National Library of Energy BETA

Sample records for hydrogen fueling system

  1. hydrogen-fueled transportation systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  2. Water reactive hydrogen fuel cell power system

    SciTech Connect

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  3. Water reactive hydrogen fuel cell power system

    DOEpatents

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  4. Hydrogen-Fueled Vehicle Safety Systems Animation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen-Fueled Vehicle Safety Systems Animation Hydrogen-Fueled Vehicle Safety Systems Animation This animation demonstrates the multiple safety systems in hydrogen-fueled ...

  5. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel...

    Energy Saver

    Models and Tools: Systems Analysis of Hydrogen and Fuel Cells Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells The Fuel Cell Technologies Office's systems ...

  6. Fuel cell using a hydrogen generation system

    DOEpatents

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-10-19

    A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  7. Small Fuel Cell Systems with Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    27/2011 eere.energy.gov H 2 and FC Technologies Manufacturing R&D Workshop Renaissance Hotel, Washington, DC August 11-12, 2011 Small Fuel Cell Systems with Hydrogen Storage Ned T. Stetson, Ph.D. Team Lead, Hydrogen Storage Fuel Cell Technologies Program U.S. Dept. of Energy 2 | Fuel Cell Technologies Program Source: US DOE 9/27/2011 eere.energy.gov * Reduction in greenhouse gas emissions? - Not much impact * Reduction in dependency on petroleum? - Not much impact * Development of vendor

  8. Small Fuel Cell Systems with Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Systems with Hydrogen Storage Small Fuel Cell Systems with Hydrogen Storage Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. mfg2011_iii_stetson.pdf (882.27 KB) More Documents & Publications Overview of Hydrogen and Fuel Cells: National Academy of Sciences March 2011 Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview Hydrogen and Fuel Cell Technologies Overview

  9. Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) Hydrogen fueled vehicles have multiple safety systems that detect and prevent the accidental release of hydrogen. There are sensors that detect leaks, a computer that monitors fuel flow, and an excess flow shut-off valve. Hydrogen tanks also have a pressure release device, much like those on natural gas water heaters in our homes. If a leak is

  10. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model This presentation by ...

  11. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System...

    Office of Environmental Management (EM)

    DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost - 2014 Program record 14014 from the U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program ...

  12. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System...

    Energy.gov [DOE] (indexed site)

    Program record 14014 from the U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program provides information about fuel cell system costs in 2014. DOE Hydrogen and Fuel Cells...

  13. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Model | Department of Energy Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model This presentation by Michael Wang of Argonne National Laboratory provides information about an analysis of hydrogen-powered fuel-cell systems. fuel_cycle_comparison_forklifts_presentation.pdf (202.5 KB) More Documents & Publications Fuel Cycle Comparison of Distributed Power Generation Technologies

  14. Hydrogen Storage and Supply for Vehicular Fuel Systems - Energy Innovation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Portal Vehicles and Fuels Vehicles and Fuels Find More Like This Return to Search Hydrogen Storage and Supply for Vehicular Fuel Systems Lawrence Livermore National Laboratory Contact LLNL About This Technology Publications: PDF Document Publication Cryotank for storage of hydrogen as a vehicle fuel by J. Raymond Smith - Accelerating Innovation Webinar Presentation (11,941 KB) Technology Marketing Summary Various alternative-fuel systems have been proposed for passenger vehicles and

  15. NREL: Hydrogen and Fuel Cells Research - Systems Analysis

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Systems Analysis Graphic showing a map and chart. Hydrogen infrastructure simulation models focus on the spatial and temporal deployment of vehicles and fueling infrastructure to provide insights into investment decisions and policy support options. Image of a generic bar graph. H2FAST: Hydrogen Financial Analysis Scenario Tool Delivers in-depth financial analysis for hydrogen fueling stations. NREL's hydrogen systems analysis activities provide direction, insight, and support for the

  16. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost – 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    Program record 14014 from the U.S. Department of Energy's Hydrogen and Fuel Cells Program provides information about fuel cell system costs in 2014.

  17. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect

    Garabedian, Harold T. Wight, Gregory Dreier, Ken Borland, Nicholas

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable

  18. NREL: Hydrogen and Fuel Cells Research - Stationary Fuel Cell Systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Analysis Stationary Fuel Cell Systems Analysis NREL's technology validation team analyzes the performance of stationary fuel cell systems operating in real-world conditions and reports on the technology's performance, progress, and challenges. This analysis includes multiple fuel cell types-proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate-with system sizes ranging from 5 kW to 2.8 MW. Overview Composite Data Products Publications Learn More Contacts Photo of

  19. Polymers for hydrogen infrastructure and vehicle fuel systems :

    SciTech Connect

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  20. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Michael Wang Argonne ... update the GREET model * Conduct WTW or fuel-cycle simulations with GREET * Analyze and ...

  1. NREL: Hydrogen and Fuel Cells Research - Fuel Cell System Contaminants

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Material Screening Data System Contaminants Material Screening Data NREL designed this interactive material selector tool to help fuel cell developers and material suppliers explore the results of fuel cell system contaminants studies, which were performed in collaboration with General Motors, the University of South Carolina, and the Colorado School of Mines. Select from the drop-down lists of materials to see the screening data collected from multiple methods. You can also view the data

  2. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    SciTech Connect

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  3. APS Alternative Fuel (Hydrogen) Pilot Plant - Monitoring System Report

    SciTech Connect

    James Francfort; Dimitri Hochard

    2005-07-01

    The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA), along with Electric Transportation Applications and Arizona Pubic Service (APS), is monitoring the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant to determine the costs to produce hydrogen fuels (including 100% hydrogen as well as hydrogen and compressed natural gas blends) for use by fleets and other operators of advanced-technology vehicles. The hydrogen fuel cost data will be used as benchmark data by technology modelers as well as research and development programs. The Pilot Plant can produce up to 18 kilograms (kg) of hydrogen per day by electrolysis. It can store up to 155 kg of hydrogen at various pressures up to 6,000 psi. The dispenser island can fuel vehicles with 100% hydrogen at 5,000 psi and with blends of hydrogen and compressed natural gas at 3,600 psi. The monitoring system was designed to track hydrogen delivery to each of the three storage areas and to monitor the use of electricity on all major equipment in the Pilot Plant, including the fuel dispenser island. In addition, water used for the electrolysis process is monitored to allow calculation of the total cost of plant operations and plant efficiencies. The monitoring system at the Pilot Plant will include about 100 sensors when complete (50 are installed to date), allowing for analysis of component, subsystems, and plant-level costs. The monitoring software is mostly off-the-shelve, with a custom interface. The majority of the sensors input to the Programmable Automation Controller as 4- to 20-mA analog signals. The plant can be monitored over of the Internet, but the control functions are restricted to the control room equipment. Using the APS general service plan E32 electric rate of 2.105 cents per kWh, during a recent eight-month period when 1,200 kg of hydrogen was produced and the plant capacity factor was 26%, the electricity cost to produce one kg of hydrogen was $3.43. However, the

  4. Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels | Hydrogen Production and Delivery Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Production and Delivery Chapter 7: Technology Assessments Introduction to the Technology/System Hydrogen Production and Delivery: Opportunities and Challenges Hydrogen and hydrogen-rich fuels such as natural gas and biogas can be used in fuel cells to provide power and heat cleanly and efficiently in a wide range of transportation, stationary, and portable-power applications. Widespread deployment of hydrogen and fuel cell technologies offers a broad range of benefits for the

  5. Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen

    DOEpatents

    Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

    1986-01-28

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  6. DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems – Projected Performance and Cost Parameters

    Energy.gov [DOE]

    This program record from the Department of Energy's Hydrogen and Fuel Cells Program provides information about the projected performance and cost parameters of on-board hydrogen storage systems.

  7. Hydrogen Fuel Cell Demonstration ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydrogen fuel cells have a long track record of supplying efficient, emissions-free power ... power, by demonstrating a hydrogen fuel cell deployment in a commercial port setting. ...

  8. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    SciTech Connect

    Janice Thomas

    2010-05-31

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles ?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  9. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Page1 Hierarchy of Various Models Used for Hydrogen and Fuel Cell Analyses Analysis Models and Tools Systems Analysis of Hydrogen & Fuel Cells With a multitude of end-uses-such as distributed power for back-up, primary, and combined heat-and- power systems; automobiles, buses, forklifts and other specialty vehicles; and auxiliary power units and portable electronics-fuel cell applications hold potential to dramatically impact the 21st century clean energy economy. Fuel cells can efficiently

  10. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  11. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System

    SciTech Connect

    Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

    2011-06-30

    The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The

  12. Hydrogen vehicle fueling station

    SciTech Connect

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  13. Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-Fueled Transportation System

    SciTech Connect

    Melendez, M.; Theis, K.; Johnson, C.

    2007-08-01

    Report describes efforts to deploy alternative transportation fuels and how those experiences might apply to a hydrogen-fueled transportation system.

  14. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    SciTech Connect

    Thomas, C.E.

    1997-05-01

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  15. Alternative Fuels Data Center: Hydrogen

    Alternative Fuels and Advanced Vehicles Data Center

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Hydrogen on Google Bookmark Alternative Fuels Data Center: Hydrogen on Delicious Rank Alternative Fuels Data Center: Hydrogen on Digg Find More places to share Alternative Fuels Data Center: Hydrogen on

  16. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Fuel Cell Technologies Office's systems analysis program uses a consistent set of models and data for transparent analytical evaluations. The following fact sheets provide an overview and individual summaries of the models and tools used for systems analysis of hydrogen and fuel cells.

  17. Hydrogen Fuel Quality (Presentation)

    SciTech Connect

    Ohi, J.

    2007-05-17

    Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

  18. President's Hydrogen Fuel Initiative

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hydrogen Infrastructure and Fuel Cell Technologies put on an Accelerated Schedule. President Bush commits a total $1.7 billion over first 5 years

  19. Hydrogen Fuel Cells

    Publication and Product Library

    The fuel cell an energy conversion device that can efficiently capture and use the power of hydrogen is the key to making it happen.

  20. Hydrogen Fuel Cells

    Publication and Product Library

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  1. Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet)

    SciTech Connect

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in accurately modeling costs for fuel cell-based combined heat, hydrogen, and power systems. Work was performed by NREL's Hydrogen Technologies and Systems Center.

  2. Hydrogen Fuel Quality

    SciTech Connect

    Rockward, Tommy

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  3. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation ...

  4. Webinar: 2011-2012 Hydrogen Student Design Contest Winners: On-Campus Tri-Generation Fuel Cell Systems

    Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, 2011-2012 Hydrogen Student Design Contest Winners: On-Campus Tri-Generation Fuel Cell Systems, originally presented on September 4, 2012.

  5. Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5/2011 eere.energy.gov 5 th International Conference on Polymer Batteries & Fuel Cells Argonne, Illinois Hydrogen and Fuel Cell Activities Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager August 4, 2011 2 | Fuel Cell Technologies Program Source: US DOE 8/5/2011 eere.energy.gov Fuel Cells: Benefits & Market Potential The Role of Fuel Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions * 35-50%+ reductions for CHP systems (>80% with

  6. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    SciTech Connect

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

    1997-02-01

    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  7. PEM fuel cell stack performance using dilute hydrogen mixture. Implications on electrochemical engine system performance and design

    SciTech Connect

    Inbody, M.A.; Vanderborgh, N.E.; Hedstrom, J.C.; Tafoya, J.I.

    1996-12-31

    Onboard fuel processing to generate a hydrogen-rich fuel for PEM fuel cells is being considered as an alternative to stored hydrogen fuel for transportation applications. If successful, this approach, contrasted to operating with onboard hydrogen, utilizes the existing fuels infrastructure and provides required vehicle range. One attractive, commercial liquid fuels option is steam reforming of methanol. However, expanding the liquid methanol infrastructure will take both time and capital. Consequently technology is also being developed to utilize existing transportation fuels, such as gasoline or diesel, to power PEM fuel cell systems. Steam reforming of methanol generates a mixture with a dry gas composition of 75% hydrogen and 25% carbon dioxide. Steam reforming, autothermal reforming, and partial oxidation reforming of C{sub 2} and larger hydrocarbons produces a mixture with a more dilute hydrogen concentration (65%-40%) along with carbon dioxide ({approx}20%) and nitrogen ({approx}10%-40%). Performance of PEM fuel cell stacks on these dilute hydrogen mixtures will affect the overall electrochemical engine system design as well as the overall efficiency. The Los Alamos Fuel Cell Stack Test facility was used to access the performance of a PEM Fuel cell stack over the range of gas compositions chosen to replicate anode feeds from various fuel processing options for hydrocarbon and alcohol fuels. The focus of the experiments was on the anode performance with dilute hydrogen mixtures with carbon dioxide and nitrogen diluents. Performance with other anode feed contaminants, such as carbon monoxide, are not reported here.

  8. Hydrogen Fuel Cell Demonstration ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Brothers, Ltd., at their facility in the Port of Honolulu. The pilot hydrogen fuel cell unit will be used in place of a diesel generator currently used to provide power for...

  9. Hydrogen Fuel Quality - Focus: Analytical Methods Development...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results ...

  10. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    SciTech Connect

    Breault, R.W.; Rolfe, J.

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  11. Overview of Hydrogen and Fuel Cells: National Academy of Sciences...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview Small Fuel Cell Systems with Hydrogen Storage Hydrogen and Infrastructure ...

  12. NREL: Hydrogen and Fuel Cells Research - Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Projects Photo of person at work in laboratory setting. NREL scientist tests a photoelectrochemical water-splitting system used for renewable hydrogen production. Photo by Dennis Schroeder, NREL NREL hydrogen and fuel cell research projects support the development and adoption of cost-effective, high-performance fuel cell systems and sustainable hydrogen technologies for transportation, stationary, and portable applications. Learn about our projects: Fuel cells Hydrogen production and delivery

  13. Maritime Hydrogen Fuel Cell project

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... SunShot Grand Challenge: Regional Test Centers Maritime Hydrogen Fuel Cell project HomeTag:Maritime Hydrogen Fuel Cell project - Pete Devlin, of the Department of Energy's Fuel ...

  14. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center

    Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling

  15. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell ...

  16. Slurry-Based Chemical Hydrogen Storage Systems for Automotive Fuel Cell Applications

    SciTech Connect

    Brooks, Kriston P.; Semelsberger, Troy; Simmons, Kevin L.; Van Hassel, Bart A.

    2014-05-30

    In this paper, the system designs for hydrogen storage using chemical hydrogen materials in an 80 kWe fuel cell, light-duty vehicle are described. Ammonia borane and alane are used for these designs to represent the general classes of exothermic and endothermic materials. The designs are then compared to the USDRIVE/DOE developed set of system level targets for on-board storage. While most of the DOE targets are predicted to be achieved based on the modeling, the system gravimetric and volumetric densities were more challenging and became the focus of this work. The resulting system evaluation determined that the slurry is majority of the system mass. Only modest reductions in the system mass can be expected with improvements in the balance of plant components. Most of the gravimetric improvements will require developing materials with higher inherent storage capacity or by increasing the solids loading of the chemical hydrogen storage material in the slurry.

  17. DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected Performance and Cost Parameters DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage ...

  18. The DOE Hydrogen and Fuel Cells Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Electric Power System Mass vs. Vehicle Range ... of hydrogen and fuel cell technologies, which will reduce petroleum use, greenhouse ... Office | 16 Solar Sources: Opportunity ...

  19. NREL: Hydrogen and Fuel Cells Research - 2015 Energy Systems Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Facility Annual Report Calls to Industry: Bring Us Your Challenges 2015 Energy Systems Integration Facility Annual Report Calls to Industry: Bring Us Your Challenges April 6, 2016 The 2015 Energy Systems Integration Facility Annual Report is now available for download. The Energy Systems Integration Facility (ESIF) is the nation's premier facility for research, development, and demonstration of the components and strategies needed to optimize our entire energy system. It was established in

  20. NREL: Hydrogen and Fuel Cells Research - NREL's Hydrogen Fueling

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Infrastructure Research: Year in Review NREL's Hydrogen Fueling Infrastructure Research: Year in Review Photo of two fuel cell vehicles parked next to NREL's hydrogen fueling station. FCEVs at NREL's Hydrogen Infrastructure Testing and Research Facility. Photo by Dennis Schroeder, NREL 40155 October 7, 2016 This week the National Renewable Energy Laboratory (NREL) joins others across the United States to celebrate National Hydrogen and Fuel Cell Day on Oct. 8-10.08-a date chosen to represent

  1. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fueling Infrastructure

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Analysis Fueling Infrastructure Analysis As the market grows for hydrogen fuel cell electric vehicles, so does the need for a comprehensive hydrogen fueling infrastructure. NREL's technology validation team is analyzing the availability and performance of existing hydrogen fueling stations, benchmarking the current status, and providing feedback related to capacity, utilization, station build time, maintenance, fueling, and geographic coverage. Overview Composite Data Products Publications

  2. NREL: Hydrogen and Fuel Cells Research - Hydrogen Infrastructure Testing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Research Facility Hydrogen Infrastructure Testing and Research Facility Text Version The Hydrogen Infrastructure Testing and Research Facility (HITRF) at NREL's Energy Systems Integration Facility (ESIF) consists of hydrogen storage, compression, and dispensing capabilities for fuel cell vehicle fueling and component testing. The HITRF is the first facility of its kind in Colorado and will be available to industry for use in research and development activities. In addition to fueling

  3. Hydrogen & Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Joint Plenary

  4. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric...

    Energy.gov [DOE] (indexed site)

    Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)" held on June 24, 2014. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles ...

  5. Hydrogen-enriched fuels

    SciTech Connect

    Roser, R.

    1998-08-01

    NRG Technologies, Inc. is attempting to develop hardware and infrastructure that will allow mixtures of hydrogen and conventional fuels to become viable alternatives to conventional fuels alone. This commercialization can be successful if the authors are able to achieve exhaust emission levels of less than 0.03 g/kw-hr NOx and CO; and 0.15 g/kw-hr NMHC at full engine power without the use of exhaust catalysts. The major barriers to achieving these goals are that the lean burn regimes required to meet exhaust emissions goals reduce engine output substantially and tend to exhibit higher-than-normal total hydrocarbon emissions. Also, hydrogen addition to conventional fuels increases fuel cost, and reduces both vehicle range and engine output power. Maintaining low emissions during transient driving cycles has not been demonstrated. A three year test plan has been developed to perform the investigations into the issues described above. During this initial year of funding research has progressed in the following areas: (a) a cost effective single-cylinder research platform was constructed; (b) exhaust gas speciation was performed to characterize the nature of hydrocarbon emissions from hydrogen-enriched natural gas fuels; (c) three H{sub 2}/CH{sub 4} fuel compositions were analyzed using spark timing and equivalence ratio sweeping procedures and finally; (d) a full size pick-up truck platform was converted to run on HCNG fuels. The testing performed in year one of the three year plan represents a baseline from which to assess options for overcoming the stated barriers to success.

  6. Hydrogen and Fuel Cells Program Plenary Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    U.S. Department of Energy Hydrogen & Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting Dr. Sunita Satyapal Director Fuel Cell Technologies Office U.S. Department of Energy June 2014 2 | Fuel Cell Technologies Office eere.energy.gov Fuel Cell Market Market Growth Fuel cell markets continue to grow * >25% increase in global MWs shipped since 2012 * 35% increase in revenues from fuel cell systems shipped over last year * Consistent ~30% annual growth in global systems

  7. Hydrogen and Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen and Fuel Cells Program U.S. Department of Energy Hydrogen + Fuel Cells 2011 International Conference and Exhibition Vancouver, Canada May 17, 2011 Enable widespread commercialization of hydrogen and fuel cell technologies: * Early markets such as stationary power, lift trucks, and portable power * Mid-term markets such as residential CHP systems, auxiliary power units, fleets and buses * Long-term markets including mainstream transportation applications/light duty vehicles Updated

  8. NREL: Hydrogen and Fuel Cells Research - Early Fuel Cell Market

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Demonstrations Early Fuel Cell Market Demonstrations Photo of fuel cell backup power system in outdoor setting. Photo of fuel cell forklifts in warehouse setting. Fuel cell backup power systems offer longer continuous runtimes and greater durability than traditional batteries in harsh outdoor environments. For specialty vehicles such as forklifts, fuel cells can be a cost-competitive alternative to traditional lead-acid batteries. Learn More Subscribe to the biannual Fuel Cell and Hydrogen

  9. DOE Hydrogen & Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    t t 1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U S D f E Overview U.S. ...

  10. NREL: Hydrogen and Fuel Cells Research - Contaminants

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contaminants Image of a generic bar graph. Material Screening Data Tool Explore the results of fuel cell system contaminants studies. As fuel cell systems become more commercially competitive, and as automotive fuel cell research and development trends toward decreased catalyst loadings and thinner membranes, fuel cell operation becomes even more susceptible to contaminants. At NREL, we are researching system-derived contaminants and hydrogen fuel quality. Air contaminants are of interest as

  11. Alternative Fuels Data Center: Hydrogen Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Delicious Rank

  12. Hydrogen Fuel for Material Handling

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    p Hydrogen Fuel for Hydrogen Fuel for Material Handling Tom Joseph © Air Products & Chemicals, Inc., 2009 7201 Hamilton Blvd Allentown PA 18195 7201 Hamilton Blvd., Allentown PA 18195 Fuel Cell Packs for MHE Form Fit and Function Battery Replacement Form, Fit and Function Battery Replacement © Air Products & Chemicals, Inc., 2009 Courtesy of Ballard Power Systems 31.1 x 13.2 x 31.6 LWH MHE Classes and Pack size 4kW 9kW 14kW 4kW 9kW 14kW CLASS 1 Forklift 32 x 38.6 x 22.7" LWH CLASS

  13. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  14. NREL Dedicates Advanced Hydrogen Fueling Station - News Releases | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL Dedicates Advanced Hydrogen Fueling Station Ceremony Coincides With National Hydrogen and Fuel Cell Day October 8, 2015 The Energy Department's National Renewable Energy Laboratory (NREL) today dedicated its 700 bar hydrogen fueling station, the first of its kind in Colorado and in the national lab system, as part of a celebration of National Hydrogen and Fuel Cell Day. The fueling station is part of NREL's new Hydrogen Infrastructure Testing and Research Facility (HITRF), where scientists

  15. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program DOECESATTC Hydrogen and Fuel Cells Webinar December ...

  16. Systems Modeling of Chemical Hydride Hydrogen Storage Materials for Fuel Cell Applications

    SciTech Connect

    Brooks, Kriston P.; Devarakonda, Maruthi N.; Rassat, Scot D.; Holladay, Jamelyn D.

    2011-10-05

    A fixed bed reactor was designed, modeled and simulated for hydrogen storage on-board the vehicle for PEM fuel cell applications. Ammonia Borane (AB) was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to {approx}16% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. The design evaluated consisted of a tank with 8 thermally isolated sections in which H2 flows freely between sections to provide ballast. Heating elements are used to initiate reactions in each section when pressure drops below a specified level in the tank. Reactor models in Excel and COMSOL were developed to demonstrate the proof-of-concept, which was then used to develop systems models in Matlab/Simulink. Experiments and drive cycle simulations showed that the storage system meets thirteen 2010 DOE targets in entirety and the remaining four at greater than 60% of the target.

  17. economic hydrogen fuel cell vehicles

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    economic hydrogen fuel cell vehicles - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future ...

  18. Hydrogen Production and Storage for Fuel Cells: Current Status | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy and Storage for Fuel Cells: Current Status Hydrogen Production and Storage for Fuel Cells: Current Status Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Hydrogen Production and Storage for Fuel Cells, February 2, 2011. infocallfeb11_lipman.pdf (0 B) More Documents & Publications Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems Financing Fuel Cells The Department of Energy Hydrogen and Fuel Cells

  19. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    SciTech Connect

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable

  20. Alternative Fuels Data Center: Hydrogen Related Links

    Alternative Fuels and Advanced Vehicles Data Center

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Related Links to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Related Links on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Related Links on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Related Links on Google Bookmark Alternative Fuels Data Center: Hydrogen Related Links on Delicious Rank Alternative Fuels Data Center: Hydrogen Related Links on

  1. NREL: Hydrogen and Fuel Cells Research - Basics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydrogen and Fuel Cell Basics Photo of vehicle filling up at renewable hydrogen fueling station. NREL's hydrogen fueling station dispenses hydrogen produced via renewable electrolysis. Photo by Dennis Schroeder, NREL NREL researchers are working to unlock the potential of hydrogen as a fuel and to advance fuel cell technologies for automobiles, equipment, and buildings. View the Hydrogen Program video on NREL's YouTube channel to learn more about the basics of NREL's hydrogen and fuel cell

  2. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles & Fuels » Fuels » Hydrogen Fuel Basics Hydrogen Fuel Basics August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the

  3. Hydrogen Fuel Cell Engines and Related Technologies Course | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Hydrogen Fuel Cell Engines and Related Technologies Course Hydrogen Fuel Cell Engines and Related Technologies Course Photo of hydrogen-powered bus. Produced by College of the Desert and SunLine Transit Agency with funding from the U.S. Federal Transit Administration, this course features technical information on the use of hydrogen as a transportation fuel. It covers hydrogen properties, use, and safety as well as fuel cell technologies, systems, engine design, safety, and

  4. Chrysler Pentastar direct hydrogen fuel cell program

    SciTech Connect

    Kimble, M.; Deloney, D.

    1995-08-01

    The Chrysler Pentastar Electronics, Inc. Direct Hydrogen Fueled PEM Fuel Cell Hybrid Vehicle Program (DPHV) was initiated 1 July, 1994 with the following mission, {open_quotes}Design, fabricate, and test a Direct Hydrogen Fueled Proton Exchange Membrane (PEM) Fuel Cell System including onboard hydrogen storage, an efficient lightweight fuel cell, a gas management system, peak power augmentation and a complete system controls that can be economically mass produced and comply with all safety environmental and consumer requirements for vehicle applications for the 21st century.{close_quotes} The Conceptual Design for the entire system based upon the selection of an applicable vehicle and performance requirements that are consistent with the PNGV goals will be discussed. A Hydrogen Storage system that has been selected, packaged, and partially tested in accordance with perceived Hydrogen Safety and Infrastructure requirements will be discussed in addition to our Fuel Cell approach along with design of the {open_quotes}real{close_quotes} module. The Gas Management System and the Load Leveling System have been designed and the software programs have been developed and will be discussed along with a complete fuel cell test station that has the capability to test up to a 60 kW fuel cell system.

  5. Hydrogen and Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9/9/2011 eere.energy.gov FUEL CELL TECHNOLOGIES PROGRAM MANUFACTURING WORKSHOP Hydrogen and Fuel Cell Technologies Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Manager 8/11/2011 2 | Fuel Cell Technologies Program Source: US DOE 9/9/2011 eere.energy.gov Purpose * Identify and prioritize challenges and barriers to manufacture of hydrogen and fuel cell systems and components * Identify and prioritize R&D activities that government can support to overcome

  6. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by Sunita Satyapal at the 2010 Fuel ...

  7. Say hello to cheaper hydrogen fuel cells

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Say hello to cheaper hydrogen fuel cells Say hello to cheaper hydrogen fuel cells Laboratory scientists have developed a way to avoid the use of expensive platinum in hydrogen fuel ...

  8. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bus Evaluation: Report for the 2001 Hydrogen Program Review Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review This paper, presented at the 2001 DOE ...

  9. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Kreutz, T.

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  10. NREL Dedicates Advanced Hydrogen Fueling Station | Community...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL Dedicates Advanced Hydrogen Fueling Station Ceremony Coincides With National Hydrogen and Fuel Cell Day October 8, 2015 The Energy Department's National Renewable Energy...

  11. California National Guard Sustainability Planning, Hydrogen Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    National Guard Sustainability Planning, Hydrogen Fuel Goals California National Guard Sustainability Planning, Hydrogen Fuel Goals Overview of California Guard Army Facilities, ANG ...

  12. Hydrogen Fueling Infrastructure Research and Station Technology...

    Energy.gov [DOE] (indexed site)

    An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014. Hydrogen Fueling Infrastructure Research and ...

  13. hydrogen-fuel-cell-powered generator

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    hydrogen-fuel-cell-powered generator - Sandia Energy Energy Search Icon Sandia Home ... SunShot Grand Challenge: Regional Test Centers hydrogen-fuel-cell-powered generator Home...

  14. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Download the webinar slides from the U.S. Department of Energy Fuel Cell Technologies Office webinar, "Hydrogen Refueling Protocols," held February 22, 2013. Hydrogen Refueling Protocols Webinar Slides (3.49 MB) More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization Developing SAE Safety Standards for Hydrogen and

  15. Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell...

    Energy.gov [DOE] (indexed site)

    Below is the text version of the webinar titled "Hydrogen Fueling for Current and ... what's going on in the world of hydrogen and fuel cells and especially what's ...

  16. Webinar: Photosynthesis for Hydrogen and Fuels Production

    Energy.gov [DOE]

    Slides presented at the Fuel Cell Technologies Office webinar "Photosynthesis for Hydrogen and Fuels Production" on January 24, 2011.

  17. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell Technologies Program describing hydrogen fuel cell technology. Fuel Cells Fact Sheet (545.14 KB) More Documents & Publications Comparison of Fuel Cell Technologies: Fact Sheet Fuel Cells Fact Sheet 2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies

  18. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect

    J. Francfort

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  19. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center

    Hydrogen fuel cell electric vehicles emit only water vapor, warm air, and some hydrogen, ... Emissions, and Water Impacts examined GHG emissions from various hydrogen pathways. ...

  20. Hydrogen and Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2011 Annual Merit Review and Peer Evaluation Meeting May 9, 2011 Enable widespread commercialization of hydrogen and fuel cell technologies: * Early markets such as stationary power, lift trucks, and portable power * Mid-term markets such as residential CHP systems, auxiliary power units, fleets and buses * Long-term markets including mainstream transportation applications/light duty vehicles Updated Program Plan May 2011 Hydrogen and Fuel Cells Key Goals 2 from renewables or low carbon

  1. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Energy » Hydrogen & Fuel Cells » Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed in a fuel cell, produces only water. Hydrogen can be produced from a variety of domestic resources, such as natural gas, nuclear power, biomass, and renewable power like solar and wind. These qualities make it an attractive fuel option for transportation and electricity generation applications. It can be used in cars, in houses,

  2. Hydrogen & Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency » Vehicles » Hydrogen & Fuel Cells Hydrogen & Fuel Cells Watch this video to find out how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. Learn more about hydrogen and fuel cell technology basics. Fuel cells produce electricity from a number of domestic fuels, including hydrogen and renewables, and can provide power for virtually any application -- from cars and buses to commercial

  3. System comparison of hydrogen with other alternative fuels in terms of EPACT requirements

    SciTech Connect

    Barbir, F.; Oezay, K.; Veziroglu, T.N.

    1996-10-01

    The feasibility of several alternative fuels, namely natural gas, methanol, ethanol, hydrogen and electricity, to replace 10% of gasoline by the year 2000 has been investigated. The analysis was divided in two parts: (i) analysis of vehicle technologies, and (ii) analysis of fuel production storage and distribution, from the primary energy sources to the refueling station. Only technologies that are developed to at least demonstration level were considered. The amount and type of the primary energy sources have been determined for each of the fuels being analyzed. A need for a common denominator for different types of energy has been identified.

  4. Dispensing Hydrogen Fuel to Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Delivery » Dispensing Hydrogen Fuel to Vehicles Dispensing Hydrogen Fuel to Vehicles Photo of a person dispensing hydrogen into a vehicle fuel tank The technology used for storing hydrogen onboard vehicles directly affects the design and selection of the delivery system and infrastructure. In the near term, 700 bar gaseous onboard storage has been chosen by the original equipment manufacturers for the first vehicles to be released commercially, and 350 bar is the chosen pressure for

  5. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect

    None, None

    2015-12-23

    The 2015 Annual Progress Report summarizes fiscal year 2015 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; and market transformation.

  6. Hydrogen and Fuel Cells Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    71 Hydrogen and Fuel Cells Success Stories en Doosan Fuel Cell Takes Closed Plant to Full Production http:energy.goveeresuccess-storiesarticlesdoosan-fuel-cell-takes-closed-p...

  7. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program January 5, 2011 2 | ...

  8. Overview of Hydrogen & Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Source: US DOE 2252011 eere.energy.gov Overview of Hydrogen & Fuel Cell Activities FUEL CELL TECHNOLOGIES PROGRAM IPHE - Stationary Fuel Cell Workshop Rick Farmer U.S. ...

  9. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Electric...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Electric Availability to someone by E-mail Share Alternative Fuels ...

  10. Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station

    Alternative Fuels and Advanced Vehicles Data Center

    Example Layout (Text Version) Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) to someone by E-mail Share Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Facebook Tweet about Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Twitter Bookmark Alternative Fuels Data Center:

  11. Sorbent Material Property Requirements for On-Board Hydrogen Storage for Automotive Fuel Cell Systems.

    SciTech Connect

    Ahluwalia, R. K.; Peng, J-K; Hua, T. Q.

    2015-05-25

    Material properties required for on-board hydrogen storage in cryogenic sorbents for use with automotive polymer electrolyte membrane (PEM) fuel cell systems are discussed. Models are formulated for physical, thermodynamic and transport properties, and for the dynamics of H-2 refueling and discharge from a sorbent bed. A conceptual storage configuration with in-bed heat exchanger tubes, a Type-3 containment vessel, vacuum insulation and requisite balance-of-plant components is developed to determine the peak excess sorption capacity and differential enthalpy of adsorption for 5.5 wt% system gravimetric capacity and 55% well-to-tank (WTT) efficiency. The analysis also determines the bulk density to which the material must be compacted for the storage system to reach 40 g.L-1 volumetric capacity. Thermal transport properties and heat transfer enhancement methods are analyzed to estimate the material thermal conductivity needed to achieve 1.5 kg.min(-1) H-2 refueling rate. Operating temperatures and pressures are determined for 55% WTT efficiency and 95% usable H-2. Needs for further improvements in material properties are analyzed that would allow reduction of storage pressure to 50 bar from 100 bar, elevation of storage temperature to 175-200 K from 150 K, and increase of WTT efficiency to 57.5% or higher.

  12. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Environmental Management (EM)

    Systems Analysis 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure ...

  13. Hydrogen storage and generation system

    DOEpatents

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  14. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Energy Saver

    Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel ...

  15. Hydrogen Delivery and Fueling

    SciTech Connect

    2015-09-09

    This MP3 provides an overview of how hydrogen is delivered from the point of production to where it is used.

  16. NREL: Hydrogen and Fuel Cells Research - National Fuel Cell Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Evaluation Center National Fuel Cell Technology Evaluation Center The National Fuel Cell Technology Evaluation Center (NFCTEC) at NREL's Energy Systems Integration Facility (ESIF) plays a crucial role in NREL's independent, third-party analysis of hydrogen fuel cell technologies in real-world operation. The NFCTEC is designed for secure management, storage, and processing of proprietary data from industry. Access to the off-network NFCTEC is limited to NREL's Technology Validation Team,

  17. NREL: Energy Systems Integration Facility - Fuel Distribution...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fuel Distribution Buses The Energy Systems Integration Facility's integrated fuel distribution buses provide natural gas, hydrogen, and diesel for fueling applications. Standard, ...

  18. Coupling hydrogen fuel and carbonless utilities

    SciTech Connect

    Berry, G.D.

    1998-08-01

    A number of previous analyses have focused on comparisons of single hydrogen vehicles to petroleum and alternative fuel vehicles or of stationary hydrogen storage for utility or local power applications. LLNL`s approach is to compare combined transportation/utility storage systems using hydrogen and fossil fuels. Computer models have been constructed to test the hypothesis that combining carbonless electricity sources and vehicles fueled by electrolytic hydrogen can reduce carbon emissions more cost effectively than either approach alone. Three scenarios have been developed and compared using computer simulations, hourly utility demand data, representative data for solar and wind energy sites, and the latest available EIA projections for transportation and energy demand in the US in 2020. Cost projections were based on estimates from GRI, EIA, and a recent DOE/EPRI report on renewable energy technologies. The key question guiding this analysis was: what can be gained by combining hydrogen fuel production and renewable electricity? Bounding scenarios were chosen to analyze three carbon conscious options for the US transportation fuel and electricity supply system beyond 2020: Reference Case -- petroleum transportation and natural gas electric sector; Benchmark Case -- petroleum transportation and carbonless electric sector; and Target Case -- hydrogen transportation and carbonless electric sector.

  19. Techno-economical analysis of an integrated hydrogen generator - fuel cell system

    SciTech Connect

    Recupero, V.; Maggio, G.; Di Leonardo, R.; Lagana, M.

    1996-12-31

    As well known, the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas (SRM). The reaction is endothermic ({Delta}H{sub 298}= 206 kJ/mole) and high H{sub 2}O/CH{sub 4} ratios are required in order to limit coke formation at T higher than 1000 K. Moreover, a common practice indicates that the process fuel economy is highly sensitive to proper heat fluxes, reactor design (tubular type) and to operational conditions. Efficient heat recovery can be accomplished only on large scale units (> 40,000 Nm{sup 3}/h), far from the range of interest for {open_quotes}on-site{close_quotes} fuel cells. Even if, to fit the needs of the fuel cell technology, medium sized external reforming units (50-200 Nm{sup 3} H{sub 2}/h) have been developed and/or planned for integration with both the first and the second generation fuel cells; amelioration in their heat recovery and efficiency is at the expense of an increased sophistication and therefore an higher per unit costs. In all cases, SRM requires an extra {open_quotes}fuel{close_quotes} supply (to substain the, endothermicity of the reaction) in addition to stoichiometric requirements ({open_quotes}feed{close_quotes} gas). An alternative would be the partial oxidation of methane, which is not energy intensive.

  20. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Dennis, E.

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  1. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fuel Cell Bus Evaluations

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydrogen Fuel Cell Bus Evaluations Transit buses are one of the best early transportation applications for fuel cell technology. Buses operate in congested areas where pollution is already a problem. These buses are centrally located and fueled, highly visible, and subsidized by government. By evaluating the experiences of these early adopters, NREL can determine the status of bus fuel cell systems and establish lessons learned to aid other fleets in implementing the next generation of these

  2. Hydrogen and Fuel Cells Program Overview: Hydrogen and Fuel Cells 2011

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    International Conference | Department of Energy Hydrogen and Fuel Cells 2011 International Conference Hydrogen and Fuel Cells Program Overview: Hydrogen and Fuel Cells 2011 International Conference Presentation by Sunita Satyapal at the Hydrogen and Fuel Cells 2011 International Conference on May 17, 2011. Hydrogen and Fuel Cells Program Overview (3.21 MB) More Documents & Publications Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview DOE Fuel Cell Technologies

  3. Hydrogen Fuel Cells and Electric Forklift Trucks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells and Electric Forklift Trucks Hydrogen Fuel Cells and Electric Forklift Trucks Presentation for Dec. 17, 2008 hydrogen bimonthly informational call and meeting series for state and regional initiatives. nha_webinar_steve_medwin_pres.pdf (226.04 KB) More Documents & Publications Full Fuel-Cycle Comparison of Forklift Propulsion Systems An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment The Hydrogen Tax Incentive Act of 2008

  4. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Energy.gov [DOE] (indexed site)

    Hydrogen, Fuel Cells and Infrastructure Technologies program's 2002 annual progress report. 33098.pdf (22.09 MB) More Documents & Publications Webinar: Photosynthesis for Hydrogen ...

  5. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Energy.gov [DOE] (indexed site)

    Panel at the U.S. Department of Energy Hydrogen, Fuel Cells and Infrastructure ... More Documents & Publications Bio-Derived Liquids to Hydrogen Distributed Reforming ...

  6. Hydrogen Fuel Initiative | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hydrogen Fuel Initiative Jump to: navigation, search Contents 1 Introduction 2 Cost 3 Hydrogen Production Strategy 4 Objectives 5 Manufacturing Challenges 6 References Introduction...

  7. DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...

    Office of Environmental Management (EM)

    DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program Presented at the NREL Hydrogen and Fuel Cell ...

  8. Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review...

    Energy.gov [DOE] (indexed site)

    Hydrogen and Fuel Cells Program Overview: Hydrogen and Fuel Cells 2011 International Conference Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview Hydrogen ...

  9. DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold...

    Energy.gov [DOE] (indexed site)

    The hydrogen threshold cost is defined as the hydrogen cost in the range of 2.00-4.00gge (2007), which represents the cost at which hydrogen fuel cell electric vehicles are ...

  10. Infinity Fuel Cell and Hydrogen | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hydrogen Jump to: navigation, search Name: Infinity Fuel Cell and Hydrogen Place: Suffield, Connecticut Zip: 6078 Sector: Hydro, Hydrogen Product: A team of fuel cell, hydrogen and...

  11. HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE UNIVERSITY...

    Energy.gov [DOE] (indexed site)

    Vehicle (FCH2V) GATE Center of Excellence Hydrogen Education Curriculum Path at Michigan Technological University GATE Center for Automotive Fuel Cell Systems at Virginia Tech

  12. DEVELOPMENT OF A RENEWABLE HYDROGEN PRODUCITON AND FUEL CELL...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications GATE Center for Automotive Fuel Cell Systems at Virginia Tech Education and Outreach Fact Sheet Hydrogen Education Curriculum Path at Michigan ...

  13. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...

    Energy.gov [DOE] (indexed site)

    Download the webinar slides from the U.S. Department of Energy Fuel Cell Technologies Office webinar, "Hydrogen Refueling Protocols," held February 22, 2013. Hydrogen Refueling ...

  14. Hydrogen Storage System Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    System Challenges Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles October 29 th , 2015 Mike Veenstra Ford Research & Advanced Engineering Production fuel cell vehicles are being produced or planned by every major automotive OEM Toyota Honda Hyundai (credit: SA / ANL) Customer Expectations Driving Range Refueling Time Cargo Space Vehicle Weight Durability Cost Safety 0.0 2.0 4.0 6.0 8.0 10.0 Gasoline Hydrogen (700 bar) Natural

  15. Hydrogen Fuel Cell Engines and Related Technologies Course Manual

    Office of Energy Efficiency and Renewable Energy (EERE)

    This course manual features technical information on the use of hydrogen as a transportation fuel. It covers hydrogen properties, use, and safety as well as fuel cell technologies, systems, engine design, safety, and maintenance. It also presents the different types of fuel cells and hybrid electric vehicles.

  16. Annual Merit Review: Hydrogen Fueling Station Activities

    Energy.gov [DOE] (indexed site)

    Fuel Cell Technologies Office | 3 Hydrogen & Fuel Cells ... Curb Pumps Refueling Methods Evolved Over Time History shows ... Advanced Electrolysis Photoelectrochemical Solar ...

  17. National Hydrogen and Fuel Cell Day

    Office of Energy Efficiency and Renewable Energy (EERE)

    Join us on Thursday, October 8, in celebrating the first National Hydrogen and Fuel Cell Day! In 2013, auto manufacturers started announcing fuel cell electric vehicle (FCEV) commercialization...

  18. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Sustainability, Washington, DC DOE Hydrogen and Fuel Cell Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager August 8, ...

  19. Reference Designs for Hydrogen Fueling Stations Webinar

    Energy.gov [DOE]

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Reference Designs for Hydrogen Fueling Stations" held on October 13, 2015.

  20. Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel Cells Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel ...

  1. Moving toward a commercial market for hydrogen fuel cell vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations PDF icon ...

  2. NREL: Transportation Research - NREL's Hydrogen Fueling Infrastructure

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research: Year in Review NREL's Hydrogen Fueling Infrastructure Research: Year in Review Photo of two fuel cell vehicles parked next to NREL's hydrogen fueling station. FCEVs at NREL's Hydrogen Infrastructure Testing and Research Facility. Photo by Dennis Schroeder, NREL 40155 October 7, 2016 This week the National Renewable Energy Laboratory (NREL) joins others across the United States to celebrate National Hydrogen and Fuel Cell Day on Oct. 8-10.08-a date chosen to represent the atomic

  3. NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  4. An Introduction to SAE Hydrogen Fueling Standardization

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Introduction to SAE Hydrogen Fueling Standardization Will James U.S. Department of Energy Fuel Cell Technologies Office 2 | Fuel Cell Technologies Office eere.energy.gov 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov SAE INTERNATIONAL U.S. DOE WEBINAR: An Introduction to SAE Hydrogen Fueling Standardization SAE INTERNATIONAL PARTICIPANTS AND AGENDA 4 DOE WEBINAR: An Introduction to SAE Hydrogen Fueling Standardization *Will James -

  5. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is the sixth annual update of a comprehensive automotive fuel cell cost analysis conducted by Strategic Analysis under contract to the U.S. Department of Energy. This 2012 update will cover current status technology updates since the 2011 report, as well as introduce a 2012 bus system analysis considered alongside the automotive system.

  6. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect

    Ogden, J.; Steinbugler, M.; Kreutz, T.

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  7. NREL: Hydrogen and Fuel Cells Research - News Release Archives

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    09 December 28, 2009 NREL Experiments Advance Hydrogen-Production Technology Recent experiments mark a significant step forward for the photoelectrochemical hydrogen-production process. December 16, 2009 NREL Spearheads Development of Fuel Cell Power Model The Fuel Cell Power Model is a financial tool for analyzing high-temperature, fuel cell-based tri-generation systems. December 11, 2009 Workshop Highlights Near-Term Applications for Renewable Hydrogen Technologies Co-hosted by NREL, the

  8. Hydrogen and Fuel Cell Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen and Fuel Cell Technology Basics Hydrogen and Fuel Cell Technology Basics August 14, 2013 - 2:01pm Addthis Photo of a scientist testing a photoelectrochemical water splitting system. Hydrogen is the simplest and most abundant element in the universe. It is a major component of water, oil, natural gas, and all living matter. Despite its simplicity and abundance, hydrogen rarely occurs naturally as a gas on Earth. It is almost always combined with other elements. It can be generated from

  9. Purdue Hydrogen Systems Laboratory

    SciTech Connect

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  10. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Webinar Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS Rob Burgess Moderator Jesse Schneider TIR J2601, ...

  11. Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell Electric

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles (FCEVs) | Department of Energy Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Below is the text version of the webinar titled "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)," originally presented on June 24, 2014. In addition to this text version of the audio, you can access the presentation slides. Alli Aman: [Audio starts

  12. Federal Support for Hydrogen and Fuel Cell Technologies | Department...

    Office of Environmental Management (EM)

    Federal Support for Hydrogen and Fuel Cell Technologies Federal Support for Hydrogen and Fuel Cell Technologies This presentation, which focuses on federal support for hydrogen and ...

  13. Progress and Accomplishments in Hydrogen and Fuel Cells | Department...

    Energy Saver

    and Accomplishments in Hydrogen and Fuel Cells Progress and Accomplishments in Hydrogen and ... state of the art of hydrogen and fuel cell technologies-making significant progress ...

  14. South Carolina Hydrogen and Fuel Cell Alliance | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hydrogen and Fuel Cell Alliance Jump to: navigation, search Name: South Carolina Hydrogen and Fuel Cell Alliance Place: Columbia, South Carolina Zip: 29201 Sector: Hydro, Hydrogen...

  15. NREL: Hydrogen and Fuel Cells Research - Publications

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Publications NREL researchers document their findings in technical reports, conference papers, journal articles, and fact sheets. The following online resources provide publications about hydrogen and fuel cell R&D. NREL Publications Database The NREL publications database offers a wide variety of documents related to hydrogen and fuel cell technologies. Search the database or find publications according to these popular keywords: Fuel cell electric vehicles | fuel cell backup power | fuel

  16. Hydrogen and Gaseous Fuel Safety and Toxicity

    SciTech Connect

    Lee C. Cadwallader; J. Sephen Herring

    2007-06-01

    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  17. Hydrogen and Fuel Cell Technologies FY 2014 Budget Request Rollout...

    Energy.gov [DOE] (indexed site)

    Hydrogen and Fuel Cell Technologies FY 2014 Budget Request Rollout webinar presented by Fuel Cell Technologies Office Director Sunita Satyapal on April 12, 2013. Hydrogen and Fuel ...

  18. Webinar: Introduction to SAE Hydrogen Fueling Standardization

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar titled "Introduction to SAE Hydrogen Fueling Standardization" on Thursday, September 11. The webinar will provide an overview of the SAE Standards SAE J2601 and J2799 and how they are applied to hydrogen fueling for fuel cell electric vehicles (FCEVs).

  19. Prospects on fuel economy improvements for hydrogen powered vehicles.

    SciTech Connect

    Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H.

    2008-01-01

    Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

  20. Accurate Detection of Impurities in Hydrogen Fuel at Lower Cost...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Accurate Detection of Impurities in Hydrogen Fuel at Lower Cost Advancing the science of fuel ...

  1. 2013 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect

    none,

    2013-12-01

    The 2013 Annual Progress Report summarizes fiscal year 2013 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  2. 2014 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect

    none,

    2014-11-01

    The 2014 Annual Progress Report summarizes fiscal year 2014 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  3. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect

    Satyapal, Sunita

    2011-11-01

    The 2011 Annual Progress Report summarizes fiscal year 2011 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; education; market transformation; and systems analysis.

  4. Hydrogen and Fuel Cell Technical Advisory Committee

    SciTech Connect

    2012-03-21

    The Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) was established under Section 807 of the Energy Policy Act of 2005 to provide technical and programmatic advice to the Energy Secretary on DOE's hydrogen research, development, and demonstration efforts.

  5. Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name: Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place:...

  6. NREL: Hydrogen and Fuel Cells Research - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydrogen and Fuel Cell News The following news stories highlight hydrogen and fuel cell research at NREL. For more information about NREL's research, development, and deployment of transportation and hydrogen technologies, refer to the Transportation and Hydrogen Newsletter. Subscribe to the RSS feed RSS . Learn about RSS. October 28, 2016 NREL Researchers Discover How a Bacterium, Clostridium thermocellum, Utilizes both CO2 and Cellulose to Make Biofuels Scientists at the U.S. Department of

  7. Hydrogen Fuel Cells Providing Critical Backup Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    ReliOn, Inc., specializes in hydrogen fuel-cell backups for businesses have to stay functional during power outages -- companies like your wireless provider.

  8. Basic Research for the Hydrogen Fuel Initiative

    Energy.gov [DOE] (indexed site)

    PEM Fuel Cells Carnegie Mellon University Rapid Ab Initio Screening of Ternary Alloys for Hydrogen Production Rensselaer Polytechnic Institute Sol-Gel Based Polybenzimidazole...

  9. Comparison of Hydrogen and Propane Fuels (Brochure)

    SciTech Connect

    Not Available

    2009-04-01

    Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels.

  10. Comparison of Hydrogen and Propane Fuels (Brochure)

    SciTech Connect

    Not Available

    2008-10-01

    Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels

  11. Welcome to Hydrogen and Fuel Cells

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... charge from DOE's Energy Efficiency and Renewable Energy ... DOE's hydrogen and fuel cell web site, ... one On the periodic table, And you're made by the sun. ...

  12. Turning Sun and Water Into Hydrogen Fuel

    Office of Energy Efficiency and Renewable Energy (EERE)

    In a key step towards advancing a clean energy economy, scientists have engineered a cheap, abundant way to make hydrogen fuel from sunlight and water.

  13. Sandia Energy - Widespread Hydrogen Fueling Infrastructure Is...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project Home Infrastructure Security Energy Transportation Energy Facilities Partnership Capabilities News News &...

  14. Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact...

    Energy Saver

    Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2015 Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2015 FuelCell Energy, Inc., in ...

  15. Webinar: Reference Designs for Hydrogen Fueling Stations

    Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Reference Designs for Hydrogen Fueling Stations" on Tuesday, October 13, from 12 to 1 p.m. Eastern Daylight Time (EDT).

  16. A smooth transition to hydrogen transportation fuel

    SciTech Connect

    Berry, G.D.; Smith, J.R.; Schock, R.N.

    1995-04-14

    The goal of this work is to examine viable near-term infrastructure options for a transition to hydrogen fueled vehicles and to suggest profitable directions for technology development. The authors have focused in particular on the contrasting options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Delivered costs have been estimated using best available industry cost and deliberately conservative economic assumptions. The sensitivities of these costs have then been examined for three small-scale scenarios: (1) electrolysis at the home for one car, and production at the small station scale (300 cars/day), (2) conventional alkaline electrolysis and (3) steam reforming of natural gas. All scenarios assume fueling a 300 mile range vehicle with 3.75 kg. They conclude that a transition appears plausible, using existing energy distribution systems, with home electrolysis providing fuel costing 7.5 to 10.5{cents}/mile, station electrolysis 4.7 to 7.1{cents}/mile, and steam reforming 3.7 to 4.7{cents}/mile. The average car today costs about 6{cents}/mile to fuel. Furthermore, analysis of liquid hydrogen delivered locally by truck from central processing plants can also be competitive at costs as low as 4{cents}/mile. These delivered costs are equal to $30 to $70 per GJ, LHV. Preliminary analysis indicates that electricity transmission costs favor this method of distributing energy, until very large (10 GW) hydrogen pipelines are installed. This indicates that significant hydrogen pipeline distribution will be established only when significant markets have developed.

  17. Air Products Hydrogen Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Air Products Hydrogen Energy Systems Air Products Hydrogen Energy Systems Hydrogen Infrastructure Air Products Hydrogen Energy Systems (423.04 KB) More Documents & Publications QTR Ex Parte Communications H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results - Interim Report Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements

  18. Liquid-hydrogen-fueled passenger aircraft

    SciTech Connect

    Not Available

    1986-03-11

    This Chinese translation discusses the idea that passenger aircraft will eventually use liquid-hydrogen fuel. There is a large reserve of hydrogen and hydrogen poses no danger to the environment. Hydrogen has high calorific value, high specific heat, low density, and low temperature. Aircraft will have to have liquid fuel tanks to carry the hydrogen and will have to be partially redesigned. Lockheed and NASA have considered such designs. A problem remains in the planning--the high cost of large extraction of liquid hydrogen.

  19. Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels- Fact Sheet, 2015

    Energy.gov [DOE]

    Factsheet summarizing how this project will modify a gas turbine combustion system to operate on hydrogen-rich opportunity fuels

  20. Hydrogen storage and integrated fuel cell assembly

    DOEpatents

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  1. Hydrogen and Fuel Cells Program Overview: 2013 Annual Merit Review...

    Energy.gov [DOE] (indexed site)

    DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview Hydrogen and Fuel Cells ...

  2. Hydrogen and Fuel Cell Technologies Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Fuel Cell Technologies Overview Hydrogen and Fuel Cell Technologies Overview Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. Hydrogen and Fuel Cell Technologies Overview (1.42 MB) More Documents & Publications Fuel Cell Technologies Overview: March 2012 State Energy Advisory Board Meeting Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells DOE Hydrogen and Fuel Cell

  3. NREL: Hydrogen and Fuel Cells Research - Hydrogen Infrastructure Testing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Research Facility Video (Text Version) Hydrogen Infrastructure Testing and Research Facility Video (Text Version) Below is the text version of the Hydrogen Infrastructure Testing and Research Facility video. Welcome to the U.S. Department of Energy's National Renewable Energy Laboratory. Through DOE support and in collaboration with industry, NREL researchers are working on vehicle and hydrogen infrastructure projects that aim to enable more rapid inclusion of fuel cell and hydrogen

  4. Ambient pressure fuel cell system

    DOEpatents

    Wilson, Mahlon S.

    2000-01-01

    An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

  5. Method and system for hydrogen evolution and storage

    DOEpatents

    Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.

    2012-12-11

    A method and system for storing and evolving hydrogen (H.sub.2) employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.

  6. Method and System for Hydrogen Evolution and Storage

    DOEpatents

    Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.

    2008-10-21

    A method and system for storing and evolving hydrogen employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.

  7. DOE Hydrogen and Fuel Cells Program Plan (September 2011)

    Publication and Product Library

    The Department of Energy Hydrogen and Fuel Cells Program Plan outlines the strategy, activities, and plans of the DOE Hydrogen and Fuel Cells Program, which includes hydrogen and fuel cell activities

  8. System for the co-production of electricity and hydrogen

    DOEpatents

    Pham, Ai Quoc; Anderson, Brian Lee

    2007-10-02

    Described herein is a system for the co-generation of hydrogen gas and electricity, wherein the proportion of hydrogen to electricity can be adjusted from 0% to 100%. The system integrates fuel cell technology for power generation with fuel-assisted steam-electrolysis. A hydrocarbon fuel, a reformed hydrocarbon fuel, or a partially reformed hydrocarbon fuel can be fed into the system.

  9. GM Perspective on Hydrogen Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HYDROGEN FUEL CELLS CHARLIE FREESE EXECUTIVE DIRECTOR - GLOBAL FUEL CELLS GENERAL MOTORS October 5, 2016 Will hydrogen & fuel cells will come? PERSPECTIVE AUTOMOBILE MANUFACTURERS SELL PERSONAL MOBILITY PERSONAL MOBILITY SOLUTIONS HAVE ALWAYS BEEN SUBJECT TO CHANGE 1917 Last Horse Drawn Street Car PERSPECTIVE AUTOMOBILE MANUFACTURERS SELL MOBILITY MOBILITY SOLUTIONS HAVE ALWAYS BEEN SUBJECT TO CHANGE 1917 Last Horse Drawn Street Car MOBILITY CHALLENGE BY THE NUMBERS IN EARLY 20 TH CENTURY

  10. NREL: Hydrogen and Fuel Cells Research - Energy Analysis and Tools

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Analysis and Tools NREL offers energy analysis tools, models, and other resources for researchers, developers, investors, and others interested in the viability, analysis, and development of hydrogen and fuel cell technologies and systems. Learn about NREL's hydrogen and fuel cell system analysis projects. ADOPT: Automotive Deployment Options Projection Tool Modeling tool that predicts consumer demand for different vehicle types based on income distribution and other demographic

  11. Introduction to SAE Hydrogen Fueling Standardization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SAE Hydrogen Fueling Standardization Introduction to SAE Hydrogen Fueling Standardization Download presentation slides and the Q&A from the DOE Fuel Cell Technologies Office webinar "Introduction to SAE Hydrogen Fueling Standardization" held on September 11, 2014. Slides for Introduction to SAE Hydrogen Fueling Standardization (3.57 MB) Q&A for Introduction to SAE Hydrogen Fueling Standardization (145.99 KB) More Documents & Publications Light Duty Fuel Cell Electric

  12. FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program ...

  13. Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned ...

  14. DOE Hydrogen and Fuel Cells Program 2017 Annual Merit Review...

    Energy Saver

    DOE Hydrogen and Fuel Cells Program 2017 Annual Merit Review and Peer Evaluation Meeting DOE Hydrogen and Fuel Cells Program 2017 Annual Merit Review and Peer Evaluation Meeting ...

  15. DOE Announces $30 Million Investment in Hydrogen and Fuel Cells...

    Office of Environmental Management (EM)

    DOE Announces 30 Million Investment in Hydrogen and Fuel Cells as Industry Continues Unprecedented Growth Rates DOE Announces 30 Million Investment in Hydrogen and Fuel Cells as ...

  16. International Partnership for Hydrogen and Fuel Cells in the...

    Energy Saver

    Partnership for Hydrogen and Fuel Cells in the Economy International Partnership for Hydrogen and Fuel Cells in the Economy The United States is a founding member of the ...

  17. 2010 Hydrogen and Fuel Cell Global Commercialization & Development...

    Office of Environmental Management (EM)

    Hydrogen and Fuel Cell Global Commercialization & Development Update 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update This report outlines the role ...

  18. 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review...

    Energy Saver

    4 DOE Hydrogen and Fuel Cells Program Annual Merit Review Proceedings Available Online 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review Proceedings Available Online ...

  19. Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide ... so innovative ways of building cost-effective hydrogen fueling stations ...

  20. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation...

  1. Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles"" Workshop, December 10-11, 2009 Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels: Lessons ...

  2. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations December 11, 2015 - ...

  3. 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report Posted 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report ...

  4. Forum Agenda: International Hydrogen Fuel and Pressure Vessel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Agenda for the International Hydrogen Fuel and Pressure Vessel Forum held Sept. 27-29, 2010, in Beijing, China Forum Agenda: International Hydrogen Fuel and Pressure Vessel Forum ...

  5. DOE Hydrogen and Fuel Cells Program 2016 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Hydrogen and Fuel Cells Program 2016 Annual Merit Review and Peer Evaluation Meeting DOE Hydrogen and Fuel Cells Program 2016 Annual Merit Review and Peer Evaluation Meeting ...

  6. Legislative Update: State and Regional Hydrogen and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Legislative Update: State and Regional Hydrogen and Fuel Cell Initiatives Conference Call Legislative Update: State and Regional Hydrogen and Fuel Cell Initiatives Conference Call ...

  7. Accurate Detection of Impurities in Hydrogen Fuel at Lower Cost...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Accurate Detection of Impurities in Hydrogen Fuel at Lower Cost Technology available for licensing: Two alternative strategies for detecting impurities in the hydrogen used in fuel...

  8. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation ...

  9. Fuel Cell and Hydrogen Pathways to Clean Cities: A Stakeholder...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell and Hydrogen Pathways to Clean Cities: A Stakeholder - Government Engagement Fuel Cell and Hydrogen Pathways to Clean Cities: A Stakeholder - Government Engagement May ...

  10. Research and Development of a PEM Fuel Cell, Hydrogen Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling ...

  11. Overview of Hydrogen and Fuel Cell Activities: February 2011...

    Energy.gov [DOE] (indexed site)

    at the Hydrogen and Fuel Cell Technical Advisory Committee meeting on February 17, 2011. Overview of Hydrogen and Fuel Cell Activities (4.07 MB) More Documents & Publications ...

  12. Bachelor of Science Engineering Technology Hydrogen and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bachelor of Science Engineering Technology Hydrogen and Fuel Cell Education Program Concentration Bachelor of Science Engineering Technology Hydrogen and Fuel Cell Education ...

  13. New Mexico Hydrogen Fuels Challenge Program Description The New...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New Mexico Hydrogen Fuels Challenge Program Description The New Mexico Hydrogen Fuels Challenge is an event that provides a hands-on opportunity for middle school students (grades...

  14. Hydrogen and Fuel Cells Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sustainable Transportation Hydrogen and Fuel Cells Success Stories Hydrogen and Fuel Cells Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE)...

  15. US National Institute of Hydrogen Fuel Cell Commercialization...

    OpenEI (Open Energy Information) [EERE & EIA]

    Institute of Hydrogen Fuel Cell Commercialization Jump to: navigation, search Name: US National Institute of Hydrogen Fuel Cell Commercialization Place: Columbia, South Carolina...

  16. Marine Hydrogen and Fuel Cell Association MHFCA | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hydrogen and Fuel Cell Association MHFCA Jump to: navigation, search Name: Marine Hydrogen and Fuel Cell Association (MHFCA) Place: Leipzig, Germany Zip: D-04318 Sector: Hydro,...

  17. Hydrogen Fuel Cell Bus Evaluation for California Transit Agencies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transportation Projects Hydrogen Fuel Cell Bus Evaluation for California Transit Agencies Hydrogen Fuel Cell Bus Evaluation for California Transit Agencies In February 2000, the ...

  18. Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review...

    Energy.gov [DOE] (indexed site)

    Overview (6.11 MB) More Documents & Publications Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview Hydrogen and Fuel Cells Program Overview: Hydrogen ...

  19. Fuel processor for fuel cell power system

    DOEpatents

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  20. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M.

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  1. Hydrogen Fuel for Material Handling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Material Handling Hydrogen Fuel for Material Handling Presented by Tom Joseph at the National Hydrogen Assocation Conference and Hydrogen Expo PDF icon josephinfrastructurefo...

  2. DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production...

    Energy.gov [DOE] (indexed site)

    the cost of hydrogen production using low-cost natural gas. DOE Hydrogen and Fuel Cells Program Record 12024 (448.95 KB) More Documents & Publications Distributed Hydrogen ...

  3. DOE Activities and Progress in Fuel Cells and Hydrogen: 2016 Senate Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cell and Hydrogen Energy Caucus Briefing | Department of Energy Activities and Progress in Fuel Cells and Hydrogen: 2016 Senate Fuel Cell and Hydrogen Energy Caucus Briefing DOE Activities and Progress in Fuel Cells and Hydrogen: 2016 Senate Fuel Cell and Hydrogen Energy Caucus Briefing Overview of U.S. Department of Energy (DOE) activities and progress in fuel cells and hydrogen presented by Sunita Satyapal at the Senate Fuel Cell and Hydrogen Energy Caucus Briefing on June 23, 2016, in

  4. DOE Hydrogen & Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    20 active fuel cell buses 60 fueling stations In the U.S., there are currently: 9 ... NAS study, "Transitions to Alternative Transportation Technologies: A Focus ...

  5. Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Activities Mr. Pete Devlin U.S. Department of Energy Fuel Cell Technologies Program Market Transformation Manager Stationary Fuel Cell Applications First National Bank of Omaha...

  6. Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel

    Alternative Fuels and Advanced Vehicles Data Center

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel to someone by E-mail Share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Facebook Tweet about Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Twitter Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Google Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable

  7. Hydrogen and Fuel Cell Technologies Available for Licensing - Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Efficiency » Vehicles » Hydrogen & Fuel Cells Hydrogen & Fuel Cells Watch this video to find out how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. Learn more about hydrogen and fuel cell technology basics. Fuel cells produce electricity from a number of domestic fuels, including hydrogen and renewables, and can provide power for virtually any application -- from cars and buses to commercial

  8. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor

  9. NREL: Hydrogen and Fuel Cells Research - NREL Fuel Cell and Hydrogen

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technologies Program Photo of scientist in laboratory setting. NREL technician conducts cyclic voltammetry experiment. Photo by Dennis Schroeder, NREL 18844 NREL Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation, stationary, and portable applications. Led by Laboratory Program Manager Keith Wipke, these

  10. DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program New Fuel Cell Projects Kickoff Meeting DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting Presentation by DOE's Patrick Davis at a meeting on new fuel cell ...

  11. DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry...

    Energy.gov [DOE] (indexed site)

    record from the DOE Hydrogen and Fuel Cells Program focuses on deployments of fuel cell powered lift trucks. ... An Evaluation of the Total Cost of Ownership of Fuel ...

  12. Moving toward a commercial market for hydrogen fuel cell vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations 20080910_state_regional_vision.pdf (780.66 KB) More Documents & Publications Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Innovation and Coordination at the Callifornia Fuel Cell Partnership FCEVs and Hydrogen in California

  13. Hydrogen and Fuel Cell Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen and Fuel Cell Activities Hydrogen and Fuel Cell Activities Presentation-given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting-covers the U.S. Department of Energy's hydrogen and fuel activities and technology applications. fupwg_fall11_devlin.pdf (3.34 MB) More Documents & Publications Expanding the Use of Biogas with Fuel Cell Technologies Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Fuel Cells (DOE CHP Technology

  14. NREL: Hydrogen and Fuel Cells Research - News Release Archives

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1 December 12, 2011 Energy Department Awards More Than $7 Million for Innovative Hydrogen Storage Technologies in Fuel Cell Electric Vehicles These projects will help lower the costs and increase the performance of hydrogen storage systems by developing innovative materials and advanced tanks for efficient and safe transportation. December 6, 2011 DOE Launches Comprehensive Hydrogen Storage Materials Clearinghouse Free access resource aims to accelerate advanced materials research and

  15. Hydrogen Vehicles and Fueling Infrastructure in China

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Vehicles and Fueling Infrastructure in China Prof. Jinyang Zheng Director of IPE, Zhejiang University Director of Engineering Research Center for High Pressure Process Equipment and Safety, Ministry of Education Vice Director of China National Safety Committee of Pressure Vessels Vice President of CMES-P.R. China China Representative of ISO/TC197 and ISO/TC58 U.S. Department of Transportation and U. S. Department of Energy Workshop: Compressed Natural Gas and Hydrogen Fuels: Lessons

  16. Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell Expo

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation by DOE's Sunita Satyapal was given at the 6th International Hydrogen and Fuel Cell Expo on March 3, 2010.

  17. Hydrogen Fueling - Coming Soon to a Station Near You

    SciTech Connect

    Not Available

    2007-12-01

    Fact sheet providing information useful to local permitting officials facing hydrogen fueling station proposals.

  18. Fueling Robot Automates Hydrogen Hose Reliability Testing (Fact Sheet)

    SciTech Connect

    Harrison, K.

    2014-01-01

    Automated robot mimics fueling action to test hydrogen hoses for durability in real-world conditions.

  19. Hydrogen Fueling - Coming Soon to a Station Near You (Brochure)

    SciTech Connect

    Not Available

    2009-04-01

    Fact sheet providing information useful to local permitting officials facing hydrogen fueling station proposals.

  20. Overview of Hydrogen and Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    H2-Fuel Cell Systems vs Batteries At DOEUSABC Targets * A ... Adapted from GM 4 | Fuel Cell Technologies Program Source: ... carbon renewable electricity includes wind, solar, etc. ...

  1. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Exposition | Department of Energy Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by Sunita Satyapal at the 2010 Fuel Cell Seminar and Exposition on October 19, 2010. Hydrogen and Fuel Cell Technologies Update (4.81 MB) More Documents & Publications DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop 2010 Fuel Cell Project Kick-off Welcome DOE Hydrogen and Fuel

  2. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Review | Department of Energy Bus Evaluation: Report for the 2001 Hydrogen Program Review Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review This paper, presented at the 2001 DOE Hydrogen Program Review, describes the prototype fuel cell bus, fueling infrastructure, and maintenance facility for an early technology adopter. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review (681 KB) More Documents & Publications Fuel Cell Transit

  3. DOE Technical Targets for Fuel Cell System Humidifiers and Air...

    Energy Saver

    ... DOE Hydrogen and Fuel Cells Program Record 15015, "Fuel Cell System Cost-2015." Technical Targets: Cathode Humidification System and Humidifier Membrane for 80-kWe Transportation ...

  4. Stationary and Portable Fuel Cell Systems Codes and Standards...

    Energy.gov [DOE] (indexed site)

    and portable fuel cell systems. Stationary and Portable Fuel Cell Systems Codes and Standards Citations (293.25 KB) More Documents & Publications Hydrogen Vehicle and ...

  5. Alternative Fuels Data Center: Hydrogen Research and Development

    Alternative Fuels and Advanced Vehicles Data Center

    Research and Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Research and Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Research and Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Research and Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Research and Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Research and Development on Digg Find More places to share

  6. NREL: Hydrogen and Fuel Cells Research Home Page

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydrogen and Fuel Cells Research Photo of a fuel cell electric vehicle refueling at a hydrogen dispensing station. NREL hydrogen and fuel cell research focuses on developing, integrating, and demonstrating hydrogen production and delivery, hydrogen storage, and fuel cell technologies for transportation, stationary, and portable applications. Projects range from fundamental research to overcome technical barriers, manufacturing process improvement to enable high-volume fuel cell production,

  7. Hydrogen and Fuel Cells Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sustainable Transportation » Hydrogen and Fuel Cells Success Stories Hydrogen and Fuel Cells Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in advanced fuel cell and hydrogen technologies pave the way for the adoption of cleaner fuels and more efficient energy storage in vehicles and buildings. Explore EERE's hydrogen and fuel cells success stories below. February 17, 2016 Examples of a modularized PRISM® hydrogen generators. EERE Success Story-Not

  8. Hydrogen and Fuel Cells Program Overview: 2016 Annual Merit Review...

    Energy.gov [DOE] (indexed site)

    U.S. Department of Energy Hydrogen and Fuel Cells Program (4 MB) More Documents & Publications DOE Activities and Progress in Fuel Cells and Hydrogen: 2016 Senate Fuel Cell and ...

  9. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fuel Cell Electric...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fuel Cell Electric Vehicle Learning Demonstration Delve deeper into real-world performance data with our Interactive Composite Data Product demo Graphical thumbnail of the ...

  10. Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications

    SciTech Connect

    Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

    2012-04-16

    Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

  11. Hydrogen Fueling Infrastructure Research and Station Technology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Infrastructure Research and Station Technology Erika Sutherland U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov Hydrogen Fueling Infrastructure Research and Station Technology Chris Ainscough, Joe Pratt, Jennifer Kurtz, Brian Somerday, Danny Terlip, Terry Johnson November 18, 2014 Objective: Ensure that FCEV customers have a positive fueling experience relative to conventional

  12. Hydrogen and Fuel Cell Technologies Update

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Source: US DOE 10/2010 Hydrogen and Fuel Cell Technologies Update Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program Fuel Cell Seminar & Exposition San Antonio, TX October 19, 2010 Agenda * Overview * RD&D Progress * Analysis & Key Publications * Budget Update * Next Steps - DOE Releases Program Plan for Stakeholder Input - Upcoming Workshops & Solicitations Source: US DOE 10/2010 2  Double Renewable Energy Capacity by 2012  Invest

  13. Financial Incentives for Hydrogen and Fuel Cell Projects | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Market Transformation » Financial Incentives for Hydrogen and Fuel Cell Projects Financial Incentives for Hydrogen and Fuel Cell Projects Find information about federal and state financial incentives for hydrogen fuel cell projects. Federal Incentives The Emergency Economic Stabilization Act of 2008 includes tax incentives to help minimize the cost of hydrogen and fuel cell projects. It offers an investment tax credit of 30% for qualified fuel cell property or $3,000/kW of the fuel

  14. Hydrogen and Fuel Cell Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Education » For Students & Educators » Higher Education » Hydrogen and Fuel Cell Programs Hydrogen and Fuel Cell Programs The links below provide information about colleges and universities that offer courses and other activities related to hydrogen and fuel cells. Many of these institutions have departments, centers, laboratories, and instructors dedicated to hydrogen and fuel cell research. Colleges and Universities with Fuel Cell-Specific Courses or Research Programs - Fuel Cell 2000's

  15. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicle

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation team analyzes hydrogen fuel cell electric vehicles (FCEVs) operating in a real-world setting to identify the current status of the technology, compare it to Department of Energy (DOE) performance and durability targets, and evaluate progress between multiple generations of technology, some of which will include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the

  16. DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry Deployed Fuel Cell Powered Lift Trucks

    Energy.gov [DOE]

    This program record from the DOE Hydrogen and Fuel Cells Program focuses on deployments of fuel cell powered lift trucks.

  17. Maritime Hydrogen Fuel Cell Project

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fuel Cell Project - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  18. NREL: Hydrogen and Fuel Cells Research - Fuel Cell and Hydrogen Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Validation Fuel Cell and Hydrogen Technology Validation Previous Next Pause/Resume Fuel Cell Electric Vehicles Show Continued Improvements in Durability, Fuel Economy, Driving Range Image of chart that shows a comparison of fuel cell operation hours and durability for four time periods. The maximum fleet operation time to 10% voltage degradation, 4,130 hours, has increased 129% since 2006-2007. Read more Fuel Cell Electric Bus Reliability Surpasses 2016 and Ultimate Technical Targets Image

  19. Legislative Update: State and Regional Hydrogen and Fuel Cell Initiatives

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conference Call | Department of Energy Legislative Update: State and Regional Hydrogen and Fuel Cell Initiatives Conference Call Legislative Update: State and Regional Hydrogen and Fuel Cell Initiatives Conference Call Presentation by US Fuel Cell Council on legislative updates to state and regional hydrogen and fuel cell representatives usfcc_legislative_update.pdf (450.04 KB) More Documents & Publications U.S. Fuel Cell Council: The Voice of the Fuel Cell Industry Connecticut Fuel Cell

  20. Hydrogen & Fuel Cells Program Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    & Fuel Cells Program Overview Hydrogen & Fuel Cells Program Overview Plenary presentation at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting 03_satyapal_plenary_2013_amr.pdf (4.45 MB) More Documents & Publications DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview Hydrogen and Fuel Cells Program Overview:

  1. NREL: Hydrogen and Fuel Cells Research - Fuel Cell and Hydrogen Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Validation Newsletter and Hydrogen Technology Validation Newsletter The Fuel Cell and Hydrogen Technology Validation biannual newsletter highlights recent fuel cell and hydrogen technology validation activities at NREL. Features include technical accomplishments, new website content, updates to our composite data products (CDPs), and our latest publications. Please contact our Technology Validation Team if you have any questions about the newsletter or about subscribing. Subscribe Subscribe

  2. New Mexico Hydrogen Fuels Challenge Program Description The New Mexico Hydrogen Fuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New Mexico Hydrogen Fuels Challenge Program Description The New Mexico Hydrogen Fuels Challenge is an event that provides a hands-on opportunity for middle school students (grades six through eight) to understand the need for renewable energy sources and explore the emerging technology of hydrogen power. It is also an opportunity to engage the future generation of engineers and scientists. Los Alamos National Laboratory is a co-sponsor of the annual regional event along with the Public Service

  3. Fuel economy and emissions evaluation of BMW hydrogen 7 mono-fuel demonstration vehicles.

    SciTech Connect

    Wallner, T.; Lohse-Busch, H.; Gurski, S.; Duoba, M.; Thiel, W.; Martin, D.; Korn, T.; Energy Systems; BMW Group Munich Germany; BMW Group Oxnard USA

    2008-12-01

    This article summarizes the testing of two BMW Hydrogen 7 Mono-Fuel demonstration vehicles at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF). The BMW Hydrogen 7 Mono-Fuel demonstration vehicles are derived from the BMW Hydrogen 7 bi-fuel vehicles and based on a BMW 760iL. The mono-fuel as well as the bi-fuel vehicle(s) is equipped with cryogenic hydrogen on-board storage and a gaseous hydrogen port fuel injection system. The BMW Hydrogen 7 Mono-Fuel demonstration vehicles were tested for fuel economy as well as emissions on the Federal Test Procedure FTP-75 cold-start test as well as the highway test. The results show that these vehicles achieve emissions levels that are only a fraction of the Super Ultra Low Emissions Vehicle (SULEV) standard for nitric oxide (NO{sub x}) and carbon monoxide (CO) emissions. For non-methane hydrocarbon (NMHC) emissions the cycle-averaged emissions are actually 0 g/mile, which require the car to actively reduce emissions compared to the ambient concentration. The fuel economy numbers on the FTP-75 test were 3.7 kg of hydrogen per 100 km, which, on an energy basis, is equivalent to a gasoline fuel consumption of 17 miles per gallon (mpg). Fuel economy numbers for the highway cycle were determined to be 2.1 kg of hydrogen per 100 km or 30 miles per gallon of gasoline equivalent (GGE). In addition to cycle-averaged emissions and fuel economy numbers, time-resolved (modal) emissions as well as air/fuel ratio data is analyzed to further investigate the root causes of the remaining emissions traces. The BMW Hydrogen 7 vehicles employ a switching strategy with lean engine operation at low engine loads and stoichiometric operation at high engine loads that avoids the NO{sub x} emissions critical operating regime with relative air/fuel ratios between 1 < {lambda} < 2. The switching between these operating modes was found to be a major source of the remaining NO{sub x} emissions. The emissions results collected

  4. NREL: Hydrogen and Fuel Cells Research - Success Stories

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Success Stories Learn about NREL's Hydrogen Infrastructure Testing and Research Facility at the Energy Systems Integration Facility. Text Version The following success stories highlight NREL's contribution to advancements in sustainable hydrogen production and cost-effective, high-performance fuel cell systems. Learn about the R&D projects that led to these accomplishments. NREL to Collaborate with Small Clean Energy Businesses as Part of DOE Pilot Program NREL Patents Method for Continuous

  5. Hydrogen Vehicles and Fueling Infrastructure in China | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Fueling Infrastructure in China Hydrogen Vehicles and Fueling Infrastructure in China Presentation given by Jinyang Zheng of Zhejiang University at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 cng_h2_workshop_10_zheng.pdf (1.35 MB) More Documents & Publications Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen Vehicles and Fuels in China Overview of DOE - DOT December 2009 CNG and Hydrogen Fuels Workshop

  6. DOE Hydrogen and Fuel Cell Overview: January 2011 National Petroleum

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Council Briefing | Department of Energy January 2011 National Petroleum Council Briefing DOE Hydrogen and Fuel Cell Overview: January 2011 National Petroleum Council Briefing Presentation by Sunita Satyapal to the National Petroleum Council on January 5, 2011. DOE Hydrogen and Fuel Cell Overview (5.84 MB) More Documents & Publications DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market Readiness Workshop Overview of Hydrogen Fuel Cell Budget: 2011 Stakeholders

  7. Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations

    Energy.gov [DOE]

    Funding Opportunity Announcement DE-FOA-0001412: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations includes up to $35 million in funding across four areas of interest: research and development (R&D) for hydrogen fuel technologies; demonstration and deployment for manufacturing technologies and Climate Action Champions; R&D within consortia for fuel cell performance and durability and hydrogen storage materials; and cost and performance analyses for hydrogen production and delivery, hydrogen storage, and fuel cells.

  8. The Department of Energy Hydrogen and Fuel Cells Program Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy Hydrogen and Fuel Cells Program Plan outlines the strategy, activities, and plans of the DOE Hydrogen and Fuel Cells Program, which includes hydrogen and fuel cell activities within the EERE Fuel Cell Technologies Program and the DOE offices of Nuclear Energy, Fossil Energy, and Science.

  9. DOE Hydrogen and Fuel Cells Program Plan (September 2011)

    SciTech Connect

    none,

    2011-09-01

    The Department of Energy Hydrogen and Fuel Cells Program Plan outlines the strategy, activities, and plans of the DOE Hydrogen and Fuel Cells Program, which includes hydrogen and fuel cell activities within the EERE Fuel Cell Technologies Program and the DOE offices of Nuclear Energy, Fossil Energy, and Science.

  10. Electrochemical hydrogen Storage Systems

    SciTech Connect

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  11. Hydrogen and Fuel Cell Activity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Activity Hydrogen and Fuel Cell Activity This presentation by John Christensen of the Defense Logistics Agency was given at the Fuel Cell Meeting in April 2007. fuel_cell_mtng_christensen.pdf (2.63 MB) More Documents & Publications U.S. Army Energy and Environmental Requirements and Goals: Opportunities for Fuel Cells and Hydrogen - Facility Locations and Hydrogen Storage/Delivery Logistics The Defense Logistics Agency, Hydrogen-Powered Forklift Test-Bed Brief State of the States: Fuel Cells

  12. Compressed Natural Gas and Hydrogen Fuels Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Compressed Natural Gas and Hydrogen Fuels Workshop Compressed Natural Gas and Hydrogen Fuels Workshop Fuel experts from China, India, and the United States shared lessons learned about deploying CNG- and hydrogen-fueled vehicles in public transit fleets and the consumer sector at the Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles workshop. The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) hosted the workshop on

  13. Safety Planning Guidance for Hydrogen and Fuel Cell Projects | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Safety Planning Guidance for Hydrogen and Fuel Cell Projects Safety Planning Guidance for Hydrogen and Fuel Cell Projects Hydrogen and fuel cell project safety by U.S. Department of Energy, Fuel Cell Technologies Program safety_guidance.pdf (296.55 KB) More Documents & Publications Safety Planning Guidance for Hydrogen and Fuel Cell Projects H2 Refuel H-Prize Safety Guidance Web

  14. SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons ...

  15. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download presentation slides from the DOE Fuel Cell Technologies Office webinar Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) held on June 24, 2014.

  16. Hydrogen as a near-term transportation fuel

    SciTech Connect

    Schock, R.N.; Berry, G.D.; Smith, J.R.; Rambach, G.D.

    1995-06-29

    The health costs associated with urban air pollution are a growing problem faced by all societies. Automobiles burning gasoline and diesel contribute a great deal to this problem. The cost to the United States of imported oil is more than US$50 billion annually. Economic alternatives are being actively sought. Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range (>480 km) with emissions well below the ultra-low emission vehicle standards being required in California. These vehicles can also be manufactured without excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining engine and other component efficiencies, the overall vehicle efficiency should be about 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to what US vehicle operators pay today. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing low-cost, large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus can be in place when fuel cells become economical for vehicle use.

  17. IPHE Hydrogen and Fuel Cell Student Symposium

    Energy.gov [DOE]

    A Hydrogen and Fuel Cell Student Symposium for California graduate students is being held on May 17 in Berkeley, California, as part of the annual meeting of the International Partnership for Hydrogen and Fuel Cells in the Economy (IPHE). The meeting will offer attendees the opportunity to learn about the role of the technologies and the growing market for relevant applications, understand the needs and opportunities in the associated workforce, and directly engage with leaders in the academic, government, and private sectors through a series of small-table discussions.

  18. Hydrogen and Fuel Cell Technical Advisory Committee Biennial...

    Energy.gov [DOE] (indexed site)

    HTAC review for U.S. Department of Energy of hydrogen programs and technologies for the production, distribution, delivery, storage and use of hydrogen energy and fuel cells. ...

  19. Hydrogen and Fuel Cell Activities, Progress, and Plans: August...

    Energy.gov [DOE] (indexed site)

    DOE's Hydrogen Program--together with other DOE activities--addresses the full range of barriers facing the development and deployment of hydrogen and fuel cell technologies. This ...

  20. DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Mission: To research, develop, and validate fuel cell and hydrogen production, delivery, and storage technologies. Hydrogen from diverse domestic resources will then be used ...

  1. NREL: Hydrogen and Fuel Cells Research - News Release Archives

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... DOE Issues Request for Information on Biological Hydrogen Production The DOE Fuel Cell ... Producing hydrogen directly from the sun -- and in a way that is commercially viable ...

  2. Infinity Fuel Cell and Hydrogen Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hydrogen Inc Jump to: navigation, search Name: Infinity Fuel Cell and Hydrogen Inc Address: 431A Hayden Station Road Place: Windsor, Connecticut Zip: 06095 Region: Northeast - NY...

  3. Fuel Cell Economic Development Plan Hydrogen Roadmap | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Development Plan Hydrogen Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Cell Economic Development Plan Hydrogen Roadmap AgencyCompany Organization:...

  4. NREL Driving Research on Hydrogen Fuel Cells - News Feature ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Enlarge image Preparing for the day when hydrogen fueling stations may be as common as gas stations, NREL research engineer Kevin Harrison uses a robot to simulate hydrogen ...

  5. Hydrogen purification system

    DOEpatents

    Golben, Peter Mark

    2010-06-15

    The present invention provides a system to purify hydrogen involving the use of a hydride compressor and catalytic converters combined with a process controller.

  6. 2012 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect

    none,

    2012-09-01

    This report summarizes comments from the Peer Review Panel at the 2012 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 14-18, 2012, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; market transformation; and systems analysis.

  7. 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect

    none,

    2015-10-01

    This report summarizes comments from the Peer Review Panel at the 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on June 8-12, 2015, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  8. 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect

    none,

    2014-10-01

    This report summarizes comments from the Peer Review Panel at the 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on June 16-20, 2014, in Washington, DC. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  9. 2011 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect

    none,

    2011-09-01

    This report summarizes comments from the Peer Review Panel at the 2011 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 9-13, 2011, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; market transformation; and systems analysis.

  10. 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect

    none,

    2013-10-01

    This report summarizes comments from the Peer Review Panel at the 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 13-17, 2013, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  11. Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Deputy Program Manager United States Department of Energy Fuel Cell Technologies Program 6 th International Hydrogen and Fuel Cell Expo, Japan March 3, 2010 Advancing Presidential Priorities Economic * Create green jobs through Recovery Act energy projects * Double renewable energy generation by 2012 * Weatherize one million homes annually Environmental * Implement an economy-wide cap-and-trade program to reduce greenhouse gas emissions 80 percent by 2050 * Make the US a leader on climate

  12. Development of a Turnkey Hydrogen Fueling Station Final Report

    SciTech Connect

    David E. Guro; Edward Kiczek; Kendral Gill; Othniel Brown

    2010-07-29

    The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase, hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however, the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operator’s garage or local fueling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive, turnkey, stand-alone, commercial hydrogen fueling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. Air Products, partnering with the U.S. Department of Energy (DOE), The Pennsylvania State University, Harvest Energy Technology, and QuestAir, developed a turnkey hydrogen fueling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency, 82% PSA (pressure swing adsorption) efficiency, and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fueling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation, compression, storage, and gas dispensing. In the second phase, Air Products designed the components chosen from the technologies examined. Finally, phase three entailed a several-month period of data collection, full-scale operation, maintenance of the station, and optimization of system reliability and performance. Based on field data

  13. H2 Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles...

    Energy.gov [DOE] (indexed site)

    ... Small scale hydrogen production systems using either water electrolysis or natural gas reforming have been demonstrated before but meeting all the H2 Refuel criteria for fueling, ...

  14. Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization

    SciTech Connect

    Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

    2011-03-28

    Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low

  15. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay Keller of Sandia National Laboratories at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 cng_h2_workshop_2_keller.pdf (3.5 MB) More Documents & Publications US DRIVE Hydrogen Codes and Standards Technical Team Roadmap Hydrogen Release Behavior Overview of HyRAM (Hydrogen

  16. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download presentation slides from the DOE Fuel Cell Technologies Office webinar Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies held on August 19, 2014.

  17. DOE Hydrogen and Fuel Cell Activities Panel Discussion

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 DOE Hydrogen and Fuel Cell Activities Panel Discussion Dr. Sunita Satyapal Chief Engineer ... Economic & Institutional Barriers Fuel Cell Cost & Durability Targets*: Vehicles: 30 ...

  18. Hydrogen and Fuel Cell Activities: 5th International Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Fuel Cell Activities: Progress and Future Directions: Total Energy USA 2012 DOE Hydrogen and Fuel Cell Overview: January 2011 National Petroleum Council ...

  19. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    SciTech Connect

    none,

    2010-04-01

    This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

  20. Performance Status of Hydrogen Stations and Fuel Cell Vehicles

    SciTech Connect

    Sprik, Sam; Kurtz, Jennifer; Ainscough, Chris; Peters, Michael; Jeffers, Matt; Saur, Genevieve

    2015-11-18

    NREL presented evaluation results on the performance status of hydrogen stations and fuel cell vehicles at the 2015 Fuel Cell Seminar in Long Beach, California.

  1. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Energy.gov [DOE] (indexed site)

    Fuel Cell Technologies Office webinar "Overview of Funding Opportunity Announcement DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations" ...

  2. Hydrogen and fuel cell research | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    and fuel cell research Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen and fuel cell research AgencyCompany Organization: National Renewable Energy Laboratory...

  3. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    Publication and Product Library

    This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

  4. Panel 1, DOE Fuel Cell Technologies Office: Hydrogen for Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    22011 eere.energy.gov DOE Fuel Cell Technologies Office Hydrogen for Energy Storage ... Monterey R. Gardiner Technology Manager Monterey.Gardiner@ee.doe.gov Fuel Cell ...

  5. Fuel Cells: Making Power from Hydrogen

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fuel Cells Calendar Fuel Cells Calendar Events for the Fuel Cell Technologies Office are listed below. November 2016 < prev next > Sun Mon Tue Wed Thu Fri Sat 30 31 1 2 3 4 5 6 7 8 9 10 11 12 Webinar: Energy Materials Network (EMN) Lab Consortia Overview 12:00PM to 1:00PM EST Webinar: FCTO Lab Consortia Overview: ElectroCat and HyMARC 12:00PM to 1:00PM EST Webinar: FCTO's HydroGEN Consortium Webinar Series, Part 1 of 3: Photoelectrochemical (PEC) Water Splitting 4:00PM to 5:00PM EST 13 14

  6. Hydrogen Fuel Cell Electric Vehicles (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    As nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs offer a sustainable transportation option, provide a cost-competitive alternative for drivers, reduce dependence on imported oil, and enable global economic leadership and job growth.

  7. DOE Hydrogen and Fuel Cells Program Budget

    SciTech Connect

    DOE

    2012-03-16

    Budget information for hydrogen and fuel cell research, development, and other activities at the U.S. Department of Energy (DOE) is provided here. Included are budgets for DOE's Offices of Energy Efficiency and Renewable Energy, Fossil Energy, Nuclear Energy, and Science.

  8. Energy Department Announces $2 Million to Develop Supply Chain, Manufacturing Competitiveness Analysis for Hydrogen and Fuel Cell Technologies

    Energy.gov [DOE]

    The Energy Department today announced up to $2 million to develop the domestic supply chain for hydrogen and fuel cell technologies and study the competitiveness of U.S. hydrogen and fuel cell system and component manufacturing.

  9. Hydrogen and Fuel Cell Technical Advisory Committee Meeting ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen and Fuel Cell Technical Advisory Committee Meeting Hydrogen and Fuel Cell Technical Advisory Committee Meeting April 6, 2016 8:30AM PDT to April 7, 2016 1:00PM PDT A ...

  10. Fueling Robot Automates Hydrogen Hose Reliability Testing (Fact...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Automated robot mimics fueling action to test hydrogen hoses for durability in real-world ... the need for a reliable U.S. hydrogen fueling infrastructure is greater than ever. ...

  11. Hydrogen and Fuel Cell Technical Advisory Committee Meeting ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydrogen and Fuel Cell Technical Advisory Committee Meeting Hydrogen and Fuel Cell Technical Advisory Committee Meeting December 6, 2016 8:00AM EST to December 7, 2016 5:00PM EST ...

  12. 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review...

    Energy Saver

    3 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report Posted 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report ...

  13. Energy Department Announces $14 Million to Advance Hydrogen Fuel...

    Office of Environmental Management (EM)

    14 Million to Advance Hydrogen Fuel Technologies Energy Department Announces 14 Million to Advance Hydrogen Fuel Technologies July 12, 2016 - 3:15pm Addthis Today, the U.S. ...

  14. 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review...

    Energy Saver

    5 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report Posted 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report ...

  15. Novel catalysts for hydrogen fuel cell applications:Final report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Novel catalysts for hydrogen fuel cell applications:Final report (FY03-FY05). Citation Details In-Document Search Title: Novel catalysts for hydrogen fuel cell ...

  16. Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards

    Office of Energy Efficiency and Renewable Energy (EERE)

    The USDOE's Hydrogen and Fuel Cells Program presented its annual awards at the 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting on June 17.

  17. Help Design the Hydrogen Fueling Station of Tomorrow | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Help Design the Hydrogen Fueling Station of Tomorrow Help Design the Hydrogen Fueling Station of Tomorrow January 10, 2014 - 12:00am Addthis The Energy Department posted a blog...

  18. Hydrogen and Fuel Cells Program Presents Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1, 2015 - 9:19am Addthis The U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program presented its annual awards at the 2015 DOE Hydrogen and Fuel Cells Program Annual ...

  19. Webinar May 26: Hydrogen Fuel Cells for Small Unmanned Airvehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    May 26: Hydrogen Fuel Cells for Small Unmanned Airvehicles Webinar May 26: Hydrogen Fuel Cells for Small Unmanned Airvehicles May 19, 2016 - 6:36pm Addthis The Energy Department's ...

  20. Hydrogen and Fuel Cells Program Presents Annual Merit Review...

    Energy.gov [DOE] (indexed site)

    The U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program presented its annual awards at the 2016 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer ...

  1. DOE Hydrogen and Fuel Cell Overview: January 2011 National Petroleum...

    Energy.gov [DOE] (indexed site)

    Satyapal to the National Petroleum Council on January 5, 2011. DOE Hydrogen and Fuel Cell Overview (5.84 MB) More Documents & Publications DOE Hydrogen and Fuel Cell Overview: 2011 ...

  2. Overview of Hydrogen Fuel Cell Budget: 2011 Stakeholders Webinar...

    Energy.gov [DOE] (indexed site)

    a 2011 Stakeholders Webinar-Budget Briefing on February 24, 2011. Overview of Hydrogen Fuel Cell Budget (4.07 MB) More Documents & Publications Overview of Hydrogen and Fuel Cell ...

  3. Overview of Hydrogen and Fuel Cell Activities: 6th International...

    Energy.gov [DOE] (indexed site)

    This presentation by DOE's Sunita Satyapal was given at the 6th International Hydrogen and Fuel Cell Expo on March 3, 2010. Overview of Hydrogen and Fuel Cell Activities (5.37 MB) ...

  4. 2016 Hydrogen and Fuel Cells Annual Merit Review Proceedings...

    Office of Environmental Management (EM)

    2016 Hydrogen and Fuel Cells Annual Merit Review Proceedings Available 2016 Hydrogen and Fuel Cells Annual Merit Review Proceedings Available June 28, 2016 - 2:24pm Addthis The ...

  5. Hydrogen and Fuel Cell Technology Basics | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Renewable Energy Hydrogen and Fuel Cell Technology Basics Hydrogen and Fuel Cell Technology Basics August 14, 2013 - 2:01pm Addthis Photo of a woman scientist using a machine...

  6. NREL Fuel Cell and Hydrogen Technologies Program Overview (Presentation)

    SciTech Connect

    Gearhart, C.

    2013-05-01

    The presentation, 'NREL Fuel Cell and Hydrogen Technologies Program Overview,' was presented at the Fuel Cell and Hydrogen Energy Expo and Policy Forum, April 24, 2013, Washington, D.C.

  7. Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program presented its annual awards at the 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, known as the AMR, on June 9.

  8. NREL: Hydrogen and Fuel Cells Research - Energy Department Announces New

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Tools for Hydrogen Fueling Infrastructure Deployment Energy Department Announces New Tools for Hydrogen Fueling Infrastructure Deployment April 21, 2015 The Energy Department has announced two new tools and the release of two reports developed through H2USA to support hydrogen fueling infrastructure deployment. H2USA is a public-private partnership launched in 2013 to overcome the critical barriers to hydrogen infrastructure and enable the commercialization of fuel cell electric vehicles.

  9. Session Remarks and Supply Chain Analysis: Hydrogen Fuel Cell Nexus

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Fuel Cell Nexus September 27, 2016 PI: Alleyn Harned Virginia Clean Cities 1401 Technology Drive Harrisonburg, VA 22802 xxasdfa This presentation does not contain any proprietary, confidential, or otherwise restricted information Clean Cities / 2 Hydrogen Fuel Cell Nexus Business Directory and Matchmaker What is this Directory? WWW.HFCNEXUS.COM Hydrogen Fuel Cell Nexus is a business-to-business directory that helps suppliers connect with buyers. Hydrogen Fuel Cell Nexus is a joint

  10. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Hydrogen and Fuel Cell Global Commercialization & Development Update 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update This report outlines the role hydrogen and fuel cells can play in a portfolio of technology options available to address the energy-related challenges faced by nations around the world. It offers examples of real-world hydrogen and fuel cell applications and the progress of the technologies, including government policies

  11. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen

    Energy.gov [DOE]

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  12. Forum Agenda: International Hydrogen Fuel and Pressure Vessel Forum

    Office of Energy Efficiency and Renewable Energy (EERE)

    Agenda for the International Hydrogen Fuel and Pressure Vessel Forum held Sept. 27-29, 2010, in Beijing, China

  13. FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies Program | Department of Energy FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program This FY 2003 Progress Report presents a description of the fuel cell and hydrogen research conducted by the Hydrogen, Fuel Cells and Infrastructure Technologies Program in fiscal year 2003 (FY 2003), projects to be implemented in FY 2004, and the research priorities for FY

  14. Hydrogen Fuel-Cell Electric Hybrid Truck Demonstration

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. The Department of Energy Hydrogen and Fuel Cells Program Plan

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen and Fuel Cells Program Plan An Integrated Strategic Plan for the Research, Development, and Demonstration of Hydrogen and Fuel Cell Technologies September 2011 The Department of Energy Hydrogen and Fuel Cells Program Plan Department of Energy Hydrogen and Fuel Cells Program Plan The need for clean, sustainable, and domestically produced energy has never been greater. The call for green jobs and U.S. leadership in clean energy, combined with the need to reduce emissions and our growing

  16. Hydrogen: A Promising Fuel and Energy Storage Solution - Continuum

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Magazine | NREL Hydrogen: A Promising Fuel and Energy Storage Solution Fuel cell electric vehicles fill up at the hydrogen fueling station at the National Wind Technology Center. Photo by Chris Ainscough, NREL Hydrogen: A Promising Fuel and Energy Storage Solution Electrolysis-generated hydrogen may provide a solution to fluctuations in renewable-sourced energy. As electricity from renewable resources such as solar and wind becomes a larger portion of our nation's energy mix, the National

  17. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen

    Energy.gov [DOE]

    Agenda for Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  18. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen is a clean fuel. When used in fuel cells, the only byproducts are water and heat. * Clean hydrogen technology has the potential to strengthen national economies and create high-quali- ty jobs in industries such as fuel cell manufacturing. * Hydrogen can be derived from renewable sources and is fully interchangeable with electricity - hydrogen can be used to generate electricity, while electricity can be used to produce hydrogen. * Over 100 years of safe production, transportation and

  19. Stacked for Success: Celebrating National Hydrogen and Fuel Cell Day |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Stacked for Success: Celebrating National Hydrogen and Fuel Cell Day Stacked for Success: Celebrating National Hydrogen and Fuel Cell Day October 8, 2015 - 11:15am Addthis Stacked for Success: Celebrating National Hydrogen and Fuel Cell Day David Friedman David Friedman Assistant Secretary for Energy Efficiency and Renewable Energy (Acting) Do you know the atomic weight of hydrogen? It's 1.008, which makes today, October 8, a great day to celebrate National Hydrogen and

  20. Careers in Hydrogen and Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Education » Careers in Hydrogen and Fuel Cells Careers in Hydrogen and Fuel Cells The resources below link to job boards and listings on fuel cell company websites. Fuel cell employment resources: Fuel Cells 2000 provides links to fuel cell job listings and career and educational resources. This site also includes articles about careers in the fuel cell industry. Energy careers and jobs: DOE's Office of Energy Efficiency and Renewable Energy offers resources for people interested in careers in

  1. Hydrogen and Fuel Cell Technologies FY14 Budget At-a-Glance

    Energy.gov [DOE] (indexed site)

    Validation: Demonstrating hydrogen and fuel cell systems under real-world conditions and col- ... improve durability (e.g., by increasing PEM fuel cell power out- put per gram of ...

  2. DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials- 2004 vs. 2006

    Energy.gov [DOE]

    This program record from the Department of Energy's Hydrogen and Fuel Cells Program provides information about hydrogen storage materials (2004 vs. 2006).

  3. Basic Research for the Hydrogen Fuel Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative (143.96 KB) More Documents & Publications FTA - SunLine Transit Agency - Final Report 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2014 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office

  4. Hydrogen and Fuel Cell Activity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cell Activity USFCC - Matching Federal Government Needs Presented by: Mr. John Christensen, PE Chief Logistics R&D Division, DLA 26 April 2007 The DLA Enterprise $21.5B $25B $28B $31.8B $35.5B $34.6B FY02 Sales/Services: FY03 Sales/Services: FY04 Sales/Services: FY05 Sales/Services: FY06 Sales/Services: FY07 Projected: * ~95% of Services' repair parts * 100% of Services' subsistence, fuels, medical, clothing & textile, construction & barrier materiel Foreign Military Sales * Sales:

  5. U.S. DOE Hydrogen and Fuel Cell Activities: 2010 International Hydrogen Fuel and Pressure Vessel Forum

    Energy.gov [DOE]

    Presentation at the International Hydrogen Fuel and Pressure Vessel Forum on September 27–29, 2010, in Beijing, China.

  6. Overview of Hydrogen and Fuel Cell Activities: February 2011 Hydrogen and Fuel Cell Technical Advisory Committee Meeting

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Sunita Satyapal at the Hydrogen and Fuel Cell Technical Advisory Committee meeting on February 17, 2011.

  7. WVU Hydrogen Fuel Dispensing Station

    SciTech Connect

    Davis, William

    2015-09-01

    The scope of this project was changed during the course of the project. Phase I of the project was to construct a site similar to the site at Central West Virginia Regional Airport in Charleston, WV to show that duplication of the site was a feasible method of conducting hydrogen stations. Phase II of the project was necessitated due to a lack of funding that was planned for the development of the station in Morgantown. The US Department of Energy determined that the station in Charleston would be dismantled and moved to Morgantown and reassembled at the Morgantown site. This necessitated storage of the components of the station for almost a year at the NAFTC Headquarters which caused a number of issues with the equipment that will be discussed in later portions of this report. This report will consist of PHASE I and PHASE II with discussions on each of the tasks scheduled for each phase of the project.

  8. Hydrogen-fueled internal combustion engines.

    SciTech Connect

    Verhelst, S.; Wallner, T.; Energy Systems; Ghent Univ.

    2009-12-01

    The threat posed by climate change and the striving for security of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Taking a prominent place in these strategic plans is hydrogen as a future energy carrier. A number of manufacturers are now leasing demonstration vehicles to consumers using hydrogen-fueled internal combustion engines (H{sub 2}ICEs) as well as fuel cell vehicles. Developing countries in particular are pushing for H{sub 2}ICEs (powering two- and three-wheelers as well as passenger cars and buses) to decrease local pollution at an affordable cost. This article offers a comprehensive overview of H{sub 2}ICEs. Topics that are discussed include fundamentals of the combustion of hydrogen, details on the different mixture formation strategies and their emissions characteristics, measures to convert existing vehicles, dedicated hydrogen engine features, a state of the art on increasing power output and efficiency while controlling emissions and modeling.

  9. NREL: Hydrogen and Fuel Cells Research - NREL and Fraunhofer ISE to

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Collaborate on Hydrogen and Fuel Cell Research NREL and Fraunhofer ISE to Collaborate on Hydrogen and Fuel Cell Research October 11, 2016 The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory and the Fraunhofer Institute for Solar Energy Systems (Fraunhofer ISE) in Germany have signed a Memorandum of Understanding (MOU) for close collaboration on hydrogen and fuel cell technologies research. The official launch took place on Monday, Oct. 10, at the "f-cell/World

  10. DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) DOE Hydrogen and Fuel Cells Program Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) This record from the ...

  11. Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards June 6, 2016 - 4:11pm Addthis The U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program presented its annual awards at the 2016 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, known as the AMR, on June 6. Each year, the Hydrogen and Fuel Cells Program presents awards for contributions to the

  12. Hydrogen Fuel-Cell Funding Awarded for Feasibility Study

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage Components and Systems Batteries Electric Drive Systems Hydrogen Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical ...

  13. Hydrogen Fuel Cell Project Seeks to Reduce Port Emissions

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage Components and Systems Batteries Electric Drive Systems Hydrogen Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical ...

  14. Photosynthesis for Hydrogen and Fuels Production Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Photosynthesis for Hydrogen and Fuels Production Tasios Melis, UC Berkeley 24-Jan-2011 1 UCB-Melis 2 CO 2 H 2 O Photosynthesis Photons H 2 HC O 2 , Biomass Feedstock and products Process offers a renewable fuels supply and mitigation of climate change. UCB-Melis Average US Solar insolation = 5 kWh m -2 d -1 CA household electricity consumption = 15 kWh d -1 Sunlight 3 UCB-Melis Gains upon improving the carbon reactions of photosynthesis: up to 50% 4 "Six potential routes of increasing

  15. Fuel cell system for transportation applications

    DOEpatents

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1993-09-28

    A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.

  16. Fuel cell system for transportation applications

    DOEpatents

    Kumar, Romesh; Ahmed, Shabbir; Krumpelt, Michael; Myles, Kevin M.

    1993-01-01

    A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

  17. Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2015 | Department of Energy Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2015 Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2015 FuelCell Energy, Inc., in collaboration with Abbott Furnace Company, is developing a combined heat, hydrogen, and power (CHHP) system that utilizes reducing gas produced by a high-temperature fuel cell to directly replace hydrogen in metal treatment and other industrial processes. Excess reducing gas can be

  18. Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cell Workshop | Department of Energy 1 IPHE Stationary Fuel Cell Workshop Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Presentation by Rick Farmer at the IPHE Stationary Fuel Cell Workshop on March 1, 2011. Overview of Hydrogen and Fuel Cell Activities (1.4 MB) More Documents & Publications Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposi

  19. SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells &

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). | Department of Energy Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). Fact sheet describes the study being conducted on fuel cell

  20. Hydrogen and Fuel Cells Webinar Series Kickoff

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy States Alliance Technology Transition Corporation Present: Hydrogen and Fuel Cells Webinar Series Kickoff December 14, 2010 Housekeeping  You will be connected to audio using your computer's microphone and speakers (VoIP). A headset is recommended. Or you may select Use Telephone after joining the Webinar. Make sure to enter your Audio PIN, shown in the control panel in which you choose the option to join by telephone. Audio PIN: Shown after joining the meeting on the webinar

  1. H2 Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles Easier

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    than Ever | Department of Energy Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles Easier than Ever H2 Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles Easier than Ever December 29, 2014 - 10:15am Addthis A fuel cell electric vehicle is refueled with hydrogen at the National Wind Technology Center in Colorado. The H2 Refuel H-Prize is challenging America’s innovators to develop systems that make it easier and more convenient to fuel hydrogen vehicles. | Photo

  2. Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cell Markets | Department of Energy Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets July 9th presentation for the U.S. DOE HFCIT bi-montly informational call series for state and regional initiatives mahadevan.pdf (1.13 MB) More Documents & Publications Full Fuel-Cycle Comparison of Forklift Propulsion Systems Early Markets: Fuel Cells for Material Handling

  3. International Hydrogen Fuel and Pressure Vessel Forum - Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy International Hydrogen Fuel and Pressure Vessel Forum - Presentations International Hydrogen Fuel and Pressure Vessel Forum - Presentations These presentations were given at the International Hydrogen Fuel and Pressure Vessel Forum held September 27-29, 2010 in Beijing, China. September 27, 2010 Keynote: Status and Progress in Research, Development and Demonstration of Hydrogen-Compressed Natural Gas Vehicles in China Professor Z.Q. Mao Tsinghua University and Chair of

  4. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Issues | Department of Energy Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick of the California Fuel Cell Partnership was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop on March 19, 2013. csd_workshop_2_elrick.pdf (1004.25 KB) More Documents & Publications FCEVs and Hydrogen in California Vision for Rollout of Fuel Cell Vehicles and

  5. NREL: Hydrogen and Fuel Cells Research - News Release Archives

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    0 December 14, 2010 Hydrogen Bus Lets Lab Visitors Glimpse Future The hydrogen bus uses the same basic technology as a conventional gasoline-powered engine but runs on renewable hydrogen. October 25, 2010 New Report Identifies Ways to Reduce Cost of Fuel Cell Power Plants A new report by the National Renewable Energy Laboratory details technical and cost gap analyses of molten carbonate fuel cell and phosphoric acid fuel cell stationary fuel cell power plants and identifies pathways for reducing

  6. International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Fuel and Pressure Vessel Forum 2010 Proceedings International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings Proceedings from the forum, which took place in Beijing, China, on September 27-29, 2010. International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings (284.25 KB) More Documents & Publications Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles"" Workshop,

  7. H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy FIRST: Hydrogen Fueling Infrastructure Research and Station Technology H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) is a project launched by the U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office (FCTO) within the Office of Energy Efficiency and Renewable Energy. The project leverages capabilities at the national laboratories to address the technology

  8. Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Offers Opportunity Nationwide | Department of Energy Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide September 11, 2014 - 2:38pm Addthis A fuel cell electric vehicle (FCEV) in Hawaii. Engineers from Idaho National Laboratory and National Renewable Energy Laboratory identified a new way to launch economically viable hydrogen fueling

  9. DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Calculation | Department of Energy 1007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$), which represents the cost at which hydrogen fuel cell electric vehicles are projected to become competitive on a cost per mile basis with the competing vehicles (gasoline in hybrid-electric vehicles) in 2020. This record from the

  10. Steam reforming of fuel to hydrogen in fuel cells

    DOEpatents

    Fraioli, Anthony V.; Young, John E.

    1984-01-01

    A fuel cell capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

  11. Steam reforming of fuel to hydrogen in fuel cell

    DOEpatents

    Young, J.E.; Fraioli, A.V.

    1983-07-13

    A fuel cell is described capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

  12. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 1, Final report

    SciTech Connect

    Not Available

    1994-03-01

    This report documents a portion of the work performed Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective for development is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near- and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.

  13. EERE Announces Notice of Intent to Issue Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen Fuels Technologies FOA

    Energy.gov [DOE]

    EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen Fuels Technologies."

  14. Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Onboard Type IV Compressed Hydrogen Storage System Cost Analysis U.S. Department of Energy Fuel Cell Technologies Office February 25, 2016 Presenter: Brian James - Strategic Analysis, Inc. DOE Host: Grace Ordaz- Technology Manager, Hydrogen Storage Program 2 | Fuel Cell Technologies Office eere.energy.gov Question and Answer * Please type your questions into the question box 2 Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Funded by the U.S. Department of Energy's Fuel Cell

  15. Hydrogen storage and delivery system development: Analysis

    SciTech Connect

    Handrock, J.L.

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  16. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Manufacturing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Cell Manufacturing Photo of scientific equipment in laboratory setting. NREL's in-line diagnostics help industry identify defects in fuel cell components. This small-scale manufacturing line at NREL's Energy Systems Integration Facility can convey fuel cell component materials at speeds of 100 feet per minute. NREL's fuel cell manufacturing R&D focuses on improving quality-inspection practices for high-volume manufacturing processes to enable higher production volumes, increased reliability,

  17. Safety Planning Guidance for Hydrogen and Fuel Cell Projects | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Safety Planning Guidance for Hydrogen and Fuel Cell Projects Safety Planning Guidance for Hydrogen and Fuel Cell Projects Hydrogen and fuel cell project safety by U.S. Department of Energy, Fuel Cell Technologies Program safety_guidance.pdf (296.55 KB) More Documents & Publications Safety Planning Guidance for Hydrogen and Fuel Cell Projects H2 Refuel H-Prize Safety Guidance Webinar H2 Refuel H-Prize Safety Guidance Webinar H2 Safety Snapshot - Vol. 2, Issue 2, July

  18. Hydrogen as a transportation fuel: Costs and benefits

    SciTech Connect

    Berry, G.D.

    1996-03-01

    Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

  19. Explore Careers in Hydrogen and Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen and Fuel Cells Explore Careers in Hydrogen and Fuel Cells National energy security, environmental pollution, and climate change are driving the development of cleaner domestic energy alternatives. Fuel cells are among the promising technologies that are expected to transform our energy sector. They represent highly efficient and fuel-flexible technologies that offer diverse benefits. For example, fuel cells can be used in a wide range of applications&mdash;from portable electronics,

  20. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell &

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) | Department of Energy Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Fact sheet describes the initiation of NREL's evaluation of a fuel cell hybrid electric bus

  1. Hydrogen and Fuel Cell Technologies Research, Development, and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demonstrations Funding Opportunity Announcement Webinar Slides | Department of Energy Research, Development, and Demonstrations Funding Opportunity Announcement Webinar Slides Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations Funding Opportunity Announcement Webinar Slides Presentation slides from the Fuel Cell Technologies Office webinar "Overview of Funding Opportunity Announcement DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development,

  2. Hydrogen and Fuel Cells Webinar Series Kickoff | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Webinar Series Kickoff Hydrogen and Fuel Cells Webinar Series Kickoff Presented at the State and Regional Initiatives Informational Call and Meeting Series Relaunch Introduction on December 14, 2010. infocall10_cesa.pdf (797.42 KB) More Documents & Publications Fuel Cells and RPSs: An Introduction Financing Fuel Cells Hydrogen Education State Partnership Program

  3. CHARACTERIZATION OF HYDROGEN CONTENT IN ZIRCALOY-4 NUCLEAR FUEL CLADDING

    SciTech Connect

    Pfeif, E. A.; Mishra, B.; Olson, D. L.; Lasseigne, A. N.; Krzywosz, K.; Mader, E. V.

    2010-02-22

    Assessment of hydrogen uptake of underwater nuclear fuel clad and component materials will enable improved monitoring of fuel health. Zirconium alloys are used in nuclear reactors as fuel cladding, fuel channels, guide tubes and spacer grids, and are available for inspection in spent fuel pools. With increasing reactor exposure zirconium alloys experience hydrogen ingress due to neutron interactions and water-side corrosion that is not easily quantified without destructive hot cell examination. Contact and non-contact nondestructive techniques, using Seebeck coefficient measurements and low frequency impedance spectroscopy, to assess the hydrogen content and hydride formation within zircaloy 4 material that are submerged to simulate spent fuel pools are presented.

  4. Hydrogen and Fuel Cell Technologies Program: Storage Fact Sheet

    Alternative Fuels and Advanced Vehicles Data Center

    CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Storage Hydrogen Storage Developing safe, reliable, compact, and cost-effective hydrogen storage tech- nologies is one of the most technically challenging barriers to the widespread use of hydrogen as a form of energy. To be competitive with conventional vehicles, hydrogen-powered cars must be able to travel more than 300 mi between flls. This is a challenging goal because hydrogen has physical characteristics that make it

  5. Designing Microporus Carbons for Hydrogen Storage Systems

    SciTech Connect

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  6. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Publication and Product Library

    The 2015 Annual Progress Report summarizes fiscal year 2015 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen produc

  7. Hydrogen and Fuel Cell Activities, Progress, and Plans: Report...

    Energy.gov [DOE] (indexed site)

    The Department's Hydrogen Program addresses the full range of barriers facing the development and deployment of hydrogen and fuel cell technologies. This is the first in a series of ...

  8. NREL: Hydrogen and Fuel Cells Research - Webmaster

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Webmaster To contact the Webmaster, please provide your name, e-mail address, and message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Hydrogen & Fuel Cells Research Home Projects Success Stories Research Staff Facilities Working with Us Energy Analysis & Tools Publications News Did you find what you needed? Yes 1 No

  9. Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of the U.S. Energy Department's commitment to give American businesses more options to cut energy costs and reduce reliance on imported oil, the Department today announced a $1.4 million investment to Wallingford- based Proton Energy Systems to collect and analyze performance data for hydrogen fueling stations and advanced refueling components. The projects will also help to track the performance and technical progress of innovative refueling systems to find ways to lower costs and improve operation. These investments are part of the Department's broader strategy to advance U.S. leadership in hydrogen and fuel cell technological innovation and help the industry bring these technologies into the marketplace at lower cost.

  10. Renewable Fuels-to-Grid Integration | Energy Systems Integration | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fuels-to-Grid Integration NREL is researching how hydrogen and other renewable fuels offer new ways to integrate our energy systems. Photo of a hydrogen electrolyzer in a laboratory Renewable fuels can serve as potential storage mediums for electric power that can either be used to fuel vehicles or converted back into electricity. Electrolyzer technologies also offer ancillary grid services to utilities. Capabilities The Hydrogen Infrastructure Testing and Research Facility at the Energy Systems

  11. Energy Department Announces $14 Million to Advance Hydrogen Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies | Department of Energy 4 Million to Advance Hydrogen Fuel Technologies Energy Department Announces $14 Million to Advance Hydrogen Fuel Technologies July 12, 2016 - 3:15pm Addthis Today, the U.S. Department of Energy (DOE) announced up to $14 million in funding for the advancement of hydrogen fuel technologies. Specifically, these selections include advanced high-temperature water splitting, advanced compression, and thermal insulation technologies. These projects will

  12. Fuel Cell Technologies Program Overview: 2012 DOE Hydrogen Compression,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Storage, and Dispensing Workshop | Department of Energy DOE Hydrogen Compression, Storage, and Dispensing Workshop Fuel Cell Technologies Program Overview: 2012 DOE Hydrogen Compression, Storage, and Dispensing Workshop This presentation was given by DOE's Sunita Satyapal at the DOE Hydrogen Compression, Storage, and Dispensing Workshop on March 20, 2012. Fuel Cell Technologies Program Overview (2.52 MB) More Documents & Publications Fuel Cell Technologies Program Overview: 2012 DOE

  13. Pressure Relief Devices for Compressed Hydrogen Vehicle Fuel Containers |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Pressure Relief Devices for Compressed Hydrogen Vehicle Fuel Containers Pressure Relief Devices for Compressed Hydrogen Vehicle Fuel Containers These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. pressurerelief_compressedcontainers_ostw.pdf (117.33 KB) More Documents & Publications Fueling Components Testing and Certification CSA International Certification Discussion Hydrogen Technology Workshop U.S. Department of Energy Onboard

  14. The Department of Energy's Hydrogen and Fuel Cells Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy's Hydrogen and Fuel Cells Program OAS-RA-13-31 September 2013 Department of Energy Washington, DC 20585 September 27, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Hydrogen and Fuel Cells Program" INTRODUCTION AND OBJECTIVE The Department of Energy spent approximately $1 billion over the last 5 years on Hydrogen and Fuel Cells Program activities implemented through various projects

  15. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil

  16. Hydrogen Fuel Cell Development in Columbia (SC)

    SciTech Connect

    Reifsnider, Kenneth; Chen, Fanglin; Popov, Branko; Chao, Yuh; Xue, Xingjian

    2012-09-15

    This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

  17. Hydrogen Fuel Cell Development in Columbia (SC)

    SciTech Connect

    Reifsnider, Kenneth

    2011-07-31

    This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

  18. Webinar: California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles

    Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles, originally presented on October 16, 2013.

  19. Overview of U.S. Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    United States Hydrogen and Fuel Cell Activities U.S. Department of Energy Dr. Sunita Satyapal Fuel Cell Technologies Program CNG and Hydrogen Lessons Learned Workshop December 10, 2009 2 Workshop Objectives * To coordinate lessons learned from compressed natural gas and hydrogen vehicles * Collect feedback from demonstration activities and real world applications in the United States and internationally * Identify additional RD&D to ensure safe use of onboard and bulk storage hydrogen and

  20. QER- Comment of Canadian Hydrogen and Fuel Cell Association

    Office of Energy Efficiency and Renewable Energy (EERE)

    Dear Sir/Madam, The Canadian Hydrogen and Fuel Cell Association (CHFCA) was pleased to participate in the September 18, 2014 special dialogue on the Quadrennial Energy Review (QER) that was held in Ottawa, Ontario, Canada. At this time, we understand the QER is seeking to provide a multiyear roadmap that focuses on energy infrastructure with specific attention on the transmission, storage and distribution (TS&D) systems that make up North America’s oil, gas and electricity infrastructure.

  1. Safety evaluation of a hydrogen fueled transit bus

    SciTech Connect

    Coutts, D.A.; Thomas, J.K.; Hovis, G.L.; Wu, T.T.

    1997-12-31

    Hydrogen fueled vehicle demonstration projects must satisfy management and regulator safety expectations. This is often accomplished using hazard and safety analyses. Such an analysis has been completed to evaluate the safety of the H2Fuel bus to be operated in Augusta, Georgia. The evaluation methods and criteria used reflect the Department of Energy`s graded approach for qualifying and documenting nuclear and chemical facility safety. The work focused on the storage and distribution of hydrogen as the bus motor fuel with emphases on the technical and operational aspects of using metal hydride beds to store hydrogen. The safety evaluation demonstrated that the operation of the H2Fuel bus represents a moderate risk. This is the same risk level determined for operation of conventionally powered transit buses in the United States. By the same criteria, private passenger automobile travel in the United States is considered a high risk. The evaluation also identified several design and operational modifications that resulted in improved safety, operability, and reliability. The hazard assessment methodology used in this project has widespread applicability to other innovative operations and systems, and the techniques can serve as a template for other similar projects.

  2. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  3. Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles (FCVs) Presentation by Michael Veenstra, Ford Motor Company, at the U.S. Department of Energy's Polymer and ...

  4. Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Administration; Appendix Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration; Appendix ...

  5. Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WORKSHOP AGENDA U. S. Department of Transportation and U.S. Department of Energy Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles ...

  6. Connecticut Company to Advance Hydrogen Infrastructure and Fueling...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and analyze performance data for hydrogen fueling stations and advanced refueling components. ... a wide range of alternative energy sources to reduce its dependence on foreign oil. ...

  7. 2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Publication and Product Library

    The 2012 Annual Progress Report summarizes fiscal year 2012 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program.

  8. Pressure Relief Devices for Compressed Hydrogen Vehicle Fuel...

    Energy.gov [DOE] (indexed site)

    (117.33 KB) More Documents & Publications Fueling Components Testing and Certification CSA International Certification Discussion Hydrogen Technology Workshop U.S. Department of ...

  9. Hydrogen and Fuel Cell Technical Advisory Committee Meeting

    Energy.gov [DOE]

    A meeting of the Hydrogen and Fuel Cell Technical Advisory Committee will be held on April 6–7, 2016, in Livermore, California.

  10. Nebraska Company Expands to Meet Demand for Hydrogen Fuel | Department...

    Energy.gov [DOE] (indexed site)

    fuel tanks that help deliver hydrogen to fleets throughout the country. The company has more than doubled its workforce to accommodate growing demand for the tanks. | Photo ...

  11. Technical Forum Participants at the International Hydrogen Fuel...

    Energy.gov [DOE] (indexed site)

    Photo of the Technical Forum Participants at the International Hydrogen Fuel and Pressure Vessel Forum, which was held on September 27-29, 2010, in Beijing, China. ...

  12. DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  13. Hydrogen and Fuel Cells Program Overview: 2015 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2015 Annual Merit Review and Peer Evaluation Meeting Presentation by Sunita Satyapal at ...

  14. Hydrogen and Fuel Cells Program Overview: 2014 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2014 Annual Merit Review and Peer Evaluation Meeting Presentation by Sunita Satyapal at ...

  15. New Training Resource Prepares Rescuers for Hydrogen and Fuel...

    Energy Saver

    Office (FCTO) conducts comprehensive efforts to overcome the technological, economic, and institutional barriers to the widespread commercialization of hydrogen and fuel cells. ...

  16. Fuel Cell Vehicles Enhance NREL Hydrogen Research Capabilities...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The vehicles are fueled with hydrogen produced by renewable electrolysis at NREL's Distributed Energy Resources Test Facility-wind turbines and solar panels power electrolyzers ...

  17. Hydrogen Fuel Cell Engines and Related Technologies Course Manual...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Engines and Related Technologies Course Manual Hydrogen Fuel Cell Engines and Related Technologies Course Manual This course manual features technical information on the use of ...

  18. Interested in Hydrogen and Fuel Cell Technologies? Help Shape...

    Energy.gov [DOE] (indexed site)

    The Energy Department recently released a new video in its popular Energy 101 series showing how fuel cell technology generates clean electricity from hydrogen to power our ...

  19. Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Administration Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration This document ...

  20. Fuel Cell Technologies Office Overview: 2015 Hydrogen, Hydrocarbons...

    Energy.gov [DOE] (indexed site)

    Introductory presentation by Sunita Satyapal, U.S. Department of Energy Fuel Cell Technologies Office Director, at the Hydrogen, Hydrocarbons, and Bioproduct Precursors from ...

  1. DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010...

    Energy.gov [DOE] (indexed site)

    Presentation by Sunita Satyapal at the 2010 Society of Automotive Engineers (SAE) World Congress in Detroit, Michigan. DOE Hydrogen and Fuel Cell Activities Panel Discussion ...

  2. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...

    Energy.gov [DOE] (indexed site)

    This presentation by Bill Elrick of the California Fuel Cell Partnership was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop on March 19, 2013. ...

  3. Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Vehicle Technologies Office Review Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment Andrew DeCandis (P.I.) - Senior Air Quality Planner ...

  4. Hydrogen and Fuel Cell Technical Advisory Committee Meeting

    Energy.gov [DOE]

    The Hydrogen and Fuel Cell Technical Advisory Committee will hold its next meeting on September 20–21, 2016, in Washington, D.C.

  5. DOE Announces Webinars on Hydrogen Fueling for Current and Anticipated...

    Energy.gov [DOE] (indexed site)

    economic impacts of hydrogen infrastructure for early market fuel cell electric vehicles. ... The Energy Department will present a live webinar titled "Here Comes the Sun: Satisfying ...

  6. Sandia Energy - Sandian's Receive Hydrogen and Fuel Cell Program...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sandian's Receive Hydrogen and Fuel Cell Program Achievement Award Home Infrastructure Security Energy Transportation Energy Facilities News News & Events Research & Capabilities...

  7. NREL: Hydrogen and Fuel Cells Research - From the EERE Blog:...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    From the EERE Blog: Colorado Joins the Hydrogen and Fuel Cells Race December 4, 2015 The Energy Department's Office of Energy Efficiency and Renewable Energy (EERE) recently posted...

  8. Prospects for Hydrogen and Fuel Cells (Presentation) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    for Hydrogen and Fuel Cells (Presentation) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics:...

  9. 2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect

    none,

    2012-12-01

    The 2012 Annual Progress Report summarizes fiscal year 2012 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program.

  10. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Infrastructure | Department of Energy Systems Analysis » 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Introducing hydrogen as an energy carrier would involve major changes in the country's energy and vehicle fleet infrastructure. Technical challenges, costs, and risk will be highest in the near-term, when markets are very small and the technology and infrastructure are immature.

  11. Overview of Hydrogen and Fuel Cell Activities: 2010 Military...

    Energy.gov [DOE] (indexed site)

    This presentation by DOE's Sunita Satyapal was given at the Military Energy and Alternative Fuels Conference in March 2010. Overview of Hydrogen and Fuel Cell Activities (3.37 MB) ...

  12. Webinar: Hydrogen Fueling for Current and Anticipated FCEVs

    Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles" on Tuesday, June 24, from 12:00 p.m. to 1:00 p.m. Eastern...

  13. Hydrogen and Fuel Cell Activities: 5th International Conference...

    Energy.gov [DOE] (indexed site)

    Plenary presentation by Sunita Satyapal at the 5th International Conference on Polymer Batteries and Fuel Cells on August 4, 2011. Hydrogen and Fuel Cell Activities (6.13 MB) More ...

  14. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Safety Planning Guidance for Hydrogen and Fuel Cell Projects April 2010 U.S. Department of Energy Fuel Cell Technologies Program Table of Contents A. Introduction.................................................................................................................... 1 B. Requirements and Procedures....................................................................2 C. The Safety Plan

  15. Hydrogen Fueling Infrastructure Research and Station Technology Webinar Slides

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014.

  16. The Palm Desert renewable [hydrogen] transportation system

    SciTech Connect

    Chamberlin, C.E.; Lehman, P.

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehicle diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.

  17. Fuel washout detection system

    DOEpatents

    Colburn, Richard P.

    1985-01-01

    A system for detecting grossly failed reactor fuel by detection of particulate matter as accumulated on a filter.

  18. Hydrogen Separation Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect

    Roark, Shane E.; Mackay, Richard; Sammells, Anthony F.

    2001-11-06

    Eltron Research and team members CoorsTek, McDermott Technology, Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the Department of Energy (DOE) National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. By appropriately changing the catalysts coupled with the membrane, essentially the same system can be used to facilitate alkane dehydrogenation and coupling, aromatics processing, and hydrogen sulfide decomposition.

  19. NREL, Sandia Team to Improve Hydrogen Fueling Infrastructure - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Releases | NREL NREL, Sandia Team to Improve Hydrogen Fueling Infrastructure April 30, 2014 A new project led by the Energy Department's National Renewable Energy Laboratory (NREL) and Sandia National Laboratories will support H2USA, a public-private partnership co-launched by industry and the Energy Department, and will work to ensure that hydrogen fuel cell vehicle owners have a positive fueling experience as fuel cell electric vehicles are introduced starting in 2014-2015. By tackling the

  20. Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

    SciTech Connect

    2010-07-15

    Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

  1. National Renewable Energy Laboratory (NREL): Hydrogen and Fuel Cell Capabilities Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Laboratory (NREL) Hydrogen and Fuel Cell Capabilities Overview 2014 Fuel Cell Seminar and Energy Exposition National Lab Showcase Keith Wipke, NREL Fuel Cell and Hydrogen Technologies Program Manager November 11, 2014 2 NREL Overview o Founded in 1977 o Location: Golden, Colorado o ~1,750 full-time staff o Full spectrum of RD&D, from basic science to deployment o Unique research and testing capabilities across multiple scales o Systems approach o Strong history of partnering with industry

  2. Energy Department Awards $7 Million to Advance Hydrogen Storage Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 7 Million to Advance Hydrogen Storage Systems Energy Department Awards $7 Million to Advance Hydrogen Storage Systems May 19, 2014 - 12:30pm Addthis The Energy Department today announced $7 million for six projects to develop lightweight, compact, and inexpensive advanced hydrogen storage systems that will enable longer driving ranges and help make fuel cell systems competitive for different platforms and sizes of vehicles. These advances in hydrogen storage will be

  3. Solar-hydrogen energy system for Pakistan

    SciTech Connect

    Lutfi, N.

    1990-01-01

    A solar-hydrogen energy system has been proposed for Pakistan as the best replacement for the present fossil fuel based energy system. It has been suggested to produce hydrogen via photovoltaic-electrolysis, utilizing the available non-agricultural sunny terrain in Baluchistan region. There will be a desalination plant for sea water desalination. The area under the photovoltaic panels with the availability of water would provide suitable environment for growing some cash crops. This would change the cast useless desert land into green productive farms. In order to show the quantitative benefits of the proposed system, future trends of important energy and economical parameters have been studied with and without hydrogen introduction. The following parameters have been included: population, energy demand (fossil + hydrogen), energy production (fossil + hydrogen), gross national product, fossil energy imports, world energy prices, air pollution, quality of life, environmental savings due to hydrogen introduction, savings due to the higher utilization efficiency of hydrogen, by-product credit, agricultural income, income from hydrogen sale, photovoltaic cell area, total land area, water desalination plant capacity, capital investment, operating and maintenance cost, and total income from the system. The results indicate that adopting the solar-hydrogen energy system would eliminate the import dependency of fossil fuels, increase gross product per capita, reduce pollution, improve quality of life and establish a permanent and clean energy system. The total annual expenditure on the proposed system is less than the total income from the proposed system. The availability of water, the cash crop production, electricity and hydrogen would result in rapid development of Baluchistan, the largest province of Pakistan.

  4. Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FuelCell Energy, June 2011 | Department of Energy Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Presentation on Ultra Efficient Combined Heat, Hydrogen, and Power System, given by Pinakin Patel of FuelCell Energy, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  5. Fuel transfer system

    DOEpatents

    Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  6. Fuel transfer system

    DOEpatents

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  7. Upcoming H2USA Workshop: Hydrogen Fueling Station Component Listings

    Energy.gov [DOE]

    H2USA will host an online workshop about hydrogen fueling station component listings on April 22 from 2 to 3:30 p.m. Eastern Daylight Time. This workshop will focus on the need for components for hydrogen fueling stations to be listed by Nationally Recognized Testing Laboratories (NRTLs).

  8. Hydrogen fuel cells could power ships at port

    SciTech Connect

    Pratt, Joe

    2013-06-27

    Sandia National Laboratories researcher Joe Pratt conducted a study on the use of hydrogen fuel cells to power docked ships at major ports. He found the potential environmental and cost benefits to be substantial. Here, he discusses the study and explains how hydrogen fuel cells can provide efficient, pollution-free energy to ships at port.

  9. DOE Hydrogen and Fuel Cells Program Annual Progress Report

    SciTech Connect

    2012-04-11

    These progress reports summarize the year's hydrogen and fuel cell R&D and analysis activities and accomplishments. This work was conducted by industry, academia, and national laboratories for the DOE Hydrogen and Fuel Cells Program and the offices of Energy Efficiency and Renewable Energy (EERE), Fossil Energy, Nuclear Energy, and Science.

  10. Hydrogen fuel cells could power ships at port

    ScienceCinema

    Pratt, Joe

    2013-11-22

    Sandia National Laboratories researcher Joe Pratt conducted a study on the use of hydrogen fuel cells to power docked ships at major ports. He found the potential environmental and cost benefits to be substantial. Here, he discusses the study and explains how hydrogen fuel cells can provide efficient, pollution-free energy to ships at port.

  11. NREL: Hydrogen and Fuel Cells Research - NREL Hydrogen Expert...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL Hydrogen Expert Sees Promise in New Discovery Photoelectrochemical pioneer John ... January 8, 2014 Producing hydrogen directly from the sun -- and in a way that is ...

  12. Solar hydrogen energy system. Annual report, 1995--1996

    SciTech Connect

    Veziroglu, T.N.

    1996-12-31

    The paper reports progress on three tasks. Task A, System comparison of hydrogen with other alternative fuels in terms of EPACT requirements, investigates the feasibility of several alternative fuels, namely, natural gas, methanol, ethanol, hydrogen and electricity, to replace 10% of gasoline by the year 2000. The analysis was divided into two parts: analysis of vehicle technologies and analysis of fuel production, storage and distribution. Task B, Photovoltaic hydrogen production, involves this fuel production method for the future. The process uses hybrid solar collectors to generate dc electricity, as well as high temperature steam for input to the electrolyzer. During the first year, solar to hydrogen conversion efficiencies have been considered. The third task, Hydrogen safety studies, covers two topics: a review of codes, standards, regulations, recommendations, certifications, and pamphlets which address safety of gaseous fuels; and an experimental investigation of hydrogen flame impingement.

  13. Synergies in Natural Gas and Hydrogen Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    F presentation slides: synergies in Natural Gas and hydrogen Fuels Brian Bonner, Air Products and Chemicals, Inc. 1 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX F 2 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX F 3 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX F 4 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX F 5 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry

  14. Energy Department Applauds World's First Fuel Cell and Hydrogen Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Station in Orange County | Department of Energy World's First Fuel Cell and Hydrogen Energy Station in Orange County Energy Department Applauds World's First Fuel Cell and Hydrogen Energy Station in Orange County August 16, 2011 - 5:28pm Addthis Washington, D.C. - The U.S. Department of Energy today issued the following statement in support of the commissioning of the world's first tri-generation fuel cell and hydrogen energy station to provide transportation fuel to the public and electric

  15. Webinar May 26: Hydrogen Fuel Cells for Small Unmanned Airvehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 26: Hydrogen Fuel Cells for Small Unmanned Airvehicles Webinar May 26: Hydrogen Fuel Cells for Small Unmanned Airvehicles May 19, 2016 - 6:36pm Addthis The Energy Department's Fuel Cell Technologies Office (FCTO), in collaboration with the Naval Research Laboratory (NRL), will present a unique, live webinar titled "Hydrogen Fuel Cells for Small Unmanned Airvehicles" on Thursday, May 26, from 1:00 to 2:00 p.m. Eastern Daylight Time (EDT). NRL has contributed to

  16. U.S. Department of Energy Hydrogen and Fuel Cell Overview: FC...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen and Fuel Cell Overview: FC EXPO 2016 U.S. Department of Energy Hydrogen and Fuel Cell Overview: FC EXPO 2016 U.S. Department of Energy hydrogen and fuel cell overview ...

  17. Help Design the Hydrogen Fueling Station of Tomorrow

    Office of Energy Efficiency and Renewable Energy (EERE)

    As the hydrogen industry expands, refueling infrastructure needs to be developed to keep fuel cell electric vehicles powered and moving on America’s roadways. University students can play a big role in this through the Hydrogen Education Foundation’s Hydrogen Student Design Contest, supported by the Energy Department.

  18. Hydrogen Infrastructure for the Next Generation of Fuel Cell Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for the Next Generation of Fuel Cell Vehicles Sustainable Transportation Summit July 12, 2016 Dave Edwards Air Liquide 2 Air Liquide, the world leader in gases, technologies and services for Industry and Health Air Liquide - Hydrogen Hydrogen: 40 years in industry * $2.5B Revenue (refinery and chemicals) * 1850 km of pipelines * 1000 trucks * 18 Billion Nm3/year from 46 large plants (enough for 15M vehicle refills) * 75 filling stations * 300+ fuel cell installations Air Liquide Hydrogen

  19. Forum Agenda: International Hydrogen Fuel and Pressure Vessel Forum

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FORUM AGENDA U.S. Department of Energy and Tsinghua University International Hydrogen Fuel and Pressure Vessel Forum Tsinghua University Beijing, PRC September 27 - 29, 2010 The U.S. Department of Energy (DOE) and Tsinghua University in Beijing co-hosted the International Hydrogen Fuel and Pressure Vessel Forum on September 27 - 29, 2010 in Beijing, China. High pressure vessel experts gathered to share lessons learned from CNG and hydrogen vehicle deployments, and to identify R&D needs to

  20. EERE Success Story-Advancing Hydrogen Infrastructure and Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicle | Department of Energy Hydrogen Infrastructure and Fuel Cell Electric Vehicle EERE Success Story-Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle January 13, 2015 - 11:31am Addthis H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote advancing hydrogen infrastructure to support more transportation energy options for consumers. H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote

  1. NREL: Hydrogen and Fuel Cells Research - Market Transformation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Market Transformation NREL's market transformation activities address technical and non-technical barriers to the commercialization of hydrogen and fuel cell technologies to ensure that laboratory advances can be realized in the marketplace. Projects focus on deploying hydrogen and fuel cells in key early markets-specialty vehicles, backup and remote power, portable power, and primary power for critical applications such as hospitals or data centers-and renewable hydrogen production

  2. Dual Tank Fuel System

    DOEpatents

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  3. Fuel injector system

    DOEpatents

    Hsu, Bertrand D.; Leonard, Gary L.

    1988-01-01

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  4. Overview of interstate hydrogen pipeline systems.

    SciTech Connect

    Gillette, J .L.; Kolpa, R. L

    2008-02-01

    . The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines

  5. Fuel cell power system for utility vehicle

    SciTech Connect

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M.

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  6. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    SciTech Connect

    Edward F. Kiczek

    2007-08-31

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  7. Biorefinery and Hydrogen Fuel Cell Research

    SciTech Connect

    K.C. Das; Thomas T. Adams; Mark A. Eiteman; John Stickney; Joy Doran Peterson; James R. Kastner; Sudhagar Mani; Ryan Adolphson

    2012-06-12

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [1] establishment of pyrolysis processing systems and characterization of the product oils for fuel applications, including engine testing of a preferred product and its pro forma economic analysis; [2] extraction of sugars through a novel hotwater extaction process, and the development of levoglucosan (a pyrolysis BioOil intermediate); [3] identification and testing of the use of biochar, the coproduct from pyrolysis, for soil applications; [4] developments in methods of atomic layer epitaxy (for efficient development of coatings as in fuel cells); [5] advancement in fermentation of lignocellulosics, [6] development of algal biomass as a potential substrate for the biorefinery, and [7] development of catalysts from coproducts. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the pyrolysis biooil based diesel fuel supplement, sugar extraction from lignocelluose, use of biochar, production of algal biomass in wastewaters, and the development of catalysts. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The various coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

  8. Vehicle fuel system

    DOEpatents

    Risse, John T.; Taggart, James C.

    1976-01-01

    A vehicle fuel system comprising a plurality of tanks, each tank having a feed and a return conduit extending into a lower portion thereof, the several feed conduits joined to form one supply conduit feeding fuel to a supply pump and using means, unused fuel being returned via a return conduit which branches off to the several return conduits.

  9. Transportation and Stationary Power Integration with Hydrogen and Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology in Connecticut | Department of Energy with Hydrogen and Fuel Cell Technology in Connecticut Transportation and Stationary Power Integration with Hydrogen and Fuel Cell Technology in Connecticut Overview of strengths, weaknesses, and barriers, deployment phases, military sites, environmental value, and potential partnerships tspi_rinebold.pdf (2.22 MB) More Documents & Publications Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices

  10. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydrogen Production and Delivery Learn how NREL is developing and advancing a number of pathways to renewable hydrogen production. Text Version Most of the hydrogen in the United States is produced by steam reforming of natural gas. For the near term, this production method will continue to dominate. Researchers at NREL are developing advanced processes to produce hydrogen economically from sustainable resources. NREL's hydrogen production and delivery R&D efforts, which are led by Huyen

  11. Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure ...

  12. EERE Announces Notice of Intent to Issue Hydrogen and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations FOA EERE Announces Notice of Intent to Issue Hydrogen and Fuel Cell Technologies Research, Development, ...

  13. DOE Announces Notice of Intent to Issue Hydrogen and Fuel Cell...

    Office of Environmental Management (EM)

    Announces Notice of Intent to Issue Hydrogen and Fuel Cell Research, Development, and Demonstration FOA DOE Announces Notice of Intent to Issue Hydrogen and Fuel Cell Research, ...

  14. From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits- Mound Science and Energy Museum Programs Cover a Wide Range of Topics From Hydrogen Fuel Cells to ...

  15. 2011 NREL/DOE Hydrogen and Fuel Cell Manufacturing R&D Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2011 NRELDOE HYDROGEN AND FUEL CELL MANUFACTURING R&D WORKSHOP REPORT Contents 1 ......... 3 2.1.1 Hydrogen and Fuel Cell Technologies Overview; Sunita ...

  16. Sustainable Hydrogen Fueling Station, California State University, Los Angeles

    SciTech Connect

    Blekhman, David

    2013-01-25

    The College of Engineering, Computer Science, & Technology at California State University, Los Angeles as part of its alternative and renewable energy leadership efforts has built a sustainable hydrogen station to teach and demonstrate the production and application of hydrogen as the next generation of fully renewable fuel for transportation. The requested funding was applied toward the acquisition of the core hydrogen station equipment: electrolyzer, compressors and hydrogen storage.

  17. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, ... Power R&D Needs (Presentation) Vehicle Technologies Office Merit Review 2016: ...

  18. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...

    Energy.gov [DOE] (indexed site)

    establishes the California Fuel Cell Partnership's current consensus vision of next steps for vehicles and hydrogen stations in California. 200707completevisiondeployment....

  19. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document establishes the California Fuel Cell Partnership’s current consensus vision of next steps for vehicles and hydrogen stations in California.

  20. DOE Technical Targets for Fuel Cell Systems for Transportation Applications

    Energy.gov [DOE]

    These tables list the U.S. Department of Energy (DOE) technical targets for integrated polymer electrolyte membrane (PEM) fuel cell power systems and fuel cell stacks operating on direct hydrogen for transportation applications.

  1. Controlled air injection for a fuel cell system

    DOEpatents

    Fronk, Matthew H. (Honeove Falls, NY)

    2002-01-01

    A method and apparatus for injecting oxygen into a fuel cell reformate stream to reduce the level of carbon monoxide while preserving the level of hydrogen in a fuel cell system.

  2. Controlled air injection for a fuel cell system

    DOEpatents

    Fronk, Matthew H.

    2003-06-10

    A method and apparatus for injecting oxygen into a fuel cell reformate stream to reduce the level of carbon monoxide while preserving the level of hydrogen in a fuel cell system.

  3. Technology Validation of Fuel Cell Vehicles and Their Hydrogen Infrastructure (Presentation)

    SciTech Connect

    Sprik, S.; Kurtz, J.; Wipke, K.; Saur, G.; Ainscough, C.

    2013-10-22

    This presentation summarizes NREL's analysis and validation of fuel cell electric vehicles and hydrogen fueling infrastructure technologies.

  4. NREL: Hydrogen and Fuel Cells Research - Pathways to Renewable Hydrogen

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Video (Text Version) Pathways to Renewable Hydrogen Video (Text Version) Below is the text version of the Pathways to Renewable Hydrogen video. Voiceover: It is the most plentiful element in the universe and it's a key component in the suite of renewable options needed as we transition to a cleaner, more secure energy strategy. Keith Wipke: Hydrogen is a really important part of the portfolio of our energy in this country. Voiceover: In nature hydrogen is combined with other elements but,

  5. NREL: Hydrogen and Fuel Cells Research - Hydrogen Storage

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydrogen Storage Storing hydrogen for renewable energy technologies can be challenging, especially for intermittent resources such as solar and wind. Whether for stationary, portable, or transportation applications, cost-effective, high-density energy storage is necessary for enabling the technologies that can change our energy future and reduce greenhouse gas emissions. Hydrogen can play an important role in transforming our energy future if hydrogen storage technologies are improved. With

  6. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructu...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Hydrogen Education in Texas DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Validation Tanadgusix (TDX) Foundation Hydrogen ...

  7. DOE Announces Webinars on Hydrogen Fueling for Current and Anticipated Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cell Electric Vehicles, Net Metering for Tribes, and More | Department of Energy Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles, Net Metering for Tribes, and More DOE Announces Webinars on Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles, Net Metering for Tribes, and More June 19, 2014 - 6:48pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to

  8. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations July 2008 California Fuel Cell Partnership 3300 Industrial Blvd, Suite 1000 West Sacramento, CA 95691 916-371-2870 www.cafcp.org This document establishes CaFCP's current consensus vision of next steps for vehicles and hydrogen stations in California. This consensus vision does not necessarily represent the organizational views or individual commitments of CaFCP members. CaFCP Vision Document Overview Fuel cell vehicles and

  9. President's Hydrogen Fuel Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentation prepared by JoAnn Milliken for the 2005 Manufacturing for the Hydrogen Economy workshop mfg_wkshp_plenary.pdf (1.63 MB) More Documents & Publications DOE Hydrogen Program Overview U.S. Department of Energy Hydrogen Program A Brief Overview of Hydrogen Storage Issues and Needs

  10. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    SciTech Connect

    Porter Hill; Michael Penev

    2014-08-01

    The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.

  11. Overview of Indian Hydrogen Program and Key Safety Issues of Hydrogen Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transportation and US Department of Energy Workshop on o s op o Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles Overview of Indian Hydrogen Programme & Overview of Indian Hydrogen Programme & Key Safety Issues on Hydrogen Fuel y y y g Dilip Chenoy Di t G l Director General Society of Indian Automobile Manufacturers (SIAM) December 10-11 2009 Washington DC SIAM 1 December 10-11, 2009, Washington DC Overview of Indian Hydrogen Programme &

  12. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    15-19/2009; 1 Sandia National Laboratories CNG, H 2 , CNG-H 2 Blends - Critical Fuel Properties and Behavior Jay Keller, Sandia National Laboratories Keynote Lecture presented at: Workshop on Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles December 10-11, 2009 6/15-19/2009; 2 Sandia National Laboratories Hydrogen Behavior - Myth Busting Jay Keller, Sandia National Laboratories Topical Lecture Progress in Hydrogen Safety: International Short Course

  13. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    ScienceCinema

    None

    2016-07-12

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  14. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    SciTech Connect

    2011-01-01

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  15. Hydrogen Fuel Cells for Small Unmanned Air Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells for Small Unmanned Air Vehicles U.S. Department of Energy Fuel Cell Technologies Office May 26 th , 2016 Presenter: Karen Swider-Lyons : US Naval Research Laboratory DOE Host: Pete Devlin : Market Transformation Manager, FCTO 2 | Fuel Cell Technologies Office eere.energy.gov Question and Answer * Please type your questions into the question box 2 U.S. Naval Research Laboratory Hydrogen Fuel Cells for Small Unmanned Air Vehicles Karen Swider-Lyons US Naval Research Laboratory Code

  16. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application

    Energy.gov [DOE]

    This presentation reports on the status of mass production cost estimation for direct hydrogen PEM fuel cell systems.

  17. Overview of Hydrogen Fuel Cell Budget

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Budget FUEL CELL TECHNOLOGIES PROGRAM Stakeholders Webinar - Budget Briefing Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager February 24, ...

  18. Lean Gasoline System Development for Fuel Efficient Small Car | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Lean Gasoline System Development for Fuel Efficient Small Car Lean Gasoline System Development for Fuel Efficient Small Car 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace063_smith_2012_o.pdf (1.91 MB) More Documents & Publications Lean Gasoline System Development for Fuel Efficient Small Car Lean Gasoline System Development for Fuel Efficient Small Car PHEV Engine and Aftertreatment Model Development

  19. Materials for High Pressure Fuel Injection Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for High Pressure Fuel Injection Systems Materials for High Pressure Fuel Injection Systems 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation pm021_blau_2011_p.pdf (1.78 MB) More Documents & Publications Materials for High Pressure Fuel Injection Systems Materials for High Pressure Fuel Injection Systems Multi-Material Joining: Challenges and Opportunities

  20. Stationary and Portable Fuel Cell Systems Codes and Standards Citations |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy and Portable Fuel Cell Systems Codes and Standards Citations Stationary and Portable Fuel Cell Systems Codes and Standards Citations This document lists codes and standards typically used for U.S. stationary and portable fuel cell systems. Stationary and Portable Fuel Cell Systems Codes and Standards Citations (293.25 KB) More Documents & Publications Hydrogen Vehicle and Infrastructure Codes and Standards Citations National Template: Stationary & Portable Fuel