National Library of Energy BETA

Sample records for hydrogen systems llc

  1. Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name: Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place:...

  2. Hydrogen Innovations LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Innovations LLC Jump to: navigation, search Name: Hydrogen Innovations LLC Place: Blackfoot, Idaho Zip: 83221 Product: Manufacturer of alternative fuel delivery system that cleans...

  3. Safe Hydrogen LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hydrogen LLC Jump to: navigation, search Name: Safe Hydrogen LLC Place: Lexington, Massachusetts Sector: Hydro, Hydrogen Product: Focused on hydrogen storage, through a 'slurry' of...

  4. Chevron Hydrogen Company LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hydrogen Company LLC Jump to: navigation, search Name: Chevron Hydrogen Company LLC Place: California Sector: Hydro, Hydrogen Product: California-based, subsidairy of Chevron...

  5. Innovative Systems Engineering Solar LLC ISE Solar LLC | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Systems Engineering Solar LLC ISE Solar LLC Jump to: navigation, search Name: Innovative Systems Engineering Solar LLC (ISE Solar LLC) Place: Warminster, Pennsylvania Zip:...

  6. American Wind Power Hydrogen LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Hydrogen LLC Jump to: navigation, search Name: American Wind Power & Hydrogen LLC Place: New York, New York Zip: 10022 Sector: Hydro, Hydrogen, Vehicles Product: AWP&H is a...

  7. Biodiesel Systems LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Systems LLC Jump to: navigation, search Name: Biodiesel Systems, LLC Place: Madison, Wisconsin Zip: WI 53704 Product: The core business of Biodiesel Systems is plan, design,...

  8. Bio Energy Systems LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Bio-Energy Systems LLC Place: san Anselmo, California Zip: 94960 Product: Biodiesel producer in Vallejo, California. References: Bio-Energy Systems LLC1 This...

  9. Renewable Power Systems LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Systems LLC Jump to: navigation, search Name: Renewable Power Systems, LLC Place: Averill Park, New York Zip: 12018 Sector: Solar Product: Albany, New York-based solar...

  10. Wind Energy Systems Technology LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technology LLC Jump to: navigation, search Logo: Wind Energy Systems Technology LLC Name: Wind Energy Systems Technology LLC Address: 17350 State Highway 249 Place: Houston, Texas...

  11. EDrive Systems LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EDrive Systems LLC Place: Los Angeles, California Product: Developer of a plug-in and battery kit for the Toyota Prius. References: EDrive Systems LLC1 This article is a stub....

  12. Dosimetry Records System PIA, bechtel Jacobs Company, LLC | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Dosimetry Records System PIA, bechtel Jacobs Company, LLC Dosimetry Records System PIA, bechtel Jacobs Company, LLC Dosimetry Records System PIA, bechtel Jacobs Company, LLC Dosimetry Records System PIA, bechtel Jacobs Company, LLC (196.75 KB) More Documents & Publications Electronic Document Management System PIA, BechtelJacobs Company, LLC Pension Estimate System PIA, Bechtel Jacobs Company, LLC Medgate, PIA, Bechtel Jacobs Company, LLC

  13. Electronic Document Management System PIA, BechtelJacobs Company, LLC |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Management System PIA, BechtelJacobs Company, LLC Electronic Document Management System PIA, BechtelJacobs Company, LLC Electronic Document Management System PIA, BechtelJacobs Company, LLC Electronic Document Management System PIA, BechtelJacobs Company, LLC (239.76 KB) More Documents & Publications Dosimetry Records System PIA, bechtel Jacobs Company, LLC Pension Estimate System PIA, Bechtel Jacobs Company, LLC Medgate, PIA, Bechtel Jacobs Company, LLC

  14. H2Scan LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: H2Scan LLC Place: Valencia, California Zip: 91355 Sector: Hydro, Hydrogen Product: Hydrogen specific sensing systems, uniquely able to detect hydrogen against...

  15. Employee Concerns Tracking System, PIA, Bechtel Jacobs Company, LLC |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Concerns Tracking System, PIA, Bechtel Jacobs Company, LLC Employee Concerns Tracking System, PIA, Bechtel Jacobs Company, LLC Employee Concerns Tracking System, PIA, Bechtel Jacobs Company, LLC Employee Concerns Tracking System, PIA, Bechtel Jacobs Company, LLC (225.92 KB) More Documents & Publications Electronic Document Management System PIA, BechtelJacobs Company, LLC Dosimetry Records System PIA, bechtel Jacobs Company, LLC Pension Estimate System PIA, Bechtel

  16. Intergrated Drug Testing System, PIA, Bechtel Jacobs C ompany, LLC |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Intergrated Drug Testing System, PIA, Bechtel Jacobs C ompany, LLC Intergrated Drug Testing System, PIA, Bechtel Jacobs C ompany, LLC Intergrated Drug Testing System, PIA, Bechtel Jacobs C ompany, LLC Intergrated Drug Testing System, PIA, Bechtel Jacobs C ompany, LLC (233.03 KB) More Documents & Publications Electronic Document Management System PIA, BechtelJacobs Company, LLC Dosimetry Records System PIA, bechtel Jacobs Company, LLC Pension Estimate System PIA,

  17. Supercritical Recovery Systems LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Recovery Systems LLC Place: Clayton, Missouri Zip: 63105 Product: Holder of various biofuel processing technologies. Deeveloping an ethanol plant in Lacassine, Louisiana....

  18. Resource Energy Systems LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    provides property owners with turn-key solar energy services. RES completes all phases of solar design, installation, and completion. References: Resource Energy Systems, LLC1...

  19. Solstice Solar Systems LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    California Zip: 95008-6906 Sector: Solar Product: US-based manufacturer of PV inverters and wires to connect solar panels. References: Solstice Solar Systems LLC1 This...

  20. Nextronex Energy Systems LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Systems LLC Address: 4400 Moline Martin Rd Place: Millbury, Ohio Zip: 43447-9401 Sector: Efficiency, Renewable Energy, Services, Solar Website: www.nextronex.comdefault.asp...

  1. Pension Estimate System PIA, Bechtel Jacobs Company, LLC | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Electronic Document Management System PIA, BechtelJacobs Company, LLC Dosimetry Records System PIA, bechtel Jacobs Company, LLC Medgate, PIA, Bechtel ...

  2. Wind Energy Systems Technologies LLC WEST | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Systems Technologies LLC WEST Jump to: navigation, search Name: Wind Energy Systems Technologies LLC (WEST) Place: New Iberia, Louisiana Sector: Wind energy Product: Wants to...

  3. QER- Comment of Skibo Systems LLC

    Office of Energy Efficiency and Renewable Energy (EERE)

    Paul M. Klemencic, Skibo Systems LLC: Comments regarding the current state of all major energy markets, addressing customer costs and needs, infrastructure, market controls and optimization, and build out of green energy sources.

  4. Enforcement Letter, Isotek Systems, LLC- January 20, 2010

    Energy.gov [DOE]

    Issued to Isotek Systems, LLC related to Quality Assurance Issues associated with the U233 Material Downblending and Disposition Project at Oak Ridge National Laboratory

  5. Hydrogen purification system

    DOEpatents

    Golben, Peter Mark

    2010-06-15

    The present invention provides a system to purify hydrogen involving the use of a hydride compressor and catalytic converters combined with a process controller.

  6. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Kreutz, T.

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  7. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Dennis, E.

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  8. Hythane LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Hythane LLC Place: Denver, Colorado Sector: Hydro, Hydrogen Product: Produces a fuel system which runs on 'Hythane' - a 50:50 blend of natural...

  9. Purdue Hydrogen Systems Laboratory

    SciTech Connect

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  10. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  11. Hydrogen storage and generation system

    DOEpatents

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  12. Hydrogen Storage System Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    System Challenges Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles October 29 th , 2015 Mike Veenstra Ford Research & Advanced Engineering Production fuel cell vehicles are being produced or planned by every major automotive OEM Toyota Honda Hyundai (credit: SA / ANL) Customer Expectations Driving Range Refueling Time Cargo Space Vehicle Weight Durability Cost Safety 0.0 2.0 4.0 6.0 8.0 10.0 Gasoline Hydrogen (700 bar) Natural

  13. Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications R. K. Ahluwalia, T. Q. Hua, and J-K Peng Argonne National Laboratory, Argonne, IL 60439 M. Kromer, S. Lasher, K. McKenney, K. Law, and J. Sinha TIAX LLC, Lexington, MA 02421 June 21, 2011 Executive Summary In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Program's

  14. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M.

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  15. TekTrakker Information Systems, LLC-Amart Grad RFI: Addressign Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Logistical Challenges | Department of Energy TekTrakker Information Systems, LLC-Amart Grad RFI: Addressign Policy and Logistical Challenges TekTrakker Information Systems, LLC-Amart Grad RFI: Addressign Policy and Logistical Challenges TekTrakker Information Systems, LLC-Amart Grad RFI: Addressign Policy and Logistical Challenges. Recommendations on how to share and compare failure experience between utilities for all devices in order to drive improvements in grid reliability, drive better

  16. H2 Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: H2 Energy LLC Place: Hawaii Sector: Hydro, Hydrogen Product: Partnership between HiBEAM, an organisation of venture capitalists, and Sennet...

  17. Electrochemical hydrogen Storage Systems

    SciTech Connect

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  18. HCE LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: HCE LLC Place: Oakton, Virginia Zip: 22124-1530 Sector: Hydro, Hydrogen Product: Has developed a new device and method for hydrogen storage. Coordinates:...

  19. Sustainable Systems LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zip: 59812 Sector: Renewable Energy Product: Renewable energy and biobased product research, development and commercialization company. References: Sustainable Systems...

  20. Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications

    SciTech Connect

    Hua, Thanh; Ahluwalia, Rajesh; Peng, J. -K; Kromer, Matt; Lasher, Stephen; McKenney, Kurtis; Law, Karen; Sinha, Jayanti

    2010-09-01

    This technical report describes DOE's assessment of the performance and cost of compressed hydrogen storage tank systems for automotive applications. The on-board performance (by Argonne National Lab) and high-volume manufacturing cost (by TIAX LLC) were estimated for compressed hydrogen storage tanks. The results were compared to DOE's 2010, 2015, and ultimate full fleet hydrogen storage targets. The Well-to-Tank (WTT) efficiency as well as the off-board performance and cost of delivering compressed hydrogen were also documented in the report.

  1. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect

    Stottler, Gary

    2012-02-08

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  2. Hydrogen

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Batteries Electric Drive Systems Hydrogen Materials & Components Compatibility Hydrogen ...

  3. hydrogen-fueled transportation systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  4. Fuel cell using a hydrogen generation system

    DOEpatents

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-10-19

    A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  5. Hydrogen-Fueled Vehicle Safety Systems Animation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen-Fueled Vehicle Safety Systems Animation Hydrogen-Fueled Vehicle Safety Systems Animation This animation demonstrates the multiple safety systems in hydrogen-fueled ...

  6. Renewable Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen NREL Hydrogen Technologies and Systems Center Dr. Robert J. Remick November 16, 2009 NREL/PR-560-47433 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. U.S. Dependence on Imported Oil National Renewable Energy Laboratory Innovation for Our Energy Future 2 Energy Solutions are Challenging We need a balanced portfolio of options- including clean, domestic energy

  7. Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ANL-10/24 Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications Nuclear Engineering Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of

  8. Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ANL/09-33 Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications Nuclear Engineering Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov.

  9. Bar Gadda LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Place: Palo Alto, California Zip: 94306 Sector: Geothermal energy, Hydro, Hydrogen Product: Has developed a new technology to produce hydrogen from water or geothermal...

  10. Genesys LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Genesys LLC Place: Palo Alto, California Zip: 94306 Sector: Hydro, Hydrogen Product: Focused on RET (Radiant Energy Transfer) technology for the production of...

  11. Insurance Eligibility, PIA, Bechtel Jacobs Company, LLC | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Insurance Eligibility, PIA, Bechtel Jacobs Company, LLC Insurance Eligibility, PIA, Bechtel Jacobs Company, LLC Insurance Eligibility, PIA, Bechtel Jacobs Company, LLC Insurance Eligibility, PIA, Bechtel Jacobs Company, LLC (207.07 KB) More Documents & Publications Medgate, PIA, Bechtel Jacobs Company, LLC Electronic Document Management System PIA, BechtelJacobs Company, LLC Oracle Financials PIA, Bechtel Jacobs Company, LLC

  12. Air Products Hydrogen Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Air Products Hydrogen Energy Systems Air Products Hydrogen Energy Systems Hydrogen Infrastructure Air Products Hydrogen Energy Systems (423.04 KB) More Documents & Publications QTR Ex Parte Communications H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results - Interim Report Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements

  13. Water reactive hydrogen fuel cell power system

    SciTech Connect

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  14. Water reactive hydrogen fuel cell power system

    DOEpatents

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  15. Polymer system for gettering hydrogen

    DOEpatents

    Shepodd, Timothy Jon; Whinnery, LeRoy L.

    2000-01-01

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  16. Method and system for hydrogen evolution and storage

    DOEpatents

    Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.

    2012-12-11

    A method and system for storing and evolving hydrogen (H.sub.2) employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.

  17. Method and System for Hydrogen Evolution and Storage

    DOEpatents

    Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.

    2008-10-21

    A method and system for storing and evolving hydrogen employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.

  18. Analysis of Hybrid Hydrogen Systems: Final Report

    SciTech Connect

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  19. Designing Microporus Carbons for Hydrogen Storage Systems

    SciTech Connect

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  20. NRG Thermal LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: NRG Thermal LLC Place: Minneapolis, Minnesota Zip: 55402-2200 Product: A subsidiary of NRG Energy that specialises in district energy systems...

  1. Climate Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Climate Energy LLC Jump to: navigation, search Name: Climate Energy LLC Place: Medfield, Massachusetts Zip: 2052 Product: Develops and markets micro-combined heat power systems for...

  2. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel...

    Energy Saver

    Models and Tools: Systems Analysis of Hydrogen and Fuel Cells Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells The Fuel Cell Technologies Office's systems ...

  3. Solar-hydrogen energy system for Pakistan

    SciTech Connect

    Lutfi, N.

    1990-01-01

    A solar-hydrogen energy system has been proposed for Pakistan as the best replacement for the present fossil fuel based energy system. It has been suggested to produce hydrogen via photovoltaic-electrolysis, utilizing the available non-agricultural sunny terrain in Baluchistan region. There will be a desalination plant for sea water desalination. The area under the photovoltaic panels with the availability of water would provide suitable environment for growing some cash crops. This would change the cast useless desert land into green productive farms. In order to show the quantitative benefits of the proposed system, future trends of important energy and economical parameters have been studied with and without hydrogen introduction. The following parameters have been included: population, energy demand (fossil + hydrogen), energy production (fossil + hydrogen), gross national product, fossil energy imports, world energy prices, air pollution, quality of life, environmental savings due to hydrogen introduction, savings due to the higher utilization efficiency of hydrogen, by-product credit, agricultural income, income from hydrogen sale, photovoltaic cell area, total land area, water desalination plant capacity, capital investment, operating and maintenance cost, and total income from the system. The results indicate that adopting the solar-hydrogen energy system would eliminate the import dependency of fossil fuels, increase gross product per capita, reduce pollution, improve quality of life and establish a permanent and clean energy system. The total annual expenditure on the proposed system is less than the total income from the proposed system. The availability of water, the cash crop production, electricity and hydrogen would result in rapid development of Baluchistan, the largest province of Pakistan.

  4. Overview of interstate hydrogen pipeline systems.

    SciTech Connect

    Gillette, J .L.; Kolpa, R. L

    2008-02-01

    . The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines

  5. Cost Analysis of Hydrogen Storage Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Storage Systems Cost Analysis of Hydrogen Storage Systems Presentation by Stephen Lasher on cost analysis of hydrogen storage systems. wkshp_storage_lasher.pdf (1.34 MB) More Documents & Publications Analyses of Hydrogen Storage Materials and On-Board Systems Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications

  6. Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact...

    Energy Saver

    Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2015 Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2015 FuelCell Energy, Inc., in ...

  7. Onboard Type IV Compressed Hydrogen Storage System Cost Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar Access the recording and download ...

  8. Palmetto Fuel Cell Technologies LLC PFCT | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Palmetto Fuel Cell Technologies LLC (PFCT) Place: Columbia, South Carolina Sector: Hydro, Hydrogen, Services Product: A fuel cell and hydrogen services and technology development...

  9. US BioGen LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Name: US BioGen LLC Place: Dallas, Texas Zip: 75231 Sector: Hydro, Hydrogen Product: Produces bioethanol, electricity and hydrogen from grain crops such as corn....

  10. Analytic Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power LLC Place: Woburn, Massachusetts Zip: 01801 Region: Greater Boston Area Sector: Hydrogen Product: Fuel cell developer Website: www.analytic-power.com Coordinates:...

  11. Gibbs Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Gibbs Energy LLC Place: Newark, New Jersey Zip: 7103 Sector: Biomass, Hydro, Hydrogen Product: New Jersey based engineering service company specializing in research and...

  12. Hydrogen storage and delivery system development: Analysis

    SciTech Connect

    Handrock, J.L.

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  13. System for thermochemical hydrogen production

    DOEpatents

    Werner, R.W.; Galloway, T.R.; Krikorian, O.H.

    1981-05-22

    Method and apparatus are described for joule boosting a SO/sub 3/ decomposer using electrical instead of thermal energy to heat the reactants of the high temperature SO/sub 3/ decomposition step of a thermochemical hydrogen production process driven by a tandem mirror reactor. Joule boosting the decomposer to a sufficiently high temperature from a lower temperature heat source eliminates the need for expensive catalysts and reduces the temperature and consequent materials requirements for the reactor blanket. A particular decomposer design utilizes electrically heated silicon carbide rods, at a temperature of 1250/sup 0/K, to decompose a cross flow of SO/sub 3/ gas.

  14. Renewable Hydrogen Production from Biological Systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Production from Biological Systems Matthew Posewitz Colorado School of Mines DOE Biological Hydrogen Production Workshop September 24 th , 2013 H 2 production PSII/PSI pathway PSI/nonphotochemical PQ Dark fermentation H 2 uptake oxyhydrogen reaction photoreduction Photosynthetic H 2 pathways Peters JW et al. Science 1998 Nicolet Y et al. Structure and Folding Des. 1999 Phototroph Hydrogenases * Cyanobacteria - Only [NiFe]-hydrogenases identified to date. - Typically dark H 2 production.

  15. Cryogenic Hydrogen Storage Systems Workshop Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Storage Systems Workshop Agenda Cryogenic Hydrogen Storage Systems Workshop Agenda Agenda for the second day of the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011. compressed_hydrogen2011_day2_agenda.pdf (15.08 KB) More Documents & Publications Compressed Hydrogen Storage Workshop Agenda Research and Development Strategies for Compressed & Cryo-Hydrogen Storage Systems - Workshop Summary

  16. Functional design criteria for standard hydrogen monitoring system portable platform

    SciTech Connect

    Schneider, T.C.

    1997-01-17

    Functional design description for a Standard-E cabinet arrangement Standard Hydrogen Monitoring System Portable Platform.

  17. Hydrogen storage and delivery system development

    SciTech Connect

    Handrock, J.L.; Wally, K.; Raber, T.N.

    1995-09-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. The purpose of this project is to develop a platform for the engineering evaluation of hydrogen storage and delivery systems with an added focus on lightweight hydride utilization. Hybrid vehicles represent the primary application area of interest, with secondary interests including such items as existing vehicles and stationary uses. The near term goal is the demonstration of an internal combustion engine/storage/delivery subsystem. The long term goal is optimization of storage technologies for both vehicular and industrial stationary uses. In this project an integrated approach is being used to couple system operating characteristics to hardware development. A model has been developed which integrates engine and storage material characteristics into the design of hydride storage and delivery systems. By specifying engine operating parameters, as well as a variety of storage/delivery design features, hydride bed sizing calculations are completed. The model allows engineering trade-off studies to be completed on various hydride material/delivery system configurations. A more generalized model is also being developed to allow the performance characteristics of various hydrogen storage and delivery systems to be compared (liquid, activated carbon, etc.). Many of the features of the hydride storage model are applicable to the development of this more generalized model.

  18. Novel, Ceramic Membrane System For Hydrogen Separation

    SciTech Connect

    Elangovan, S.

    2012-12-31

    Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

  19. Sustainable bioreactor systems for producing hydrogen

    SciTech Connect

    Zaborsky, O.R.; Radway, J.C.; Yoza, B.A.; Benemann, J.R.; Tredici, M.R.

    1998-08-01

    The overall goal of Hawaii`s BioHydrogen Program is to generate hydrogen from water using solar energy and microalgae under sustainable conditions. Specific bioprocess engineering objectives include the design, construction, testing and validation of a sustainable photobioreactor system. Specific objectives relating to biology include investigating and optimizing key physiological parameters of cyanobacteria of the genus Arthrospira (Spirulina), the organism selected for initial process development. Another objective is to disseminate the Mitsui-Miami cyanobacteria cultures, now part of the Hawaii Culture Collection (HCC), to other research groups. The approach is to use a single organisms for producing hydrogen gas from water. Key stages are the growth of the biomass, the dark induction of hydrogenase, and the subsequent generation of hydrogen in the light. The biomass production stage involves producing dense cultures of filamentous, non-heterocystous cyanobacteria and optimizing biomass productivity in innovative tubular photobioreactors. The hydrogen generation stages entail inducing the enzymes and metabolic pathways that enable both dark and light-driven hydrogen production. The focus of Year 1 has been on the construction and operation of the outdoor photobioreactor for the production of high-density mass cultures of Arthrospira. The strains in the Mitsui-Miami collection have been organized and distributed to other researchers who are beginning to report interesting results. The project is part of the International Energy Agency`s biohydrogen program.

  20. Biological Systems for Hydrogen Photoproduction (Presentation)

    SciTech Connect

    Ghirardi, M. L.

    2012-05-01

    This presentation summarizes NREL biological systems for hydrogen photoproduction work for the DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, May 14-18, 2012. General goal is develop photobiological systems for large-scale, low cost and efficient H{sub 2} production from water (barriers AH, AI and AJ). Specific tasks are: (1) Address the O{sub 2} sensitivity of hydrogenases that prevent continuity of H{sub 2} photoproduction under aerobic, high solar-to-hydrogen (STH) light conversion efficiency conditions; and (2) Utilize a limited STH H{sub 2}-producing method (sulfur deprivation) as a platform to address or test other factors limiting commercial algal H{sub 2} photoproduction, including low rates due to biochemical and engineering mechanisms.

  1. Microchannel Reactor System for Catalytic Hydrogenation

    SciTech Connect

    2004-07-01

    This factsheet describes a research project whose goal is to design, fabricate, evaluate, and optimize a laboratory-scale microchannel reactor/heat exchanger system with thin-film or particulate catalysts for hydrogenation of o-nitroanisole and other nitro aromatic compounds, under moderate temperature and pressure.

  2. Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) Hydrogen fueled vehicles have multiple safety systems that detect and prevent the accidental release of hydrogen. There are sensors that detect leaks, a computer that monitors fuel flow, and an excess flow shut-off valve. Hydrogen tanks also have a pressure release device, much like those on natural gas water heaters in our homes. If a leak is

  3. Small Fuel Cell Systems with Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    27/2011 eere.energy.gov H 2 and FC Technologies Manufacturing R&D Workshop Renaissance Hotel, Washington, DC August 11-12, 2011 Small Fuel Cell Systems with Hydrogen Storage Ned T. Stetson, Ph.D. Team Lead, Hydrogen Storage Fuel Cell Technologies Program U.S. Dept. of Energy 2 | Fuel Cell Technologies Program Source: US DOE 9/27/2011 eere.energy.gov * Reduction in greenhouse gas emissions? - Not much impact * Reduction in dependency on petroleum? - Not much impact * Development of vendor

  4. Hydrogen Event Containment Response Code System.

    Energy Science and Technology Software Center

    1999-11-23

    Version: 00 Distribution is restricted to the United States Only. HECTR1.5 (Hydrogen Event-Containment Transient Response) is a lumped-volume containment analysis program that is most useful for performing parametric studies. Its main purpose is to analyze nuclear reactor accidents involving the transport and combustion of hydrogen, but HECTR can also function as an experiment analysis tool and can solve a limited set of other containment problems. Six gases; steam, nitrogen, oxygen, hydrogen, carbon monoxide, and carbonmore » dioxide are modified along with sumps containing liquid water. HECTR can model virtually all the containment systems of importance in ice condenser, large dry and Mark III containments. A postprocessor, ACHILES1.5, is included. It processes the time-dependent variable output (compartment pressures, flow junction velocities, surface temperatures, etc.) produced by HECTR. ACHILES can produce tables and graphs of these data.« less

  5. The Palm Desert renewable [hydrogen] transportation system

    SciTech Connect

    Chamberlin, C.E.; Lehman, P.

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehicle diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.

  6. Systems and methods for selective hydrogen transport and measurement

    DOEpatents

    Glatzmaier, Gregory C

    2013-10-29

    Systems and methods for selectively removing hydrogen gas from a hydrogen-containing fluid volume are disclosed. An exemplary system includes a proton exchange membrane (PEM) selectively permeable to hydrogen by exclusively conducting hydrogen ions. The system also includes metal deposited as layers onto opposite sides or faces of the PEM to form a membrane-electrode assembly (MEA), each layer functioning as an electrode so that the MEA functions as an electrochemical cell in which the ionic conductors are hydrogen ions, and the MEA functioning as a hydrogen selective membrane (HSM) when located at the boundary between a hydrogen-containing fluid volume and a second fluid.

  7. Small Fuel Cell Systems with Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Systems with Hydrogen Storage Small Fuel Cell Systems with Hydrogen Storage Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. mfg2011_iii_stetson.pdf (882.27 KB) More Documents & Publications Overview of Hydrogen and Fuel Cells: National Academy of Sciences March 2011 Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview Hydrogen and Fuel Cell Technologies Overview

  8. Hydrogen Storage Systems Analysis Meeting: Summary Report, March 29, 2005 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Meeting: Summary Report, March 29, 2005 Hydrogen Storage Systems Analysis Meeting: Summary Report, March 29, 2005 This report highlights DOE's systems analysis work related to hydrogen storage materials and process development, with a focus on models of on-board and off-board hydrogen storage systems. ssawg_mtg.pdf (110.16 KB) More Documents & Publications Hydrogen Storage Systems Anlaysis Working Group Meeting, December 12, 2006 Hydrgoen Storage Systems Analysis

  9. Integrated Ceramic Membrane System for Hydrogen Production

    SciTech Connect

    Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

    2010-08-05

    Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor – in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900°C, and 2) Sequential OTM and HTM reactors – in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600°C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to

  10. Hydrogen Storage Systems Analysis Meeting: Summary Report, March...

    Energy.gov [DOE] (indexed site)

    systems analysis work related to hydrogen storage materials and process development, with a focus on models of on-board and off-board hydrogen storage systems. ssawgmtg.pdf ...

  11. Energy Department Awards $7 Million to Advance Hydrogen Storage Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 7 Million to Advance Hydrogen Storage Systems Energy Department Awards $7 Million to Advance Hydrogen Storage Systems May 19, 2014 - 12:30pm Addthis The Energy Department today announced $7 million for six projects to develop lightweight, compact, and inexpensive advanced hydrogen storage systems that will enable longer driving ranges and help make fuel cell systems competitive for different platforms and sizes of vehicles. These advances in hydrogen storage will be

  12. Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2015 | Department of Energy Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2015 Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2015 FuelCell Energy, Inc., in collaboration with Abbott Furnace Company, is developing a combined heat, hydrogen, and power (CHHP) system that utilizes reducing gas produced by a high-temperature fuel cell to directly replace hydrogen in metal treatment and other industrial processes. Excess reducing gas can be

  13. Microchannel Reactor System for Catalytic Hydrogenation

    SciTech Connect

    2004-07-01

    Energy-Efficient Catalytic Hydrogenation Reactions. Hydrogenation reactions are very versatile and account for 10% to 20% of all reactions in the pharmaceutical industry.

  14. Cryogenic target system for hydrogen layering

    DOE PAGES [OSTI]

    Parham, T.; Kozioziemski, B.; Atkinson, D.; Baisden, P.; Bertolini, L.; Boehm, K; Chernov, A.; Coffee, K.; Coffield, F.; Dylla-Spears, R.; et al

    2015-11-24

    Here, a cryogenic target positioning system was designed and installed on the National Ignition Facility (NIF) target chamber. This instrument incorporates the ability to fill, form, and characterize the NIF targets with hydrogen isotopes needed for ignition experiments inside the NIF target bay then transport and position them in the target chamber. This effort brought to fruition years of research in growing and metrologizing high-quality hydrogen fuel layers and landed it in an especially demanding operations environment in the NIF facility. D-T (deuterium-tritium) layers for NIF ignition experiments have extremely tight specifications and must be grown in a very highlymore » constrained environment: a NIF ignition target inside a cryogenic target positioner inside the NIF target bay. Exquisite control of temperature, pressure, contaminant level, and thermal uniformity are necessary throughout seed formation and layer growth to create an essentially-groove-free single crystal layer.« less

  15. Cryogenic target system for hydrogen layering

    SciTech Connect

    Parham, T.; Kozioziemski, B.; Atkinson, D.; Baisden, P.; Bertolini, L.; Boehm, K; Chernov, A.; Coffee, K.; Coffield, F.; Dylla-Spears, R.; Edwards, O.; Fair, J.; Fedorov, M.; Fry, J.; Gibson, C.; Haid, B.; Holunga, D.; Kohut, T.; Lewis, T.; Malsbury, T.; Mapoles, E.; Sater, J.; Skulina, K.; Trummer, D.; Walters, C.

    2015-11-24

    Here, a cryogenic target positioning system was designed and installed on the National Ignition Facility (NIF) target chamber. This instrument incorporates the ability to fill, form, and characterize the NIF targets with hydrogen isotopes needed for ignition experiments inside the NIF target bay then transport and position them in the target chamber. This effort brought to fruition years of research in growing and metrologizing high-quality hydrogen fuel layers and landed it in an especially demanding operations environment in the NIF facility. D-T (deuterium-tritium) layers for NIF ignition experiments have extremely tight specifications and must be grown in a very highly constrained environment: a NIF ignition target inside a cryogenic target positioner inside the NIF target bay. Exquisite control of temperature, pressure, contaminant level, and thermal uniformity are necessary throughout seed formation and layer growth to create an essentially-groove-free single crystal layer.

  16. Autothermal hydrogen storage and delivery systems

    DOEpatents

    Pez, Guido Peter; Cooper, Alan Charles; Scott, Aaron Raymond

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  17. NREL: Hydrogen and Fuel Cells Research - Systems Analysis

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Systems Analysis Graphic showing a map and chart. Hydrogen infrastructure simulation models focus on the spatial and temporal deployment of vehicles and fueling infrastructure to provide insights into investment decisions and policy support options. Image of a generic bar graph. H2FAST: Hydrogen Financial Analysis Scenario Tool Delivers in-depth financial analysis for hydrogen fueling stations. NREL's hydrogen systems analysis activities provide direction, insight, and support for the

  18. Microchannel Reactor System for Catalytic Hydrogenation

    SciTech Connect

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  19. Hydrogen Storage Systems Analysis Working Group Meeting: Summary...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Hydrgoen Storage Systems Analysis Working Group Meeting Summary Report Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for ...

  20. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Hydrogen Technologies and Systems Center Todd Ramsden, Kevin Harrison, Darlene Steward November 16, 2009 NREL/PR-560-47432 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL Wind2H2 RD&D Project * The National Renewable Energy Laboratory in partnership with Xcel Energy and

  1. Systems and methods for generation of hydrogen peroxide vapor

    DOEpatents

    Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

    2014-12-02

    A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

  2. Borazine-boron nitride hybrid hydrogen storage system

    DOEpatents

    Narula, Chaitanya K. [Knoxville, TN; Simonson, J. Michael [Knoxville, TN; Maya, Leon [Knoxville, TN; Paine, Robert T. [Albuquerque, NM

    2008-04-22

    A hybrid hydrogen storage composition includes a first phase and a second phase adsorbed on the first phase, the first phase including BN for storing hydrogen by physisorption and the second phase including a borazane-borazine system for storing hydrogen in combined form as a hydride.

  3. Hydrogen Storage Systems Anlaysis Working Group Meeting, December 12, 2006

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Anlaysis Working Group Meeting, December 12, 2006 Hydrogen Storage Systems Anlaysis Working Group Meeting, December 12, 2006 This document provides a summary of the Hydrogen Storage Systems Anlaysis Working Group meeting in December 2006 in Washington, D.C. ssawg_minutes_1206.pdf (211.62 KB) More Documents & Publications Hydrgoen Storage Systems Analysis Working Group Meeting Summary Report Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report

  4. Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Automotive Applications | Department of Energy Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications Technical report describing the U.S. Department of Energy's (DOE) assessment of the performance and cost of organic liquid based hydrogen storage systems for automotive applications. The on-board system performance (by Argonne National Lab) and high-volume

  5. Configuration and technology implications of potential nuclear hydrogen system applications.

    SciTech Connect

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given

  6. Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Storage Systems Analysis Working Group Meeting Argonne DC Offices L'Enfant Plaza, Washington, DC December 4, 2007 SUMMARY REPORT Compiled by Romesh Kumar Argonne National Laboratory and Kristin Deason Sentech, Inc. January 16, 2008 SUMMARY REPORT Hydrogen Storage Systems Analysis Working Group Meeting December 4, 2007 Argonne DC Offices, L'Enfant Plaza, Washington, DC Meeting Objectives This meeting was one of a continuing series of biannual meetings of the Hydrogen Storage Systems

  7. On-Board Hydrogen Gas Production System For Stirling Engines...

    Office of Scientific and Technical Information (OSTI)

    Patent: On-Board Hydrogen Gas Production System For Stirling Engines Citation Details ... OSTI Identifier: 879832 Report Number(s): US 6755021 US patent application 10246064 DOE ...

  8. Hydrogen Storage Systems Analysis Working Group Meeting: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The objective of these biannual Working Group meetings is to bring together the DOE research community involved in systems analysis of hydrogen storage materials and processes. PDF ...

  9. Community Energy: Analysis of Hydrogen Distributed Energy Systems...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling D. Steward National Renewable Energy Laboratory J. ...

  10. Systems and methods for selective hydrogen transport and measurement...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy ... Systems and methods for selective hydrogen transport and measurement United States Patent ...

  11. SYSTEMS AND METHODS FOR SELECTIVE HYDROGEN TRANSPORT AND MEASUREMENT...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy ... SYSTEMS AND METHODS FOR SELECTIVE HYDROGEN TRANSPORT AND MEASUREMENT United States Patent ...

  12. Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen

    Energy.gov [DOE]

    Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen.Solid and liquid hydrogen carriers for use in hydrogen storage and delivery.

  13. Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Summary of June 11, 2008, biannual meeting of the Hydrogen Storage Systems Analysis Working Group. ssawg_summary_report_0608.pdf (52.38 KB) More Documents & Publications Hydrgoen Storage Systems Analysis Working Group Meeting Summary Report Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications

  14. Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy The objective of these biannual Working Group meetings is to bring together the DOE research community involved in systems analysis of hydrogen storage materials and processes. ssawg_summary_report.pdf (266.68 KB) More Documents & Publications Hydrgoen Storage Systems Analysis Working Group Meeting Summary Report Hydrogen Storage Systems Anlaysis Working Group Meeting, December 12, 2006

  15. System for the co-production of electricity and hydrogen

    DOEpatents

    Pham, Ai Quoc; Anderson, Brian Lee

    2007-10-02

    Described herein is a system for the co-generation of hydrogen gas and electricity, wherein the proportion of hydrogen to electricity can be adjusted from 0% to 100%. The system integrates fuel cell technology for power generation with fuel-assisted steam-electrolysis. A hydrocarbon fuel, a reformed hydrocarbon fuel, or a partially reformed hydrocarbon fuel can be fed into the system.

  16. Polymers for hydrogen infrastructure and vehicle fuel systems :

    SciTech Connect

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  17. Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Onboard Type IV Compressed Hydrogen Storage System Cost Analysis U.S. Department of Energy Fuel Cell Technologies Office February 25, 2016 Presenter: Brian James - Strategic Analysis, Inc. DOE Host: Grace Ordaz- Technology Manager, Hydrogen Storage Program 2 | Fuel Cell Technologies Office eere.energy.gov Question and Answer * Please type your questions into the question box 2 Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Funded by the U.S. Department of Energy's Fuel Cell

  18. Hydrogen Storage Systems Analysis Meeting: Summary Report, March 29, 2005

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Storage Systems Analysis Meeting 955 L'Enfant Plaza North, SW, Suite 6000 Washington, DC 20024-2168 March 29, 2005 SUMMARY REPORT Compiled by Romesh Kumar Argonne National Laboratory June 20, 2005 SUMMARY REPORT Hydrogen Storage Systems Analysis Meeting March 29, 2005 955 L'Enfant Plaza, North, SW, Suite 6000 Washington, DC 20024-2168 Meeting Objectives The objective of this meeting was to familiarize the DOE research community involved in hydrogen storage materials and process

  19. Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Held in Conjunction with the DOE Hydrogen Program Annual Merit Review Crystal Gateway Marriott, Arlington, VA June 11, 2008 SUMMARY REPORT Compiled by Romesh Kumar Argonne National Laboratory and Elvin Yzugullu Sentech, Inc. July 18, 2008 SUMMARY REPORT Hydrogen Storage Systems Analysis Working Group Meeting June 11, 2008 Crystal Gateway Marriott, Arlington, VA Meeting Objectives This meeting was one of a continuing series of biannual meetings of the Hydrogen Storage Systems Analysis Working

  20. Engineering report standard hydrogen monitoring system problems

    SciTech Connect

    Golberg, R.L.

    1996-09-25

    Engineering Report to document moisture problems found during the sampling of the vapors in the dome space for hydrogen in the storage tanks and a recommended solution.

  1. Biological Systems for Hydrogen Photoproduction (Poster)

    SciTech Connect

    Ghirardi, M.; King, P.; Maness, P. C.; Seibert, M.

    2006-05-01

    Presented at the 2006 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Merit Review in Washington, D.C., May 16-19, 2006.

  2. Safe Detector System for Hydrogen Leaks

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  3. Gateway Ethanol LLC formerly Wildcat Bio Energy LLC | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC formerly Wildcat Bio Energy LLC Jump to: navigation, search Name: Gateway Ethanol LLC (formerly Wildcat Bio-Energy LLC) Place: Pratt, Kansas Zip: 67124 Product:...

  4. DayStar Solar LLC formerly International Energy Trading LLC ...

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC formerly International Energy Trading LLC Jump to: navigation, search Name: DayStar Solar LLC (formerly International Energy Trading LLC) Place: Grass Valley, California Zip:...

  5. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    SciTech Connect

    Leishear, R

    2010-05-02

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  6. Cyborge Reporting Solution, PIA, Bechtel Jacobs Company LLC | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Cyborge Reporting Solution, PIA, Bechtel Jacobs Company LLC Cyborge Reporting Solution, PIA, Bechtel Jacobs Company LLC Cyborge Reporting Solution, PIA, Bechtel Jacobs Company LLC Cyborge Reporting Solution, PIA, Bechtel Jacobs Company LLC (220.87 KB) More Documents & Publications Medgate, PIA, Bechtel Jacobs Company, LLC Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury & Illness System (01&15) PIA, Idaho National Laboratory

  7. Cost Analysis of a Concentrator Photovoltaic Hydrogen Production System

    SciTech Connect

    Thompson, J. R.; McConnell, R. D.; Mosleh, M.

    2005-08-01

    The development of efficient, renewable methods of producing hydrogen are essential for the success of the hydrogen economy. Since the feedstock for electrolysis is water, there are no harmful pollutants emitted during the use of the fuel. Furthermore, it has become evident that concentrator photovoltaic (CPV) systems have a number of unique attributes that could shortcut the development process, and increase the efficiency of hydrogen production to a point where economics will then drive the commercial development to mass scale.

  8. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    SciTech Connect

    Not Available

    1980-02-01

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  9. Hydrogen Systems Analysis | Department of Energy

    Energy Saver

    including coal-to-liquids, SNG, and conversion of coal-biomass mixtures to liquid fuels. Clean Coal Turbines Gasification Fuel Cells Hydrogen from Coal Coal to Liquids Major ...

  10. Renewable Hydrogen Production from Biological Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Matthew Posewitz, Colorado School of Mines, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  11. Hydrogen Systems Analysis Workshop (SAW) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems Analysis Workshop (SAW) Hydrogen Systems Analysis Workshop (SAW) The U.S. Department of Energy sponsored a Hydrogen Systems Analysis Workshop (SAW) in Washington, DC, July 28-29, 2004. Attendees included government officials, analysts, and managers from DOE, the National Laboratories, and two Technical Teams. The purpose of the workshop was to describe and emphasize the importance of systems analysis to the Program, gain a community-wide understanding of the analytical capabilities of

  12. Methods and systems for the production of hydrogen

    DOEpatents

    Oh, Chang H.; Kim, Eung S.; Sherman, Steven R.

    2012-03-13

    Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.

  13. Solar hydrogen energy system. Annual report, 1995--1996

    SciTech Connect

    Veziroglu, T.N.

    1996-12-31

    The paper reports progress on three tasks. Task A, System comparison of hydrogen with other alternative fuels in terms of EPACT requirements, investigates the feasibility of several alternative fuels, namely, natural gas, methanol, ethanol, hydrogen and electricity, to replace 10% of gasoline by the year 2000. The analysis was divided into two parts: analysis of vehicle technologies and analysis of fuel production, storage and distribution. Task B, Photovoltaic hydrogen production, involves this fuel production method for the future. The process uses hybrid solar collectors to generate dc electricity, as well as high temperature steam for input to the electrolyzer. During the first year, solar to hydrogen conversion efficiencies have been considered. The third task, Hydrogen safety studies, covers two topics: a review of codes, standards, regulations, recommendations, certifications, and pamphlets which address safety of gaseous fuels; and an experimental investigation of hydrogen flame impingement.

  14. Solar/hydrogen systems technologies. Volume II (Part 1 of 2). Solar/hydrogen systems assessment. Final report

    SciTech Connect

    Escher, W. J.D.; Foster, R. W.; Tison, R. R.; Hanson, J. A.

    1980-06-02

    Volume II of the Solar/Hydrogen Systems Assessment contract report (2 volumes) is basically a technological source book. Relying heavily on expert contributions, it comprehensively reviews constituent technologies from which can be assembled a wide range of specific solar/hydrogen systems. Covered here are both direct and indirect solar energy conversion technologies; respectively, those that utilize solar radiant energy input directly and immediately, and those that absorb energy from a physical intermediary, previously energized by the sun. Solar-operated hydrogen energy production technologies are also covered in the report. The single most prominent of these is water electrolysis. Utilization of solar-produced hydrogen is outside the scope of the volume. However, the important hydrogen delivery step is treated under the delivery sub-steps of hydrogen transmission, distribution and storage. An exemplary use of the presented information is in the synthesis and analysis of those solar/hydrogen system candidates documented in the report's Volume I. Morever, it is intended that broad use be made of this technology information in the implementation of future solar/hydrogen systems. Such systems, configured on either a distributed or a central-plant basis, or both, may well be of major significance in effecting an ultimate transition to renewable energy systems.

  15. A manual of recommended practices for hydrogen energy systems

    SciTech Connect

    Hoagland, W.; Leach, S.

    1997-12-31

    Technologies for the production, distribution, and use of hydrogen are rapidly maturing and the number and size of demonstration programs designed to showcase emerging hydrogen energy systems is expanding. The success of these programs is key to hydrogen commercialization. Currently there is no comprehensive set of widely-accepted codes or standards covering the installation and operation of hydrogen energy systems. This lack of codes or standards is a major obstacle to future hydrogen demonstrations in obtaining the requisite licenses, permits, insurance, and public acceptance. In a project begun in late 1996 to address this problem, W. Hoagland and Associates has been developing a Manual of Recommended Practices for Hydrogen Systems intended to serve as an interim document for the design and operation of hydrogen demonstration projects. It will also serve as a starting point for some of the needed standard-setting processes. The Manual will include design guidelines for hydrogen procedures, case studies of experience at existing hydrogen demonstration projects, a bibliography of information sources, and a compilation of suppliers of hydrogen equipment and hardware. Following extensive professional review, final publication will occur later in 1997. The primary goal is to develop a draft document in the shortest possible time frame. To accomplish this, the input and guidance of technology developers, industrial organizations, government R and D and regulatory organizations and others will be sought to define the organization and content of the draft Manual, gather and evaluate available information, develop a draft document, coordinate reviews and revisions, and develop recommendations for publication, distribution, and update of the final document. The workshop, Development of a Manual of Recommended Practices for Hydrogen Energy Systems, conducted on March 11, 1997 in Alexandria, Virginia, was a first step.

  16. On-Board Hydrogen Gas Production System For Stirling Engines

    DOEpatents

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  17. Standard-D hydrogen monitoring system acceptance test

    SciTech Connect

    Lott, D.T., Westinghouse Hanford

    1996-05-24

    This document details the results of the field Acceptance Testing of the Standard-D Hydrogen Monitoring System on the waste tank exhaust stacks in 241-AW and 241-AN tank farm. The monitors will be used to measure hydrogen and ammonia from the exhaust stacks.

  18. Enforcement Letter, CH2M Oak Ridge, LLC - SEL-2012-01 | Department...

    Office of Environmental Management (EM)

    Enforcement Letter, Isotek Systems, LLC - January 20, 2010 Enforcement Letter, NEL-2012-01 - February 28, 2012 Enforcement Letter, Babcock & Wilcox Technical Services Y-12, LLC - ...

  19. Systems Engineering of Chemical Hydrogen Storage, Pressure Vessel and Balance of Plant for Onboard Hydrogen Storage

    SciTech Connect

    Brooks, Kriston P.; Simmons, Kevin L.; Weimar, Mark R.

    2014-09-02

    This is the annual report for the Hydrogen Storage Engineering Center of Excellence project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done with cryo-sorbent based and chemical-based hydrogen storage materials. Balance of plant components were developed, proof-of-concept testing performed, system costs estimated, and transient models validated as part of this work.

  20. Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FuelCell Energy, June 2011 | Department of Energy Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Presentation on Ultra Efficient Combined Heat, Hydrogen, and Power System, given by Pinakin Patel of FuelCell Energy, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  1. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect

    Garabedian, Harold T. Wight, Gregory Dreier, Ken Borland, Nicholas

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable

  2. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Presented at the 2007 ...

  3. Webinar: Update to the 700 bar Compressed Hydrogen Storage System...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Tuesday, January 26, from 12 to 1 p.m. Eastern Standard Time. ...

  4. Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentati...

    Energy.gov [DOE] (indexed site)

    Presentation on Ultra Efficient Combined Heat, Hydrogen, and Power System, given by Pinakin Patel of FuelCell Energy, at the U.S. DOE Industrial Distributed Energy Portfolio Review ...

  5. Standard-E hydrogen monitoring system field acceptance testprocedure

    SciTech Connect

    Schneider, T.C.

    1997-02-01

    The purpose of this document is to demonstrate that the Standard-E Hydrogen Monitoring Systems (SHMS-E) installed on the Waste Tank Farms in the Hanford 200 Areas are constructed as intended by the design.

  6. Hydrogen Storage Systems Anlaysis Working Group Meeting, December...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This document provides a summary of the Hydrogen Storage Systems Anlaysis Working Group meeting in December 2006 in Washington, D.C. PDF icon ssawgminutes1206.pdf More Documents ...

  7. Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" held on February 25, 2016.

  8. Technoeconomic analysis of renewable hydrogen production, storage, and detection systems

    SciTech Connect

    Mann, M.K.; Spath, P.L.; Kadam, K.

    1996-10-01

    Technical and economic feasibility studies of different degrees of completeness and detail have been performed on several projects being funded by the Department of Energy`s Hydrogen Program. Work this year focused on projects at the National Renewable Energy Laboratory, although analyses of projects at other institutions are underway or planned. Highly detailed analyses were completed on a fiber optic hydrogen leak detector and a process to produce hydrogen from biomass via pyrolysis followed by steam reforming of the pyrolysis oil. Less detailed economic assessments of solar and biologically-based hydrogen production processes have been performed and focused on the steps that need to be taken to improve the competitive position of these technologies. Sensitivity analyses were conducted on all analyses to reveal the degree to which the cost results are affected by market changes and technological advances. For hydrogen storage by carbon nanotubes, a survey of the competing storage technologies was made in order to set a baseline for cost goals. A determination of the likelihood of commercialization was made for nearly all systems examined. Hydrogen from biomass via pyrolysis and steam reforming was found to have significant economic potential if a coproduct option could be co-commercialized. Photoelectrochemical hydrogen production may have economic potential, but only if low-cost cells can be modified to split water and to avoid surface oxidation. The use of bacteria to convert the carbon monoxide in biomass syngas to hydrogen was found to be slightly more expensive than the high end of currently commercial hydrogen, although there are significant opportunities to reduce costs. Finally, the cost of installing a fiber-optic chemochromic hydrogen detection system in passenger vehicles was found to be very low and competitive with alternative sensor systems.

  9. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  10. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  11. DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems – Projected Performance and Cost Parameters

    Energy.gov [DOE]

    This program record from the Department of Energy's Hydrogen and Fuel Cells Program provides information about the projected performance and cost parameters of on-board hydrogen storage systems.

  12. Cold weather hydrogen generation system and method of operation

    DOEpatents

    Dreier, Ken Wayne; Kowalski, Michael Thomas; Porter, Stephen Charles; Chow, Oscar Ken; Borland, Nicholas Paul; Goyette, Stephen Arthur

    2010-12-14

    A system for providing hydrogen gas is provided. The system includes a hydrogen generator that produces gas from water. One or more heat generation devices are arranged to provide heating of the enclosure during different modes of operation to prevent freezing of components. A plurality of temperature sensors are arranged and coupled to a controller to selectively activate a heat source if the temperature of the component is less than a predetermined temperature.

  13. Hydrogen Storage and Supply for Vehicular Fuel Systems - Energy Innovation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Portal Vehicles and Fuels Vehicles and Fuels Find More Like This Return to Search Hydrogen Storage and Supply for Vehicular Fuel Systems Lawrence Livermore National Laboratory Contact LLNL About This Technology Publications: PDF Document Publication Cryotank for storage of hydrogen as a vehicle fuel by J. Raymond Smith - Accelerating Innovation Webinar Presentation (11,941 KB) Technology Marketing Summary Various alternative-fuel systems have been proposed for passenger vehicles and

  14. Sopogy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    STEG projects and equipment and maker of solar thermal process heat and solar air-conditioning systems. References: Sopogy LLC1 This article is a stub. You can help OpenEI by...

  15. Sentry Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sentry Power LLC Place: New Castle, Delaware Zip: 19720 Product: Sentry Power sells battery-driven back up uninterrupted power supply systems for commercial and residential...

  16. Phoenix Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector: Biomass Product: California-based distributor and installer of biomass gasification systems. References: Phoenix Energy LLC1 This article is a stub. You can help...

  17. Cyborge Reporting Solution, PIA, Bechtel Jacobs Company LLC ...

    Energy Saver

    More Documents & Publications Medgate, PIA, Bechtel Jacobs Company, LLC Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury & Illness System...

  18. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System

    SciTech Connect

    Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

    2011-06-30

    The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The

  19. Hydrogen Production

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage Components and Systems Batteries Electric Drive Systems Hydrogen Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical ...

  20. Hydrogen Behavior

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage Components and Systems Batteries Electric Drive Systems Hydrogen Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical ...

  1. Analyses of Hydrogen Storage Materials and On-Board Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Hydrogen Storage Materials and On-Board Systems Analyses of Hydrogen Storage Materials and On-Board Systems Presentation by Stephen Lasher of TIAX for Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007. deliv_analysis_lasher.pdf (844.64 KB) More Documents & Publications Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications Cost Analysis of Hydrogen Storage Systems Technical Assessment of Cryo-Compressed Hydrogen

  2. System level permeability modeling of porous hydrogen storage materials.

    SciTech Connect

    Kanouff, Michael P.; Dedrick, Daniel E.; Voskuilen, Tyler

    2010-01-01

    A permeability model for hydrogen transport in a porous material is successfully applied to both laboratory-scale and vehicle-scale sodium alanate hydrogen storage systems. The use of a Knudsen number dependent relationship for permeability of the material in conjunction with a constant area fraction channeling model is shown to accurately predict hydrogen flow through the reactors. Generally applicable model parameters were obtained by numerically fitting experimental measurements from reactors of different sizes and aspect ratios. The degree of channeling was experimentally determined from the measurements and found to be 2.08% of total cross-sectional area. Use of this constant area channeling model and the Knudsen dependent Young & Todd permeability model allows for accurate prediction of the hydrogen uptake performance of full-scale sodium alanate and similar metal hydride systems.

  3. DEVELOPMENT OF A NON-NOBLE METAL HYDROGEN PURIFICATION SYSTEM

    SciTech Connect

    Korinko, P; Kyle Brinkman, K; Thad Adams, T; George Rawls, G

    2008-11-25

    Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focus of the reported work was to develop a scaled reactor with a VNi-Ti alloy membrane to replace a production Pd-alloy tube-type purification/diffuser system.

  4. Safety of Hydrogen Systems Installed in Outdoor Enclosures

    SciTech Connect

    Barilo, Nick F.

    2013-11-06

    The Hydrogen Safety Panel brings a broad cross-section of expertise from the industrial, government, and academic sectors to help advise the U.S. Department of Energy’s (DOE) Fuel Cell Technologies Office through its work in hydrogen safety, codes, and standards. The Panel’s initiatives in reviewing safety plans, conducting safety evaluations, identifying safety-related technical data gaps, and supporting safety knowledge tools and databases cover the gamut from research and development to demonstration and deployment. The Panel’s recent work has focused on the safe deployment of hydrogen and fuel cell systems in support of DOE efforts to accelerate fuel cell commercialization in early market applications: vehicle refueling, material handling equipment, backup power for warehouses and telecommunication sites, and portable power devices. This paper resulted from observations and considerations stemming from the Panel’s work on early market applications. This paper focuses on hydrogen system components that are installed in outdoor enclosures. These enclosures might alternatively be called “cabinets,” but for simplicity, they are all referred to as “enclosures” in this paper. These enclosures can provide a space where a flammable mixture of hydrogen and air might accumulate, creating the potential for a fire or explosion should an ignition occur. If the enclosure is large enough for a person to enter, and ventilation is inadequate, the hydrogen concentration could be high enough to asphyxiate a person who entered the space. Manufacturers, users, and government authorities rely on requirements described in codes to guide safe design and installation of such systems. Except for small enclosures used for hydrogen gas cylinders (gas cabinets), fuel cell power systems, and the enclosures that most people would describe as buildings, there are no hydrogen safety requirements for these enclosures, leaving gaps that must be addressed. This paper proposes that

  5. DOE Technical Targets for Hydrogen Storage Systems for Material Handling

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Equipment | Department of Energy Material Handling Equipment DOE Technical Targets for Hydrogen Storage Systems for Material Handling Equipment This table summarizes hydrogen storage technical performance targets for material handling equipment. These targets were developed with input to DOE through extensive communications with various stakeholders, industry developers, and end users, including through a 2012 request for information and workshops, as well as additional national lab

  6. DOE Technical Targets for Hydrogen Storage Systems for Portable Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Equipment | Department of Energy Portable Power Equipment DOE Technical Targets for Hydrogen Storage Systems for Portable Power Equipment These tables summarize hydrogen storage technical performance targets for portable power applications. These targets were developed with input to DOE through extensive communications with various stakeholders, industry developers, and end users, including through a 2012 request for information and workshops, as well as additional national lab assessments.

  7. Hydrogen storage and supply system - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    36,324 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Hydrogen storage and supply system United

  8. Loess Hills Wind Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Loess Hills Wind Energy LLC Address: PO Box 198 Place: Malvern, Iowa Zip: 51551 Sector: Wind energy Product: ReDriven Wind Energy Systems...

  9. GreenSource Solutions LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GreenSource Solutions LLC Jump to: navigation, search Name: GreenSource Solutions LLC Place: Novato, California Zip: 94945 Product: US-based PV system installer and consulting....

  10. Parameter study of a vehicle-scale hydrogen storage system.

    SciTech Connect

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    Sandia National Laboratories has developed a vehicle-scale prototype hydrogen storage system as part of a Work For Others project funded by General Motors. This Demonstration System was developed using the complex metal hydride sodium alanate. For the current work, we have continued our evaluation of the GM Demonstration System to provide learning to DOE's hydrogen storage programs, specifically the new Hydrogen Storage Engineering Center of Excellence. Baseline refueling data during testing for GM was taken over a narrow range of optimized parameter values. Further testing was conducted over a broader range. Parameters considered included hydrogen pressure and coolant flow rate. This data confirmed the choice of design pressure of the Demonstration System, but indicated that the system was over-designed for cooling. Baseline hydrogen delivery data was insufficient to map out delivery rate as a function of temperature and capacity for the full-scale system. A more rigorous matrix of tests was performed to better define delivery capabilities. These studies were compared with 1-D and 2-D coupled multi-physics modeling results. The relative merits of these models are discussed along with opportunities for improved efficiency or reduced mass and volume.

  11. Analyses of Compressed Hydrogen On-Board Storage Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Compressed Hydrogen On-Board Storage Systems Analyses of Compressed Hydrogen On-Board Storage Systems Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011. compressed_hydrogen2011_3_rosenfeld.pdf (701.48 KB) More Documents & Publications Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications Analyses of Hydrogen Storage Materials and On-Board

  12. Hydrogen

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Jobs While Providing Clean Energy Sandia National Laboratories joins the nation in celebrating National Hydrogen and Fuel Cell Day by marking the growth of the industry and ...

  13. Macro-System Model for Hydrogen Energy Systems Analysis in Transportation: Preprint

    SciTech Connect

    Diakov, V.; Ruth, M.; Sa, T. J.; Goldsby, M. E.

    2012-06-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  14. Manufacturing R&D of Onboard Hydrogen Storage Systems for Transportati...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing R&D of Onboard Hydrogen Storage Systems for Transportation Applications Background paper prepared for the 2005 Hydrogen Manufacturing R&D workshop. ...

  15. Vehicle Technologies Office Merit Review 2016: ePATHS- electrical PCM Assisted Thermal Heating System

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Mahle Behr USA, LLc at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  16. Standard-E hydrogen monitoring system shop acceptance test procedure

    SciTech Connect

    Schneider, T.C.

    1997-10-02

    The purpose of this report is to document that the Standard-E Hydrogen Monitoring Systems (SHMS-E), fabricated by Mid-Columbia Engineering (MCE) for installation on the Waste Tank Farms in the Hanford 200 Areas, are constructed as intended by the design. The ATP performance will verify proper system fabrication.

  17. APS Alternative Fuel (Hydrogen) Pilot Plant - Monitoring System Report

    SciTech Connect

    James Francfort; Dimitri Hochard

    2005-07-01

    The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA), along with Electric Transportation Applications and Arizona Pubic Service (APS), is monitoring the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant to determine the costs to produce hydrogen fuels (including 100% hydrogen as well as hydrogen and compressed natural gas blends) for use by fleets and other operators of advanced-technology vehicles. The hydrogen fuel cost data will be used as benchmark data by technology modelers as well as research and development programs. The Pilot Plant can produce up to 18 kilograms (kg) of hydrogen per day by electrolysis. It can store up to 155 kg of hydrogen at various pressures up to 6,000 psi. The dispenser island can fuel vehicles with 100% hydrogen at 5,000 psi and with blends of hydrogen and compressed natural gas at 3,600 psi. The monitoring system was designed to track hydrogen delivery to each of the three storage areas and to monitor the use of electricity on all major equipment in the Pilot Plant, including the fuel dispenser island. In addition, water used for the electrolysis process is monitored to allow calculation of the total cost of plant operations and plant efficiencies. The monitoring system at the Pilot Plant will include about 100 sensors when complete (50 are installed to date), allowing for analysis of component, subsystems, and plant-level costs. The monitoring software is mostly off-the-shelve, with a custom interface. The majority of the sensors input to the Programmable Automation Controller as 4- to 20-mA analog signals. The plant can be monitored over of the Internet, but the control functions are restricted to the control room equipment. Using the APS general service plan E32 electric rate of 2.105 cents per kWh, during a recent eight-month period when 1,200 kg of hydrogen was produced and the plant capacity factor was 26%, the electricity cost to produce one kg of hydrogen was $3.43. However, the

  18. Epuron LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Epuron LLC Jump to: navigation, search Name: Epuron LLC Place: Philadelphia, Pennsylvania Zip: 19103 Sector: Solar Product: Epuron LLC is the US subsidiary of Germany solar...

  19. Agenera, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Agenera, LLC Jump to: navigation, search Logo: Agenera, LLC Name: Agenera, LLC Address: P.O. Box 15544 Place: Phoenix, Arizona Zip: 85060 Sector: Solar Product: Solar energy...

  20. Durability study of a vehicle-scale hydrogen storage system.

    SciTech Connect

    Johnson, Terry Alan; Dedrick, Daniel E.; Behrens, Richard, Jr.

    2010-11-01

    Sandia National Laboratories has developed a vehicle-scale demonstration hydrogen storage system as part of a Work for Others project funded by General Motors. This Demonstration System was developed based on the properties and characteristics of sodium alanates which are complex metal hydrides. The technology resulting from this program was developed to enable heat and mass management during refueling and hydrogen delivery to an automotive system. During this program the Demonstration System was subjected to repeated hydriding and dehydriding cycles to enable comparison of the vehicle-scale system performance to small-scale sample data. This paper describes the experimental results of life-cycle studies of the Demonstration System. Two of the four hydrogen storage modules of the Demonstration System were used for this study. A well-controlled and repeatable sorption cycle was defined for the repeated cycling, which began after the system had already been cycled forty-one times. After the first nine repeated cycles, a significant hydrogen storage capacity loss was observed. It was suspected that the sodium alanates had been affected either morphologically or by contamination. The mechanisms leading to this initial degradation were investigated and results indicated that water and/or air contamination of the hydrogen supply may have lead to oxidation of the hydride and possibly kinetic deactivation. Subsequent cycles showed continued capacity loss indicating that the mechanism of degradation was gradual and transport or kinetically limited. A materials analysis was then conducted using established methods including treatment with carbon dioxide to react with sodium oxides that may have formed. The module tubes were sectioned to examine chemical composition and morphology as a function of axial position. The results will be discussed.

  1. Low-Cost Hydrogen Distributed Production System Development

    SciTech Connect

    C.E. Thomas, Ph.D., President Franklin D. Lomax, Ph.D, CTO & Principal Investigator, and Maxim Lyubovski, Ph.D.

    2011-03-10

    H{sub 2}Gen, with the support of the Department of Energy, successfully designed, built and field-tested two steam methane reformers with 578 kg/day capacity, which has now become a standard commercial product serving customers in the specialty metals and PV manufacturing businesses. We demonstrated that this reformer/PSA system, when combined with compression, storage and dispensing (CSD) equipment could produce hydrogen that is already cost-competitive with gasoline per mile driven in a conventional (non-hybrid) vehicle. We further showed that mass producing this 578 kg/day system in quantities of just 100 units would reduce hydrogen cost per mile approximately 13% below the cost of untaxed gasoline per mile used in a hybrid electric vehicle. If mass produced in quantities of 500 units, hydrogen cost per mile in a FCEV would be 20% below the cost of untaxed gasoline in an HEV in the 2015-2020 time period using EIA fuel cost projections for natural gas and untaxed gasoline, and 45% below the cost of untaxed gasoline in a conventional car. This 20% to 45% reduction in fuel cost per mile would accrue even though hydrogen from this 578 kg/day system would cost approximately $4.14/kg, well above the DOE hydrogen cost targets of $2.50/kg by 2010 and $2.00/kg by 2015. We also estimated the cost of a larger, 1,500 kg/day SMR/PSA fueling system based on engineering cost scaling factors derived from the two H{sub 2}Gen products, a commercial 115 kg/day system and the 578 kg/day system developed under this DOE contract. This proposed system could support 200 to 250 cars per day, similar to a medium gasoline station. We estimate that the cost per mile from this larger 1,500 kg/day hydrogen fueling system would be 26% to 40% below the cost per mile of untaxed gasoline in an HEV and ICV respectively, even without any mass production cost reductions. In quantities of 500 units, we are projecting per mile cost reductions between 45% (vs. HEVs) and 62% (vs ICVs), with hydrogen

  2. Thin-film fiber optic hydrogen and temperature sensor system

    DOEpatents

    Nave, Stanley E.

    1998-01-01

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiberoptic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences.

  3. Thin-film fiber optic hydrogen and temperature sensor system

    DOEpatents

    Nave, S.E.

    1998-07-21

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.

  4. Cost Analysis of Hydrogen Storage Systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Forecast: System Cost (kWH) I L L U S T R A T I V E 12 SLJB012306D0268 ... Fuel Economy (mpgge) H 2 Storage Requirement (kg H 2 ) Fuel Price (eq gal) O&M Cost (mi) ...

  5. Electric utility applications of hydrogen energy storage systems

    SciTech Connect

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  6. Photoelectrochemical based direct conversion systems for hydrogen production

    SciTech Connect

    Khaselev, O.; Bansal, A.; Kocha, S.; Turner, J.A.

    1998-08-01

    With an eye towards developing a photoelectrochemical system for hydrogen production using sunlight as the only energy input, two types of systems were studied, both involving multijunction devices. One set of cells consisted of a-Si triple junctions and the other a GaInP{sub 2}/GaAs tandem cell combination. Additional investigations were carried out on semiconductor surface modifications to move semiconductor band edges to more favorable energetic positions.

  7. Manufacturing R&D of Onboard Hydrogen Storage Systems for Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Applications | Department of Energy Onboard Hydrogen Storage Systems for Transportation Applications Manufacturing R&D of Onboard Hydrogen Storage Systems for Transportation Applications Background paper prepared for the 2005 Hydrogen Manufacturing R&D workshop. mfg_wkshp_storage.pdf (1.03 MB) More Documents & Publications Status & Direction for Onboard Hydrogen Storage US DRIVE Hydrogen Storage Technical Team Roadmap

  8. Research and Development Strategies for Compressed & Cryo-Hydrogen Storage Systems - Workshop Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research and Development Strategies for Compressed & Cryo-Hydrogen Storage Systems Workshop Summary Report Prepared by: Fuel Cell Technologies Program Compressed & Cryo-Hydrogen Storage Systems Workshops February 14-15, 2011 Crystal City, Virginia Compressed and Cryo-Hydrogen Storage Systems Workshop Summary Report 2 Research and Development Strategies for Compressed & Cryo- Hydrogen Storage Systems Summary: On February 14-15, 2011, the Systems Integration group of the National

  9. Didion Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Didion Ethanol LLC Jump to: navigation, search Name: Didion Ethanol LLC Place: Cambria, Wisconsin Zip: 53923 Product: Also Didion Milling LLC, Grand River Distribution LLC....

  10. Solargenix Energy LLC formerly Duke Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    develops projects using a STEGS parabolic trough system, and also produces solar passive water heating systems. References: Solargenix Energy LLC (formerly Duke Solar)1 This...

  11. Evaluation of Hydrogen Storage System Characteristics for Light-Duty Vehicle Applications (Poster)

    SciTech Connect

    Thornton, M.; Day, K.; Brooker, A.

    2010-05-01

    This poster presentation demonstrates an approach to evaluate trade-offs among hydrogen storage system characteristic across several vehicle configurations and estimates the sensitivity of hydrogen storage system improvements on vehicle viability.

  12. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model This presentation by ...

  13. DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles This table lists the technical targets ...

  14. Potential Carriers and Approaches for Hydrogen Delivery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Carriers and Potential Carriers and Approaches for Hydrogen Approaches for Hydrogen Delivery Delivery TIAX LLC 1601 S. D Anza Blvd. Cupertino CA, 95014 Tel. 408-517-1550 Reference: D0348 © 2007 TIAX LLC Hydrogen Delivery Analysis Meeting May 8-9, 2007 Columbia, Maryland Matthew Hooks Stefan Unnasch Stephen Lasher 1 Novel Hydrogen Carriers Project Overview Cost Density (wt. and vol.) Energy requirements Forecourt storage requirements Codes and standards H H 2 2 Plant, Liquefier, LH Plant,

  15. On-Board Hydrogen Gas Production System For Stirling Engines (Patent) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect On-Board Hydrogen Gas Production System For Stirling Engines Citation Details In-Document Search Title: On-Board Hydrogen Gas Production System For Stirling Engines A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling

  16. U.S. Department of Energy Hydrogen Component and System Qualification

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Workshop - Presentations | Department of Energy U.S. Department of Energy Hydrogen Component and System Qualification Workshop - Presentations U.S. Department of Energy Hydrogen Component and System Qualification Workshop - Presentations These presentations were given at the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA. Hydrogen Industrial Trucks: Component and System Qualification Workshop Mr. Aaron Harris Nuvera Fuel

  17. Hydrogen Storage Systems Anlaysis Working Group Meeting, December 12, 2006

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Argonne National Laboratory DC Offices 955 L'Enfant Plaza, North, SW, Suite 6000 Washington, DC December 12, 2006 SUMMARY REPORT Compiled by Romesh Kumar Argonne National Laboratory and Laura Verduzco Sentech, Inc. February 28, 2007 SUMMARY REPORT Hydrogen Storage Systems Analysis Working Group Meeting December 12, 2006 955 L'Enfant Plaza, North, SW, Suite 6000, Washington, DC Meeting Objectives This meeting was one of a continuing series of biannual meetings of this Working Group. The

  18. Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels | Hydrogen Production and Delivery Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Production and Delivery Chapter 7: Technology Assessments Introduction to the Technology/System Hydrogen Production and Delivery: Opportunities and Challenges Hydrogen and hydrogen-rich fuels such as natural gas and biogas can be used in fuel cells to provide power and heat cleanly and efficiently in a wide range of transportation, stationary, and portable-power applications. Widespread deployment of hydrogen and fuel cell technologies offers a broad range of benefits for the

  19. Hybrid vehicle system studies and optimized hydrogen engine design

    SciTech Connect

    Smith, J.R.; Aceves, S.

    1995-04-26

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO{sub x} emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO{sub x} concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO{sub x}. Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today`s gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

  20. DOE Hydrogen Transition Analysis Workshop: Final Attendees List

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Henk Mooiweer Shell Hydrogen henk.mooiweer@shell.com Graham Moore Chevron Technology Ventures LLC Graham.Moore@Chevron.com Kazuo Nagashima Nissan Technical Center North America ...

  1. Test Protocol for Hydrogen Storage Systems in SAE J2579 and GTR...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Test Protocol for Hydrogen Storage Systems in SAE J2579 and GTR Requirements for Cycling Testing and Its Effects on Type 3 and 4 Containers Test Protocol for Hydrogen Storage ...

  2. Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications

    Publication and Product Library

    In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Program’s Multiyear Re

  3. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System...

    Office of Environmental Management (EM)

    DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost - 2014 Program record 14014 from the U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program ...

  4. Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications

    Publication and Product Library

    In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Programs Multiyear Re

  5. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System...

    Energy.gov [DOE] (indexed site)

    Program record 14014 from the U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program provides information about fuel cell system costs in 2014. DOE Hydrogen and Fuel Cells...

  6. Mission Support Alliance, LLC

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    December 3, 2015 Mr. William Johnson President Mission Support Alliance, LLC 2490 Garlick Boulevard P.O. Box 650 Richland, Washington 99352 WEL-2015-07 Dear Mr. Johnson: The Office of Enterprise Assessments' Office of Enforcement has completed an evaluation of an incident involving a rigger injured during a crane re-spooling operation, as reported into the Department of Energy's (DOE) Occurrence Reporting and Processing System under EM-RL--MSC-FSS-2015-0002 on May 11, 2015. On May 1, 2015, a

  7. Nordic Windpower LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Nordic Windpower LLC Place: Berkeley, California Zip: 947 10 Product: Designer of 2-blade turbine systems, the outgrowth of a state-funded Swedish R&D programme. In 2005,...

  8. Advanced Energy Conversion LLC AEC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC (AEC) Place: New York Zip: 12020 Product: R&D company focused on power electronics, motion control systems and embedded control. References: Advanced Energy...

  9. Enforcement Letter, Kaiser-Hill Company, LLC- August 12, 2004

    Energy.gov [DOE]

    Issued to Kaiser-Hill Company, LLC related to a Water Treatment System Breach and Foam Fire at the Rocky Flats Environmental Technology Site

  10. Independent Oversight Review, Nevada Site Office and National Security Technologies, LLC- November 2011

    Energy.gov [DOE]

    Review of Nevada Site Office and National Security Technologies, LLC, Line Oversight and Contractor Assurance Systems Self-Assessment

  11. Standard hydrogen monitoring system - E operation and maintenance manual

    SciTech Connect

    Schneider, T.C.

    1997-06-01

    The purpose of this document is to provide information for the operation and maintenance of the Standard Hydrogen Monitoring System- E (SHMS-E) used in the 200E and 20OW area tank farms on the Hanford Site. This provides information specific to the mechanical operation of the system and is not intended to take the place of a Plant Operating Procedure. However, it does provide more information on the system than a Plant Operating Procedure. The intent here is that the system is started up by a technician or engineer who has completed tank farms training course for SHMS, and then the only actions performed by Operations will be routine log taking. If any problems not addressed by the operating procedure are encountered with the unit, engineering should be contacted.

  12. Ultra Efficient Combined Heat, Hydrogen, and Power System

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ultra Efficient Combined Heat, Hydrogen, and Power System DE-EE0003679 FuelCell Energy, Inc. 10/1/2010 - 9/30/2011 Pinakin Patel FuelCell Energy Inc. ppatel@fce.com 203-825-6072 U.S. DOE Industrial Distributed Energy Portfolio Review Meeting Washington, D.C. June 1-2, 2011 2 FCE Overview * Leading fuel cell developer for over 40 years - MCFC, SOFC, PAFC and PEM (up to 2.8 MW size products) - Over 700 million kWh of clean power produced world-wide (>50 installations) - Renewable fuels: over

  13. Case Studies of integrated hydrogen systems. International Energy Agency Hydrogen Implementing Agreement, Final report for Subtask A of task 11 - Integrated Systems

    SciTech Connect

    Schucan, T.

    1999-12-31

    Within the framework of the International Energy Agency Hydrogen Implementing Agreement, Task 11 was undertaken to develop tools to assist in the design and evaluation of existing and potential hydrogen demonstration projects. Emphasis was placed on integrated systems, from input energy to hydrogen end use. Included in the PDF document are the Executive Summary of the final report and the various case studies. The activities of task 11 were focused on near- and mid-term applications, with consideration for the transition from fossil-based systems to sustainable hydrogen energy systems. The participating countries were Canada, Italy, Japan, the Netherlands, Spain, Switzerland and the United States. In order for hydrogen to become a competitive energy carrier, experience and operating data need to be generated and collected through demonstration projects. A framework of scientific principles, technical expertise, and analytical evaluation and assessment needed to be developed to aid in the design and optimization of hydrogen demonstration projects to promote implementation. The task participants undertook research within the framework of three highly coordinated subtasks that focused on the collection and critical evaluation of data from existing demonstration projects around the world, the development and testing of computer models of hydrogen components and integrated systems, and the evaluation and comparison of hydrogen systems. While the Executive Summary reflects work on all three subtasks, this collection of chapters refers only to the work performed under Subtask A. Ten projects were analyzed and evaluated in detail as part of Subtask A, Case Studies. The projects and the project partners were: Solar Hydrogen Demonstration Project, Solar-Wasserstoff-Bayern, Bayernwerk, BMW, Linde, Siemens (Germany); Solar Hydrogen Plant on Residential House, M. Friedli (Switzerland); A.T. Stuart Renewable Energy Test Site; Stuart Energy Systems (Canada); PHOEBUS Juelich

  14. Influence of molecular processes on the hydrogen atomic system in an expanding argon--hydrogen plasma

    SciTech Connect

    Meulenbroeks, R.F.G.; Engeln, R.A.H.; Box, C.; de Bari, I.; van de Sanden, M.C.M.; van der Mullen, J.A.M.; Schram, D.C.

    1995-03-01

    An expanding thermal arc plasma in argon--hydrogen is investigated by means of emission spectroscopy. The hydrogen can be added to the argon flow before it enters the thermal arc plasma source, or it can be flushed directly into the vacuum expansion vessel (1--20 vol % H{sub 2}). The atomic state distribution function for hydrogen, measured at a downstream distance of 20 mm, turns out to be very different in the two cases. For injection in the arc, three-particle recombination is a primary source of hydrogen excitation, whereas measurements with hydrogen injected into the vessel clearly point to a molecular channel (dissociative recombination of formed ArH{sup +}) populating atomic hydrogen levels. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  15. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    SciTech Connect

    Janice Thomas

    2010-05-31

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles ?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  16. Hydrogen Macro System Model User Guide, Version 1.2.1

    SciTech Connect

    Ruth, M.; Diakov, V.; Sa, T.; Goldsby, M.; Genung, K.; Hoseley, R.; Smith, A.; Yuzugullu, E.

    2009-07-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  17. H2 Refueling Infrastructure: Hydrogen Energy Systems Experience„Supply Chain Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Systems Experience - Supply Chain Challenges 1 2016 Ohio Fuel Cell Symposium September 29, 2016 60+ Years of Hydrogen Experience * One of largest hydrogen producers in the world - Produce 5 million kgs/day * Bulk, liquid, and pipeline distribution * Unique product offerings for H 2 fueling * H 2 energy projects since 1993 - > 200 hydrogen station projects - > 1,500,000 fuelings/yr - Twenty countries 2 Hydrogen Energy Markets * Transportation * Power Generation 3 Automotive

  18. Manufacturing R&D for systems that will produce and distribute hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research & Development for Systems that will Produce and Distribute Hydrogen Background Material for the Manufacturing R&D Workshop to be held July 13-14, 2005 Washington, DC July 7, 2005 Introduction In his 2003 State of the Union Address, President Bush announced a $1.2 billion Hydrogen Fuel Initiative to accelerate the development of the hydrogen and fuel cell technologies needed to move the United States toward a future hydrogen economy. While many scientific, technical, and

  19. United Solar Systems Corp USSC aka Bekaert ECD Solar Systems...

    OpenEI (Open Energy Information) [EERE & EIA]

    Systems Corp USSC aka Bekaert ECD Solar Systems LLC Jump to: navigation, search Name: United Solar Systems Corp (USSC) (aka Bekaert ECD Solar Systems LLC) Place: Middletown...

  20. Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling

    SciTech Connect

    Steward, D.; Zuboy, J.

    2014-10-01

    Energy storage could complement PV electricity generation at the community level. Because PV generation is intermittent, strategies must be implemented to integrate it into the electricity system. Hydrogen and fuel cell technologies offer possible PV integration strategies, including the community-level approaches analyzed in this report: (1) using hydrogen production, storage, and reconversion to electricity to level PV generation and grid loads (reconversion scenario); (2) using hydrogen production and storage to capture peak PV generation and refuel hydrogen fuel cell electric vehicles (FCEVs) (hydrogen fueling scenario); and (3) a comparison scenario using a battery system to store electricity for EV nighttime charging (electric charging scenario).

  1. Wader LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wader LLC Jump to: navigation, search Name: Wader LLC Place: Laguna Hills, California Zip: 92653 Sector: Hydro Product: Developer of energy generation equipment based on salt...

  2. Fortistar LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Place: New York, New York Zip: 10650 Product: Fortistar is a privately owned US power generation company largely based on landfill gas. References: Fortistar LLC1 This...

  3. Solarbuzz LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Place: San Francisco, California Zip: 94103 Product: Consultancy and research provider to PV industry References: Solarbuzz LLC1 This article is a stub. You can help...

  4. TIAX LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Logo: TIAX LLC Name: TIAX LLC Address: 15 Acorn Park Place: Cambridge, Massachusetts Zip: 02140-2390 Region: Greater Boston Area Sector: Efficiency Year...

  5. USGlobal LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USGlobal LLC Jump to: navigation, search Name: USGlobal LLC Address: 1451 W. Cypress Creek Road, Suite 307 Place: Fort Lauderdale, Florida Zip: 33309 Product: Investment and...

  6. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Model | Department of Energy Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model This presentation by Michael Wang of Argonne National Laboratory provides information about an analysis of hydrogen-powered fuel-cell systems. fuel_cycle_comparison_forklifts_presentation.pdf (202.5 KB) More Documents & Publications Fuel Cycle Comparison of Distributed Power Generation Technologies

  7. Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Automotive Applications | Department of Energy Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical report describing DOE's second assessment report on a third generation (Gen3) system capable of storing hydrogen at cryogenic temperatures within a pressure vessel on-board a vehicle. The report includes an overview of technical progress to date, including the

  8. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    SciTech Connect

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K.

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  9. ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS

    SciTech Connect

    Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

    2011-07-18

    The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

  10. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    SciTech Connect

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  11. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (Presentation) | Department of Energy Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. 04_h2gen_low-cost_h2_distributed_production_systems.pdf (1.03 MB) More Documents & Publications Low-Cost Hydrogen-from-Ethanol: A Distributed Production System Bio-Derived

  12. Energy Department Awards $4.6 Million to Advance Hydrogen Storage Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 4.6 Million to Advance Hydrogen Storage Systems Energy Department Awards $4.6 Million to Advance Hydrogen Storage Systems April 8, 2015 - 2:54pm Addthis The Energy Department today announced up to $4.6 million for four projects to develop advanced hydrogen storage materials that have potential to enable longer driving ranges and help make fuel cell systems competitive for different platforms and sizes of vehicles. Advanced hydrogen storage systems will be critical to the

  13. National Energy Modeling System with Hydrogen Model (NEMS-H2...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Modeling System with Hydrogen Model (NEMS-H2) (OnLocation, Inc. 1 ) Objectives Estimate the energy, economic, and environmental impacts of alternative energy policies and different ...

  14. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost – 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    Program record 14014 from the U.S. Department of Energy's Hydrogen and Fuel Cells Program provides information about fuel cell system costs in 2014.

  15. Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report examines performance and cost of compressed hydrogen storage tank systems compared to the US Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications.

  16. Hydrogen, CNG, and HCNG Dispenser System – Prototype Report

    SciTech Connect

    James Francfort

    2005-02-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity is currently testing a prototype gaseous fuel dispenser developed by the Electric Transportation Engineering Corporation (ETEC). The dispenser (Figure 1) delivers three types of fuels: 100% hydrogen, 100% compressed natural gas (CNG), and blends of hydrogen and CNG (HCNG) using two independent single nozzles (Figure 2). The nozzle for the 100% hydrogen dispensing is rated at 5,000 psig and used solely for 100% hydrogen fuel. The second nozzle is rated at 3,600 psig and is used for both CNG and HCNG fuels. This nozzle connects to both a CNG supply line and a hydrogen supply line and blends the hydrogen and CNG to supply HCNG levels of 15, 20, 30, and 50% (by volume).

  17. Biofuel Industries Group LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Industries Group LLC Jump to: navigation, search Name: Biofuel Industries Group LLC Place: Adrian, Michigan Zip: 49221 Product: Biofuel Industries Group, LLC owns and operates the...

  18. Homeland Renewable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Homeland Renewable Energy LLC Jump to: navigation, search Name: Homeland Renewable Energy LLC Place: Langhorne, Pennsylvania Zip: 19047 Product: Holding company for Fibrowatt LLC...

  19. Atlanta Chemical Engineering LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Atlanta Chemical Engineering LLC Jump to: navigation, search Logo: Atlanta Chemical Engineering LLC Name: Atlanta Chemical Engineering LLC Place: Marietta, Georgia Country: United...

  20. Turnbull Hydro LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Turnbull Hydro LLC Jump to: navigation, search Name: Turnbull Hydro LLC Place: Montana Sector: Hydro Product: Montana-based small hydro developer. References: Turnbull Hydro LLC1...

  1. Nedak Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Nedak Ethanol LLC Jump to: navigation, search Name: Nedak Ethanol LLC Place: Atkinson, Nebraska Zip: 68713 Product: NEDAK Ethanol, LLC is a Nebraska limited liability company,...

  2. Ecowatt Design LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ecowatt Design LLC Jump to: navigation, search Logo: Ecowatt Design LLC Name: Ecowatt Design LLC Address: 10900 Northwest Fwy Place: Houston, Texas Zip: 77092 Region: Texas Area...

  3. New Hope Partners LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Partners LLC Jump to: navigation, search Name: New Hope Partners, LLC Place: Newtown, Pennsylvania Sector: Renewable Energy Product: New Hope Partners LLC, is a business...

  4. Go Sustainable Energy, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sustainable Energy, LLC Jump to: navigation, search Logo: Go Sustainable Energy, LLC Name: Go Sustainable Energy, LLC Address: 3857 N. High Street, Suite 208 Place: Columbus, Ohio...

  5. PENSION ACTUARIAL APPLICATION, Bechtel Jacobs Company, LLC |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PENSION ACTUARIAL APPLICATION, Bechtel Jacobs Company, LLC PENSION ACTUARIAL APPLICATION, Bechtel Jacobs Company, LLC PENSION ACTUARIAL APPLICATION, Bechtel Jacobs Company, LLC PDF ...

  6. Blue Hill Partners LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Partners LLC Jump to: navigation, search Logo: Blue Hill Partners LLC Name: Blue Hill Partners LLC Address: 40 W. Evergreen Ave. Place: Philadelphia, Pennsylvania Zip: 19118...

  7. Zilkha Biomass Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zilkha Biomass Energy LLC Jump to: navigation, search Logo: Zilkha Biomass Energy LLC Name: Zilkha Biomass Energy LLC Address: 1001 McKinney Place: Houston, Texas Zip: 77002...

  8. Inovateus Solar LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar LLC Jump to: navigation, search Logo: Inovateus Solar LLC Name: Inovateus Solar LLC Address: 19890 State Line Rd. Place: South Bend, Indiana Zip: 46637 Sector: Solar Number...

  9. Capitol Solar Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Capitol Solar Energy LLC Jump to: navigation, search Logo: Capitol Solar Energy LLC Name: Capitol Solar Energy LLC Address: 8243 N. Pinewood Drive Place: Castle Rock, Colorado Zip:...

  10. Solar Energy Squared, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Squared, LLC Jump to: navigation, search Logo: Solar Energy Squared, LLC Name: Solar Energy Squared, LLC Address: 116 Ottenheimer Plaza, President Clinton Avenue Place: Little...

  11. Solar Panels Plus LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Panels Plus LLC Jump to: navigation, search Name: Solar Panels Plus LLC Place: Chesapeake, Virginia Zip: 23320 Sector: Solar Product: Solar Panels Plus LLC distributes solar energy...

  12. Townsend Ventures LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Townsend Ventures LLC Product: A Maryland, USA based branch of Townsend Capital LLC formed as a vehicle for that company's...

  13. Mid America Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: Mid-America Biofuels LLC Place: Jefferson City, Missouri Zip: 65102 Sector: Biofuels Product: Joint Venture of Biofuels LLC,...

  14. Empire Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: Empire Biofuels LLC Place: New York, New York Zip: 13148 Sector: Biofuels Product: Empire Biofuels LLC (Empire) was founded in April...

  15. Energy Capital LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Energy Capital LLC Place: Ketchum, Idaho Zip: ID 83340 Sector: Renewable Energy Product: Energy Capital LLc is a financial catalyst focusing...

  16. Booner Capital LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Booner Capital LLC Jump to: navigation, search Name: Booner Capital LLC Place: Florida Sector: Wind energy Product: Booner Capital LLC is PE investor in wind power companies....

  17. Pinpoint Power DR LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Pinpoint Power DR LLC Place: Massachusetts Product: Demand response provider. References: Pinpoint Power DR LLC1 This article is a stub. You...

  18. Incognito Green Building, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Incognito Green Building, LLC Jump to: navigation, search Logo: Incognito Green Building, LLC Name: Incognito Green Building, LLC Address: 230 Dove Court Place: Santa Paula,...

  19. Carbon Micro Battery LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Micro Battery LLC Jump to: navigation, search Name: Carbon Micro Battery, LLC Place: California Sector: Carbon Product: Carbon Micro Battery, LLC, technology developer of micro and...

  20. Edgewood Carbon Holdings LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Edgewood Carbon Holdings LLC Jump to: navigation, search Name: Edgewood Carbon Holdings LLC Place: Cornwall, Vermont Zip: 57530 Sector: Carbon Product: Edgewood Carbon Holdings LLC...

  1. A Hydrogen Ignition Mechanism for Explosions in Nuclear Facility Piping Systems

    SciTech Connect

    Leishear, Robert A.

    2013-09-18

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  2. Systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies

    DOEpatents

    Fliermans; , Carl B.

    2012-08-07

    Some or all of the needs above can be addressed by embodiments of the invention. According to embodiments of the invention, systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies can be implemented. In one embodiment, a method for storing hydrogen can be provided. The method can include providing diatoms comprising diatomaceous earth or diatoms from a predefined culture. In addition, the method can include heating the diatoms in a sealed environment in the presence of at least one of titanium, a transition metal, or a noble metal to provide a porous hydrogen storage medium. Furthermore, the method can include exposing the porous hydrogen storage medium to hydrogen. In addition, the method can include storing at least a portion of the hydrogen in the porous hydrogen storage medium.

  3. System-of-Systems Framework for the Future Hydrogen-Based Transportation Economy: Preprint

    SciTech Connect

    Duffy, M.; Sandor, D.

    2008-06-01

    From a supply chain view, this paper traces the flow of transportation fuels through required systems and addresses the current petroleum-based economy, DOE's vision for a future hydrogen-based transportation economy, and the challenges of a massive market and infrastructure transformation.

  4. Multi-criteria analysis on how to select solar radiation hydrogen production system

    SciTech Connect

    Badea, G.; Naghiu, G. S. Felseghi, R.-A.; Giurca, I.; Răboacă, S.; Aşchilean, I.

    2015-12-23

    The purpose of this article is to present a method of selecting hydrogen-production systems using the electric power obtained in photovoltaic systems, and as a selecting method, we suggest the use of the Advanced Multi-Criteria Analysis based on the FRISCO formula. According to the case study on how to select the solar radiation hydrogen production system, the most convenient alternative is the alternative A4, namely the technical solution involving a hydrogen production system based on the electrolysis of water vapor obtained with concentrated solar thermal systems and electrical power obtained using concentrating photovoltaic systems.

  5. Webinar February 25: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Thursday, February 25, from 12 to 1 p.m. Eastern Standard Time (EST). Strategic Analysis will present results of its cost analysis of onboard compressed hydrogen storage systems.

  6. Webinar January 26: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Tuesday, January 26, from 12 to 1 p.m. EST. Strategic Analysis will present results of its cost analysis of onboard compressed hydrogen storage systems.

  7. Two step novel hydrogen system using additives to enhance hydrogen release from the hydrolysis of alane and activated aluminum

    SciTech Connect

    Zidan, Ragaiy; Teprovich, Joseph A.; Motyka, Theodore

    2015-12-01

    A system for the generation of hydrogen for use in portable power systems is set forth utilizing a two-step process that involves the thermal decomposition of AlH.sub.3 (10 wt % H.sub.2) followed by the hydrolysis of the activated aluminum (Al*) byproduct to release additional H.sub.2. Additionally, a process in which water is added directly without prior history to the AlH.sub.3:PA composite is also disclosed.

  8. Manufacturing R&D for systems that will produce and distribute hydrogen |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy for systems that will produce and distribute hydrogen Manufacturing R&D for systems that will produce and distribute hydrogen Background paper prepared for the 2005 Hydrogen Manufacturing R&D workshop. mfg_wkshp_production.pdf (369.86 KB) More Documents & Publications Roadmap on Manufacturing R&D for the Hydrogen Economy Manufacturing R&D of PEM Fuel Cells 2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell

  9. HIERARCHICAL METHODOLOGY FOR MODELING HYDROGEN STORAGE SYSTEMS PART II: DETAILED MODELS

    SciTech Connect

    Hardy, B; Donald L. Anton, D

    2008-12-22

    There is significant interest in hydrogen storage systems that employ a media which either adsorbs, absorbs or reacts with hydrogen in a nearly reversible manner. In any media based storage system the rate of hydrogen uptake and the system capacity is governed by a number of complex, coupled physical processes. To design and evaluate such storage systems, a comprehensive methodology was developed, consisting of a hierarchical sequence of models that range from scoping calculations to numerical models that couple reaction kinetics with heat and mass transfer for both the hydrogen charging and discharging phases. The scoping models were presented in Part I [1] of this two part series of papers. This paper describes a detailed numerical model that integrates the phenomena occurring when hydrogen is charged and discharged. A specific application of the methodology is made to a system using NaAlH{sub 4} as the storage media.

  10. Hydrogen Scenarios

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    OnLocation, Inc., Energy Systems Consulting 1 Hydrogen Scenarios Presentation to the Hydrogen Delivery Analysis Meeting by Frances Wood OnLocation, Inc. Energy Systems Consulting May 9, 2007 OnLocation, Inc., Energy Systems Consulting 2 Outline * Brief summary of NEMS-H2 model * Representation of Hydrogen Delivery * Hydrogen Demand Sensitivities * Integration and Energy System Impacts - A Carbon Policy Scenario Example OnLocation, Inc., Energy Systems Consulting 3 NEMS-H2 Overview OnLocation,

  11. DOE Zero Energy Ready Home Case Study, Weiss Building & Development, LLC., System Home, River Forest, Illinois

    SciTech Connect

    none,

    2013-09-01

    The Passive House Challenge Home located in River Forest, Illinois, is a 5-bedroom, 4.5-bath, 3,600 ft2 two-story home (plus basement) that costs about $237 less per month to operate than a similar sized home built to the 2009 IECC. For a home with no solar photovoltaic panels installed, it scored an amazingly low 27 on the Home Energy Rating System (HERS) score.An ENERGY STAR-rated dishwasher, clothes washer, and refrigerator; an induction cooktop, condensing clothes dryer, and LED lighting are among the energy-saving devices inside the home. All plumbing fixtures comply with EPA WaterSense criteria. The home was awarded a 2013 Housing Innovation Award in the "systems builder" category.

  12. HYDROGEN PRODUCTION AND DELIVERY INFRASTRUCTURE AS A COMPLEX ADAPTIVE SYSTEM

    SciTech Connect

    Tolley, George S

    2010-06-29

    An agent-based model of the transition to a hydrogen transportation economy explores influences on adoption of hydrogen vehicles and fueling infrastructure. Attention is given to whether significant penetration occurs and, if so, to the length of time required for it to occur. Estimates are provided of sensitivity to numerical values of model parameters and to effects of alternative market and policy scenarios. The model is applied to the Los Angeles metropolitan area In the benchmark simulation, the prices of hydrogen and non-hydrogen vehicles are comparable. Due to fuel efficiency, hydrogen vehicles have a fuel savings advantage of 9.8 cents per mile over non-hydrogen vehicles. Hydrogen vehicles account for 60% of new vehicle sales in 20 years from the initial entry of hydrogen vehicles into show rooms, going on to 86% in 40 years and reaching still higher values after that. If the fuel savings is 20.7 cents per mile for a hydrogen vehicle, penetration reaches 86% of new car sales by the 20th year. If the fuel savings is 0.5 cents per mile, market penetration reaches only 10% by the 20th year. To turn to vehicle price difference, if a hydrogen vehicle costs $2,000 less than a non-hydrogen vehicle, new car sales penetration reaches 92% by the 20th year. If a hydrogen vehicle costs $6,500 more than a non-hydrogen vehicle, market penetration is only 6% by the 20th year. Results from other sensitivity runs are presented. Policies that could affect hydrogen vehicle adoption are investigated. A tax credit for the purchase of a hydrogen vehicle of $2,500 tax credit results in 88% penetration by the 20th year, as compared with 60% in the benchmark case. If the tax credit is $6,000, penetration is 99% by the 20th year. Under a more modest approach, the tax credit would be available only for the first 10 years. Hydrogen sales penetration then reach 69% of sales by the 20th year with the $2,500 credit and 79% with the $6,000 credit. A carbon tax of $38 per metric ton is not

  13. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    DOEpatents

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  14. Manufacturing R&D of Onboard Hydrogen Storage Systems for Transportati...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... The other two documents cover manufacturing R&D for proton exchange membrane (PEM) fuel cell systems and for systems that produce and distribute hydrogen. This material is intended ...

  15. Technical Assessment of Compressed Hydrogen Storage Tank Systems...

    Energy.gov [DOE] (indexed site)

    estimated for compressed hydrogen storage tanks with design pressures of 350 bar (5000 ... were estimated for both type III and IV tanks in both single and multi-tank ...

  16. Methods and Systems for the Production of Hydrogen - Energy Innovation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    This process uses a combination of hydrogen recycle, a molten salt or helium, and a supercritical CO2 cycle. This method preheats the feed, reduces pumping power in the primary ...

  17. Methods and Systems for the Production of Hydrogen

    Energy Innovation Portal

    2011-04-14

    INL has developed a novel process for producing hydrogen using a reduced outlet temperature of Very High Temperature Gas Cooled Reactor. This process uses a combination of hydrogen recycle, a molten salt or helium, and a supercritical CO2 cycle. This method preheats the feed, reduces pumping power in the primary side and/or thermal transmission piping, and converts the power unit, achieving a high electrical conversion efficiency of 45%. This process reduces the operating outlet temperature...

  18. Wind-To-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration

    SciTech Connect

    Harrison, K. W.; Martin, G. D.; Ramsden, T. G.; Kramer, W. E.; Novachek, F. J.

    2009-03-01

    The Wind2H2 system is fully functional and continues to gather performance data. In this report, specifications of the Wind2H2 equipment (electrolyzers, compressor, hydrogen storage tanks, and the hydrogen fueled generator) are summarized. System operational experience and lessons learned are discussed. Valuable operational experience is shared through running, testing, daily operations, and troubleshooting the Wind2H2 system and equipment errors are being logged to help evaluate the reliability of the system.

  19. Design and Development of New Carbon-Based Sorbent Systems for an Effective Containment of Hydrogen

    SciTech Connect

    Alan C. Cooper

    2012-05-03

    This is a summary for work performed under cooperative agreement DE FC36 04GO14006 (Design and Development of New Carbon-based Sorbent Systems for an Effective Containment of Hydrogen). The project was directed to discover new solid and liquid materials that use reversible catalytic hydrogenation as the mechanism for hydrogen capture and storage. After a short period of investigation of solid materials, the inherent advantages of storing and transporting hydrogen using liquid-phase materials focused our attention exclusively on organic liquid hydrogen carriers (liquid carriers). While liquid carriers such as decalin and methylcyclohexane were known in the literature, these carriers suffer from practical disadvantages such as the need for very high temperatures to release hydrogen from the carriers and difficult separation of the carriers from the hydrogen. In this project, we were successful in using the prediction of reaction thermodynamics to discover liquid carriers that operate at temperatures up to 150 C lower than the previously known carriers. The means for modifying the thermodynamics of liquid carriers involved the use of certain molecular structures and incorporation of elements other than carbon into the carrier structure. The temperature decrease due to the more favorable reaction thermodynamics results in less energy input to release hydrogen from the carriers. For the first time, the catalytic reaction required to release hydrogen from the carriers could be conducted with the carrier remaining in the liquid phase. This has the beneficial effect of providing a simple means to separate the hydrogen from the carrier.

  20. VICA Technologies LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies LLC Jump to: navigation, search Name: VICA Technologies LLC Place: Philadelphia, Pennsylvania Zip: 19104 Sector: Biomass, Renewable Energy Product:...

  1. Membrane-based systems for carbon capture and hydrogen purification

    SciTech Connect

    Berchtold, Kathryn A

    2010-11-24

    This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services. Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on the

  2. Hydrogen Technologies Group

    SciTech Connect

    Not Available

    2008-03-01

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  3. Medgate, PIA, Bechtel Jacobs Company, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Medgate, PIA, Bechtel Jacobs Company, LLC Medgate, PIA, Bechtel Jacobs Company, LLC Medgate, PIA, Bechtel Jacobs Company, LLC PDF icon Medgate, PIA, Bechtel Jacobs Company, LLC ...

  4. RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental...

    Office of Environmental Management (EM)

    RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) A fact sheet detailling a proposal of ...

  5. Rochester Hills, Michigan: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Companies in Rochester Hills, Michigan Energy Conversion Devices Inc aka ECD Ovonics Luma Resources LLC Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC...

  6. Engineering an Adsorbent-Based Hydrogen Storage System: What Have We Learned?

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Don Siegel, 1 Bruce Hardy, 2 and the HSECoE Team 1 System Architect-Adsorbent System, Mechanical Engineering Department, University of Michigan 2 Savanah River National Laboratory Hydrogen)Storage)Summit,)) Golden,)CO)-)January)27928,)2015) Overview' * For)the)past)5)years)the)HSECoE)has)been)developing) hydrogen)storage)systems)based)on)adsorbent,)metal) hydride,)and)chemical)hydride)media) * As)we)near)the)Center's)conclusion,)we)seek)to)translate)

  7. Synergistic Hydrogen Production in a Biorefinery via Bioelectrochemical Systems

    SciTech Connect

    Borole, A. P.; Hamilton, C. Y.; Schell, D. J.

    2012-01-01

    Microbial electrolysis cells are devices that use biocatalysis and electrolysis for production of hydrogen from organic matter. Biorefinery process streams contain fermentation by products and inhibitors which accumulate in the process stream if the water is recycled. These molecules also affect biomass to biofuel yields if not removed from the recycle water. The presence of sugar- and lignin- degradation products such as furfural, vanillic acid and 4-hydroxybenzaldehyde has been shown to reduce fermentation yields. In this work, we calculate the potential for hydrogen production using microbial electrolysis cells from these molecules as substrates. Conversion of these substrates to electricity is demonstrated in microbial fuel cells and will also be presented.

  8. Ultra Efficient Combined Heat, Hydrogen, and Power System

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pinakin Patel / Fred Jahnke FuelCell Energy, Inc . U.S. DOE Advanced Manufacturing Office Peer Review Meeting � Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective � � Demonstrate Tri-generation (CHHP) combining heat, hydrogen and power production using a high temperature fuel cell to reduce O&M costs up to 25%. � Many industrial sites import liquid hydrogen, power and natural gas at

  9. Alamos National Security, LLC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Security, LLC during a recognition event beginning at 9:30 a.m. Thursday, June 28, at Fuller Lodge in downtown Los Alamos. LANS contributions are determined by the number of...

  10. Alamos National Security, LLC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    National Security, LLC during a recognition event beginning at 9 a.m. Wednesday at Fuller Lodge in downtown Los Alamos. The monetary donations are being made to the nonprofits...

  11. Alamos National Security, LLC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Security (LANS), LLC during a recognition event beginning at 9:30 a.m. June 12, at Fuller Lodge in downtown Los Alamos. LANS contributions are determined by the number of...

  12. Nuclear Waste Partnership, LLC

    Office of Environmental Management (EM)

    Nuclear Waste Partnership, LLC Waste Isolation Pilot Plant Report from the Department of Energy Voluntary Protection Program Onsite Review March 17-27, 2015 U.S. Department of ...

  13. The Influence of Building Location on Combined Heat and Power/ Hydrogen (Tri-Generation) System Cost, Hydrogen Output and Efficiency (Presentation)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    National Hydrogen Association Meeting Darlene M. Steward Mike Penev National Renewable Energy Laboratory Columbia, SC March 30 - April 3, 2009 NREL/PR-560-45628 The Influence of Building Location on Combined Heat and Power/ Hydrogen (Tri-Generation) System Cost, Hydrogen Output and Efficiency This presentation does not contain any proprietary, confidential, or otherwise restricted information National Renewable Energy Laboratory Innovation for Our Energy Future Acknowledgements Development of

  14. Brookhaven Science Associates, LLC

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3, 2015 Dr. Doon L. Gibbs Laboratory Director Brookhaven Science Associates, LLC Brookhaven National Laboratory 40 Brookhaven Avenue Upton, New York 11973-5000 WCO-2015-02 Dear Dr. Gibbs: The Office of Enterprise Assessments' Office of Enforcement completed its investigation into the facts and circumstances associated with the meteorological tower electrical shock event that occurred at the Brookhaven National Laboratory on November 12, 2014. Brookhaven Science Associates, LLC (BSA) documented

  15. System for exchange of hydrogen between liquid and solid phases

    DOEpatents

    Reilly, J.J.; Grohse, E.W.; Johnson, J.R.; Winsche, W.E.

    1985-02-22

    The reversible reaction M + x/2 H/sub 2/ reversible MH/sub x/, wherein M is a reversible metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the actual H/sub 2/ pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  16. System for exchange of hydrogen between liquid and solid phases

    DOEpatents

    Reilly, James J.; Grohse, Edward W.; Johnson, John R.; Winsche, deceased, Warren E.

    1988-01-01

    The reversible reaction M+x/2 H.sub.2 .rarw..fwdarw.MH.sub.x, wherein M is a reversible metal hydride former that forms a hydride MH.sub.x in the presence of H.sub.2, generally used to store and recall H.sub.2, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H.sub.2, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H.sub.2 through the liquid is dependent upon the H.sub.2 pressure in the gas phase at a given temperature. When the actual H.sub.2 pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particles. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  17. Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications

    Publication and Product Library

    This technical report describes DOE's assessment of the performance and cost of compressed hydrogen storage tank systems for automotive applications. The on-board performance (by Argonne National Lab)

  18. Webinar: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Thursday, February 25, from 12 to 1 p.m. Eastern Standard Time.

  19. Webinar: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, January 21, from 12 to 1 p.m. Eastern Standard Time (EST).

  20. Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications

    Publication and Product Library

    Technical report describing DOE's second assessment report on a third generation (Gen3) system capable of storing hydrogen at cryogenic temperatures within a pressure vessel on-board a vehicle. The re

  1. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Michael Wang Argonne ... update the GREET model * Conduct WTW or fuel-cycle simulations with GREET * Analyze and ...

  2. Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" held on January 21, 2016.

  3. Recommended Best Practices for Characterizing Engineering Properties of Hydrogen Storage Materials: Mechanical Properties of Hydrogen Storage Materials: Section 7

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recommended Best Practices for Characterizing Engineering Properties of Hydrogen Storage Materials Mechanical Properties of Hydrogen Storage Materials Karl J. Gross, H2 Technology Consulting LLC We gratefully acknowledge assistance and financial support from the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Hydrogen Storage Program. National Renewable Energy Laboratory Contract No. 147388 Contract Technical Monitor: Dr. Philip Parilla H2 Technology Consulting, LLC

  4. Test Protocol for Hydrogen Storage Systems in SAE J2579 and GTR

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Requirements for Cycling Testing and Its Effects on Type 3 and 4 Containers | Department of Energy Test Protocol for Hydrogen Storage Systems in SAE J2579 and GTR Requirements for Cycling Testing and Its Effects on Type 3 and 4 Containers Test Protocol for Hydrogen Storage Systems in SAE J2579 and GTR Requirements for Cycling Testing and Its Effects on Type 3 and 4 Containers These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 - 29, 2010,

  5. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen-from- Ethanol: A Distributed Production System Presented at the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Meeting Laurel, Maryland Tuesday, November 6, 2007 H 2 Gen Innovations, Inc. Alexandria, Virginia www.h2gen.com 2 Topics * H 2 Gen Reformer System Innovation * Natural Gas Reformer - Key performance metrics - Summary unique H2A inputs * Ethanol Reformer - Key performance metrics - Summary unique H2A inputs * Questions from 2007 Merit Review 3 H 2 Gen

  6. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Page1 Hierarchy of Various Models Used for Hydrogen and Fuel Cell Analyses Analysis Models and Tools Systems Analysis of Hydrogen & Fuel Cells With a multitude of end-uses-such as distributed power for back-up, primary, and combined heat-and- power systems; automobiles, buses, forklifts and other specialty vehicles; and auxiliary power units and portable electronics-fuel cell applications hold potential to dramatically impact the 21st century clean energy economy. Fuel cells can efficiently

  7. Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications

    SciTech Connect

    Ahluwalia, R. K.; Hua, T. Q.; Peng, J. -K; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J.

    2011-06-21

    In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Program’s Multiyear Research, Development, and Demonstration Plan. This joint performance (ANL) and cost analysis (TIAX) report summarizes the results of this assessment. These results should be considered only in conjunction with the assumptions used in selecting, evaluating, and costing the systems discussed here and in the Appendices.

  8. Hydrogen from Water in a Novel Recombinant Cyanobacterial System

    SciTech Connect

    Weyman, Philip D; Smith, Hamillton O.

    2014-12-03

    Photobiological processes are attractive routes to renewable H2 production. With the input of solar energy, photosynthetic microbes such as cyanobacteria and green algae carry out oxygenic photosynthesis, using sunlight energy to extract protons and high energy electrons from water. These protons and high energy electrons can be fed to a hydrogenase system yielding H2. However, most hydrogen-evolving hydrogenases are inhibited by O2, which is an inherent byproduct of oxygenic photosynthesis. The rate of H2 production is thus limited. Certain photosynthetic bacteria are reported to have an O2-tolerant evolving hydrogenase, yet these microbes do not split water, and require other more expensive feedstocks. To overcome these difficulties, the goal of this work has been to construct novel microbial hybrids by genetically transferring O2-tolerant hydrogenases from other bacteria into a class of photosynthetic bacteria called cyanobacteria. These hybrid organisms will use the photosynthetic machinery of the cyanobacterial hosts to perform the water-oxidation reaction with the input of solar energy, and couple the resulting protons and high energy electrons to the O2-tolerant bacterial hydrogenase, all within the same microbe (Fig. 1). The ultimate goal of this work has been to overcome the sensitivity of the hydrogenase enzyme to O2 and address one of the key technological hurdles to cost-effective photobiological H2 production which currently limits the production of hydrogen in algal systems. In pursuit of this goal, work on this project has successfully completed many subtasks leading to a greatly increased understanding of the complicated [NiFe]-hydrogenase enzymes. At the beginning of this project, [NiFe] hydrogenases had never been successfully moved across wide species barriers and had never been heterologously expressed in cyanobacteria. Furthermore, the idea that whole, functional genes could be extracted from complicated, mixed-sequence meta-genomes was not

  9. Terrabon LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Product: Texas-based Terrabon LLC was founded in 1995 in an effort to commercialize biofuel technology originally developed at Texas A&M University. References: Terrabon LLC1...

  10. IBIS LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    IBIS LLC Jump to: navigation, search Name: IBIS LLC Region: United States Sector: Marine and Hydrokinetic Website: www.ibisltd.com This company is listed in the Marine and...

  11. Hydrogen and Oxygen Gas Monitoring System Design and Operation

    SciTech Connect

    Lee C. Cadwallader; Kevin G. DeWall; J. Stephen Herring

    2007-06-01

    This paper describes pertinent design practices of selecting types of monitors, monitor unit placement, setpoint selection, and maintenance considerations for gas monitors. While hydrogen gas monitors and enriched oxygen atmosphere monitors as they would be needed for hydrogen production experiments are the primary focus of this paper, monitors for carbon monoxide and carbon dioxide are also discussed. The experiences of designing, installing, and calibrating gas monitors for a laboratory where experiments in support of the DOE Nuclear Hydrogen Initiative (NHI) are described along with codes, standards, and regulations for these monitors. Information from the literature about best operating practices is also presented. The NHI program has two types of activities. The first, near-term activity is laboratory and pilot-plant experimentation with different processes in the kilogram per day scale to select the most promising types of processes for future applications of hydrogen production. Prudent design calls for indoor gas monitors to sense any hydrogen leaks within these laboratory rooms. The second, longer-term activity is the prototype, or large-scale plants to produce tons of hydrogen per day. These large, outdoor production plants will require area (or “fencepost”) monitoring of hydrogen gas leaks. Some processes will have oxygen production with hydrogen production, and any oxygen releases are also safety concerns since oxygen gas is the strongest oxidizer. Monitoring of these gases is important for personnel safety of both indoor and outdoor experiments. There is some guidance available about proper placement of monitors. The fixed point, stationary monitor can only function if the intruding gas contacts the monitor. Therefore, monitor placement is vital to proper monitoring of the room or area. Factors in sensor location selection include: indoor or outdoor site, the location and nature of potential vapor/gas sources, chemical and physical data of the

  12. SynchroPET LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SynchroPET LLC America's Next Top Energy Innovator Challenge 665 likes SynchroPET LLC Brookhaven National Laboratory Two of our devices have pre-clinical applications that can be very useful for drug development and research The RatCAP is a miniature PET scanner allows whole brain imaging in fully conscious rats for the first time. By far the world's smallest and lightest PET scanner, it is the only PET system able to be mounted on the head of a lab rat, allowing for the first-time functional

  13. Anisotropic storage medium development in a full-scale, sodium alanate-based, hydrogen storage system

    DOE PAGES [OSTI]

    Jorgensen, Scott W.; Johnson, Terry A.; Payzant, E. Andrew; Bilheux, Hassina Z.

    2016-06-11

    Deuterium desorption in an automotive-scale hydrogen storage tube was studied in-situ using neutron diffraction. Gradients in the concentration of the various alanate phases were observed along the length of the tube but no significant radial anisotropy was present. In addition, neutron radiography and computed tomography showed large scale cracks and density fluctuations, confirming the presence of these structures in an undisturbed storage system. These results demonstrate that large scale storage structures are not uniform even after many absorption/desorption cycles and that movement of gaseous hydrogen cannot be properly modeled by a simple porous bed model. In addition, the evidence indicatesmore » that there is slow transformation of species at one end of the tube indicating loss of catalyst functionality. These observations explain the unusually fast movement of hydrogen in a full scale system and shows that loss of capacity is not occurring uniformly in this type of hydrogen-storage system.« less

  14. Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage

    SciTech Connect

    van Hassel, Bart A.

    2015-09-18

    UTRC lead the development of the Simulink Framework model that enables a comparison of different hydrogen storage systems on a common basis. The Simulink Framework model was disseminated on the www.HSECoE.org website that is hosted by NREL. UTRC contributed to a better understanding of the safety aspects of the proposed hydrogen storage systems. UTRC also participated in the Failure Mode and Effect Analysis of both the chemical- and the adsorbent-based hydrogen storage system during Phase 2 of the Hydrogen Storage Engineering Center of Excellence. UTRC designed a hydrogen storage system with a reversible metal hydride material in a compacted form for light-duty vehicles with a 5.6 kg H2 storage capacity, giving it a 300 miles range. It contains a heat exchanger that enables efficient cooling of the metal hydride material during hydrogen absorption in order to meet the 3.3 minute refueling time target. It has been shown through computation that the kinetics of hydrogen absorption of Ti-catalyzed NaAlH4 was ultimately limiting the rate of hydrogen absorption to 85% of the material capacity in 3.3 minutes. An inverse analysis was performed in order to determine the material property requirements in order for a metal hydride based hydrogen storage system to meet the DOE targets. Work on metal hydride storage systems was halted after the Phase 1 to Phase 2 review due to the lack of metal hydride materials with the required material properties. UTRC contributed to the design of a chemical hydrogen storage system by developing an adsorbent for removing the impurity ammonia from the hydrogen gas, by developing a system to meter the transport of Ammonia Borane (AB) powder to a thermolysis reactor, and by developing a gas-liquid-separator (GLS) for the separation of hydrogen gas from AB slurry in silicone oil. Stripping impurities from hydrogen gas is essential for a long life of the fuel cell system on board of a vehicle. Work on solid transport of AB was halted after the

  15. Technical assessment of compressed hydrogen storage tank systems for automotive applications.

    SciTech Connect

    Hua, T. Q.; Ahluwalia, R. K.; Peng, J. K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J.

    2011-02-09

    The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar ({approx}5000 psi) and 700 bar ({approx}10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%. These results are summarized.

  16. Employee Concerns Tracking System, PIA, Bechtel Jacobs Company...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Concerns Tracking System, PIA, Bechtel Jacobs Company, LLC Employee Concerns Tracking System, PIA, Bechtel Jacobs Company, LLC Employee Concerns Tracking System, PIA, Bechtel ...

  17. Intergrated Drug Testing System, PIA, Bechtel Jacobs C ompany...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Intergrated Drug Testing System, PIA, Bechtel Jacobs C ompany, LLC Intergrated Drug Testing System, PIA, Bechtel Jacobs C ompany, LLC Intergrated Drug Testing System, PIA, Bechtel ...

  18. Slurry-Based Chemical Hydrogen Storage Systems for Automotive Fuel Cell Applications

    SciTech Connect

    Brooks, Kriston P.; Semelsberger, Troy; Simmons, Kevin L.; Van Hassel, Bart A.

    2014-05-30

    In this paper, the system designs for hydrogen storage using chemical hydrogen materials in an 80 kWe fuel cell, light-duty vehicle are described. Ammonia borane and alane are used for these designs to represent the general classes of exothermic and endothermic materials. The designs are then compared to the USDRIVE/DOE developed set of system level targets for on-board storage. While most of the DOE targets are predicted to be achieved based on the modeling, the system gravimetric and volumetric densities were more challenging and became the focus of this work. The resulting system evaluation determined that the slurry is majority of the system mass. Only modest reductions in the system mass can be expected with improvements in the balance of plant components. Most of the gravimetric improvements will require developing materials with higher inherent storage capacity or by increasing the solids loading of the chemical hydrogen storage material in the slurry.

  19. Method and system for producing hydrogen using sodium ion separation membranes

    SciTech Connect

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M; Frost, Lyman

    2013-05-21

    A method of producing hydrogen from sodium hydroxide and water is disclosed. The method comprises separating sodium from a first aqueous sodium hydroxide stream in a sodium ion separator, feeding the sodium produced in the sodium ion separator to a sodium reactor, reacting the sodium in the sodium reactor with water, and producing a second aqueous sodium hydroxide stream and hydrogen. The method may also comprise reusing the second aqueous sodium hydroxide stream by combining the second aqueous sodium hydroxide stream with the first aqueous sodium hydroxide stream. A system of producing hydrogen is also disclosed.

  20. Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.

    SciTech Connect

    Ahluwalia, R.; Hua, T.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Gardiner, M.; Nuclear Engineering Division; TIAX LLC; U.S. DOE

    2010-05-01

    On-board and off-board performance and cost of cryo-compressed hydrogen storage are assessed and compared to the targets for automotive applications. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm. The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) or by central electrolysis. The main conclusions are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity, mid-term target for system volumetric capacity, and the target for hydrogen loss during dormancy under certain conditions of minimum daily driving. However, the high-volume manufacturing cost and the fuel cost for the SMR hydrogen production scenario are, respectively, 2-4 and 1.6-2.4 times the current targets, and the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

  1. Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.

    SciTech Connect

    Ahluwalia, R. K.; Hua, T. Q.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Nuclear Engineering Division; TIAX LLC

    2010-03-03

    On-board and off-board performance and cost of cryo-compressed hydrogen storage has been assessed and compared to the DOE 2010, 2015 and ultimate targets for automotive applications. The Gen-3 prototype system of Lawrence Livermore National Laboratory was modeled to project the performance of a scaled-down 5.6-kg usable hydrogen storage system. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers 1.5 kg/min of liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm (4000 psi). The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) and by central electrolysis using electricity from renewable sources. The main conclusions from the assessment are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity and the 2015 target for system volumetric capacity (see Table I). The system compares favorably with targets for durability and operability although additional work is needed to understand failure modes for combined pressure and temperature cycling. The system may meet the targets for hydrogen loss during dormancy under certain conditions of minimum daily driving. The high-volume manufacturing cost is projected to be 2-4 times the current 2010 target of $4/kWh. For the reference conditions considered most applicable, the fuel cost for the SMR hydrogen production and liquid H{sub 2} delivery scenario is 60%-140% higher than the current target of $2-$3/gge while the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

  2. AgFuture Energy LLC AFE | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy LLC (AFE) Place: Texas Product: The Texas A&M University System has formed a joint venture with a Pennsylvania-based advisory firm to commercialise energy research...

  3. Enforcement Letter, Bechtel BWXT Idaho, LLC- May 19, 2000

    Energy.gov [DOE]

    Issued to Bechtel BWXT Idaho, LLC, related to Personnel Contamination during a Hot Cell Exhaust System Filter Replacement activity at the Test Reactor Area Hot Cell Facility at the Idaho National Engineering and Environmental Laboratory

  4. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    DOEpatents

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-08-11

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.

  5. Enforcement Letter, Kaiser-Hill Company, L.L.C.- July 21, 1998

    Energy.gov [DOE]

    Issued to Kaiser-Hill Company, LLC related to Fire Protection System Surveillances at the Rocky Flats Environmental Technology Site, July 21, 1998

  6. Hydrogen Energy California Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Energy California Project Hydrogen Energy California Project Rendition of HECA Polygen Power Plant with fertilizer production facility. Rendition of HECA Polygen Power Plant with fertilizer production facility. HYDROGEN ENERGY CALIFORNIA CCS PROJECT (HECA CCS) On November 6, 2009, DOE announced the signing of a Cooperative Agreement with Hydrogen Energy California, LLC (HECA) under the Clean Coal Power Initiative (CCPI) Round 3 program. With additional funding provided under the

  7. Panel 1, Towards Sustainable Energy Systems: The Role of Large-Scale Hydrogen Storage in Germany

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hanno Butsch | Head of International Cooperation NOW GmbH National Organization Hydrogen and Fuel Cell Technology Towards sustainable energy systems - The role of large scale hydrogen storage in Germany May 14th, 2014 | Sacramento Political background for the transition to renewable energies 2 * Climate protection: Global responsibility for the next generation. * Energy security: More independency from fossil fuels. * Securing the economy: Creating new markets and jobs through innovations. Three

  8. Experimental "Wind to Hydrogen" System Up and Running - News Releases |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL Experimental "Wind to Hydrogen" System Up and Running December 14, 2006 Xcel Energy (NYSE:XEL) and the U.S. Department of Energy's National Renewable Energy Laboratory today unveiled a unique facility that uses electricity from wind turbines to produce and store pure hydrogen, offering what may become an important new template for future energy production. Several dozen journalists, environmental leaders, government officials and Xcel Energy managers today toured the joint

  9. Maritime Hydrogen & SF-BREEZE

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage Components and Systems Batteries Electric Drive Systems Hydrogen Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical ...

  10. Operational characteristics of the J-PARC cryogenic hydrogen system for a spallation neutron source

    SciTech Connect

    Tatsumoto, Hideki; Ohtsu, Kiichi; Aso, Tomokazu; Kawakami, Yoshihiko; Teshigawara, Makoto

    2014-01-29

    The J-PARC cryogenic hydrogen system provides supercritical hydrogen with the para-hydrogen concentration of more than 99 % and the temperature of less than 20 K to three moderators so as to provide cold pulsed neutron beams of a higher neutronic performance. Furthermore, the temperature fluctuation of the feed hydrogen stream is required to be within 0.25 K. A stable 300-kW proton beam operation has been carried out since November 2012. The para-hydrogen concentrations were measured during the cool-down process. It is confirmed that para-hydrogen always exists in the equilibrium concentration because of the installation of an ortho-para hydrogen convertor. Propagation characteristics of temperature fluctuation were measured by temporarily changing the heater power under off-beam condition to clarify the effects of a heater control for thermal compensation on the feed temperature fluctuation. The experimental data gave an allowable temperature fluctuation of 1.05 K. It is clarified through a 286-kW and a 524-kW proton beam operations that the heater control would be applicable for the 1-MW proton beam operation by extrapolating from the experimental data.

  11. Reference concepts for a space-based hydrogen-oxygen combustion, turboalternator, burst power system

    SciTech Connect

    Edenburn, M.W.

    1990-07-01

    This report describes reference concepts for a hydrogen-oxygen combustion, turboalternator power system that supplies power during battle engagement to a space-based, ballistic missile defense platform. All of the concepts are open''; that is, they exhaust hydrogen or a mixture of hydrogen and water vapor into space. We considered the situation where hydrogen is presumed to be free to the power system because it is also needed to cool the platform's weapon and the situation where hydrogen is not free and its mass must be added to that of the power system. We also considered the situation where water vapor is an acceptable exhaust and the situation where it is not. The combination of these two sets of situations required four different power generation systems, and this report describes each, suggests parameter values, and estimates masses for each of the four. These reference concepts are expected to serve as a baseline'' to which other types of power systems can be compared, and they are expected to help guide technology development efforts in that they suggest parameter value ranges that will lead to optimum system designs. 7 refs., 18 figs., 5 tabs.

  12. High Throughput/Combinatorial Screening of Hydrogen Storage Materials: UOP Approaches

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7 UOP LLC. All rights reserved. High Throughput/Combinatorial Screening of Hydrogen Storage Materials: UOP Approaches High Throughput/Combinatorial Screening of Hydrogen Storage Materials: UOP Approaches High Throughput/Combinatorial Analysis of Hydrogen Storage Materials Meeting Organized by DOE on June 26, 2007 Adriaan Sachtler High Throughput/Combinatorial Analysis of Hydrogen Storage Materials Meeting Organized by DOE on June 26, 2007 Adriaan Sachtler © 2007 UOP LLC. All rights reserved. 2

  13. System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect

    Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

    2010-10-01

    A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

  14. Alamos National Security, LLC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    More than 240 nonprofit organizations to receive monetary donations from Los Alamos National Security, LLC June 10, 2013 Employees and retirees perform 270,000 volunteer hours LOS ALAMOS, N.M., June 10, 2013-Nonprofit organizations will receive more than $180,000 from Los Alamos National Security (LANS), LLC during a recognition event beginning at 9:30 a.m. June 12, at Fuller Lodge in downtown Los Alamos. LANS contributions are determined by the number of volunteer hours logged by Los Alamos

  15. Spectroscopic ellipsometry on Si/SiO{sub 2}/graphene tri-layer system exposed to downstream hydrogen plasma: Effects of hydrogenation and chemical sputtering

    SciTech Connect

    Eren, Baran; Fu, Wangyang; Marot, Laurent Calame, Michel; Steiner, Roland; Meyer, Ernst

    2015-01-05

    In this work, the optical response of graphene to hydrogen plasma treatment is investigated with spectroscopic ellipsometry measurements. Although the electronic transport properties and Raman spectrum of graphene change after plasma hydrogenation, ellipsometric parameters of the Si/SiO2/graphene tri-layer system do not change. This is attributed to plasma hydrogenated graphene still being electrically conductive, since the light absorption of conducting 2D materials does not depend on the electronic band structure. A change in the light transmission can only be observed when higher energy hydrogen ions (30 eV) are employed, which chemically sputter the graphene layer. An optical contrast is still apparent after sputtering due to the remaining traces of graphene and hydrocarbons on the surface. In brief, plasma treatment does not change the light transmission of graphene; and when it does, this is actually due to plasma damage rather than plasma hydrogenation.

  16. Reasons for high-temperature superconductivity in the electron–phonon system of hydrogen sulfide

    SciTech Connect

    Degtyarenko, N. N.; Mazur, E. A.

    2015-08-15

    We have calculated the electron and phonon spectra, as well as the densities of the electron and phonon states, of the stable orthorhombic structure of hydrogen sulfide SH{sub 2} in the pressure interval 100–180 GPa. It is found that at a pressure of 175 GPa, a set of parallel planes of hydrogen atoms is formed due to a structural modification of the unit cell under pressure with complete accumulation of all hydrogen atoms in these planes. As a result, the electronic properties of the system become quasi-two-dimensional. We have also analyzed the collective synphase and antiphase vibrations of hydrogen atoms in these planes, leading to the occurrence of two high-energy peaks in the phonon density of states.

  17. System design and analysis of a direct hydrogen from coal system with CO{sub 2} capture

    SciTech Connect

    Xiang Xu; Yunhan Xiao; Chunzhen Qiao

    2007-06-15

    Hydrogen is regarded as one of the main energy carriers of the future. On the basis of the previous work, a direct hydrogen production from coal based on a CO{sub 2} sorbent enhanced gasification process was constructed in this paper using the ASPEN PLUS simulator. The system is mainly composed of two paralleled fluidized bed reactors, namely a gasifier and regenerator. Then, on the basis of the proposed system, more than 95% hydrogen and less than 5% methane, CO, and CO{sub 2} (mole percent, dry basis) of gas product is computationally obtained in a wide range of operating conditions. The cold gas efficiency of the system can reach as high as 92.6%. When a hydrogen and power coproduction system is considered, in which hydrogen is used as the fuel of the solid oxide fuel cell combined cycle (SOFC-CC) hybrid system, the system equivalent power efficiency can reach 61.9% considering the CO{sub 2} capture and disposal. Finally, the influences of several key parameters on the system performance, such as operating condition of the gasifier, steam/carbon ratio, Ca/C ratio, and carbon conversion ratio, are investigated. 25 refs., 6 figs., 4 tabs.

  18. Electronic Document Management System PIA, BechtelJacobs Company...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Dosimetry Records System PIA, bechtel Jacobs Company, LLC Pension Estimate System PIA, Bechtel Jacobs Company, LLC Medgate, PIA, Bechtel Jacobs ...

  19. Prairie Creek Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: Prairie Creek Ethanol LLC Place: Goldfield, Iowa Zip: 50542 Product: Prairie Creek Ethanol, LLC had planned to build a 55m gallon...

  20. First United Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: First United Ethanol LLC Place: Camilla, Georgia Zip: 31730 Product: First United Ethanol LLC (FUEL) was formed to construct a 100 MGY...

  1. Emc3 LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Emc3 LLC Jump to: navigation, search Logo: Emc3 LLC Name: Emc3 LLC Address: 5 Blue Anchor Street Place: Marlton, New Jersey Zip: 08053 Region: Northeast - NY NJ CT PA Area Sector:...

  2. EMC3, llc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EMC3, llc Jump to: navigation, search Logo: EMC3, llc Name: EMC3, llc Address: 5 Blue Anchor Street Place: Marlton, New Jersey Zip: 08053 Region: Northeast - NY NJ CT PA Area Phone...

  3. AEP Wind Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    AEP Wind Energy LLC Jump to: navigation, search Name: AEP Wind Energy LLC Place: Dallas, Texas Zip: 75266 1064 Sector: Wind energy Product: AEP Wind Energy LLC is a project...

  4. M Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power LLC Jump to: navigation, search Name: M-Power LLC Place: Finley, North Dakota Sector: Wind energy Product: M-Power, LLC, headquartered in Finley, North Dakota, was formed...

  5. WilderShares LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    WilderShares LLC Jump to: navigation, search Name: WilderShares LLC Place: Encinitas, California Zip: 92024 Product: WilderShares LLC, is a provider of indexes for the clean...

  6. Everton Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy LLC Place: Kansas Product: Everton Energy, LLC develops and acquires ethanol plants References: Everton Energy LLC1 This article is a stub. You can help OpenEI by...

  7. Trinity CO2 LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    CO2 LLC Jump to: navigation, search Name: Trinity CO2 LLC Place: Texas Product: String representation "Trinity CO2 LLC ... smission lines." is too long. References: Trinity CO2...

  8. Asia West LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    West LLC Jump to: navigation, search Logo: Asia West LLC Name: Asia West LLC Address: One East Weaver Street Place: Greenwich, Connecticut Zip: 06831 Region: Northeast - NY NJ CT...

  9. Vision FL LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    FL LLC Jump to: navigation, search Name: VisionFL, LLC Place: Florida Sector: Biomass Product: Florida-based biomass project developer. References: VisionFL, LLC1 This article...

  10. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Fuel Cell Technologies Office's systems analysis program uses a consistent set of models and data for transparent analytical evaluations. The following fact sheets provide an overview and individual summaries of the models and tools used for systems analysis of hydrogen and fuel cells.

  11. National Hydrogen Learning Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Keith Wipke, Sam Sprik, Jennifer Kurtz, Todd Ramsden, Chris Ainscough, Genevieve Saur February 6, 2012 DOE's Informational Webinar Series National Hydrogen Learning Demonstration Status This presentation does not contain any proprietary, confidential, or otherwise restricted information NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC v8 National Renewable Energy Laboratory 2

  12. DOE Technical Targets for Hydrogen Storage Systems for Material...

    Office of Environmental Management (EM)

    from H2 (net useful energymax system volume)b kWhL (kg H2L system) 1.0 (0.03) 1.7 (0.05) Storage System Cost System cost kWh net (kg H2 stored) 20 (667) 15 (500) ...

  13. Chemical/hydrogen energy storage systems. Annual report, January 1, 1979-December 31, 1979

    SciTech Connect

    Not Available

    1980-05-01

    The progress made in 1979 in the Chemical/Hydrogen Energy Storage Systems Program is described. The program is managed by Brookhaven National Laboratory for the Division of Energy Storage Systems of the Department of Energy. The program consists of research and development activities in the areas of Hydrogen Production, Storage and Materials, End-Use Applications/Systems Studies, and in Chemical Heat Pumps. The report outlines the progress made by key industrial contractors such as General Electric in the development of SPE water electrolyzers; INCO in the studies of surface poisoning (and reactivation) of metal hydrides; and Air Products and Chemicals in the evaluation of hydrogen production at small hydropower sites. The BNL in-house supporting research, as well as that at universities and other national laboratories for which BNL has technical oversight, is also described.

  14. Hydrogen Storage Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Storage Technologies Roadmap May Hydrogen Storage Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies -BP America, Chevron Corporation, Phillips 66

  15. Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology

    SciTech Connect

    Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

    2013-11-01

    Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

  16. Analyses of Hydrogen Storage Materials and On-Board Systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... TIAX Base Case 5,000 psi 10,000 psi System Cost, kWh Assembly & Inspection BOP ... TIAX Base Case 5,000 psi 10,000 psi System Cost, kWh Assembly & Inspection BOP ...

  17. NREL: Hydrogen and Fuel Cells Research - 2015 Energy Systems Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Facility Annual Report Calls to Industry: Bring Us Your Challenges 2015 Energy Systems Integration Facility Annual Report Calls to Industry: Bring Us Your Challenges April 6, 2016 The 2015 Energy Systems Integration Facility Annual Report is now available for download. The Energy Systems Integration Facility (ESIF) is the nation's premier facility for research, development, and demonstration of the components and strategies needed to optimize our entire energy system. It was established in

  18. Concentrating Technologies LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Place: Owens Crossroads, Alabama Zip: 35763 Product: Developer of concentrating photovoltaic technology (CPV). References: Concentrating Technologies LLC1 This article is a...

  19. Lectrique Solaire LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Lectrique Solaire LLC Sector: Solar Product: Designs and manufactures solar photovoltaic and thermal products. References: Lectrique Solaire LLC1 This article is a stub....

  20. Lone Star Transmission LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Transmission LLC Jump to: navigation, search Name: Lone Star Transmission LLC Place: Juno Beach, Florida Zip: 33408 Product: Wholly owned subsidiary of FPL Energy, developing...

  1. Green Star Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Green Star Energy LLC Place: Houston, Texas Zip: 77002 Product: Houston-based producer of sugar cane processed ethanol, with additional...

  2. Northern Growers LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Farmer cooperative that provides corn to Northern Lights Ethanol LLC (a 77% owned joint venture with Broin Companies). References: Northern Growers LLC1 This article is a...

  3. Orion Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Orion Energy LLC Place: Oakland, California Zip: 94612 Sector: Wind energy Product: Wind farm developer active in North America. Coordinates:...

  4. Crown Renewable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Renewable Energy LLC Jump to: navigation, search Name: Crown Renewable Energy LLC Place: Union City, California Zip: 94587 Product: Buys monosilicon PV cells from JingAo....

  5. Iowa Renewable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Iowa Renewable Energy LLC Place: Washington, Iowa Product: Set up to develop a 114m-litre biodiesel facility near Washington, Iowa....

  6. Cleantech Group LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Group LLC Jump to: navigation, search Name: Cleantech Group LLC Place: Brighton, Michigan Zip: 48114 Sector: Services Product: Michigan-based cleantech consultant and parent of the...

  7. Altira Group LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Group LLC Jump to: navigation, search Name: Altira Group LLC Address: 1675 Broadway, Suite 2400 Place: Denver, Colorado Zip: 80202 Region: Rockies Area Product: Venture capital for...

  8. Current Group LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Group LLC Jump to: navigation, search Name: Current Group, LLC Place: Germantown, Maryland Zip: 20874 Sector: Services Product: Current provides electric utilities with smart grid...

  9. Avalon Solar LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Avalon Solar LLC Jump to: navigation, search Name: Avalon Solar LLC Place: Albuquerque, New Mexico Zip: 87123 Sector: Solar Product: Albuquerque-based solar project developer....

  10. 808 Investments LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    8 Investments LLC Jump to: navigation, search Name: 808 Investments LLC Place: Huntington Beach, California Zip: 92649 Sector: Solar Product: California-based boutique investment...

  11. Merrill Group LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Merrill Group LLC Jump to: navigation, search Name: Merrill Group LLC Address: PO Box 202943 Place: Denver Co Country: United States Zip: 80220 Region: Rockies Area Sector:...

  12. Planetary Fuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fuels LLC Jump to: navigation, search Name: Planetary Fuels, LLC Place: Seattle, Washington Product: Seattle-based start-up dedicated to the production of biodiesel. Coordinates:...

  13. Strategic Energy LLC (California) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Strategic Energy LLC Place: California Phone Number: (760) 929-4735 Facebook: https:www.facebook.compagesStrategic-Energy-LLC138633162851531 Outage Hotline:...

  14. NRG Power Marketing LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Marketing LLC Jump to: navigation, search Name: NRG Power Marketing LLC Address: 211 Carnegie Center Place: Princeton, New Jersey Country: United States Phone Number: 609-524-4500...

  15. Nautica Windpower LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Nautica Windpower LLC Jump to: navigation, search Name: Nautica Windpower LLC Address: 9670 Maurer Dr Place: Olmsted Falls, Ohio Zip: 44138 Sector: Wind energy Phone Number:...

  16. Four Seasons Windpower, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Seasons Windpower, LLC Jump to: navigation, search Name: Four Seasons Windpower, LLC Address: 1697 Wilbur Road Place: Medina, Ohio Zip: 44256 Sector: Solar, Wind energy Product:...

  17. Third Planet Windpower LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Third Planet Windpower LLC Jump to: navigation, search Name: Third Planet Windpower LLC Place: San Ramon, California Zip: 94583 Sector: Wind energy Product: Third Planet Windpower,...

  18. Virgin Bioverda LLC VBV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Virgin Bioverda LLC VBV Jump to: navigation, search Name: Virgin Bioverda LLC (VBV) Place: Chicago, Illinois Product: Chicago-based JV established between Virgin & NTR to back US...

  19. National Grid Generation, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Grid Generation, LLC Jump to: navigation, search Name: National Grid Generation, LLC Place: New York Service Territory: Massachusetts, New Hampshire, New York, Rhode Island Phone...

  20. Vortex Hydro Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy LLC Jump to: navigation, search Name: Vortex Hydro Energy LLC Address: 4870 West Clark Rd Suite 108 Place: Ypsilanti Zip: 48197 Region: United States Sector: Marine and...

  1. Adkins Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Adkins Energy LLC Place: Illinois Product: Cooperative producing bioethanol in Illinois References: Adkins Energy LLC1 This article is a stub. You can help...

  2. Northern Excellence Seed LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Seed LLC Jump to: navigation, search Name: Northern Excellence Seed LLC Place: Williams, Minnesota Sector: Biomass Product: Producer-owned cooperative focused on...

  3. Chevron Technology Ventures LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Chevron Technology Ventures LLC Address: 3901 Briarpark Drive Place: Houston Zip: 77042 Region: United States Sector: Marine and Hydrokinetic...

  4. Millennium Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: Millennium Ethanol, LLC Place: Marion, South Dakota Zip: 57043 Product: Millennium Ethanol is a group of more than 900 South Dakotan...

  5. Center Ethanol Company LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Center Ethanol Company LLC Place: Illinois Product: Illinois based company building a 54m gallon ethanol plant in Sauget, IL. References:...

  6. Sioux River Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    River Ethanol LLC Jump to: navigation, search Name: Sioux River Ethanol LLC Place: Hudson, South Dakota Zip: 57034 Product: Farmer owned ethanol producer, Sioux River Ethanol is...

  7. Prairie Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: Prairie Ethanol LLC Place: Loomis, South Dakota Product: Farmer owned bioethanol project development and managment team. Coordinates:...

  8. Marysville Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Marysville Ethanol LLC Jump to: navigation, search Name: Marysville Ethanol LLC Place: Marysville, Michigan Zip: 48040 Product: Developing a 50m gallon ethanol plant in Marysville,...

  9. Badger State Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    State Ethanol LLC Jump to: navigation, search Name: Badger State Ethanol LLC Place: Monroe, Wisconsin Zip: 53566 Product: Dry-mill bioethanol producer References: Badger State...

  10. Great Valley Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Ethanol LLC Jump to: navigation, search Name: Great Valley Ethanol LLC Place: Bakersfield, California Product: Developing a 63m gallon ethanol plant in Hanford, CA...

  11. Central Indiana Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Indiana Ethanol LLC Jump to: navigation, search Name: Central Indiana Ethanol LLC Place: Marion, Indiana Zip: 46952 Product: Ethanol producer developina a 151 mlpa plant in Marion,...

  12. Iowa Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: Iowa Ethanol LLC Place: Hanlontown, Iowa Zip: 50451 Product: Corn-base bioethanol producer in Iowa Coordinates: 43.28456,...

  13. Kansas Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: Kansas Ethanol LLC Place: Lyons, Kansas Zip: 67554 Product: Constructing a 55m gallon ethanol plant in Rice County, Kansas...

  14. Tall Corn Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tall Corn Ethanol LLC Jump to: navigation, search Name: Tall Corn Ethanol LLC Place: Coon Rapids, Iowa Zip: 50058 Product: Farmer owned bioethanol production company which owns a...

  15. Heartland Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: Heartland Ethanol LLC Place: Knoxville, Tennessee Zip: 37929 Product: Knoxville, TN based ethanol developer. Coordinates: 35.960495,...

  16. Standard Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Standard Ethanol LLC Place: Nebraska Product: Nebraska based ethanol producer that operates two plants References: Standard Ethanol LLC1 This article is a stub. You can help...

  17. Frontier Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: Frontier Ethanol LLC Place: Gowrie, Iowa Product: Owner and operator of a bioethanol plant near Gowrie, Iowa. Coordinates: 42.28227,...

  18. Ethanol Grain Processors LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Processors LLC Jump to: navigation, search Name: Ethanol Grain Processors, LLC Place: Obion, Tennessee Zip: TN 38240 Product: Tennessee-based ethanol producer. Coordinates:...

  19. Kaapa Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kaapa Ethanol LLC Jump to: navigation, search Name: Kaapa Ethanol LLC Place: Minden, Nebraska Zip: 68959 Product: Bioethanol producer using corn as feedstock Coordinates:...

  20. Michigan Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: Michigan Ethanol LLC Place: Caro, Michigan Zip: 48723-8804 Product: Ethanol productor in Caro, Michigan. Coordinates: 43.488705,...

  1. Siouxland Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: Siouxland Ethanol LLC Place: Jackson, Nebraska Zip: 68743 Product: Startup hoping to build a USD 80m ethanol manufacturing plant near...

  2. Cardinal Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: Cardinal Ethanol LLC Place: Winchester, Indiana Zip: 47394 Product: Cardinal Ethanol is in the process of building an ethanol plant in...

  3. Platinum Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Platinum Ethanol LLC Jump to: navigation, search Name: Platinum Ethanol LLC Place: Arthut, Iowa Product: Developed a 110m gallon (416m litre) ethanol plant in Arthur, IA....

  4. North Country Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Ethanol LLC Jump to: navigation, search Name: North Country Ethanol LLC Place: Rosholt, South Dakota Zip: 57260 Product: 20mmgy (75.7m litresy) ethanol producer....

  5. South Louisiana Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    South Louisiana Ethanol LLC Place: Louisiana Product: Ethanol production equipment provider. References: South Louisiana Ethanol LLC1 This article is a stub. You can help OpenEI...

  6. Show Me Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Show Me Ethanol LLC Jump to: navigation, search Name: Show Me Ethanol, LLC Place: Carrollton, Missouri Zip: 64633 Product: Developing an ethanol project in Carrollton, Missouri....

  7. Western Ethanol Company LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol Company LLC Jump to: navigation, search Name: Western Ethanol Company LLC Place: Placentia, California Zip: 92871 Product: California-based fuel ethanol distribution and...

  8. EIS-0428: Mississippi Gasification, LLC, Industrial Gasification...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS ...

  9. New York Biodiesel LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: New York Biodiesel LLC Place: Hamilton, Madison County, New York Product: Biodiesel producer using soybean oil as its feedstock References:...

  10. Freedom Fuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Freedom Fuels LLC Place: Hampton, Iowa Product: Biodiesel producer based in Hampton, Iowa. Coordinates: 37.027795, -76.345119 Show Map...

  11. Big Biodiesel LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biodiesel LLC Jump to: navigation, search Name: Big Biodiesel LLC Place: Pulaski, Tennessee Zip: 38478 Product: Biodiesel plant developer in Pulaski, Tennessee. References: Big...

  12. Brownfield Biodiesel LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Brownfield Biodiesel LLC Jump to: navigation, search Name: Brownfield Biodiesel LLC Place: Ralls, Texas Zip: 79357 Product: Biodiesel producer in Ralls, Texas. Coordinates:...

  13. Northeast Biodiesel Company LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Company LLC Jump to: navigation, search Name: Northeast Biodiesel Company, LLC Place: Massachusetts Zip: 1301 Product: Massachusetts-based biodiesel producer and project developer....

  14. Heartland biodiesel LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    biodiesel LLC Jump to: navigation, search Name: Heartland biodiesel LLC Place: Rock Port, Missouri Product: Biodiesel producer which is currently developing a 113m liter plant in...

  15. Midwest Biodiesel Producers LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biodiesel Producers LLC Jump to: navigation, search Name: Midwest Biodiesel Producers LLC Place: Alexandria, South Dakota Zip: 57311 Product: South Dakota-based biodiesel producer....

  16. Springboard Biodiesel LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Springboard Biodiesel LLC Jump to: navigation, search Name: Springboard Biodiesel LLC Place: Chico, California Zip: 95928 Product: Provider of products and technologies for the...

  17. East Fork Biodiesel LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fork Biodiesel LLC Jump to: navigation, search Name: East Fork Biodiesel, LLC Place: Algona, Iowa Sector: Renewable Energy Product: Biodiesel producer and co-developer, with...

  18. Bay Biodiesel LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biodiesel LLC Jump to: navigation, search Name: Bay Biodiesel LLC Place: Martinez, California Zip: 94553 Product: Biodiesel producers in Martinez, California. References: Bay...

  19. Big River Resources LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Resources LLC Jump to: navigation, search Name: Big River Resources LLC Place: West Burlington, Iowa Zip: 52655 Product: Dry-mill bioethanol producer with a cooperative structure....

  20. Cinergy Ventures II LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cinergy Ventures II LLC Jump to: navigation, search Name: Cinergy Ventures II, LLC Place: Cincinnati, Ohio Zip: OH 45202 Product: The venture capital arm of Cinergy Corp....

  1. Crownbutte Wind Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Crownbutte Wind Power LLC Jump to: navigation, search Name: Crownbutte Wind Power LLC Place: Mandan, North Dakota Zip: 58554 Sector: Wind energy Product: North Dakota wind power...

  2. Padoma Wind Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Padoma Wind Power LLC Jump to: navigation, search Name: Padoma Wind Power LLC Place: La Jolla, California Zip: 92037 Sector: Wind energy Product: A wind energy consulting and...

  3. Evergreen Wind Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power LLC Jump to: navigation, search Name: Evergreen Wind Power LLC Place: Bangor, Maine Zip: 4401 Sector: Wind energy Product: Formed to develop wind projects in Maine....

  4. Wind Power Associates LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Associates LLC Jump to: navigation, search Name: Wind Power Associates LLC Place: Goldendale, Washington State Sector: Wind energy Product: Wind farm developer and operater....

  5. Malczewski Product Design LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Malczewski Product Design LLC Jump to: navigation, search Name: Malczewski Product Design LLC Place: Neenah, Wisconsin Zip: 54956 Sector: Wind energy Product: Product development...

  6. Pennamaquan Tidal Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Pennamaquan Tidal Power LLC Address: 45 Memorial Circle PO Box 1058 Place: Augusta Zip: 4332 Region: United States Sector: Marine and...

  7. Solar America LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Solar America LLC Place: Marmora, New Jersey Zip: 8223 Sector: Solar Product: New Jersey-based company that designs and installs Solar...

  8. RES North America LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    RES North America LLC Jump to: navigation, search Name: RES North America LLC Place: Portland, Oregon Zip: 97258 Sector: Wind energy Product: US development arm of RES Ltd....

  9. Wind Management LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Management LLC Jump to: navigation, search Name: Wind Management LLC Place: South Yarmouth, Massachusetts Zip: 2664 Sector: Wind energy Product: Massachussets wind project...

  10. Winslow Management Company LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Management Company LLC Jump to: navigation, search Name: Winslow Management Company LLC Place: Boston, Massachusetts Zip: 2110 Product: Boston-based, environmentally focused...

  11. Freedom Energy Solutions LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Solutions LLC Jump to: navigation, search Name: Freedom Energy Solutions LLC Place: Westminster, Maryland Zip: 21157 Sector: Geothermal energy, Solar Product: Retailer and...

  12. Sustainable Energy Advantage LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Sustainable Energy Advantage, LLC Place: Massachusetts Zip: 1701 Sector: Renewable Energy Product: String representation "Massachusetts-b ......

  13. Heritage Sustainable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sustainable Energy LLC Jump to: navigation, search Name: Heritage Sustainable Energy LLC Place: Traverse City, Michigan Sector: Wind energy Product: Start up wind developer in...

  14. EDGE Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EDGE Energy LLC Jump to: navigation, search Name: EDGE Energy LLC Place: Phoenix, Arizona Zip: 85018 Sector: Solar Product: Arizona-based solar developer focused on building...

  15. Innovation Forward, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Innovation Forward, LLC Address: 1000 Creekside Plaza Third Floor Place: Gahanna, Ohio Zip: 43230 Sector: Services Phone Number: (614)...

  16. Ultimate Best Buy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ultimate Best Buy LLC Jump to: navigation, search Name: Ultimate Best Buy LLC Place: Lebanon, Ohio Country: United States Zip: 45036 Sector: Efficiency, Renewable Energy, Services,...

  17. Blue Source LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Source LLC Jump to: navigation, search Name: Blue Source LLC Place: Salt Lake City, Utah Zip: 84121 Product: Salt Lake City-based emission offset aggregation company. References:...

  18. Impact Technologies LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies LLC Jump to: navigation, search Name: Impact Technologies LLC Place: Tulsa, OK Zip: 74153 Sector: Geothermal energy Product: drilling technology Phone Number:...

  19. Fagen Engineering LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fagen Engineering LLC Jump to: navigation, search Name: Fagen Engineering LLC Place: Granite Falls, Minnesota Zip: 56241 Product: Designs and builds ethanol production plants and...

  20. Florida Biomass Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Florida Biomass Energy, LLC Place: Florida Sector: Biomass Product: Florida-based biomass project developer. References: Florida Biomass...

  1. Multitrade Biomass Holdings LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Holdings LLC Jump to: navigation, search Name: Multitrade Biomass Holdings LLC Place: Ridgeway, Virginia Zip: 24148-0000 Sector: Renewable Energy Product: Virginia-based developer...

  2. Wireless Environment LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wireless Environment LLC Jump to: navigation, search Name: Wireless Environment LLC Place: Elyria, Ohio Product: Wireless Environment designs light-emitting diode lighting products...

  3. Fuel Cells America LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Fuel Cells America LLC Place: Mount Horeb, Wisconsin Zip: 53572 Product: Consulting service and commissioned fuel cell sales division....

  4. Sunton United Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    United Energy LLC Jump to: navigation, search Name: Sunton United Energy LLC Place: Salt Lake City, Utah Sector: Renewable Energy Product: Utah-based investment company seeking...

  5. Solar Millennium LLC USA | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC USA Jump to: navigation, search Name: Solar Millennium LLC (USA) Place: Berkeley, California Sector: Solar Product: California-based STEG power plant developer, parabolic...

  6. AREA USA LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    AREA USA LLC Jump to: navigation, search Name: AREA USA LLC Place: Washington, DC Zip: 20004 Sector: Services Product: Washington, D.C.-based division of Fabiani & Company...

  7. Norvento USA LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USA LLC Jump to: navigation, search Name: Norvento USA LLC Place: Boston, Massachusetts Product: Boston-based engineering consultancy and division of Norvento SA. Coordinates:...

  8. LappinTech LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    "LappinTech LLC" Retrieved from "http:en.openei.orgwindex.php?titleLappinTechLLC&oldid813159" Categories: Organizations Companies Stubs Articles with outstanding TODO tasks...

  9. Foresight Wind Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Foresight Wind Energy LLC Jump to: navigation, search Name: Foresight Wind Energy LLC Place: San Francisco, California Zip: 94105 Sector: Wind energy Product: San Francisco-based...

  10. Midwest Wind Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy LLC Jump to: navigation, search Name: Midwest Wind Energy LLC Place: Chicago, Illinois Zip: 60611 Sector: Wind energy Product: Wind farm developer, owner and operator....

  11. Prairie Wind Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy LLC Jump to: navigation, search Name: Prairie Wind Energy LLC Place: Lamar, Colorado Zip: 81052 Sector: Wind energy Product: Developer and owner of Prairie wind farm....

  12. Havoco Wind Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Havoco Wind Energy LLC Jump to: navigation, search Name: Havoco Wind Energy LLC Place: Dallas, Texas Zip: 75206 Sector: Wind energy Product: Wind developer of Altamont Pass wind...

  13. Freedom Wind Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy LLC Jump to: navigation, search Name: Freedom Wind Energy LLC Place: Tampa, Florida Zip: 33623 Sector: Wind energy Product: Develops and manages wind farms in north...

  14. MGI Electronics LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MGI Electronics LLC Jump to: navigation, search Name: MGI Electronics LLC Place: Temple, Arizona Zip: 85282 Product: US-based manufacturer of wafer transfer and PV cell handling...

  15. Cp Holdings Llc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cp Holdings Llc Jump to: navigation, search Name: Cp Holdings Llc Place: Stillwater, Minnesota Zip: 55082 Sector: Carbon Product: An external carbon advisor. Coordinates:...

  16. Renewable Energy Engineering LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Renewable Energy Engineering, LLC Place: Newberg, Oregon Zip: 22700 Sector: Renewable Energy Product: Oregon-based renewable energy...

  17. Encore Renewable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Encore Renewable Energy LLC Jump to: navigation, search Name: Encore Renewable Energy, LLC Place: Santa Barbara, California Zip: 93111 Sector: Renewable Energy Product: National...

  18. Eolian Renewable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Eolian Renewable Energy LLC Jump to: navigation, search Name: Eolian Renewable Energy LLC Place: Portsmouth, New Hampshire Zip: 3801 Sector: Solar, Wind energy Product: New...

  19. Lincoln Renewable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Renewable Energy LLC Jump to: navigation, search Name: Lincoln Renewable Energy LLC Place: Chicago, Illinois Zip: 60606 Sector: Solar, Wind energy Product: Chicago-based company...

  20. Renewable Energy Solutions, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solutions, LLC Jump to: navigation, search Name: Renewable Energy Solutions, LLC Place: Fairfield, California Zip: 94534 Region: Bay Area Sector: Services Year Founded: 2008...

  1. Superior Renewable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Renewable Energy LLC Jump to: navigation, search Name: Superior Renewable Energy LLC Place: Houston, Texas Zip: 77002 Sector: Renewable Energy, Wind energy Product: An independent...

  2. Outland Renewable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Outland Renewable Energy LLC Jump to: navigation, search Name: Outland Renewable Energy, LLC Place: Chaska, Minnesota Zip: 55318 Sector: Renewable Energy Product: Outland Renewable...

  3. Grasslands Renewable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Grasslands Renewable Energy LLC Jump to: navigation, search Name: Grasslands Renewable Energy LLC Place: Bozeman, Montana Zip: 59715 Sector: Wind energy Product: Montana-based...

  4. Prometheus Energy Services LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Services LLC Jump to: navigation, search Name: Prometheus Energy Services LLC Place: California Sector: Wind energy Product: Wind project developer, working on the Pine Tree...

  5. Access Solar Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Energy LLC Jump to: navigation, search Name: Access Solar Energy LLC Place: Park CIty, Utah Zip: 84060 Sector: Renewable Energy, Solar Product: Utah-based developers of...

  6. Global Power Solutions LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Global Power Solutions LLC Jump to: navigation, search Name: Global Power Solutions LLC Place: Colorado Zip: CO 80401 Sector: Geothermal energy Product: String representation...

  7. Solar Electric Solutions LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Electric Solutions LLC Jump to: navigation, search Name: Solar Electric Solutions, LLC Place: Woodland Hills, California Zip: 91364 Sector: Solar Product: California-based...

  8. Marathon Capital LLC (California) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Marathon Capital LLC (California) Name: Marathon Capital LLC (California) Address: 42 Miller Avenue Place: Mill Valley, California Zip: 94941 Region: Bay Area Product: Investment...

  9. Simple Energies LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Simple Energies LLC Place: California Sector: Renewable Energy Product: California-based hybrid renewable energy project developer for...

  10. Diamond Wire Technology LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wire Technology LLC Jump to: navigation, search Name: Diamond Wire Technology LLC Place: Colorado Springs, Colorado Zip: 80916 Sector: Solar Product: US-based manufacturer of...

  11. ECO Solutions LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    ECO Solutions LLC Jump to: navigation, search Name: ECO Solutions, LLC Place: Chatsworth, Georgia Zip: 30705 Product: ECO Solutions operates a biodiesel plant in Georgia with a...

  12. Varon Lighting Group LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Varon Lighting Group LLC Jump to: navigation, search Name: Varon Lighting Group LLC Place: Chicago, Illinois Zip: 60126 Product: Chicago-based manufacturer of energy-efficient...

  13. Port Asset Acquisition LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Acquisition LLC Jump to: navigation, search Name: Port Asset Acquisition LLC Place: Louisiana Product: PAA was formed to acquire a fuel terminal, tanks and land in Alexandria,...

  14. Central Texas Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Texas Biofuels LLC Jump to: navigation, search Name: Central Texas Biofuels LLC Place: Giddings, Texas Zip: 78942 Product: Biodiesel producer in Giddings, Texas. References:...

  15. Ultimate Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: Ultimate Biofuels LLC Place: Ann Arbor, Michigan Zip: 48108 Product: Plans to develop sweet sorghum based ethanol plants. References:...

  16. Blackhawk Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Blackhawk Biofuels LLC Jump to: navigation, search Name: Blackhawk Biofuels, LLC Place: Freeport, Illinois Zip: 61032 Sector: Biofuels Product: Blackhawk Biofuels was founded by a...

  17. Blue Ridge Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: Blue Ridge Biofuels LLC Place: Asheville, North Carolina Zip: 28801 Sector: Biofuels Product: Blue Ridge Biofuels is a worker...

  18. Best Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: Best Biofuels LLC Place: Austin, Texas Zip: 78746 Sector: Biofuels Product: Best Biofuels is developing and commercialising vegetable...

  19. Carolina Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Carolina Biofuels LLC Place: North Carolina Zip: 29687 Product: Biodiesel producer based in South Carolina. References: Carolina Biofuels LLC1 This article is a stub. You can...

  20. Biofuels of Colorado LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    of Colorado LLC Jump to: navigation, search Name: Biofuels of Colorado LLC Place: Denver, Colorado Zip: 80216 Product: Biodiesel producer in Denver, Colorado. References: Biofuels...

  1. Greenleaf Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Greenleaf Biofuels LLC Jump to: navigation, search Name: Greenleaf Biofuels LLC Place: Guilford, Connecticut Zip: 6437 Product: Connecticut-based biodiesel start-up planning to...

  2. Northwest Missouri Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Missouri Biofuels LLC Jump to: navigation, search Name: Northwest Missouri Biofuels, LLC Place: St Joseph, Missouri Sector: Biofuels Product: Northwest Missouri Biofuels operates a...

  3. Endicott Biofuels II LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Endicott Biofuels II LLC Jump to: navigation, search Name: Endicott Biofuels II, LLC Place: Houston, Texas Zip: 77060-3235 Sector: Biofuels Product: Houston-based biofuels producer...

  4. Midwestern Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Midwestern Biofuels LLC Jump to: navigation, search Name: Midwestern Biofuels LLC Place: South Shore, Kentucky Zip: 41175 Sector: Biomass Product: Kentucky-based biomass energy...

  5. Memphis Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: Memphis Biofuels LLC Place: Memphis, Tennessee Product: Biodiesel start-up planning to construct a 36-million-gallon-per-year...

  6. Mercurius Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Mercurius Biofuels LLC Jump to: navigation, search Name: Mercurius Biofuels LLC Address: 3190 Bay Road Place: Ferndale, Washington Zip: 98248 Region: Pacific Northwest Area Sector:...

  7. Butamax Advanced Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Butamax Advanced Biofuels LLC Jump to: navigation, search Name: Butamax Advanced Biofuels LLC Place: Wilmington, Delaware Zip: 19880-0268 Sector: Biofuels Product: Delaware-based...

  8. Advanced Bioenergy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bioenergy LLC Jump to: navigation, search Name: Advanced Bioenergy LLC Place: Minneapolis, Minnesota Zip: 55305 Product: Developer of the 378.5m litre pa bioethanol plant in...

  9. Alterra Bioenergy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bioenergy LLC Jump to: navigation, search Name: Alterra Bioenergy LLC Place: Macon, Georgia Sector: Biofuels Product: Manufacturer and distributor of biofuels. References: Alterra...

  10. Northeast Kansas Bioenergy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kansas Bioenergy LLC Jump to: navigation, search Name: Northeast Kansas Bioenergy LLC Place: Hiawatha, Kansas Zip: 66434 Product: Developing and integrated Bioethanol Biodiesel...

  11. Tremont Electric, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Electric, LLC Address: 2379 Professor Ave Place: Cleveland, Ohio Zip: 44113 Sector: Bioenergy Website: www.npowerpeg.com References: Tremont Electric, LLC1 This article is a...

  12. Terranova Bioenergy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Terranova Bioenergy LLC Jump to: navigation, search Name: Terranova Bioenergy LLC Place: Larkspur, California Zip: 94939 Sector: Biofuels Product: California-based project...

  13. Environmental Capital Partners LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Partners LLC Jump to: navigation, search Name: Environmental Capital Partners LLC Place: New York, New York Zip: 10017 Sector: Services Product: Private equity firm funded with USD...

  14. Environmental Capital Group LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Group LLC Jump to: navigation, search Name: Environmental Capital Group LLC Place: Grass Valley, California Zip: 95945 Product: String representation "Environmental C ... tartup...

  15. Digital Power Capital LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Capital LLC Jump to: navigation, search Name: Digital Power Capital LLC Place: Greenwich, Connecticut Zip: 6830 Product: A private equity firm focused on new technologies that...

  16. Conservation Capital LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Conservation Capital LLC Jump to: navigation, search Name: Conservation Capital LLC Place: Houston, Texas Zip: 77018 Product: Houston-based land investment and consulting company...

  17. Nimes Capital LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Nimes Capital LLC Jump to: navigation, search Name: Nimes Capital LLC Place: Los Angeles, California Zip: 90067 Product: Los Angeles-based private equity firm that provides growth...

  18. Strategic Capital Investments LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Capital Investments LLC Jump to: navigation, search Name: Strategic Capital Investments LLC Place: Short Hills, New Jersey Zip: 7078 Product: New Jersey-based, project development...

  19. Chestnut Capital LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Capital LLC Jump to: navigation, search Name: Chestnut Capital LLC Place: West Newton, Massachusetts Zip: 2465 Sector: Wind energy Product: Chestnut Capital is a wind energy...

  20. Marathon Capital LLC (Illinois) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Logo: Marathon Capital LLC (Illinois) Name: Marathon Capital LLC (Illinois) Address: 2801 Lakeside Drive, Suite 210 Place: Bannockburn, Illinois Zip: 60015 Product: Investment...