National Library of Energy BETA

Sample records for hydroelectric power geothermal

  1. Lushui County Quande Hydroelectrical Power Development Ltd |...

    OpenEI (Open Energy Information) [EERE & EIA]

    County Quande Hydroelectrical Power Development Ltd Jump to: navigation, search Name: Lushui County Quande Hydroelectrical Power Development Ltd. Place: Yunnan Province, China...

  2. Energy 101: Hydroelectric Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydroelectric Power Energy 101: Hydroelectric Power August 13, 2013 - 2:27pm Addthis Learn how hydroelectric power, or hydropower, captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses. Humans have been using water to generate power for thousands of years. Hydroelectric power, or hydropower, captures the kinetic energy of flowing water and turns it into electricity, which is then fed into the electrical grid to be used in homes and businesses.

  3. Energy 101: Hydroelectric Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydroelectric Power Energy 101: Hydroelectric Power Addthis Description Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses. Topic Water Text Version Below is the text version for the Energy 101: Hydroelectric Power video: The video opens with the words "Energy 101: Hydroelectric Power." This is followed by a montage of rivers and streams, then a shot of an older water wheel. People have been capturing the energy

  4. Huaiji Hydroelectric Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Project Jump to: navigation, search Name: Huaiji Hydroelectric Power Project Place: Guangzhou, Guangdong Province, China Zip: 510620 Product: The Huaiji project involves nine...

  5. Longyang Zone Hongqiang Hydroelectric Power Development Co Ltd...

    OpenEI (Open Energy Information) [EERE & EIA]

    Longyang Zone Hongqiang Hydroelectric Power Development Co Ltd Jump to: navigation, search Name: Longyang Zone Hongqiang Hydroelectric Power Development Co., Ltd. Place: Baoshan...

  6. Yingjiang County Binglang River Hydroelectric Power Co Ltd |...

    OpenEI (Open Energy Information) [EERE & EIA]

    Yingjiang County Binglang River Hydroelectric Power Co Ltd Jump to: navigation, search Name: Yingjiang County Binglang River Hydroelectric Power Co., Ltd. Place: Dehong Dai-Jingpo...

  7. Bihar State Hydroelectric Power Corp BSHPC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hydroelectric Power Corp BSHPC Jump to: navigation, search Name: Bihar State Hydroelectric Power Corp (BSHPC) Place: Patna, Bihar, India Sector: Hydro Product: Patna-based nodal...

  8. Wuxi Longshui Hydroelectric Power Development Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Longshui Hydroelectric Power Development Co Ltd Jump to: navigation, search Name: Wuxi Longshui Hydroelectric Power Development Co. Ltd Place: Chongqing, Chongqing Municipality,...

  9. Sangzhi Zhongyuan Hydroelectric Power Station | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Zhongyuan Hydroelectric Power Station Jump to: navigation, search Name: Sangzhi Zhongyuan Hydroelectric Power Station Place: Zhangjiajie, Hunan Province, China Zip: 427100 Sector:...

  10. Cangxi Jianghe Hydroelectric Power Development Co Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Cangxi Jianghe Hydroelectric Power Development Co Ltd Jump to: navigation, search Name: Cangxi Jianghe Hydroelectric Power Development Co., Ltd. Place: Guanyuan, Sichuan Province,...

  11. Lintan Luertai Hydroelectric Power Company Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Luertai Hydroelectric Power Company Ltd Jump to: navigation, search Name: Lintan Luertai Hydroelectric Power Company, Ltd Place: Lintan County, Gansu Province, China Sector: Hydro...

  12. Shaowu Jinwei Hydroelectric Power Development Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Shaowu Jinwei Hydroelectric Power Development Co Ltd Jump to: navigation, search Name: Shaowu Jinwei Hydroelectric Power Development Co., Ltd. Place: Shaowu City, Fujian Province,...

  13. Xuan en Tongziying Hydroelectric Power Development Co Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Tongziying Hydroelectric Power Development Co Ltd Jump to: navigation, search Name: Xuan(tm)en Tongziying Hydroelectric Power Development Co., Ltd. Place: Enshi Prefecture,...

  14. Okeanskaya Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Okeanskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Okeanskaya Geothermal Power Plant General Information Name Okeanskaya Geothermal...

  15. Nagqu Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Nagqu Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Geothermal Region Plant Information...

  16. GEOTHERMAL POWER GENERATION PLANT

    Energy.gov [DOE]

    Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls, OR. Constructing a geothermal power plant on the Oregon Institute of Technology campus.

  17. Small-Scale Hydroelectric Power Demonstration Project

    SciTech Connect

    Gleeson, L.

    1991-12-01

    The US Department of Energy Field Office, Idaho, Small-Scale Hydroelectric Power Program was initiated in conjunction with the restoration of three power generating plants in Idaho Falls, Idaho, following damage caused by the Teton Dam failure on June 5, 1976. There were many parties interested in this project, including the state and environmental groups, with different concerns. This report was prepared by the developer and describes the design alternatives the applicant provided in an attempt to secure the Federal Energy Regulatory Commission license. Also included are correspondence between the related parties concerning the project, major design alternatives/project plan diagrams, the license, and energy and project economics.

  18. Eburru Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Eburru Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Eburru Geothermal Power Plant General Information Name Eburru Geothermal Power Plant...

  19. Ndunga Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ndunga Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Ndunga Geothermal Power Plant General Information Name Ndunga Geothermal Power Plant...

  20. Irem Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Irem Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Irem Geothermal Power Plant General Information Name Irem Geothermal Power Plant Facility...

  1. Tuzla Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tuzla Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Tuzla Geothermal Power Plant General Information Name Tuzla Geothermal Power Plant...

  2. Sibayak Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sibayak Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sibayak Geothermal Power Plant General Information Name Sibayak Geothermal Power Plant...

  3. Ulumbu Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Ulumbu Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Address Kupang Location Indonesia Coordinates...

  4. Pauzhetskaya Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Pauzhetskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Pauzhetskaya Geothermal Power Plant General Information Name Pauzhetskaya...

  5. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants...

    Office of Scientific and Technical Information (OSTI)

    Geothermal Risk Reduction via GeothermalSolar Hybrid Power Plants. Final Report Citation Details In-Document Search Title: Geothermal Risk Reduction via GeothermalSolar Hybrid ...

  6. Asia Power Leibo Hydroelectricity Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Province, China Sector: Hydro Product: China-based developer and operator of small hydro plants. References: Asia Power (Leibo) Hydroelectricity Co Ltd1 This article is a...

  7. The geothermal power organization

    SciTech Connect

    Scholl, K.L.

    1997-12-31

    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  8. List of Hydroelectric Incentives | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Coal with CCS Concentrating Solar Power Energy Storage Fuel Cells Geothermal Electric Natural Gas Nuclear Tidal Energy Wave Energy Wind energy BiomassBiogas Hydroelectric...

  9. Rancia Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name Rancia Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  10. Sesta Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name Sesta Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  11. Farinello Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name Farinello Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  12. Pianacce Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name Pianacce Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  13. Nuova Sasso Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    General Information Name Nuova Sasso Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  14. Ngatamariki Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Ngatamariki Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Address Mighty River Power Ngahere House 283...

  15. Lihir Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lihir Geothermal Power Plant General Information Name Lihir Geothermal Power Plant Sector Geothermal energy Location Information Location Lihir Island, Papua New Guinea Coordinates...

  16. Cibuni Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map Geothermal Resource Area Pengalengan Geothermal Area Geothermal Region West Java Plant Information Owner PLN Commercial Online Date 2014 Power Plant Data Type of Plant...

  17. Nesjavellir Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    General Information Name Nesjavellir Geothermal Power Station Sector Geothermal energy Location Information Location Thingvellir, Iceland Coordinates 64.108164743246,...

  18. Geothermal Power Generation Plant

    SciTech Connect

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  19. Microsoft PowerPoint - AECC Hydroelectric Generation 2010.pptx

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    AECC H d l i AECC Hydroelectric Generation Facilities Generation Facilities Arkansas ... E i ti H d l t i Existing Hydroelectric Generating Resources g * Ellis Hydroelectric ...

  20. Valle Secolo Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name Valle Secolo Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  1. Bouillante 2 Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant General Information Name Bouillante 2 Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Bouillante Geothermal Area Geothermal...

  2. Bouillante 1 Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant General Information Name Bouillante 1 Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Bouillante Geothermal Area Geothermal...

  3. Hachijojima Geothermal Energy Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hachijojima Geothermal Energy Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hachijojima Geothermal Energy Power Plant General Information Name...

  4. High Power Laser Innovation Sparks Geothermal Power Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Power Laser Innovation Sparks Geothermal Power Potential High Power Laser Innovation Sparks Geothermal Power Potential May 29, 2015 - 11:02am Addthis The Energy Department's ...

  5. Hatchobaru Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Hatchobaru Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Oita, Japan Coordinates 33.106330525676,...

  6. Ogiri Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Ogiri Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Kagoshima, Japan Coordinates 31.954053520674,...

  7. Uenotai Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Uenotai Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Akita, Japan Coordinates 39.001204660867,...

  8. Yamagawa Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Yamagawa Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Kagoshima, Japan Coordinates 31.953944283105,...

  9. Onuma Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Onuma Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Akita, Japan Coordinates 39.981918665315,...

  10. Mori Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Mori Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Hokkaido, Japan Coordinates 42.132906551396,...

  11. Otake Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Otake Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Oita, Japan Coordinates 33.105767212548,...

  12. Sumikawa Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Sumikawa Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Akita, Japan Coordinates 39.938819458336,...

  13. Geothermal Power of America | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power of America Jump to: navigation, search Name: Geothermal Power of America Place: Los Angeles, California Sector: Geothermal energy Product: A Nevada-based company focusing on...

  14. Fang Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Station General Information Name Fang Geothermal Power Station Sector Geothermal energy Location Information Coordinates 19.961842432467, 99.107366035005 Loading map......

  15. Rotokawa Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Plant General Information Name Rotokawa Geothermal Power Plant Sector Geothermal energy Location Information Location 14km NE of Taupo, Waikato, New Zealand Coordinates...

  16. Geothermal/Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid...

  17. Dora-1 Geothermal Energy Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Dora-1 Geothermal Energy Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dora-1 Geothermal Energy Power Plant General Information Name Dora-1 Geothermal...

  18. Oserian 202 Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oserian 202 Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Oserian 202 Geothermal Power Plant General Information Name Oserian 202 Geothermal...

  19. Geothermal Power Generation Plant; 2010 Geothermal Technology Program Peer

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Review Report | Department of Energy Power Generation Plant; 2010 Geothermal Technology Program Peer Review Report Geothermal Power Generation Plant; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review adse_003_lund.pdf (189.07 KB) More Documents & Publications Feasibility of EGS Development at Bradys Hot Springs, Nevada Concept Testing and Development at the Raft River Geothermal Field, Idaho Detecting Fractures Using Technology

  20. Nuova Molinetto Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    General Information Name Nuova Molinetto Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  1. Monteverdi 1 Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    General Information Name Monteverdi 1 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  2. Nuova Radicondoli Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    General Information Name Nuova Radicondoli Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  3. Nuova Castelnuovo Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    General Information Name Nuova Castelnuovo Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  4. Monteverdi 2 Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    General Information Name Monteverdi 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  5. Nuova Gabbro Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    General Information Name Nuova Gabbro Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  6. Rancia 2 Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name Rancia 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  7. Nuova Serrazzano Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    General Information Name Nuova Serrazzano Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  8. Nuova Monterotondo Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    General Information Name Nuova Monterotondo Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  9. Travale 4 Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name Travale 4 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  10. San Martino Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    General Information Name San Martino Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  11. Guide to Geothermal Power Finance Released

    Energy.gov [DOE]

    The National Renewable Energy Laboratory, funded by the U.S. Department of Energy’s Geothermal Technologies Program, today released the Guidebook to Geothermal Power Finance.

  12. Geothermal/Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    in Iceland. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the...

  13. Ohaaki Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name Ohaaki Geothermal Power Station Sector Geothermal energy Location Information Location 20km NE of Taupo, Waikato, New Zealand Coordinates...

  14. Mokai Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name Mokai Geothermal Power Station Sector Geothermal energy Location Information Location Waikato, New Zealand Coordinates -38.530556,...

  15. Hellisheidi Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    General Information Name Hellisheidi Geothermal Power Station Sector Geothermal energy Location Information Location Hengill, Iceland Coordinates 64.037222, -21.400833...

  16. Larderello Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name Larderello Geothermal Power Station Sector Geothermal energy Location Information Location Larderello, Pisa, Italy Coordinates 43.236, 10.8672...

  17. Krafla Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name Krafla Geothermal Power Station Sector Geothermal energy Location Information Location Krafla Volcanoe, Iceland Coordinates 65.703861,...

  18. Reykjanes Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name Reykjanes Geothermal Power Station Sector Geothermal energy Location Information Location Reykjanes, Iceland Coordinates 63.826389, -22.681944...

  19. Svartsengi Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name Svartsengi Geothermal Power Station Sector Geothermal energy Location Information Location Reykjanes Peninsula, Iceland Coordinates 63.878611,...

  20. Bjarnaflag Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant General Information Name Bjarnaflag Geothermal Power Plant Sector Geothermal energy Location Information Location Lake Myvatn, Iceland Coordinates 65.640833,...

  1. Kawerau Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name Kawerau Geothermal Power Station Sector Geothermal energy Location Information Location Bay of Plenty Region, New Zealand Coordinates...

  2. Geothermal Steam Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Steam Power Plant (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants...

  3. Cost Contributors to Geothermal Power Production (Conference...

    Office of Scientific and Technical Information (OSTI)

    has developed the tool Geothermal Electricity Technologies Evaluation Model (GETEM) to assess the levelized cost of electricity (LCOE) of power produced from geothermal resources. ...

  4. Following Nature's Current HYDROELECTRIC POWER IN THE NORTHWEST

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    9 Environmental Protection, Mitigation and Enhancement at Hydroelectric Projects ----10 Fish Passage Tour ---...

  5. Hydroelectric power in Hawaii. A report on the statewide survey of potential hydroelectric sites

    SciTech Connect

    Beck, C. A.

    1981-02-01

    An assessment was made of the hydropower potential in Hawaii. The major conclusion of this study is that hydropower resources in the State of Hawaii are substantial, and they offer the potential for major increases in hydropower generating capacity. Hydropower resources on all islands total about 50 MW of potential generating capacity. Combined with the 18 MW of existing hydropower capacity, hydropower resources potentially could generate about 307 million kWh of electric energy annually. This represents about 28% of the present combined electricity needs of the Neighbor Islands, Kauai, Molokai, Maui, and the Big Island. Hydropower resources on Kauai equal 72% of that island's electricity needs; on Molokai, 40%, on the Big Island, 20%; and on Maui, 18%. The island of Oahu, however, has only small hydropower resources, and could only generate a negligible portion of its electricity needs from this energy source. A summary of existing and future (potential) hydropower capacities and estimated annual outputs for each island is presented. How much of the potential capacity is being actively considered for development and how much is only tentatively proposed at the time is indicated. The economics of hydropower at specific sites were analyzed. The major conclusion of this analysis is that hydropower development costs vary widely among the different sites, but that generally the cost of hydroelectric power is either less than or comparable to the cost of oil-fired power.

  6. List of Geothermal Incentives | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Coal with CCS Concentrating Solar Power Energy Storage Fuel Cells Geothermal Electric Natural Gas Nuclear Tidal Energy Wave Energy Wind energy BiomassBiogas Hydroelectric...

  7. Neal Hot Springs Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Neal Hot Springs Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Neal Hot Springs Geothermal Power Plant General Information Name Neal Hot...

  8. Low-Temperature, Coproduced, and Geopressured Geothermal Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Low-Temperature, Coproduced, and Geopressured Geothermal Power Low-Temperature, Coproduced, and Geopressured Geothermal Power The Geothermal Technology Program (GTP) ...

  9. Tailored Working Fluids for Enhanced Binary Geothermal Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tailored Working Fluids for Enhanced Binary Geothermal Power Plants Tailored Working Fluids for Enhanced Binary Geothermal Power Plants DOE Geothermal Program Peer Review 2010 - ...

  10. Geothermal Steam Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    1.95e-4 TW Single Flash 1997 Gunun-Salak Geothermal Area Sunda Volcanic Arc Hachijojima Geothermal Energy Power Plant Tokyo Electric Power 3.3 MW3,300 kW 3,300,000 W...

  11. Alternative Geothermal Power Production Scenarios

    SciTech Connect

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  12. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer

    Sullivan, John

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  13. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-08-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  14. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1994-05-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  15. Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects

    SciTech Connect

    1986-02-12

    These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

  16. Kamojang Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Java, Indonesia Coordinates -7.1386705960014, 107.78536749043 Loading map......

  17. Dieng Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Java; Indonesia Coordinates -7.2227512797154, 110.01006889972 Loading map......

  18. Kakkonda Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Arc Plant Information Facility Type Single Flash Owner Tohoku Hydropower,Geothermal Energy.CoTohoku Electric Power Commercial Online Date 1978 Power Plant Data Type of Plant...

  19. Ngawha Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Region Plant Information Facility Type Binary Cycle Power Plant Owner Top Energy Number of Units 3 1 Commercial Online Date 1998 Power Plant Data Type of Plant...

  20. NEPA Process for Geothermal Power Plants in the Deschutes National...

    OpenEI (Open Energy Information) [EERE & EIA]

    Oregon Project Phase GeothermalExploration, GeothermalWell Field, GeothermalPower Plant Techniques Exploration Drilling, Exploratory Boreholes, Production Wells, Thermal...

  1. Electrical Power Generation Using Geothermal Fluid Co-produced...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gas; 2010 Geothermal Technology Program Peer Review Report Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas; 2010 Geothermal Technology Program Peer ...

  2. Carboli 2 Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name Carboli 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  3. Cornia 2 Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name Cornia 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  4. Carboli 1 Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name Carboli 1 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  5. Bagnore 3 Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name Bagnore 3 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  6. Selva 1 Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name Selva 1 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  7. Lagoni Rossi 3 Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    General Information Name Lagoni Rossi 3 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  8. Piancastagnaio 5 Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    General Information Name Piancastagnaio 5 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  9. Piancastagnaio 3 Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    General Information Name Piancastagnaio 3 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  10. Le Prata Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name Le Prata Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  11. La Leccia Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name La Leccia Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  12. Piancastagnaio 2 Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    General Information Name Piancastagnaio 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  13. Nuova Lago Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Station General Information Name Nuova Lago Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  14. Piancastagnaio 4 Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    General Information Name Piancastagnaio 4 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  15. 51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

    Energy.gov [DOE]

    51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

  16. Enel Green Power- Innovative Geothermal Power for Nevada | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Power for Nevada Abstract Two binary geothermal power plants inaugurated today with a total capacity of 65 MW: They will generate enough energy to meet the needs of...

  17. List of Geothermal Electric Incentives | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Coal with CCS Concentrating Solar Power Energy Storage Fuel Cells Geothermal Electric Natural Gas Nuclear Tidal Energy Wave Energy Wind energy BiomassBiogas Hydroelectric...

  18. Advanced Condenser Boosts Geothermal Power Plant Output (Fact...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Condensation of spent generator steam is a critical part of Advanced Condenser Boosts Geothermal Power Plant Output When power production at The Geysers geothermal power complex ...

  19. Next Generation Geothermal Power Plants

    SciTech Connect

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  20. Matsukawa Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Type Dry Steam, Low Pressure Reaction Owner Tohoku HydropowerGeothermal Energy Co Number of Units 1 Commercial Online Date 1966 Power Plant Data Type of Plant...

  1. Germencik Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Power Plant Sector Geothermal energy Location Information Location Aydin, Turkey Coordinates 37.878694084384, 27.608050344279 Loading map... "minzoom":false,"mapp...

  2. Power Plays: Geothermal Energy in Oil and Gas Fields | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power Plays: Geothermal Energy in Oil and Gas Fields Power Plays: Geothermal Energy in Oil and Gas Fields Power Plays: Geothermal Energy in Oil and Gas Fields April 25, 2016 9:00AM ...

  3. Impact of High Wind Power Penetration on Hydroelectric Unit Operations

    SciTech Connect

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-01-01

    The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

  4. Suginoi Hotel Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Suginoi Hotel Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Beppu, Japan Coordinates 33.283191762234,...

  5. Kuju Kanko Hotel Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Kuju Kanko Hotel Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Oita, Japan Coordinates 33.26066715087,...

  6. Yanaizu-Nishiyama Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Yanaizu-Nishiyama Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Yanaizu-city, Fukushima, Japan Coordinates...

  7. Kirishima Kokusai Hotel Geothermal Power Plant | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Kirishima Kokusai Hotel Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Kagoshima, Japan Coordinates 31.894281180261,...

  8. Dora-3 Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Binary Cycle Power Plant, ORC Owner Menderes Geothermal Developer Menderes Geothermal Energy Purchaser TEDAS Number of Units 2 Commercial Online Date 2013 Power Plant Data Type...

  9. NMAC 19.14 Geothermal Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    19.14 Geothermal PowerLegal Abstract These rules outline requirements for development of geothermal power resources within New Mexico. Published NA Year Signed or Took Effect...

  10. How a Geothermal Power Plant Works (Simple) - Text Version |...

    Energy.gov [DOE] (indexed site)

    Geothermal Power Plant Works. This animation is meant to convey in simple terms what happens in the operation of a geothermal power plant. Aspects such as exploration, resource...

  11. Water Use in the Development and Operations of Geothermal Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is...

  12. Salton Sea Power Plant Recognized as Most Innovative Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Salton Sea Power Plant Recognized as Most Innovative Geothermal Project Salton Sea Power Plant Recognized as Most Innovative Geothermal Project February 10, 2013 - 3:32pm Addthis ...

  13. Water Use in the Development and Operations of Geothermal Power...

    Energy Saver

    Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is ...

  14. Water Use in the Development and Operation of Geothermal Power...

    Energy Saver

    Operation of Geothermal Power Plants Water Use in the Development and Operation of Geothermal Power Plants This report summarizes what is currently known about the life cycle water ...

  15. Geothermal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    utilization of geothermal energy. This focus in geothermal related drilling research is the search for practical ... Online Abstracts and Reports Water Power Personnel Natural Gas ...

  16. DOE Awards $20 Million to Develop Geothermal Power Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Awards $20 Million to Develop Geothermal Power Technologies DOE Awards $20 Million to Develop Geothermal Power Technologies September 22, 2010 - 10:48am Addthis Power of geothermal power units. DOE announced on September 15 its selection of seven projects to research, develop, and demonstrate cutting-edge geothermal energy technologies involving low-temperature fluids, geothermal fluids recovered from oil and gas wells, and highly pressurized geothermal fluids. Today's

  17. Report on Hawaii Geothermal Power Plant Project

    SciTech Connect

    Not Available

    1983-06-01

    The report describes the design, construction, and operation of the Hawaii Geothermal Generator Project. This power plant, located in the Puna District on the island of Hawaii, produces three megawatts of electricity from the steam phase of a geothermal well. (ACR)

  18. High Power Laser Innovation Sparks Geothermal Power Potential

    Energy.gov [DOE]

    The Energy Department is backing a new patented technology that uses high power lasers to maximize heat recovery for geothermal energy production.

  19. Water management for hydroelectric power generation at Matera and Kidatu in Tanzania

    SciTech Connect

    Matondo, J.I.; Rutashobya, D.G.

    1995-12-31

    The major sources of power in Tanzania are hydropower and thermo power. Most of the hydroelectric power is generated in the Great Ruaha river system (280 MW) and in the Pangani river system (46 MW). However, the generated power (hydro and thermo) does not meet the power demand and as a result, an accute power shortage occurred in August 1992. This paper explores the hydropower generation mechanism at Mtera and Kidatu hydroelectric power plants. It also looks into what measures could have been taken in order to avoid the massive power shedding which officially lasted for about six months, although unofficially, power shedding was continued well beyond that period. Strategies for future water management in the Great Ruaha river system for efficient generation of power are also presented.

  20. Purchase and Installation of a Geothermal Power Plant to Generate...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation. ...

  1. Chapter 4: Advancing Clean Electric Power Technologies | Geothermal...

    Energy.gov [DOE] (indexed site)

    Assessments Introduction Geothermal power taps into earth's internal heat as an energy source. While geothermal currently constitutes less than 1% of total U.S....

  2. Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas ...

  3. Cerro Prieto Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    General Information Name Cerro Prieto Geothermal Power Station Sector Geothermal energy Location Information Coordinates 32.4194445584, -115.30637090094 Loading map......

  4. Miravalles V Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    plant to be developed by Ormat International for Instituto Costaricense de Electricidad to supplement existing geothermal power plants at the Miravalles Geothermal Area....

  5. Geothermal Power Plants — Minimizing Solid Waste and Recovering Minerals

    Office of Energy Efficiency and Renewable Energy (EERE)

    Although many geothermal power plants generate no appreciable solid waste, the unique characteristics of some geothermal fluids require special attention to handle entrained solid byproducts.

  6. Denizli - Kizildere geothermal power-plant, Turkey

    SciTech Connect

    Ar, G.

    1985-01-01

    The first geothermal power-plant in Turkey, the Kizildere 20 MW geothermal power-plant, is being constructed near Denizli - Saraykoy by GIE, Italy. Start-up operations have already begun an it will be generating electricity by the beginning of 1984. The plant will supply part of the power demands of Southwestern Anatolia, especially in the city of Denizli. This power-plant will utilize the geothermal resources discovered by the MTA (Mineral Research Exploration Institute) near Kizildere - Saraykoy at the end of research conducted between 1968 and 1971. MTA has been conducting this research all over Turkey and recently a new geothermal system has bee found in Germencik - Aydin. In Kizildere there are 16 wells drilled by MTA. However six of them (KD 13, KD 15, KD 16, KD 6 and KD 7, KD 14, three as stand-by) will be utilized for electricity generation.

  7. How a Geothermal Power Plant Works (Simple) | Department of Energy

    Energy Saver

    How a Geothermal Power Plant Works (Simple) Most power plants-whether fueled by coal, gas, ... Geothermal power plants have much in common with traditional power-generating stations. ...

  8. Small geothermal electric systems for remote powering

    SciTech Connect

    Entingh, Daniel J.; Easwaran, Eyob.; McLarty, Lynn

    1994-08-08

    This report describes conditions and costs at which quite small (100 to 1,000 kilowatt) geothermal systems could be used for off-grid powering at remote locations. This is a first step in a larger process of determining locations and conditions at which markets for such systems could be developed. The results suggest that small geothermal systems offer substantial economic and environmental advantages for powering off-grid towns and villages. Geothermal power is most likely to be economic if the system size is 300 kW or greater, down to reservoir temperatures of 100{degree}C. For system sizes smaller than 300 kW, the economics can be favorable if the reservoir temperature is about 120{degree}C or above. Important markets include sites remote from grids in many developing and developed countries. Estimates of geothermal resources in many developing countries are shown.

  9. Life-cycle analysis results of geothermal systems in comparison to other power systems.

    SciTech Connect

    Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

    2010-10-11

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET

  10. Monitoring Biological Activity at Geothermal Power Plants

    SciTech Connect

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  11. Pumped storage for hydroelectric power. (Latest citations from Fluidex (Fluid Engineering Abstracts) database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning the design, development, construction, and characteristics of surface and underground pumped storage for hydroelectric power. Pumped storage projects and facilities worldwide are referenced. There is some consideration of research and experimental results of pumped storage studies, as well as modeling. (Contains a minimum of 198 citations and includes a subject term index and title list.)

  12. Pumped storage for hydroelectric power. (Latest citations from Fluidex data base). Published Search

    SciTech Connect

    Not Available

    1992-09-01

    The bibliography contains citations concerning the design, development, construction, and characteristics of surface and underground pumped storage for hydroelectric power. Pumped storage projects and facilities worldwide are referenced. There is some consideration of research and experimental results of pumped storage studies, as well as modeling. (Contains a minimum of 192 citations and includes a subject term index and title list.)

  13. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final

    Office of Scientific and Technical Information (OSTI)

    Report (Technical Report) | SciTech Connect Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report Citation Details In-Document Search Title: Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant

  14. Takigami Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map Geothermal Resource Area Oita Geothermal Area Geothermal Region Ryuku Arc Plant Information Facility Type Single Flash Owner Idemitsu Oita Geothermal CoKyushu...

  15. List of Small Hydroelectric Incentives | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    using Renewable Fuels Geothermal Electric Photovoltaics Renewable Fuels Solar Water Heat Natural Gas Hydroelectric energy Small Hydroelectric Yes Alternative Energy Development...

  16. DOE and Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy Expo

    Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO), along with Pratt & Whitney Power Systems, and Chena Power LLC demonstrated the PureCycle® mobile geothermal power generation unit at the 2009 Geothermal Energy Expo in Reno, Nevada.

  17. Oguni Town Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Keiyo Plant Engineering Co, Waita Geothermal Power Plant, Chuo Electric Power Co Energy Purchaser Toshiba Commercial Online Date 2014 Power Plant Data Type of Plant Number...

  18. Construction Underway on First Geothermal Power Plant in New...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Construction Underway on First Geothermal Power Plant in New Mexico Construction Underway on First Geothermal Power Plant in New Mexico September 10, 2008 - 4:38pm Addthis Photo of ...

  19. Construction Underway on First Geothermal Power Plant in New...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Construction Underway on First Geothermal Power Plant in New Mexico Construction Underway on First Geothermal Power Plant in New Mexico September 10, 2008 - 4:38pm Addthis Photo of...

  20. Lost films chronicle dawn of hydroelectric power in the Northwest

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Greatest Power Stream" (1949), the most famous BPA-produced film, containing songs Woody Guthrie wrote while employed by BPA; and "Highline" (1950), about the building of the...

  1. Los Humeros IIA Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Plant Sector Geothermal energy Location Information Location Chignautla, Puebla, Mexico Coordinates 19.812422502461, -97.387825789629 Loading map......

  2. Los Humeros IIB Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Plant Sector Geothermal energy Location Information Location Chignautla, Puebla, Mexico Coordinates 19.812422502461, -97.387825789629 Loading map......

  3. Geothermal Power Plants — Meeting Water Quality and Conservation Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    U.S. geothermal power plants can easily meet federal, state, and local water quality and conservation standards.

  4. Mandatory Utility Green Power Option | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Mandatory Utility Green Power Option New Mexico Utility Anaerobic Digestion Biomass Fuel Cells Geothermal Electric Hydroelectric energy Hydrogen Landfill Gas Photovoltaics...

  5. Purchase and Installation of a Geothermal Power Plant to Generate Electricity Using Geothermal Water Resources

    Office of Energy Efficiency and Renewable Energy (EERE)

    Project objectives: Demonstrate technical and financial feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation.

  6. A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power presentation at the April 2013 peer review meeting held in Denver, Colorado. hybrid_therm_cycle_peer2013.pdf (571.03 KB) More Documents & Publications Working Fluids and Their Effect on Geothermal Turbines Tailored Working Fluids for Enhanced Binary

  7. Final Technical Report. Upgrades to Alabama Power Company Hydroelectric Developments

    SciTech Connect

    Crew, James F.; Johnson, Herbie N.

    2015-03-31

    From 2010 to 2014, Alabama Power Company (“Alabama Power”) performed upgrades on four units at three of the hydropower developments it operates in east-central Alabama under licenses issued by the Federal Energy Regulatory Commission (“FERC”). These three hydropower developments are located on the Coosa River in Coosa, Chilton, and Elmore counties in east-central Alabama.

  8. Darajat Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    n":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Geothermal Resource Area Java - Darajat Geothermal Area Geothermal Region Sunda Volcanic Arc Plant Information Owner...

  9. Kemaliye Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Manisa, Turkey County Alasehir Geothermal Area Alasehir Geothermal Area Geothermal Region Aegean-West...

  10. Alasehir Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Manisa, Turkey County Alasehir Geothermal Area Alasehir Geothermal Area Geothermal Region Aegean-West...

  11. Water Use in the Development and Operations of Geothermal Power...

    Energy Saver

    Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is currently known about the life cycle water requirements of ...

  12. Small-scale hydroelectric power in the Pacific Northwest: new impetus for an old energy source

    SciTech Connect

    Not Available

    1980-07-01

    Energy supply is one of the most important issues facing Northwestern legislators today. To meet the challenge, state legislatures must address the development of alternative energy sources. The Small-Scale Hydroelectric Power Policy Project of the National Conference of State Legislators (NCSL) was designed to assist state legislators in looking at the benefits of one alternative, small-scale hydro. Because of the need for state legislative support in the development of small-scale hydroelectric, NCSL, as part of its contract with the Department of Energy, conducted the following conference on small-scale hydro in the Pacific Northwest. The conference was designed to identify state obstacles to development and to explore options for change available to policymakers. A summary of the conference proceedings is presented.

  13. DOE Awards $20 Million to Develop Geothermal Power Technologies...

    Office of Environmental Management (EM)

    The three remaining projects seek to tap unconventional sources of geothermal energy. In one case, ElectraTherm, Inc. will aim to draw power from the hot geothermal fluids that oil ...

  14. GeoPowering the West: Hawaii; Why Geothermal?

    SciTech Connect

    Not Available

    2004-04-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Hawaii. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

  15. How a Geothermal Power Plant Works (Simple) | Department of Energy

    Energy.gov [DOE] (indexed site)

    Heat from the Earth, or geothermal - Geo (Earth) + thermal (heat) - energy is accessed by drilling water or steam wells in a process similar to drilling for oil. Geothermal power ...

  16. Power Plays- Geothermal Energy in Oil & Gas Fields

    Office of Energy Efficiency and Renewable Energy (EERE)

    Register today for the SMU Power Plays Workshop and Conference at Southern Methodist University, May 18-20, 2015. The Energy Department accelerates geothermal energy development by investing in transformative technologies that accelerate geothermal development.

  17. Interior Department to Open 190 Million Acres to Geothermal Power...

    Office of Environmental Management (EM)

    ... plant, the first commercial geothermal power plant built in Utah in more than two decades. ... Utah is also slated to host a new 100-megawatt geothermal powerplant, to be located on ...

  18. Legal obstacles and incentives to the development of small scale hydroelectric power in West Virginia

    SciTech Connect

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric in West Virginia at the state level are described. The Federal government also exercises extensive regulatory authority in the area. The introductory section examines the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and concludes with an inquiry into the practical use of the doctrine by FERC. The development of small-scale hydroelectric energy depends on the selection of a site which will produce sufficient water power capacity to make the project economically attractive to a developer. In West Virginia, the right to use the flowing waters of a stream, creek, or river is appurtenant to the ownership of the lands bordering the watercourse. The lands are known as riparian lands. The water rights are known as riparian rights. Thus, the first obstacle a developer faces involves the acquisition of riparian lands and the subsequent right to the use of the water. The water law in West Virginia is discussed in detail followed by discussions on direct and indirect regulations; continuing obligations; financial considerations; and interstate organizations.

  19. Legal obstacles and incentives to the development of small scale hydroelectric power in New York

    SciTech Connect

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level are discussed. The Federal government also exercises extensive regulatory authority in the area, and the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC is examined. The first step the small scale hydroelectric developer must take is that of acquiring title to the real property comprising the development site. The real estate parcel must include the requisite interest in the land adjacent to the watercourse, access to the underlying streambed and where needed, the land necessary for an upstream impoundment area. Land acquisition may be effectuated by purchase, lease, or grant by the state. In addition to these methods, New York permits the use of the eminent domain power of the state for public utilities under certain circumstances.

  20. Cost Contributors to Geothermal Power Production

    SciTech Connect

    Nathwani, Jay; Mines, Greg

    2011-07-01

    The US Department of Energy Geothermal Technologies Office (DOE-GTO) has developed the tool Geothermal Electricity Technologies Evaluation Model (GETEM) to assess the levelized cost of electricity (LCOE) of power produced from geothermal resources. Recently modifications to GETEM allow the DOE-GTO to better assess how different factors impact the generation costs, including initial project risk, time required to complete a development, and development size. The model characterizes the costs associated with project risk by including the costs to evaluate and drill those sites that are considered but not developed for commercial power generation, as well as to assign higher costs to finance those activities having more risk. This paper discusses how the important parameters impact the magnitude project costs for different project scenarios. The cost distributions presented include capital cost recovery for the exploration, confirmation, well field completion and power plant construction, as well as the operation and maintenance (O&M) costs. The paper will present these cost distributions for both EGS and hydrothermal resources.

  1. California Geothermal Power Plant to Help Meet High Lithium Demand

    Energy.gov [DOE]

    Ever wonder how we get the materials for the advanced batteries that power our cell phones, laptops, and even some electric vehicles? The U.S. Department of Energy's Geothermal Technologies Program (GTP) is working with California's Simbol Materials to develop technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines produced during the geothermal production process.

  2. Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS Bri-Mathias Hodge, Debra Lew, and Michael Milligan Technical Report NREL/TP-5500-52251 July 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 The

  3. Geothermal power development: 1984 overview and update

    SciTech Connect

    DiPippo, R.

    1984-10-01

    The status of geothermal power plants as of mid-1984 is given. There are 15 countries with active plants, and France (Guadeloupe) is expected to join the roster in the near future. The total number of operating units (defined as individual turbo-generator sets) is 145; the total installed capacity is somewhat less than 3770 MW. If plans for additional plants are met, the total could jump by more than 200 MW over the next two years. Recent growth is presented and the worldwide installed capacity is traced. A graphic portrayal of the growth pattern is presented. The countries that will be most responsible for sustaining this growth are the US, the Philippines, Mexico, and Indonesia. Other countries that will contribute significantly include Italy, Japan, Kenya, Nicaragua, and Turkey. The following countries do not now have any geothermal plants but may bring some online by 1990: Guatemala, Costa Rica, Greece, St. Lucia, Thailand, and Ethiopia.

  4. The status and future of geothermal power

    SciTech Connect

    Kutscher, Charles F.

    2000-08-01

    Geothermal electricity production in the United States began in 1960. Today there are over 20 plants in the western United States providing a total of about 2,200 MW of clean and reliable electricity. Currently identified resources could provide over 20,000 MW of power in the U.S., and undiscovered resources might provide 5 times that amount. In the 1990s industry growth slowed due to the loss of market incentives and competition from natural gas. However, increased interest in clean energy sources, ongoing technological improvements, and renewed opportunities abroad hold promise for a resurgence in the industry. This review paper covers the status of the technology, the issues faced, and the latest research. While the focus is on geothermal in the U.S., a brief description of the large international market is included.

  5. Unalaska geothermal exploration project. Electrical power generation analysis. Final report

    SciTech Connect

    Not Available

    1984-04-01

    The objective of this study was to determine the most cost-effective power cycle for utilizing the Makushin Volcano geothermal resource to generate electricity for the towns of Unalaska and Dutch Harbor. It is anticipated that the geothermal power plant would be intertied with a planned conventional power plant consisting of four 2.5 MW diesel-generators whose commercial operation is due to begin in 1987. Upon its completion in late 1988, the geothermal power plant would primarily fulfill base-load electrical power demand while the diesel-generators would provide peak-load electrical power and emergency power at times when the geothermal power plant would be partially or completely unavailable. This study compares the technical, environmental, and economic adequacy of five state-of-the-art geothermal power conversion processes. Options considered are single- and double-flash steam cycles, binary cycle, hybrid cycle, and total flow cycle.

  6. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 15 GEOTHERMAL ENERGY AIR-COOLED CONDENSERS; POWER PLANT COOLING; BINARY-CYCLE; FINNED-TUBE; HEAT TRANSFER; NEVADA; ...

  7. Electrical Power Generation Using Geothermal Fluid Co-produced...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gas Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas Project objectives: To validate and realize the potential for the production of low temperature ...

  8. A Flashing Binary Combined Cycle For Geothermal Power Generation...

    OpenEI (Open Energy Information) [EERE & EIA]

    Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Flashing Binary Combined Cycle...

  9. Don A. Cambell Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Region Plant Information Facility Type Binary Owner Ormat Developer Ormat Energy Purchaser Ormat Commercial Online Date 2013 Power Plant Data Type of Plant Number...

  10. Power Production from a Moderate-Temperature Geothermal Resource...

    OpenEI (Open Energy Information) [EERE & EIA]

    Paper: Power Production from a Moderate-Temperature Geothermal Resource Authors Joost J. Brasz, Bruce P. Biederman and Gwen Holdmann Conference GRC annual meeting; Reno,...

  11. Guidebook to Geothermal Power Finance | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LAUNCH TOOL Name: Guidebook to Geothermal Power Finance AgencyCompany Organization: J. Pater Salmon, J. Meurice, N. Wobus, F. Stern, and M. Duaime Partner: National Renewable...

  12. Hellisheidi Geothermal Power Station - South Iceland | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    - South Iceland Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hellisheidi Geothermal Power Station - South Iceland Published...

  13. Annual US Geothermal Power Production and Development Report...

    OpenEI (Open Energy Information) [EERE & EIA]

    and Development Report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Annual US Geothermal Power Production and Development Report Abstract To increase...

  14. Dora-2 Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Power Plant Sector Geothermal energy Location Information Address Aydin, Turkey Coordinates 37.85633410526, 28.088616374298 Loading map... "minzoom":false,"mappi...

  15. North Brawley Geothermal Power Plant Project Overview | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    2014 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for North Brawley Geothermal Power Plant Project Overview Citation PCL...

  16. 20 MW Maibarara Geothermal Power Project Starts Commercial Operations...

    OpenEI (Open Energy Information) [EERE & EIA]

    02092014 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for 20 MW Maibarara Geothermal Power Project Starts Commercial Operations...

  17. Designing geothermal power plants to avoid reinventing the corrosion wheel

    SciTech Connect

    Conover, Marshall F.

    1982-10-08

    This paper addresses how designers can take into account, the necessary chemical and materials precautions that other geothermal power plants have learned. Current worldwide geothermal power plant capacity is presented as well as a comparison of steam composition from seven different geothermal resources throughout the world. The similarities of corrosion impacts to areas of the power plants are discussed and include the turbines, gas extraction system, heat rejection system, electrical/electronic systems, and structures. Materials problems and solutions in these corrosion impact areas are identified and discussed. A geothermal power plant design team organization is identified and the efficacy of a new corrosion/materials engineering position is proposed.

  18. Construction Underway on First Geothermal Power Plant in New Mexico

    Office of Energy Efficiency and Renewable Energy (EERE)

    New Mexico Governor Bill Richardson and Raser Technologies, Inc. announced in late August that construction has begun on the first commercial geothermal power plant in New Mexico.

  19. Impact of High Wind Power Penetration on Hydroelectric Unit Operations in the WWSIS

    SciTech Connect

    Hodge, B.-M.; Lew, D.; Milligan, M.

    2011-07-01

    This report examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating patterns are examined both for an aggregation of all hydro generators and for select individual plants.

  20. Impact of High Wind Power Penetration on Hydroelectric Unit Operations: Preprint

    SciTech Connect

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-10-01

    This paper examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators.

  1. GRC Workshop: The Power of the National Geothermal Data System

    Office of Energy Efficiency and Renewable Energy (EERE)

    Drilling Down: How Legacy and New Research Data Can Advance Geothermal DevelopmentThe Power of the National Geothermal Data System (NGDS) A workshop at the Geothermal Resources Council Annual Meeting in Las Vegas, Nevada Abstract: The National Geothermal Data System's (NGDS) launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production forward. By aggregating findings from the Energy Department's RD&D projects and consistent, reliable geological and geothermal information from all 50 states, this free, interactive tool can shorten project development timelines and facilitate scientific discovery and best practices. Stop by our workshop for an overview of how your company can benefit from implementing, and participating in this open-source based, distributed network. To register for the GRC Annual Meeting, visit the GRC Annual Meeting and GEA Geothermal Energy Expo event website.

  2. Biocorrosion in a geothermal power plant

    SciTech Connect

    Navarrette-Bedolla, M.; Ballesteros-Almanza, M.L.; Sanchez-Yanez, J.M.; Valdez-Salas, B.; Hernandez-Duque, G.

    1999-04-01

    Hyperthermophilic archaebacteria (Thermoproteus neutrophilus) promoting the corrosion of type 316 stainless steel (SS) (UNS S31600) in vapor ducts of the Tejamaniles geothermal electric power plant in Los Azufres, Michoacan, Mexico, were isolated from condensed steam. Metallographic analysis and scanning electron microscopy were performed to determine the morphology of microbiological attack on the SS. Electrochemical corrosion tests showed that the bacteria induced corrosion on type 316 SS preferentially at grain boundaries. Large amounts of elemental sulfur and carbon were detected where the bacterial culture was located.

  3. NMAC 19.14.1 Geothermal Power General Provisions | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Power General ProvisionsLegal Abstract These regulations outline the procedures for dealing with geothermal power issues in New Mexico. These rules are designed to...

  4. Equipment considerations for a binary cycle geothermal power plant

    SciTech Connect

    Thorleifson, W.C.; Ibe, A.P.

    1982-10-01

    The binary cycle geothermal power plant incorporates existing hydrocarbon handling technology proven in use by the petrochemical industry. Equipment sizing and hydrocarbon cycle control on the commercial plant scale, however, introduce some unknowns. This report discusses the various technical factors considered in the design, selection, and sizing of the major equipment for use in the Heber Binary Cycle Geothermal Demonstration Power Plant.

  5. New geothermal heat extraction process to deliver clean power generation

    ScienceCinema

    Pete McGrail

    2012-12-31

    A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

  6. BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Vulcan Power Company Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Vulcan Power Company Salt Wells...

  7. Social Acceptance of Geothermal Power Generation in Japan | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Generation in Japan Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Social Acceptance of Geothermal Power Generation in Japan Abstract In...

  8. Salton Sea Power Plant Recognized as Most Innovative Geothermal Project

    Energy.gov [DOE]

    The first power plant to be built in the Salton Sea area in 20 years was recognized in December by Power Engineering magazine as the most innovative geothermal project of the year.

  9. Geothermal Power - the Future is Now | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power - the Future is Now Geothermal Power - the Future is Now September 25, 2012 - 1:11pm Addthis The United States Department of Energy is breaking the sound barrier, delivering...

  10. Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Power and TAS...

  11. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production

    SciTech Connect

    Ashwood, A.; Bharathan, D.

    2011-03-01

    This paper describes the identification and evaluation of methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions with a minimal amount of water use.

  12. Geothermal Power Plants — Minimizing Land Use and Impact

    Office of Energy Efficiency and Renewable Energy (EERE)

    For energy production and development, geothermal power plants don't use much land compared to coal and nuclear power plants. And the environmental impact upon the land they use is minimal.

  13. East Mesa Magmamax Power Process Geothermal Generating Plant, A Preliminary

    Office of Scientific and Technical Information (OSTI)

    Analysis (Conference) | SciTech Connect East Mesa Magmamax Power Process Geothermal Generating Plant, A Preliminary Analysis Citation Details In-Document Search Title: East Mesa Magmamax Power Process Geothermal Generating Plant, A Preliminary Analysis During recent months, Magma Power Company has been involved in the shakedown and startup of their 10 MW binary cycle power plant at East Mesa in the Imperial Valley of Southern California. This pilot plant has been designed specifically as an

  14. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    SciTech Connect

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

  15. Geothermal energy as a source of electricity. A worldwide survey of the design and operation of geothermal power plants

    SciTech Connect

    DiPippo, R.

    1980-01-01

    An overview of geothermal power generation is presented. A survey of geothermal power plants is given for the following countries: China, El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, Philippines, Turkey, USSR, and USA. A survey of countries planning geothermal power plants is included. (MHR)

  16. Turbulence at Hydroelectric Power Plants and its Potential Effects on Fish.

    SciTech Connect

    Cada, Glenn F.; Odeh, Mufeed

    2001-01-01

    The fundamental influence of fluid dynamics on aquatic organisms is receiving increasing attention among aquatic ecologists. For example, the importance of turbulence to ocean plankton has long been a subject of investigation (Peters and Redondo 1997). More recently, studies have begun to emerge that explicitly consider the effects of shear and turbulence on freshwater invertebrates (Statzner et al. 1988; Hart et al. 1996) and fishes (Pavlov et al. 1994, 1995). Hydraulic shear stress and turbulence are interdependent natural fluid phenomena that are important to fish, and consequently it is important to develop an understanding of how fish sense, react to, and perhaps utilize these phenomena under normal river flows. The appropriate reaction to turbulence may promote movement of migratory fish or prevent displacement of resident fish. It has been suggested that one of the adverse effects of flow regulation by hydroelectric projects is the reduction of normal turbulence, particularly in the headwaters of reservoirs, which can lead to disorientation and slowing of migration (Williams et al. 1996; Coutant et al. 1997; Coutant 1998). On the other hand, greatly elevated levels of shear and turbulence may be injurious to fish; injuries can range from removal of the mucous layer on the body surface to descaling to torn opercula, popped eyes, and decapitation (Neitzel et al. 2000a,b). Damaging levels of fluid stress can occur in a variety of circumstances in both natural and man-made environments. This paper discusses the effects of shear stress and turbulence on fish, with an emphasis on potentially damaging levels in man-made environments. It defines these phenomena, describes studies that have been conducted to understand their effects, and identifies gaps in our knowledge. In particular, this report reviews the available information on the levels of turbulence that can occur within hydroelectric power plants, and the associated biological effects. The final section

  17. Potential power sources for high-temperature geothermal applications

    SciTech Connect

    Guidotti, R.A.; Dobranich, D

    1996-05-01

    The thermal response under geothermal-borehole conditions of a conventional thermal battery was evaluated for various designs by numerical simulations using a finite-element thermal model. This technology, which is based on molten salts, may be suitable as a power source for geothermal borehole applications for data logging. Several promising candidate electrolytes were identified for further study.

  18. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    SciTech Connect

    Wendt, Daniel; Mines, Greg; Turchi, Craig; Zhu, Guangdong

    2015-11-01

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods of high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources

  19. Next generation geothermal power plants. Draft final report

    SciTech Connect

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  20. Five-megawatt geothermal-power pilot-plant project

    SciTech Connect

    Not Available

    1980-08-29

    This is a report on the Raft River Geothermal-Power Pilot-Plant Project (Geothermal Plant), located near Malta, Idaho; the review took place between July 20 and July 27, 1979. The Geothermal Plant is part of the Department of Energy's (DOE) overall effort to help commercialize the operation of electric power plants using geothermal energy sources. Numerous reasons were found to commend management for its achievements on the project. Some of these are highlighted, including: (a) a well-qualified and professional management team; (b) effective cost control, performance, and project scheduling; and (c) an effective and efficient quality-assurance program. Problem areas delineated, along with recommendations for solution, include: (1) project planning; (2) facility design; (3) facility construction costs; (4) geothermal resource; (5) drilling program; (6) two facility construction safety hazards; and (7) health and safety program. Appendices include comments from the Assistant Secretary for Resource Applications, the Controller, and the Acting Deputy Director, Procurement and Contracts Management.

  1. NMAC 19.14.54 Geothermal Power Sundry Notices and Reports on...

    OpenEI (Open Energy Information) [EERE & EIA]

    4 Geothermal Power Sundry Notices and Reports on Geothermal Well (Form G-103) Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  2. Berln Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector Geothermal energy Location Information Location Montanita Joy, Usulutan, El Salvador Coordinates 13.525, -88.5089 Loading map... "minzoom":false,"mappingservice":"go...

  3. Gumuskoy Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant, ORC Sector Geothermal energy Location Information Location Ortaklar, Aydin, Turkey Coordinates 37.859153868187, 27.476995463949 Loading map... "minzoom":false,"mapp...

  4. Wayang Windu Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Region Sunda Volcanic Arc Plant Information Facility Type Single Flash Owner Star Energy Ltd Number of Units 2 1 Commercial Online Date 2000 Power Plant Data Type of...

  5. Terra-Gen Powers Coso Geothermal Facility Obtains Critical Federal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Powers Coso Geothermal Facility Obtains Critical Federal Permit to Increase Its...

  6. Geothermal Power Plants — Meeting Clean Air Standards

    Energy.gov [DOE]

    Geothermal power plants can meet the most stringent clean air standards. They emit little carbon dioxide, very low amounts of sulfur dioxide, and no nitrogen oxides. See Charts 1, 2, and 3 below.

  7. Designing geothermal power plants to avoid reinventing the corrosion wheel

    SciTech Connect

    Conover, M.F.

    1983-03-01

    This paper addresses how designers can take into account the necessary chemical and materials precautions that other geothermal power plant operators and engineers have learned. Current worldwide geothermal power plant capacity is presented as well as a comparison of steam composition from seven different geothermal resources throughout the world. The similarities of corrosion impacts to areas of the power plants are discussed and include the turbines; gas extraction system; heat and rejection system; electrical/electronic systems; and structures. Materials problems and solutions in these corrosion impact areas are identified and discussed. A geothermal power plant design team organization is identified and the efficacy of a new corrosion/materials engineering position is proposed.

  8. NREL/PG&E Condensation System Increases Geothermal Power Plant...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NRELPG&E Condensation System Increases Geothermal Power Plant Efficiency For more information contact: Howard Brown 303-275-3682 or Kerry Masson 303-275-4083 Golden, Colo., June ...

  9. Contaminant abatement process for geothermal power plant effluents

    SciTech Connect

    Johnson, H.F.

    1990-11-06

    This patent describes a process for abatement of contaminants in effluents discharged from a geothermal power plant. It comprises: condensing on a surface condensing means, geothermal power plant effluents to separate a condensate comprising an aqueous solution containing dissolved contaminants from a noncondensable gas fraction containing contaminants: processing the noncondensable gas fraction in a primary contaminant abatement system for removal of the contaminants from the noncondensable gas fraction; diverting a reinjection fraction of the condensate for reinjection to a geothermal well; and processing at least a fraction of the remaining portion of the condensate in a secondary contaminant abatement system for removal of the dissolved contaminants from the condensate.

  10. Nevada manufacturer installing geothermal power plant | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant August 26, 2010 - 4:45pm Addthis Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Joshua DeLung Chemetall supplies materials for lithium-ion batteries for electric vehicles

  11. Geothermal Power/Oil & Gas Coproduction Opportunity

    SciTech Connect

    DOE

    2012-02-01

    Coproduced geothermal resources can deliver near-term energy savings, diminish greenhouse gas emissions, extend the economic life of oil and gas fields, and profitably utilize oil and gas field infrastructure. This two-pager provides an overview of geothermal coproduced resources.

  12. Feasibility Study of Economics and Performance of a Hydroelectric Installation at the Jeddo Mine Drainage Tunnel. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Roberts, J. O.; Mosey, G.

    2013-02-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Jeddo Tunnel discharge site for a feasibility study of renewable energy potential. The purpose of this report is to assess technical and economic viability of the site for hydroelectric and geothermal energy production. In addition, the report outlines financing options that could assist in the implementation of a system.

  13. ''Rancho Hydro'': a low-head, high volume residential hydroelectric power system, Anahola, Kauai, Hawaii

    SciTech Connect

    Harder, J.D.

    1982-07-01

    The site is a 1.75 acre residential site with two households. The Anahola stream intersects the property line. Design of the proposed hydroelectric system is described, along with the permit process. Construction is in progress. (DLC)

  14. Small-scale hydroelectric power in the southeast: new impetus for an old energy source

    SciTech Connect

    Not Available

    1980-06-01

    The Southeastern conference, Small-Scale Hydroelectric Power: New Impetus for an Old Energy Source, was convened to provide a forum for state legislators and other interested persons to discuss the problems facing small-scale hydro developers, and to recommend appropriate solutions to resolve those problems. During the two-day meeting state legislators and their staffs, along with dam developers, utility and industry representatives, environmentalists and federal/state officials examined and discussed the problems impeding small-scale hydro development at the state level. Based upon the problem-oriented discussions, alternative policy options were recommended for consideration by the US Department of Energy, state legislatures and the staff of the National Conference of State Legislatures (NCSL). Emphasis was placed on the legal, institutional, environmental and economic barriers at the state level, as well as the federal delays associated with licensing small-scale hydro projects. Whereas other previously held conferences have emphasized the identification and technology of small-scale hydro as an alternative energy source, this conference stressed legislative resolution of the problems and delays in small-scale hydro licensing and development. Panel discussions and workshops are summarized. Papers on the environmental, economic, and legal aspects of small-scale hydropower development are presented. (LCL)

  15. Water Use in the Development and Operations of Geothermal Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

  16. New River Geothermal Exploration (Ram Power Inc.)

    DOE Data Explorer

    Miller, Clay

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  17. New River Geothermal Exploration (Ram Power Inc.)

    DOE Data Explorer

    Miller, Clay

    2013-11-15

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  18. The 125 MW Upper Mahiao geothermal power plant

    SciTech Connect

    Forte, N.

    1996-12-31

    The 125 MW Upper Mahiao power plant, the first geothermal power project to be financed under a Build-Own-Operate-and-Transfer (BOOT) arrangement in the Philippines, expected to complete its start-up testing in August of this year. This plant uses Ormat`s environmentally benign technology and is both the largest geothermal steam/binary combined cycle plant as well as the largest geothermal power plant utilizing air cooled condensers. The Ormat designed and constructed plant was developed under a fast track program, with some two years from the April 1994 contract signing through design, engineering, construction and startup. The plant is owned and operated by a subsidiary of CalEnergy Co., Inc. and supplies power to PNOC-Energy Development Corporation for the National Power Corporation (Napocor) national power grid in the Philippines.

  19. development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL...

    Office of Scientific and Technical Information (OSTI)

    field Leyte, Philippines. Report on exploration and development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL FIELD; GEOTHERMAL EXPLORATION; GEOTHERMAL POWER...

  20. Chapter 4: Advancing Clean Electric Power Technologies | Geothermal Power Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal Power Chapter 4: Technology Assessments Introduction Geothermal power taps into earth's internal heat as an energy source. While geothermal currently constitutes less than 1% of total U.S. electricity generation, 1 it is regionally much more significant in the western United States. Vast amounts of heat are contained in the interior of the earth from the slow decay of radioactive elements and the heat remaining from earth's formation. This heat flows to the surface at low rates

  1. Power Plays: Geothermal Energy In Oil and Gas Fields | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power Plays: Geothermal Energy In Oil and Gas Fields Power Plays: Geothermal Energy In Oil and Gas Fields The SMU Geothermal Lab is hosting their 7th international energy conference and workshop Power Plays: Geothermal Energy in Oil and Gas Fields May 18-20, 2015 on the SMU Campus in Dallas, Texas. The two-day conference brings together leaders from the geothermal, oil and gas communities along with experts in finance, law, technology, and government agencies to discuss generating electricity

  2. Geothermal Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy (Redirected from Geothermal Power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Energy RSF GeothermalPowerStation.jpg Geothermal energy...

  3. Electrical Power Generation Using Geothermal Fluid Co-produced from Oil &

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gas; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Gas; 2010 Geothermal Technology Program Peer Review Report Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review lowtemp_012_karl.pdf (247.08 KB) More Documents & Publications GRED Drilling Award … GRED III Phase II; 2010 Geothermal Technology Program Peer Review Report

  4. Geothermal

    Office of Scientific and Technical Information (OSTI)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search Advanced Search All Fields: Title: Full Text: ...

  5. Operating experience of double-flash geothermal power plant (Hatchobaru)

    SciTech Connect

    Yoshida, K.; Tanaka, K.; Kusunoki, K.

    1983-09-01

    Hatchobaru No. 1 Unit (55 MW) was completed in 1977 as the world's first double-flash type geothermal power plant and has been operating satisfactorily since that time. The operating record of the Hatchobaru Power Plant and group of wells, including recent findings are described.

  6. What is the role of hydroelectric power in the United States?

    Reports and Publications

    2011-01-01

    The importance of hydropower as a source of electricity generation varies by geographic region. While hydropower accounted for 6% of total U.S. electricity generation in 2010, it provided over half of the electricity in the Pacific Northwest. Because hydroelectric generation relies on precipitation, it varies widely from month to month and year to year.

  7. World geothermal power generation in the period 2001-2005 | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    geothermal power generation in the period 2001-2005 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: World geothermal power generation in the...

  8. NMAC 19.14.21 Geothermal Power Drilling Permit | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    1 Geothermal Power Drilling Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 19.14.21 Geothermal Power Drilling...

  9. Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential...

    Office of Environmental Management (EM)

    Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential August 21, 2013 - 12:00am Addthis Utilizing a 1...

  10. Green Energy Geotherm Power Fonds GmbH Co KG | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geotherm Power Fonds GmbH Co KG Jump to: navigation, search Name: Green Energy Geotherm Power Fonds GmbH & Co. KG Place: Hannover, Lower Saxony, Germany Zip: 30559 Sector:...

  11. STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s...

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search OpenEI Reference LibraryAdd to library General: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Author...

  12. EA-1849-S1: Phase II Facility - Ormat Tuscarora Geothermal Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    849-S1: Phase II Facility - Ormat Tuscarora Geothermal Power Plant in Tuscarora, NV EA-1849-S1: Phase II Facility - Ormat Tuscarora Geothermal Power Plant in Tuscarora, NV Summary ...

  13. S ENERGY POLICY ACT OF 2005 SECTION 242 HYDROELECTRIC INCENTIVE...

    Energy.gov [DOE] (indexed site)

    Project Albany Engineering Corporation (AEC) Stuyvesant Falls Hydroelectric Project ... Hydro Green Mountain Power Corp. Essex Hydroelectric Station Unit 9 Hydrodynamics Inc. ...

  14. Tailored Working Fluids for Enhanced Binary Geothermal Power Plants

    SciTech Connect

    Mahmoud, Ahmad

    2013-01-29

    United Technologies Research Center (UTRC), in collaboration with the Georgia Institute of Technology and the National Institute of Standards and Technology will evaluate and develop fundamental and component level models, conduct experiments and generate data to support the use of mixed or enhanced working fluids for geothermal power generation applications.

  15. Thermoelectric Materials Development for Low Temperature Geothermal Power Generation

    DOE Data Explorer

    Tim Hansen

    2016-01-29

    Data includes characterization results for novel thermoelectric materials developed specifically for power generation from low temperature geothermal brines. Materials characterization data includes material density, thickness, resistance, Seebeck coefficient. This research was carried out by Novus Energy Partners in Cooperation with Southern Research Institute for a Department of Energy Sponsored Project.

  16. Environmental auditing of the Kamojang Geothermal Power Plant - Indonesia

    SciTech Connect

    Radja, V.T.; SulasdI, D.

    1996-12-31

    Environmental Auditing of the Kamojang Geothermal Power Station is based on a monitoring programme which focuses on those potential adverse environmental impacts identified in the Environmental Impact Analysis. Information gained from environmental monitoring with regard to the environmental quality shows that an adverse impact do not occur.

  17. Geothermal Basics | Department of Energy

    Energy Saver

    Geothermal energy videos and animations: Energy 101: Geothermal Energy How a Geothermal Power Plant Works How an Enhanced Geothermal System Works The Geothermal Technologies Office ...

  18. Kenya geothermal private power project: A prefeasibility study

    SciTech Connect

    Not Available

    1992-10-01

    Twenty-eight geothermal areas in Kenya were evaluated and prioritized for development. The prioritization was based on the potential size, resource temperature, level of exploration risk, location, and exploration/development costs for each geothermal area. Suswa, Eburru and Arus are found to offer the best short-term prospects for successful private power development. It was found that cost per kill developed are significantly lower for the larger (50MW) than for smaller-sized (10 or 20 NW) projects. In addition to plant size, the cost per kill developed is seen to be a function of resource temperature, generation mode (binary or flash cycle) and transmission distance.

  19. Los Humeros III Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Chignautla, Puebla, Mexico County Puebla, Mexico Geothermal Area Los Humeros Geothermal Area Geothermal...

  20. Turkerler Alasehir Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Manisa, Turkey County Alasehir Geothermal Area Alasehir Geothermal Area Geothermal Region Aegean-West...

  1. Conceptual design of first geothermal power plant in Ethiopia

    SciTech Connect

    Mills, T.D.; Melaku, M.; Betemariam, G.

    1996-12-31

    The Aluto-Langano Geothermal Pilot Plant will be the first geothermal power plant in Ethiopia. Its purpose is to utilize existing wells, drilled about a decade ago, to generate additional electricity for the power system and to prove the capability of the Aluto-Langano field to support expansion to 30 MWe. This paper discusses the evaluation of possible production wells, in combination with three power cycle options, leading to selection of a preferred development concept. Despite the small size of the pilot plant, the high elevation of the site, and the very high gas content of the field, a condensing unit was selected. Particular design features proposed for the steamfield and power plant are explained, including those that reflect the pilot plant nature of the project.

  2. Deniz Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant Information Facility Type Binary Cycle Power Plant, ORC Owner MAREN Developer MAREN Energy Purchaser TEDAS Number of Units 1 Commercial Online Date 2012 Power Plant Data Type...

  3. Pamukoren Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Type Binary Cycle Power Plant, ORC Owner CELIKLER Developer MTA-CELIKLER Energy Purchaser TEDAS Number of Units 1 Commercial Online Date 2013 Power Plant Data Type...

  4. Pailas Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Facility Type Binary Cycle Power Plant Owner Instituto Costarricense de Electricidad Number of Units 1 1 Commercial Online Date 2011 Power Plant Data Type of Plant...

  5. Water Use in the Development and Operations of Geothermal Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

  6. Water Use in the Development and Operation of Geothermal Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

  7. Legal obstacles and incentives to the development of small scale hydroelectric power in Maryland

    SciTech Connect

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level in Maryland are described. The Federal government also exercises extensive regulatory authority in the area. The dual regulatory system is examined with the aim of creating a more orderly understanding of the vagaries of the system, focusing on the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC. In Maryland, by common law rule, title to all navigable waters and to the soil below the high-water mark of those waters is vested in the state as successor to the Lord Proprietary who had received it by grant from the Crown. Rights to non-navigable water, public trust doctrine, and eminent domain are also discussed. Direct and indirect regulations, continuing obligations, loan programs, and regional organizations are described in additional sections.

  8. Occidental Geothermal, Inc. , Oxy Geothermal Power Plant No. 1: draft environmental impact report

    SciTech Connect

    Not Available

    1981-08-01

    The following aspects of the proposed geothermal power plant are discussed: the project description; the environment in the vicinity of project as it exists before the project begins, from both a local and regional perspective; the adverse consequences of the project, any significant environmental effects which cannot be avoided, and any mitigation measures to minimize significant effects; the potential feasible alternatives to the proposed project; the significant unavoidable, irreversible, and long-term environmental impacts; and the growth inducing impacts. (MHR)

  9. Birdsville Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Artesian Basin Plant Information Facility Type Binary Cycle Power Plant, ORC Owner Ergon Energy Number of Units 1 Commercial Online Date 1992 Power Plant Data Type of Plant Number...

  10. Process Control System of the Mutnovskaya Geothermal Power Plant

    SciTech Connect

    Idzon, O. M.; Ivanov, V. V.; Ilyushin, V. V.; Nikol'skii, A. I.

    2004-01-15

    The experience of creating software and algorithms for automatic process control at the Mutnovskaya geothermal power plant (GTPP) on the basis of the Teleperm ME automation system is presented. The heat cycle and special features of the heat flow diagram of the power plant are briefly described. The engineering solutions used, the structure of the system, and the principles of process control at the Mutnovskaya GTPP are considered. Special attention is devoted to the turbine regulator that consists of several regulating units because of the great number of problems solved by control valves; each regulating unit solves control problems depending on the mode of operation of the power generating set.

  11. Wairakei Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Taupo Volcanic Zone Plant Information Facility Type Binary, Wet Steam Owner Contact Energy Number of Units 12 1 Commercial Online Date 1958 Power Plant Data Type of Plant...

  12. Zunil Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Volcanic Arc Chain Plant Information Facility Type Binary Cycle Power Plant Owner Ormat Energy Purchaser Instituto Nacional de Electrificacion Number of Units 7 Commercial Online...

  13. Niigata Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Japanese Archipelago Plant Information Facility Type Binary Owner Wasabi Developer Wasabi Energy Purchaser EcoGen Commercial Online Date 2012 Power Plant Data Type of Plant Number...

  14. Momotombo Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant Information Facility Type Double Flash, Binary Owner Empresa Nicaraguense de Electricidad (ENEL) Number of Units 3 1 Commercial Online Date 1983 Power Plant Data Type of...

  15. Use of Geothermal Energy for Electric Power Generation

    SciTech Connect

    Mashaw, John M.; Prichett, III, Wilson

    1980-10-23

    The National Rural Electric Cooperative Association and its 1,000 member systems are involved in the research, development and utilization of many different types of supplemental and alternative energy resources. We share a strong commitment to the wise and efficient use of this country's energy resources as the ultimate answer to our national prosperity and economic growth. WRECA is indebted to the United States Department of Energy for funding the NRECA/DOE Geothermal Workshop which was held in San Diego, California in October, 1980. We would also like to express our gratitude to each of the workshop speakers who gave of their time, talent and experience so that rural electric systems in the Western U. S. might gain a clearer understanding of the geothermal potential in their individual service areas. The participants were also presented with practical, expert opinion regarding the financial and technical considerations of using geothermal energy for electric power production. The organizers of this conference and all of those involved in planning this forum are hopeful that it will serve as an impetus toward the full utilization of geothermal energy as an important ingredient in a more energy self-sufficient nation. The ultimate consumer of the rural electric system, the member-owner, expects the kind of leadership that solves the energy problems of tomorrow by fully utilizing the resources at our disposal today.

  16. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report

    SciTech Connect

    Bharathan, D.

    2013-06-01

    Many binary-cycle geothermal plants use air as the heat rejection medium. Usually this is accomplished by using an air-cooled condenser (ACC) system to condense the vapor of the working fluid in the cycle. Many air-cooled plants suffer a loss of production capacity of up to 50% during times of high ambient temperatures. Use of limited amounts of water to supplement the performance of ACCs is investigated. Deluge cooling is found to be one of the least-cost options. Limiting the use of water in such an application to less than one thousand operating hours per year can boost plant output during critical high-demand periods while minimizing water use in binary-cycle geothermal power plants.

  17. Documentation of the status of international geothermal power plants and a list by country of selected geothermally active governmental and private sector entities

    SciTech Connect

    Not Available

    1992-10-01

    This report includes the printouts from the International Geothermal Power Plant Data Base and the Geothermally Active Entity Data Base. Also included are the explanation of the abbreviations used in the power plant data base, maps of geothermal installations by country, and data base questionnaires and mailing lists.

  18. Geothermal Power and Interconnection: The Economics of Getting to Market

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Geothermal Heat Pumps Geothermal Heat Pumps Two commercial 36-ton geothermal heat pumps being used at the College of Southern Idaho. The Geothermal Technologies Office focuses only on electricity generation. For additional information about geothermal heating and cooling and ground source heat pumps, please visit the U.S. Department of Energy (DOE)'s Buildings Technologies Office. The geothermal heat pump, also known as the ground source heat pump, is a highly efficient renewable energy

  19. Electric Power Generation from Low-Temperature Geothermal Resources...

    OpenEI (Open Energy Information) [EERE & EIA]

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  20. Fossil superheating in geothermal steam power plants (Technical...

    Office of Scientific and Technical Information (OSTI)

    fossil and geothermal plants for a wide range of operating conditions, and deserve consideration whenever fossil and geothermal energy resources are found in reasonable proximity. ...

  1. NREL: Wind Power Research - NREL's Geothermal Experts Present...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Charles Visser, geologist, NREL principal scientist, Geothermal Play Fairway Analysis of the Snake River Plain: Phase 1 and GIS Methodology for Geothermal Play Fairway Analysis: ...

  2. World Geothermal Power Generation 2001-2005 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    dismantled. Author Ruggero Bertani Conference World Geothermal Congress; Antalya, Turkey; 20050424 Published World Geothermal Congress, 2005 DOI Not Provided Check for DOI...

  3. Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources

    Energy.gov [DOE]

    Presentation about Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources includes background, results and discussion, future plans and conclusion.

  4. EA-1849-S1: Phase II Facility- Ormat Tuscarora Geothermal Power Plant in Tuscarora, NV

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Supplemental Environmental Assessment (SEA) will evaluate the potential impacts of the Phase II Facility of the Ormat Tuscarora Geothermal Power Plant.

  5. 2013 Electrical Production: EPAct 2005 Section 242 Hydroelectric Incentive

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program | Department of Energy 3 Electrical Production: EPAct 2005 Section 242 Hydroelectric Incentive Program 2013 Electrical Production: EPAct 2005 Section 242 Hydroelectric Incentive Program In 2014, Congress appropriated funds for Hydroelectric Production Incentives under Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits that added a new turbine or other hydroelectric generating device-may receive up to 1.8

  6. 2015 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program | Department of Energy 5 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive Program 2015 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive Program In 2016, Congress appropriated funds for Hydroelectric Production Incentives under Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits that added a new turbine or other hydroelectric generating device-may receive up to 1.8

  7. Greenhouse Gas emissions from California Geothermal Power Plants

    DOE Data Explorer

    Sullivan, John

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  8. Greenhouse Gas emissions from California Geothermal Power Plants

    DOE Data Explorer

    Sullivan, John

    2014-03-14

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  9. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hybrid Cooling Systems for Low-Temperature Geothermal Power Production Andrea Ashwood and Desikan Bharathan Technical Report NREL/TP-5500-48765 March 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Hybrid Cooling Systems for

  10. Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems for Electrical Power from Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources Timothy Reinhardt, Lyle A. Johnson and Neil Popovich Thirty Thirty-Sixth Workshop on Geothermal Reservoir Engineering Sixth Workshop on Geothermal Reservoir Engineering Stanford University Stanford, CA Jan ar 31 Febr ar 2 2011 January 31 - February 2, 2011 Energy Efficiency & Renewable Energy eere.energy.gov Outline * * Background Background * Results and Discussion *

  11. Assessment of Geothermal Resources for Electric Generation in the Pacific Northwest, Draft Issue Paper for the Northwest Power Planning Council

    SciTech Connect

    Geyer, John D.; Kellerman, L.M.; Bloomquist, R.G.

    1989-09-26

    This document reviews the geothermal history, technology, costs, and Pacific Northwest potentials. The report discusses geothermal generation, geothermal resources in the Pacific Northwest, cost and operating characteristics of geothermal power plants, environmental effects of geothermal generation, and prospects for development in the Pacific Northwest. This report was prepared expressly for use by the Northwest Power Planning Council. The report contains numerous references at the end of the document. [DJE-2005

  12. Geothermal Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Energy (Redirected from Geothermal power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data...

  13. Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive...

    Energy.gov [DOE] (indexed site)

    Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits that added a new turbine or other hydroelectric ...

  14. Geothermal

    Office of Scientific and Technical Information (OSTI)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search × Advanced Search All Fields: Title: Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Search Authors Subject: Identifier Numbers: Research Org: Sponsoring Org: Publication Date: to Update Date: to Sort: Relevance (highest to lowest) Publication Date (newest first) Publication Date (oldest first) Legacy/Non-Legacy: All Legacy Non-Legacy Close Clear All Find

  15. Worldwide Geothermal Power Plants: Status as of June 1980

    SciTech Connect

    DiPippo, Ronald

    1980-12-01

    There are 100 geothermal power units now in operation throughout 12 countries, with a total installed capacity of just over 2110 MW. The average unit thus is rated at 21.1 MW. Newer units may be broadly classified as follows: (a) wellhead units of less than 5 MW; (b) small plants of about 10 MW; (c) medium plants of 30-35 MW; (d) large plants of about 55 MW; and (e) complexes typically consisting of several 55 MW units in a large geothermal field. There is a trend toward turbine units of the double-flow type with a 55 MW rating, used either alone or in a tandem-compound arrangement giving 110 MW in a single power house. This is particularly evident at The Geysers field in California. Double-flash units (separated-steam followed by a surface flash) are suited to high quality reservoirs having high temperature, high steam fractions at the wellhead, and low scaling potential. Single-flash units (separated steam) may be called for where scaling by the spent brine is a potential problem for the liquid disposal system. Binary plants are being used for some very low temperature reservoirs, particularly in the People's Republic of China, albeit in extremely small units. A large-scale pilot plant of the binary type is being planned for the Imperial Valley of California.

  16. City of Klamath Falls, Oregon Geothermal Power Plant Feasibility Study

    SciTech Connect

    Brian Brown, PE; Stephen Anderson, PE, Bety Riley

    2011-07-31

    The purpose of the Klamath Falls project is to demonstrate the effectiveness of a combined thermal distribution system and power generation facility. The city of Klamath Falls operates a geothermal district heating system which would appear to be an attractive opportunity to install a power generation system. Since the two wells have operated reliably and consistently over many years, no new sources or resource exploration would be necessary. It appears that it will cost more to construct, operate, maintain and amortize a proposed geothermal facility than the long?term value of the power it would produce. The success of a future project will be determined by whether utility power production costs will remain low and whether costs of construction, operations, or financing may be reduced. There are areas that it would be possible to reduce construction cost. More detailed design could enable the city to obtain more precise quotes for components and construction, resulting in reduction in contingency projections. The current level of the contingency for uncertainty of costs is between $200,000 and $300,000. Another key issue with this project appears to be operation cost. While it is expected that only minimal routine monitoring and operating expenses will occur, the cost of water supply and waste water disposal represents nearly one quarter of the value of the power. If the cost of water alone could be reduced, the project could become viable. In addition, the projected cost of insurance may be lower than estimated under a city?wide policy. No provisions have been made for utilization of federal tax incentives. If a transaction with a third-party owner/taxpayer were to be negotiated, perhaps the net cost of ownership could be reduced. It is recommended that these options be investigated to determine if the costs and benefits could be brought together. The project has good potential, but like many alternative energy projects today, they only work economically if the

  17. Geothermal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Geothermal Louise Vickery, General Manager, Renewable Futures at the Australian Renewable Energy Agency (ARENA). Permalink Gallery Australian Renewable-Energy Official Visits ...

  18. Geothermal power development in Hawaii. Volume I. Review and analysis

    SciTech Connect

    Not Available

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  19. The Award-Winning Environmental Performance of Geothermal Power in California

    Energy.gov [DOE]

    For more than a decade now, three power companies and one community in California have received awards for their outstanding environmental performance from the use of geothermal power. Here's a...

  20. STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s...

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library Personal Communication: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue...

  1. Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation

    SciTech Connect

    Not Available

    2010-12-01

    When power production at The Geysers geothermal power complex began to falter, the National Renewable Energy Laboratory (NREL) stepped in, developing advanced condensing technology that dramatically boosted production efficiency - and making a major contribution to the effective use of geothermal power. NREL developed advanced direct-contact condenser (ADCC) technology to condense spent steam more effectively, improving power production efficiency in Unit 11 by 5%.

  2. BACA Project: geothermal demonstration power plant. Final report

    SciTech Connect

    Not Available

    1982-12-01

    The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

  3. Process control system of a 500-MW unit of the Reftinskaya local hydroelectric power plant

    SciTech Connect

    L.L. Grekhov; V.A. Bilenko; N.N. Derkach; A.I. Galperina; A.P. Strukov

    2002-05-01

    The results of the installation of a process control system developed by the Interavtomatika Company (Moscow) for controlling a 500-MW pulverized coal power unit with the use of the Teleperm ME and OM650 equipment of the Siemens Company are described. The system provides a principally new level of automation and process control through monitors comparable with the operation of foreign counterparts with complete preservation of the domestic peripheral equipment. During the 4.5 years of operation of the process control system the intricate algorithms for control and data processing have proved their operational integrity.

  4. Process Control System of a 500-MW Unit of the Reftinskaya Local Hydroelectric Power Plant

    SciTech Connect

    Grekhov, L. L.; Bilenko, V. A.; Derkach, N. N.; Galperina, A. I.; Strukov, A. P.

    2002-05-15

    The results of the installation of a process control system developed by the Interavtomatika Company (Moscow) for controlling a 500-MW pulverized coal power unit with the use of the Teleperm ME and OM650 equipment of the Siemens Company are described. The system provides a principally new level of automation and process control through monitors comparable with the operation of foreign counterparts with complete preservation of the domestic peripheral equipment. During the 4.5 years of operation of the process control system the intricate algorithms for control and data processing have proved their operational integrity.

  5. Reduction of operations and maintenance costs at geothermal power plants

    SciTech Connect

    Bruton, C.J.; Stevens, C.G.; Rard, J.A.; Kasameyer, P.W.

    1997-12-31

    To reduce chemical costs at geothermal power plants, we are investigating: (a) improved chemical processes associated with H{sub 2}S abatement techniques, and (b) the use of cross dispersive infrared spectrometry to monitor accurately, reliably, and continuously H{sub 2}S emissions from cooling towers. The latter is a new type of infrared optical technology developed by LLNL for non-proliferation verification. Initial work is focused at The Geysers in cooperation with Pacific Gas and Electric. Methods for deploying the spectrometer on-site at The Geysers are being developed. Chemical analysis of solutions involved in H{sub 2}S abatement technologies is continuing to isolate the chemical forms of sulfur produced.

  6. Small-Scale Geothermal Power Plant Field Verification Projects: Preprint

    SciTech Connect

    Kutscher, C.

    2001-07-03

    In the spring of 2000, the National Renewable Energy Laboratory issued a Request for Proposal for the construction of small-scale (300 kilowatt [kW] to 1 megawatt [MW]) geothermal power plants in the western United States. Five projects were selected for funding. Of these five, subcontracts have been completed for three, and preliminary design work is being conducted. The three projects currently under contract represent a variety of concepts and locations: a 1-MW evaporatively enhanced, air-cooled binary-cycle plant in Nevada; a 1-MW water-cooled Kalina-cycle plant in New Mexico; and a 750-kW low-temperature flash plant in Utah. All three also incorporate direct heating: onion dehydration, heating for a fish hatchery, and greenhouse heating, respectively. These projects are expected to begin operation between April 2002 and September 2003. In each case, detailed data on performance and costs will be taken over a 3-year period.

  7. Geothermal Power and Interconnection: The Economics of Getting to Market

    SciTech Connect

    Hurlbut, D.

    2012-04-01

    This report provides a baseline description of the transmission issues affecting geothermal technologies. The report begins with a comprehensive overview of the grid, how it is planned, how it is used, and how it is paid for. The report then overlays onto this 'big picture' three types of geothermal technologies: conventional hydrothermal systems; emerging technologies such as enhanced engineered geothermal systems (EGS) and geopressured geothermal; and geothermal co-production with existing oil and gas wells. Each category of geothermal technology has its own set of interconnection issues, and these are examined separately for each. The report draws conclusions about each technology's market affinities as defined by factors related to transmission and distribution infrastructure. It finishes with an assessment of selected markets with known geothermal potential, identifying those that offer the best prospects for near-term commercial development and for demonstration projects.

  8. Green Power Purchasing | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Storage Fuel Cells Geothermal Electric Hydroelectric energy Hydroelectric (Small) Natural Gas Nuclear Solar Photovoltaics Tidal Energy Wave Energy Wind energy Yes Cape Cod...

  9. EA-1849: Department of Energy Loan Guarantee to Ormat Nevada, Inc. for a Geothermal Power Facility in Nevada

    Energy.gov [DOE]

    Ormat Nevada Inc. (ORMAT), through its subsidiaries, proposes to construct and operate three geothermal power production facilities and associated power transmission lines in northern Nevada. The...

  10. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners

    SciTech Connect

    Not Available

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

  11. Studies of geothermal power and process heat applications in St. Lucia and Guatemala

    SciTech Connect

    Altseimer, J.H.; Edeskuty, F.J.

    1986-01-01

    Many countries have the potential to use geothermal energy for both power production and process heat applications. Two Los Alamos programs have studied the most effective use of geothermal energy in St. Lucia and Guatemala. The general objectives are (1) to reduce oil imports; (2) develop employment opportunities; and (3) make products more competitive. The initial St. Lucia studies emphasized power generation but a number of applications for the power plant's residual heat were also found and costs and systems have been determined. The costs of geothermal heat compare favorably with heat from other sources such as oil. In Guatemala, the development of the nation's first geothermal field is well advanced. Process heat applications and their coordination with power generation plants are being studied at Los Alamos. Guatemala has at least two fields that appear suitable for power and heat production. These fields are close to urban centers and to many potential heat applications.

  12. Low-Temperature, Coproduced, and Geopressured Geothermal Power

    Energy.gov [DOE]

    The Geothermal Technology Program (GTP) low-temperature subprogram aims to provide the global geothermal community with the means to achieve development and widespread deployment of economically viable, innovative, and scalable technologies—including those involving coproducts—that will capture a significant portion of the low-temperature geothermal resource base over the next two decades. To that end, GTP held a Technology Roadmapping Workshop on July 13-14, 2010 in Golden, Colorado.

  13. Nicaragua-San Jacinto-Tizate Geothermal Power Project | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Website http:www.iadb.orgprojectsP Program Start 2010 Country Nicaragua UN Region Latin America and the Caribbean References Nicaragua-Geothermal1 Background "The Project...

  14. DOE and Partners Demonstrate Mobile Geothermal Power System at...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and gas sites to reduce costs for geothermal exploration, drilling, and infrastructure. ... Learn more about the PureCycle technology and about GTO's other projects. Addthis Related ...

  15. Electric Power Generation Using Geothermal Fluid Coproduced from...

    OpenEI (Open Energy Information) [EERE & EIA]

    and PWPS are proving that geothermal energy productioncan coexist alongside current oil development operations.Chena Hot Springs Resort and UTRC have previously...

  16. California Geothermal Power Plant to Help Meet High Lithium Demand...

    Energy.gov [DOE] (indexed site)

    phones, laptops, and even some electric vehicles? The U.S. Department of Energy's Geothermal Technologies Program (GTP) is working with California's Simbol Materials to develop...

  17. Water Use in the Development and Operations of Geothermal Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Potential from Mineral Extraction of a Range of Geothermal ... 47 B-1 Water Use by Life Cycle Stage. ... for the scenario were based on simulations using DOE's ...

  18. Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate...

    Energy.gov [DOE] (indexed site)

    < Back Eligibility Commercial Industrial Residential Agricultural Savings Category Geothermal Heat Pumps Commercial Refrigeration Equipment Maximum Rebate 1,000ton Program Info...

  19. Geothermal Power and Interconnection: The Economics of Getting to Market

    SciTech Connect

    Hurlbut, David

    2012-04-23

    This report provides a baseline description of the transmission issues affecting geothermal technologies. It is intended for geothermal experts in either the private or public sector who are less familiar with how the electricity system operates beyond the geothermal plant. The report begins with a comprehensive overview of the grid, how it is planned, how it is used, and how it is paid for. The report then overlays onto this "big picture" three types of geothermal technologies: conventional hydrothermal systems; emerging technologies such as enhanced engineered geothermal systems (EGS) and geopressured geothermal; and geothermal co-production with existing oil and gas wells. Each category of geothermal technology has its own set of interconnection issues, and these are examined separately for each. The report draws conclusions about each technology’s market affinities as defined by factors related to transmission and distribution infrastructure. It finishes with an assessment of selected markets with known geothermal potential, identifying those that offer the best prospects for near-term commercial development and for demonstration projects.

  20. East Mesa Magmamax Power Process Geothermal Generating Plant...

    Office of Scientific and Technical Information (OSTI)

    of geothermal resources would be of the hydrothermal, or pressurized hot water type. ... WELLS; HEAT EXCHANGERS; HOT SPRINGS; HOT WATER; IMPERIAL VALLEY; MAGMA; PILOT PLANTS; ...

  1. Geothermal Power in Alaska Holds Hidden Model for Clean Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    2008. updated 2008;cited 08062013. Available from: http:www.popularmechanics.comscienceenvironment4245896 Retrieved from "http:en.openei.orgwindex.php?titleGeothermal...

  2. Salavatli Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Form" above to add content History and Infrastructure Operating Power Plants: 3 Dora-1 Geothermal Energy Power Plant Dora-2 Geothermal Power Plant Dora-3 Geothermal Power Plant...

  3. World Geothermal Power Generation in the Period 2001-2005 | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    in the Period 2001-2005 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: World Geothermal Power Generation in the Period 2001-2005 Abstract A...

  4. Allen, C.A. 15 GEOTHERMAL ENERGY; 20 FOSSIL-FUELED POWER PLANTS...

    Office of Scientific and Technical Information (OSTI)

    Liquid-fluidized-bed heat exchanger flow distribution models Cole, L.T.; Allen, C.A. 15 GEOTHERMAL ENERGY; 20 FOSSIL-FUELED POWER PLANTS; FLUIDIZED BED HEAT EXCHANGERS; DESIGN;...

  5. Two-Day Geothermal Symposium to Highlight Low-Temperature Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    18-19, 2010. The symposium will highlight the application of low-temperature geothermal power production in oil and gas operations and other settings in the western United States. ...

  6. Linkages from DOE's Geothermal R&D to Commercial Power Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Linkages from DOE’s Geothermal R&D to Commercial Power Generation, a report from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy

  7. NMAC 19.14.23 Geothermal Power Well Spacing | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 19.14.23 Geothermal Power Well SpacingLegal Abstract These rules outline the well spacing...

  8. Cooling tower fill fouling control in a geothermal power plant

    SciTech Connect

    Yu, F.P.; Ginn, L.D.; McCoy, W.F.; Castanieto, H.

    1998-12-31

    Since its first introduction to the market in the 1970s, cooling tower film fill technology has significantly increased thermal performance and reduced the size of cooling towers. However, the narrow spaces between film fill sheets make them susceptible to fouling. Without proper chemical treatment, deposits can accumulate within the film fill resulting in reduced tower efficiency, increased fouling and plugging of the fill. These phenomena could eventually lead to collapse of the tower structure, This paper describes a new approach to remedy the high efficiency film fill fouling problem in a geothermal power plant. The plant has a long history of fill fouling problems due to a very complex make-up water chemistry and desert-related environmental conditions. In recent years, various biocide and biodispersant treatments have significantly improved fouling control by slowing down tower fill deposition rates. However, no program has been successful in reducing fill weights, especially during the summer months. Within six weeks after starting a new control program, the average weight of the tower fill deposits dropped 22% and thermal performance of the cooling tower increased 20%. The treatment resulted in significant improvements in cooling tower operation and power production efficiency.

  9. EERE Success Story-Nevada: Geothermal Brine Brings Low-Cost Power with

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Big Potential | Department of Energy Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential EERE Success Story-Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential August 21, 2013 - 12:00am Addthis Utilizing a $1 million EERE investment, heat from geothermal fluids-a byproduct of gold mining-will be generating electricity this year for less than $0.06 per kilowatt hour with ElectraTherm's new plug-and-play technology. Building on this first-of-its-kind success, this

  10. Linkages from DOEs Geothermal R&D to Commercial Power Generation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE's Geothermal R&D to Commercial Power Generation Prepared by: Rosalie Ruegg, TIA Consulting, Inc. Emerald Isle, NC and Patrick Thomas, 1790 Analytics, LLC Haddonfield, NJ February 2011 i Acknowledgments This report traces the connections from U.S. Department of Energy (DOE) geothermal research and development (R&D) to downstream commercial power generation. Prepared for the U.S. Department of Energy under Purchase Order No. 718187, this report also includes contributions from Sandia

  11. Geothermal Brine Brings Low-Cost Power with Big Potential | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Brine Brings Low-Cost Power with Big Potential Geothermal Brine Brings Low-Cost Power with Big Potential January 3, 2014 - 9:05am Addthis John Fox, CEO of Electratherm, with Tim Reinhardt, Low-Temperature and Coproduced Technology Manager for the Department of Energy, join Joel Murphy, general manager of the Florida Canyon Mine for Jipangu International. The mine's byproduct of geothermal brine allows for an additional revenue stream from existing infrastructure. John Fox, CEO of

  12. Tailored Working Fluids for Enhanced Binary Geothermal Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE Geothermal Program Peer Review 2010 - Presentation. Project Objective: To improve the utilization of available energy in geothermal resources and increase the energy conversion efficiency of systems employed by a) tailoring the subcritical and/or supercritical glide of enhanced working fluids to best match thermal resources, and b) identifying appropriate thermal system and component designs for the down-selected working fluids.

  13. DOE Office of Indian Energy Foundational Course on Hydroelectric...

    Energy.gov [DOE] (indexed site)

    ... some of the oldest hydroelectric projects in Massachusetts, as there was opportunity for power generation and utilization of existing, but old dams and power generation equipment. ...

  14. Accepting Applications: $3.96 Million Hydroelectric Production...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The incentive is available to developers who added hydroelectric power generating capabilities to existing non-powered dams throughout the United States. Equipping local, ...

  15. 1,"Robert Moses Niagara","Hydroelectric","New York Power Authority",2438.8

    Energy Information Administration (EIA) (indexed site)

    York" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Robert Moses Niagara","Hydroelectric","New York Power Authority",2438.8 2,"Ravenswood","Natural gas","TC Ravenswood LLC",2216.5 3,"Nine Mile Point Nuclear Station","Nuclear","Nine Mile Point Nuclear Sta LLC",1937 4,"Oswego Harbor

  16. Nevada Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nevada Geothermal Area Nevada Geothermal Area The extensive Steamboat Springs geothermal area contains three geothermal power-generating plants. The plants provide approximately 30% of the total Nevada geothermal power output. Photo of Nevada power plant

  17. Transition Zone Geothermal Region | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Unknown Planned Capacity 1 Geothermal Areas within the Transition Zone Geothermal Region Energy Generation Facilities within the Transition Zone Geothermal Region Geothermal Power...

  18. Lahendong Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  19. Mindanao Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  20. Mount Amiata Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  1. Amatitlan Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  2. Mori Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  3. Fukushima Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  4. Rotokawa Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  5. Pauzhetskaya Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  6. Miyagi Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  7. Kagoshima Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  8. San Jacinto Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. Benjamin Matek. Geo-energy Internet. Geothermal...

  9. Tiwi / Albay Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  10. Ogiri Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  11. North Negros Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. Benjamin Matek. Geo-energy Internet. Geothermal...

  12. Ngawha Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  13. Bouillante Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  14. Leyte Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  15. Svartsengi Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  16. South Negros Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  17. Tribal Renewable Energy Foundational Course: Hydroelectric | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Hydroelectric Tribal Renewable Energy Foundational Course: Hydroelectric Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on hydroelectric renewable energy by clicking on the .swf link below. You can also download the PowerPoint slides and a text version of the audio. See the full list of DOE Office of Indian Energy educational webinars and provide your feedback on the National Training & Education Resource (NTER) website. hydroelectric.swf

  18. Interior Department to Open 190 Million Acres to Geothermal Power

    Energy.gov [DOE]

    The U.S. Department of the Interior (DOI) announced last week that it plans to make more than 190 million acres of federal land in 12 western states available for geothermal energy development.

  19. Improvements in geothermal electric power and silica production

    DOEpatents

    Hill, J.H.; Fulk, M.M.

    Electricity is generated from hot geothermal solution by extracting heat therefrom, mineral solids which form in a so cooled geothermal solution are separated to recover minerals and facilitate reinjection of the solution into the ground. The separated solids are treated to recover silica by addition of an acid (amorphous silica precipitates) or a base (other minerals precipitate and soulble silicates are formed which are subsequently precipitated by acid neutralization). If desired, after silica is separated, other minerals can be separated and recovered.

  20. Case studies of the legal and institutional obstacles and incentives to the development of small-scale hydroelectric power: South Columbia Basin Irrigation District, Pasco, Washington

    SciTech Connect

    Schwartz, L.

    1980-05-01

    The case study concerns two modern human uses of the Columbia River - irrigation aimed at agricultural land reclamation and hydroelectric power. The Grand Coulee Dam has become synonomous with large-scale generation of hydroelectric power providing the Pacific Northwest with some of the least-expensive electricity in the United States. The Columbia Basin Project has created a half-million acres of farmland in Washington out of a spectacular and vast desert. The South Columbia River Basin Irrigation District is seeking to harness the energy present in the water which already runs through its canals, drains, and wasteways. The South District's development strategy is aimed toward reducing the costs its farmers pay for irrigation and raising the capital required to serve the remaining 550,000 acres originally planned as part of the Columbia Basin Project. The economic, institutional, and regulatory problems of harnessing the energy at site PEC 22.7, one of six sites proposed for development, are examined in this case study.

  1. {open_quotes}Full steam ahead{close_quotes} (a historical review of geothermal power development in the Philippines)

    SciTech Connect

    Gazo, F.M.

    1997-12-31

    The Philippine geothermal energy development is now considered in a state of maturity. After more than 20 years of geothermal experience, the total geothermal installed capacity in the Philippines reached 1,455 MW (1996) or about 12% of the total installed power plant capacity. This also enabled the Philippines to become the second largest producer of geothermal energy in the world. The country`s track record in harnessing geothermal energy is considered a revelation, as it continues with its vision of {open_quotes}full steam ahead{close_quotes}, originally conceived when commercial geothermal operation started in 1973. It is thus proper and timely to refer to historical highlights and experiences in geothermal energy development for planning and implementation of the country`s geothermal energy program.

  2. Video Resources on Geothermal Technologies

    Energy.gov [DOE]

    Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

  3. Raser Geothermal Unit To Feed Power to Anaheim by October

    Energy.gov [DOE]

    Raser Technologies has recently flow tested one of three production wells at its US $33 million, 10-megawatt (MW) Beaver County, Utah geothermal project and now expects to deliver electricity to the city of Anaheim, CA in October, two months earlier than the contract target.

  4. Energy Department Seeks Feedback on Draft Guidance for the Hydroelectr...

    Energy Saver

    Any qualified owner or operator of a hydroelectric facility who added hydropower to non-powered dams or conduits ... applications for generation produced in calendar year ...

  5. Accepting Applications: $3.96 Million Hydroelectric Production Incentive Program

    Energy.gov [DOE]

    A second round of funding for the Section 242 Hydroelectric Incentive Program is now available from the Energy Department's Water Power Program.

  6. List of Geothermal Heat Pumps Incentives | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    using Renewable Fuels Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Hydrogen Landfill Gas Methanol Passive Solar Space Heat Photovoltaics Solar Space Heat...

  7. NREL: Geothermal Technologies - News Release Archives

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Condenser Boosts Geothermal Power Plant Output The first geothermal Innovation Spectrum case study tells the story of The Geysers geothermal power plant in California and how ...

  8. Geothermal rotary separator turbine: wellhead power system tests at Milford, Utah

    SciTech Connect

    Hughes, E.E.

    1983-08-01

    Through development of a separator/expander engine EPRI is improving the efficiency of single flash geothermal power systems. Under cost-shared contracts with Biphase Energy Systems and Utah Power and Light Company (UP and L), a wellhead power generating system has been built and tested. The wellhead unit has been operated for 4000 hours at Roosevelt Hot Springs near Milford, Utah. Phillips Petroleum Company operates the geothermal field at this site. The rotary separator turbine (RST) is a separating expander that increases the resource utilization efficiency by extracting power upstream of a steam turbine in either a 1-stage or 2-stage flash power system. The first power output was achieved October 28, 1981, six weeks after arrival of the RST at the site. The RST system produced 3270 MWh(e) gross and 2770 MWh(e) net to the UP and L grid. Total equivalent power produced by the wellhead RST (actual power output of the RST plus the power obtainable from the steam flow out of the RST) is 15 to 20 percent above the power that would be produced by an optimum 1-stage direct flash plant operated on the same geothermal well.

  9. List of Geothermal Facilities | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Calpine Birdsville Geothermal Power Station Birdsville, Queensland, Australia Ergon Energy Bjarnaflag Geothermal Power Plant Lake Myvatn, Iceland Reykjavk Energy Blumau...

  10. Microsoft PowerPoint - Arkansa River System Operation.ppt

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Control * * Navigation Navigation * * Hydroelectric Power Hydroelectric Power * * Water ... surcharge surcharge Navigation lock and dams Navigation lock and dams Navigation lock ...

  11. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    SciTech Connect

    Hays, Lance G

    2014-07-07

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

  12. Cove Fort Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant Information Facility Type Binary Owner Enel Green Power Developer Enel Green Power Energy Purchaser Ormat Commercial Online Date 2013 Power Plant Data Type of Plant Number...

  13. Hydroelectric energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hydroelectric energy Jump to: navigation, search TODO: Add description List of Hydroelectric Incentives Retrieved from "http:en.openei.orgwindex.php?titleHydroelectricenergy&...

  14. Small Hydroelectric | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Small Hydroelectric Jump to: navigation, search TODO: Add description List of Small Hydroelectric Incentives Retrieved from "http:en.openei.orgwindex.php?titleSmallHydroelect...

  15. Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Using Geothermal Fluid Coproduced from Oil and/or Gas Wells PI - Bernie Karl Chena Hot Springs Resort Track 1 Project Officer: Eric Hass Total Project Funding: $724,000 April 22, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research Project Objectives * Design, build, and operate low temperature, mobile, geothermal power plant capable of co-producing off oil/gas wells *

  16. Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.

    SciTech Connect

    Sullivan, J.L.; Clark, C.E.; Yuan, L.; Han, J.; Wang, M.

    2012-02-08

    A study has been conducted on the material demand and life-cycle energy and emissions performance of power-generating technologies in addition to those reported in Part I of this series. The additional technologies included concentrated solar power, integrated gasification combined cycle, and a fossil/renewable (termed hybrid) geothermal technology, more specifically, co-produced gas and electric power plants from geo-pressured gas and electric (GPGE) sites. For the latter, two cases were considered: gas and electricity export and electricity-only export. Also modeled were cement, steel and diesel fuel requirements for drilling geothermal wells as a function of well depth. The impact of the construction activities in the building of plants was also estimated. The results of this study are consistent with previously reported trends found in Part I of this series. Among all the technologies considered, fossil combustion-based power plants have the lowest material demand for their construction and composition. On the other hand, conventional fossil-based power technologies have the highest greenhouse gas (GHG) emissions, followed by the hybrid and then two of the renewable power systems, namely hydrothermal flash power and biomass-based combustion power. GHG emissions from U.S. geothermal flash plants were also discussed, estimates provided, and data needs identified. Of the GPGE scenarios modeled, the all-electric scenario had the highest GHG emissions. Similar trends were found for other combustion emissions.

  17. Evaluation of a superheater enhanced geothermal steam power plant in the Geysers area. Final report

    SciTech Connect

    Janes, J.

    1984-06-01

    This study was conducted to determine the attainable generation increase and to evaluate the economic merits of superheating the steam that could be used in future geothermal steam power plants in the Geyser-Calistoga Known Geothermal Resource Area (KGRA). It was determined that using a direct gas-fired superheater offers no economic advantages over the existing geothermal power plants. If the geothermal steam is heated to 900/sup 0/F by using the exhaust energy from a gas turbine of currently available performance, the net reference plant output would increase from 65 MW to 159 MW (net). Such hybrid plants are cost effective under certain conditions identified in this document. The power output from the residual Geyser area steam resource, now equivalent to 1437 MW, would be more than doubled by employing in the future gas turbine enhancement. The fossil fuel consumed in these plants would be used more efficiently than in any other fossil-fueled power plant in California. Due to an increase in evaporative losses in the cooling towers, the viability of the superheating concept is contingent on development of some of the water resources in the Geysers-Calistoga area to provide the necessary makeup water.

  18. Keystone/Mesquite Lake Geothermal Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Imperial County, NV Geothermal Area South Brawley Geothermal Area Geothermal Region Gulf of California Rift Zone Geothermal Project Profile Developer Ram Power Project Type...

  19. Wairakei-Poihipi Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. Benjamin Matek. Geo-energy Internet. Geothermal...

  20. Travale-Radicondoli Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. Francesco Razzano and Maurizio Cei. 2015. Geothermal...

  1. Mak-Ban / Laguna Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  2. Geothermal resource base of the world: a revision of the Electric Power Research Institute's estimate

    SciTech Connect

    Aldrich, M.J.; Laughlin, A.W.; Gambill, D.T.

    1981-04-01

    Review of the Electric Power Research Institute's (EPRI) method for calculating the geothermal resource base of a country shows that modifications are needed for several of the assumptions used in the calculation. These modifications include: (1) separating geothermal belts into volcanic types with a geothermal gradient of 50{sup 0}C/km and complex types in which 80% of the area has a temperature gradient of 30{sup 0}C/km and 20% has a gradient of 45{sup 0}C/km, (2) using the actual mean annual temperature of a country rather than an assumed 15{sup 0}C average ambient temperature, and (3) making separate calculations for the resource stored in water/brine and that stored in rock. Comparison of this method (Revised EPRI) for calculating a geothermal resource base with other resource base estimates made from a heat flow map of Europe indicates that the technique yields reasonable values. The calculated geothermal resource bases, stored in water and rock to a depth of 5 km, for each country in the world are given. Approximately five times as much energy is stored in rock as is stored in water.

  3. The Power and Potential of Geothermal Energy | Department of...

    Office of Environmental Management (EM)

    which is equivalent to 16 large nuclear power plants or dozens of coal fired power plants. ... a 79 million loan guarantee for the Blue Mountain power plant in northeastern Nevada. ...

  4. Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation

    SciTech Connect

    Clark, Thomas M.; Erlach, Celeste

    2014-12-30

    Demonstrate the technical and economic feasibility of small scale power generation from low temperature co-produced fluids. Phase I is to Develop, Design and Test an economically feasible low temperature ORC solution to generate power from lower temperature co-produced geothermal fluids. Phase II &III are to fabricate, test and site a fully operational demonstrator unit on a gold mine working site and operate, remotely monitor and collect data per the DOE recommended data package for one year.

  5. EIS-0049: Geothermal Demonstration Program 50-MW Power Plant-Baca Ranch, Sandoval and Rio Arriba Counties, New Mexico

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) developed this EIS to evaluate the environmental impacts of joint funding by DOE and commercial partners of a 50-megawatt demonstration geothermal power plant at the Baca Location in Sandoval County, New Mexico, including construction of the geothermal well field and transmission line.

  6. Report on a mission to the Philippines regarding the opportunities for private investment in geothermal power generation

    SciTech Connect

    Not Available

    1990-12-01

    The Philippines has a rich potential for geothermal energy development, according to the assessment of opportunities for U.S. private investment in the sector. Areas covered in detail are the Philippines' geothermal resources, the legal structure of the geothermal industry, conditions acting as stimuli to geothermal power generation, and interest in private geothermal investment. Major finding are as follows. (1) The Philippine geothermal power industry is the world's second largest. (2) Geothermal resources are owned by the Government of the Philippines and a complex legal structure governs their exploitation. (3) Since the Philippines is poor in most energy resources (e.g., coal, oil, and gas), use of geothermal energy is necessary. (4) Despite legal and structural obstacles, various foreign private enterprises are interested in participating in geothermal development. Two possible options for U.S. investors are presented: a joint venture with the National Oil Company, and negotiation of a service contract, either alone or with a Philippine partner, for a concession on land administered by the Office of Energy Affairs.

  7. Map of Geothermal Facilities/Data | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    TW 1 1988 Don A. Cambell Geothermal Power Plant Binary Ormat Ormat Ormat 2013 Dora-1 Geothermal Energy Power Plant Binary Cycle Power Plant, ORC Menderes Geothermal Menderes...

  8. Installed Geothermal Capacity/Data | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    TW 1 1988 Don A. Cambell Geothermal Power Plant Binary Ormat Ormat Ormat 2013 Dora-1 Geothermal Energy Power Plant Binary Cycle Power Plant, ORC Menderes Geothermal Menderes...

  9. Resource Evaluation and Development Plans for a 120 MW Geothermal Power Plant on Milos Island, Greece

    SciTech Connect

    Economides, M.J.; Ehlig-Economides, C.A.; Speliotis, G.; Vrouzi, F.

    1983-12-15

    Five deep wells have been drilled on the Island of Milos, Greece, identifying a high-temperature, high-enthalpy geothermal reservoir. The thermodynamic properties of the fluid, and the estimated porosity and presumed thickness of the formation suggest a fluid and heat storage capacity that could support a 60 MWe power plant for 85 years or a 120 MWe for half that time. The existing five wells can deliver 180 t/h of steam at 10 bar abs pressure, capable of generating a maximum electric power output of slightly less than 20 MWe. This paper describes the geology, the drilling and the well testing results pertaining to the five wells, and discusses the reservoir potential for a 60 MWe geothermal power plant.

  10. Underground pumped hydroelectric storage

    SciTech Connect

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  11. Compound hybrid geothermal-fossil power plants: thermodynamic...

    Office of Scientific and Technical Information (OSTI)

    SUPERHEATING; THERMODYNAMICS; WELL TEMPERATURE; WELLHEADS; WESTERN REGION; HEATING; HYDROGEN COMPOUNDS; NORTH AMERICA; OXYGEN COMPOUNDS; POWER PLANTS; RESERVOIR TEMPERATURE;...

  12. Water use in the development and operation of geothermal power plants.

    SciTech Connect

    Clark, C. E.; Harto, C. B.; Sullivan, J. L.; Wang, M. Q.

    2010-09-17

    Geothermal energy is increasingly recognized for its potential to reduce carbon emissions and U.S. dependence on foreign oil. Energy and environmental analyses are critical to developing a robust set of geothermal energy technologies. This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies. The results of the life cycle analysis are summarized in a companion report, Life Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems. This report is divided into six chapters. Chapter 1 gives the background of the project and its purpose, which is to inform power plant design and operations. Chapter 2 summarizes the geothermal electricity generation technologies evaluated in this study, which include conventional hydrothermal flash and binary systems, as well as enhanced geothermal systems (EGS) that rely on engineering a productive reservoir where heat exists but water availability or permeability may be limited. Chapter 3 describes the methods and approach to this work and identifies the four power plant scenarios evaluated: a 20-MW EGS plant, a 50-MW EGS plant, a 10-MW binary plant, and a 50-MW flash plant. The two EGS scenarios include hydraulic stimulation activities within the construction stage of the life cycle and assume binary power generation during operations. The EGS and binary scenarios are assumed to be air-cooled power plants, whereas the flash plant is assumed to rely on evaporative cooling. The well field and power plant design for the scenario were based on simulations using DOE's Geothermal Economic Technology Evaluation Model (GETEM). Chapter 4 presents the water requirements for the power plant life cycle for the scenarios evaluated. Geology, reservoir

  13. Retrofitting a geothermal power plant to optimize performance: A case study

    SciTech Connect

    Kanoglu, M.; Cengel, Y.A.

    1999-07-01

    Performance evaluation of a 12.8 MW single-flash design geothermal power plant in Northern Nevada is conducted using actual plant operating data, and potential improvement sites are identified. The unused geothermal brine reinjected back to the ground is determined to represent about 50% of the energy and 40% of the exergy available in the reservoir. The first and second law efficiencies of the plant are determined to be 6% and 22%, respectively. Optimizing the existing single-flash system is shown to increase the net power output by up to 4%. Some well-known geothermal power generation technologies including double-glass, binary, and, combined flash/binary designs as alternative to the existing system are evaluated and their optimum operating conditions are determined. It is found that a double-flash design, a binary design, and a combined flash/binary design can increase the net power output by up to 31%, 35%, and 54%, respectively, at optimum operating conditions. An economic comparison of these designs appears to favor the combined flash/binary design, followed by the double-glass design.

  14. Newberry Caldera Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy 1 July 1992 USFS BLM GeothermalExploration GeothermalWell Field GeothermalPower Plant Exploration Drilling Exploratory Boreholes Production Wells Thermal Gradient Holes...

  15. Cascades Geothermal Region | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cascades Geothermal Region (Redirected from Cascades) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cascades Geothermal Region Details Areas (2) Power Plants (0)...

  16. Tuscarora Geothermal Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Name Tuscarora Geothermal Facility Facility Geothermal Power Plant Sector Geothermal energy Location Information Coordinates 38.8871315, -77.0030762 Loading...

  17. Patua Geothermal Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    General Information Name Patua Geothermal Facility Facility Geothermal Power Plant Sector Geothermal energy Location Information Coordinates 39.5128511, -119.8066361 Loading...

  18. Germany Geothermal Region | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Germany Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Germany Geothermal Region Details Areas (1) Power Plants (0) Projects (0) Techniques (0)...

  19. Thailand Geothermal Region | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Thailand Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Thailand Geothermal Region Details Areas (1) Power Plants (1) Projects (0) Techniques (0)...

  20. Geothermal/Leasing | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GeothermalLeasing < Geothermal(Redirected from Leasing) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant...

  1. Indonesia Geothermal Region | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Indonesia Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Indonesia Geothermal Region Details Areas (5) Power Plants (4) Projects (0) Techniques (0)...

  2. Geothermal/Grid Connection | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GeothermalGrid Connection < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection...

  3. Geothermal/Environment | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GeothermalEnvironment < Geothermal(Redirected from Environment) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power...

  4. Philippines Geothermal Region | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Philippines Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Philippines Geothermal Region Details Areas (1) Power Plants (0) Projects (0) Techniques...

  5. Austria Geothermal Region | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GEOTHERMAL ENERGYGeothermal Home Austria Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  6. Australia Geothermal Region | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GEOTHERMAL ENERGYGeothermal Home Australia Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  7. Outside a Geothermal Region | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GEOTHERMAL ENERGYGeothermal Home Outside a Geothermal Region Details Areas (1) Power Plants (1) Projects (0) Techniques (0) This is a category for geothermal areas added that do...

  8. New Zealand Geothermal Region | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GEOTHERMAL ENERGYGeothermal Home New Zealand Geothermal Region Details Areas (2) Power Plants (2) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  9. Russia Geothermal Region | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GEOTHERMAL ENERGYGeothermal Home Russia Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  10. Iceland Geothermal Region | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GEOTHERMAL ENERGYGeothermal Home Iceland Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  11. China Geothermal Region | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home China Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References...

  12. Mexico Geothermal Region | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Mexico Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References...

  13. Nesjavellir Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. Reducing Silica Deposition Potential in Waste Waters...

  14. Turkey Geothermal Region | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Turkey Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References...

  15. Momotombo Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. Tom Harding-Newman, James Morrow, Subir Sanyal,...

  16. Zunil Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. 3.0 3.1 Francisco Asturias. 2003. Reservoir assessment...

  17. Purchase and Installation of a Geothermal Power Plant to Generate...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CW-1 CW-2 Heat Exchanger Building 8" Supply Pipeline 4" - 6"- 8" Distribution System 4" - ... production * Oregon DEQ: Injection permit modification for power production * FERC ...

  18. RAPID/Geothermal/Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    transmission, delivery, or furnishing of light, power, heat, cold, water, gar, or oil. However, the definition of public utility does not include any user, owner, or...

  19. Olkaria III Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Type Single Flash Owner Ormat Technologies, Inc. Developer Ormat Technologies, Inc. Energy Purchaser Kenya Power and Lighting Company Limited Commercial Online Date 2014...

  20. North Brawley Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zone Plant Information Facility Type Binary Cycle Power Plant Owner Ormat Developer Ormat Energy Purchaser Southern California Edison Number of Units 5 Commercial Online Date 2010...

  1. Kizildere II Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Information Facility Type Double Flash, Binary Owner Zorlu Enerji Developer Zorlu Enerji Energy Purchaser TEDAS Commercial Online Date 2013 Power Plant Data Type of Plant Number...

  2. Los Azufres II Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Transmexican Volcanic Belt Plant Information Facility Type Single Flash Developer Alstom Energy Purchaser Comisin Federal de Electricidad Commercial Online Date 2003 Power Plant...

  3. The Chena Hot Springs 400kw Geothermal Power Plant: Experience...

    OpenEI (Open Energy Information) [EERE & EIA]

    Low efficiency requiresincreased power plant equipment size (turbine, condenser,pump and boiler) that can ordinarily become cost prohibitive.One of the main goals for the...

  4. California Geothermal Power Plant to Help Meet High Lithium Demand...

    Office of Environmental Management (EM)

    Ever wonder how we get the materials for the advanced batteries that power our cell ... to manufacture its high concentration photovoltaic (HCPV) solar modules and is expected ...

  5. Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report

    SciTech Connect

    Mugerwa, Michael

    2015-11-18

    Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).

  6. Sacramento Municipal Utility District Geothermal Power Plant, SMUDGEO No. 1. Final report

    SciTech Connect

    Not Available

    1981-02-01

    The proposed construction of 72-MW geothermal power plant is discussed. The following aspects are covered: the project as proposed by the utility; the environmental setting; the adverse consequences of the project, any significant environmental effects which cannot be avoided, and any mitigation measures to minimize significant effects; the potential feasible alternatives to the proposed project; the significant unavoidable, irreversible, and long-term environmental impacts; and the Growth Inducing Impacts. (MHR)

  7. Geothermal Energy: Clean Power from the Earth's Heat | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    from the Earth into the atmosphere is enormous-equivalent to ten times the annual energy consumption of the United States and more than that needed to power all nations of the...

  8. Energy Department Accepting Applications for a $3.6 Million Hydroelectric Production Incentive Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department today announced an incentive program for developers adding hydroelectric power generating capabilities to existing non-powered dams throughout the United States.

  9. S ENERGY POLICY ACT OF 2005 SECTION 242 HYDROELECTRIC INCENTIVE PROGRAM

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    S ENERGY POLICY ACT OF 2005 SECTION 242 HYDROELECTRIC INCENTIVE PROGRAM CALENDAR YEAR 2013 INCENTIVE PAYMENTS Payee (Applicant) Hydro Facility Albany Engineering Corporation (AEC) Mechanicville Hydroelectric Project Albany Engineering Corporation (AEC) Stuyvesant Falls Hydroelectric Project Barton (VT) Village, Inc., Electric Department Barton Hydro Bell Mountain Hydro LLC Bell Mountain Hydro Facility Bowersock Mills & Power Company Expanded Kansas River Hydropower Project-North Powerhouse

  10. Geothermal Energy

    SciTech Connect

    Steele, B.C.; Pichiarella, L.S.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  11. Comparative analysis of alternative means for removing noncondensable gases from flashed-steam geothermal power plants

    SciTech Connect

    Vorum, M.; Fitzler, E.

    2000-06-20

    This is a final report on a screening study to compare six methods of removing noncondensable gases from direct-use geothermal steam power plants. This report defines the study methodologies and compares the performance and economics of selected gas-removal systems. Recommendations are presented for follow-up investigations and implementation of some of the technologies discussed. The specific gas-removal methods include five vacuum system configurations using the conventional approach of evacuating gas/vapor mixtures from the power plant condenser system and a system for physical separation of steam and gases upstream of the power turbine. The study focused on flashed-steam applications, but the results apply equally well to flashed-steam and dry-steam geothermal power plant configurations. Two gas-removal options appear to offer profitable economic potential. The hybrid vacuum system configurations and the reboiler process yield positive net present value results over wide-ranging gas concentrations. The hybrid options look favorable for both low-temperature and high-temperature resource applications. The reboiler looks profitable for low-temperature resource applications for gas levels above about 20,000 parts per million by volume. A vacuum system configuration using a three-stage turbocompressor battery may be profitable for low-temperature resources, but results show that the hybrid system is more profitable. The biphase eductor alternative cannot be recommended for commercialization at this time.

  12. Community Geothermal Technology Program: Bottom heating system using geothermal power for propagation. Final report, Phases 1 and 2

    SciTech Connect

    Downing, J.C.

    1990-01-01

    The objective is to develop and study a bottom-heating system in a greenhouse utilizing geothermal energy to aid germination and speed growth of palms. Source of heat was geothermal brine from HGP-A well. The project was successful; the heat made a dramatic difference with certain varieties, such as Areca catechu (betelnut) with 82% germination with heat, zero without. For other varieties, germination rates were much closer. Quality of seed is important. Tabs, figs.

  13. Multi-scale evaporator architectures for geothermal binary power plants

    SciTech Connect

    Sabau, Adrian S; Nejad, Ali; Klett, James William; Bejan, Adrian

    2016-01-01

    In this paper, novel geometries of heat exchanger architectures are proposed for evaporators that are used in Organic Rankine Cycles. A multi-scale heat exchanger concept was developed by employing successive plenums at several length-scale levels. Flow passages contain features at both macro-scale and micro-scale, which are designed from Constructal Theory principles. Aside from pumping power and overall thermal resistance, several factors were considered in order to fully assess the performance of the new heat exchangers, such as weight of metal structures, surface area per unit volume, and total footprint. Component simulations based on laminar flow correlations for supercritical R134a were used to obtain performance indicators.

  14. Final Environmental Assessment and Finding of No Significant Impact: Small-Scale Geothermal Power Plant and Direct-Use Geothermal Application at AmeriCulture Inc., Cotton City, NM

    SciTech Connect

    N /A

    2002-08-27

    The U.S. Department of Energy (DOE) conducted an Environmental Assessment (EA) of the Small-Scale Power Plant and Direct-Use Application at AmeriCulture, Inc. to evaluate potential impacts of construction and operations that would be funded in part by DOE. Small geothermal power plants have the potential for widespread application, but achieving cost-effectiveness in small plant sizes presents a number of challenges. To address these challenges, DOE is supporting the small-scale field verification projects to (1) determine and validate the economics, performance, and operational characteristics of small-scale geothermal electric power plants in different regions. and (2) determine their ability to provide distributed power in order to facilitate their increased use in the western United States. Through the Geothermal Energy Program, DOE is considering providing financial assistance to Exergy, Inc., of Hayward, California, for the development and field verification of a small-scale, approximately 1 megawatt (MVV), geothermal power plant. The proposed power plant would be located upstream of an existing geothermally-heated fish hatchery owned by AmeriCulture, Inc., of Cotton City, NM. DOE is also considering partially funding AmeriCulture, Inc., for a direct-use geothermal application using fluid discharged from the proposed power plant to heat water for the hatchery. The EA addresses the construction and operation of the small-scale, geothermal power plant and the direct use of geothermal fluid exhausted from the geothermal power plant as a heating source for the hatchery. Two system concepts were investigated. The preferred concept involves cascading the spent geothermal fluid from the proposed geothermal power plant to various thermal processes used for fish production. In the second concept, the proposed power plant would not be built, and the fluid from the existing geothermal well would be used for all direct-use operations associated with the project. DOE

  15. National Geothermal Student Competition; 2010 Geothermal Technology Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Peer Review Report | Department of Energy Student Competition; 2010 Geothermal Technology Program Peer Review Report National Geothermal Student Competition; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review adse_002_visser.pdf (242 KB) More Documents & Publications Geothermal Power Generation Plant; 2010 Geothermal Technology Program Peer Review Report Concept Testing and Development at the Raft River Geothermal Field, Idaho

  16. Geothermal Energy | Department of Energy

    Energy.gov [DOE] (indexed site)

    ... to produce and disseminate both the exploration gap analysis and Enhanced Geothermal ... 1 megawatt) power generation geothermal projects; sources of useful information including ...

  17. Geothermal power development in Hawaii. Volume II. Infrastructure and community-services requirements, Island of Hawaii

    SciTech Connect

    Chapman, G.A.; Buevens, W.R.

    1982-06-01

    The requirements of infrastructure and community services necessary to accommodate the development of geothermal energy on the Island of Hawaii for electricity production are identified. The following aspects are covered: Puna District-1981, labor resources, geothermal development scenarios, geothermal land use, the impact of geothermal development on Puna, labor resource requirments, and the requirements for government activity.

  18. Investigations of supercritical CO2 Rankine cycles for geothermal power plants

    SciTech Connect

    Sabau, Adrian S; Yin, Hebi; Qualls, A L; McFarlane, Joanna

    2011-01-01

    Supercritical CO2 Rankine cycles are investigated for geothermal power plants. The system of equations that describe the thermodynamic cycle is solved using a Newton-Rhapson method. This approach allows a high computational efficiency of the model when thermophysical properties of the working fluid depend strongly on the temperature and pressure. Numerical simulation results are presented for different cycle configurations in order to assess the influences of heat source temperature, waste heat rejection temperatures and internal heat exchanger design on cycle efficiency. The results show that thermodynamic cycle efficiencies above 10% can be attained with the supercritical brayton cycle while lower efficiencies can be attained with the transcritical CO2 Rankine cycle.

  19. Hydro-electric generator

    SciTech Connect

    Vauthier, P.

    1980-06-03

    The efficiency of a hydro-electric generator is improved by providing open-ended hollow tubes having influx ends proximate the axis and efflux ends proximate the periphery of a fan-bladed turbine. The jets of water developed by rotation of the fanbladed turbine are directed against turbine vanes at the periphery of the fan blades. The device is particularly suitable for mounting in a water current such as in an ocean current or river.

  20. Installed Geothermal Capacity | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Map of Geothermal Power Plants List of Geothermal Power Plants Throughout the world geothermal energy is looked at as a potential source of renewable base-load power. As of...

  1. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect

    Daniel S. Wendt; Greg L. Mines

    2010-09-01

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ‘Air-Cooled Condensers in Next- Generation Conversion Systems’. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of

  2. Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant

    SciTech Connect

    Hays, Lance G.

    2014-11-18

    Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ºF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures as low as 125 ºF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ºF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the “piggyback” demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required

  3. Iwate Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Profile Gross Production Capacity: Net Production Capacity: Owners : Tohoku Hydropower Geothermal Energy.CoTohoku Electric Power Tohoku HydropowerGeothermal Energy Co Power...

  4. NANA Regional Corporation Geothermal Assessment Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... A preliminary economic analysis for a geothermal power plant serving Buckland concluded ... financial analysis of a 400- kW geothermal power plant at Granite Mountain Hot Springs, ...

  5. Geothermal Resource Classification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resource Classification Geothermal Resource Classification Geothermal Resource Classification.PDF (869.18 KB) More Documents & Publications Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operation of Geothermal Power Plants

  6. Geothermal/Land Use Planning | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GeothermalLand Use Planning < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection...

  7. Central Nevada Seismic Zone Geothermal Region | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Central Nevada Seismic Zone Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Central Nevada Seismic Zone Geothermal Region Details Areas (3) Power...

  8. US Geothermal Inc formerly US Cobalt Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal energy Product: Geothermal power project developer, concentrating on the Raft River region. References: US Geothermal Inc (formerly US Cobalt Inc)1 This article is...

  9. Northwest Basin and Range Geothermal Region | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Basin and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northwest Basin and Range Geothermal Region Details Areas (51) Power Plants (10)...

  10. National Geothermal Data System Demo 01-28-14

    Energy.gov [DOE] (indexed site)

    Reservoir Geologic Units Geothermal Area Geothermal Metadata Compilation Geothermal Power Plant Facility Gravity Stations Heat Flow Heat Pump Facility Hydraulic Properties ...

  11. Mixtures of SF6 CO2 as working fluids for geothermal power plants

    SciTech Connect

    Yin, Hebi; Sabau, Adrian S; Conklin, Jim; McFarlane, Joanna; Qualls, A L

    2013-01-01

    In this paper, supercritical/transcritical thermodynamic cycles using mixtures of SF6 CO2 as working fluids were investigated for geothermal power plants. The system of equations that described the thermodynamic cycle was solved using a Newton-Raphson method. This approach allows a high computational efficiency even when thermophysical properties of the working fluid depend strongly on the temperature and pressure. The thermophysical properties of the mixtures were obtained from National Institute of Standards and Technology (NIST) REFPROP software and constituent cubic equations. The local heat transfer coefficients in the heat exchangers were calculated based on the local properties of the working fluid, geothermal brine, and cooling water. The heat exchanger areas required were calculated. Numerical simulation results presented for different cycle configurations were used to assess the effects of the SF6 fraction in CO2, brine temperature, and recuperator size on the cycle thermal efficiency, and size of heat exchangers for the evaporator and condenser. Optimal thermodynamic cycle efficiencies were calculated to be approximately 13 and 15% mole content of SF6 in a CO2- SF6 mixture for a Brayton cycle and a Rankine cycle, respectively.

  12. Assessment of Evaporative Cooling Enhancement Methods for Air-Cooled Geothermal Power Plants: Preprint

    SciTech Connect

    Kutscher, C.; Costenaro, D.

    2002-08-01

    Many binary-cycle geothermal power plants are air cooled because insufficient water is available to provide year-round water cooling. The performance of air-cooled geothermal plants is highly dependent on the dry bulb temperature of the air (much more so than fossil fuel plants that operate at higher boiler temperatures), and plant electric output can drop by 50% or more on hot summer days, compared to winter performance. This problem of reduced summer performance is exacerbated by the fact that electricity has a higher value in the summer. This paper describes a spreadsheet model that was developed to assess the cost and performance of four methods for using supplemental evaporative cooling to boost summer performance: (1) pre-cooling with spray nozzles, (2) pre-cooling with Munters media, (3) a hybrid combination of nozzles and Munters media, and (4) direct deluge cooling of the air-cooled condenser tubes. Although all four options show significant benefit, deluge cooling has the potential to be the most economic. However, issues of scaling and corrosion would need to be addressed.

  13. Geopressure geothermal energy conversion: the supercritical propane cycle for power generation

    SciTech Connect

    Goldsberry, F.L.; Bebout, D.G.; Bachman, A.L.

    1981-01-01

    The development of the geopressure geothermal unconventional gas resource has been the object of a drilling and reservoir testing program. One aspect of the assessment has been to look at the geothermal component of the energy base as a source of power generation. The basic production unit for the resource has been estimated to be a well capable of producing fluid at a rate of 15,000 to 40,000 BPD at temperatures of 240 to 360/sup 0/F (.0276 to .0736 M/sup 3//sec at 338 to 455/sup 0/K). The spacing of these wells will be approximately 2 to 4 km for effective reservoir drainage. This limits the generation capacity, per well from 700 to 3000 kW per site. It is assumed that interconnecting pipelines to carry brine from each well to a central location and then return it to salt water disposal wells will be impractical. Single well power plants with electrical gathering systems are considered to be the probable mode of development. The thermodynamic envelope within which the plant must operate is defined by the linear cooling curve of the brine and the ambient air temperature. The low resource temperature calls for a Rankine cycle. A supercritical propane cycle was selected. The only component of the thermal power system subject to uncertainty is the brine/propane heater. At the present time a scale/corrosion pilot plant is being operated on a number of geopressure test wells to determine inexpensive scale and corrosion inhibitors that may be used to reduce fouling of the exchanger tubes.

  14. Geothermal energy: a brief assessment

    SciTech Connect

    Lunis, B.C.; Blackett, R.; Foley, D.

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  15. Potential Hydroelectric Development at Existing Federal Facilities...

    OpenEI (Open Energy Information) [EERE & EIA]

    Potential Hydroelectric Development at Existing Federal Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Potential Hydroelectric Development at...

  16. Lessons Learned: Pangue Hydroelectric | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Learned: Pangue Hydroelectric Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Lessons Learned: Pangue Hydroelectric AgencyCompany Organization: International Finance...

  17. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    SciTech Connect

    Zia, Jalal; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

    2013-06-29

    A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200�C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200�C and 40 bar was found to be acceptable after 399

  18. Performance uprate of a geothermal steam turbine case study: Brady Power low pressure turbine

    SciTech Connect

    Miller, R.J. Jr.

    1997-12-31

    The output of a low pressure steam turbine operating in a geothermal power plant has been increased 10.9% by performing an efficiency uprate. The performance of the turbine was studied, resulting in a design for re-optimizing the steam path. New high-efficiency components were blended with existing turbine parts to achieve large output gains at minimum cost. Because the uprate was performed by a non-OEM, the analysis and manufacturing techniques were specifically tailored for the aftermarket. The work was completed on the spare turbine components, thereby allowing the plant to continue operation while the uprated parts were being manufactured. The predicted output gains were confirmed by field performance tests of the existing and uprated turbines.

  19. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    SciTech Connect

    Not Available

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  20. SMU Geothermal Conference 2011 - Geothermal Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SMU Geothermal Conference 2011 - Geothermal Technologies Program SMU Geothermal Conference 2011 - Geothermal Technologies Program DOE Geothermal Technologies Program presentation ...

  1. Honey Lake Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Honey Lake Geothermal Area Honey Lake Geothermal Area The Honey Lake geothermal area is located in Lassen County, California and Washoe County, Nevada. There are three geothermal projects actively producing electrical power. They are located at Wendel, Wineagle, and Amedee. Photo of Amedee Geothermal Venture power plant in Amadee, CA

  2. Thermodynamic evaluation of a single-flash geothermal power plant in Nevada

    SciTech Connect

    Kanoglu, M.; Cengel, Y.A.; Turner, R.H.

    1996-12-31

    First and second law analysis of a 12.5 MW single-flash design geothermal power plant in Nevada is performed using actual plant data, and alternatives are investigated to improve its performance. Exergy destruction throughout the plant is quantified and illustrated using an exergy cascade. The major source of exergy destruction is reinjection of brine after its separation from the steam. It accounts for 48.5% of total exergy destruction. The first and the second law efficiencies of the plant are calculated to be 5.7% and 21.6%, respectively, based on the exergy of the geofluid at downwell. These values seem to be very low. The analysis of alternative designs are based on the exergy analysis. Among the alternatives investigated, a double-flash design would increase the net power output by 4.5 MW (or 36%), depending on the secondary flash pressure chosen. The combined single-flash/binary design would increase the net power output by about 5.0 MW depending on the working fluid chosen.

  3. Ambient H sub 2 S monitoring in the vicinity of Hawaii's first geothermal power plant

    SciTech Connect

    Morrow, J.W. ); Thomas, D.M. ); Burkard, H.D. )

    1988-01-01

    In December, 1975, work began on Hawaii's first successful geothermal well in the East Rift Zone of Kilauea Volcano on the Island of Hawaii (Figure 1). By July, 1976, the well, named Hawaii Geothermal Project - A (HGP-A), was complete to a depth of almost 2 km and had encountered a volcanically driven hydrothermal system having a temperature in excess of 358{degrees} C and a fluid chemistry composed of a mixture of seawater, meteoric water, and volcanic volatiles. The principal chemical constituents of the fluid are listed in Table I. Note the relatively high H{sub 2}S concentration which ranged 900 - 1,000 ppmw. During the early testing of the well, the superheated geothermal fluid was allowed to flash at normal atmospheric pressure with steam and noncondensable gases being released unabated into the atmosphere. The high H{sub 2}S and noise (120 dBA) levels and the close proximity of the Leilani Estates residential subdivision were cause for concern and efforts were thus made to mitigate these impacts. Certain elements of the initial test protocol required that the well be allowed to flow freely and unabated. During these periods public notice and prewarning were the most feasible means of mitigation. At other times, the mixed fluid is separated into steam and brine phases with the steam phase being treated with NaOH and then released through a rock muffler. The brine phase is released through a separate muffling system. Chemical treatment of the stream with NaOH converts the H{sub 2}S into a soluble sulfide salt through the following reaction: H{sub 2}S(g) + NaOH {r arrow} NaHS(s) + H{sub 2}O. This paper discusses early flow testing revealed that the well was able to produce a steady flow of approximately 50,000 kg per hour of steam and water at a pressure of 1200 kPA and thus appeared suitable for power generation.

  4. Opportunities for Small Geothermal Projects: Rural Power for Latin America, the Caribbean, and the Philippines

    SciTech Connect

    Vimmerstedt, L.

    1998-11-30

    The objective of this report is to provide information on small geothermal project (less than 5 MW) opportunities in Latin America, the Caribbean, and the Philippines. This overview of issues facing small geothermal projects is intended especially for those who are not already familiar with small geothermal opportunities. This is a summary of issues and opportunities and serves as a starting point in determining next steps to develop this market.

  5. Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential

    Energy.gov [DOE]

    Utilizing EERE funds, ElectraTherm developed a geothermal technology that will generate electricity for less than $0.06 per kilowatt hour.

  6. Geothermal Technologies Office March

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report Geothermal Technologies Office March 2015 The 2014 Annual Report of the Geothermal Technologies Office is a product of the United States Department of Energy, Office of Energy Efficiency and Renewable Energy. DOE/EERE-1160 * March 2015 This report spans calendar year 2014 achievements. Photographs are accredited herein. back cover photo: Geothermal heat at Pilgrim Hot Springs, Alaska. Source: C. Pike at the Alaska Center for Energy and Power 2014 Annual Report Geothermal Technologies

  7. Geothermal Electricity Production Basics | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electricity Production Basics Geothermal power plants use steam produced from reservoirs of hot water found a few miles or more below the Earth's surface to produce electricity. The steam rotates a turbine that activates a generator, which produces electricity. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Photo of a geothermal power plant. This geothermal power plant generates electricity for the Imperial Valley in California. Dry Steam Dry steam

  8. Geothermal Today - 2001

    SciTech Connect

    2001-08-01

    U.S. Department of Energy Geothermal Energy Program Highlights Partnering with Industry A New Power Source for Nevada Drilling Research Finding Geothermal Resources Small-Scale Geothermal Power Plants The Heat Beneath Your Feet R&D 100 Award Program in Review Milestones January 2000 The U.S. Department of Energy GeoPowering the West initiative was launched. February 2000 Grants totaling $4.8 million were awarded in six western states, primarily for development of reservoir exploration, character

  9. National Geothermal Resource Assessment and Classification

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of the National Geothermal Data System. The results of this work will enable lower riskcost deployment of conventional and EGS geothermal power. USGS is also supporting GTP...

  10. Mendeleevskaya Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Power Engineering In Russia - Today Benjamin Matek. Geo-energy Internet. Geothermal Energy Association. updated 20150428;cited 20150428. Available from:...

  11. Geothermal/Grid Connection | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Transmission Lines How a Geothermal Power Plant Works (Simple) Western Renewable Energy Zones (WREZ) Reports Geothermal Regulations and Permitting for Transmission Siting...

  12. Okeanskaya Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Power Engineering In Russia - Today Benjamin Matek. Geo-energy Internet. Geothermal Energy Association. updated 20150428;cited 20150428. Available from:...

  13. Geothermal Technologies Program Coproduction Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Coproduced geothermal resources can deliver near-term energy savings, diminish greenhouse ... Geothermal Power Oil & Gas Coproduction Opportunity The U.S. Department of Energy's ...

  14. Property:GeothermalRegion | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Plant + Upper Austrian Molasse Basin + Alum Geothermal Area + Walker-Lane Transition Zone + Alum Geothermal Project + Walker-Lane Transition Zone + Aluto-Langano...

  15. Geothermal/Water Use | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Use < Geothermal(Redirected from Water Use) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid...

  16. Geothermal/Water Use | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Use < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection Environment Water...

  17. Geothermal/Exploration | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Exploration < Geothermal(Redirected from Exploration Techniques) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power...

  18. Geothermal/Well Field | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Well Field < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection Environment Water...

  19. Geothermal/Exploration | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Exploration < Geothermal(Redirected from Exploration) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid...

  20. Western States Geothermal Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Company Place: Sparks, Nevada Zip: 89432-2627 Sector: Geothermal energy Product: Geothermal power plant developer and operator. Acquired by Ormat in 2001. Coordinates:...

  1. Geothermal Development Associates | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zip: 89502 Sector: Geothermal energy, Services Product: Geothermal power and direct use project development and consulting services Coordinates: 32.944065, -97.578279 Show...

  2. Geothermal Energy News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lakes, California. August 21, 2013 Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential Utilizing EERE funds, ElectraTherm developed a geothermal technology that...

  3. Water Efficient Energy Production for Geothermal Resources | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Efficient Energy Production for Geothermal Resources Water Efficient Energy Production for Geothermal Resources Water Efficient Energy Production for Geothermal Resources.PDF (4.19 MB) More Documents & Publications Water Efficient Energy Production for Geothermal Resources Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants

  4. Two-Day Geothermal Symposium to Highlight Low-Temperature Power Production

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energys Rocky Mountain Oilfield Testing Center (RMOTC), the National Renewable Energy Laboratory (NREL), and the Southern Methodist University (SMU) Geothermal Laboratory are partnering to host a two-day geothermal symposium in Casper, Wyoming, August 18-19, 2010.

  5. Explore Geothermal Careers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal Careers Explore Geothermal Careers The Geothermal Technologies Office accelerates the adoption of clean, domestic geothermal energy by investing in research and development that reduces the costs and risk of bringing geothermal power online. The U.S. leads the world in existing geothermal capacity, with more than 3,400 megawatts (MW) already installed, and this growth is creating new job opportunities in many parts of the nation. The Geothermal Technologies Office accelerates the

  6. Variable pressure supercritical Rankine cycle for integrated natural gas and power production from the geopressured geothermal resource

    SciTech Connect

    Goldsberry, F.L.

    1982-03-01

    A small-scale power plant cycle that utilizes both a variable pressure vaporizer (heater) and a floating pressure (and temperature) air-cooled condenser is described. Further, it defends this choice on the basis of classical thermodynamics and minimum capital cost by supporting these conclusions with actual comparative examples. The application suggested is for the geopressured geothermal resource. The arguments cited in this application apply to any process (petrochemical, nuclear, etc.) involving waste heat recovery.

  7. Geothermal Prospects in Colorado

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    * Advanced AirWater Hybrid Cooling * Geothermal Coproduction Field Power Validation * Systems Engineering and ... Cumulative Capacity (MW e ) Deep EGS Undiscovered ...

  8. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Geothermal Maps

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Geothermal Prospector Start exploring U.S. geothermal resources with an easy-to-use map by selecting dataset layers that are NGDS compatible. Bookmark and Share Geothermal Maps These maps show existing and developing geothermal power plants, geothermal resource potential estimates, and other information related to geothermal power. They are updated as information becomes available, but may not represent all available geothermal data. Resource Potential The geothermal resource potential map (JPG

  9. Planned Geothermal Capacity | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Map of Development Projects Planned Geothermal Capacity in the U.S. is reported by the Geothermal Energy Association via their Annual U.S. Geothermal Power Production and...

  10. Casa Diablo Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Casa Diablo Geothermal Area Casa Diablo Geothermal Area The Mammoth-Pacific geothermal power plants at Casa Diablo on the eastern front of the Sierra Nevada Range generate enough power for approximately 40,000 homes. The power is sold to Southern California Edison under long-term contracts. Photo of the Casa Diablo Geothermal area.

  11. Tax Credits, Rebates & Savings | Department of Energy

    Energy.gov [DOE] (indexed site)

    Wind (All), Biomass, Hydroelectric, Geothermal Heat Pumps, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Tidal, Wave, Wind (Small), Hydroelectric...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Wind (Small), Hydroelectric...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Energy.gov [DOE] (indexed site)

    Wind (All), Biomass, Hydroelectric, Hydrogen, Geothermal Heat Pumps, Combined Heat & Power, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small), Hydroelectric...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Energy.gov [DOE] (indexed site)

    Biomass, Hydroelectric, Geothermal Heat Pumps, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Tidal, Wave, Wind (Small), Hydroelectric (Small), Anaerobic...

  15. BLM Finalizes Plans to Open 190 Million Acres to Geothermal Power

    Energy.gov [DOE]

    The U.S. Department of Interior's Bureau of Land Management (BLM) has made official its plans to open more than 190 million acres of federal lands for leasing and potential development of geothermal energy resources.

  16. EERE Success Story-Nevada: Geothermal Brine Brings Low-Cost Power...

    Energy.gov [DOE] (indexed site)

    Utilizing a 1 million EERE investment, heat from geothermal fluids-a byproduct of gold mining-will be generating electricity this year for less than 0.06 per kilowatt hour with ...

  17. Geothermal Today - 1999

    SciTech Connect

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  18. A History or Geothermal Energy Research and Development in the...

    Office of Environmental Management (EM)

    Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants Air-Cooled Condensers for Next ...

  19. EA-1849: Ormat Nevada Geothermal Projects in Northern NV | Department...

    Energy.gov [DOE] (indexed site)

    August 22, 2011 EA-1849: Final Environmental Assessment Tuscarora Geothermal Power Plant, ... Ormat Nevada Northern Nevada Geothermal Power Plant Projects: Loan Guarantee for ORMAT ...

  20. Energy Department Develops Regulatory Roadmap to Spur Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    timeline as one of the biggest barriers to increasing geothermal power plant development. ... and leasing plans, to drilling exploratory wells, to developing a geothermal power plant. ...