, located in Salt Lake City, Utah,...

  3. Web Coordinator Meetings — June 2015

    Energy.gov [DOE]

    Presentation slides and minutes from the June 18, 2015 Web coordinator meeting. Topics include an overview of government hosting moving to HTTPs and a presentation on visual literacy.

  4. Coordinating Energy Efficiency With Water Conservation Services

    Energy.gov [DOE]

    Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Coordinating Energy Efficiency with Water Conservation Services, call slides and discussion summary, September 11, 2014.

  5. Coordination Chemistry in Magnesium Battery Electrolytes: How...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    March 3, 2014, Research Highlights Coordination Chemistry in Magnesium Battery Electrolytes: How Ligands Affect Their Performance (Top) Schematic illustration of the solution ...

  6. Coordinating with Corporate and Institutional Affiliates

    Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Coordinating with Corporate and Institutional Affiliates Call Slides and Discussion Summary, February 12, 2015.

  7. Transfer and Transition: Interagency Coordination for Managing...

    Office of Scientific and Technical Information (OSTI)

    Hence, these withdrawals are, permanently, no longer subject to public land, mining, and mineral-leasing lawsmore and regulations. LM is coordinating with DOIBLM in Wyoming to ...

  8. Energy Agency Coordinators for Energy Action Month

    Energy.gov [DOE]

    Agency coordinators serve as primary Federal agency points of contact for Energy Action Month. Contact them if you have questions about implementing an Energy Action Month campaign.

  9. Memorandum of Understanding Regarding Coordination in Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    on Federal Land, October 23, 2009 Memorandum of Understanding Regarding Coordination in Federal Agency Review of Electric Transmission Facilities on Federal Land, October 23, ...

  10. Sandian Contributes to Western Electricity Coordinating Council...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contributes to Western Electricity Coordinating Council Photovoltaic Power Plant Model ... Energy Systems LaboratoryBrayton Lab Photovoltaic Systems Evaluation Laboratory PV ...

  11. Secretary Bodman Announces DOE Technology Transfer Coordinator...

    Energy Saver

    to the global marketplace by naming Under Secretary for Science, Dr. Raymond Orbach, as Technology Transfer Coordinator, in accordance with the Energy Policy Act of 2005 (EPAct). ...

  12. Solar reflector system

    SciTech Connect

    Melamed, A.M.

    1986-07-01

    A solar reflector system is described for reflecting solar energy to an elongated solar receiving area disposed generally in an east-west direction and for helping to optimize the performance versus cost ratios of concentrating solar collector systems utilizing the solar reflector system. The solar reflector system consists of an elongated side reflector panel means to be hinged relative to the solar receiving area, hinge means adjacent the solar receiving area for pivotally connecting the reflector panel means relative to the solar receiving area. The reflector panel means include a reflector surface comprised of a plurality of flat planar reflector panels that are each elongated parallel to the solar receiving area for about the length of the solar receiving area, with adjacent flat planar reflector panels comprising the reflector surface sharing a common edge that extends parallel to the solar receiving area and forming an angle appropriate to facilitate efficient performance of the overall reflector panel means in reflecting solar energy to the solar receiving area, means for adjusting one, some, or all of the angles formed by adjacent flat planar reflector panels comprising the reflector surface. The curvature of the overall reflector surface may be altered on a seasonal basis, and means for adjusting the entire reflector panel means relative to the solar receiving area about the hinge means, so as to improve year-round reflector panel means performance in reflecting solar energy to the solar receiving area.

  13. Solar Screening Application for Universities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Rights Solar Rights < Back Eligibility Residential Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Photovoltaics Daylighting Solar Pool Heating Program Info Sector Name State State Arizona Program Type Solar/Wind Access Policy Summary Arizona law protects individual homeowners' private property rights to solar access by dissolving any local covenant, restriction, or condition attached to a property deed that restricts the use of solar energy.

  14. Solar Easements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    State Government Federal Government Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Solar Pool Heating Program Info Sector Name State State Kansas Program Type Solar/Wind Access Policy Summary Parties may voluntarily enter into solar easement contracts for the purpose of ensuring adequate exposure of a solar energy system. An easement must be expressed in writing and recorded with the register of deeds for

  15. Solar Rights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rights Solar Rights < Back Eligibility Residential Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Photovoltaics Daylighting Solar Pool Heating Program Info Sector Name State State Arizona Program Type Solar/Wind Access Policy Summary Arizona law protects individual homeowners' private property rights to solar access by dissolving any local covenant, restriction, or condition attached to a property deed that restricts the use of solar energy.

  16. Lanthanide coordination polymers: Synthesis, diverse structure and luminescence properties

    SciTech Connect

    Song, Xue-Qin Lei, Yao-Kun; Wang, Xiao-Run; Zhao, Meng-Meng; Peng, Yun-Qiao; Cheng, Guo-Quan

    2014-10-15

    The new semirigid exo-bidentate ligand incorporating furfurysalicylamide terminal groups, namely, 1,4-bis([(2′-furfurylaminoformyl)phenoxyl]methyl)-2,5-bismethylbenzene (L) was synthesized and used as building blocks for constructing lanthanide coordination polymers with luminescent properties. The series of lanthanide nitrate complexes have been characterized by elemental analysis, IR spectroscopy, and X-ray diffraction analysis. The semirigid ligand L, as a bridging ligand, reacts with lanthanide nitrates forming three distinct structure types: chiral noninterpenetrated two-dimensional (2D) honeycomblike (6,3) (hcb, Schläfli symbol 6{sup 3}, vertex symbol 6 6 6) topological network as type I, 1D zigzag chain as type II and 1D trapezoid ladder-like chain as type III. The structural diversities indicate that lanthanide contraction effect played significant roles in the structural self-assembled process. The luminescent properties of Eu{sup III}, Tb{sup III} and Dy{sup III} complexes are discussed in detail. Due to the good match between the lowest triplet state of the ligand and the resonant energy level of the lanthanide ion, the lanthanide ions in Eu{sup III}, Tb{sup III} and Dy{sup III} complexes can be efficiently sensitized by the ligand. - Graphical abstract: We present herein six lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display diverse structures but also possess strong luminescence properties. - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit diverse structures. • The luminescent properties of Tb{sup III}, Eu{sup III} and Dy{sup III} complexes are discussed in detail.

  17. Sunshot Rooftop Solar Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sunshot Rooftop Solar Challenge Sunshot Rooftop Solar Challenge Sunshot Rooftop Solar Challenge

  18. Texas Solar Collaboration DOE Rooftop Solar Challenge City of Houston Project Summary

    SciTech Connect

    Ronk, Jennifer

    2013-02-14

    The City of Houston is committed to achieving a sustainable solar infrastructure. In 2008, Houston was named a United States Department of Energy (DOE) Solar America City. As a Solar America City, Houston teamed with the Houston Advanced Research Center (HARC), Sandia National Laboratory (Sandia), industry, and academia, to implement the Solar Houston Initiative and prepare the Solar Houston Plan. The Solar Houston initiative was focused on identifying and overcoming barriers associated with establishing a solar infrastructure that is incorporated into the City of Houston’s overall energy plan. A broad group of Houston area stakeholders, facilitated by HARC, came together to develop a comprehensive solar plan that went beyond technology to address barriers and establish demonstrations, public outreach, education programs and other activities. The plan included proposed scopes of work in four program areas: policies, solar integration, public outreach, and education. Through the support of the DOE SunShot Rooftop Solar Challenge (RSC) grant to the Texas Collaboration (San Antonio, Austin, and Hosuton), Houston has been able to implement several of the recommendations of the Solar Houston Plan. Specific recommendations that this project was able to support include; Working with the other Texas Solar America Cities (San Antonio and Austin), to harmonize permitting and inspection processes to simplify for installers and lower soft costs of installation; Participating in state level solar policy groups such as the Texas Renewable Energy Industries Association (TRIEA); Continued coordination with the local transmission and distribution utility (CenterPoint) and retail electric providers (REP); Identification of opportunities to improve permitting and interconnection; Providing training on PV systems to City inspectors; Educating the public by continuing outreach, training, and workshops, particularly using the the Green Building Resources Center; Evaluating methods of

  19. Mixed ternary heterojunction solar cell

    SciTech Connect

    Chen, Wen S.; Stewart, John M.

    1992-08-25

    A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.

  20. Solar collector

    DOEpatents

    Wilhelm, W.G.

    The invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.