National Library of Energy BETA

Sample records for housing characteristics consumption

  1. Housing characteristics, 1987: Residential Energy Consumption Survey

    SciTech Connect

    Not Available

    1989-05-26

    This report is the first of a series of reports based on data from the 1987 RECS. The 1987 RECS is the seventh in the series of national surveys of households and their energy suppliers. These surveys provide baseline information on how households in the United States use energy. A cross section of housing types such as single-family detached homes, townhouses, large and small apartment buildings, condominiums, and mobile homes were included in the survey. Data from the RECS and a companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are available to the public in published reports such as this one and on public use tapes. 10 figs., 69 tabs.

  2. Housing characteristics 1993

    SciTech Connect

    1995-06-01

    This report, Housing Characteristics 1993, presents statistics about the energy-related characteristics of US households. These data were collected in the 1993 Residential Energy Consumption Survey (RECS) -- the ninth in a series of nationwide energy consumption surveys conducted since 1978 by the Energy Information Administration of the US Department of Energy. Over 7 thousand households were surveyed, representing 97 million households nationwide. A second report, to be released in late 1995, will present statistics on residential energy consumption and expenditures.

  3. 1997 Housing Characteristics Tables Housing Unit Tables

    Energy Information Administration (EIA) (indexed site)

    Million U.S. Households; 45 pages, 128 kb) Contents Pages HC1-1a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 1997 4 HC1-2a. Housing Unit Characteristics by Year of Construction, Million U.S. Households, 1997 4 HC1-3a. Housing Unit Characteristics by Household Income, Million U.S. Households, 1997 4 HC1-4a. Housing Unit Characteristics by Type of Housing Unit, Million U.S. Households, 1997 3 HC1-5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit,

  4. 1997 Housing Characteristics Tables Housing Unit Tables

    Energy Information Administration (EIA) (indexed site)

    Percent of U.S. Households; 45 pages, 121 kb) Contents Pages HC1-1b. Housing Unit Characteristics by Climate Zone, Percent of U.S. Households, 1997 4 HC1-2b. Housing Unit Characteristics by Year of Construction, Percent of U.S. Households, 1997 4 HC1-3b. Housing Unit Characteristics by Household Income, Percent of U.S. Households, 1997 4 HC1-4b. Housing Unit Characteristics by Type of Housing Unit, Percent of U.S. Households, 1997 3 HC1-5b. Housing Unit Characteristics by Type of Owner-Occupied

  5. Determinants of measured energy consumption in public housing

    SciTech Connect

    Greely, K.M.; Mills, E.; Goldman, C.A.; Ritschard, R.L. )

    1988-01-01

    In this study, the authors used a two-part methodology to analyze metered energy use patterns in 91 public housing projects. Their goal was to develop a technique that could be used by the U.S. Department of Housing and Urban Development (HUD) and public housing authorities (PHAs) to derive reasonable energy use guidelines for different segments of the public housing stock. In the authors' approach, actual energy use was first normalized to consumption in a year with ''typical'' weather and then used in a multiple regression analysis of different cross-sectional variables. The regression model explained 80% of the variation in energy use, with the type of account and the management practices of PHAs emerging as important explanatory factors. As compared to previous engineering estimates of public housing consumption, the projects in this study used 8% (per square foot) to 16% (per apartment) less fuel and electricity, but consumption was still significantly higher (43%) than that of privately owned multifamily housing. They conclude that this methodology could be used to help HUD and PHAs increase their understanding of energy use patterns and appropriate consumption levels in public housing.

  6. Residential Energy Consumption Survey: Housing Characteristics...

    Gasoline and Diesel Fuel Update

    either air or liquid as the working fluid. It does not refer :<: passive collection of solar thermal energy. Fuel Oil Paid by Household: The household paid directly to the fuel...

  7. Estimates of Refrigerator Loads in Public Housing Based on Metered Consumption Data

    SciTech Connect

    Miller, JD; Pratt, RG

    1998-09-11

    The New York Power Authority (NYPA), the New York City Housing Authority (NYCHA), and the U.S. Departments of Housing and Urban Development (HUD) and Energy (DOE) have joined in a project to replace refrigerators in New York City public housing with new, highly energy-efficient models. This project laid the ground work for the Consortium for Energy Efficiency (CEE) and DOE to enable housing authorities throughout the United States to bulk-purchase energy-efficient appliances. DOE helped develop and plan the program through the ENERGY STAR@ Partnerships program conducted by its Pacific Nofiwest National Laboratory (PNNL). PNNL was subsequently asked to conduct the savings evahations for 1996 and 1997. PNNL designed the metering protocol and occupant survey, supplied and calibrated the metering equipment, and managed and analyzed the data. The 1996 metering study of refrigerator energy usage in New York City public housing (Pratt and Miller 1997) established the need and justification for a regression-model-based approach to an energy savings estimate. The need originated in logistical difficulties associated with sampling the population and pen?orming a stratified analysis. Commonly, refrigerators[a) with high representation in the population were missed in the sampling schedule, leaving significant holes in the sample and difficulties for the stratified anrdysis. The just{jfcation was found in the fact that strata (distinct groups of identical refrigerators) were not statistically distinct in terms of their label ratio (ratio of metered consumption to label rating). This finding suggested a general regression model could be used to represent the consumption of all refrigerators in the population. In 1996 a simple two-coefficient regression model, a function of only the refrigerator label rating, was developed and used to represent the existing population of refrigerators. A key concept used in the 1997 study grew from findings in a small number of apartments

  8. Table HC1.1.1 Housing Unit Characteristics by

    Energy Information Administration (EIA) (indexed site)

    1 Housing Unit Characteristics by" " Total, Heated, and Cooled Floorspace, 2005" ,,,"Total Square Footage" ,"Housing Units",,"Total",,"Heated",,"Cooled" "Housing Unit Characteristics","Millions","Percent","Billions","Percent","Billions","Percent","Billions","Percent" "Total",111.1,100,256.5,100,179.8,100,114.5,100 "Census Region

  9. "Table HC3.1 Housing Unit Characteristics by Owner-Occupied Housing Unit, 2005"

    Energy Information Administration (EIA) (indexed site)

    Housing Unit Characteristics by Owner-Occupied Housing Unit, 2005" " Million Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Housing Unit Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes"

  10. Table HC1-5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit,

    Energy Information Administration (EIA) (indexed site)

    5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Homes Two to Four Units Five or More Units 0.4 0.4 1.8 2.1 1.4 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Census Region and Division Northeast ......................................

  11. Building and occupant characteristics as determinants of residential energy consumption

    SciTech Connect

    Nieves, L.A.; Nieves, A.L.

    1981-10-01

    The major goals of the research are to gain insight into the probable effects of building energy performance standards on energy consumption; to obtain observations of actual residential energy consumption that could affirm or disaffirm comsumption estimates of the DOE 2.0A simulation model; and to investigate home owner's conservation investments and home purchase decisions. The first chapter covers the investigation of determinants of household energy consumption. The presentation begins with the underlying economic theory and its implications, and continues with a description of the data collection procedures, the formulation of variables, and then of data analysis and findings. In the second chapter the assumptions and limitations of the energy use projections generated by the DOE 2.0A model are discussed. Actual electricity data for the houses are then compared with results of the simulation. The third chapter contains information regarding households' willingness to make energy conserving investments and their ranking of various conservation features. In the final chapter conclusions and recommendations are presented with an emphasis on the policy implications of this study. (MCW)

  12. "Table HC1.1.3 Housing Unit Characteristics by Average Floorspace--"

    Energy Information Administration (EIA) (indexed site)

    3 Housing Unit Characteristics by Average Floorspace--" " Single-Family Housing Units and Mobile Homes, 2005" ,,"Single- Family and Mobile Homes (millions)","Average Square Feet per Housing Unit-- Single-Family and Mobile Homes" ," Housing Units (millions)" ,,,"Single-Family Detached",,,"Single-Family Attached",,,"Mobile Homes" "Housing Unit

  13. Million U.S. Housing Units Total...............................

    Energy Information Administration (EIA) (indexed site)

    Home Electronics Usage Indicators Detached Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. ...

  14. "Table HC11.1 Housing Unit Characteristics by Northeast Census Region, 2005"

    Energy Information Administration (EIA) (indexed site)

    Housing Unit Characteristics by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units" ,,,"Census Division" ,,"Total Northeast" "Housing Unit Characteristics",,,"Middle Atlantic","New England" "Total",111.1,20.6,15.1,5.5 "Urban/Rural Location (as Self-Reported)" "City",47.1,6.9,4.7,2.2 "Town",19,6,4.2,1.9

  15. "Table HC12.1 Housing Unit Characteristics by Midwest Census Region, 2005"

    Energy Information Administration (EIA) (indexed site)

    Housing Unit Characteristics by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Housing Unit Characteristics",,,"East North Central","West North Central" "Total",111.1,25.6,17.7,7.9 "Urban/Rural Location (as Self-Reported)" "City",47.1,9.7,7.3,2.4

  16. "Table HC13.1 Housing Unit Characteristics by South Census Region, 2005"

    Energy Information Administration (EIA) (indexed site)

    Housing Unit Characteristics by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total South" "Housing Unit Characteristics",,,"South Atlantic","East South Central","West South Central" "Total",111.1,40.7,21.7,6.9,12.1 "Urban/Rural Location (as Self-Reported)"

  17. "Table HC14.1 Housing Unit Characteristics by West Census Region, 2005"

    Energy Information Administration (EIA) (indexed site)

    Housing Unit Characteristics by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Housing Unit Characteristics",,,"Mountain","Pacific" "Total",111.1,24.2,7.6,16.6 "Urban/Rural Location (as Self-Reported)" "City",47.1,12.8,3.2,9.6 "Town",19,3,1.1,1.9

  18. Table HC1.1.2 Housing Unit Characteristics by Average Floorspace, 2005

    Energy Information Administration (EIA) (indexed site)

    2 Housing Unit Characteristics by Average Floorspace, 2005 " ,,"Average Square Feet per--" ," Housing Units (millions)" ,,"Housing Unit",,,"Household Member" "Housing Unit Characteristics",,"Total1","Heated","Cooled","Total","Heated","Cooled" "Total",111.1,2171,1618,1031,845,630,401 "Census Region and Division" "Northeast",20.6,2334,1664,562,911,649,220

  19. Household and environmental characteristics related to household energy-consumption change: A human ecological approach

    SciTech Connect

    Guerin, D.A.

    1988-01-01

    This study focused on the family household as an organism and on its interaction with the three environments of the human ecosystem (natural, behavioral, and constructed) as these influence energy consumption and energy-consumption change. A secondary statistical analysis of data from the US Department of Energy Residential Energy Consumption Surveys (RECS) was completed. The 1980 and 1983 RECS were used as the data base. Longitudinal data, including household, environmental, and energy-consumption measures, were available for over 800 households. The households were selected from a national sample of owner-occupied housing units surveyed in both years. Results showed a significant( p = <.05) relationship between the dependent-variable energy-consumption change and the predictor variables heating degree days, addition of insulation, addition of a wood-burning stove, year the housing unit was built, and weighted number of appliances. A significant (p = <.05) relationship was found between the criterion variable energy-consumption change and the discriminating variables of age of the head of the household, cooling degree days, heating degree days, year the housing unit was built, and number of stories in the housing unit.

  20. 1997 Housing Characteristics Tables Home Office Equipment Tables

    Energy Information Administration (EIA) (indexed site)

    Percent of U.S. Households; 13 pages, 48 kb) Contents Pages HC7-1b. Home Office Equipment by Climate Zone, Percent of U.S. Households, 1997 1 HC7-2b. Home Office Equipment by Year of Construction, Percent of U.S. Households, 1997 1 HC7-3b. Home Office Equipment by Household Income, Percent of U.S. Households, 1997 1 HC7-4b. Home Office Equipment by Type of Housing Unit, Percent of U.S. Households, 1997 1 HC7-5b. Home Office Equipment by Type of Owner-Occupied Housing Unit, Percent of U.S.

  1. Consumption

    Energy Information Administration (EIA) (indexed site)

    . Electricity Consumption and Conditional Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,,"Total Floorspace of...

  2. Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,,"Total Floorspace of...

  3. Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  4. Consumption

    Energy Information Administration (EIA) (indexed site)

    3. Electricity Consumption and Conditional Energy Intensity, 1999" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of Buildings Using Electricity (million square...

  5. Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  6. Consumption

    Energy Information Administration (EIA) (indexed site)

    . Electricity Consumption and Conditional Energy Intensity by Building Size for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  7. Consumption

    Energy Information Administration (EIA) (indexed site)

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 1" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  8. Consumption

    Energy Information Administration (EIA) (indexed site)

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 2" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  9. Consumption

    Energy Information Administration (EIA) (indexed site)

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  10. Consumption

    Energy Information Administration (EIA) (indexed site)

    Electricity Consumption and Conditional Energy Intensity by Census Region, 1999" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of Buildings Using Electricity...

  11. Consumption

    Energy Information Administration (EIA) (indexed site)

    . Electricity Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of...

  12. Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of...

  13. Consumption

    Energy Information Administration (EIA) (indexed site)

    . Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  14. Consumption

    Energy Information Administration (EIA) (indexed site)

    4. Electricity Consumption and Conditional Energy Intensity by Year Constructed, 1999" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of Buildings Using...

  15. Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  16. Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  17. Consumption

    Energy Information Administration (EIA) (indexed site)

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 3" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  18. Consumption

    Energy Information Administration (EIA) (indexed site)

    5. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of...

  19. Consumption

    Energy Information Administration (EIA) (indexed site)

    3. Fuel Oil Consumption and Conditional Energy Intensity by Census Region, 1999" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of Buildings Using Fuel Oil...

  20. Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of Buildings...

  1. Table HC1.1.4 Housing Unit Characteristics by Average Floorspace--Apartments, 2

    Energy Information Administration (EIA) (indexed site)

    4 Housing Unit Characteristics by Average Floorspace--Apartments, 2005" ,,,"Average Square Feet per Apartment in a --" ," Housing Units (millions)" ,,,"2 to 4 Unit Building",,,"5 or More Unit Building" ,,"Apartments (millions)" "Housing Unit Characteristics",,,"Total","Heated","Cooled","Total","Heated","Cooled" "Total",111.1,24.5,1090,902,341,872,780,441

  2. Ventilation Behavior and Household Characteristics in NewCalifornia Houses

    SciTech Connect

    Price, Phillip N.; Sherman, Max H.

    2006-02-01

    A survey was conducted to determine occupant use of windows and mechanical ventilation devices; barriers that inhibit their use; satisfaction with indoor air quality (IAQ); and the relationship between these factors. A questionnaire was mailed to a stratified random sample of 4,972 single-family detached homes built in 2003, and 1,448 responses were received. A convenience sample of 230 houses known to have mechanical ventilation systems resulted in another 67 completed interviews. Some results are: (1) Many houses are under-ventilated: depending on season, only 10-50% of houses meet the standard recommendation of 0.35 air changes per hour. (2) Local exhaust fans are under-utilized. For instance, about 30% of households rarely or never use their bathroom fan. (3) More than 95% of households report that indoor air quality is ''very'' or ''somewhat'' acceptable, although about 1/3 of households also report dustiness, dry air, or stagnant or humid air. (4) Except households where people cook several hours per week, there is no evidence that households with significant indoor pollutant sources get more ventilation. (5) Except households containing asthmatics, there is no evidence that health issues motivate ventilation behavior. (6) Security and energy saving are the two main reasons people close windows or keep them closed.

  3. Consumption

    Energy Information Administration (EIA) (indexed site)

    . Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003" ,"Sum of Major Fuel Consumption (trillion Btu)",,,"Total Floorspace...

  4. A look at commercial buildings in 1995: Characteristics, energy consumption, and energy expenditures

    SciTech Connect

    1998-10-01

    The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of facilities that would not be considered commercial in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with different types of buildings is the clearest way to evaluate commercial sector energy use. The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously triennially) by the Energy Information Administration (EIA). The target population for the 1995 CBECS consisted of all commercial buildings in the US with more than 1,000 square feet of floorspace. Decision makers, businesses, and other organizations that are concerned with the use of energy--building owners and managers, regulators, legislative bodies and executive agencies at all levels of government, utilities and other energy suppliers--are confronted with a buildings sector that is complex. Data on major characteristics (e.g., type of building, size, year constructed, location) collected from the buildings, along with the amount and types of energy the buildings consume, help answer fundamental questions about the use of energy in commercial buildings.

  5. Chicagoland Single-Family Housing Characterization

    SciTech Connect

    Spanier, J.; Scheu, R.; Brand, L.; Yang, J.

    2012-06-01

    In this report, the PARR team identifies housing characteristics and energy use for fifteen housing types in the Chicagoland (Cook County, Illinois) region and specifies measure packages that provide an optimum level of energy savings based on a BEopt analysis. The analysis is based on assessor data and actual energy consumption data on 432,605 houses representing approximately 30% of the population.

  6. Chicagoland Single-Family Housing Characterization

    SciTech Connect

    Spanier, J.; Scheu, R.; Brand, L.; Yang, J.

    2012-06-01

    In this report, the PARR team identifies housing characteristics and energy use for fifteen housing types (groups) in the Chicagoland (Cook County, Illinois) region and specifies measure packages that provide an optimum level of energy savings based on a BEopt analysis. The analysis is based on assessor data and actual energy consumption data on 432,605 houses representing approximately 30% of the population.

  7. Table HC1-3a. Housing Unit Characteristics by Household Income,

    Energy Information Administration (EIA) (indexed site)

    3a. Housing Unit Characteristics by Household Income, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.6 1.3 1.1 1.0 0.9 1.4 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.3 Census Region and Division Northeast

  8. "Table HC3.11 Home Electronics Characteristics by Owner-Occupied Housing Unit, 2005"

    Energy Information Administration (EIA) (indexed site)

    1 Home Electronics Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Electronics Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  9. "Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005"

    Energy Information Administration (EIA) (indexed site)

    2 Living Space Characteristics by Owner-Occupied Housing Units, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions) " ,,,"Single-Family Units",,"Apartments in Buildings With--" "Living Space Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes"

  10. "Table HC3.6 Air Conditioning Characteristics by Owner-Occupied Housing Units, 2005"

    Energy Information Administration (EIA) (indexed site)

    6 Air Conditioning Characteristics by Owner-Occupied Housing Units, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  11. "Table HC3.8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005"

    Energy Information Administration (EIA) (indexed site)

    8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Water Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  12. "Table HC3.9 Home Appliances Characteristics by Owner-Occupied Housing Unit, 2005"

    Energy Information Administration (EIA) (indexed site)

    HC3.9 Home Appliances Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  13. "Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005"

    Energy Information Administration (EIA) (indexed site)

    2 Living Space Characteristics by Renter-Occupied Housing Units, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Living Space Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  14. "Table HC4.6 Air Conditioning Characteristics by Renter-Occupied Housing Units, 2005"

    Energy Information Administration (EIA) (indexed site)

    6 Air Conditioning Characteristics by Renter-Occupied Housing Units, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  15. "Table HC4.8 Water Heating Characteristics by Renter-Occupied Housing Unit, 2005"

    Energy Information Administration (EIA) (indexed site)

    8 Water Heating Characteristics by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Water Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  16. "Table HC4.9 Home Appliances Characteristics by Renter-Occupied Housing Unit, 2005"

    Energy Information Administration (EIA) (indexed site)

    HC4.9 Home Appliances Characteristics by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More

  17. Household energy consumption and expenditures, 1990

    SciTech Connect

    Not Available

    1993-03-02

    This report, Household Energy Consumption and Expenditures 1990, is based upon data from the 1990 Residential Energy Consumption Survey (RECS). Focusing on energy end-use consumption and expenditures of households, the 1990 RECS is the eighth in a series conducted since 1978 by the Energy Information Administration (EIA). Over 5,000 households were surveyed, providing information on their housing units, housing characteristics, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information provided represents the characteristics and energy consumption of 94 million households nationwide.

  18. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy

    Energy Information Administration (EIA) (indexed site)

    Information Administration (EIA) 1997 RECS Survey Data 2009 | 2005 | 2001 | 1997 | 1993 | Previous Housing characteristics Consumption & expenditures Microdata Methodology Housing Characteristics Tables Table Titles (Released: February 2004) Entire Section Percents Tables: HC1 Housing Unit Characteristics, Million U.S. Households PDF PDF NOTE: As of 10/31/01, numbers in the "Housing Units" TABLES section for stub item: "Number of Floors in Apartment Buildings" were

  19. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy

    Energy Information Administration (EIA) (indexed site)

    Information Administration (EIA) 5 RECS Survey Data 2009 | 2005 | 2001 | 1997 | 1993 | Previous Housing characteristics Consumption & expenditures Microdata Housing Characteristics Tables + EXPAND ALL Floorspace - Housing Characteristics PDF (all tables) Total Floorspace All, Heated, and Cooled Floorspace (HC1.1.1) PDF XLS Average Floorspace All Housing Units (HC1.1.2) PDF XLS Single Family and Mobile Homes (HC1.1.3) PDF XLS Apartments (HC1.1.4) PDF XLS Usage Indicators Heated Floorspace

  20. Whole house fenestration energy consumption as a function of variable window air leakage rates

    SciTech Connect

    Kehrli, D.

    1995-09-01

    Residential building energy consumption is dependent on many variables. The heat loss or gain attributable to fenestration products can be a significant portion of the whole building load. The fenestration industry is current developing and implementing new test methods and rating procedures to more accurately account for fenestration energy transfer. One of the tools being developed by the National Fenestration Rating Council (NFRC) is a PC-based program called Residential Fenestration (RESFEN) heating and cooling load use and costs. This paper will provide a review of the energy and cost impacts that variable air leakage rates of several types of window products can have on overall window energy usage as modeled in four typical building designs located in the US. The analysis was performed with the RESFEN software as part of an NFRC sensitivity study on this issue.

  1. "Table HC10.1 Housing Unit Characteristics by U.S. Census Region, 2005"

    Energy Information Administration (EIA) (indexed site)

    0.1 Housing Unit Characteristics by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Housing Unit Characteristics",,"Northeast","Midwest","South","West" "Total",111.1,20.6,25.6,40.7,24.2 "Census Region and Division" "Northeast",20.6,20.6,"N","N","N" "New

  2. "Table HC15.1 Housing Unit Characteristics by Four Most Populated States, 2005"

    Energy Information Administration (EIA) (indexed site)

    Housing Unit Characteristics by Four Most Populated States, 2005" " Million Housing Units" ,"U.S. Housing Units (millions)","Four Most Populated States" "Housing Unit Characteristics",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Census Region and Division" "Northeast",20.6,7.1,"N","N","N" "New

  3. Table HC1-1a. Housing Unit Characteristics by Climate Zone,

    Energy Information Administration (EIA) (indexed site)

    a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.8 1.0 1.1 1.2 1.1 Total ............................................... 107.0 9.2 28.6 24.0 21.0 24.1 8.0 Census Region and Division Northeast

  4. Table HC1-2a. Housing Unit Characteristics by Year of Construction,

    Energy Information Administration (EIA) (indexed site)

    2a. Housing Unit Characteristics by Year of Construction, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.5 1.6 1.2 1.0 1.1 1.1 0.8 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.3 Census Region and Division Northeast ...................................... 20.3 1.5 2.4 2.1 2.8 3.0 8.5 8.8 New

  5. Table HC11.1 Housing Unit Characteristics by Northeast Census Region, 2005

    Energy Information Administration (EIA) (indexed site)

    1.1 Housing Unit Characteristics by Northeast Census Region, 2005 Total......................................................................... 111.1 20.6 15.1 5.5 Urban/Rural Location (as Self-Reported) City....................................................................... 47.1 6.9 4.7 2.2 Town..................................................................... 19.0 6.0 4.2 1.9 Suburbs................................................................ 22.7 4.4 4.0 0.5

  6. Issues in International Energy Consumption Analysis: Electricity Usage in India’s Housing Sector

    Reports and Publications

    2014-01-01

    India offers a unique set of features for studying electricity use in the context of a developing country. First, it has a rapidly developing economy with high yearly growth rates in gross domestic product (GDP). Second, it has the second -largest population in the world and is likely to have the largest population in the future. Third, its electric system is maturing—with known difficulties (outages, shortages, issues with reliability and quality) that are characteristic of a developing country. This article focuses on electricity use in the residential sector of India and discusses key trends and provides an overview of available usage estimates from various sources. Indian households are an interesting environment where many of India’s unique features interact. The recent economic gains correlate with rising incomes and possible changes in living standards, which could affect electricity or other energy use within households. Additionally, the maturing electric system and large population in India both offer opportunities to study a range of interactions between electrification and electricity usage in a developing country.

  7. Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005

    Energy Information Administration (EIA) (indexed site)

    .4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Space Heating Equipment....... 1.2 0.6 0.3 N Q Q Q Have Main Space Heating Equipment.......... 109.8 77.5 63.7 4.2 1.8 2.2 5.6 Use Main Space Heating Equipment............ 109.1 77.2 63.6 4.2 1.8 2.1 5.6 Have Equipment But Do Not Use It.............. 0.8 0.3 Q N Q Q Q Main Heating Fuel

  8. Table HC4.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005

    Energy Information Administration (EIA) (indexed site)

    .4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Space Heating Equipment....... 1.2 0.6 Q Q Q 0.3 Q Have Main Space Heating Equipment.......... 109.8 32.3 8.0 3.3 5.8 14.1 1.1 Use Main Space Heating Equipment............ 109.1 31.8 8.0 3.2 5.6 13.9 1.1 Have Equipment But Do Not Use It.............. 0.8 0.5 N Q Q Q Q Main Heating Fuel

  9. Household energy consumption and expenditures, 1990. [Contains Glossary

    SciTech Connect

    Not Available

    1993-03-02

    This report, Household Energy Consumption and Expenditures 1990, is based upon data from the 1990 Residential Energy Consumption Survey (RECS). Focusing on energy end-use consumption and expenditures of households, the 1990 RECS is the eighth in a series conducted since 1978 by the Energy Information Administration (EIA). Over 5,000 households were surveyed, providing information on their housing units, housing characteristics, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information provided represents the characteristics and energy consumption of 94 million households nationwide.

  10. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update

    U.S. Energy Information Administration (EIA) How does EIA estimate energy consumption and end uses in U.S. homes? RECS 2009 - Release date: March 28, 2011 EIA administers the Residential Energy Consumption Survey (RECS) to a nationally representative sample of housing units. Specially trained interviewers collect energy characteristics on the housing unit, usage patterns, and household demographics. This information is combined with data from energy suppliers to these homes to estimate

  11. Total U.S. Housing Units...................................

    Energy Information Administration (EIA) (indexed site)

    ... Space Heating Usage Indicators Million U.S. Housing Units Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing ...

  12. Table HC2.9 Home Appliances Characteristics by Type of Housing Unit, 2005

    Energy Information Administration (EIA) (indexed site)

    Million U.S. Housing Units Total U.S............................................................ 111.1 72.1 7.6 7.8 16.7 6.9 Cooking Appliances Conventional Ovens Use an Oven............................................... 109.6 71.3 7.4 7.7 16.4 6.8 1.............................................................. 103.3 66.2 7.2 7.4 15.9 6.7 2 or More................................................. 6.2 5.1 Q 0.3 0.5 Q Do Not Use an Oven................................... 1.5 0.7 Q Q 0.4 Q

  13. Residential Energy Consumption Survey: Quality Profile

    SciTech Connect

    1996-03-01

    The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

  14. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy

    Energy Information Administration (EIA) (indexed site)

    Information Administration (EIA) 9 RECS Survey Data 2009 | 2005 | 2001 | 1997 | 1993 | Previous Housing characteristics Consumption & expenditures Microdata Methodology Housing characteristics tables + EXPAND ALL Fuels used & end uses Preliminary release date: March 28, 2011 Final release date: May 6, 2013 ZIP (all tables) by Type of housing unit (HC1.1) XLS by Owner-renter (HC1.2) XLS by Year of construction (HC1.3) XLS by Number of household members (HC1.4) XLS by Household income

  15. Issues in International Energy Consumption Analysis: Electricity...

    Energy Information Administration (EIA) (indexed site)

    Energy Consumption Analysis: Electricity Usage in India's Housing Sector November 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC ...

  16. Energy House

    Education - Teach & Learn

    Students learn about energy conservation and efficiency by using various materials to insulate a cardboard house.

  17. 1997 Housing Characteristics Tables Housing Unit Tables

    Energy Information Administration (EIA) (indexed site)

    ... 1.0 0.2 0.2 0.1 0.3 Q 28.6 Solar ...... Notes: * To obtain the RSE percentage for any table cell, multiply the corresponding ...

  18. 1997 Housing Characteristics Tables Housing Unit Tables

    Energy Information Administration (EIA) (indexed site)

    ... 3.4 4.6 2.9 4.0 4.9 1.8 18.8 Solar ......Notes: * To obtain the RSE percentage for any table cell, multiply the corresponding ...

  19. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update

    U.S. Energy Information Administration (EIA) Where does RECS square footage data come from? RECS 2009 - Release date: July 11, 2012 The size of a home is a fixed characteristic strongly associated with the amount of energy consumed within it, particularly for space heating, air conditioning, lighting, and other appliances. As a part of the Residential Energy Consumption Survey (RECS), trained interviewers measure the square footage of each housing unit. RECS square footage data allow

  20. Education Office Housing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Education Office Housing Housing A housing forum and listings for housing in and around Los Alamos. Contact Postdoc Housing Email LANL Students' Association Email LANL postdoc...

  1. Table 6a. Total Electricity Consumption per Effective Occupied...

    Energy Information Administration (EIA) (indexed site)

    a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

  2. Postdoc Housing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Postdocs » Postdoc Housing Postdoc Housing Point your career towards Los Alamos Laboratory: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. CONTACT Postdoc Program Office Email Housing in Los Alamos, nearby communities Disclaimer: Los Alamos National Security, LLC (LANS) provides these listings as a convenience for postdocs who will be working or participating in programs at Los Alamos National Laboratory.

  3. Meadowlark House

    Energy.gov [DOE]

    This poster describes the energy efficiency features and sustainable materials used in the Greensburg GreenTown Chain of Eco-Homes Meadowlark House in Greensburg, Kansas.

  4. Survey Consumption

    Annual Energy Outlook

    purchase diaries from a subset of respondents composing a Household Transportation Panel and is reported separately. Residential Energy Consumption Survey: Consumption and...

  5. Occupancy Simulation in Three Residential Research Houses

    SciTech Connect

    Boudreaux, Philip R; Gehl, Anthony C; Christian, Jeffrey E

    2012-01-01

    Three houses of similar floor plan are being compared for energy consumption. The first house is a typical builder house of 2400 ft2 (223 m2) in east Tennessee. The second house contains retrofits available to a home owner such as energy efficient appliances, windows and HVAC, as well as an insulated attic which contains HVAC duct work. The third house was built using optimum-value framing construction with photovoltaic modules and solar water heating. To consume energy researchers have set up appliances, lights, and plug loads to turn on and off automatically according to a schedule based on the Building America Research Benchmark Definition. As energy efficiency continues to be a focus for protecting the environment and conserving resources, experiments involving whole house energy consumption will be done. In these cases it is important to understand how to simulate occupancy so that data represents only house performance and not human behavior. The process for achieving automated occupancy simulation will be discussed. Data comparing the energy use of each house will be presented and it will be shown that the third house used 66% less and the second house used 36% less energy than the control house in 2010. The authors will discuss how energy prudent living habits can further reduce energy use in the third house by 23% over the average American family living in the same house.

  6. Open House Archive | Jefferson Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Open House Archive 2014 Open House 2012 Open House 2010 Open House 2007 Open House 2005 Open House 2003 Open House 2001 Open House Back to the main Open House Page

  7. Student Housing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    In order to create a profile you will need a temporary access password. If you would like to take advantage of this housing resource you can request an access password at: ...

  8. Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior

    SciTech Connect

    Kavousian, A; Rajagopal, R; Fischer, M

    2013-06-15

    We propose a method to examine structural and behavioral determinants of residential electricity consumption, by developing separate models for daily maximum (peak) and minimum (idle) consumption. We apply our method on a data set of 1628 households' electricity consumption. The results show that weather, location and floor area are among the most important determinants of residential electricity consumption. In addition to these variables, number of refrigerators and entertainment devices (e.g., VCRs) are among the most important determinants of daily minimum consumption, while number of occupants and high-consumption appliances such as electric water heaters are the most significant determinants of daily maximum consumption. Installing double-pane windows and energy-efficient lights helped to reduce consumption, as did the energy-conscious use of electric heater. Acknowledging climate change as a motivation to save energy showed correlation with lower electricity consumption. Households with individuals over 55 or between 19 and 35 years old recorded lower electricity consumption, while pet owners showed higher consumption. Contrary to some previous studies, we observed no significant correlation between electricity consumption and income level, home ownership, or building age. Some otherwise energy-efficient features such as energy-efficient appliances, programmable thermostats, and insulation were correlated with slight increase in electricity consumption. (C) 2013 Elsevier Ltd. All rights reserved.

  9. Impacts of the Weatherization Assistance Program in fuel-oil heated houses

    SciTech Connect

    Levins, W.P.; Ternes, M.P.

    1994-10-01

    In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

  10. Energy Intensity Indicators: Residential Source Energy Consumption

    Energy.gov [DOE]

    Figure R1 below reports as index numbers over the period 1970 through 2011: 1) the number of U.S. households, 2) the average size of those housing units, 3) residential source energy consumption, 4...

  11. EASI HOUSE

    Energy.gov [DOE]

    A first-time Solar Decathlon entrant in 2015, the Western New England University, Universidad Tecnológica de Panamá, and Universidad Tecnológica Centroamericana team is seeking a blend in its Efficient, Affordable, Solar, Innovation--or EASI--House.

  12. US ENC IL Site Consumption

    Annual Energy Outlook

    ... Yes Yes No No 0% 20% 40% 60% 80% 100% US IL No Car CAR IS PARKED WITHIN 20 FT OF ELECTRICAL OUTLET More highlights from RECS on housing characteristics and energy-related ...

  13. US ENC WI Site Consumption

    Annual Energy Outlook

    ... Yes Yes No No 0% 20% 40% 60% 80% 100% US WI No Car CAR IS PARKED WITHIN 20 FT OF ELECTRICAL OUTLET More highlights from RECS on housing characteristics and energy-related ...

  14. US ENC MI Site Consumption

    Annual Energy Outlook

    ... Yes Yes No No 0% 20% 40% 60% 80% 100% US MI No Car CAR IS PARKED WITHIN 20 FT OF ELECTRICAL OUTLET More highlights from RECS on housing characteristics and energy-related ...

  15. US WSC TX Site Consumption

    Gasoline and Diesel Fuel Update

    ... Yes Yes No No 0% 20% 40% 60% 80% 100% US TX No Car CAR IS PARKED WITHIN 20 FT OF ELECTRICAL OUTLET More highlights from RECS on housing characteristics and energy-related ...

  16. US ESC TN Site Consumption

    Gasoline and Diesel Fuel Update

    ... Yes Yes No No 0% 20% 40% 60% 80% 100% US TN No Car CAR IS PARKED WITHIN 20 FT OF ELECTRICAL OUTLET More highlights from RECS on housing characteristics and energy-related ...

  17. US NE MA Site Consumption

    Gasoline and Diesel Fuel Update

    ... Yes Yes No No 0% 20% 40% 60% 80% 100% US MA No Car CAR IS PARKED WITHIN 20 FT OF ELECTRICAL OUTLET More highlights from RECS on housing characteristics and energy-related ...

  18. US WNC MO Site Consumption

    Gasoline and Diesel Fuel Update

    ... Yes Yes No No 0% 20% 40% 60% 80% 100% US MO No Car CAR IS PARKED WITHIN 20 FT OF ELECTRICAL OUTLET More highlights from RECS on housing characteristics and energy-related ...

  19. Education Office Housing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Education Office Housing Housing A housing forum and listings for housing in and around Los Alamos. Contact Postdoc Housing Email LANL Students' Association Email LANL postdoc program housing The Lab's postdoc program has a postdoc housing listing. If you are interested in posting a housing opportunity, send an email with the pertinent information to postdocprogram@lanl.gov. Housing listings will be posted for 1 month. If you wish for the listing to remain on the web site longer, please contact

  20. Household energy consumption and expenditures 1993

    SciTech Connect

    1995-10-05

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  1. Household energy consumption and expenditures, 1987

    SciTech Connect

    Not Available

    1989-10-10

    Household Energy Consumption and Expenditures 1987, Part 1: National Data is the second publication in a series from the 1987 Residential Energy Consumption Survey (RECS). It is prepared by the Energy End Use Division (EEUD) of the Office of Energy Markets and End Use (EMEU), Energy Information Administration (EIA). The EIA collects and publishes comprehensive data on energy consumption in occupied housing units in the residential sector through the RECS. 15 figs., 50 tabs.

  2. Forward House

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Space Heating and Ventilation Forward House UW-Madison UW-Milwaukee Faculty Advisors Professor Mark Keane | UW-Milwaukee Dr. Michael Cheadle | UW-Madison Professor Lesley Sager | UW-Madison Nic Dan Laura Jake Rob Jonnie Nasim Drew 1 2 Industry Partners Special Thanks to Professionals Professor Linda Keane | The School of the Art Institute of Chicago Cozette Moffatt | Interior Designer Students Emily Cruz | UW-Madison Marilyn Grace Cervantes | UW-Madison Rebecca Cohn | UW-Madison S t o r y A r c

  3. Table 3a. Total Natural Gas Consumption per Effective Occupied...

    Gasoline and Diesel Fuel Update

    3a. Natural Gas Consumption per Sq Ft Table 3a. Total Natural Gas Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Natural Gas...

  4. Table 5a. Total District Heat Consumption per Effective Occupied...

    Energy Information Administration (EIA) (indexed site)

    a. Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption...

  5. Superinsulated houses

    SciTech Connect

    Shurcliff, W.A.

    1986-01-01

    Superinsulation is a direct response to the fast-rising cost of home heating. Of the many kinds of responses, superinsulation is proving to be the simplest and most cost-effective. Until the oil embargo of 1973 there was little interest in saving heat. When the oil shortage arrived and fuel costs doubled and redoubled, many architects responded, at first, by invoking solar energy. They examined the designs of existing solar-heated houses and proposed a great variety of new designs, most of which appeared - to the uninitiated - to have great promise. Most of the early designs were of the active type; some were of the passive type; a few were of the hybrid design.

  6. DOE ZERH Case Study: Mutual Housing California, Mutual Housing...

    Office of Scientific and Technical Information (OSTI)

    Housing California, Mutual Housing at Spring Lake, Woodland, CA Case study of a DOE 2015 Housing Innovation Award winning multifamily project of 62 affordable-housing...

  7. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    Housing Unit Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Housing Unit Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Census Region and

  8. 2015 Arizona Housing Forum

    Energy.gov [DOE]

    The 12th annual Arizona Housing Forum provides a platform for affordable housing professionals to network and share ideas to improve and create housing choices for Arizona. Registration is $350.

  9. Developing Alaskan Sustainable Housing

    Energy.gov [DOE]

    The Association of Alaska Housing Authorities is holding a 3-day training event for housing development professionals titled Developing Alaskan Sustainable Housing (DASH). This is a unique...

  10. 1999 Commercial Buildings Characteristics

    Energy Information Administration (EIA) (indexed site)

    Data Reports > 2003 Building Characteristics Overview 1999 Commercial Buildings Energy Consumption SurveyCommercial Buildings Characteristics Released: May 2002 Topics: Energy...

  11. Impacts of the Weatherization Assistance Program in Fuel-Oil Heated Houses

    SciTech Connect

    Levins, W.P.

    1994-01-01

    In 1990, the U.S. Department of Energy (DOE) initiated a national evaluation of its low-income Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental). Total average costs were $1819 per house ($1192 for

  12. Commercial Buildings Energy Consumption and Expenditures 1995...

    Energy Information Administration (EIA) (indexed site)

    fuel oil, and district heat consumption and expenditures for commercial buildings by building characteristics. Previous Page Arrow Separater Bar File Last Modified: January 29,...

  13. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Gasoline and Diesel Fuel Update

    EIA has conducted the Residential Energy Consumption Survey (RECS) since 1978 to provide data on home energy characteristics, end uses of energy, and expenses for the four Census ...

  14. Los Angeles County's Green Idea House Achieves Efficient Goals | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy County's Green Idea House Achieves Efficient Goals Los Angeles County's Green Idea House Achieves Efficient Goals Photo of an energy-efficient home with modern architecture. The Green Idea House (GIH), an innovative whole-home upgrade project in Los Angeles County, California, has released its latest electric bill, detailing its power consumption through June 2013. The results show that GIH produced more energy than it consumed over the course of a year, including zero combustion

  15. Protocol for House Parties

    Energy.gov [DOE]

    Protocol for House Parties, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  16. The Absent House: The Ecological House of Puerto Rico

    Building Catalog

    Vega Alta, PR The Absent House takes advantage of the benevolent climate of the humid tropics of Puerto Rico to play with the ambiguity of interior and exterior spaces. Main spaces include: a kitchenette and master bathroom suite; a guest tower with a bedroom, bathroom, and small library; an open, public pavilion for cooking, dining, and porch activities; a bathroom for visitors; an infrastructure pavilion for electricity and water consumption management; and an organic garden. The Patio of the Sun and the Stars, the most important s

  17. Manufacturing Consumption of Energy 1991--Combined Consumption...

    Energy Information Administration (EIA) (indexed site)

    call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of...

  18. Practical results of heat conservation in a housing estate scale-actions implemented by the Pradnik-Bialy-Zachod housing cooperative in Cracow

    SciTech Connect

    Piotrowski, L.

    1995-12-31

    There are 11,600,000 apartments occupied in Poland. More than 7,700,000 of these apartments are located in towns. Energy consumption for heating, ventilation and district hot water in residential housing reaches 40% of the national power balance. A portion of district heat distribution and relatively low energy efficiency is characteristic for Polish residential housing. Seventy five percent of apartments in towns are provided with central heating installations and 55% of the entire heat demand in Polish buildings is covered by district heating systems. The total installed heat power of these systems reaches 46,000 MW. The situation with regard to conservation in Polish residential housing is directly related to the legacy of central planning of the national economy and to the current phase of its re-organization to the market-oriented system. The standard value of the overall heat-transfer coefficient for external walls in Poland until 1980 was 1.16 W/m{sup 2}K; at present it is reduced to 0.55 W/m{sup 2}K. There are numerous reasons for the low energy efficiency in residential housing. These reasons are discussed.

  19. US MidAtl NY Site Consumption

    Annual Energy Outlook

    ... Yes Yes No No 0% 20% 40% 60% 80% 100% US NY No Car CAR IS PARKED WITHIN 20 FT OF ELECTRICAL OUTLET More highlights from RECS on housing characteristics and energy-related ...

  20. US Mnt(N) CO Site Consumption

    Gasoline and Diesel Fuel Update

    ... Yes Yes No No 0% 20% 40% 60% 80% 100% US CO No Car CAR IS PARKED WITHIN 20 FT OF ELECTRICAL OUTLET More highlights from RECS on housing characteristics and energy-related ...

  1. US Mnt(S) AZ Site Consumption

    Gasoline and Diesel Fuel Update

    ... Yes Yes No No 0% 20% 40% 60% 80% 100% US AZ No Car CAR IS PARKED WITHIN 20 FT OF ELECTRICAL OUTLET More highlights from RECS on housing characteristics and energy-related ...

  2. US SoAtl VA Site Consumption

    Annual Energy Outlook

    ... Yes Yes No No 0% 20% 40% 60% 80% 100% US VA No Car CAR IS PARKED WITHIN 20 FT OF ELECTRICAL OUTLET More highlights from RECS on housing characteristics and energy-related ...

  3. US SoAtl FL Site Consumption

    Annual Energy Outlook

    ... Yes Yes No No 0% 20% 40% 60% 80% 100% US FL No Car CAR IS PARKED WITHIN 20 FT OF ELECTRICAL OUTLET More highlights from RECS on housing characteristics and energy-related ...

  4. US MidAtl NJ Site Consumption

    Annual Energy Outlook

    ... Yes Yes No No 0% 20% 40% 60% 80% 100% US NJ No Car CAR IS PARKED WITHIN 20 FT OF ELECTRICAL OUTLET More highlights from RECS on housing characteristics and energy-related ...

  5. US MidAtl PA Site Consumption

    Annual Energy Outlook

    ... None Yes Yes No No 0% 20% 40% 60% 80% 100% US PA CAR IS PARKED WITHIN 20 FT OF ELECTRICAL OUTLET More highlights from RECS on housing characteristics and energy-related ...

  6. US SoAtl GA Site Consumption

    Annual Energy Outlook

    ... Yes Yes No No 0% 20% 40% 60% 80% 100% US GA No Car CAR IS PARKED WITHIN 20 FT OF ELECTRICAL OUTLET More highlights from RECS on housing characteristics and energy-related ...

  7. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy...

    Gasoline and Diesel Fuel Update

    2001 RECS Survey Data 2009 | 2005 | 2001 | 1997 | 1993 | Previous Housing characteristics ... PDF UrbanRural Location PDF Northeast Census Region PDF Midwest Census Region PDF ...

  8. House Retirement Timeline

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Your actions: Update all scripts - switch from jgitools to module files. Check houseHunter https:househunter.jgi-psf.org (login with NERSC credentials) Move all data from house ...

  9. AHFC Affordable Housing Summit

    Energy.gov [DOE]

    The Alaska Housing Finance Corporation (AHFC) is hosting a summit to bring together Alaskans from across the state to identify the barriers and seek budget-neutral solutions to the numerous housing challenges facing Alaskans.

  10. 2015 Housing Innovation Awards

    Energy.gov [DOE]

    The U.S. Department of Energy’s (DOE) Housing Innovation Awards recognize the very best in innovation on the path to zero energy ready homes. DOE Zero Energy Ready Home (ZERH) Housing Innovation...

  11. Insulator for laser housing

    DOEpatents

    Duncan, D.B.

    1992-12-29

    The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member. 3 figs.

  12. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update

    U.S. Energy Information Administration (EIA) RECS data show decreased energy consumption per household RECS 2009 - Release date: June 6, 2012 Total United States energy consumption in homes has remained relatively stable for many years as increased energy efficiency has offset the increase in the number and average size of housing units, according to the newly released data from the Residential Energy Consumption Survey (RECS). The average household consumed 90 million British thermal units

  13. EcoHouse Program Overview

    Energy.gov [DOE]

    Provides an overview of the Indianapolis Better Buildings program, the EcoHouse program, and Indianapolis Neighborhood Housing partnership (INHP).

  14. An analysis of residential energy consumption in a temperate climate

    SciTech Connect

    Clark, Y.Y.; Vincent, W.

    1987-06-01

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common energy package.'' Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  15. Table 4a. Total Fuel Oil Consumption per Effective Occupied Square...

    Annual Energy Outlook

    Table 4a. Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil Consumption (trillion...

  16. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  17. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  18. Transportation sector energy consumption

    Annual Energy Outlook

    Chapter 8 Transportation sector energy consumption Overview In the International Energy Outlook 2016 (IEO2016) Reference case, transportation sector delivered energy consumption ...

  19. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    1 Home Electronics Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Home Electronics Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Personal

  20. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    2 Living Space Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Living Space Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Floorspace (Square Feet)"

  1. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    4 Space Heating Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Space Heating Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Do Not Have Space Heating

  2. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    6 Air Conditioning Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Do Not Have Cooling

  3. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    9 Home Appliances Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S.",111.1,72.1,7.6,7.8,16.7,6.9 "Cooking

  4. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    Housing Unit Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Housing Unit Characteristics" "Total",111.1,14.7,7.4,12.5,12.5,18.9,18.6,17.3,9.2 "Census

  5. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    Housing Unit Characteristics by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Housing Unit Characteristics",,"City","Town","Surburbs","Rural" "Total",111.1,47.1,19,22.7,22.3 "Census Region and Division" "Northeast",20.6,6.9,6,4.4,3.2 "New England",5.5,2.2,1.9,0.5,0.9 "Middle

  6. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    8 Water Heating Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Water Heating Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Number of Water

  7. " Million Housing Units, Final...

    Energy Information Administration (EIA) (indexed site)

    "Routine Service or Maintenance" "Performed on Main Heating Equipment3" ... 3Only includes routine service or maintenance performed in the last year. 4Housing ...

  8. " Million Housing Units, Final...

    Energy Information Administration (EIA) (indexed site)

    ... "Routine Service or Maintenance" "Performed on Main Heating Equipment3" ... 3Only includes routine service or maintenance performed in the last year. 4Housing ...

  9. " Million Housing Units, Final...

    Energy Information Administration (EIA) (indexed site)

    ... "Routine Service or Maintenance" "Performed on Main Heating Equipment4" ... 4Only includes routine service or maintenance performed in the last year. 5Housing ...

  10. " Million Housing Units, Final...

    Energy Information Administration (EIA) (indexed site)

    ... central air conditioning equipment for a business or farm building as well as another ... ,,"RSEs for Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ...

  11. Manufacturing Consumption of Energy 1994

    Energy Information Administration (EIA) (indexed site)

    (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption...

  12. Long-Term Results: New Construction Occupied Test House, Urbana, Illinois

    SciTech Connect

    Stecher, D.; Allison, K.

    2012-10-01

    For this study, a house was designed and built to the Passive House (Passivhaus) Standard for low energy consumption. The house incorporates an airtight, super-insulated thermal enclosure, southern facing windows with overhangs, a single point mini-split heat pump and electric resistance heaters, and a balanced energy recovery ventilator (ERV). The house was instrumented with sub-metering on all major electrical circuits, temperature and humidity measurements in each room, domestic hot water consumption, and recovery efficiency of the ERV. The energy performance was documented and compared to modeled predictions, and the thermal comfort performance of the heat pump was assessed.

  13. Long-Term Results. New Construction Occupied Test House, Urbana, Illinois

    SciTech Connect

    Stecher, D.; Allison, K.

    2012-10-01

    For this study, a house was designed and built to the Passive House (Passivhaus) Standard for low energy consumption. The house incorporates an airtight, super-insulated thermal enclosure, southern facing windows with overhangs, a single point mini-split heat pump and electric resistance heaters, and a balanced energy recovery ventilator (ERV). The house was instrumented with sub-metering on all major electrical circuits, temperature and humidity measurements in each room, domestic hot water consumption, and recovery efficiency of the ERV. The energy performance was documented and compared to modeled predictions, and the thermal comfort performance of the heat pump was assessed.

  14. Multiple pump housing

    DOEpatents

    Donoho, II, Michael R.; Elliott; Christopher M.

    2010-03-23

    A fluid delivery system includes a first pump having a first drive assembly, a second pump having a second drive assembly, and a pump housing. At least a portion of each of the first and second pumps are located in the housing.

  15. ,"Housing Units1","Average Square Footage Per Housing Unit",...

    Energy Information Administration (EIA) (indexed site)

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters are excluded. 2Total square footage includes all basements, finished or conditioned (heated ...

  16. Housing And Mounting Structure

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Baca, Johnny R.F.; Bryan, Robert P.; Carson, Richard F.; Duckett, III, Edwin B.; McCormick, Frederick B.; Miller, Gregory V.; Peterson, David W.; Smith, Terrance T.

    2005-03-08

    This invention relates to an optical transmitter, receiver or transceiver module, and more particularly, to an apparatus for connecting a first optical connector to a second optical connector. The apparatus comprises: (1) a housing having at least a first end and at least a second end, the first end of the housing capable of receiving the first optical connector, and the second end of the housing capable of receiving the second optical connector; (2) a longitudinal cavity extending from the first end of the housing to the second end of the housing; and (3) an electromagnetic shield comprising at least a portion of the housing. This invention also relates to an apparatus for housing a flexible printed circuit board, and this apparatus comprises: (1) a mounting structure having at least a first surface and a second surface; (2) alignment ridges along the first and second surfaces of the mounting structure, the alignment ridges functioning to align and secure a flexible printed circuit board that is wrapped around and attached to the first and second surfaces of the mounting structure; and (3) a series of heat sink ridges adapted to the mounting structure, the heat sink ridges functioning to dissipate heat that is generated from the flexible printed circuit board.

  17. The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle...

    Energy.gov [DOE] (indexed site)

    Mass Correlation of Engine Emissions with Spectral Instruments Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Chemical and Physical Characteristics ...

  18. Table 6b. Relative Standard Errors for Total Electricity Consumption...

    Energy Information Administration (EIA) (indexed site)

    b. Relative Standard Errors for Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total...

  19. Commercial Buildings Energy Consumption Survey 2003 - Detailed Tables

    Reports and Publications

    2008-01-01

    The tables contain information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings.

  20. Developing Alaskan Sustainable Housing Training

    Energy.gov [DOE]

    Hosted by the Association of Alaska Housing Authorities (AAHA), this three-day training event covers strategies and technical issues related to sustainable housing development.

  1. Issues in International Energy Consumption Analysis: Electricity Usage in

    Energy Information Administration (EIA) (indexed site)

    India's Housing Sector - Energy Information Administration Canadian Energy Demand Electricity Usage in India's Housing Sector SERIES: Issues in International Energy Consumption Analysis Canadian Energy Demand Release date: June 2, 2015 The residential sector is one of the main end-use sectors in Canada accounting for 16.7% of total end-use site energy consumption in 2009 (computed from NRCan 2012. pp, 4-5). In this year, the residential sector accounted for 54.5% of buildings total site

  2. Commercial Buildings Energy Consumption and Expenditures 1992...

    Energy Information Administration (EIA) (indexed site)

    Consumption and Expenditures Electricity Consumption Natural Gas Consumption Wood and Solar Energy Consumption Fuel Oil and District Heat Consumption Energy Consumption in...

  3. Open House | Jefferson Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Other Useful Information What to Bring Bring your camera or smart phone device; photos and ... Observance of a few rules and safety precautions will make the 2016 Open House more ...

  4. " Million Housing Units, Final...

    Energy Information Administration (EIA) (indexed site)

    ... the use of the heating equipment for a business or farm building as well as another ... for Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ...

  5. " Million Housing Units, Final...

    Energy Information Administration (EIA) (indexed site)

    ... the use of the heating equipment for a business or farm building as well as another ... ,,"RSEs for Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ...

  6. Hood River Passive House

    SciTech Connect

    Hales, D.

    2013-03-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

  7. Bathtub Row Houses

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bathtub Row Houses Manhattan Project in Los Alamos: Bathtub Row Houses Los Alamos was where efforts of the Manhattan Project came together to discover the science necessary to succeed-inventing the technical processes then producing and testing two nuclear devices. In Los Alamos, the park experience is a partnership among the Department of Energy, the National Park Service, private landowners, and Los Alamos County. Guest Cottage, Los Alamos Ranch School, 1942 6. Historical Museum Built as the

  8. National Lighting Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lighting Energy National Lighting Energy Consumption Consumption 390 Billion kWh used for lighting in all 390 Billion kWh used for lighting in all commercial buildings in commercial buildings in 2001 2001 LED (<.1% ) Incandescent 40% HID 22% Fluorescent 38% Lighting Energy Consumption by Lighting Energy Consumption by Breakdown of Lighting Energy Breakdown of Lighting Energy Major Sector and Light Source Type Major Sector and Light Source Type Source: Navigant Consulting, Inc., U.S. Lighting

  9. Residential Energy Consumption Survey:

    Annual Energy Outlook

    ... ...*...,,.<,<,...,,.,,.,,. 97 Table 6. Residential Fuel Oil and Kerosene Consumption and Expenditures April 1979 Through March 1980 Northeast...

  10. Low-risk and cost-effective prior savings estimates for large-scale energy conservation projects in housing: Learning from the Fort Polk GHP project

    SciTech Connect

    Shonder, J.A.; Hughes, P.J.; Thornton, J.W.

    1997-08-01

    Many opportunities exist for large-scale energy conservation projects in housing. Energy savings performance contracting (ESPC) is now receiving greater attention, as a means to implement such projects. This paper proposes an improved method for prior (to construction) savings estimates for these projects. The proposed approach to prior estimates is verified against data from Fort Polk, LA. In the course of evaluating the ESPC at Fort Polk, the authors have collected energy use data which allowed them to develop calibrated engineering models which accurately predict pre-retrofit energy consumption. They believe that such calibrated models could be used to provide much more accurate estimates of energy savings in retrofit projects. The improved savings estimating approach described here is based on an engineering model calibrated to field-collected data from the pre-retrofit period. A dynamic model of pre-retrofit energy use was developed for all housing and non-housing loads on a complete electrical feeder at Fort Polk. The model included the heat transfer characteristics of the buildings, the pre-retrofit air source heat pump, a hot water consumption model and a profile for electrical use by lights and other appliances. Energy consumption for all 200 apartments was totaled, and by adjusting thermostat setpoints and outdoor air infiltration parameters, the models were matched to field-collected energy consumption data for the entire feeder. The energy conservation measures were then implemented in the calibrated model: the air source heat pumps were replaced by geothermal heat pumps with desuperheaters; hot water loads were reduced to account for the low-flow shower heads; and lighting loads were reduced to account for fixture delamping and replacement with compact fluorescent lights. The analysis of pre- and post-retrofit data indicates that the retrofits have saved 30.3% of pre-retrofit electrical energy consumption on the feeder modeled in this paper.

  11. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    2 Structural and Geographic Characteristics of U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" "Structural and Geographic

  12. All Consumption Tables.vp

    Energy Information Administration (EIA) (indexed site)

    4) June 2007 State Energy Consumption Estimates 1960 Through 2004 2004 Consumption Summary Tables Table S1. Energy Consumption Estimates by Source and End-Use Sector, 2004...

  13. Residential Lighting End-Use Consumption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information Resources » Publications » Market Studies » Residential Lighting End-Use Consumption Residential Lighting End-Use Consumption The U.S. DOE Residential Lighting End-Use Consumption Study aims to improve the understanding of lighting energy usage in U.S. residential dwellings using a regional estimation framework. The framework allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3)

  14. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    6 Air Conditioning Characteristics by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Housing Unit Characteristics",,"City","Town","Suburbs","Rural" "Total",111.1,47.1,19,22.7,22.3 "Do Not Have Cooling Equipment",17.8,8.5,2.7,2.6,4 "Have Cooling Equipment",93.3,38.6,16.2,20.1,18.4 "Use Cooling

  15. Office Buildings - Energy Consumption

    Energy Information Administration (EIA) (indexed site)

    Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity,...

  16. ,"Total Natural Gas Consumption

    Energy Information Administration (EIA) (indexed site)

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  17. Hood River Passive House

    SciTech Connect

    Hales, David

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  18. Hood River Passive House

    SciTech Connect

    Hales, D.

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  19. Performance evaluation of the Balcomb solar house

    SciTech Connect

    Balcomb, J.D.; Hedstrom, J.C.; Perry, J.E. Jr.

    1980-01-01

    Additional instrumentation was added to the Balcomb solar house for a six-week period and up to 85 channels were recorded hourly. Some new findings based on an evaluation of these data are presented. (1) The thermal comfort characteristics of four rooms are documented. (2) Relative humidity in the living room varies from 30 to 50%; these data are used to infer an evaporation rate in the house of about 25 kg of water/day. The evaporation rate correlates reasonably well with greenhouse temperature. (3) Heat storage in the greenhouse floor is estimated at about 0.30 kWh/day-m/sup 2/ based on temperatures measured at four depths. (4) Several thermal characteristics of the rock bed are deduced but it is evident that the heat flow is not yet completely understood.

  20. White House Tribal Nations Conference

    Energy.gov [DOE]

    The White House will host the seventh annual Tribal Nations Conference to allow tribal leaders to engage with the President, cabinet officials, and the White House Council on Native America Affairs about key issues facing tribes.

  1. OPEN HOUSE - Climate Prisms: Arctic

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    OPEN HOUSE - Climate Prisms: Arctic OPEN HOUSE - Climate Prisms: Arctic WHEN: Jul 17, 2015 12:00 PM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, ...

  2. Manhattan Project: The "Big House"

    Office of Scientific and Technical Information (OSTI)

    The "Big House" was the dormitory for the Los Alamos Boys Ranch School. Students slept year-round on its unheated porches. During the Manhattan Project, the Big House contained, ...

  3. THE WHITE HOUSE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    THE WHITE HOUSE THE WHITE HOUSE PDF icon THE WHITE HOUSE More Documents & Publications Audit Report: IG-0473 Lapse Documents Inspection Report: IG-0397...

  4. White House Tribal Youth Gathering

    Energy.gov [DOE]

    The White House will host the first-ever White House Tribal Youth Gathering to provide American Indian and Alaska Native youth from across the country the opportunity to interact directly with senior Administration officials and the White House Council on Native American Affairs. Registration is due May 8, 2015.

  5. Household vehicles energy consumption 1994

    SciTech Connect

    1997-08-01

    Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

  6. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    Energy Information Administration (EIA) (indexed site)

    4 Average Square Footage of Single-Family Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Single-Family",78.6,2422,2002,1522,880,727,553 "Census

  7. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    Energy Information Administration (EIA) (indexed site)

    5 Average Square Footage of Multi-Family Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Multi-Family",28.1,930,807,535,453,393,261 "Census Region"

  8. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    Energy Information Administration (EIA) (indexed site)

    6 Average Square Footage of Mobile Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Mobile Homes",6.9,1087,985,746,413,375,283 "Census Region"

  9. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    Energy Information Administration (EIA) (indexed site)

    9 Average Square Footage of U.S. Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total",113.6,1971,1644,1230,766,639,478 "Census Region"

  10. Solar Affordable Housing Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Affordable Housing Program Why Solar for Tribes Significant economic benefits for residents in electric savings over time Environmental benefits from a clean, renewable energy source Green jobs training and potential paid employment opportunities for tribal members in the growing field of solar installation Impacts to-date 335 Installs 1.5 Megawatts Clean, renewable solar power 189 tribal members volunteers Trained in solar installations Tribal Partners Installation with members of the

  11. DOE Tour of Zero: Mutual Housing at Spring Lake by Mutual Housing...

    Energy Saver

    Mutual Housing at Spring Lake by Mutual Housing California DOE Tour of Zero: Mutual Housing at Spring Lake by Mutual Housing California 1 of 14 Mutual Housing built this 62-unit ...

  12. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    Housing Unit Characteristics by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Housing Unit Characteristics" "Total",111.1,10.9,26.1,27.3,24,22.8 "Census Region

  13. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    4 Structural and Geographic Characteristics of U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,,,,,"5 or More Members" ,,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Census Region and Division"

  14. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    8 Structural and Geographic Characteristics of Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" "Structural and Geographic Characteristics",,"Total Northeast",,,"CT, ME, NH, RI, VT"

  15. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,"Total Midwest",,,,," IN,

  16. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    3 Structural and Geographic Characteristics of U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2009" "Total

  17. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    6 Structural and Geographic Characteristics of U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,"Very Cold/","Mixed- Humid","Mixed-Dry/" ,,"Cold",,"Hot-Dry","Hot-Humid","Marine" "Total Homes",113.6,38.8,35.4,14.1,19.1,6.3 "Census Region and Division"

  18. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    7 Structural and Geographic Characteristics of U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,"Northeast","Midwest","South","West" "Total Homes",113.6,20.8,25.9,42.1,24.8 "Urban and Rural2" "Urban",88.1,18,19.9,28.6,21.5 "Rural",25.5,2.8,6,13.4,3.3

  19. Residential energy consumption survey: consumption and expenditures, April 1982-March 1983. Part 1, national data

    SciTech Connect

    Thompson, W.

    1984-11-01

    This report presents data on the US consumption and expenditures for residential use of natural gas, electricity, fuel oil or kerosene, and liquefied petroleum gas (LPG) from April 1982 through March 1983. Data on the consumption of wood for this period are also presented. The consumption and expenditures data are based on actual household bills, obtained, with the permission of the household. from the companies supplying energy to the household. Data on wood consumption are based on respondent recall of the amount of wood burned during the winter and are subject to memory errors and other reporting errors described in the report. These data come from the 1982 Residential Energy Consumption Survey (RECS), the fifth in a series of comparable surveys beginning in 1978. The 1982 survey is the first survey to include, as part of its sample, a portion of the same households interviewed in the 1980 survey. A separate report is planned to report these longitudinal data. This summary gives the highlights of a comparison of the findings for the 5 years of RECS data. The data cover all types of housing units in the 50 states and the District of Columbia including single-family units, apartments, and mobile homes. For households with indirect energy costs, such as costs that are included in the rent or paid by third parties, the sonsumption and expenditures data are estimated and included in the figures reported here. The average household consumption of natural gas, electricity, fuel oil or kerosene, and LPG dropped in 1982 from the previous year, hitting a 5-year low since the first Residential Energy Consumption Survey (RECS) was conducted in 1978. The average consumption was 103 (+-3) million Btu per household in 1982, down from 114 (+-) million Btu in 1981. The weather was the main contributing factor. 8 figures, 46 tables.

  20. Low-Risk and Cost-Effective Prior Savings Estimates for Large-Scale Energy Conservation Projects in Housing: Learning from the Fort Polk GHP Project

    SciTech Connect

    Shonder, John A; Hughes, Patrick; Thornton, Jeff W.

    1997-08-01

    Many opportunities exist for large-scale energy conservation projects in housing: military housing, federally-subsidized low-income housing, and planned communities (condominiums, townhomes, senior centers) to name a few. Energy savings performance contracting (ESPC) is now receiving greater attention, as a means to implement such projects. This paper proposes an improved method for prior (to construction) savings estimates for these projects. More accurate prior estimates reduce project risk, decrease financing costs, and help avoid post-construction legal disputes over performance contract baseline adjustments. The proposed approach to prior estimates is verified against data from Fort Polk, LA. In the course of evaluating the ESPC at Fort Polk, Louisiana, we have collected energy use data - both at the electrical feeder level and at the level of individual residences - which allowed us to develop calibrated engineering models which accurately predict pre-retrofit energy consumption. We believe that such calibrated models could be used to provide much more accurate estimates of energy savings in retrofit projects, particularly in cases where the energy consumption of large populations of housing can be captured on one or a few meters. The improved savings estimating approach described here is based on an engineering model calibrated to field-collected data from the pre-retrofit period. A dynamic model of pre-retrofit energy use was developed for all housing and non-housing loads on a complete electrical feeder at Fort Polk. The feeder serves 46 buildings containing a total of 200 individual apartments. Of the 46 buildings, there are three unique types, and among these types the only difference is compass orientation. The model included the heat transfer characteristics of the buildings, the pre-retrofit air source heat pump, a hot water consumption model and a profile for electrical use by lights and other appliances. Energy consumption for all 200 apartments was

  1. An analysis of residential energy consumption in a temperate climate. Volume 2

    SciTech Connect

    Clark, Y.Y.; Vincent, W.

    1987-06-01

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common ``energy package.`` Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  2. House Simulation Protocols (Building America Benchmark) - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    House Simulation Protocols (Building America Benchmark) - Building America Top Innovation House Simulation Protocols (Building America Benchmark) - Building America Top Innovation ...

  3. Strengthening Relationships Between Energy Programs and Housing...

    Energy Saver

    Relationships Between Energy Programs and Housing Programs Strengthening Relationships Between Energy Programs and Housing Programs Better Buildings Residential Network Multifamily ...

  4. Industrial sector energy consumption

    Annual Energy Outlook

    Chapter 7 Industrial sector energy consumption Overview The industrial sector uses more delivered energy 294 than any other end-use sector, consuming about 54% of the world's total ...

  5. Non-Space Heating Electrical Consumption in Manufactured Homes: Residential Construction Demonstration Project Cycle II : Final Report.

    SciTech Connect

    Onisko, Stephen A.; Roos, Carolyn; Baylon, David

    1993-06-01

    This report summarizes submeter data of the non-space heating electrical energy use in a sample of manufactured homes. These homes were built to Super Good Cents insulation standards in 1988 and 1989 under the auspices of RCDP Cycle 2 of the Bonneville Power Administration. They were designed to incorporate innovations in insulation and manufacturing techniques developed to encourage energy conservation in this important housing type. Domestic water heating (DWH) and other non-space heat energy consumption, however, were not generally affected by RCDP specifications. The purpose of this study is to establish a baseline for energy conservation in these areas and to present a method for estimating total energy saving benefits associated with these end uses. The information used in this summary was drawn from occupant-read submeters and manufacturersupplied specifications of building shell components, appliances and water heaters. Information was also drawn from a field review of ventilation systems and building characteristics. The occupant survey included a census of appliances and occupant behavior in these manufactured homes. A total of 150 manufactured homes were built under this program by eight manufacturers. An additional 35 homes were recruited as a control group. Of the original 185 houses, approximately 150 had some usable submeter data for domestic hot water and 126 had usable submeter data for all other nonheating consumption. These samples were used as the basis for all consumption analysis. The energy use characteristics of these manufactured homes were compared with that of a similar sample of RCDP site-built homes. In general, the manufactured homes were somewhat smaller and had fewer occupants than the site-built homes. The degree to which seasonal variations were present in non-space heat uses was reviewed.

  6. DOE/EIA-0321/HRIf Residential Energy Consumption Survey. Consumption

    Annual Energy Outlook

    purchase diaries from a subset of respondents composing a Household Transportation Panel and is reported separately. Residential Energy Consumption Survey: Consumption and...

  7. Public Housing: A Tailored Approach to Energy Retrofits

    SciTech Connect

    Dentz, Jordan; Conlin, Francis; Podorson, David; Alaigh, Kunal

    2014-06-01

    More than 1 million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 public housing authorities (PHAs) across the country indicated that there is a high level of interest in developing low-cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with two PHAs to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement with their own staffs in the normal course of housing operations when units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing and measures that improve equipment efficiency. ARIES documented implementation 10 ten housing units. Total source energy consumption savings was estimated at 6%-10% based on BEopt modeling with a simple payback of 1.7 to 2.2 years. At typical housing unit turnover rates, these measures could impact hundreds of thousands of units per year nationally.

  8. Public Housing: A Tailored Approach to Energy Retrofits

    SciTech Connect

    Dentz, J.; Conlin, F.; Podorson, D.; Alaigh, K.

    2014-06-01

    Over one million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 PHAs across the country indicated that there is a high level of interest in developing low cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with two public housing authorities (PHAs) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement with their own staffs in the normal course of housing operations at the time when units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing and measures that improve equipment efficiency. ARIES documented implementation in ten housing units. Reductions in average air leakage were 16-20% and duct leakage reductions averaged 38%. Total source energy consumption savings was estimated at 6-10% based on BEopt modeling with a simple payback of 1.7 to 2.2 years. Implementation challenges were encountered mainly related to required operational changes and budgetary constraints. Nevertheless, simple measures can feasibly be accomplished by PHA staff at low or no cost. At typical housing unit turnover rates, these measures could impact hundreds of thousands of unit per year nationally.

  9. Underground house book

    SciTech Connect

    Campbell, S.

    1980-01-01

    Aesthetics, attitudes, and acceptance of earth-covered buildings are examined initially, followed by an examination of land, money, water, earth, design, heat, and interior factors. Contributions made by architect Frank Lloyd Wright are discussed and reviewed. Contemporary persons, mostly designers, who contribute from their experiences with underground structures are Andy Davis; Rob Roy; Malcolm Wells; John Barnard, Jr.; Jeff Sikora; and Don Metz. A case study to select the site, design, and prepare to construct Earthtech 6 is described. Information is given in appendices on earth-protected buildings and existing basements; financing earth-sheltered housing; heating-load calculations and life-cycle costing; and designer names and addresses. (MCW)

  10. CAMDOpenHouse2016

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center for Advanced Microstructures and Devices OPEN HOUSE FREE & open to the public Hands on Science Demonstrations Tours of the Laboratory LSU CAMD 6980 Jefferson Hwy Baton Rouge, LA 70806 Phone: 225.578.8887 Fax: 225.578.6954 E-mail:evstev@lsu.edu Website: www.camd.lsu.edu *Located between College Drive and Corporate Boulevard Activities for all ages S a t u r d a y O c t o b e r 1 5 , 2 0 1 6 1 0 A . M . - 2 P . M .

  11. " Column: Energy-Consumption Ratios;"

    Energy Information Administration (EIA) (indexed site)

    3 Consumption Ratios of Fuel, 2010;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ...

  12. 1999-2002 Public Housing Partnership: U.S. Department of Housing and Urban Development and U.S. Department of Energy

    SciTech Connect

    Ternes, M.P.

    2003-06-18

    In December 1999, the U.S. Department of Housing and Urban Development (HUD) entered into an Interagency Agreement (IAA) with the U.S. Department of Energy (DOE) and its Rebuild America Program to promote conservation and reduce utility costs in public housing through forums, research, demonstration, and evaluation. The IAA was effectively implemented from November 2000 to December 2002. Under the IAA, Rebuild America established 31 new partnerships with public housing authorities, started 6 new partnerships with organizations that focus on public housing, and initiated new projects with 6 existing Rebuild America public housing partnerships. These 43 partnerships directly involved 51 public housing authorities in 77 energy-related projects (several of the 43 partnerships involved multiple housing authorities and projects). Rebuild America assistance on these projects encompassed a wide range of activities, including planning assistance on energy management and capital investment, reviews of utility consumption and metering options, assistance in implementing HUD's energy incentives, design reviews and energy analyses, and assistance in the development of energy projects and resident programs. In addition, Rebuild America made presentations to housing authorities on energy efficiency opportunities and solutions and provided energy training on selected topics at 23 conferences and workshops that impacted many more housing authorities. This report provides an overview of the accomplishments achieved under the IAA; describes the 77 projects that have been completed, are under way, or are planned; and summarizes the presentations and training provided.

  13. SURE HOUSE | Department of Energy

    Energy.gov [DOE] (indexed site)

    blend in its Efficient, Affordable, Solar, Innovation--or EASI--House. Learn More AGGIE SOL The University of California, Davis, has strong pedigrees in both sustainable projects...

  14. High Performance Factory Built Housing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Performance Factory Built Housing 2015 Building Technologies Office Peer Review Jordan Dentz, jdentz@levypartnership.com ARIES The Levy Partnership, Inc. Project Summary ...

  15. Commercial Buildings Energy Consumption Survey - Office Buildings

    Reports and Publications

    2010-01-01

    Provides an in-depth look at this building type as reported in the 2003 Commercial Buildings Energy Consumption Survey. Office buildings are the most common type of commercial building and they consumed more than 17% of all energy in the commercial buildings sector in 2003. This special report provides characteristics and energy consumption data by type of office building (e.g. administrative office, government office, medical office) and information on some of the types of equipment found in office buildings: heating and cooling equipment, computers, servers, printers, and photocopiers.

  16. Military housing foam application and analysis

    SciTech Connect

    Torres, J. J.

    2012-03-01

    Sandia and Forest City have established a Cooperative Research and Development Agreement (CRADA), the partnership provides a unique opportunity to take technology research and development from demonstration to application in sustainable communities. This project consists of two activities conducted in Hawaii that focus on performance, integration and application of energy saving technologies. Hawaii has many energy challenges, making this location an excellent testbed for these activities. Under this project, spray foam technology was applied at military housing on Oahu and the consumption data collected. A cost benefit and operational analysis of the foam was completed. The second phase of this project included design, integration, and analysis of photovoltaic systems at a military community on Oahu. This phase of the project was conducted as part of Forest City's second Solar America Showcase Award.

  17. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    1 Home Electronics Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Home Electronics Characteristics" "Total",111.1,14.7,7.4,12.5,12.5,18.9,18.6,17.3,9.2

  18. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    2 Living Space Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Living Space Characteristics" "Total",111.1,14.7,7.4,12.5,12.5,18.9,18.6,17.3,9.2 "Floorspace

  19. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    2 Living Space Characteristics by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Living Space Characteristics",,"City","Town","Suburbs","Rural" "Total",111.1,47.1,19,22.7,22.3 "Floorspace (Square Feet)" "Total Floorspace1" "Fewer than 500",3.2,2.1,0.6,"Q",0.4 "500 to

  20. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    6 Air Conditioning Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Air Conditioning Characteristics" "Total",111.1,14.7,7.4,12.5,12.5,18.9,18.6,17.3,9.2 "Do

  1. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    1 Home Electronics Characteristics by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Home Electronics Characteristics" "Total",111.1,30,34.8,18.4,15.9,12 "Personal Computers" "Do Not Use a Personal Computer

  2. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    2 Living Space Characteristics by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Living Space Characteristics" "Total",111.1,30,34.8,18.4,15.9,12 "Floorspace (Square Feet)" "Total Floorspace1" "Fewer than

  3. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    4 Space Heating Characteristics by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Space Heating Characteristics" "Total",111.1,30,34.8,18.4,15.9,12 "Do Not Have Space Heating Equipment",1.2,0.3,0.3,"Q",0.2,0.2 "Have Main

  4. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    HC6.9 Home Appliances Characteristics by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Home Appliances Characteristics" "Total U.S.",111.1,30,34.8,18.4,15.9,12 "Cooking Appliances" "Conventional Ovens" "Use an

  5. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    1 Home Electronics Characteristics by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Home Electronics Characteristics",,"City","Town","Suburbs","Rural" "Total",111.1,47.1,19,22.7,22.3 "Personal Computers" "Do Not Use a Personal Computer ",35.5,16.9,6.5,4.6,7.6 "Use a Personal

  6. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    HC8.9 Home Appliances Characteristics by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Home Appliances Characteristics",,"City","Town","Suburbs","Rural" "Total U.S.",111.1,47.1,19,22.7,22.3 "Cooking Appliances" "Conventional Ovens" "Use an Oven",109.6,46.2,18.8,22.5,22.1

  7. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    8 Water Heating Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Water Heating Characteristics" "Total",111.1,14.7,7.4,12.5,12.5,18.9,18.6,17.3,9.2 "Number

  8. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    6 Air Conditioning Characteristics by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Air Conditioning Characteristics" "Total",111.1,30,34.8,18.4,15.9,12 "Do Not Have Cooling Equipment",17.8,5.4,5.3,2.7,2.5,2 "Have Coolling

  9. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    8 Water Heating Characteristics by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Water Heating Characteristics" "Total",111.1,30,34.8,18.4,15.9,12 "Number of Water Heaters" "1.",106.3,28.8,33.4,17.4,15.3,11.4 "2 or

  10. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    8 Water Heating Characteristics by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Water Heating Characteristics",,"City","Town","Surburbs","Rural" "Total",111.1,47.1,19,22.7,22.3 "Number of Water Heaters" "1.",106.3,45.5,18.2,21.6,21 "2 or More",3.7,1,0.6,0.9,1.1 "Do Not Use Hot

  11. Technological innovation in community housing development: Barriers to energy efficiency

    SciTech Connect

    Cavallo, J.D.

    1996-05-01

    Community housing developers produce affordable housing and jobs for many residents of low-income neighborhoods through the rehabilitation of existing single and multi-family buildings. Typically operating as small, not-for-profits or community-based organizations, the vast numbers of community housing developers creates high coordinating costs of operating jointly to acquire the shared learning needed to implement new techniques, such as those involving energy efficiency. This paper presents a model of technology adoption that suggests that new profitable technologies will be adopted only with low probability and that strategic interaction between potential adopters further reduces the likelihood of adoption. These features result from the ability of potential adopters to postpone the bearing the costs of adoption of new technologies and their ability to share the knowledge of others who have adopted new technologies. These features are particularly characteristic of community housing developers.

  12. Greenbuilt Retrofit Test House Final Report

    SciTech Connect

    Sparn, B.; Hudon, K.; Earle, L.; Booten, C.; Tabares-Velasco, P. C.; Barker, G.; Hancock, C. E.

    2014-06-01

    The Greenbuilt house, is an all-electric, 1980's era home in the eastern Sacramento suburb of Fair Oaks that was retrofit by Greenbuilt Construction as part of Sacramento Municipal Utility District's (SMUD) Energy Efficient Remodel Demonstration (EERD) Program. The project was a joint effort between the design-build team at Greenbuilt Construction, led by Jim Bayless, SMUD and their project manager Mike Keesee, and the National Renewable Energy Laboratory (NREL). The goal of the Energy Efficient Remodel Demonstration program is to work with local builders to renovate homes with cost-effective energy efficient retrofit measures. The homes remodeled under the EERD program are intended to showcase energy efficient retrofit options for homeowners and other builders. The Greenbuilt house is one of five EERD projects that NREL has supported. NREL's main role in these projects is to provide energy analysis and to monitor the home's performance after the retrofit to verify that the energy consumption is in line with the modeling predictions. NREL also performed detailed monitoring on the more innovative equipment included in these remodels, such as an add-on heat pump water heater.

  13. The New York Power Authority`s energy-efficient refrigerator program for the New York City Housing Authority -- 1997 savings evaluation

    SciTech Connect

    Pratt, R.G.; Miller, J.D.

    1998-09-01

    This document describes the estimation of the annual energy savings achieved from the replacement of 20,000 refrigerators in New York City Housing Authority (NYCHA) public housing with new, highly energy-efficient models in 1997. The US Department of Housing and Urban Development (HUD) pays NYCHA`s electricity bills, and agreed to reimburse NYCHA for the cost of the refrigerator installations. Energy savings over the lifetime of the refrigerators accrue to HUD. Savings were demonstrated by a metering project and are the subject of the analysis reported here. The New York Power Authority (NYPA) identified the refrigerator with the lowest life-cycle cost, including energy consumption over its expected lifetime, through a request for proposals (RFP) issued to manufacturers for a bulk purchase of 20,000 units in 1997. The procurement was won by Maytag with a 15-ft{sup 3} top-freezer automatic-defrost refrigerator rated at 437 kilowatt-hours/year (kWh/yr). NYCHA then contracted with NYPA to purchase, finance, and install the new refrigerators, and demanufacture and recycle materials from the replaced units. The US Department of Energy (DOE) helped develop and plan the project through the ENERGY STAR{reg_sign} Partnerships program conducted by its Pacific Northwest National Laboratory (PNNL). PNNL designed the metering protocol and occupant survey used in 1997, supplied and calibrated the metering equipment, and managed and analyzed the data collected by NYPA. The objective of the 1997 metering study was to achieve a general understanding of savings as a function of refrigerator label ratings, occupant effects, indoor and compartment temperatures, and characteristics (such as size, defrost features, and vintage). The data collected in 1997 was used to construct models of refrigerator energy consumption as a function of key refrigerator and occupant characteristics.

  14. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    0 Structural and Geographic Characteristics of Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" "Structural

  15. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    1 Structural and Geographic Characteristics of Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" "Structural and Geographic

  16. Table 4b. Relative Standard Errors for Total Fuel Oil Consumption...

    Gasoline and Diesel Fuel Update

    4b. Relative Standard Errors for Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil...

  17. DOE Zero Energy Ready Home Case Study: Mutual Housing California...

    Energy Saver

    Mutual Housing California, Mutual Housing at Spring Lake, Woodland, CA DOE Zero Energy Ready Home Case Study: Mutual Housing California, Mutual Housing at Spring Lake, Woodland, CA ...

  18. 2016 Housing Innovation Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2016 Housing Innovation Awards 2016 Housing Innovation Awards The U.S. Department of Energy's (DOE) Housing Innovation Awards recognize the very best in innovation on the path to ...

  19. 1999 Commercial Buildings Characteristics--Census Region

    Energy Information Administration (EIA) (indexed site)

    (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Top Return to: "1999 CBECS-Commercial Buildings Characteristics" Specific questions...

  20. 1999 Commercial Buildings Characteristics--Year Constructed

    Energy Information Administration (EIA) (indexed site)

    (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Top Return to: "1999 CBECS-Commercial Buildings Characteristics" Specific questions...

  1. 1999 Commercial Buildings Characteristics--Building Size

    Energy Information Administration (EIA) (indexed site)

    (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Top Return to: "1999 CBECS-Commercial Buildings Characteristics" Specific questions...

  2. 1999 Commercial Buildings Characteristics--Disaggregated Principal...

    Energy Information Administration (EIA) (indexed site)

    (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Top Return to: "1999 CBECS-Commercial Buildings Characteristics" Specific questions...

  3. Recycling in public housing: The Syracuse Housing Authority

    SciTech Connect

    Foote, K.C.; DeVoe, J.F.

    1997-01-01

    The mission of the Syracuse Housing Authority (SHA, Syracuse, N.Y.) is to provide clean, safe, and affordable housing for low-income citizens of the city of Syracuse. In doing so, it has worked to be innovative. SHA owns and manages 12 federally funded housing developments and one New York state-funded project, in addition to managing two buildings owned by the city. After nearly 60 years of success in providing affordable housing in the Syracuse area, the pioneering SHA took on another daunting mission in the 1990s: modernization of waste collection and recycling. By the beginning of 1990, SHA was facing two mandates: to initiate a recycling program by July 1, as mandated by Onondaga County law, and to reduce its trash bill significantly.

  4. ,"Housing Units1","Average Square Footage Per Housing Unit",...

    Energy Information Administration (EIA) (indexed site)

    ... U.S. Department of Energy's Office of Energy and Efficiency and Renewable Energy (EERE). 5Rented includes households that occupy their primary housing unit without payment of rent. ...

  5. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book

    4 Ownership (1) Owned 54.9 104.5 40.3 78% Rented 77.4 71.7 28.4 22% Public Housing 75.7 62.7 28.7 2% Not Public Housing 77.7 73.0 28.4 19% 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished

  6. Travois Indian Country Affordable Housing & Economic Development...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Travois Indian Country Affordable Housing & Economic Development Conference Travois Indian Country Affordable Housing & Economic Development Conference April 4, 2016 8:00AM CDT to ...

  7. 2015 Housing Innovation Awards Application Form | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Housing Innovation Awards Application Form 2015 Housing Innovation Awards Application Form ... The 2015 ceremony will take place at the EEBA Excellence in Building Conference & Expo ...

  8. Islip Housing Authority Energy Efficiency Turnover Protocols...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Islip Housing Authority Energy Efficiency Turnover Protocols Islip, New York PROJECT INFORMATION Project Name: Islip Housing Authority Unit Turnover Retrofit Program Location: ...

  9. Peoria Tribe: Housing Authority- 2010 Project

    Energy.gov [DOE]

    The Housing Authority of the Peoria Tribe of Indians of Oklahoma (Peoria Housing Authority or PHA) will conduct the "PHA Weatherization Training Project."

  10. Energy Efficiency Upgrades in Multifamily Housing | Department...

    Office of Environmental Management (EM)

    Energy Efficiency Upgrades in Multifamily Housing Energy Efficiency Upgrades in Multifamily Housing Better Buildings Residential Network Case Study: Energy Efficiency Upgrades in ...

  11. Housing Innovation Awards Recognize Leadership in Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Housing Innovation Awards Recognize Leadership in Residential Efficiency Housing Innovation Awards Recognize Leadership in Residential Efficiency September 25, 2014 - 1:40pm ...

  12. Grandma's House (Weatherization) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grandma's House (Weatherization) Grandma's House (Weatherization) Addthis When you weatherize a home it needs to work as a system. Learn more here

  13. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    Units" ,,"UrbanRural Location (as Self-Reported)" ,"Housing Units (millions)" "Space ... ,,"RSEs for UrbanRural Location (as Self-Reported)" ,"RSEs for Housing Units " "Space ...

  14. Health Care Buildings: Consumption Tables

    Energy Information Administration (EIA) (indexed site)

    Consumption Tables Sum of Major Fuel Consumption by Size and Type of Health Care Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per...

  15. SURE HOUSE | Department of Energy

    Energy.gov [DOE] (indexed site)

    just yet, but the ultra-efficient Alf House could soon change that. Learn More CASA DEL SOL With the 2015 Solar Decathlon taking place in Irvine, California, Team Orange County --...

  16. ALF HOUSE | Department of Energy

    Energy.gov [DOE] (indexed site)

    was looking for a way to represent its home territory. They found their inspiration in nature: the golden poppy, California's state flower. Learn More DURA URBAN HOUSE People from...

  17. Public Housing Project Performance Benchmarks

    Energy.gov [DOE]

    Reports five major performance metrics that can be used to benchmark proposed energy service company projects within public housing, disaggregated and reported by major retrofit strategy. Author: U.S. Department of Energy

  18. Important notice about using /house

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    using house July 6, 2012 Description There have been a lot of issues recently with NFS hangs on the gpint machines. The origin of the gpint hanging has been determined to be...

  19. Open House with Environmental Scientists

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Open House with Environmental Scientists Open House with Environmental Scientists WHEN: Apr 23, 2015 12:00 PM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Laboratory Environmental Research and Monitoring Event Description Ask Laboratory biologists and anthropologists your natural resource questions. In honor of Earth Week, Los Alamos National Laboratory's Environmental

  20. White_House_0921.pdf

    Energy Saver

    Market Grows | Department of Energy White House, DOE Announce New Residential PACE Financing Initiatives as Market Grows White House, DOE Announce New Residential PACE Financing Initiatives as Market Grows The HERO logo. The Obama Administration's Clean Energy Savings for All Initiative is working to provide American households with more tools to complete renewable and home energy efficiency improvements. As part of this effort, the U.S. Department of Energy (DOE) released updated "Best

  1. 120 years of U.S. residential housing stock and floor space

    SciTech Connect

    Moura, Maria Cecilia P.; Smith, Steven J.; Belzer, David B.; Zhou, Wei -Xing

    2015-08-11

    Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO₂ emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891–2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891–2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million square feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade.

  2. Buildings Energy Data Book: 2.2 Residential Sector Characteristics

    Buildings Energy Data Book

    5 Characteristics of U.S. Housing by Vintage, as of 2005 Vintage Prior to 1950 20% | 2,677 1,021 775 1950 to 1969 23% | 2,433 927 775 1970 to 1979 17% | 2,666 869 948 1980 to 1989 17% | 2,853 909 1,008 1990 to 1999 16% | 3,366 940 1,245 2000 to 2005 8% | 3,680 1,047 1,425 111.1 2,838 941 1,062 Note(s): Source(s): Total U.S. Homes (millions) U.S. Average 1) Average home sizes include both heated and unheated floor space, including garages. EIA, 2005 Residential Energy Consumption Survey, Oct.

  3. Earth sheltered housing phenomenon

    SciTech Connect

    Boyer, L.L.

    1981-06-21

    Both national and international attention has recently been focused on earth sheltered construction as an emerging energy alternative. This is especially true for the High Plains region of the central United States. Traditionally, inhabitants of this region have been sensitized to the need for windstorm protection. However, the dramatic potentials for energy savings have served as a strong secondary inducement to the burgeoning construction activity in what is now viewed as a contemporary dwelling concept. The typical characteristics of such dwellings are reviewed as well as the educational challenge awaiting professional input to this developing boom in earth sheltered construction. 12 refs.

  4. "Table A48. Selected Energy Operating Ratios for Total Energy Consumption for"

    Energy Information Administration (EIA) (indexed site)

    8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, and Economic" " Characteristics of the Establishment, 1994" ,,,"Consumption","Major" " "," ","Consumption","per Dollar","Byproducts(b)","Fuel Oil(c)"," " " ","Consumption","per Dollar","of

  5. "Table A50. Selected Energy Operating Ratios for Total Energy Consumption for"

    Energy Information Administration (EIA) (indexed site)

    0. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Economic Characteristics of the" " Establishment, 1991 (Continued)" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent

  6. Inside the White House: Solar Panels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Inside the White House: Solar Panels Inside the White House: Solar Panels

  7. User-needs study for the 1992 Commercial Buildings Energy Consumption Survey. [Energy Consumption Series

    SciTech Connect

    Not Available

    1992-09-01

    The Commercial Buildings Energy Consumption Survey (CBECS) that is conducted by the Energy Information Administration (EIA) is the primary source of energy data for commercial buildings in the United States. The survey began in 1979 and has subsequently been conducted in 1983, 1986, and 1989. The next survey will cover energy consumption during the year 1992. The building characteristic data will be collected between August 1992 and early December 1992. Requests for energy consumption data are mailed to the energy suppliers in January 1993, with data due by March 1993. Before each survey is sent into the field, the data users' needs are thoroughly assessed. The purpose of this report is to document the findings of that user-needs assessment for the 1992 survey.

  8. Housing Innovation Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Zero Energy Ready Home » Housing Innovation Awards Housing Innovation Awards HIA Awards.JPG Since 2013, The U.S. Department of Energy's (DOE) Housing Innovation Awards has recognized the very best in innovation on the path to zero energy ready homes. The Housing Innovation Awards recognize forward-thinking builders for delivering American homebuyers with the home of the future, today. Explore these award winning homes on the Tour of Zero. The 2016 Housing Innovation Awards ceremony was held

  9. Ceramic tile expansion engine housing

    DOEpatents

    Myers, B.

    1995-04-11

    An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow there between. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow. 8 figures.

  10. Ceramic tile expansion engine housing

    DOEpatents

    Myers, Blake

    1995-01-01

    An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow therebetween. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow.

  11. DOETEIAO32l/2 Residential Energy Consumption Survey; Consumption

    Annual Energy Outlook

    purchase diaries from a subset of respondents comprising a Household Transportation Panel and is reported separately. * Wood used for heating. Although wood consumption data...

  12. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    Energy Information Administration (EIA) (indexed site)

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  13. Household Vehicles Energy Consumption 1991

    Energy Information Administration (EIA) (indexed site)

    or commercial trucks (See Table 1). Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 5 The 1991 RTECS count includes vehicles that were owned or used...

  14. Household Vehicles Energy Consumption 1991

    Energy Information Administration (EIA) (indexed site)

    of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the...

  15. Manufacturing Consumption of Energy 1994

    Energy Information Administration (EIA) (indexed site)

    Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information AdministrationManufacturing Consumption of Energy 1994 SIC Residual...

  16. Household Vehicles Energy Consumption 1991

    Energy Information Administration (EIA) (indexed site)

    logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991...

  17. Manufacturing Consumption of Energy 1994

    Energy Information Administration (EIA) (indexed site)

    Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

  18. Modeling energy consumption of residential furnaces and boilers in U.S. homes

    SciTech Connect

    Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

    2004-02-01

    In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

  19. 1997 Housing Characteristics Tables Home Office Equipment Tables

    Annual Energy Outlook

    Home Office Equipment by South Census Region, Percent of U.S. Households, 1997 1 HC7-12b. Home Office Equipment by West Census Region, Percent of U.S. Households, 1997 1 These data ...

  20. Commercial Buildings Characteristics, 1992

    SciTech Connect

    Not Available

    1994-04-29

    Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

  1. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update

    U.S. Energy Information Administration (EIA) Air conditioning in nearly 100 million U.S. homes RECS 2009 - Release date: August 19, 2011 line chart:air conditioning in U.S. figure dataExcept in the temperate climate regions along the West coast, air conditioners (AC) are now standard equipment in most U.S. homes (Figure 1). As recently as 1993, only 68% of all occupied housing units had AC. The latest results from the 2009 Residential Energy Consumption Survey (RECS) show that 87 percent of

  2. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    4 Space Heating Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Space Heating Characteristics" "Total",111.1,14.7,7.4,12.5,12.5,18.9,18.6,17.3,9.2 "Do Not

  3. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    HC5.9 Home Appliances Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Home Appliances Characteristics" "Total U.S.",111.1,14.7,7.4,12.5,12.5,18.9,18.6,17.3,9.2

  4. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    1 Home Electronics Characteristics by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Home Electronics Characteristics" "Total",111.1,10.9,26.1,27.3,24,22.8

  5. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    2 Living Space Characteristics by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Living Space Characteristics" "Total",111.1,10.9,26.1,27.3,24,22.8 "Floorspace

  6. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    4 Space Heating Characteristics by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Space Heating Characteristics" "Total",111.1,10.9,26.1,27.3,24,22.8 "Do Not

  7. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    6 Air Conditioning Characteristics by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Air Conditioning Characteristics" "Total",111.1,10.9,26.1,27.3,24,22.8 "Do

  8. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    9 Home Appliances Characteristics by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Home Appliances Characteristics" "Total U.S.",111.1,10.9,26.1,27.3,24,22.8

  9. " Million U.S. Housing Units"

    Energy Information Administration (EIA) (indexed site)

    8 Water Heating Characteristics by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Water Heating Characteristics" "Total",111.1,10.9,26.1,27.3,24,22.8 "Number of

  10. New Whole-House Solutions Case Study: Low-Cost Evaluation of Energy Savings at the Community Scale - Fresno, California

    SciTech Connect

    2014-10-01

    In this project, IBACOS partnered with builder Wathen-Castanos Hybrid Homes to develop a simple and low-cost methodology by which community-scale energy savings can be evaluated based on results at the occupied test house level.Research focused on the builder and trade implementation of a whole-house systems integrated measures package and the actual utility usage in the houses at the community scale of production. Five occupants participated in this community-scale research by providing utility bills and information on occupancy and miscellaneous gas and electric appliance use for their houses. IBACOS used these utility data and background information to analyze the actual energy performance of the houses. Verification with measured data is an important component in predictive energy modeling. The actual utility bill readings were compared to projected energy consumption using BEopt with actual weather and thermostat set points for normalization.

  11. Open House | Photosynthetic Antenna Research Center

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Open House Open House In early 2015, PARC moved it's adminstration offices to Siegle Hall 4th floor on Washington University in St. Louis' campus. In celebration of this move, we...

  12. Whole-House Ventilation | Department of Energy

    Office of Environmental Management (EM)

    - 2:37pm Addthis A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of iStockphotobrebca. A whole-house ventilation...

  13. Sustainability Around the House | Department of Energy

    Office of Environmental Management (EM)

    Sustainability Around the House Sustainability Around the House April 13, 2015 - 7:46am Addthis Rain barrels collect rain water and provide a free source of fresh water for your ...

  14. PARC Open House | Photosynthetic Antenna Research Center

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PARC Open House PARC Open House Join us for food and refreshments April 10, 2015 - 4:00pm to 6:00pm Washington University in St. Louis, Seigle Hall 4th Floor, Suite 435 We welcome...

  15. Native American Housing: Obstacles and Opportunities

    Energy.gov [DOE]

    Hosted by the U.S. Department of Housing and Urban Development (HUD), this event will cover tribal housing and how to develop and implement programs based on and conducive to local conditions and...

  16. 2014 Housing Innovation Awards DOE Challenge Home Application...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Housing Innovation Awards DOE Challenge Home Application 2014 Housing Innovation Awards DOE Challenge Home Application The U.S. Department of Energy's Housing Innovation Awards ...

  17. Before the Subcommittee on Water and Power - House Natural Resources...

    Energy Saver

    House Natural Resources Committee Before the Subcommittee on Water and Power - House ... More Documents & Publications Before The Subcommittee on Water and Power - House Energy ...

  18. Efficient Solutions for New Homes Case Study: Demonstration House...

    Energy Saver

    Demonstration House of Cold-Climate Solutions for Affordable Housing Efficient Solutions for New Homes Case Study: Demonstration House of Cold-Climate Solutions for Affordable ...

  19. Smart Meter Driven Segmentation: What Your Consumption Says About You

    SciTech Connect

    Albert, A; Rajagopal, R

    2013-11-01

    With the rollout of smart metering infrastructure at scale, demand-response (DR) programs may now be tailored based on users' consumption patterns as mined from sensed data. For issuing DR events it is key to understand the inter-temporal consumption dynamics as to appropriately segment the user population. We propose to infer occupancy states from consumption time series data using a hidden Markov model framework. Occupancy is characterized in this model by 1) magnitude, 2) duration, and 3) variability. We show that users may be grouped according to their consumption patterns into groups that exhibit qualitatively different dynamics that may be exploited for program enrollment purposes. We investigate empirically the information that residential energy consumers' temporal energy demand patterns characterized by these three dimensions may convey about their demographic, household, and appliance stock characteristics. Our analysis shows that temporal patterns in the user's consumption data can predict with good accuracy certain user characteristics. We use this framework to argue that there is a large degree of individual predictability in user consumption at a population level.

  20. Argonne Open House 2016 | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    day of discovery and family fun. The Open House featured interactive demonstrations, ... batteries --Electricity transmission --Smart Grid Environment -Biology --Computational ...

  1. Advanced House Framing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Design » Design for Efficiency » Advanced House Framing Advanced House Framing Two-story home using advanced framing techniques. Two-story home using advanced framing techniques. Advanced house framing, sometimes called optimum value engineering (OVE), refers to framing techniques designed to reduce the amount of lumber used and waste generated in the construction of a wood-framed house. These techniques boost energy efficiency by replacing lumber with insulation material while maintaining the

  2. Fifth Annual Native American Housing Conference

    Energy.gov [DOE]

    The Fifth Annual Native American Housing Conference will be held in conjunction with the Native American Economic Development Conference. Attendees will hear from top experts in the housing field on the state of housing in Native America and what programs are available to assist you in taking the next step.

  3. Federal Housing Administration's Energy Efficient Mortgage Program

    Energy.gov [DOE]

    Describes the U.S. Department of Housing and Urban Development Energy Efficient Mortgage Program which helps homebuyers or homeowners save money on utility bills by enabling them to finance the cost of adding energy efficiency features to new or existing housing. Authors: U.S. Department of Housing and Urban Development

  4. White House Forum on Minorites in Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    On November 13, 2013, the Department of Energy and the White House Office of Science and Technology Policy, the Council for Environmental Quality, and the White House Office of Public Engagement co-hosted the White House Forum on Minorities in Energy. The event included the announcement of the Ambassadors for the Minorities in Energy Initiative.

  5. THE WHITE HOUSE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    THE WHITE HOUSE THE WHITE HOUSE THE WHITE HOUSE (66.14 KB) More Documents & Publications FACT SHEET: U.S.-China Clean Energy Cooperation Announcements US-China Clean Energy Cooperation Progress Report on U.S.-China Energy Cooperation

  6. Remotely serviced filter and housing

    DOEpatents

    Ross, Maurice J.; Zaladonis, Larry A.

    1988-09-27

    A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge using an overhead crane. The filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station.

  7. Remotely serviced filter and housing

    DOEpatents

    Ross, M.J.; Zaladonis, L.A.

    1987-07-22

    A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station. 6 figs.

  8. US ENC IL Site Consumption

    Energy Information Administration (EIA) (indexed site)

    IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels

  9. US ENC MI Site Consumption

    Energy Information Administration (EIA) (indexed site)

    MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels

  10. US ESC TN Site Consumption

    Energy Information Administration (EIA) (indexed site)

    ESC TN Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ESC TN Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US ESC TN Site Consumption kilowatthours $0 $400 $800 $1,200 $1,600 US ESC TN Expenditures dollars ELECTRICITY ONLY average per household * Tennessee households consume an average of 79 million Btu per year, about 12% less than the U.S. average. * Average electricity consumption for Tennessee households is 33%

  11. US NE MA Site Consumption

    Energy Information Administration (EIA) (indexed site)

    NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption

  12. US WSC TX Site Consumption

    Energy Information Administration (EIA) (indexed site)

    WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than

  13. Building America House Simulation Protocols

    SciTech Connect

    Hendron, Robert; Engebrecht, Cheryn

    2010-09-01

    The House Simulation Protocol document was developed to track and manage progress toward Building America's multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent analytical reference point. This report summarizes the guidelines for developing and reporting these analytical results in a consistent and meaningful manner for all home energy uses using standard operating conditions.

  14. Green Future Double Barrel House

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    University Green Future Double Barrel House DOE Race to Zero Student Competition 2016 Sean Benson Team Leader - Net Zero Energy Design I & II Bachelor of Science in Architecture, Dec 2016 Alexis Borman Net Zero Energy Design II Bachelor of Science in Architecture, May 2016 Christopher Brown AIA COTE, Net Zero Energy Design I & II Bachelor of Science in Architecture, May 2016 Devonta Magee Net Zero Energy Design II Bachelor of Science in Architecture, Aug 2016 Yasmine Parker Net Zero

  15. Projecting household energy consumption within a conditional demand framework

    SciTech Connect

    Teotia, A.; Poyer, D.

    1991-01-01

    Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

  16. Projecting household energy consumption within a conditional demand framework

    SciTech Connect

    Teotia, A.; Poyer, D.

    1991-12-31

    Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

  17. The house of the future

    ScienceCinema

    None

    2016-07-12

    Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house to use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.

  18. Monument Valley Open House | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Monument Valley Open House Monument Valley Open House July 18, 2016 - 12:22pm Addthis What does this project do? Goal 6. Engage the public, governments, and interested parties Monument Valley Open House 01.jpg An open house was held at Monument Valley High School in Utah. The U.S. Department of Energy Office of Legacy Management (LM) hosted the Uranium Issues Open House on Saturday, April 9, 2016, at Monument Valley High School in Monument Valley, Utah. Multiple federal agencies and their Navajo

  19. Whole-House Ventilation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ventilation » Whole-House Ventilation Whole-House Ventilation A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. Energy-efficient homes -- both new and existing -- require mechanical ventilation to maintain indoor air quality. There are four basic mechanical whole-house ventilation

  20. Household Vehicles Energy Consumption 1991

    Energy Information Administration (EIA) (indexed site)

    for 1994, will continue the 3-year cycle. The RTECS, a subsample of the Residential Energy Consumption Survey (RECS), is an integral part of a series of surveys designed by...

  1. Household Vehicles Energy Consumption 1991

    Energy Information Administration (EIA) (indexed site)

    16.8 17.4 18.6 18.9 1.7 2.2 0.6 1.5 Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 15 Vehicle Miles Traveled per Vehicle (Thousand) . . . . . . . . ....

  2. 2014 Manufacturing Energy Consumption Survey

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    U S C E N S U S B U R E A U 2014 Manufacturing Energy Consumption Survey Sponsored by the Energy Information Administration U.S. Department of Energy Administered and Compiled by ...

  3. Manufacturing Consumption of Energy 1994

    Energy Information Administration (EIA) (indexed site)

    2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of...

  4. Manufacturing consumption of energy 1991

    SciTech Connect

    Not Available

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  5. Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York (Fact Sheet)

    SciTech Connect

    Not Available

    2014-08-01

    More than 1 million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 PHAs across the country indicated that there is a high level of interest in developing low cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with two public housing authorities (PHAs) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement with their own staffs in the normal course of housing operations at the time when units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing and measures that improve equipment efficiency. ARIES documented implementation in ten housing units. Reductions in average air leakage were 16-20% and duct leakage reductions averaged 38%. Total source energy consumption savings was estimated at 6-10% based on BEopt modeling with a simple payback of 1.7 to 2.2 years. Implementation challenges were encountered mainly related to required operational changes and budgetary constraints. Nevertheless, simple measures can feasibly be accomplished by PHA staff at low or no cost. At typical housing unit turnover rates, these measures could impact hundreds of thousands of unit per year nationally.

  6. Energy-efficient housing alternatives: a predictive model of factors affecting household perceptions

    SciTech Connect

    Schreckengost, R.L.

    1985-01-01

    The major purpose of this investigation was to assess the impact of household socio-economic factors, dwelling characteristics, energy conservation behavior, and energy attitudes on the perceptions of energy-efficient housing alternatives. Perceptions of passive solar, active solar, earth sheltered, and retrofitted housing were examined. Data used were from the Southern Regional Research Project, S-141, Housing for Low and Moderate Income Families. Responses from 1804 households living in seven southern states were analyzed. A conceptual model was proposed to test the hypothesized relationships which were examined by path analysis. Perceptions of energy efficient housing alternatives were found to be a function of selected household and dwelling characteristics, energy attitude, household economic factors, and household conservation behavior. Age and education of the respondent, family size, housing-income ratio, utility income ratio, energy attitude, and size of the dwelling unit were found to have direct and indirect effects on perceptions of energy-efficient housing alternatives. Energy conservation behavior made a significant direct impact with behavioral energy conservation changes having the most profound influence. Conservation behavior was influenced by selected household and dwelling characteristics, energy attitude, and household economic factors.

  7. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    Energy Information Administration (EIA) (indexed site)

    A. Total Electricity Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of...

  8. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    Energy Information Administration (EIA) (indexed site)

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  9. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    Energy Information Administration (EIA) (indexed site)

    DIV. Total Electricity Consumption and Expenditures by Census Division, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number...

  10. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  11. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  12. ,"California Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","California Natural Gas Consumption by End ... AM" "Back to Contents","Data 1: California Natural Gas Consumption by End Use" ...

  13. ,"Florida Natural Gas Lease Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Florida Natural Gas Lease Fuel Consumption ... 10:36:21 AM" "Back to Contents","Data 1: Florida Natural Gas Lease Fuel Consumption ...

  14. ,"Florida Natural Gas Plant Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Florida Natural Gas Plant Fuel Consumption ... 10:36:24 AM" "Back to Contents","Data 1: Florida Natural Gas Plant Fuel Consumption ...

  15. ,"Virginia Natural Gas Vehicle Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Virginia Natural Gas Vehicle Fuel Consumption ... 12:00:27 PM" "Back to Contents","Data 1: Virginia Natural Gas Vehicle Fuel Consumption ...

  16. ,"West Virginia Natural Gas Residential Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    AM" "Back to Contents","Data 1: West Virginia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WV2" "Date","West Virginia Natural Gas Residential Consumption ...

  17. ,"Virginia Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Virginia Natural Gas Consumption by End ... 11:05:20 AM" "Back to Contents","Data 1: Virginia Natural Gas Consumption by End Use" ...

  18. ,"West Virginia Natural Gas Industrial Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    AM" "Back to Contents","Data 1: West Virginia Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035WV2" "Date","West Virginia Natural Gas Industrial Consumption ...

  19. ,"West Virginia Natural Gas Total Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","West Virginia Natural Gas Total Consumption ... AM" "Back to Contents","Data 1: West Virginia Natural Gas Total Consumption (MMcf)" ...

  20. 1999 Commercial Buildings Energy Consumption Survey Detailed...

    Energy Information Administration (EIA) (indexed site)

    Consumption and Expenditures Tables Table C1. Total Energy Consumption by Major Fuel ...... 124 Table C2. Total Energy Expenditures by ...

  1. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh)...

  2. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    3A. Total Electricity Consumption and Expenditures for All Buildings, 2003 All Buildings Using Electricity Electricity Consumption Electricity Expenditures Number of Buildings...

  3. ,"Texas Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Texas Natural Gas Consumption by End ... 6:36:11 AM" "Back to Contents","Data 1: Texas Natural Gas Consumption by End Use" ...

  4. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    4A. Fuel Oil Consumption and Expenditure Intensities for All Buildings, 2003 Fuel Oil Consumption Fuel Oil Expenditures per Building (gallons) per Square Foot (gallons) per...

  5. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 All Buildings Using Fuel Oil Fuel Oil Consumption Fuel Oil Expenditures Number of Buildings (thousand)...

  6. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Fuel Oil Consumption (million gallons) Total Floorspace of Buildings Using...

  7. Energy Information Administration - Transportation Energy Consumption...

    Energy Information Administration (EIA) (indexed site)

    Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the...

  8. Commercial Buildings Energy Consumption and Expenditures 1992...

    Energy Information Administration (EIA) (indexed site)

    1992 Consumption and Expenditures 1992 Consumption & Expenditures Overview Full Report Tables National estimates of electricity, natural gas, fuel oil, and district heat...

  9. Vehicle Energy Consumption and Performance Analysis | Argonne...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Consumption and Performance Analysis Vehicle Energy Consumption and Performance Analysis Argonne researchers have applied their expertise in modeling, simulation and control to ...

  10. ,"Oklahoma Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Oklahoma Natural Gas Consumption by End ... 11:05:14 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Consumption by End Use" ...

  11. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

  12. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  13. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  14. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  15. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  16. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

  17. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

  18. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

  19. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  20. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  1. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

  2. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  3. ,"Minnesota Natural Gas Vehicle Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Minnesota Natural Gas Vehicle Fuel Consumption ... 7:09:42 AM" "Back to Contents","Data 1: Minnesota Natural Gas Vehicle Fuel Consumption ...

  4. Healthy and Affordable Housing: Practical Recommendations for Building, Renovating and Maintaining Housing: Read This Before You Move In

    SciTech Connect

    2001-09-06

    This document provides advice for healthy and affordable housing: practical recommendations for building, renovating, and maintaining housing.

  5. Inconsistent Investment and Consumption Problems

    SciTech Connect

    Kronborg, Morten Tolver; Steffensen, Mogens

    2015-06-15

    In a traditional Black–Scholes market we develop a verification theorem for a general class of investment and consumption problems where the standard dynamic programming principle does not hold. The theorem is an extension of the standard Hamilton–Jacobi–Bellman equation in the form of a system of non-linear differential equations. We derive the optimal investment and consumption strategy for a mean-variance investor without pre-commitment endowed with labor income. In the case of constant risk aversion it turns out that the optimal amount of money to invest in stocks is independent of wealth. The optimal consumption strategy is given as a deterministic bang-bang strategy. In order to have a more realistic model we allow the risk aversion to be time and state dependent. Of special interest is the case were the risk aversion is inversely proportional to present wealth plus the financial value of future labor income net of consumption. Using the verification theorem we give a detailed analysis of this problem. It turns out that the optimal amount of money to invest in stocks is given by a linear function of wealth plus the financial value of future labor income net of consumption. The optimal consumption strategy is again given as a deterministic bang-bang strategy. We also calculate, for a general time and state dependent risk aversion function, the optimal investment and consumption strategy for a mean-standard deviation investor without pre-commitment. In that case, it turns out that it is optimal to take no risk at all.

  6. Food production and consumption near the Savannah River Site

    SciTech Connect

    Hamby, D.M.

    1991-12-31

    Routine operations at the Savannah River Site (SRS) result in the release of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the off-site maximum individual and the 80-km population are estimated on a yearly basis. These estimates are generated using dose models prescribed in the NRC Reg. Guide 1.109 for the commercial nuclear power industry. A study of land and water usage characteristics in the region of the Savannah River Site has been conducted to determine site-specific values of the NRC dose model parameters. The study`s scope included local characteristics of meat, milk, vegetable production; Savannah River recreational activities and fish harvests; meat, milk, vegetable, and seafood consumption rates; and Savannah River drinking-water populations. Average and maximum consumption rates of beef, milk, vegetables, and fish have been determined for individuals residing in the southern United States. The study suggest that many of the consumption rates provided by the NRC may not be appropriate for residents of the South. Average consumption rates are slightly higher than the defaults provided by the NRC. Maximum consumption rates, however, are typically lower than NRC values. Agricultural productivity in the SRS region was found to be quite different than NRC recommendations. Off-site doses have been predicted using both NRC and SRS parameter values to demonstrate the significance of site-specific data.

  7. Food production and consumption near the Savannah River Site

    SciTech Connect

    Hamby, D.M.

    1991-01-01

    Routine operations at the Savannah River Site (SRS) result in the release of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the off-site maximum individual and the 80-km population are estimated on a yearly basis. These estimates are generated using dose models prescribed in the NRC Reg. Guide 1.109 for the commercial nuclear power industry. A study of land and water usage characteristics in the region of the Savannah River Site has been conducted to determine site-specific values of the NRC dose model parameters. The study's scope included local characteristics of meat, milk, vegetable production; Savannah River recreational activities and fish harvests; meat, milk, vegetable, and seafood consumption rates; and Savannah River drinking-water populations. Average and maximum consumption rates of beef, milk, vegetables, and fish have been determined for individuals residing in the southern United States. The study suggest that many of the consumption rates provided by the NRC may not be appropriate for residents of the South. Average consumption rates are slightly higher than the defaults provided by the NRC. Maximum consumption rates, however, are typically lower than NRC values. Agricultural productivity in the SRS region was found to be quite different than NRC recommendations. Off-site doses have been predicted using both NRC and SRS parameter values to demonstrate the significance of site-specific data.

  8. Earth sheltered bee wintering and solar honey house. Final technical report

    SciTech Connect

    Not Available

    1985-01-01

    The construction and operation of an indoor wintering facility and a passive solar honey house are discussed. Goals for the project included both energy savings and financial savings for the beekeeping industry. The underground winter shelter provided a control temperature of approximately 46/sup 0/F in order to decrease both mortality rates and honey consumption rates of the bees. Three hundred square feet of glazing combined with wall insulation maintained comfortable work space temperatures for the ground level storage of honey. (BCS)

  9. Building America Whole-House Solutions for Existing Homes: Community-Scale

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Modeling - Southeastern United States | Department of Energy Community-Scale Energy Modeling - Southeastern United States Building America Whole-House Solutions for Existing Homes: Community-Scale Energy Modeling - Southeastern United States Community-scale energy modeling and testing are useful for determining energy conservation measures that will effectively reduce energy use. To that end, IBACOS analyzed pre-retrofit daily utility data to sort homes by energy consumption,

  10. 120 years of U.S. residential housing stock and floor space

    DOE PAGES [OSTI]

    Moura, Maria Cecilia P.; Smith, Steven J.; Belzer, David B.; Zhou, Wei -Xing

    2015-08-11

    Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO₂ emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891–2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891–2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million squaremore » feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade.« less

  11. DOE ZERH Case Study: Mutual Housing California, Mutual Housing at Spring

    Office of Scientific and Technical Information (OSTI)

    Lake, Woodland, CA () | SciTech Connect : DOE ZERH Case Study: Mutual Housing California, Mutual Housing at Spring Lake, Woodland, CA Citation Details In-Document Search Title: DOE ZERH Case Study: Mutual Housing California, Mutual Housing at Spring Lake, Woodland, CA Case study of a DOE 2015 Housing Innovation Award winning multifamily project of 62 affordable-housing apartment home in the hot-dry climate that exceeded CA Title 24-2008 by 35%, with 2x4 16" on center walls with R-21

  12. Florida Natural Gas Plant Fuel Consumption (Million Cubic Feet...

    Gasoline and Diesel Fuel Update

    Plant Fuel Consumption (Million Cubic Feet) Florida Natural Gas Plant Fuel Consumption ... Referring Pages: Natural Gas Plant Fuel Consumption Florida Natural Gas Consumption by End ...

  13. Florida Natural Gas Total Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Total Consumption (Million Cubic Feet) Florida Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption Florida Natural Gas Consumption by End Use Total ...

  14. Florida Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook

    Fuel Consumption (Million Cubic Feet) Florida Natural Gas Lease Fuel Consumption (Million ... Referring Pages: Natural Gas Lease Fuel Consumption Florida Natural Gas Consumption by End ...

  15. West Virginia Natural Gas Total Consumption (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Total Consumption (Million Cubic Feet) West Virginia Natural Gas Total Consumption ... Referring Pages: Natural Gas Consumption West Virginia Natural Gas Consumption by End Use ...

  16. Virginia Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Virginia Natural Gas Lease Fuel Consumption (Million ... Referring Pages: Natural Gas Lease Fuel Consumption Virginia Natural Gas Consumption by ...

  17. West Virginia Natural Gas Lease Fuel Consumption (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) West Virginia Natural Gas Lease Fuel Consumption ... Referring Pages: Natural Gas Lease Fuel Consumption West Virginia Natural Gas Consumption ...

  18. Virginia Natural Gas Total Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Total Consumption (Million Cubic Feet) Virginia Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption Virginia Natural Gas Consumption by End Use ...

  19. Nevada Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook

    Fuel Consumption (Million Cubic Feet) Nevada Natural Gas Lease Fuel Consumption (Million ... Referring Pages: Natural Gas Lease Fuel Consumption Nevada Natural Gas Consumption by End ...

  20. Nevada Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook

    Total Consumption (Million Cubic Feet) Nevada Natural Gas Total Consumption (Million Cubic ... Referring Pages: Natural Gas Consumption Nevada Natural Gas Consumption by End Use ...

  1. Kansas Natural Gas Total Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Total Consumption (Million Cubic Feet) Kansas Natural Gas Total Consumption (Million Cubic ... Referring Pages: Natural Gas Consumption Kansas Natural Gas Consumption by End Use Natural ...

  2. New York Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook

    Fuel Consumption (Million Cubic Feet) New York Natural Gas Lease Fuel Consumption (Million ... Referring Pages: Natural Gas Lease Fuel Consumption New York Natural Gas Consumption by ...

  3. New Mexico Natural Gas Lease Fuel Consumption (Million Cubic...

    Gasoline and Diesel Fuel Update

    Fuel Consumption (Million Cubic Feet) New Mexico Natural Gas Lease Fuel Consumption ... Referring Pages: Natural Gas Lease Fuel Consumption New Mexico Natural Gas Consumption by ...

  4. New Jersey Natural Gas Total Consumption (Million Cubic Feet...

    Gasoline and Diesel Fuel Update

    Total Consumption (Million Cubic Feet) New Jersey Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption New Jersey Natural Gas Consumption by End Use ...

  5. New York Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook

    Total Consumption (Million Cubic Feet) New York Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption New York Natural Gas Consumption by End Use ...

  6. New Mexico Natural Gas Total Consumption (Million Cubic Feet...

    Gasoline and Diesel Fuel Update

    Total Consumption (Million Cubic Feet) New Mexico Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption New Mexico Natural Gas Consumption by End Use ...

  7. New Mexico Natural Gas Plant Fuel Consumption (Million Cubic...

    Annual Energy Outlook

    Fuel Consumption (Million Cubic Feet) New Mexico Natural Gas Plant Fuel Consumption ... Referring Pages: Natural Gas Plant Fuel Consumption New Mexico Natural Gas Consumption by ...

  8. North Dakota Natural Gas Lease Fuel Consumption (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Lease Fuel Consumption ... Referring Pages: Natural Gas Lease Fuel Consumption North Dakota Natural Gas Consumption ...

  9. North Carolina Natural Gas Total Consumption (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Total Consumption (Million Cubic Feet) North Carolina Natural Gas Total Consumption ... Referring Pages: Natural Gas Consumption North Carolina Natural Gas Consumption by End Use ...

  10. North Dakota Natural Gas Total Consumption (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Total Consumption (Million Cubic Feet) North Dakota Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption North Dakota Natural Gas Consumption by End Use ...

  11. Minnesota Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Total Consumption (Million Cubic Feet) Minnesota Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption Minnesota Natural Gas Consumption by End Use ...

  12. 120 Years of U.S. Residential Housing Stock and Floor Space

    SciTech Connect

    Pinto de Moura, Maria C.; Smith, Steven J.; Belzer, David B.

    2015-08-11

    Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO2 emissions. Floor space is a major driver of building energy demand. This paper develops a historical time series of total residential floor space for 1891-2010 and examines the role of socio-economic drivers GDP, population and household size on floor space. Using primarily data from the U.S. Census Bureau, we develop new construction and vintage-disaggregated housing stock for three building types, and address various data inconsistency issues. An examination of the long-term relationship of GDP and total residential floor space shows a remarkably constant trend over the period. While population increases five times over the period, a 50% decrease in household size contributes towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. Total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years.

  13. Simulating a Nationally Representative Housing Sample Using EnergyPlus

    SciTech Connect

    Hopkins, Asa S.; Lekov, Alex; Lutz, James; Rosenquist, Gregory; Gu, Lixing

    2011-03-04

    This report presents a new simulation tool under development at Lawrence Berkeley National Laboratory (LBNL). This tool uses EnergyPlus to simulate each single-family home in the Residential Energy Consumption Survey (RECS), and generates a calibrated, nationally representative set of simulated homes whose energy use is statistically indistinguishable from the energy use of the single-family homes in the RECS sample. This research builds upon earlier work by Ritchard et al. for the Gas Research Institute and Huang et al. for LBNL. A representative national sample allows us to evaluate the variance in energy use between individual homes, regions, or other subsamples; using this tool, we can also evaluate how that variance affects the impacts of potential policies. The RECS contains information regarding the construction and location of each sampled home, as well as its appliances and other energy-using equipment. We combined this data with the home simulation prototypes developed by Huang et al. to simulate homes that match the RECS sample wherever possible. Where data was not available, we used distributions, calibrated using the RECS energy use data. Each home was assigned a best-fit location for the purposes of weather and some construction characteristics. RECS provides some detail on the type and age of heating, ventilation, and air-conditioning (HVAC) equipment in each home; we developed EnergyPlus models capable of reproducing the variety of technologies and efficiencies represented in the national sample. This includes electric, gas, and oil furnaces, central and window air conditioners, central heat pumps, and baseboard heaters. We also developed a model of duct system performance, based on in-home measurements, and integrated this with fan performance to capture the energy use of single- and variable-speed furnace fans, as well as the interaction of duct and fan performance with the efficiency of heating and cooling equipment. Comparison with RECS revealed

  14. White House Announces Eighth Manufacturing Innovation Institute |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy White House Announces Eighth Manufacturing Innovation Institute White House Announces Eighth Manufacturing Innovation Institute April 6, 2016 - 4:49pm Addthis On Thursday, April 1, the White House announced a new institute which will focus on revolutionary fibers and textile manufacturing. This new institute is the eighth manufacturing hub to be awarded as part of the National Network for Manufacturing Innovation (NNMI). Collectively, the federal government's commitment

  15. Sandia National Laboratories: Intern Housing Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    CA Intern Candidates Pre-Employment Instructions NM Employee Candidates CA Employee Candidates NM Intern Candidates CA Intern Candidates Step 1: Complete Your Application Step 2: Accept Your Offer Step 3: Prepare to Start Step 4: Report to Work Your Benefits Your Pay Intern Housing Resources Contacts Pre-Employment_Instructions Intern Housing Resources Livermore, California Before you commit to any housing agreement, be sure to ask about short-term (2-4 months) leasing options and any additional

  16. Sandia National Laboratories: Intern Housing Resources

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NM Intern Candidates Pre-Employment Instructions NM Employee Candidates CA Employee Candidates NM Intern Candidates Step 1: Complete Your Application Step 2: Accept Your Offer Step 3: Prepare to Start Step 4: Report to Work Your Benefits Your Pay Intern Housing Resources Contacts CA Intern Candidates Pre-Employment_Instructions Intern Housing Resources Albuquerque, New Mexico All housing arrangements need to be made on your own. Unfortunately, Sandia's Student Internship Program is unable to

  17. House Simulation Protocols Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    House Simulation Protocols Report House Simulation Protocols Report Report cover Building America's House Simulation Protocols report is designed to assist researchers in tracking the progress of multiyear, whole-building energy reduction against research goals for new and existing homes. These protocols are preloaded into BEopt and use a consistent approach for defining a reference building, so that all projects can be compared to each other. The steps involved in conducting performance

  18. US ENC WI Site Consumption

    Energy Information Administration (EIA) (indexed site)

    120 US ENC WI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC WI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC WI Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US ENC WI Expenditures dollars ELECTRICITY ONLY average per household * Wisconsin households use 103 million Btu of energy per home, 15% more than the U.S. average. * Lower electricity and natural gas rates compared to

  19. US WNC MO Site Consumption

    Energy Information Administration (EIA) (indexed site)

    WNC MO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WNC MO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US WNC MO Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US WNC MO Expenditures dollars ELECTRICITY ONLY average per household * Missouri households consume an average of 100 million Btu per year, 12% more than the U.S. average. * Average household energy costs in Missouri are slightly less

  20. Numerical prediction of energy consumption in buildings with controlled interior temperature

    SciTech Connect

    Jarošová, P.; Št’astník, S.

    2015-03-10

    New European directives bring strong requirement to the energy consumption of building objects, supporting the renewable energy sources. Whereas in the case of family and similar houses this can lead up to absurd consequences, for building objects with controlled interior temperature the optimization of energy demand is really needed. The paper demonstrates the system approach to the modelling of thermal insulation and accumulation abilities of such objetcs, incorporating the significant influence of additional physical processes, as surface heat radiation and moisture-driven deterioration of insulation layers. An illustrative example shows the numerical prediction of energy consumption of a freezing plant in one Central European climatic year.

  1. DURA URBAN HOUSE | Department of Energy

    Energy.gov [DOE] (indexed site)

    blend in its Efficient, Affordable, Solar, Innovation--or EASI--House. Learn More AGGIE SOL The University of California, Davis, has strong pedigrees in both sustainable projects...

  2. The White House's Week of Making

    Office of Energy Efficiency and Renewable Energy (EERE)

    The White House's Week of Making from June 12-18 will coincide with a National Maker Faire event in Washington, D.C.

  3. NNSA Administrator Testifies Before the House Appropriations...

    National Nuclear Security Administration (NNSA)

    Subcommittee on Energy and Water Development May 21, 2009 NNSA Administrator Testifies Before the House Appropriations Subcommittee on Energy and Water Development ...

  4. Federal Housing Administration's Energy Efficient Mortgage Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Mortgage Program Describes the U.S. Department of Housing and Urban Development Energy Efficient Mortgage Program which helps homebuyers or homeowners save money on utility...

  5. Energy Conservation Standards for Manufactured Housing. Notice...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EERE-2009-BT-BC-0021 RIN: 1904-AC11 Energy Conservation Standards for Manufactured ... which directs DOE to establish energy conservation standards for manufactured housing. ...

  6. Testimony before the House Appropriations Committee, Subcommittee...

    National Nuclear Security Administration (NNSA)

    Testimony before the House Appropriations Committee, Subcommittee on Energy and Water ... for Atomic Energy (Rosatom), and Rostekhnadzor, the Russian nuclear regulatory agency. ...

  7. Slideshow of the White House Energy Datapalooza

    Energy.gov [DOE]

    This post included photo's from the Energy Datapalooza hosted jointly by the White House Office of Technology-Policy and the Department of Energy.

  8. Stewards of Affordable Housing for the Future

    Energy.gov [DOE]

    Better Buildings Multifamily Peer Exchange Call Featuring: Stewards of Affordable Housing for the Future, call slides and discussion summary, April 7, 2011.

  9. "Table HC1.2.3 Living Space Characteristics by Average Floorspace--"

    Energy Information Administration (EIA) (indexed site)

    3 Living Space Characteristics by Average Floorspace--" " Single-Family Housing Units and Mobile Homes, 2005" ,,"Single- Family and Mobile Homes (millions)","Average Square Feet per Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Detached",,,"Single-Family Attached",,,"Mobile Homes" "Housing Unit

  10. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 1 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 83.1 66.1 144.2 37 17 29.1 10 678 0.31 539 192 Census Region and Division

  11. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 2 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 83.7 66.0 142.2 36 16 28.0 10 708 0.33 558 204 Census Region and Division

  12. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 4 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 86.3 67.4 144.3 37 17 28.8 11 808 0.38 632 234 Census Region and Division

  13. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 7 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 90.5 70.4 156.8 39 18 30.5 12 875 0.39 680 262 Census Region and Division

  14. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 97 Average Electricity Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 101.4 83.2 168.8 42 21 35.0 13 1,061 0.52 871 337 Census Region and

  15. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 2001 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 107.0 85.2 211.2 46 18 36.0 14 1,178 0.48 938 366 Census Region and Division

  16. Passive Housing for an Aggressive Region

    Energy.gov [DOE]

    A telling perspective of Washingtonian's connection with their energy consumption, architecture and ambition in their professional and personal lives.

  17. Cool Energy House - An Intro to the Cool Energy House Retrofit

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demonstration Project Webinar | Department of Energy Cool Energy House - An Intro to the Cool Energy House Retrofit Demonstration Project Webinar Cool Energy House - An Intro to the Cool Energy House Retrofit Demonstration Project Webinar Slides from the Building America webinar on November 14, 2011. webinar_cool_ehouse_20111130.pdf (8.94 MB) More Documents & Publications Building America Overview - 2014 BTO Peer Review Building America Roadmap to High Performance Homes Automated Sealing

  18. Building America Whole-House Solutions for Existing Homes: Islip Housing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Authority Energy Efficiency Turnover Protocols, Islip, New York | Department of Energy Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York Building America Whole-House Solutions for Existing Homes: Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York In this project, ARIES worked with two public housing authorities (PHA) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement at the time when units

  19. "Table A51. Selected Energy Operating Ratios for Total Energy Consumption for"

    Energy Information Administration (EIA) (indexed site)

    1. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991 " ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE"

  20. HOOPER BAY HOUSING ANALYSIS AND ENERGY FEASIBILITY REPORT

    SciTech Connect

    SEA LION CORPORATION; COLD CLIMATE HOUSING RESEARCH CENTER; SOLUTIONS FOR HEALTHY BREATHING; WHITNEY CONSTRUCTION

    2012-12-30

    Sea Lion applied for and received a grant from the Department of Energy (DOE) towards this end titled Energy Efficiency Development and Deployment in Indian Country. The initial objectives of the Hooper Bay Energy Efficiency Feasibility Study were to demonstrate a 30% reduction in residential/commercial energy usage and identify the economic benefits of implementing energy efficiency measures to the Tribe through: (1) partnering with Whitney Construction and Solutions for Healthy Breathing in the training and hire of 2 local energy assessors to conduct energy audits of 9 representative housing models and 2 commercial units in the community. These homes are representative of 52 homes constructed across different eras. (2) partnering with Cold Climate Housing Research Center to document current electrical and heating energy consumption and analyze data for a final feasibility report (3) assessing the economics of electricity & heating fuel usage; (4) projecting energy savings or fossil fuel reduction by modeling of improvement scenarios and cost feasibility The following two objectives will be completed after the publication of this report: (5) the development of materials lists for energy efficiency improvements (6) identifying financing options for the follow-up energy efficiency implementation phase.

  1. Consumption

    Energy Information Administration (EIA) (indexed site)

    Using Natural Gas (million square feet)",,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"North- east","Mid- west","South","West","North- east","Mid-...

  2. Consumption

    Energy Information Administration (EIA) (indexed site)

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"West South Central","Moun- tain","Pacific","West South Central","Moun-...

  3. Consumption

    Energy Information Administration (EIA) (indexed site)

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"1959 or Before","1960 to 1989","1990 to 2003","1959 or Before","1960 to...

  4. Consumption

    Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"West North Central","South Atlantic","East South Central","West North...

  5. Consumption

    Energy Information Administration (EIA) (indexed site)

    Using Natural Gas (million square feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Zone 1","Zone 2","Zone 3","Zone 4","Zone 5","Zone 1","Zone 2","Zone 3","Zone...

  6. Consumption

    Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btusquare foot)" ,"1959 or Before","1960 to 1989","1990 to 2003","1959 or Before","1960 to...

  7. Consumption

    Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"North- east","Mid- west","South","West","North- east","Mid-...

  8. Consumption

    Energy Information Administration (EIA) (indexed site)

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"New England","Middle Atlantic","East North Central","New England","Middle...

  9. Consumption

    Energy Information Administration (EIA) (indexed site)

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"West North Central","South Atlantic","East South Central","West North...

  10. Consumption

    Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btusquare foot)" ,"1,001 to 10,000 Square Feet","10,001 to 100,000 Square Feet","Over 100,000...

  11. Consumption

    Energy Information Administration (EIA) (indexed site)

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"1,001 to 10,000 Square Feet","10,001 to 100,000 Square Feet","Over 100,000...

  12. Consumption

    Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"New England","Middle Atlantic","East North Central","New England","Middle...

  13. Consumption

    Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"1,001 to 10,000 Square Feet","10,001 to 100,000 Square Feet","Over 100,000...

  14. Consumption

    Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"Zone 1","Zone 2","Zone 3","Zone 4","Zone 5","Zone 1","Zone 2","Zone 3","Zone...

  15. Consumption

    Energy Information Administration (EIA) (indexed site)

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"1959 or Before","1960 to 1989","1990 to 1999","1959 or Before","1960 to...

  16. Consumption

    Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"West South Central","Moun- tain","Pacific","West South Central","Moun-...

  17. Consumption

    Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btusquare foot)" ,"1959 or Before","1960 to 1989","1990 to 1999","1959 or Before","1960 to...

  18. Consumption

    Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,,"Energy Intensity for Sum of Major Fuels (thousand Btusquare foot)" ,"North- east","Mid- west","South","West","North- east","Mid-...

  19. Consumption

    Energy Information Administration (EIA) (indexed site)

    90,1024,3251,1511,"Q",106.6,97.3,100.6 "Office ...",305,325,329,175,3012,2989,3782,2425,101.2,108.8,87,72.1 "Public Assembly ...",93,103,109,64,1048,...

  20. Consumption

    Energy Information Administration (EIA) (indexed site)

    9,60,56.7,43.1,31.4,22.1 "1990 to 1999 ...",69,87,51,93,34,1735,1988,1202,3012,1267,40,43.8,42.4,30.9,26.9 "2000 to 2003 ...",23,40,"Q",28,15,693,1086,7...

  1. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. )

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  2. Impacts of alternative residential energy standards - Rural Housing Amendments Study, Phase 1

    SciTech Connect

    Balistocky, S.; Bohn, A.A.; Heidell, J.A.; Hendrickson, P.L.; Lee, A.D.; Pratt, R.G.; Taylor, Z.T.

    1985-11-01

    This report has examined the role of manufactured housing in the housing market, the energy impacts of three manufactured housing standards and three site-built standards in 13 cities, and the economic impacts of those standards in 6 cities. The three standards applied to manufactured housing are the HUD Title VI standard (Manufactured Housing Construction and Safety Standards, or MHCSS), the Hud Title II-E standard, and the existing FmHA Title V standard. Those applied to site-built homes are the HUD Minimum Property Standards (MPS), the ASHRAE 90A-80 standard, and the FmHA Title V standard. Based on energy consumption alone, these analyses show that the FmHA Title V standard is the most stringent standard for both housing types (a single-section menufactured home and a single-story detached ''ranch house''). The HUD Title VI standard is the least stringent for manufactured homes, while the HUD Minimum Property Standards are the least stringent for site-built homes. Cost-effectiveness comparisons required by the Act were made for the two prototypical homes. Results of this preliminary economic analysis indicate that none of the site-built standards reflect minimum life-cycle cost as a basic criterion of their development. For manufactured homes, both the FmHA standard and the HUD Title II-E standard reduce life-cycle cost and effect positive first-year cash flows in all cities analyzed when electric resistance heating is assumed. When natural gas heating is used, both standards pass the life-cycle cost test in all cities, but the FmHA standard fails the cash flow test in all but one city. However, in the worst case, net monthly expenditures in the first year are increased by less than $9.

  3. Whole-House Energy Analysis Procedures for Existing Homes: Preprint

    SciTech Connect

    Hendron, R.

    2006-08-01

    This paper describes a proposed set of guidelines for analyzing the energy savings achieved by a package of retrofits or an extensive rehabilitation of an existing home. It also describes certain field test and audit methods that can help establish accurate building system performance characteristics that are needed for a meaningful simulation of whole-house energy use. Several sets of default efficiency values have been developed for older appliances that cannot be easily tested and for which published specifications are not readily available. These proposed analysis procedures are documented more comprehensively in NREL Technical Report TP-550-38238.

  4. Lifestyle Factors in U.S. Residential Electricity Consumption

    SciTech Connect

    Sanquist, Thomas F.; Orr, Heather M.; Shui, Bin; Bittner, Alvah C.

    2012-03-30

    A multivariate statistical approach to lifestyle analysis of residential electricity consumption is described and illustrated. Factor analysis of selected variables from the 2005 U.S. Residential Energy Consumption Survey (RECS) identified five lifestyle factors reflecting social and behavioral choices associated with air conditioning, laundry usage, personal computer usage, climate zone of residence, and TV use. These factors were also estimated for 2001 RECS data. Multiple regression analysis using the lifestyle factors yields solutions accounting for approximately 40% of the variance in electricity consumption for both years. By adding the associated household and market characteristics of income, local electricity price and access to natural gas, variance accounted for is increased to approximately 54%. Income contributed only {approx}1% unique variance to the 2005 and 2001 models, indicating that lifestyle factors reflecting social and behavioral choices better account for consumption differences than income. This was not surprising given the 4-fold range of energy use at differing income levels. Geographic segmentation of factor scores is illustrated, and shows distinct clusters of consumption and lifestyle factors, particularly in suburban locations. The implications for tailored policy and planning interventions are discussed in relation to lifestyle issues.

  5. Performance of fuel cell for energy supply of passive house

    SciTech Connect

    Badea, G.; Felseghi, R. A. Mureşan, D.; Naghiu, G.; Răboacă, S. M.; Aşchilean, I.

    2015-12-23

    Hydrogen technology and passive house represent two concepts with a remarkable role for the efficiency and decarbonisation of energy systems in the residential buildings area. Through design and functionality, the passive house can make maximum use of all available energy resources. One of the solutions to supply energy of these types of buildings is the fuel cell, using this technology integrated into a system for generating electricity from renewable primary sources, which take the function of backup power (energy reserve) to cover peak load and meteorological intermittents. In this paper is presented the results of the case study that provide an analysis of the energy, environmental and financial performances regarding energy supply of passive house by power generation systems with fuel cell fed with electrolytic hydrogen produced by harnessing renewable energy sources available. Hybrid systems have been configured and operate in various conditions of use for five differentiated locations according to the main areas of solar irradiation from the Romanian map. Global performance of hybrid systems is directly influenced by the availability of renewable primary energy sources - particular geo-climatic characteristics of the building emplacement.

  6. Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept

    SciTech Connect

    Chen, Yuxiang; Athienitis, A.K.; Galal, Khaled

    2010-11-15

    This paper is the first of two papers that describe the modeling, design, and performance assessment based on monitored data of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) in a prefabricated, two-storey detached, low energy solar house. This house, with a design goal of near net-zero annual energy consumption, was constructed in 2007 in Eastman, Quebec, Canada - a cold climate area. Several novel solar technologies are integrated into the house and with passive solar design to reach this goal. An air-based open-loop BIPV/T system produces electricity and collects heat simultaneously. Building-integrated thermal mass is utilized both in passive and active forms. Distributed thermal mass in the direct gain area and relatively large south facing triple-glazed windows (about 9% of floor area) are employed to collect and store passive solar gains. An active thermal energy storage system (TES) stores part of the collected thermal energy from the BIPV/T system, thus reducing the energy consumption of the house ground source heat pump heating system. This paper focuses on the BIPV/T system and the integrated energy concept of the house. Monitored data indicate that the BIPV/T system has a typical efficiency of about 20% for thermal energy collection, and the annual space heating energy consumption of the house is about 5% of the national average. A thermal model of the BIPV/T system suitable for preliminary design and control of the airflow is developed and verified with monitored data. (author)

  7. Manufacturing consumption of energy 1994

    SciTech Connect

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  8. 10th Annual North American Passive House Conference

    Energy.gov [DOE]

    Hosted by the Passive House Institute US, this five-day conference will target both multifamily and single family housing design, engineering, and development along with Passive House certification.

  9. Whole-House Systems Approach | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Design Design for Efficiency Whole-House Systems Approach Whole-House Systems Approach The whole-house systems approach used to design this ultra-efficient home at Lone Star ...

  10. DOE Tour of Zero Floorplans: Minden House by Knaggs Construction |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Minden House by Knaggs Construction DOE Tour of Zero Floorplans: Minden House by Knaggs Construction DOE Tour of Zero Floorplans: Minden House by Knaggs Construction

  11. Energy Showcase Open House 2012 | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Showcase Open House 2012 Energy Showcase Open House 2012 1 of 65 Energy Showcase Open House 2012 A visitor peers inside to see an ion trap in the 203 Physics Building. View ...

  12. Commercial Buildings Energy Consumption and Expenditures 1992

    Energy Information Administration (EIA) (indexed site)

    the sponsor the government, utility or sponsored in-house. Energy Management and Control System Heating or cooling system monitored or controlled by a computerized building...

  13. ,"Florida Natural Gas Vehicle Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    10:36:09 AM" "Back to Contents","Data 1: Florida Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570SFL2" "Date","Florida Natural Gas Vehicle Fuel Consumption ...

  14. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

  15. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    Air Conditioning in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Air Conditioning" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Air Conditioning Equipment"

  16. $50 and up underground house book

    SciTech Connect

    Oehler, M.

    1981-01-01

    Earth-sheltered housing can be livable, compatible with nature, and inexpensive. Plans and designs for low-cost houses that are integrated with their environment make up most of this book. The author begins by outlining 23 advantages of underground housing and describing the histories of several unconventional buildings in the $50 to $500 price range. He also suggests where building materials can be bought and scrounged, describes construction techniques, and explains how to cope with building codes. Sketches, floorplans, and photographs illustrate the text. 8 references, 4 tables. (DCK)

  17. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    Appliances in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,,,,,"5 or More Units","Mobile Homes" "Appliances",,"Detached","Attached","2 to 4 Units" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Cooking Appliances" "Stoves (Units With

  18. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    Water Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Water Heating" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Number of Storage Tank Water Heaters"

  19. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    Televisions in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Televisions" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Televisions" "Number of

  20. " Million Housing Units, Final"

    Energy Information Administration (EIA) (indexed site)

    Computers and Other Electronics in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Computers and Other Electronics" "Total Homes",113.6,71.8,6.7,9,19.1,6.9

  1. Peoria Tribal Housing Authority: Weatherization Training Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program 2009 Program Review Denver Colorado  Jason Dollarhide, Second Chief  Peoria Tribe of Indians of Oklahoma  Deputy Director, Housing Authority of the Peoria Tribe  The Peoria Tribe is located in Miami, Oklahoma  We currently have an enrollment of 2,900 Tribal members  The Peoria Tribal operations and Housing Authority employ 39 persons.  The Peoria Tribe and Housing Authority work in partnership with the Ottawa Tribe of Oklahoma. We manage 127 low-rent units in various

  2. State energy data report 1992: Consumption estimates

    SciTech Connect

    Not Available

    1994-05-01

    This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

  3. Housing Energy Efficiency: AHFC Energy Programs and Resources

    Office of Environmental Management (EM)

    1981 to supplement HUD Indian Housing Development funds Funds are used for: *Water and ... meet BEES Supplemental Housing Development Grant Program 8 Health and Safety ...

  4. Before the House Subcommittee on Energy and Environment - Committee...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transportation Before the House Subcommittee on Energy and Environment - Committee on Science, Space, and Transportation Before the House Subcommittee on Energy and Environment -...

  5. Before the House Science and Technology Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy...

  6. Project Reports for Peoria Tribe: Housing Authority- 2010 Project

    Energy.gov [DOE]

    The Housing Authority of the Peoria Tribe of Indians of Oklahoma (Peoria Housing Authority or PHA) will conduct the "PHA Weatherization Training Project."

  7. Building America Whole-House Solutions for New Homes: Northwest...

    Energy Saver

    High-Performance Test Homes Building America Whole-House Solutions for New Homes: Northwest Energy Efficient Manufactured Housing Program High-Performance Test Homes This project ...

  8. Open House 2016 Promotional Video | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Open House 2016 Promotional Video Share Description Argonne Open House 2016 Promotional Video Browse By - Any - General Argonne Information Energy -Energy efficiency --Vehicles ...

  9. 2014 HAC Rural Housing Conference: Retool, Rebuild, Renew

    Energy.gov [DOE]

    The biennial HAC Rural Housing Conference brings together stakeholders in the field of rural affordable housing from local nonprofits, federal agencies, Congress, state and local governments, and...

  10. Stewards of Affordable Housing for the Future | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Stewards of Affordable Housing for the Future Stewards of Affordable Housing for the Future Better Buildings Multifamily Peer Exchange Call Featuring: Stewards of Affordable...

  11. White House Climate Resilience Initiatives Bring New Opportunities...

    Office of Environmental Management (EM)

    White House Climate Resilience Initiatives Bring New Opportunities for Tribes February 10, 2016 - 3:41pm Addthis The White House is helping communities tackle climate change ...

  12. Before the House Subcommittee on Energy, Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Before the House Subcommittee on Energy, Committee on Science, Space and Technology Testimony of Dr. Peter Lyons, Assistant Secretary for Nuclear Energy Before the House ...

  13. Sandia Energy - White House Business Council Roundtable on Water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Protected: White House Business Council Roundtable on Water Home Climate Water Security Protected: White House Business Council Roundtable on Water Previous Next Protected: White...

  14. Vale Slaughter House Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Slaughter House Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vale Slaughter House Space Heating Low Temperature Geothermal Facility Facility...

  15. Before the Subcommittee on Environment and the Economy -- House...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Environment and the Economy -- House Energy and Commerce Committee Before the Subcommittee on Environment and the Economy -- House Energy and Commerce Committee Testimony of Peter ...

  16. Before the House Committee on Energy and Commerce Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Before the House Committee on Energy and Commerce Subcommittee on Oversight and ... Oversight and Investigations Energy and Commerce Committee U.S. House of Representatives ...

  17. Before the House Subcommittee on Energy and Power - Committee...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy and Power - Committee on Energy and Commerce Before the House Subcommittee on Energy and Power - Committee on Energy and Commerce Before the House Subcommittee on Energy and ...

  18. Before the House Committee on Energy and Commerce - Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Before the House Committee on Energy and Commerce - Subcommittee on Environment and ... Before the House Committee on Energy and Commerce - Subcommittee on Environment and ...

  19. Oversight Hearing Before the House Natural Resources Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Oversight Hearing Before the House Natural Resources Subcommittee on Water, Power, and Oceans Oversight Hearing Before the House Natural Resources Subcommittee on Water, Power, and ...

  20. Tribal Leaders Provide White House with Input on Bolstering Climate...

    Office of Environmental Management (EM)

    Leaders Provide White House with Input on Bolstering Climate Resilience Tribal Leaders Provide White House with Input on Bolstering Climate Resilience January 7, 2015 - 10:29am ...

  1. Before the Subcommittee on Water, Power, and Oceans House Natural...

    Office of Environmental Management (EM)

    House Natural Resources Committee Before the Subcommittee on Water, Power, and Oceans House Natural Resources Committee Testimony of Elliot E. Mainzer, Administrator, Bonneville...

  2. Before the House Natural Resources Subcommittee on Water and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Before the House Natural Resources Subcommittee on Water and Power Before House Subcommittee on Water and Power - Committee on Natural...

  3. The Subcommittee on Water, Power, and Oceans House Committee...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources Testimony of ...

  4. Building America Whole-House Solutions for Existing Homes: Cascade...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Building America Whole-House Solutions for Existing Homes: Conway Street Apartments - Greenfield, Massachusetts Building America Whole-House Solutions ...

  5. Building America Whole-House Solutions for Existing Homes: Multifamily...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Building America Whole-House Solutions for New Homes: Shaw Construction, Aspen, Colorado Building America Whole-House Solutions for Existing Homes: Conway Street Apartments - ...

  6. Building America Whole-House Solutions for Existing Homes: Cascade...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Building America Whole-House Solutions for Existing Homes: Cascade Apartments - Deep Energy Multifamily Retrofit (Fact Sheet) Building America Whole-House Solutions for Existing...

  7. Before the House Energy and Commerce Subcommittee on Oversight...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Oversight and Investigations Before the House Energy and Commerce Subcommittee on Oversight and Investigations Before the House Energy and Commerce Subcommittee on Oversight and ...

  8. Before House Subcommittee on Energy and Power and Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    on Energy and Commerce Before House Subcommittee on Energy and Power and Subcommittee on Oversight and Investigations - Committee on Energy and Commerce Before House ...

  9. Before the House Committee on Energy and Commerce Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    on Oversight and Investigations Energy and Commerce Committee U.S. House of Representatives WIPP Public Hearing June 2016 Before the House Committee on Energy and Commerce ...

  10. Before the House Committee on Armed Services - Subcommittee on...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Before the House Committee on Armed Services - Subcommittee on Strategic Forces Testimony of Gen. Frank G. Klotz (Ret.) Before the House Committee on Armed Services - Subcommittee ...

  11. Building America Whole-House Solutions for Existing Homes: Performance...

    Energy Saver

    Stockton, California (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Performance of a Hot-Dry Climate Whole-House Retrofit, Stockton, California (Fact ...

  12. Before House Committee on Science, Space, and Technology - Subcommitte...

    Energy Saver

    House Committee on Science, Space, and Technology - Subcommittees on Environment and Energy Before House Committee on Science, Space, and Technology - Subcommittees on Environment ...

  13. Housing and Construction Holding Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Housing and Construction Holding Company Jump to: navigation, search Name: Housing and Construction Holding Company Place: Ramat-Gan, Israel Zip: 52215 Product: Israel-based...

  14. Before the House Science and Technology Subcommittee on Investigations...

    Energy Saver

    Before the House Science and Technology Subcommittee on Investigations and Oversight Before the House Science and Technology Subcommittee on Investigations and Oversight By: ...

  15. Before the Subcommittee on Energy -- House Science, Space, and...

    Energy Saver

    -- House Science, Space, and Technology Committee Before the Subcommittee on Energy -- House Science, Space, and Technology Committee Testimony of Christopher Smith, Acting ...

  16. Before the House Committee on Science, Space and Technology Subcommitt...

    Energy Saver

    Subcommittee on Energy Before the House Committee on Science, Space and Technology ... Before the House Committee on Science, Space and Technology Subcommittee on ...

  17. Before the House Science, Space, and Technology Subcommittee...

    Energy Saver

    Technology Laboratory Before the House Science, Space, and Technology Subcommittee on ... the Subcommittee on Energy -- House Science, Space, and Technology Committee Before ...

  18. Before the House Small Business Subcommittee on Contracting and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Subcommittee on Contracting and Technology Before the House Small Business Subcommittee on Contracting and Technology Before the House Small Business Subcommittee on Contracting...

  19. Before the House Science and Technology Subcommittee on Oversight...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Oversight and Investigations Before the House Science and Technology Subcommittee on Oversight and Investigations Before the House Science and Technology Subcommittee on Oversight...

  20. Energy Department Announces Winners of Housing Innovation Awards...

    Energy Saver

    Announces Winners of Housing Innovation Awards Energy Department Announces Winners of Housing Innovation Awards October 25, 2013 - 1:21pm Addthis The Energy Department announced ...