National Library of Energy BETA

Sample records for high temperature heat

  1. High Temperature Heat Exchanger Project

    SciTech Connect

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  2. High Operating Temperature Liquid Metal Heat Transfer Fluids...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Operating Temperature Liquid Metal Heat Transfer Fluids High Operating Temperature Liquid Metal Heat Transfer Fluids This fact sheet describes a UCLA-led solar project to ...

  3. Modoc High School Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modoc High School Space Heating Low Temperature Geothermal Facility Facility Modoc...

  4. Henley High School Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Henley High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Henley High School Space Heating Low Temperature Geothermal Facility Facility...

  5. Cotulla High School Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Cotulla High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cotulla High School Space Heating Low Temperature Geothermal Facility...

  6. A transient heat transfer model for high temperature solar thermochemi...

    Office of Scientific and Technical Information (OSTI)

    Search Results Journal Article: A transient heat transfer model for high temperature solar ... Title: A transient heat transfer model for high temperature solar thermochemical reactors ...

  7. Design manual. [High temperature heat pump for heat recovery system

    SciTech Connect

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  8. Cedarville Elementary & High School Space Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cedarville Elementary & High School Space Heating Low...

  9. High temperature absorption heat pump for industrial usage

    SciTech Connect

    Bugarel, R.; Morillon, R.

    1982-01-01

    A theoretical and experimental study has demonstrated that an absorption heat pump with a water-lithium bromide thermodynamic couple has a practical coefficient of performance of 1.4-1.6 when providing a 280/sup 0/F heat source. The ability to serve as a high-temperature heat source makes this heat pump suitable for certain industrial processes such as drying.

  10. Project Profile: High Operating Temperature Liquid Metal Heat Transfer Fluids

    Energy.gov [DOE]

    The University of California, Los Angeles (UCLA), along with partners at the University of California, Berkeley, and Yale University, under the 2012 Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids funding opportunity, is investigating the use of metal alloys as a heat transfer fluid (HTF) in concentrating solar power (CSP) systems operating at temperatures in excess of 800°C. By allowing higher temperature operation, CSP systems can achieve greater efficiencies and thereby reduce the overall cost of electricity production.

  11. DESIGN OF A COMPACT HEAT EXCHANGER FOR HEAT RECUPERATION FROM A HIGH TEMPERATURE ELECTROLYSIS SYSTEM

    SciTech Connect

    G. K. Housley; J.E. O'Brien; G.L. Hawkes

    2008-11-01

    Design details of a compact heat exchanger and supporting hardware for heat recuperation in a high-temperature electrolysis application are presented. The recuperative heat exchanger uses a vacuum-brazed plate-fin design and operates between 300 and 800°C. It includes corrugated inserts for enhancement of heat transfer coefficients and extended heat transfer surface area. Two recuperative heat exchangers are required per each four-stack electrolysis module. The heat exchangers are mated to a base manifold unit that distributes the inlet and outlet flows to and from the four electrolysis stacks. Results of heat exchanger design calculations and assembly details are also presented.

  12. Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.

    SciTech Connect

    Blanchat, Thomas K.; Hanks, Charles R.

    2013-04-01

    Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000%C2%B0C showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

  13. Remote high-temperature insulatorless heat-flux gauge

    DOEpatents

    Noel, Bruce W. (Espanola, NM)

    1993-01-01

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge.

  14. Remote high-temperature insulatorless heat-flux gauge

    DOEpatents

    Noel, B.W.

    1993-12-28

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge. 3 figures.

  15. Experimental investigation of a reticulated porous alumina heat exchanger for high temperature gas heat recovery

    SciTech Connect

    Banerjee, A; Chandran, RB; Davidson, JH

    2015-01-22

    The present study presents an experimental study of a prototype counter-flow heat exchanger designed to recover sensible heat from inert and reactive gases flowing through a high temperature solar reactor for splitting CO2. The tube-in-tube heat exchanger is comprised of two concentric alumina tubes, each filled with reticulated porous alumina with a nominal porosity of 80% and pore density of 5 pores per inch (ppi). The RPC provides high heat transfer surface area per unit volume (917 m(-1)) with low pressure drop. Measurements include the permeability, inertial coefficient, overall heat transfer coefficient, effectiveness and pressure drop. For laminar flow and an inlet gas temperature of 1240 K, the overall heat transfer coefficients are 36-41 W m(-2) K-1. The measured performance is in good agreement with a prior CFD model of the heat exchanger. (C) 2014 Elsevier Ltd. All rights reserved.

  16. High Operating Temperature Liquid Metal Heat Transfer Fluids

    Energy.gov [DOE]

    This fact sheet describes a UCLA-led solar project to investigate high operating temperature liquid metal heat transfer fluids, funded by the SunShot initiative. The project team is using a combination of modeling along with a variety of property measurement and validation studies to demonstrate that the metal alloys identified can meet all the needs of a concentrating solar power plant. A successful candidate fluid would allow for the reduction of the levelized cost of energy by increasing the operating temperature for the CSP plant power cycle, which would increase thermal-to-electric conversion efficiency.

  17. Project Profile: High-Temperature Particle Heat Exchanger for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in a turbine to generate electricity. Industry experience with similar heat exchangers is limited to lower pressures, lower temperatures, or alternative fluids like steam or ...

  18. High temperature thermographic measurements of laser heated silica

    SciTech Connect

    Elhadj, S; Yang, S T; Matthews, M J; Cooke, D J; Bude, J D; Johnson, M; Feit, M; Draggoo, V; Bisson, S E

    2009-11-02

    In situ spatial and temporal surface temperature profiles of CO{sub 2} laser-heated silica were obtained using a long wave infrared (LWIR) HgCdTe camera. Solutions to the linear diffusion equation with volumetric and surface heating are shown to describe the temperature evolution for a range of beam powers, over which the peak surface temperature scales linearly with power. These solutions were used with on-axis steady state and transient experimental temperatures to extract thermal diffusivity and conductivity for a variety of materials, including silica, spinel, sapphire, and lithium fluoride. Experimentally-derived thermal properties agreed well with reported values and, for silica, thermal conductivity and diffusivity are shown to be approximately independent of temperature between 300 and 2800K. While for silica our analysis based on a temperature independent thermal conductivity is shown to be accurate, for other materials studied this treatment yields effective thermal properties that represent reasonable approximations for laser heating. Implementation of a single-wavelength radiation measurement in the semi-transparent regime is generally discussed, and estimates of the apparent temperature deviation from the actual outer surface temperature are also presented. The experimental approach and the simple analysis presented yield surface temperature measurements that can be used to validate more complex physical models, help discriminate dominant heat transport mechanisms, and to predict temperature distribution and evolution during laser-based material processing.

  19. Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

  20. PBMR as an Ideal Heat Source for High-Temperature Process Heat Applications

    SciTech Connect

    Correia, Michael; Greyvenstein, Renee; Silady, Fred; Penfield, Scott

    2006-07-01

    The Pebble Bed Modular Reactor (PBMR) is an advanced helium-cooled, graphite-moderated High Temperature Gas-cooled Reactor (HTGR). A 400 MWt PBMR Demonstration Power Plant (DPP) for the production of electricity is being developed in South Africa. This PBMR technology is also an ideal heat source for process heat applications, including Steam Methane Reforming, steam for Oil Sands bitumen recovery, Hydrogen Production and co-generation (process heat and/or electricity and/or process steam) for petrochemical industries. The cycle configuration used to transport the heat of the reactor to the process plant or to convert the reactor's heat into electricity or steam directly influences the cycle efficiency and plant economics. The choice of cycle configuration depends on the process requirements and is influenced by practical considerations, component and material limitations, maintenance, controllability, safety, performance, risk and cost. This paper provides an overview of the use of a PBMR reactor for process applications and possible cycle configurations are presented for applications which require high temperature process heat and/or electricity. (authors)

  1. Maximizing Temperatures of Delivered Heat from the Advanced High-Temperature Reactor

    SciTech Connect

    Forsberg, C. W.; Peterson, P. F.; Pickard, Paul

    2004-07-01

    A new high-temperature reactor concept is being developed for hydrogen (H{sub 2}) and electricity production: the Advanced High-Temperature Reactor (AHTR). The goal is to develop a large economic reactor with passive safety systems that delivers high-temperature heat with the coolant exit temperature as high as 1000 deg. C. The high temperatures enable the production of H{sub 2} using heat and water by efficient thermochemical cycles. The safety is to be equivalent to that of a modular high-temperature gas-cooled reactor (MHTGR). The AHTR fuel is a graphite-matrix coated-particle fuel, the type used in MHTGRs. The coolant is a molten fluoride salt with a boiling point near 1400 deg. C. Because of this low-pressure liquid coolant, the types of passive safety systems proposed for liquid-metal reactors (such as the General Electric S-PRISM) can be used. The use of a low-pressure liquid coolant, rather than high-pressure helium, may reduce the materials and engineering challenges for very high-temperature reactors. Electricity is produced using a multi-reheat helium or nitrogen Brayton cycle. A preliminary preconceptual design of a 2400 MW(t) reactor has been developed with an output of 1300 MW(e) or an equivalent amount of H{sub 2}. (authors)

  2. Secondary heat exchanger design and comparison for advanced high temperature reactor

    SciTech Connect

    Sabharwall, P.; Kim, E. S.; Siahpush, A.; McKellar, M.; Patterson, M.

    2012-07-01

    Next generation nuclear reactors such as the advanced high temperature reactor (AHTR) are designed to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. This study considers two different types of heat exchangers - helical coiled heat exchanger and printed circuit heat exchanger - as possible options for the AHTR secondary heat exchangers with distributed load analysis and comparison. Comparison is provided for all different cases along with challenges and recommendations. (authors)

  3. High Temperature Fuel Cell Tri-Generation of Power, Heat & H2...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tri-Generation of Power, Heat & H2 from Biogas High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas Success story about using waste water treatment gas for ...

  4. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    SciTech Connect

    Tarau, Calin; Walker, Kara L.; Anderson, William G.

    2009-03-16

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

  5. Reproducibility of High-Q SRF Cavities by High Temperature Heat Treatment

    SciTech Connect

    Dhakal, Pashupati; Ciovati, Gianluigi; Kneisel, Peter; Myneni, Ganapati Rao

    2014-07-01

    Recent work on high-temperature (> 600 °C) heat treatment of ingot Nb cavities in a customized vacuum furnace for several hours showed the possibility of achieving Q0-values of up to ~5×1010 at 2.0 K, 1.5 GHz and accelerating gradients of ~20 MV/m. This contribution presents results on further studies of the heat treatment process to produce cavities with high Q0 values for continuous-wave accelerator application. Single-cell cavities of different Nb purity have been processed through few cycles of heat-treatments and chemical etching. Measurements of Q0 as a function of temperature at low RF field and of Q0 as a function of the RF field at or below 2.0 K have been made after each treatment. Measurements by TOF-SIMS of the impurities depth profiles were made on samples heat treated with the cavities.

  6. High Operating Temperature Liquid Metal Heat Transfer Fluids (Fact Sheet)

    SciTech Connect

    Not Available

    2012-12-01

    The University of California, Los Angeles, the University of California, Berkeley, and Yale University is one of the 2012 SunShot CSP R&D awardees for their Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids. This fact sheet explains the motivation, description, and impact of the project.

  7. Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor

    SciTech Connect

    Piyush Sabharwall; Ali Siahpush; Michael McKellar; Michael Patterson; Eung Soo Kim

    2012-06-01

    The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangers—helical coiled heat exchanger and printed circuit heat exchanger—as possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.

  8. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    SciTech Connect

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  9. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    SciTech Connect

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  10. Project Profile: High Temperature Heat Pipe Receiver for Parabolic Trough Collectors (SuNLaMP)

    Energy.gov [DOE]

    This project, done in partnership with Norwich Technologies, focuses on the development of heat pipe receiver technology for use with parabolic trough collectors. Heat pipe receivers are where the boiling and condensing of a fluid efficiently absorbs the incident concentrated solar energy and transfers the heat to the thermal energy storage system. The lab is combining its expertise in high temperature heat pipes and optically selective glass coatings with Norwich Technologies’ expertise in design, construction, and characterization of high temperature cavity receivers. The resulting technology will reduce the levelized cost of energy through a reduction in system costs, parasitic loads and a net energy conversion efficiency increase.

  11. Heat treated 9 Cr-1 Mo steel material for high temperature application

    DOEpatents

    Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-08-21

    The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.

  12. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    DOEpatents

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  13. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  14. THE INTEGRATION OF PROCESS HEAT APPLICATIONS TO HIGH TEMPERATURE GAS REACTORS

    SciTech Connect

    Michael G. McKellar

    2011-11-01

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  15. High exhaust temperature, zoned, electrically-heated particulate matter filter

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  16. Susanville District Heating District Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  17. Laser generated proton beam focusing and high temperature isochoric heating of solid matter

    SciTech Connect

    Snavely, R. A.; Hatchett, S. P.; Key, M. H.; Langdon, A. B.; Lasinski, B. F.; MacKinnon, A. J.; Patel, P.; Town, R.; Wilks, S. C.; Zhang, B.; Akli, K.; Hey, D.; King, J.; Chen, Z.; Izawa, Y.; Kitagawa, Y.; Kodama, R.; Lei, A.; Tampo, M.; Tanaka, K. A.

    2007-09-15

    The results of laser-driven proton beam focusing and heating with a high energy (170 J) short pulse are reported. Thin hemispherical aluminum shells are illuminated with the Gekko petawatt laser using 1 {mu}m light at intensities of {approx}3x10{sup 18} W/cm{sup 2} and measured heating of thin Al slabs. The heating pattern is inferred by imaging visible and extreme-ultraviolet light Planckian emission from the rear surface. When Al slabs 100 {mu}m thick were placed at distances spanning the proton focus beam waist, the highest temperatures were produced at 0.94x the hemisphere radius beyond the equatorial plane. Isochoric heating temperatures reached 81 eV in 15 {mu}m thick foils. The heating with a three-dimensional Monte Carlo model of proton transport with self-consistent heating and proton stopping in hot plasma was modeled.

  18. Chopped sample heating for quantitative profile analysis of low energy electron diffraction spots at high temperatures

    SciTech Connect

    Kury, P.; Zahl, P.; Horn-von Hoegen, M.; Voges, C.; Frischat, H.; Guenter, H.-L.; Pfnuer, H.; Henzler, M.

    2004-11-01

    Spot profile analysis low energy electron diffraction (SPA-LEED) is one of the most versatile and powerful methods for the determination of the structure and morphology of surfaces even at elevated temperatures. In setups where the sample is heated directly by an electric current, the resolution of the diffraction images at higher temperatures can be heavily degraded due to the inhomogeneous electric and magnetic fields around the sample. Here we present an easily applicable modification of the common data acquisition hardware of the SPA-LEED, which enables the system to work in a pulsed heating mode: Instead of heating the sample with a constant current, a square wave is used and electron counting is only performed when the current through the sample vanishes. Thus, undistorted diffration images can be acquired at high temperatures.

  19. Alternative Passive Decay-Heat Systems for the Advanced High-Temperature Reactor

    SciTech Connect

    Forsberg, Charles W.

    2006-07-01

    The Advanced High-Temperature Reactor (AHTR) is a low-pressure, liquid-salt-cooled high-temperature reactor for the production of electricity and hydrogen. The high-temperature (950 deg C) variant is defined as the liquid-salt-cooled very high-temperature reactor (LS-VHTR). The AHTR has the same safety goals and uses the same graphite-matrix coated particle fuel as do modular high-temperature gas-cooled reactors. However, the large AHTR power output [2400 to 4000 MW(t)] implies the need for a different type of passive decay-heat removal system. Because the AHTR is a low-pressure, liquid-cooled reactor like sodium-cooled reactors, similar types of decay-heat-removal systems can be used. Three classes of passive decay heat removal systems have been identified: the reactor vessel auxiliary cooling system which is similar to that proposed for the General Electric S-PRISM sodium-cooled fast reactor; the direct reactor auxiliary cooling system, which is similar to that used in the Experimental Breeder Reactor-II; and a new pool reactor auxiliary cooling system. These options are described and compared. (author)

  20. Fabrication and Design Aspects of High-Temperature Compact Diffusion Bonded Heat Exchangers

    SciTech Connect

    Mylavarapu, Sai K.; Sun, Xiaodong; Christensen, Richard N.; Glosup, Richard E.; Unocic, Raymond R

    2012-01-01

    The very high temperature reactor (VHTR), using gas-cooled reactor technology, is one of the six reactor concepts selected by the Generation IV International Forum and is anticipated to be the reactor type for the next generation nuclear plant (NGNP). In this type of reactor with an indirect power cycle system, a high-temperature and high integrity intermediate heat exchanger (IHX) with high effectiveness is required to efficiently transfer the core thermal output to secondary fluid for electricity production, process heat, or hydrogen cogeneration. The current Technology Readiness Level status issued by NGNP to all components associated with the IHX for reactor core outlet temperatures of 750-800oC is 3 on a scale of 1 to 10 with 10 being the most ready. At present, there is no proven high-temperature IHX concept for VHTRs. Amongst the various potential IHX concepts available, diffusion bonded heat exchangers (henceforth called printed circuit heat exchangers, or PCHEs) appear promising for NGNP applications. The design and fabrication of this key component of NGNP is the primary focus of this paper. In the current study, two PCHEs were fabricated using Alloy 617 plates and will be experimentally investigated for their thermal-hydraulic performance in a high-temperature helium test facility (HTHF). The HTHF was primarily designed and constructed to test the thermal-hydraulic performance of PCHEs The test facility is primarily of Alloy 800H construction and is designed to facilitate experiments at temperatures and pressures up to 800oC and 3 MPa, respectively. The PCHE fabrication related processes, i.e., photochemical machining and diffusion bonding are briefly discussed for Alloy 617 plates. Diffusion bonding of Alloy 617 plates with and without a Ni interlayer is discussed. Furthermore, preliminary microstructural and mechanical characterization studies of representative diffusion bonded Alloy 617 specimens are presented.

  1. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    SciTech Connect

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.

  2. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    SciTech Connect

    Waye, S. K.; Lustbader, J.; Musselman, M.; King, C.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  3. Project Profile: Halide and Oxy-Halide Eutectic Systems for High-Performance, High-Temperature Heat Transfer Fluids

    Energy.gov [DOE]

    The University of Arizona along with partners at Arizona State University and Georgia Institute of Technology, under the 2012 Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids funding opportunity, is investigating the use of halide salts with oxy-halide additives as a heat transfer fluid (HTF) in concentrating solar power (CSP) systems operating at temperatures greater than 800°C. By allowing higher temperature operation, CSP systems can achieve greater efficiencies and thereby reduce the overall system cost.

  4. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOEpatents

    Im, K.H.; Ahluwalia, R.K.

    1994-10-18

    A radiative heat transfer mechanism in a furnace is described having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits. 7 figs.

  5. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOEpatents

    Im, Kwan H.; Ahluwalia, Rajesh K.

    1994-01-01

    A radiative heat transfer mechanism in a furnace having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits.

  6. High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Tri-Generation of Power, Heat & H2 from Biogas High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas Success story about using waste water treatment gas for hydrogen production at UC Irvine. Presented by Jack Brouwer, UC Irvine, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado. june2012_biogas_workshop_brouwer.pdf (4.1 MB) More Documents & Publications U.S. DOE Webinar Series - 2011-2012 Hydrogen

  7. Fabrication and Design Aspects of High-Temperature Compact Diffusion Bonded Heat Exchangers

    SciTech Connect

    Sai K. Mylavarapu; Richard N. Christensen; Raymond R. Unocic; Richard E. Glosup; Mike W. Patterson

    2012-08-01

    The Very High Temperature Reactor (VHTR) using gas-cooled reactor technology is anticipated to be the reactor type for the Next Generation Nuclear Plant (NGNP). In this reactor concept with an indirect power cycle system, a high-temperature and high integrity Intermediate Heat Exchanger (IHX) with high effectiveness is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation, hydrogen production, and/or industrial process heat applications. At present, there is no proven IHX concept for VHTRs. The current Technology Readiness Level (TRL) status issued by NGNP to all components associated with the IHX for reduced nominal reactor outlet temperatures of 750800 degrees C is 3 on a 110 scale, with 10 indicating omplete technological maturity. Among the various potential IHX concepts available, diffusion bonded heat exchangers (henceforth called printed circuit heat exchangers, or PCHEs) appear promising for NGNP applications. The design and fabrication of this key component of NGNP with Alloy 617, a candidate high-temperature structural material for NGNP applications, are the primary focus of this paper. In the current study, diffusion bonding of Alloy 617 has been demonstrated, although the optimum diffusion bonding process parameters to engineer a quasi interface-free joint are yet to be determined. The PCHE fabrication related processes, i.e., photochemical etching and diffusion bonding are discussed for Alloy 617 plates. In addition, the authors experiences with these non-conventional machining and joining techniques are discussed. Two PCHEs are fabricated using Alloy 617 plates and are being experimentally investigated for their thermal-hydraulic performance in a High-Temperature Helium Facility (HTHF). The HTHF is primarily of Alloy 800H construction and is designed to facilitate experiments at temperatures and pressures up to 800 degrees C and 3 MPa, respectively. Furthermore, some preliminary microstructural and

  8. High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    National Fuel Cell Research Center, 2012 1/22 High Temperature Fuel Cell Tri-Generation of Power, Heat & H 2 from Biogas Jack Brouwer, Ph.D. June 19, 2012 DOE/ NREL Biogas Workshop - Golden, CO © National Fuel Cell Research Center, 2012 2/22 Outline * Introduction and Background * Tri-Generation/Poly-Generation Analyses * OCSD Project Introduction © National Fuel Cell Research Center, 2012 3/22 Introduction and Background * Hydrogen fuel cell vehicle performance is outstanding * Energy

  9. High temperature furnace

    DOEpatents

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  10. High temperature solid lubricant materials for heavy duty and advanced heat engines

    SciTech Connect

    DellaCorte, C.; Wood, J.C.

    1994-10-01

    Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

  11. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  12. Technology Development Roadmap for the Advanced High Temperature Reactor Secondary Heat Exchanger

    SciTech Connect

    P. Sabharwall; M. McCllar; A. Siahpush; D. Clark; M. Patterson; J. Collins

    2012-09-01

    This Technology Development Roadmap (TDRM) presents the path forward for deploying large-scale molten salt secondary heat exchangers (MS-SHX) and recognizing the benefits of using molten salt as the heat transport medium for advanced high temperature reactors (AHTR). This TDRM will aid in the development and selection of the required heat exchanger for: power production (the first anticipated process heat application), hydrogen production, steam methane reforming, methanol to gasoline production, or ammonia production. This TDRM (a) establishes the current state of molten salt SHX technology readiness, (b) defines a path forward that systematically and effectively tests this technology to overcome areas of uncertainty, (c) demonstrates the achievement of an appropriate level of maturity prior to construction and plant operation, and (d) identifies issues and prioritizes future work for maturing the state of SHX technology. This study discusses the results of a preliminary design analysis of the SHX and explains the evaluation and selection methodology. An important engineering challenge will be to prevent the molten salt from freezing during normal and off-normal operations because of its high melting temperature (390°C for KF ZrF4). The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The need for efficiency, compactness, and safety challenge the capabilities of existing heat exchanger technology. The description of potential heat exchanger configurations or designs (such as printed circuit, spiral or helical coiled, ceramic, plate and fin, and plate type) were covered in an earlier report (Sabharwall et al. 2011). Significant future work, much of which is suggested in this report, is needed before the benefits and full potential of the AHTR can be realized. The execution of this TDRM will focuses

  13. Solid State Joining of High Temperature Alloy Tubes for USC and Heat-Exchanger Systems

    SciTech Connect

    Bimal Kad

    2011-12-31

    The principal objective of this project was to develop materials enabling joining technologies for use in forward looking heat-exchanger fabrication in Brayton cycle HIPPS, IGCC, FutureGen concepts capable of operating at temperatures in excess of 1000{degree}C as well as conventional technology upgrades via Ultra Super-Critical (USC) Rankine-cycle boilers capable of operating at 760{degree}C (1400F)/38.5MPa (5500psi) steam, while still using coal as the principal fossil fuel. The underlying mission in Rankine, Brayton or Brayton-Rankine, or IGCC combined cycle heat engine is a steady quest to improving operating efficiency while mitigating global environmental concerns. There has been a progressive move to higher overall cycle efficiencies, and in the case of fossil fuels this has accelerated recently in part because of concerns about greenhouse gas emissions, notably CO{sub 2}. For a heat engine, the overall efficiency is closely related to the difference between the highest temperature in the cycle and the lowest temperature. In most cases, efficiency gains are prompted by an increase in the high temperature, and this in turn has led to increasing demands on the materials of construction used in the high temperature end of the systems. Our migration to new advanced Ni-base and Oxide Dispersion Strengthened (ODS) alloys poses significant fabrication challenges, as these materials are not readily weldable or the weld performs poorly in the high temperature creep regime. Thus the joining challenge is two-fold to a) devise appropriate joining methodologies for similar/dissimilar Ni-base and ODS alloys while b) preserving the near baseline creep performance in the welded region. Our program focus is on solid state joining of similar and dissimilar metals/alloys for heat exchanger components currently under consideration for the USC, HIPPS and IGCC power systems. The emphasis is to manipulate the joining methods and variables available to optimize joint creep

  14. Concept Design for a High Temperature Helium Brayton Cycle with Interstage Heating and Cooling

    SciTech Connect

    Wright, Steven A.; Vernon, Milton E.; Pickard, Paul S.

    2013-12-01

    The primary metric for the viability of these next generation nuclear power plants will be the cost of generated electricity. One important component in achieving these objectives is the development of power conversion technologies that maximize the electrical power output of these advanced reactors for a given thermal power. More efficient power conversion systems can directly reduce the cost of nuclear generated electricity and therefore advanced power conversion cycle research is an important area of investigation for the Generation IV Program. Brayton cycles using inert or other gas working fluids, have the potential to take advantage of the higher outlet temperature range of Generation IV systems and allow substantial increases in nuclear power conversion efficiency, and potentially reductions in power conversion system capital costs compared to the steam Rankine cycle used in current light water reactors. For the Very High Temperature Reactor (VHTR), Helium Brayton cycles which can operate in the 900 to 950 C range have been the focus of power conversion research. Previous Generation IV studies examined several options for He Brayton cycles that could increase efficiency with acceptable capital cost implications. At these high outlet temperatures, Interstage Heating and Cooling (IHC) was shown to provide significant efficiency improvement (a few to 12%) but required increased system complexity and therefore had potential for increased costs. These scoping studies identified the potential for increased efficiency, but a more detailed analysis of the turbomachinery and heat exchanger sizes and costs was needed to determine whether this approach could be cost effective. The purpose of this study is to examine the turbomachinery and heat exchanger implications of interstage heating and cooling configurations. In general, this analysis illustrates that these engineering considerations introduce new constraints to the design of IHC systems that may require

  15. Applications of high-temperature solar heat to the production of selected fuels and chemicals

    SciTech Connect

    Beall, S.E. Jr.; Bamberger, C.E.; Goeller, H.A.

    1981-07-01

    An attempt is made to judge whether solar heat in the 500 K to 2500 K temperature range might be economical for some important fuel- and chemical-production processes. Previous work in related areas is reviewed and the chemicals aluminum oxide (and bauxite), calcium sulfate (and gypsum), and calcium oxide (lime) chosen for detailed study. In addition to reviewing the energy needs of the more common bulk chemicals, several innovative processes requiring heat in the 1500 to 2500 K range were investigated. Hydrogen production by several thermochemical means, carbon monoxide production by thermochemical and direct thermal dissociation, and nitrogen fixation by direct thermal reaction of nitrogen and oxygen in air were considered. The engineering feasibility of the processes is discussed. The problem of matching the conventional and innovative processes to a high-temperature solar supply is studied. Some solar-thermal power plants of current designs are examined and several advanced concepts of highly concentrating systems are considered for very high-temperature applications. Conclusions and recommendations are presented.

  16. Candidate alloys for cost-effective, high-efficiency, high-temperature compact/foil heat-exchangers

    SciTech Connect

    Evans, Neal D; Maziasz, Philip J; Shingledecker, John P; Pint, Bruce A; Yamamoto, Yukinori

    2007-01-01

    Solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) systems operate at high temperatures (up to 1000 C and 650 C, respectively), which makes them especially attractive sources for combined heat and power (CHP) cogeneration. However, improvements in the efficiency of heat exchange in these fuel cells require both development and careful processing of advanced cost-effective alloys for use in such high-temperature service conditions. The high-temperature properties of both sheet and foil forms of several alloys being considered for use in compact heat-exchangers (recuperators) have been characterized. Mechanical and creep-rupture testing, oxidation studies, and microstructural studies have been performed on commercially available sheet and foil forms of alloy 347, alloys 625, HR230, HR120, and the new AL20-25+Nb. These studies have led to a mechanistic understanding of the responses of these alloys to anticipated service conditions, and suggest that these alloys developed for gas- and micro-turbine recuperator applications are also suitable for use in fuel cell heat-exchangers. Additional work is still required to achieve foil forms with creep life comparable to thicker-section wrought product forms of the same alloys.

  17. KEY DESIGN REQUIREMENTS FOR THE HIGH TEMPERATURE GAS-COOLED REACTOR NUCLEAR HEAT SUPPLY SYSTEM

    SciTech Connect

    L.E. Demick

    2010-09-01

    Key requirements that affect the design of the high temperature gas-cooled reactor nuclear heat supply system (HTGR-NHSS) as the NGNP Project progresses through the design, licensing, construction and testing of the first of a kind HTGR based plant are summarized. These requirements derive from pre-conceptual design development completed to-date by HTGR Suppliers, collaboration with potential end users of the HTGR technology to identify energy needs, evaluation of integration of the HTGR technology with industrial processes and recommendations of the NGNP Project Senior Advisory Group.

  18. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02

    A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  19. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1988-01-01

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  20. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1988-01-05

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  1. Project Profile: High-Temperature Particle Heat Exchanger for sCO2 Power Cycles (SuNLaMP)

    Energy.gov [DOE]

    This project is designing, developing, and testing a supercritical carbon dioxide (sCO2) heat exchanger that operates at temperatures higher than 720°C and record-high sCO2 pressures. In sCO2 heat exchangers, heat is transferred from hot particles to carbon dioxide, which expands in a turbine to generate electricity. Industry experience with similar heat exchangers is limited to lower pressures, lower temperatures, or alternative fluids like steam or water. Sandia is partnering with three experienced heat exchanger manufacturers to develop several designs that achieve both high performance and low cost. A prototype unit will be manufactured and tested to confirm key metrics for performance and cost. This project builds off of the High-Temperature Falling Particle Receiver project in the 2012 Concentrating Solar Power (CSP) SunShot R&D funding program.

  2. A High-Temperature Fuel Cell to Provide On-Site Process Reducing Gas, Clean Power, and Heat

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combined Heat, Hydrogen, and Power System A High-Temperature Fuel Cell to Provide On-Site Process Reducing Gas, Clean Power, and Heat Introduction In order for metal products to have desired properties, most metal is thermally processed at a high temperature one or more times under a controlled atmosphere. Many different thermal operations are used including oxide reduction, annealing, brazing, sintering, and carburizing. A mixture of hydrogen and nitrogen gas often provides a reducing

  3. Development of a high-temperature erosion monitor for FBC (fluidized bed combustion) heat exchanger tubes

    SciTech Connect

    Reimann, K.J.

    1990-05-01

    Metal wastage in tubing of heat exchangers used in fluidized bed combustion (FBC) could affect plant operation and threaten the successful development of FBC technology. Monitoring of such wastage during operation would be very beneficial. The development of a high-temperature erosion monitor was undertaken as part of a larger program to understand and ameliorate wastage processes. Two sensor principles, i.e., electromagnetic acoustic and piezoelectric transducers based on time-of-flight measurements, were evaluated. Spatial restrictions and high-energy requirements of electromagnetic acoustic transducers favored piezoelectric transducers as a prototype. Requirements for good coupling between sensor and tubing led to the exploration of two methods for accomplishing this task: pressure coupling and brazing. Initial disappointments with brazing led to the construction of a pressure-coupled transducer that was tested successfully to temperatures of up to 500{degree}C. A brazing method to bond the lithium niobate crystal to stainless steel was finally perfected, but will require additional work for brazing to ferritic steel. The prototype pressure-coupled transducer also needs more development to compensate for the expansion of components and oxidation of coupling surfaces. 3 refs., 15 figs., 1 tab.

  4. Soliton mechanism of the uranium nitride microdynamics and heat conductivity at high temperatures

    SciTech Connect

    Semenov, V. A.; Dubovsky, O. A. Orlov, A. V.

    2011-12-15

    The microdynamics of soliton waves and localized modes of nonlinear acoustic and optical oscillations in uranium nitride has been investigated. It is shown that, upon heating, the energies of solitons in the gap between the optical and acoustic phonon bands increase, while the energies of local modes decrease. The experimentally observed quasi-resonance features, which are shifted in the gap with a change in temperature, can be manifestations of the revealed soliton waves and local modes. The microdynamics of uranium nitride heat conductivity with the stochastic generation of the observed solitons and local modes at remote energy absorption have been investigated. The temperature dependence of the heat conductivity coefficient has been determined from the temperature gradient and energy flux within the standard approach (which is to be generalized).

  5. Vitrification of high level nuclear waste inside ambient temperature disposal containers using inductive heating: The SMILE system

    SciTech Connect

    Powell, J.; Reich, M.; Barletta, R.

    1996-03-01

    A new approach, termed SMILE (Small Module Inductively Loaded Energy), for the vitrification of high level nuclear wastes (HLW) is described. Present vitrification systems liquefy the HLW solids and associated frit material in large high temperature melters. The molten mix is then poured into small ({approximately}1 m{sup 3}) disposal canisters, where it solidifies and cools. SMILE eliminates the separate, large high temperature melter. Instead, the BLW solids and frit melt inside the final disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE modules and the inductive heating process are designed so that the outer stainless can of the module remains at near ambient temperature during the process cycle. Module dimensions are similar to those of present disposal containers. The can is thermally insulated from the high temperature inner container by a thin layer of refractory alumina firebricks. The inner container is a graphite crucible lined with a dense alumina refractory that holds the HLW and fiit materials. After the SMILE module is loaded with a slurry of HLW and frit solids, an external multi-turn coil is energized with 30-cycle AC current. The enclosing external coil is the primary of a power transformer, with the graphite crucible acting as a single turn ``secondary.`` The induced current in the ``secondary`` heats the graphite, which in turn heats the HLW and frit materials. The first stage of the heating process is carried out at an intermediate temperature to drive off remnant liquid water and water of hydration, which takes about 1 day. The small fill/vent tube to the module is then sealed off and the interior temperature raised to the vitrification range, i.e., {approximately}1200C. Liquefaction is complete after approximately 1 day. The inductive heating then ceases and the module slowly loses heat to the environment, allowing the molten material to solidify and cool down to ambient temperature.

  6. Efficient Heat Storage Materials: Metallic Composites Phase-Change Materials for High-Temperature Thermal Energy Storage

    SciTech Connect

    2011-11-21

    HEATS Project: MIT is developing efficient heat storage materials for use in solar and nuclear power plants. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the suns not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. MIT is designing nanostructured heat storage materials that can store a large amount of heat per unit mass and volume. To do this, MIT is using phase change materials, which absorb a large amount of latent heat to melt from solid to liquid. MITs heat storage materials are designed to melt at high temperatures and conduct heat wellthis makes them efficient at storing and releasing heat and enhances the overall efficiency of the thermal storage and energy-generation process. MITs low-cost heat storage materials also have a long life cycle, which further enhances their efficiency.

  7. Coal plasticity at high heating rates and temperatures. Final technical progress report

    SciTech Connect

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.

    1995-05-01

    Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

  8. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power: High-Temperature Static Experiments

    SciTech Connect

    Bell, Jason R; Joseph III, Robert Anthony; McFarlane, Joanna; Qualls, A L

    2012-05-01

    Concentrating solar power (CSP) may be an alternative to generating electricity from fossil fuels; however, greater thermodynamic efficiency is needed to improve the economics of CSP operation. One way of achieving improved efficiency is to operate the CSP loop at higher temperatures than the current maximum of about 400 C. ORNL has been investigating a synthetic polyaromatic oil for use in a trough type CSP collector, to temperatures up to 500 C. The oil was chosen because of its thermal stability and calculated low vapor and critical pressures. The oil has been synthesized using a Suzuki coupling mechanism and has been tested in static heating experiments. Analysis has been conducted on the oil after heating and suggests that there may be some isomerization taking place at 450 C, but the fluid appears to remain stable above that temperature. Tests were conducted over one week and further tests are planned to investigate stabilities after heating for months and in flow configurations. Thermochemical data and thermophysical predictions indicate that substituted polyaromatic hydrocarbons may be useful for applications that run at higher temperatures than possible with commercial fluids such as Therminol-VP1.

  9. Kethcum District Heating District Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  10. Midland District Heating District Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

  11. Philip District Heating District Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  12. Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility

    SciTech Connect

    Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup; Richard N. Christensen; Michael W. Patterson

    2014-04-01

    In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750800 C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot and 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 C/1.02.7 MPa for the cold side and 208790 C/1.02.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various hydrodynamic

  13. Pagosa Springs District Heating District Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  14. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    DOEpatents

    Anton, Donald L.; Lemkey, Franklin D.

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  15. Apex-oxygen-atom tunneling as source of anomalous low-temperature specific heat in high- T sub c superconductors

    SciTech Connect

    Zoli, M. )

    1991-10-01

    A model is proposed in which the quantum tunneling of the apex oxygen atom is coupled to the quasiparticle excitations of the superconducting state. A path-integral formulation allows one to renormalize the coupling constant as a function of temperature. It is shown that such a model can account for the anomalous low-temperature specific heat observed in high-{ital T}{sub {ital c}} YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} superconductors.

  16. Max Phase Materials And Coatings For High Temperature Heat Transfer Applications

    SciTech Connect

    Martinez-Rodriguez, M.; Garcia-Diaz, B.; Olson, L.; Fuentes, R.; Sindelar, R.

    2015-10-19

    Molten salts have been used as heat transfer fluids in a variety of applications within proposed Gen IV nuclear designs and in advanced power system such as Concentrating Solar Power (CSP). However, operating at elevated temperatures can cause corrosion in many materials. This work developed coating technologies for MAX phase materials on Haynes-230 and characterized the corrosion of the coatings in the presence of commercial MgCl2-KCl molten salt. Cold spraying of Ti2AlC and physical vapor deposition (PVD) of Ti2AlC or Zr2AlC were tested to determine the most effective form of coating MAX phases on structural substrates. Corrosion testing at 850°C for 100 hrs showed that 3.9 μm Ti2AlC by PVD was slightly protective while 117 μm Ti2AlC by cold spray and 3.6 μm Zr2AlC by PVD were completely protective. None of the tests showed decomposition of the coating (Ti or Zr) into the salt

  17. Performance of AGR-1 High-Temperature Reactor Fuel During Post-Irradiation Heating Tests

    SciTech Connect

    Morris, Robert Noel; Baldwin, Charles A; Hunn, John D; Demkowicz, Paul; Reber, Edward

    2014-01-01

    The fission product retention of irradiated low-enriched uranium oxide/uranium carbide TRISO fuel compacts from the AGR-1 experiment has been evaluated at temperatures of 1600 1800 C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4 to 19.1% FIMA have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium, and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 10-6 after 300 h at 1600 C or 100 h at 1800 C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 C, and 85Kr release was very low during the tests (particles with breached SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 C in one compact. Post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating layers to understand particle behavior.

  18. Performance of AGR-1 high-temperature reactor fuel during post-irradiation heating tests

    DOE PAGES [OSTI]

    Morris, Robert N.; Baldwin, Charles A.; Demkowicz, Paul A.; Hunn, John D.; Reber, Edward L.

    2016-05-18

    The fission product retention of irradiated low-enriched uranium oxide/uranium carbide tri-structural isotropic (TRISO) fuel compacts from the Advanced Gas-Cooled Reactor 1 (AGR-1) experiment has been evaluated at temperatures of 1600–1800 °C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4% to 19.1% fissions per initial metal atom (FIMA) have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium,more » and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 °C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 × 10–6 after 300 h at 1600 °C or 100 h at 1800 °C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 °C, and 85Kr release was very low during the tests (particles with failed SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 °C in one compact. As a result, post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating layers

  19. Feasibility Study of Secondary Heat Exchanger Concepts for the Advanced High Temperature Reactor

    SciTech Connect

    Piyush Sabharwall

    2011-09-01

    The work reported herein represents a significant step in the preliminary design of heat exchanger options (material options, thermal design, selection and evaluation methodology with existing challenges). The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production using either a subcritical or supercritical Rankine cycle.

  20. Intermediate Heat Transfer Loop Study for High Temperature Gas-Cooled Reactor

    SciTech Connect

    C. H. Oh; C. Davis; S. Sherman

    2008-08-01

    A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic and cycleefficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. This paper also includes a portion of stress analyses performed on pipe configurations.

  1. Fluoride-Salt-Cooled High-Temperature Reactor (FHR) for Power and Process Heat

    SciTech Connect

    Forsberg, Charles; Hu, Lin-wen; Peterson, Per; Sridharan, Kumar

    2015-01-21

    In 2011 the U.S. Department of Energy through its Nuclear Energy University Program (NEUP) awarded a 3- year integrated research project (IRP) to the Massachusetts Institute of Technology (MIT) and its partners at the University of California at Berkeley (UCB) and the University of Wisconsin at Madison (UW). The IRP included Westinghouse Electric Company and an advisory panel chaired by Regis Matzie that provided advice as the project progressed. The first sentence of the proposal stated the goals: The objective of this Integrated Research Project (IRP) is to develop a path forward to a commercially viable salt-cooled solid-fuel high-temperature reactor with superior economic, safety, waste, nonproliferation, and physical security characteristics compared to light-water reactors. This report summarizes major results of this research.

  2. Secondary heat recovery from low-permeability high-temperature reservoir: A possible project in the Larderello Field, Italy

    SciTech Connect

    Gianelli, G.; Squarci, P.; Capocecera, P.

    1997-12-31

    A project of fracture stimulation and secondary heat recovery from the metamorphic reservoir of the Larderello geothermal field could be developed in a next future. Geological and geophysical data suggest that the stimulation can enhance permeability and that the water injection can be recovered as steam. In particular, the area of the project is characterized by the presence of an important seismic reflector which has been explained assuming the presence of fractured rocks filled with high pressure fluids. Extensional and hydraulic fractures can present at temperatures of 300-350{degrees}C, and this makes the experiment of extreme interest.

  3. DOE MURI: Hig-Operating Temperature Heat Transfer Fluids for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Operating Temperature Liquid Metal Heat Transfer Fluids - FY13 Q2 High Operating Temperature Heat Transfer Fluids for Solar Thermal Power Generation FY13 Q1 Corrosion in Very ...

  4. Halide and Oxy-Halide Eutectic Systems for High-Performance, High-Temperature Heat Transfer Fluids (Fact Sheet)

    SciTech Connect

    Not Available

    2012-12-01

    The University of Arizona, Arizona Statue University (ASU), and Georgia Institute of Technology is one of the 2012 SunShot CSP R&D awardees for their Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids. This fact sheet explains the motivation, description, and impact of the project.

  5. The Development of an INL Capability for High Temperature Flow, Heat Transfer, and Thermal Energy Storage with Applications in Advanced Small Modular Reactors, High Temperature Heat Exchangers, Hybrid Energy Systems, and Dynamic Grid Energy Storage C

    SciTech Connect

    Sun, Xiaodong; Zhang, Xiaoqin; Kim, Inhun; O'Brien, James; Sabharwall, Piyush

    2014-10-01

    The overall goal of this project is to support Idaho National Laboratory in developing a new advanced high temperature multi fluid multi loop test facility that is aimed at investigating fluid flow and heat transfer, material corrosion, heat exchanger characteristics and instrumentation performance, among others, for nuclear applications. Specifically, preliminary research has been performed at The Ohio State University in the following areas: 1. A review of fluoride molten salts’ characteristics in thermal, corrosive, and compatibility performances. A recommendation for a salt selection is provided. Material candidates for both molten salt and helium flow loop have been identified. 2. A conceptual facility design that satisfies the multi loop (two coolant loops [i.e., fluoride molten salts and helium]) multi purpose (two operation modes [i.e., forced and natural circulation]) requirements. Schematic models are presented. The thermal hydraulic performances in a preliminary printed circuit heat exchanger (PCHE) design have been estimated. 3. An introduction of computational methods and models for pipe heat loss analysis and cases studies. Recommendations on insulation material selection have been provided. 4. An analysis of pipe pressure rating and sizing. Preliminary recommendations on pipe size selection have been provided. 5. A review of molten fluoride salt preparation and chemistry control. An introduction to the experience from the Molten Salt Reactor Experiment at Oak Ridge National Laboratory has been provided. 6. A review of some instruments and components to be used in the facility. Flowmeters and Grayloc connectors have been included. This report primarily presents the conclusions drawn from the extensive review of literatures in material selections and the facility design progress at the current stage. It provides some useful guidelines in insulation material and pipe size selection, as well as an introductory review of facility process and components.

  6. Litchfield Correctional Center District Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Litchfield Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature...

  7. Lakeview Residences Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Lakeview Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lakeview Residences Space Heating Low Temperature Geothermal Facility...

  8. Manzanita Estates District Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Manzanita Estates District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Manzanita Estates District Heating Low Temperature Geothermal Facility...

  9. Savings Project: Lower Water Heating Temperature | Department...

    Energy Saver

    Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Addthis Project Level Easy Energy Savings 4%-22% annually Time to Complete 2 hours Overall Cost 0 ...

  10. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Proposed two-stage TEG system with half-heusler as the first stage, and Bi2Te3 as the low temperature stage expected to show a 5% fuel efficiency improvement in vehicle platform under US06 drive cycle

  11. Development of high temperature liquid lubricants for low-heat rejection heavy duty diesel engines

    SciTech Connect

    Wiczynski, T.A.; Marolewski, T.A.

    1993-03-01

    Objective was to develop a liquid lubricant that will allow advanced diesel engines to operate at top ring reversal temperatures approaching 500 C and lubricant sump temperatures approaching 250 C. Base stock screening showed that aromatic esters and diesters has the lowest deposit level, compared to polyol esters, poly-alpha-olefins, or refined mineral oil of comparable viscosity. Classical aryl and alkyl ZDP antiwear additives are ineffective in reducing wear with aromatic esters; the phosphate ester was a much better antiwear additive, and polyol esters are more amenable to ZDP treatment. Zeolites and clays were evaluated for filtration.

  12. Performance of a CEBAF production cavity after high-temperature heat treatment

    SciTech Connect

    Kneisel, P.; Rao, M.

    1993-06-01

    CEBAF`s production cavities are tested in a vertical configuration after appropriate chemical surface treatment prior to installation into the accelerator. The performance of these cavities is excellent, often exceeding the specifications of E{sub acc}=5 MV/m at 2 K by factors of 2 to 3. In such cases the cavities are often limited by thermal-magnetic breakdown. A cavity that exhibited a limiting gradient of E{sub acc} {le} 16.4 MV/m has been heat-treated at 1400{degrees}C for 6 hours in the presence of titanium as a solid state gettering material to improve the thermal stability of the niobium. After the heat treatment a gradient of E{sub acc}=20.5 MV/m corresponding to a peak surface electric field of E{sub peak}=52 MV/m has been measured. In addition to the cavity results, data on thermal conductivity and tensile properties of samples which have undergone the same treatments as the cavity are reported.

  13. Low-temperature central heating

    SciTech Connect

    Colonna, A.; Dore, B.

    1982-01-01

    As more efficient condensing boilers are introduced and as more homeowners install effective insulation, engineers should consider two possibilities when designing new central-heating systems - the use of properly sized radiators operating at moderate water temperatures (100-120/sup 0/F) and the installation of heating systems under the floor, which ensures that the space heat is evenly distributed. In field tests, low-temperature radiators performed better than conventional models, with no significant adverse effect on comfort levels. G.D.F. also examined floating-late floor heaters, which incorporate an insulated concrete plate supporting a coiled, imbedded network of tubes with a floating concrete plate on top. Their essential advantages is the freeing of more living space to the occupants. Their use is recommended in multifamily dwelling rather than individual homes.

  14. High-Temperature Thermoelectric Materials Characterization for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  15. Improved Martensitic Steel for High Temperature Applications...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Improved Martensitic Steel for High Temperature Applications A stainless steel composition and heat treatment process for a high-temperature, titanium alloyed 9 Cr-1 molybdenum ...

  16. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  17. Halide and Oxy-Halide Eutectic Systems for High-Performance, High-Temperature Heat Transfer Fluids

    Energy.gov [DOE]

    This fact sheet details a SunShot-funded solar project led by the University of Arizona to using ab initio computational modeling along with rapid material screening methods to identify halide salt mixtures with a melting point below 250°C that are stable at temperatures well above 800°C. This research has the potential to help concentrating solar power systems achieve greater efficiencies and reduce overall costs.

  18. Ch. VII, Temperature, heat flow maps and temperature gradient...

    OpenEI (Open Energy Information) [EERE & EIA]

    Report: Ch. VII, Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation...

  19. Temperature, heat flow maps and temperature gradient holes |...

    OpenEI (Open Energy Information) [EERE & EIA]

    to library Report: Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Organization Colorado Geological Survey in Cooperation with the U.S....

  20. High Heat Flux Thermoelectric Module Using Standard Bulk Material...

    Energy.gov [DOE] (indexed site)

    Presents high heat flux thermoelectric module design for cooling using a novel V-shaped ... of a 100-Watt High Temperature Thermoelectric Generator Automotive Waste Heat ...

  1. High temperature storage loop :

    SciTech Connect

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  2. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  3. Thermal-Hydraulic Analyses of Heat Transfer Fluid Requirements and Characteristics for Coupling A Hydrogen Production Plant to a High-Temperature Nuclear Reactor

    SciTech Connect

    C. B. Davis; C. H. Oh; R. B. Barner; D. F. Wilson

    2005-06-01

    The Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the hightemperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant, may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. Seven possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermalhydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermalhydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The

  4. Design of an Online Fission Gas Monitoring System for Post-irradiation Examination Heating Tests of Coated Fuel Particles for High-Temperature Gas-Cooled Reactors

    SciTech Connect

    Dawn Scates

    2010-10-01

    A new Fission Gas Monitoring System (FGMS) has been designed at the Idaho National Laboratory (INL) for use of monitoring online fission gas-released during fuel heating tests. The FGMS will be used with the Fuel Accident Condition Simulator (FACS) at the Hot Fuels Examination Facility (HFEF) located at the Materials and Fuels Complex (MFC) within the INL campus. Preselected Advanced Gas Reactor (AGR) TRISO (Tri-isotropic) fuel compacts will undergo testing to assess the fission product retention characteristics under high temperature accident conditions. The FACS furnace will heat the fuel to temperatures up to 2,000ºC in a helium atmosphere. Released fission products such as Kr and Xe isotopes will be transported downstream to the FGMS where they will accumulate in cryogenically cooledcollection traps and monitored with High Purity Germanium (HPGe) detectors during the heating process. Special INL developed software will be used to monitor the accumulated fission products and will report data in near real-time. These data will then be reported in a form that can be readily available to the INL reporting database. This paper describes the details of the FGMS design, the control and acqusition software, system calibration, and the expected performance of the FGMS. Preliminary online data may be available for presentation at the High Temperature Reactor (HTR) conference.

  5. Heat and corrosion resistant cast CN-12 type stainless steel with improved high temperature strength and ductility

    DOEpatents

    Mazias, Philip J.; McGreevy, Tim; Pollard,Michael James; Siebenaler, Chad W.; Swindeman, Robert W.

    2007-08-14

    A cast stainless steel alloy and articles formed therefrom containing about 0.5 wt. % to about 10 wt. % manganese, 0.02 wt. % to 0.50 wt. % N, and less than 0.15 wt. % sulfur provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. Alloys of the present invention also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon. Such solution strengthening enhances the high temperature precipitation-strengthening benefits of fine dispersions of NbC. Such solid solution effects also enhance the stability of the austenite matrix from resistance to excess sigma phase or chrome carbide formation at higher service temperatures. The presence of sulfides is substantially eliminated.

  6. High-temperature thermocouples and related methods

    DOEpatents

    Rempe, Joy L.; Knudson, Darrell L.; Condie, Keith G.; Wilkins, S. Curt

    2011-01-18

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  7. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Energy.gov [DOE] (indexed site)

    Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Multi-physics modeling of thermoelectric generators for waste ...

  8. High Temperature Thermoelectric Materials Characterization for...

    Energy.gov [DOE] (indexed site)

    lmp06wang.pdf (952.04 KB) More Documents & Publications High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the ...

  9. Heat and corrosion resistant cast CF8C stainless steel with improved high temperature strength and ductility

    DOEpatents

    Maziasz, Philip J.; McGreevy, Tim; Pollard, Michael James; Siebenaler, Chad W.; Swindeman, Robert W.

    2010-08-17

    A CF8C type stainless steel alloy and articles formed therefrom containing about 18.0 weight percent to about 22.0 weight percent chromium and 11.0 weight percent to about 14.0 weight percent nickel; from about 0.05 weight percent to about 0.15 weight percent carbon; from about 2.0 weight percent to about 10.0 weight percent manganese; and from about 0.3 weight percent to about 1.5 weight percent niobium. The present alloys further include less than 0.15 weight percent sulfur which provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. The disclosed alloys also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon.

  10. Heat and corrosion resistant cast CF8C stainless steel with improved high temperature strength and ductility

    DOEpatents

    Maziasz, Philip J.; McGreevy, Tim; Pollard, Michael James; Siebenaler, Chad W.; Swindeman, Robert W.

    2006-12-26

    A CF8C type stainless steel alloy and articles formed therefrom containing about 18.0 weight percent to about 22.0 weight percent chromium and 11.0 weight percent to about 14.0 weight percent nickel; from about 0.05 weight percent to about 0.15 weight percent carbon; from about 2.0 weight percent to about 10.0 weight percent manganese; and from about 0.3 weight percent to about 1.5 weight percent niobium. The present alloys further include less than 0.15 weight percent sulfur which provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. The disclosed alloys also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon.

  11. ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "

    Energy Information Administration (EIA) (indexed site)

    3 Relative Standard Errors for Table 8.3;" " Unit: Percents." ,,,"Establishments" ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "

  12. " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "

    Energy Information Administration (EIA) (indexed site)

    3 Relative Standard Errors for Table 8.3;" " Unit: Percents." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," " " "," "

  13. High temperature sensor

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  14. Proactive Design of n-Type (In, Ce) Filled Skutterudites Enabling High-Temperature Waste Heat Recovery

    Energy.gov [DOE]

    Thermoelectric and structural properties of n-type (In, Ce) filled skutterudites including power factors and ZT as a function of temperature are presented

  15. Wiesbaden Motel & Health Resort Space Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Heating Low Temperature Geothermal Facility Facility Wiesbaden Motel & Health Resort Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates...

  16. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Energy.gov [DOE] (indexed site)

    Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for ...

  17. Electrolysis - High Temperature - Hydrogen - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electrolysis - High Temperature - Hydrogen Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL has developed a high-temperature process the utilizes solid oxide fuel cells that are operated in the electrolytic mode. The first process includes combining a high-temperature heat source (e.g. nuclear reactor) with a hydrogen production facility by taking a stream of water and heating it and then splitting the water into hydrogen and oxygen product streams. A

  18. Development of a 500 Watt High Temperature Thermoelectric Generator...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Development of a 100-Watt High Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program Automotive Waste Heat Conversion ...

  19. Effects of turbulence model on convective heat transfer of coolant flow in a prismatic very high temperature reactor core

    SciTech Connect

    Lee, S. N.; Tak, N. I.; Kim, M. H.; Noh, J. M.

    2012-07-01

    The existing study of Spall et al. shows that only {nu}{sup 2}-f turbulence model well matches with the experimental data of Shehata and McEligot which were obtained under strongly heated gas flows. Significant over-predictions in those literatures were observed in the convective heat transfer with the other famous turbulence models such as the k-{epsilon} and k-{omega} models. In spite of such good evidence about the performance of the{nu}{sup 2}-f model, the application of the {nu}{sup 2}-f model to the thermo-fluid analysis of a prismatic core is very rare. In this paper, therefore, the convective heat transfer of the coolant flow in a prismatic core has been investigated using the {nu}{sup 2}-f model. Computational fluid dynamics (CFD) calculations have been carried out for the typical unit cell geometry of a prismatic fuel column with typical operating conditions of prismatic designs. The tested Reynolds numbers of the coolant flow are 10,000, 20,000, 30,000 and 50,000. The predicted Nusselt numbers with the {nu}{sup 2}-f model are compared with the results by the other turbulence models (k-{epsilon} and SST) as well as the empirical correlations. (authors)

  20. Canon City Area Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Canon City Area Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Canon City Area Space Heating Low Temperature Geothermal Facility Facility Canon...

  1. Warren Estates District Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Warren Estates District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warren Estates District Heating Low Temperature Geothermal Facility Facility...

  2. Elko County School District District Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Elko County School District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko County School District District Heating Low Temperature...

  3. Idaho Capitol Mall District Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Idaho Capitol Mall District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Idaho Capitol Mall District Heating Low Temperature Geothermal Facility...

  4. Fort Boise Veteran's Hospital District Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fort Boise Veteran's Hospital District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fort Boise Veteran's Hospital District Heating Low Temperature...

  5. Klamath County Shops Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Shops Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath County Shops Space Heating Low Temperature Geothermal Facility Facility Klamath...

  6. Hunters Hot Spring Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Facility Hunters...

  7. Medical Center Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Medical Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Medical Center Space Heating Low Temperature Geothermal Facility Facility Medical...

  8. Corral Space Heating Low Temperature Geothermal Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Corral Space Heating Low Temperature Geothermal Facility Facility Corral Sector Geothermal energy...

  9. The Wilderness Lodge Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name The Wilderness Lodge Space Heating Low Temperature Geothermal Facility Facility The Wilderness...

  10. Boulder Hot Springs Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boulder Hot Springs Space Heating Low Temperature Geothermal Facility Facility Boulder Hot...

  11. Manley Hot Springs Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Manley Hot Springs Space Heating Low Temperature Geothermal Facility Facility Manley Hot Springs...

  12. Jump Steady Resort Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump Steady Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jump Steady Resort Space Heating Low Temperature Geothermal Facility Facility...

  13. Circle Hot Springs Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Circle Hot Springs Space Heating Low Temperature Geothermal Facility Facility Circle Hot Springs...

  14. Klamath Schools (7) Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Schools (7) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Schools (7) Space Heating Low Temperature Geothermal Facility Facility...

  15. Health Spa Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Spa Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Health Spa Space Heating Low Temperature Geothermal Facility Facility Glenwood Springs Health...

  16. Desert Hot Springs Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Desert Hot Springs Space Heating Low Temperature Geothermal Facility Facility Desert Hot...

  17. Vale Residences Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vale Residences Space Heating Low Temperature Geothermal Facility Facility Vale...

  18. Twin Peaks Motel Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Peaks Motel Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Twin Peaks Motel Space Heating Low Temperature Geothermal Facility Facility Twin...

  19. Lava Hot Springs Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lava Hot Springs Space Heating Low Temperature Geothermal Facility Facility Lava Hot Springs...

  20. Hot Sulphur Springs Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Sulphur Springs Space Heating Low Temperature Geothermal Facility Facility Hot Sulphur...

  1. Medical Hot Springs Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Medical Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Medical Hot Springs Space Heating Low Temperature Geothermal Facility...

  2. Klamath Residence (500) Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Residence (500) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Residence (500) Space Heating Low Temperature Geothermal Facility...

  3. Van Norman Residences Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Norman Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Van Norman Residences Space Heating Low Temperature Geothermal Facility...

  4. Cottonwood Hot Springs Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cottonwood Hot Springs Space Heating Low Temperature Geothermal Facility Facility...

  5. Stroppel Hotel Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Stroppel Hotel Space Heating Low Temperature Geothermal Facility Facility Stroppel Hotel Sector...

  6. Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Facility Tecopa Hot Springs...

  7. Walley's Hot Springs Resort Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Walley's...

  8. Vale Slaughter House Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Slaughter House Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vale Slaughter House Space Heating Low Temperature Geothermal Facility Facility...

  9. Arrowhead Hot Springs Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Arrowhead Hot Springs Space Heating Low Temperature Geothermal Facility Facility...

  10. Box Canyon Motel Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Canyon Motel Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Box Canyon Motel Space Heating Low Temperature Geothermal Facility Facility Box...

  11. Melozi Space Heating Low Temperature Geothermal Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Melozi Space Heating Low Temperature Geothermal Facility Facility Melozi Sector Geothermal energy...

  12. Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Fairmont...

  13. Maywood Industries of Oregon Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Maywood Industries of Oregon Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Maywood Industries of Oregon Space Heating Low Temperature...

  14. Lolo Hot Springs Resort Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Lolo Hot...

  15. Vichy Hot Springs Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Facility Vichy Hot Springs...

  16. Buckhorn Mineral Wells Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Buckhorn Mineral Wells Space Heating Low Temperature Geothermal Facility Facility Buckhorn...

  17. Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Motel & Trailer Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal...

  18. Baranof Space Heating Low Temperature Geothermal Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Baranof Space Heating Low Temperature Geothermal Facility Facility Baranof Sector Geothermal...

  19. Steamboat Villa Hot Springs Spa Space Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal Facility Facility...

  20. White Sulphur Springs Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sulphur Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name White Sulphur Springs Space Heating Low Temperature Geothermal Facility Facility...

  1. Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal Facility Facility Waunita Hot...

  2. Twin Springs Resort Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Twin Springs Resort Space Heating Low Temperature Geothermal Facility Facility Twin Springs...

  3. Pagosa Springs Private Wells Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Private Wells Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs Private Wells Space Heating Low Temperature Geothermal Facility...

  4. Merle West Medical Center Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Merle West Medical Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Merle West Medical Center Space Heating Low Temperature Geothermal...

  5. Olene Gap Space Heating Low Temperature Geothermal Facility ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Olene Gap Space Heating Low Temperature Geothermal Facility Facility Olene Gap Sector Geothermal...

  6. Homestead Resort Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Homestead Resort Space Heating Low Temperature Geothermal Facility Facility Homestead...

  7. Chico Hot Springs Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Chico Hot Springs Space Heating Low Temperature Geothermal Facility Facility Chico Hot Springs...

  8. Bell Island Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Bell Island Space Heating Low Temperature Geothermal Facility Facility Bell Island Sector...

  9. Mount Princeton Area Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Area Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Mount Princeton Area Space Heating Low Temperature Geothermal Facility Facility Mount...

  10. LDS Wardhouse Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Wardhouse Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name LDS Wardhouse Space Heating Low Temperature Geothermal Facility Facility LDS Wardhouse...

  11. Reno-Moana Area (300) Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility...

  12. Saratoga Springs Resort Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Saratoga Springs Resort Space Heating Low Temperature Geothermal Facility Facility Saratoga...

  13. Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility...

  14. Hillbrook Nursing Home Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility...

  15. Indian Valley Hospital Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Valley Hospital Space Heating Low Temperature Geothermal Facility Facility Indian...

  16. Chena Hot Springs Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Chena Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Chena Hot Springs Space Heating Low Temperature Geothermal Facility Facility...

  17. Ft Bidwell Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ft Bidwell Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ft Bidwell Space Heating Low Temperature Geothermal Facility Facility Ft Bidwell...

  18. Breitenbush Hot Springs Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Breitenbush Hot Springs Space Heating Low Temperature Geothermal Facility Facility...

  19. Bozeman Hot Springs Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Facility Bozeman Hot...

  20. Pinkerton Hot Springs Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Pinkerton Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pinkerton Hot Springs Space Heating Low Temperature Geothermal Facility...

  1. Senior Citizens' Center Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Senior Citizens' Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Senior Citizens' Center Space Heating Low Temperature Geothermal Facility...

  2. Warm Springs State Hospital Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility...

  3. Langel Valley Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Langel Valley Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Langel Valley Space Heating Low Temperature Geothermal Facility Facility Langel...

  4. LDS Church Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    LDS Church Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name LDS Church Space Heating Low Temperature Geothermal Facility Facility LDS Church...

  5. Klamath County Jail Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jail Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath County Jail Space Heating Low Temperature Geothermal Facility Facility Klamath...

  6. Jemez Springs Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jemez Springs Space Heating Low Temperature Geothermal Facility Facility Jemez Springs Sector...

  7. YMCA Space Heating Low Temperature Geothermal Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    YMCA Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name YMCA Space Heating Low Temperature Geothermal Facility Facility YMCA Sector Geothermal...

  8. Utah State Prison Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Prison Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Utah State Prison Space Heating Low Temperature Geothermal Facility Facility Utah State...

  9. Warner Springs Ranch Resort Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ranch Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility...

  10. Surprise Valley Hospital Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Surprise Valley Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Surprise Valley Hospital Space Heating Low Temperature Geothermal...

  11. Del Rio Hot Springs Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Rio Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Del Rio Hot Springs Space Heating Low Temperature Geothermal Facility Facility...

  12. Miracle Hot Spring Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Facility Miracle Hot...

  13. St. Mary's Hospital Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name St. Mary's Hospital Space Heating Low Temperature Geothermal Facility Facility St....

  14. Ouray Municipal Pool Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Municipal Pool Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Facility...

  15. Miracle Hot Springs Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Springs Space Heating Low Temperature Geothermal Facility Facility Miracle Hot...

  16. Marlin Hospital Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Marlin Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Marlin Hospital Space Heating Low Temperature Geothermal Facility Facility Marlin...

  17. Radium Hot Springs Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Radium Hot Springs Space Heating Low Temperature Geothermal Facility Facility Radium Hot Springs...

  18. Summer Lake Hot Springs Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Facility Summer Lake...

  19. Banbury Hot Springs Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Banbury Hot Springs Space Heating Low Temperature Geothermal Facility Facility Banbury Hot...

  20. Peppermill Hotel Casino Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Peppermill Hotel Casino Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Peppermill Hotel Casino Space Heating Low Temperature Geothermal Facility...

  1. Modesto Memorial Hospital Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Memorial Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modesto Memorial Hospital Space Heating Low Temperature Geothermal Facility...

  2. Indian Springs School Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Springs School Space Heating Low Temperature Geothermal Facility Facility Indian...

  3. Geronimo Springs Museum Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility...

  4. Ophir Creek Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ophir Creek Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ophir Creek Space Heating Low Temperature Geothermal Facility Facility Ophir Creek...

  5. Burgdorf Hot Springs Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Burgdorf Hot Springs Space Heating Low Temperature Geothermal Facility Facility Burgdorf Hot...

  6. Hot Springs National Park Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    National Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility...

  7. Jackson Well Springs Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Well Springs Space Heating Low Temperature Geothermal Facility Facility Jackson Well...

  8. Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility Jackson...

  9. Klamath Churches (5) Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Churches (5) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Churches (5) Space Heating Low Temperature Geothermal Facility Facility...

  10. Hi-Tech Fisheries Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hi-Tech Fisheries Space Heating Low Temperature Geothermal Facility Facility Hi-Tech Fisheries...

  11. Agua Calientes Trailer Park Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility Facility Agua...

  12. Hot Lake RV Park Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Lake RV Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Lake RV Park Space Heating Low Temperature Geothermal Facility Facility Hot Lake...

  13. New Mexico State University District Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Heating Low Temperature Geothermal Facility Jump to: navigation, search Name New Mexico State University District Heating Low Temperature Geothermal Facility Facility New...

  14. Osmotic Heat Engine for Energy Production from Low Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Osmotic Heat Engine for Energy Production from Low Temperature Geothermal Resources Osmotic Heat Engine for Energy Production from Low Temperature Geothermal Resources Project ...

  15. Warm Springs Water District District Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal...

  16. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  17. Ultra Efficient CHHP Using a High Temperature Fuel Cell to Provide On-Site Process Reducing Gas, Clean Power, and Heat

    SciTech Connect

    Jahnke, Fred C.

    2015-06-30

    FuelCell Energy and ACuPowder investigated and demonstrated the use of waste anode exhaust gas from a high temperature fuel cell for replacing the reducing gas in a metal processing furnace. Currently companies purchase high pressure or liquefied gases for the reducing gas which requires substantial energy in production, compression/liquefaction, and transportation, all of which is eliminated by on-site use of anode exhaust gas as reducing gas. We performed research on the impact of the gas composition on product quality and then demonstrated at FuelCell Energy’s manufacturing facility in Torrington, Connecticut. This demonstration project continues to operate even though the research program is completed as it provides substantial benefits to the manufacturing facility by supplying power, heat, and hydrogen.

  18. High-temperature Pump Monitoring - High-temperature ESP Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - High-temperature ESP Monitoring; 2010 Geothermal Technology Program Peer Review Report High-temperature Pump Monitoring - High-temperature ESP Monitoring; 2010 Geothermal ...

  19. High-temperature sensor

    DOEpatents

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  20. Vehicle Technologies Office Merit Review 2014: Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by GMZ Energy Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about nanostructured high...

  1. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    SciTech Connect

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

  2. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  3. High Temperature ESP Monitoring

    SciTech Connect

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  4. Heating tar sands formations to visbreaking temperatures

    DOEpatents

    Karanikas, John Michael; Colmenares, Tulio Rafael; Zhang, Etuan; Marino, Marian; Roes, Augustinus Wilhelmus Maria; Ryan, Robert Charles; Beer, Gary Lee; Dombrowski, Robert James; Jaiswal, Namit

    2009-12-22

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat may be controlled so that at least a majority of the section reaches an average temperature of between 200.degree. C. and 240.degree. C., which results in visbreaking of at least some hydrocarbons in the section. At least some visbroken hydrocarbon fluids may be produced from the formation.

  5. High efficiency water heating system

    SciTech Connect

    Gerstmann, J.; Vasilakis, A.D.

    1984-05-01

    A high efficiency gas fired residential water heater includes an insulated, plastic-lined storage tank. The water in the tank is heated by an external heat exchanger which defines a water-walled combustion chamber. The fuel gas and combustion air burned in the chamber are premixed to a near stoichiometric mixture without the use of a blower. Under the force of line pressure or less, the fuel gas is accelerated into an aspirator/mixer which premixes an amount of air sufficient for complete combustion of the fuel gas. The water-walled combustion chamber is particularly suited for substantial recovery of the heat of a pilot flame. The pilot products of combustion heat water at the upper end of the combustion chamber without causing significant convective flow throughout the heat exchanger.

  6. Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Broadwater Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Athletic Club & Hot Springs Space Heating Low...

  7. Salida Hot Springs (Poncha Spring) Space Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs (Poncha Spring) Space Heating Low...

  8. Klamath Apartment Buildings (13) Space Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    (13) Space Heating Low Temperature Geothermal Facility Facility Klamath Apartment Buildings (13) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon...

  9. High-Temperature Superconductivity

    ScienceCinema

    Peter Johnson

    2016-07-12

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors — materials that carry electrical c

  10. HIGH TEMPERATURE THERMOCOUPLE

    DOEpatents

    Eshayu, A.M.

    1963-02-12

    This invention contemplates a high temperature thermocouple for use in an inert or a reducing atmosphere. The thermocouple limbs are made of rhenium and graphite and these limbs are connected at their hot ends in compressed removable contact. The rhenium and graphite are of high purity and are substantially stable and free from diffusion into each other even without shielding. Also, the graphite may be thick enough to support the thermocouple in a gas stream. (AEC)

  11. High temperature thermometric phosphors

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  12. High temperature thermometric phosphors

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  13. Osmotic Heat Engine for Energy Production from Low Temperature Geothemal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resources | Department of Energy Osmotic Heat Engine for Energy Production from Low Temperature Geothemal Resources Osmotic Heat Engine for Energy Production from Low Temperature Geothemal Resources Osmotic Heat Engine for Energy Production from Low Temperature Geothemal Resources presentation at the April 2013 peer review meeting held in Denver, Colorado. osmotic_heat_engine_low_temp_peer2013.pdf (706.39 KB) More Documents & Publications Osmotic Heat Engine for Energy Production from

  14. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  15. One-dimensional modeling of radial heat removal during depressurized heatup transients in modular pebble-bed and prismatic high temperature gas-cooled reactors

    SciTech Connect

    Savage, M.G.

    1984-07-01

    A one-dimensional computational model was developed to evaluate the heat removal capabilities of both prismatic-core and pebble-bed modular HTGRs during depressurized heatup transients. A correlation was incorporated to calculate the temperature- and neutron-fluence-dependent thermal conductivity of graphite. The modified Zehner-Schluender model was used to determine the effective thermal conductivity of a pebble bed, accounting for both conduction and radiation. Studies were performed for prismatic-core and pebble-bed modular HTGRs, and the results were compared to analyses performed by GA and GR, respectively. For the particular modular reactor design studied, the prismatic HTGR peak temperature was 2152.2/sup 0/C at 38 hours following the transient initiation, and the pebble-bed peak temperature was 1647.8/sup 0/C at 26 hours. These results compared favorably with those of GA and GE, with only slight differences caused by neglecting axial heat transfer in a one-dimensional radial model. This study found that the magnitude of the initial power density had a greater effect on the temperature excursion than did the initial temperature.

  16. High specific heat superconducting composite

    DOEpatents

    Steyert, Jr., William A.

    1979-01-01

    A composite superconductor formed from a high specific heat ceramic such as gadolinium oxide or gadolinium-aluminum oxide and a conventional metal conductor such as copper or aluminum which are insolubly mixed together to provide adiabatic stability in a superconducting mode of operation. The addition of a few percent of insoluble gadolinium-aluminum oxide powder or gadolinium oxide powder to copper, increases the measured specific heat of the composite by one to two orders of magnitude below the 5.degree. K. level while maintaining the high thermal and electrical conductivity of the conventional metal conductor.

  17. High temperature ceramic/metal joint structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  18. Geothermal Heat Pumps are Scoring High Marks

    SciTech Connect

    2000-08-01

    Geothermal Energy Program Office of Geothermal and Wind Technologies Geothermal Heat Pumps are Scoring High Marks Geothermal heat pumps, one of the clean energy technology stars Geothermal heat pumps (GHPs) are one of the most cost-effective heating, cooling, and water heating systems available for both residential and commercial buildings. GHPs extract heat from the ground during the heating season and discharge waste heat to the ground during the cooling season. The U.S. Environmental Protecti

  19. High temperature two component explosive

    DOEpatents

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  20. High temperature detonator

    DOEpatents

    Johnson, James O.; Dinegar, Robert H.

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  1. Osmotic Heat Engine for Energy Production from Low Temperature Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resources | Department of Energy Osmotic Heat Engine for Energy Production from Low Temperature Geothermal Resources Osmotic Heat Engine for Energy Production from Low Temperature Geothermal Resources Project objective: to demonstrate the economic viability of an Osmotic Heat Engine for electricity production from extremely low-grade geothermal resources. low_mcginnis_osmotic_heat_engine.pdf (327.23 KB) More Documents & Publications Osmotic Heat Engine for Energy Production from Low

  2. Microchannel High-Temperature Recuperator for Fuel Cell Systems

    SciTech Connect

    2010-02-01

    This factsheet describes a research project whose goal is to build an efficient, microchannel-based waste heat recuperator for a high-temperature fuel cell system.

  3. Low and high Temperature Dual Thermoelectric Generation Waste...

    Energy.gov [DOE] (indexed site)

    Developing a low and high temperature dual thermoelectric generation waste heat recovery ... Development of Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion ...

  4. High temperature interfacial superconductivity

    DOEpatents

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  5. Low substrate temperature fabrication of high-performance metal oxide thin-film by magnetron sputtering with target self-heating

    SciTech Connect

    Yang, W. F.; Institute of Materials Research and Engineering, Agency for Science, Technology and Research , 3 Research Link, Singapore 117602 ; Liu, Z. G.; Wu, Z. Y.; Hong, M. H.; Wang, C. F.; Lee, Alex Y. S.; Gong, H.

    2013-03-18

    Al-doped ZnO (AZO) films with high transmittance and low resistivity were achieved on low temperature substrates by radio frequency magnetron sputtering using a high temperature target. By investigating the effect of target temperature (T{sub G}) on electrical and optical properties, the origin of electrical conduction is verified as the effect of the high T{sub G}, which enhances crystal quality that provides higher mobility of electrons as well as more effective activation for the Al dopants. The optical bandgap increases from 3.30 eV for insulating ZnO to 3.77 eV for conducting AZO grown at high T{sub G}, and is associated with conduction-band filling up to 1.13 eV due to the Burstein-Moss effect.

  6. Faraday imaging at high temperatures

    DOEpatents

    Hackel, L.A.; Reichert, P.

    1997-03-18

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  7. Faraday imaging at high temperatures

    DOEpatents

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  8. Schutz's Hot Spring Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    of Technology's Geo-Heat Center Retrieved from "http:en.openei.orgwindex.php?titleSchutz%27sHotSpringSpaceHeatingLowTemperatureGeothermalFacility&oldid305547" ...

  9. Gila Hot Springs District Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Low Temperature Geothermal Facility Facility Gila Hot Springs Sector Geothermal energy Type District Heating Location Gila Hot Springs, New Mexico Coordinates Show Map...

  10. Osmotic Heat Engine for Energy Production from Low Temperature...

    Energy.gov [DOE] (indexed site)

    Heat Engine for Energy Production from Low Temperature Geothemal Resources presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon osmoticheatengine...

  11. Apparatus and method for high temperature viscosity and temperature measurements

    DOEpatents

    Balasubramaniam, Krishnan; Shah, Vimal; Costley, R. Daniel; Singh, Jagdish P.

    2001-01-01

    A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

  12. Boise City Geothermal District Heating District Heating Low Temperatur...

    OpenEI (Open Energy Information) [EERE & EIA]

    66.20x109 Btuyr 19.40 GWhyr Delat T 53.00 F Load Factor 0.07 Contact Kent Johnson; 208-384-3926 References Oregon Institute of Technology's Geo-Heat Center1 Boise...

  13. San Bernardino District Heating District Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Annual Generation 75.00x109 Btuyr 22.00 GWhyr Delat T 24.00 F Load Factor 0.20 Start Up Date 1983 Contact 909-384-5298 References Oregon Institute of Technology's Geo-Heat...

  14. City of Klamath Falls District Heating District Heating Low Temperatur...

    OpenEI (Open Energy Information) [EERE & EIA]

    Annual Generation 35.00x109 Btuyr 10.30 GWhyr Delat T 32.00 F Load Factor 0.25 Start Up Date 1981 Contact 541-883-5316 References Oregon Institute of Technology's Geo-Heat...

  15. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficient Automotive Waste Heat Recovery | Department of Energy High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace082_caylor_2012_o.pdf (866.98 KB) More Documents & Publications Nanostructured High

  16. High temperature crystalline superconductors from crystallized glasses

    DOEpatents

    Shi, Donglu

    1992-01-01

    A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

  17. High temperature lubricating process

    DOEpatents

    Taylor, R.W.; Shell, T.E.

    1979-10-04

    It has been difficult to provide adequate lubrication for load bearing, engine components when such engines are operating in excess of about 475/sup 0/C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface, such as in an engine being operated at temperatures in excess of about 475/sup 0/C. The process comprises contacting and maintaining the following steps: a gas phase is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant; the gas phase is contacted with the load bearing surface; the load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant; and the solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  18. High temperature lubricating process

    DOEpatents

    Taylor, Robert W.; Shell, Thomas E.

    1982-01-01

    It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  19. High Temperature Fuel Cell Performance High Temperature Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Performance of of Sulfonated Sulfonated Poly(phenylene Poly(phenylene) Proton) Proton Conducting Conducting Polymers | Department of Energy Cell Performance High Temperature Fuel Cell Performance of of Sulfonated Sulfonated Poly(phenylene Poly(phenylene) Proton) Proton Conducting Conducting Polymers High Temperature Fuel Cell Performance High Temperature Fuel Cell Performance of of Sulfonated Sulfonated Poly(phenylene Poly(phenylene) Proton) Proton Conducting Conducting Polymers Presentation

  20. Low exhaust temperature electrically heated particulate matter filter system

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2012-02-14

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  1. High-entropy alloys as high-temperature thermoelectric materials

    SciTech Connect

    Shafeie, Samrand; Guo, Sheng; Hu, Qiang; Fahlquist, Henrik; Erhart, Paul; Palmqvist, Anders

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  2. Investigations into High Temperature Components and Packaging

    SciTech Connect

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    temperature increase inside the device due the internal heat that is generated due to conduction and switching losses. Capacitors and high current switches that are reliable and meet performance specifications over an increased temperature range are necessary to realize electronics needed for hybrid-electric vehicles (HEVs), fuel cell (FC) and plug-in HEVs (PHEVs). In addition to individual component level testing, it is necessary to evaluate and perform long term module level testing to ascertain the effects of high temperature operation on power electronics.

  3. High-temperature-measuring device

    DOEpatents

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  4. High temperature interface superconductivity

    DOE PAGES [OSTI]

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  5. High Temperature Fluoride Salt Test Loop

    SciTech Connect

    Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.; Holcomb, David Eugene; Kisner, Roger A.; Peretz, Fred J.; Robb, Kevin R.; Wilson, Dane F.; Yoder, Jr, Graydon L.

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  6. APS high heat load monochromator

    SciTech Connect

    Lee, W.K.; Mills, D.

    1993-02-01

    This document contains the design specifications of the APS high heat load (HHL) monochromator and associated accessories as of February 1993. It should be noted that work is continuing on many parts of the monochromator including the mechanical design, crystal cooling designs, etc. Where appropriate, we have tried to add supporting documentation, references to published papers, and calculations from which we based our decisions. The underlying philosophy behind performance specifications of this monochromator was to fabricate a device that would be useful to as many APS users as possible, that is, the design should be as generic as possible. In other words, we believe that this design will be capable of operating on both bending magnet and ID beamlines (with the appropriate changes to the cooling and crystals) with both flat and inclined crystal geometries and with a variety of coolants. It was strongly felt that this monochromator should have good energy scanning capabilities over the classical energy range of about 4 to 20 keywith Si (111) crystals. For this reason, a design incorporating one rotation stage to drive both the first and second crystals was considered most promising. Separate rotary stages for the first and second crystals can sometimes provide more flexibility in their capacities to carry heavy loads (for heavily cooled first crystals or sagittal benders of second crystals), but their tuning capabilities were considered inferior to the single axis approach.

  7. Manufacturing High Temperature Systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing and Scale Up Challenges Joseph Hartvigsen Ceramatec, Inc. National Renewable Energy Laboratory Golden, CO February 28, 2014 Antipode Assertions * Electric power generation is not the limitation - To misquote Jay Leno "Use all you want, we'll make more" - http://atomicinsights.com/2013/02/use-all-the-electricity-you-want-well-make-more.html * High electric costs come from working the demand curve from below rather than above * "Grid Storage" is a misleading

  8. Very low temperature radiant heating/cooling indoor end system for efficient use of renewable energies

    SciTech Connect

    Ren, Jianbo; Wang, Yiping; Wang, Congrong; Xiong, Weicheng; Zhu, Li

    2010-06-15

    Solar or solar-assisted space heating systems are becoming more and more popular. The solar energy utilization efficiency is high when the collector is coupled with indoor radiant heating suppliers, since in principle, lower supply temperature means lower demand temperature and then the system heat loss is less. A new type radiant end system is put forward for even lower supply temperature compared to the conventional radiant floor heating systems. A three dimensional model was established to investigate its energy supply capacities. Simulation results show that 50 W per meter length tube can be achieved with the medium temperature of 30 C for heating and 15 C for cooling. The predicted results agree well with the actual data from a demonstration building. Furthermore, it is demonstrated that a supply temperature of 22 C in winter and of 17 C in summer already met the indoor requirements. The new end system has good prospects for effective use of local renewable resources. (author)

  9. High pressure ceramic heat exchanger

    DOEpatents

    Harkins, Bruce D.; Ward, Michael E.

    1998-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  10. High pressure ceramic heat exchanger

    DOEpatents

    Harkins, B.D.; Ward, M.E.

    1998-09-22

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 5 figs.

  11. High pressure ceramic heat exchanger

    DOEpatents

    Harkins, Bruce D.; Ward, Michael E.

    1999-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the reinforcing member and having a strengthening member wrapped around the refractory material. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  12. Ultra High Temperature | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ultra High Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Ultra High Temperature Dictionary.png Ultra High...

  13. Temperatures, heat flow, and water chemistry from drill holes...

    OpenEI (Open Energy Information) [EERE & EIA]

    Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

  14. Temperature control system for a J-module heat exchanger

    DOEpatents

    Basdekas, Demetrios L.; Macrae, George; Walsh, Joseph M.

    1978-01-01

    The level of primary fluid is controlled to change the effective heat transfer area of a heat exchanger utilized in a liquid metal nuclear power plant to eliminate the need for liquid metal control valves to regulate the flow of primary fluid and the temperature of the effluent secondary fluid.

  15. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  16. High-Temperature-High-Volume Lifting for Enhanced Geothermal...

    Energy.gov [DOE] (indexed site)

    High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production High Temperature ESP ...

  17. High temperature structural insulating material

    DOEpatents

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  18. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  19. High temperature current mirror amplifier

    DOEpatents

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  20. Purple Path toward High Temperature Superconductivity? | The...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Purple Path toward High Temperature Superconductivity? Discovery of an unconventional ... interactions are the likely origin of unconventional, high temperature superconductivity ...

  1. Determining heat fluxes from temperature measurements made in massive walls

    SciTech Connect

    Balcomb, J.D.; Hedstrom, J.C.

    1980-01-01

    A technique is described for determining heat fluxes at the surfaces of masonry walls or floors using temperature data measured at two points within the wall, usually near the surfaces. The process consists of solving the heat diffusion equation in one dimension using finite difference techniques given two measured temperatures as input. The method is fast and accurate and also allows for an in-situ measurement of wall thermal diffusivity if a third temperature is measured. The method is documented in sufficient detail so that it can be readily used by the reader. Examples are given for heat flow through walls. Annual results for two cases are presented. The method has also been used to determine heat flow into floors.

  2. Multidisciplinary University Research Initiative: High Operating Temperature Fluids

    Energy.gov [DOE]

    In August 2012, DOE announced two awards under the Multidisciplinary University Research Initiative (MURI) to develop high-operating temperature heat-transfer fluids for concentrating solar power (CSP) applications, managed by the SunShot Initiative.

  3. High temperature electronic gain device

    DOEpatents

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  4. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  5. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  6. Temperature controlled high voltage regulator

    DOEpatents

    Chiaro, Jr., Peter J.; Schulze, Gerald K.

    2004-04-20

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  7. High temperature Seebeck coefficient metrology

    SciTech Connect

    Martin, J.; Tritt, T.; Uher, C.

    2010-12-15

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  8. Plasma heating power dissipation in low temperature hydrogen plasmas

    SciTech Connect

    Komppula, J. Tarvainen, O.

    2015-10-15

    A theoretical framework for power dissipation in low temperature plasmas in corona equilibrium is developed. The framework is based on fundamental conservation laws and reaction cross sections and is only weakly sensitive to plasma parameters, e.g., electron temperature and density. The theory is applied to low temperature atomic and molecular hydrogen laboratory plasmas for which the plasma heating power dissipation to photon emission, ionization, and chemical potential is calculated. The calculated photon emission is compared to recent experimental results.

  9. City of Twenty-Nine Palms Space Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Twenty-Nine Palms Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Twenty-Nine Palms Space Heating Low Temperature Geothermal Facility...

  10. High temperature superconductor current leads

    DOEpatents

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  11. High temperature superconductor current leads

    DOEpatents

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  12. High temperature current mirror amplifier

    DOEpatents

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  13. Energy System and Thermoeconomic Analysis of Combined Heat and Power High Temperature Proton Exchange Membrane Fuel Cell Systems for Light Commercial Buildings

    SciTech Connect

    Colella, Whitney G.; Pilli, Siva Prasad

    2015-06-01

    The United States (U.S.) Department of Energy (DOE)’s Pacific Northwest National Laboratory (PNNL) is spearheading a program with industry to deploy and independently monitor five kilowatt-electric (kWe) combined heat and power (CHP) fuel cell systems (FCSs) in light commercial buildings. This publication discusses results from PNNL’s research efforts to independently evaluate manufacturer-stated engineering, economic, and environmental performance of these CHP FCSs at installation sites. The analysis was done by developing parameters for economic comparison of CHP installations. Key thermodynamic terms are first defined, followed by an economic analysis using both a standard accounting approach and a management accounting approach. Key economic and environmental performance parameters are evaluated, including (1) the average per unit cost of the CHP FCSs per unit of power, (2) the average per unit cost of the CHP FCSs per unit of energy, (3) the change in greenhouse gas (GHG) and air pollution emissions with a switch from conventional power plants and furnaces to CHP FCSs; (4) the change in GHG mitigation costs from the switch; and (5) the change in human health costs related to air pollution. From the power perspective, the average per unit cost per unit of electrical power is estimated to span a range from $15–19,000/ kilowatt-electric (kWe) (depending on site-specific changes in installation, fuel, and other costs), while the average per unit cost of electrical and heat recovery power varies between $7,000 and $9,000/kW. From the energy perspective, the average per unit cost per unit of electrical energy ranges from $0.38 to $0.46/kilowatt-hour-electric (kWhe), while the average per unit cost per unit of electrical and heat recovery energy varies from $0.18 to $0.23/kWh. These values are calculated from engineering and economic performance data provided by the manufacturer (not independently measured data). The GHG emissions were estimated to decrease by

  14. Effect of heat treatment temperature on nitinol wire

    SciTech Connect

    Cai, S.; Schaffer, J. E.; Daymond, M. R.; Yu, C.; Ren, Y.

    2014-08-18

    In-situ synchrotron X-ray diffraction has been used to study the influence of the heat treatment temperature on the subsequent micromechanical behavior of nitinol wire. It was found that increase in the heat treatment temperature rotated the austenite texture from the (332){sub B2} fiber towards the (111){sub B2} fiber, and the texture of the Stress-Induced Martensite phase changed from the (1{sup ¯}40){sub B19'} to the (1{sup ¯}20){sub B19'} fiber accordingly. Heat treatment at a low temperature reduces the internal residual strains in the austenite during super-elastic deformation and therefore improves the materials fatigue performance. The development of internal residual strains in austenite is controlled by transformation induced plasticity and the reversal martensite to austenite transformation.

  15. Characteristics of turbulent velocity and temperature in a wall channel of a heated rod bundle

    SciTech Connect

    Krauss, T.; Meyer, L.

    1995-09-01

    Turbulent air flow in a wall sub-channel of a heated 37-rod bundle (P/D = 1.12, W/D = 1.06) was investigated. measurements were performed with hot-wire probe with X-wires and a temperature wire. The mean velocity, the mean fluid temperature, the wall shear stress and wall temperature, the turbulent quantities such as the turbulent kinetic energy, the Reynolds-stresses and the turbulent heat fluxes were measured and are discussed with respect to data from isothermal flow in a wall channel and heated flow in a central channel of the same rod bundle. Also, data on the power spectral densities of the velocity and temperature fluctuations are presented. These data show the existence of large scale periodic fluctuations are responsible for the high intersubchannel heat and momentum exchange.

  16. Impact on Water Heater Performance of Heating Methods that Promote Tank Temperature Stratification

    SciTech Connect

    Gluesenkamp, Kyle R; BushPE, John D

    2016-01-01

    During heating of a water heater tank, the vertical temperature stratification of the water can be increased or decreased, depending on the method of heating. Methods that increase stratification during heating include (1) removing cold water from the tank bottom, heating it, and re-introducing it to the tank top at relatively low flow rate, (2) using a heat exchanger wrapped around the tank, through which heating fluid (with finite specific heat) flows from top to bottom, and (3) using an immersed heat element that is relatively high in the tank. Using such methods allows for improved heat pump water heater (HPWH) cycle efficiencies when the heat pump can take advantage of the lower temperatures that exist lower in the tank, and accommodate the resulting glide. Transcritical cycles are especially well-suited to capitalize on this opportunity, and other HPWH configurations (that have been proposed elsewhere) may benefit as well. This work provides several stratification categories of heat pump water heater tank configurations relevant to their stratification potential. To illustrate key differences among categories, it also compiles available experimental data for (a) single pass pumped flow, (b) multi-pass pumped flow, and (c) top-down wrapped tank with transcritical refrigerant.

  17. High Temperature Electrolysis for Efficient Hydrogen Production from Nuclear Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Electrolysis for Efficient Hydrogen Production from Nuclear Energy - INL Research Program Summary Jim O'Brien Idaho National Laboratory Electrolytic Hydrogen Production Workshop National Renewable Energy Laboratory Golden, CO February 27-28, 2014 NGNP/VHTR Concept for Large-Scale Centralized Nuclear Hydrogen Production based on High-Temperature Steam Electrolysis * Directly coupled to high-temperature gas-cooled reactor for electrical power and process heat * 600 MWth reactor

  18. Minutes of the Fall 2009 High Temperature Membrane Working Group |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Fall 2009 High Temperature Membrane Working Group Minutes of the Fall 2009 High Temperature Membrane Working Group Minutes of the Fall 2009 High Temperature Membrane Working Group, November 16, 2009 htmwg_nov09_minutes.pdf (41.2 KB) More Documents & Publications GenSys Blue: Fuel Cell Heating Appliance 2009 Fuel Cell Market Report 2008 Fuel Cell Technologies Market Report

  19. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

  20. Drift apex temperature distributions due to cylindrical heat sources

    SciTech Connect

    Culbreth, W.G.; Ventresca, J.J.

    1996-12-01

    Experiments were conducted to determine the rate of convective heat transfer from cylindrical waste packages in a model of a drift. Thermocouples were used to measure the temperatures on the waste package surface and on the drift wall as a function of the Rayleigh number, Ra{sub f}, for the buoyancy-induced flow. The results, presented in terms of dimensionless temperatures, showed variations in drift wall apex temperature. Curvefits of apex temperatures as a function of the drift centerline axial position were computed.

  1. Gasification of high ash, high ash fusion temperature bituminous coals

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  2. Corrosion in Very High-Temperature Molten Salt for Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems for High Performance High Temperature Heat Transfer Fluids Degradation Mechanisms and Development of Protective Coatings for TES and HTF Containment Materials - F13 Q1

  3. Project Profile: Fractal-Like Receiver Designs for High-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Using particles as the heat transfer media provides an opportunity to integrate with high-temperature, high-efficiency power cycles. Furthermore, particles remain stable at ...

  4. High-pressure, high-temperature plastic deformation of sintered...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: High-pressure, high-temperature plastic deformation of sintered diamonds Citation Details In-Document Search Title: High-pressure, high-temperature plastic ...

  5. Low Cost, High Temperature, High Ripple Current DC Bus Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Low Cost, High Temperature, High Ripple Current DC Bus Capacitors Low Cost, High Temperature, High Ripple Current DC Bus Capacitors 2010 DOE Vehicle Technologies and Hydrogen...

  6. Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells

    SciTech Connect

    James E. O'Brien

    2012-03-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technology will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.

  7. High-Temperature Behavior of Cellulose I

    SciTech Connect

    Matthews, James F.; Bergenstråhle, Malin; Beckham, Gregg T.; Himmel, Michael E.; Nimlos, Mark R.; Brady, John W.; Crowley, Michael F.

    2011-03-17

    We use molecular simulation to elucidate the structural behavior of small hydrated cellulose Iβ microfibrils heated to 227 °C (500 K) with two carbohydrate force fields. In contrast to the characteristic two-dimensional hydrogen-bonded layer sheets present in the cellulose Iβ crystal structure, we show that at high temperature a three-dimensional hydrogen bond network forms, made possible by hydroxymethyl groups changing conformation from trans–gauche (TG) to gauche–gauche (GG) in every second layer corresponding to “center” chains in cellulose Iβ and from TG to gauche–trans (GT) in the “origin” layer. The presence of a regular three-dimensional hydrogen bond network between neighboring sheets eliminates the possibility of twist, whereas two-dimensional hydrogen bonding allows for microfibril twist to occur. Structural features of this high-temperature phase as determined by molecular simulation may explain several experimental observations for which no detailed structural basis has been offered. This includes an explanation for the observed temperature and crystal size dependence for the extent of hydrogen/deuterium exchange, and diffraction patterns of cellulose at high temperature.

  8. High pressure and high temperature apparatus

    DOEpatents

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  9. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOEpatents

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  10. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  11. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  12. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  13. High Temperature Thermoelectric Materials | Department of Energy

    Energy.gov [DOE] (indexed site)

    acep04elsner.pdf (3.07 MB) More Documents & Publications Quantum Well Thermoelectrics and Waste Heat Recovery High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power ...

  14. High Temperature ESP Monitoring | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Temperature ESP Monitoring High Temperature ESP Monitoring The purpose of the High Temperature ESP Monitoring project is to develop a down-hole monitoring system to be used in wells with bottom hole temperature up to 300 °C for measuring motor temperature; pump discharge pressure; and formation temperature and pressure. high_dhruva_esp_monitoring.pdf (509.12 KB) More Documents & Publications Hotline IV …High Temperature ESP track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer

  15. Acid Doped Membranes for High Temperature PEMFC

    Energy.gov [DOE]

    Presentation on Acid Doped Membranes for High Temperature PEMFC to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

  16. High-Temperature Superconductivity Cable Demonstration Projects...

    Energy Saver

    High-Temperature Superconductivity Cable Demonstration Projects High-Temperature Superconductivity Cable Demonstration Projects A National Effort to Introduce New Technology into ...

  17. High Temperature, High Pressure Devices for Zonal Isolation in...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review High Temperature ESP ...

  18. Natural Refrigerant High-Performance Heat Pump for Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Refrigerant High-Performance Heat Pump for Commercial Applications Natural Refrigerant High-Performance Heat Pump for Commercial Applications Credit: S-RAM Credit: S-RAM Lead ...

  19. Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator with Closed-Loop Exhaust By-Pass System Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator with ...

  20. High Efficiency Microturbine with Integral Heat Recovery - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 Capstone Turbine...

  1. High Efficiency Cold Climate Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Efficiency Cold Climate Heat Pump 2014 Building Technologies Office Peer Review Bo Shen, shenb@ornl.gov Oak Ridge National Laboratory High Efficiency Cold Climate Heat Pump -(CCHP) CRADA Project Summary Timeline: Start date: 01-Oct-2010 Planned end date: 30-Sep-2015 Key Milestones (single-stage) 1. Equipment modeling and EnergyPlus simulation report - March/2013 2. Lab prototype fabricated and installed - Dec/2013 3. Meet 77% capacity at-13°F vs. 47°F; COP=4.1 at 47°F - March/2014

  2. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    SciTech Connect

    Ping, Y.; Fernandez-Panella, A.; Sio, H.; Correa, A.; Shepherd, R.; Landen, O.; London, R. A.; Sterne, P. A.; Whitley, H. D.; Fratanduono, D.; Boehly, T. R.; Collins, G. W.

    2015-09-04

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. As a result, the sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  3. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    DOEpatents

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  4. High temperature sealed electrochemical cell

    DOEpatents

    Valentin Chung, Brice Hoani; Burke, Paul J.; Sadoway, Donald R.

    2015-10-06

    A cell for high temperature electrochemical reactions is provided. The cell includes a container, at least a portion of the container acting as a first electrode. An extension tube has a first end and a second end, the extension tube coupled to the container at the second end forming a conduit from the container to said first end. A second electrode is positioned in the container and extends out of the container via the conduit. A seal is positioned proximate the first end of the extension tube, for sealing the cell.

  5. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado. turnquist_high_temp_tools_peer2013.pdf (2.11 MB) More Documents & Publications High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature Motor Windings for

  6. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2000-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composite comprises a plurality of hollow oxide-based spheres of varios dimentions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substates are also provided.

  7. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2001-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  8. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2004-01-13

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  9. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    SciTech Connect

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  10. High-Performance Refrigerator Using Novel Rotating Heat Exchanger |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy High-Performance Refrigerator Using Novel Rotating Heat Exchanger High-Performance Refrigerator Using Novel Rotating Heat Exchanger Rotating heat exchangers installed in appliances and heat pumps have the potentially to reduce energy costs and refrigerant charge in a compact space. Rotating heat exchangers installed in appliances and heat pumps have the potentially to reduce energy costs and refrigerant charge in a compact space. Sandia-developed rotating heat exchanger

  11. High power densities from high-temperature material interactions

    SciTech Connect

    Morris, J.F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

  12. Ionospheric modifications in high frequency heating experiments

    SciTech Connect

    Kuo, Spencer P.

    2015-01-15

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  13. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Temperature Materials Laboratory (HTML) User Program Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success Stories ...

  14. Investigation of Opportunities for High-Temperature Solar Energy in the Aluminum Industry

    SciTech Connect

    Murray, J.

    2006-05-01

    This report gives the conclusions drawn from a study of the potential application of high-temperature solar process heat for production of aluminum.

  15. Rapid heating of matter using high power lasers

    SciTech Connect

    Bang, Woosuk

    2015-11-05

    This report describes rapid heating technology with ion sources. LANL calculated the expected heating per atom and temperatures of the target materials, used alumium ion beams to heat gold and diamond, produced deuterium fusion plasmas and then measured the ion temperature at the time of the fusion reactions.

  16. High temperature control rod assembly

    SciTech Connect

    Vollman, Russell E.

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  17. Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C

    SciTech Connect

    Ian Mckirdy

    2010-12-01

    This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750°C and provides electricity and/or process heat at 700°C to conventional process applications, including the production of hydrogen.

  18. Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sheet, 2014 | Department of Energy Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 FuelCell Energy, Inc., in collaboration with Pacific Northwest National Laboratory, the Oregon State University Materials Institute, the Microproducts Breakthrough Institute, and the Oregon Nanoscience and Materials Institute, developed an efficient, microchannel-based waste heat recuperator

  19. Thermal disconnect for high-temperature batteries

    DOEpatents

    Jungst, Rudolph George; Armijo, James Rudolph; Frear, Darrel Richard

    2000-01-01

    A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

  20. High-Pressure and High-Temperature Powder Diffraction (Journal...

    Office of Scientific and Technical Information (OSTI)

    High-Pressure and High-Temperature Powder Diffraction Citation Details In-Document Search Title: High-Pressure and High-Temperature Powder Diffraction Authors: Fei, Yingwei ; Wang, ...

  1. High Temperature, High Pressure Devices for Zonal Isolation in Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wells | Department of Energy High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells fabian_ctd_ zonal_isolation_peer2013.pdf (809.57 KB) More Documents & Publications High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells track 3: enhanced geothermal systems (EGS) | geothermal 2015

  2. High temperature pressurized high frequency testing rig and test method

    DOEpatents

    De La Cruz, Jose; Lacey, Paul

    2003-04-15

    An apparatus is described which permits the lubricity of fuel compositions at or near temperatures and pressures experienced by compression ignition fuel injector components during operation in a running engine. The apparatus consists of means to apply a measured force between two surfaces and oscillate them at high frequency while wetted with a sample of the fuel composition heated to an operator selected temperature. Provision is made to permit operation at or near the flash point of the fuel compositions. Additionally a method of using the subject apparatus to simulate ASTM Testing Method D6079 is disclosed, said method involving using the disclosed apparatus to contact the faces of prepared workpieces under a measured load, sealing the workface contact point into the disclosed apparatus while immersing said contact point between said workfaces in a lubricating media to be tested, pressurizing and heating the chamber and thereby the fluid and workfaces therewithin, using the disclosed apparatus to impart a differential linear motion between the workpieces at their contact point until a measurable scar is imparted to at least one workpiece workface, and then evaluating the workface scar.

  3. High Temperature Superconducting Underground Cable

    SciTech Connect

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  4. High-temperature strain cell for tomographic imaging

    DOEpatents

    MacDowell, Alastair A.; Nasiatka, James; Haboub, Abdel; Ritchie, Robert O.; Bale, Hrishikesh A.

    2015-06-16

    This disclosure provides systems, methods, and apparatus related to the high temperature mechanical testing of materials. In one aspect, a method includes providing an apparatus. The apparatus may include a chamber. The chamber may comprise a top portion and a bottom portion, with the top portion and the bottom portion each joined to a window material. A first cooled fixture and a second cooled fixture may be mounted to the chamber and configured to hold the sample in the chamber. A plurality of heating lamps may be mounted to the chamber and positioned to heat the sample. The sample may be placed in the first and the second cooled fixtures. The sample may be heated to a specific temperature using the heating lamps. Radiation may be directed though the window material, the radiation thereafter interacting with the sample and exiting the chamber through the window material.

  5. High Temperature Superconductivity Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Superconductivity Partners Map showing DOE's partnersstakeholders in the ... More Documents & Publications DOE Superconductivity Program Stakeholders DOE Provides up ...

  6. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lightweighting Materials Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus Lightweighting Materials 2011 DOE Hydrogen and Fuel Cells ...

  7. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success Stories Materials Characterization ...

  8. A new absorption chiller to establish combined cold, heat, and power generation utilizing low-temperature heat

    SciTech Connect

    Schweigler, C.J.; Riesch, P.; Demmel, S.; Alefeld, G.

    1996-11-01

    Presently available absorption machines for air conditioning are driven with heat of a minimum of 80 C (176 F). A combination of the standard single-effect and a double-lift process has been identified as a new cycle that can use driving heat down to return temperatures of about 55 C (131 F) and permits temperature glides in generation of more than 30 K (54 F). Thus a larger cooling capacity can be produced from the same heat source compared to a single-effect chiller run with the same heat carrier supply temperature and mass flow. According to the estimated heat exchanger area, competitive machine costs for this new chiller can be expected. This single-effect/double-lift absorption chiller can be operated with waste heat from industrial processes, as well as with low-temperature heat (e.g., heat from solar collectors) as driving heat for air conditioning. The large temperature glide and the low return temperature especially fit the operating conditions in district heating networks during the summer. The cycle will be presented, followed by a discussion of suitable operating conditions.

  9. High power laser heating of low absorption materials

    SciTech Connect

    Olson, K.; Talghader, J.; Ogloza, A.; Thomas, J.

    2014-09-28

    A model is presented and confirmed experimentally that explains the anomalous behavior observed in continuous wave (CW) excitation of thermally isolated optics. Distributed Bragg Reflector (DBR) high reflective optical thin film coatings of HfO₂ and SiO₂were prepared with a very low absorption, about 7 ppm, measured by photothermal common-path interferometry. When illuminated with a 17 kW CW laser for 30 s, the coatings survived peak irradiances of 13 MW/cm², on 500 μm diameter spot cross sections. The temperature profile of the optical surfaces was measured using a calibrated thermal imaging camera for illuminated spot sizes ranging from 500 μm to 5 mm; about the same peak temperatures were recorded regardless of spot size. This phenomenon is explained by solving the heat equation for an optic of finite dimensions and taking into account the non-idealities of the experiment. An analytical result is also derived showing the relationship between millisecond pulse to CW laser operation where (1) the heating is proportional to the laser irradiance (W/m²) for millisecond pulses, (2) the heating is proportional to the beam radius (W/m) for CW, and (3) the heating is proportional to W/m∙ tan⁻¹(√(t)/m) in the transition region between the two.

  10. Sealed glass coating of high temperature ceramic superconductors

    DOEpatents

    Wu, Weite; Chu, Cha Y.; Goretta, Kenneth C.; Routbort, Jules L.

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  11. Deposition method for producing silicon carbide high-temperature semiconductors

    DOEpatents

    Hsu, George C.; Rohatgi, Naresh K.

    1987-01-01

    An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.

  12. High Temperature Materials Overview Richard Wright Idaho National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Temperature Materials Overview Richard Wright Idaho National Laboratory Advanced Reactor Technologies September 17, 2015 Objectives  Provide Technology Development to Support Future Design and Deployment of Very High Temperature Gas Cooled Reactors: - Pressure Vessel - Steam Generator and Intermediate Heat Exchanger (IHX) - Support Codes and Standards Activities for SiC/SiC composites and Materials Handbook  Program Goals - Alloy 617 Code Case Submittal for ASME approval by FY15 allowing

  13. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    SciTech Connect

    WILLIS, W.L.

    2000-06-15

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  14. High Temperature, High Pressure Devices for Zonal Isolation in Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wells | Department of Energy Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Design, demonstrate, and qualify high-temperature high pressure zonal isolation devices compatible with the high temperature downhole Enhanced Geothermal Systems (EGS) environment. specialized_fabian_zonal_isolation.pdf (440.53 KB) More

  15. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems Project objective: Advance the technology for well fluids lifting systems to meet the foreseeable pressure; temperature; and longevity needs of the Enhanced Geothermal Systems (EGS) industry. high_turnquist_ht_hv_lifting.pdf (268.9 KB) More Documents & Publications High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

  16. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.

    2013-09-11

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  17. Structural properties of Sr{sub 0.61}Ba{sub 0.39}Nb{sub 2}O{sub 6} in the temperature range 10-500 K investigated by high-resolution neutron powder diffraction and specific heat measurements

    SciTech Connect

    Schefer, J.; Pomjakushin, V.; Stuhr, U.; Schaniel, D.; Woike, Th.; Petricek, V.; Woehlecke, M.; Imlau, M.

    2006-10-01

    We report high-resolution neutron powder diffraction on Sr{sub 0.61}Ba{sub 0.39}Nb{sub 2}O{sub 6} in the temperature range 15-500 K. The results indicate that the low-temperature anomalies (T{<=}100 K) observed in the dielectric dispersion are due to small changes in the incommensurate modulation of the NbO{sub 6} octahedra, as no structural phase transition of the average structure was observed. This interpretation is supported by specific heat measurements, which show no latent heat, but a glass-like behavior at low temperatures. Furthermore, we find that the structural changes connected with the ferroelectric phase transition at T{sub c}{approx_equal}350 K start already at 200 K, explaining the anisotropic thermal expansion in the temperature range 200-300 K observed in a recent x-ray diffraction study.

  18. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  19. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  20. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  1. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    DOEpatents

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  2. Analysis of Piston Heat Flux for Highly Complex Piston Shapes...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Piston Heat Flux for Highly Complex Piston Shapes Analysis of Piston Heat Flux for Highly Complex Piston Shapes Poster presented at the 16th Directions in Engine-Efficiency and ...

  3. Deep Trek High Temperature Electronics Project

    SciTech Connect

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  4. High Temperature Superconductivity Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Superconductivity Program High Temperature Superconductivity Program From 2003 until 2010, OE's High Temperature Superconductivity (HTS) Program worked in partnership with industry to develop HTS wire and supported a broad portfolio of research and development activities leading to the commercialization of HTS-based grid equipment by U.S. companies. High impact applications include advanced transmission and distribution cables and fault current limiters (FCLs). Superconducting

  5. ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT

    SciTech Connect

    M. G. McKellar; E. A. Harvego; A. M. Gandrik

    2010-11-01

    An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

  6. High Temperature Integrated Thermoelectric Ststem and Materials

    SciTech Connect

    Mike S. H. Chu

    2011-06-06

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits

  7. Manufacturing Barriers to High Temperature PEM Commercialization |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. Manufacturing Barriers to High Temperature PEM Commercialization (785.02 KB) More Documents & Publications PBI-Phosphoric Acid Based Membrane Electrode Assemblies: Status Update MCFC and PAFC R&D Workshop Summary Report 2012 Pathways to

  8. CHARACTERIZATION OF ELEVATED TEMPERATURE PROPERTIES OF HEAT EXCHANGER AND STEAM GENERATOR ALLOYS

    SciTech Connect

    J.K. Wright; L.J. Carroll; C.J. Cabet; T. Lillo; J.K. Benz; J.A. Simpson; A. Chapman; R.N. Wright

    2012-10-01

    The Next Generation Nuclear Plant project is considering Alloy 800H and Alloy 617 for steam generator and intermediate heat exchangers. It is envisioned that a steam generator would operate with reactor outlet temperatures from 750 to 800 C, while an intermediate heat exchanger for primary to secondary helium would operate up to an outlet temperature of 950 C. Although both alloys are of interest due in part to their technical maturity, a number of specific properties require further characterization for design of nuclear components. Strain rate sensitivity of both alloys has been characterized and is found to be significant above 600 C. Both alloys also exhibit dynamic strain aging, characterized by serrated flow, over a wide range of temperatures and strain rates. High temperature tensile testing of Alloy 617 has been conducted over a range of temperatures. Dynamic strain aging is a concern for these materials since it is observed to result in reduced ductility for many solid solution alloys. Creep, fatigue, and creep-fatigue properties of Alloy 617 have been measured as well, with the goal of determining the influence of the temperature, strain rate and atmosphere on the creep fatigue life of Alloy 617. Elevated temperature properties and implications for codification of the alloys will be described.

  9. Ultra high vacuum heating and rotating specimen stage

    DOEpatents

    Coombs, A.W. III

    1995-05-02

    A heating and rotating specimen stage provides for simultaneous specimen heating and rotating. The stage is ideally suited for operation in ultrahigh vacuum (1{times}10{sup {minus}9} torr or less), but is useful at atmosphere and in pressurized systems as well. A specimen is placed on a specimen holder that is attached to a heater that, in turn, is attached to a top housing. The top housing is rotated relative to a bottom housing and electrically connected thereto by electrically conductive brushes. This stage is made of materials that are compatible with UHV, able to withstand high temperatures, possess low outgassing rates, are gall and seize resistant, and are able to carry substantial electrical loading without overheating. 5 figs.

  10. Possible high power limitations from RF pulsed heating

    SciTech Connect

    Pritzkau, D.P.; Bowden, G.B.; Menegat, A.; Siemann, R.H. [Stanford Linear Accelerator Center, Stanford University, California 94309 (United States)

    1999-05-01

    One of the possible limitations to achieving high power in RF structures is damage to metal surfaces due to RF pulsed heating. Such damage may lead to degradation of RF performance. An experiment to study RF pulsed heating on copper has been developed at SLAC. The experiment consists of operating two pillbox cavities in the TE{sub 011} mode using a 50 MW X-Band klystron. The estimated temperature rise of the surface of copper is 350&hthinsp;{degree}C for a power input of 20 MW to each cavity with a pulse length of 1.5 {mu}s. Preliminary results from an experiment performed earlier are presented. A revised design for continued experiments is also presented along with relevant theory and calculations. {copyright} {ital 1999 American Institute of Physics.}

  11. Quantitative Modeling of High Temperature Magnetization Dynamics

    SciTech Connect

    Zhang, Shufeng

    2009-03-01

    Final Technical Report Project title: Quantitative Modeling of High Temperature Magnetization Dynamics DOE/Office of Science Program Manager Contact: Dr. James Davenport

  12. High Temperature Materials Laboratory (HTML) - PSD Directorate

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for Collaborative Materials Research The High Temperature Materials Laboratory (HTML) User Program is on hiatus due to federal budget reductions. However, research projects...

  13. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    -- Washington D.C. PDF icon lm028laracurzio2010o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and...

  14. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Laboratory and HTML User Program Success Stories Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success Stories 2012 DOE ...

  15. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Materials Laboratory and HTML User Program Success Stories Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success ...

  16. High-temperature superconductivity: A conventional conundrum...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: High-temperature superconductivity: A conventional conundrum Citation ... OSTI Identifier: 1245373 Report Number(s): BNL--111729-2016-JA Journal ID: ISSN 1745-2473; ...

  17. High-temperature brazed ceramic joints

    DOEpatents

    Jarvinen, Philip O.

    1986-01-01

    High-temperature joints formed from metallized ceramics are disclosed wherein the metal coatings on the ceramics are vacuum sputtered thereon.

  18. High Temperature, High Voltage Fully Integrated Gate Driver Circuit...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    D.C. PDF icon ape003tolbert2010p.pdf More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Wide Bandgap Materials Smart ...

  19. High Temperature, High Voltage Fully Integrated Gate Driver Circuit...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    -- Washington D.C. PDF icon ape03marlino.pdf More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Smart Integrated Power Module ...

  20. High Temperature, High Pressure Devices for Zonal Isolation in...

    Energy.gov [DOE] (indexed site)

    High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review Complete FiberCopper Cable ...

  1. Heat exchanger with transpired, highly porous fins

    DOEpatents

    Kutscher, Charles F.; Gawlik, Keith

    2002-01-01

    The heat exchanger includes a fin and tube assembly with increased heat transfer surface area positioned within a hollow chamber of a housing to provide effective heat transfer between a gas flowing within the hollow chamber and a fluid flowing in the fin and tube assembly. A fan is included to force a gas, such as air, to flow through the hollow chamber and through the fin and tube assembly. The fin and tube assembly comprises fluid conduits to direct the fluid through the heat exchanger, to prevent mixing with the gas, and to provide a heat transfer surface or pathway between the fluid and the gas. A heat transfer element is provided in the fin and tube assembly to provide extended heat transfer surfaces for the fluid conduits. The heat transfer element is corrugated to form fins between alternating ridges and grooves that define flow channels for directing the gas flow. The fins are fabricated from a thin, heat conductive material containing numerous orifices or pores for transpiring the gas out of the flow channel. The grooves are closed or only partially open so that all or substantially all of the gas is transpired through the fins so that heat is exchanged on the front and back surfaces of the fins and also within the interior of the orifices, thereby significantly increasing the available the heat transfer surface of the heat exchanger. The transpired fins also increase heat transfer effectiveness of the heat exchanger by increasing the heat transfer coefficient by disrupting boundary layer development on the fins and by establishing other beneficial gas flow patterns, all at desirable pressure drops.

  2. Performance characteristics of recently developed high-performance heat pipes

    SciTech Connect

    Schlitt, R.

    1995-01-01

    For future space projects such as Earth orbiting platforms, space stations, but also Moon or Mars bases, the need to manage waste heat up to 100 kW has been identified. For this purpose large heat pipe radiators have been proposed with heat pipe lengths of 15 m and heat transport capabilities up to 4 kW. It is demonstrated that conventional axially grooved heat pipes can be improved to provide 1 kWm heat transport capability. Higher heat loads can be handled only by high-composite wick designs with large liquid cross sections and circumferential grooves in the evaporator. With these high-performance heat pipes, heat transfer coefficients of about 200 kW/m{sup 2}K and transport capabilities of 2 kW over 15 m can be reached. Configurations with liquid fillets and axially tapered liquid channels are proposed to improve the ability of the highly composite wick to prime.

  3. High Heat Flux Thermoelectric Module Using Standard Bulk Material

    Energy.gov [DOE]

    Presents high heat flux thermoelectric module design for cooling using a novel V-shaped shunt configuration with bulk TE elements achieving high area packing fractions

  4. High-temperature Pump Monitoring - High-temperature ESP Monitoring; 2010

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal Technology Program Peer Review Report | Department of Energy temperature Pump Monitoring - High-temperature ESP Monitoring; 2010 Geothermal Technology Program Peer Review Report High-temperature Pump Monitoring - High-temperature ESP Monitoring; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review hightemp_018_dhruva.pdf (188.95 KB) More Documents & Publications Detecting Fractures Using Technology at High Temperatures and

  5. Spin Hall magnetoresistance at high temperatures

    SciTech Connect

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-02-02

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y{sub 3}Fe{sub 5}O{sub 12} (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface.

  6. High Temperature Downhole Motor - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Geothermal Geothermal Find More Like This Return to Search High Temperature Downhole Motor Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (164 KB) Technology Marketing Summary Drilling costs amount to over half of the total cost of geothermal energy production. To address the high cost of well construction, Sandia engineers are developing a high temperature downhole motor that provides a high-power downhole rotation solution for

  7. High temperature solar selective coatings

    DOEpatents

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  8. Temperature distribution in a flowing fluid heated in a microwave resonant cavity

    SciTech Connect

    Thomas, J.R. Jr. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Nelson, E.M.; Kares, R.J.; Stringfield, R.M. [Los Alamos National Lab., NM (United States)

    1996-04-01

    This paper presents results of an analytical study of microwave heating of a fluid flowing through a tube situated along the axis of a cylindrical microwave applicator. The interaction of the microwave field pattern and the fluid velocity profiles is illustrated for both laminar and turbulent flow. Resulting temperature profiles are compared with those generated by conventional heating through a surface heat flux. It is found that microwave heating offers several advantages over conventional heating.

  9. High Temperature Compatibility of 60-Watt IHS Materials

    SciTech Connect

    Worley, C. M.; Merten, C. W.

    1995-11-21

    The 60-Watt Isotopic Heat Source (IHS) utilizes a variety of materials which have been selected for their properties at elevated temperatures. These include iridium, molybdenum, and the T-111 alloy which consists of 90 wt% tantalum, 8 wt% tungsten, and 2 wt% hafnium. Properties of interest in radioisotopic heat source applications include high temperature strength, resistance to oxidation, weldability, and ability to act as a diffusion barrier. Iridium is utilized as a clad for fuel pellets because of its high temperature mechanical properties and good compatibility with carbon and plutonium oxide. Molybdenum retains good high temperature strength and has been used as a diffusion barrier in past applications. However, molybdenum also exhibits poor resistance to oxidation. Therefore, it is necessary to enclose molybdenum components so that they are not exposed to the atmosphere. T-111 exhibits moderate oxidation resistance, good high temperature mechanical properties, and good weldability. For these reasons, it is used as the outer containment boundary for the 60-Watt IHS. Because the temperature in GPHS fueled dads is on the order of 1000 degrees Celsius in the 60-W configuration, the potential for diffusion of dissimilar materials from one into another exists. Deleterious effects of diffusion can include degradation of mechanical strength through the formation of brittle intermetallics, degradation of mechanical properties through simple alloying, or formation of voids through the Kirkendall effect. Because of the possibility of these effects, design methodology calls for use of diffusion barriers between materials likely to exhibit interdiffusion at elevated temperatures. The necessity to assure the long term integrity of the 60-Watt IHS dictates that the diffusion behavior of its component materials be known. This report describes the high temperature compatibility studies which were conducted on the component materials of the 60-Watt IHS.

  10. Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant

    SciTech Connect

    Hays, Lance G.

    2014-11-18

    Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ºF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures as low as 125 ºF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ºF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the “piggyback” demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required

  11. DEVELOPMENT OF A HIGH PERFORMANCE COLD CLIMATE HEAT PUMP

    SciTech Connect

    Horton, W. Travis; Groll, Eckhard A.; Braun, James E.

    2014-06-01

    The primary goals of the proposed project were to develop, test, and evaluate a high performance and cost-effective vapor compression air-source heat pump for use in cold climate regions. Vapor compression heat pumps are a proven technology, and have been used for many years to meet heating requirements for buildings in residential, commercial, and industrial applications. However, in climate regions that experience very low outdoor ambient temperatures both the heating capacity and coefficient of performance (COP) of traditional air-source vapor compression heat pumps drops dramatically with a decrease in the outdoor air temperature. The efficiency of heat pumping equipment has improved substantially over the past 20 years; however, the efficiencies of the highest rated equipment on the market are approaching practical limits that cannot be surpassed without modifications to the basic cycle and possibly the use of additional hardware. In this report, three technologies to improve the efficiency of vapor compression systems are described. These are a) vapor injected compression, b) oil flooded compression and c) hybrid flow control of the evaporator. Compressor prototypes for both, oil flooded and vapor injected compression were developed by Emerson Climate Technologies. For the oil flooded compressor, the oil injection port location was optimized and an internal oil separator was added using several design iterations. After initial testing at Emerson Climate Technologies, further testing was done at Purdue University, and compressor models were developed. These models were then integrated into a system model to determine the achievable improvement of seasonal energy efficiency (SEER) for Minneapolis (Minnesota) climate. For the oil flooded compression, a 34% improvement in seasonal energy efficiency was found while a 21% improvement in seasonal energy efficiency ratio was found for the vapor injected compression. It was found that one benefit of both tested

  12. Influence of district heating water temperatures on the fuel saving and reduction of ecological cost of the heat generation

    SciTech Connect

    Portacha, J.; Smyk, A.; Zielinski, A.; Misiewicz, L.

    1998-07-01

    Results of examinations carried out on the district heating water temperature influence in the cogeneration plant with respect to both the fuel economy and the ecological cost reduction of heat generation for the purposes of heating and hot service water preparation are presented in this paper. The decrease of water return temperature effectively contributes to the increase of fuel savings in all the examined cases. The quantitative savings depend on the outlet water temperature of the cogeneration plant and on the fuel type combusted at the alternative heat generating plant. A mathematical model and a numerical method for calculations of annual cogeneration plant performance, e.g. annual heat and electrical energy produced in cogeneration mode, and the annual fuel consumption, are also discussed. In the discussed mathematical model, the variable operating conditions of cogeneration plant vs. outside temperature and method of control can be determined. The thermal system of cogeneration plant was decomposed into subsystems so as to set up the mathematical model. The determination of subsystem tasks, including a method of convenient aggregation thereof is an essential element of numerical method for calculations of a specific cogeneration plant thermal system under changing conditions. Costs of heat losses in the environment, resulting from the pollutants emission, being formed in the fuel combustion process in the heat sources, were defined. In addition, the environment quantitative and qualitative pollution characteristics were determined both for the heat generation in a cogeneration plant and for an alternative heat-generating plant. Based on the calculations, a profitable decrease of ecological costs is achieved in the cogeneration economy even if compared with the gas-fired heat generating plant. Ecological costs of coal-fired heat generating plant are almost three time higher than those of the comparable cogeneration plant.

  13. Challenges in the Development of High Temperature Reactors

    SciTech Connect

    Piyush Sabharwall; Shannon M. Bragg-Sitton; Carl Stoots

    2013-10-01

    Advanced reactor designs offer potentially significant improvements over currently operating light water reactors including improved fuel utilization, increased efficiency, higher temperature operation (enabling a new suite of non-electric industrial process heat applications), and increased safety. As with most technologies, these potential performance improvements come with a variety of challenges to bringing advanced designs to the marketplace. There are technical challenges in material selection and thermal hydraulic and power conversion design that arise particularly for higher temperature, long life operation (possibly >60 years). The process of licensing a new reactor design is also daunting, requiring significant data collection for model verification and validation to provide confidence in safety margins associated with operating a new reactor design under normal and off-normal conditions. This paper focuses on the key technical challenges associated with two proposed advanced reactor concepts: the helium gas cooled Very High Temperature Reactor (VHTR) and the molten salt cooled Advanced High Temperature Reactor (AHTR).

  14. Sandia_HighTemperatureComponentEvaluation_2015.

    SciTech Connect

    Cashion, Avery T.

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  15. High temperature solid state storage cell

    DOEpatents

    Rea, Jesse R.; Kallianidis, Milton; Kelsey, G. Stephen

    1983-01-01

    A completely solid state high temperature storage cell comprised of a solid rechargeable cathode such as TiS.sub.2, a solid electrolyte which remains solid at the high temperature operating conditions of the cell and which exhibits high ionic conductivity at such elevated temperatures such as an electrolyte comprised of lithium iodide, and a solid lithium or other alkali metal alloy anode (such as a lithium-silicon alloy) with 5-50% by weight of said anode being comprised of said solid electrolyte.

  16. Symposium on high temperature and materials chemistry

    SciTech Connect

    Not Available

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  17. High-Temperature-High-Volume Lifting For Enhanced Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    include high-temperature drive system materials, journal and thrust bearings, and corrosion and erosion-resistant lifting pump components. Finally, in Phase 3, the overall...

  18. High temperature thermometric phosphors for use in a temperature sensor

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  19. High temperature thermometric phosphors for use in a temperature sensor

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1998-03-24

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  20. High temperature hot water systems: A primer

    SciTech Connect

    Govan, F.A.

    1998-01-01

    The fundamental principles of high temperature water (HTW) system technology and its advantages for thermal energy distribution are presented. Misconceptions of this technology are also addressed. The paper describes design principles, applications, HTW properties, HTW system advantages, selecting the engineer, load diversification, design temperatures, system pressurization, pump considerations, constant vs. VS pumps, HTW generator types, and burners and controls.

  1. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOEpatents

    Albrecht, Georg; George, E. Victor; Krupke, William F.; Sooy, Walter; Sutton, Steven B.

    1996-01-01

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

  2. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOEpatents

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  3. Low Temperature Direct Use Space Heating Geothermal Facilities...

    OpenEI (Open Energy Information) [EERE & EIA]

    Space Heating Geothermal Facilities Jump to: navigation, search Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","SATELLITE","HYBRID","TERRAIN","limit":8...

  4. Low Temperature Heat Release Behavior of Conventional and Alternative...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat Release Behavior of Conventional and Alternative Fuels in a Motored Engine Low ... Kinetic Modeling of Fuels Fuel Modification t Facilitate Future Combustion ...

  5. Avila Hot Springs Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Facility Avila Hot Springs Sector Geothermal energy Type Space Heating Location San Luis Obispo, California Coordinates 35.2827524, -120.6596156 Show Map Loading...

  6. High Efficiency Microturbine with Integral Heat Recovery - Presentation by

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Capstone Turbine Corporation, June 2011 | Department of Energy High Efficiency Microturbine with Integral Heat Recovery - Presentation by Capstone Turbine Corporation, June 2011 High Efficiency Microturbine with Integral Heat Recovery - Presentation by Capstone Turbine Corporation, June 2011 Presentation on High Efficiency Microturbine with Integral Heat Recovery, given by John Nourse of Capstone Turbine Corporation, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in

  7. Sealed glass coating of high temperature ceramic superconductors

    DOEpatents

    Wu, W.; Chu, C.Y.; Goretta, K.C.; Routbort, J.L.

    1995-05-02

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor is disclosed. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor. 8 figs.

  8. Articles for high temperature service and methods for their manufacture

    DOEpatents

    Sarrafi-Nour, Reza; Meschter, Peter Joel; Johnson, Curtis Alan; Luthra, Krishan Lal; Rosenzweig, Larry Steven

    2016-06-14

    An article for use in aggressive environments is presented. In one embodiment, the article comprises a substrate and a self-sealing and substantially hermetic sealing layer comprising an alkaline-earth aluminosilicate disposed over the bondcoat. The substrate may be any high-temperature material, including, for instance, silicon-bearing ceramics and ceramic matrix composites. A method for making such articles is also presented. The method comprises providing a substrate; disposing a self-sealing alkaline-earth aluminosilicate layer over the substrate; and heating the sealing layer to a sealing temperature at which at least a portion of the sealing layer will flow.

  9. High-temperature superconductivity: A conventional conundrum

    DOE PAGES [OSTI]

    Božović, Ivan

    2016-01-07

    High-temperature superconductivity in ultrathin films of iron selenide deposited on strontium titanate has been attributed to various exotic mechanisms, and new experiments indicate that it may be conventional, with broader implications.

  10. Polyelectrolyte Materials for High Temperature Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation, which focuses on polyelectrolyte materials for high temperature fuel cells, was given by John Kerr of Lawrence Berkeley National Laboratory at a meeting on new fuel cell projects in February 2007.

  11. High Efficiency Microturbine with Integral Heat Recovery - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 Capstone Turbine Corporation, in collaboration with Oak Ridge National Laboratory and NASA Glenn ...

  12. High Efficiency Microturbine with Integral Heat Recovery - Presentatio...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - Presentation by Capstone Turbine Corporation, June 2011 High Efficiency Microturbine with Integral Heat Recovery - Presentation by Capstone Turbine Corporation, June 2011 ...

  13. Geothermal Technology Breakthrough in Alaska: Harvesting Heat below Boiling Temperatures

    Energy.gov [DOE]

    The Energy Department is supporting geothermal exploration at lower temperatures, thanks to a technology breakthrough that allows geothermal energy to be produced at temperatures below the boiling...

  14. High Temperature Interfacial Superconductivity - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    High Temperature Interfacial Superconductivity Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication High-temperature interface superconductivity between metallic and insulating copper oxides (791 KB) <p> (a) Annular dark field image of the structure showing extended defects in the metal layer (marked by white arrows). The black arrow shows the metal-insulator interface (b) A magnified image of one defect which nucleated at the

  15. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  16. High Efficiency Cold Climate Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cold Climate Heat Pump 2016 Building Technologies Office Peer Review Bo Shen, shenb@ornl.gov Oak Ridge National Laboratory 2 Project Summary Timeline: Start date: 01-Oct-2010 Planned end date: May-Sep-2017 Key Milestones 1. Tandem fixed-speed system: Meet 76% capacity at-13°F vs. 47°F; COP=4.2 at 47°F - March/2014. 2. Tandem vapor injection system: Meet 88% capacity at-13°F vs. 47°F; COP=4.4 at 47°F - June/2015. 3. Field investigation of a prototype CCHP: eliminate auxiliary heat down to

  17. Vehicle Technologies Office Merit Review 2015: High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Materials for High Efficiency Engines Vehicle Technologies Office Merit Review 2015: High Temperature Materials for High Efficiency Engines Presentation given by ...

  18. Oregon Institute of Technology District Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Annual Generation 46.60x109 Btuyr 13.70 GWhyr Delat T 57.00 F Load Factor 0.25 Start Up Date 1964 Contact 541-885-1691 References Oregon Institute of Technology's Geo-Heat...

  19. Thulium heat source for high-endurance and high-energy density power systems

    SciTech Connect

    Walter, C.E.; Kammeraad, J.E.; Van Konynenburg, R.; VanSant, J.H.

    1991-05-01

    We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5--50 kW{sub th} coupled with a power conversion efficiency of {approximately}30%, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered. 11 refs., 7 figs., 4 tabs.

  20. Solar wind stream interaction: Electron temperature and heat flux rise in the low-speed stream

    SciTech Connect

    Alexander, P.; Duhau, S. )

    1990-11-01

    The strong compression produced in two-stream interaction regions in the solar wind is a local source of heating. The study of the distribution of that energy between heat and internal energy provides valuable information about transport processes. In the present work, the electron heat flux and temperature rise in the compression produced within the low-speed portion of the interaction region is predicted using a new heat conduction law valid for collisionless plasmas with isotropic electron temperature, introduced recently by one of the authors. Equations are found for the electron heat flux and temperature rise as functions of two parameters, one related to the strength of the compression and the other one to the heat flux at the boundaries of the region under study. These equations lead to agreement between theory and experiment.

  1. Evidence for a Crustal Heat Source for Low-Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    is anomalously high due to significant concentrations ofradioactive elements U, Th and K. High heat production in granitesmay be responsiblehfor local elevation of the...

  2. Investigation of ion and electron heat transport of high-Te ECH heated discharges in the large helical device

    DOE PAGES [OSTI]

    Pablant, N. A.; Satake, S.; Yokoyama, M.; Gates, D. A.; Bitter, M.; Bertelli, N.; Delgado-Aparicio, L.; Dinklage, A.; Goto, M.; Hill, K. W.; et al

    2016-01-28

    An analysis of the radial electric field and heat transport, both for ions and electrons, is presented for a high-more » $${{T}_{\\text{e}}}$$ electron cyclotron heated (ECH) discharge on the large helical device (LHD). Transport analysis is done using the task3d transport suite utilizing experimentally measured profiles for both ions and electrons. Ion temperature and perpendicular flow profiles are measured using the recently installed x-ray imaging crystal spectrometer diagnostic (XICS), while electron temperature and density profiles are measured using Thomson scattering. The analysis also includes calculated ECH power deposition profiles as determined through the travis ray-tracing code. This is the first time on LHD that this type of integrated transport analysis with measured ion temperature profiles has been performed without NBI, allowing the heat transport properties of plasmas with only ECH heating to be more clearly examined. For this study, a plasma discharge is chosen which develops a high central electron temperature ($${{T}_{\\text{eo}}}=9$$ keV) at moderately low densities ($${{n}_{\\text{eo}}}=1.5\\times {{10}^{19}}$$ m-3). The experimentally determined transport properties from task3d are compared to neoclassical predictions as calculated by the gsrake and fortec-3d codes. The predicted electron fluxes are seen to be an order of magnitude less than the measured fluxes, indicating that electron transport is largely anomalous, while the neoclassical and measured ion heat fluxes are of the same magnitude. Neoclassical predictions of a strong positive ambipolar electric field ($${{E}_{\\text{r}}}$$ ) in the plasma core are validated through comparisons to perpendicular flow measurements from the XICS diagnostic. Furthermore, this provides confidence that the predictions are producing physically meaningful results for the particle fluxes and radial electric field, which are a key component in correctly predicting plasma confinement.« less

  3. Current status of the advanced high temperature reactor

    SciTech Connect

    Holcomb, D. E.; Iias, D.; Quails, A. L.; Peretz, F. J.; Varma, V. K.; Bradley, E. C.; Cisneros, A. T.

    2012-07-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central station type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently under development by Oak Ridge National Laboratory for the U. S. Dept. of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR design option exploration is a multidisciplinary design effort that combines core neutronic and fuel configuration evaluation with structural, thermal, and hydraulic analysis to produce a reactor and vessel concept and place it within a power generation station. The AHTR design remains at the notional level of maturity, as key technologies require further development and a logically complete integrated design has not been finalized. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. (authors)

  4. Current Status of the Advanced High Temperature Reactor

    SciTech Connect

    Holcomb, David Eugene; Ilas, Dan; Qualls, A L; Peretz, Fred J; Varma, Venugopal Koikal; Bradley, Eric Craig; Cisneros, Anselmo T.

    2012-01-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central station type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently under development by Oak Ridge National Laboratory for the U. S. Department of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR design option exploration is a multidisciplinary design effort that combines core neutronic and fuel configuration evaluation with structural, thermal, and hydraulic analysis to produce a reactor and vessel concept and place it within a power generation station. The AHTR design remains at the notional level of maturity, as key technologies require further development and a logically complete integrated design has not been finalized. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated.

  5. Screening study on high temperature energy transport systems

    SciTech Connect

    Graves, R.L.

    1980-10-01

    The purpose of the study described in this document is to identify the options for transporting thermal energy over long distances. The study deals specifically and exclusively with high temperature (> 400/sup 0/C(752/sup 0/F)) energy for industrial use. Energy transport is seen as a potential solution to: high unit cost of small coal and nuclear steam generators, and opposition to siting of coal or nuclear plants near populated areas. The study is of a preliminary nature but covers many options including steam, molten salts, organics, and chemical heat pipes. The development status and potential problems of these and other energy transport methods are discussed. Energy transport concepts are compared on a fundamental level based on physical properties and also are subjected to an economic study. The economic study indicated that the chemical heat pipe, under a specific set of circumstances, appeared to be the least expensive for distances greater than about 32 km (20 miles). However, if the temperature of the energy was lowered, the heat transfer salt (sodium nitrate/nitrite) system would apparently be a better economic choice for less than about 80 km (50 miles). None of the options studied appear to be more attractive than small coal-fired boilers when the transport distance is over about 64 km (40 miles). Several recommendations are made for refining the analysis.

  6. Heat Pipe Embedded AlSiC Plates for High Conductivity - Low CTE Heat Spreaders

    SciTech Connect

    Johnson, Matthew ); Weyant, J.; Garner, S. ); Occhionero, M. )

    2010-01-07

    Heat pipe embedded aluminum silicon carbide (AlSiC) plates are innovative heat spreaders that provide high thermal conductivity and low coefficient of thermal expansion (CTE). Since heat pipes are two phase devices, they demonstrate effective thermal conductivities ranging between 50,000 and 200,000 W/m-K, depending on the heat pipe length. Installing heat pipes into an AlSiC plate dramatically increases the plate’s effective thermal conductivity. AlSiC plates alone have a thermal conductivity of roughly 200 W/m-K and a CTE ranging from 7-12 ppm/ deg C, similar to that of silicon. An equivalent sized heat pipe embedded AlSiC plate has effective thermal conductivity ranging from 400 to 500 W/m-K and retains the CTE of AlSiC.

  7. An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor

    SciTech Connect

    Yoder Jr, Graydon L; Aaron, Adam M; Cunningham, Richard Burns; Fugate, David L; Holcomb, David Eugene; Kisner, Roger A; Peretz, Fred J; Robb, Kevin R; Wilgen, John B; Wilson, Dane F

    2014-01-01

    The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.

  8. NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS

    SciTech Connect

    Hemrick, James Gordon; Smith, Jeffrey D; O'Hara, Kelley; Rodrigues-Schroer, Angela; Colavito,

    2012-08-01

    A project was led by Oak Ridge National Laboratory (ORNL) in collaboration with a research team comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3, MgAl2O4, or other similar spinel structured or alumina-based unshaped refractory compositions (castables, gunnables, shotcretes, etc.) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. Both practical refractory development experience and computer modeling techniques were used to aid in the design of this new family of materials. The newly developed materials were expected to offer alternative material choices for high-temperature, high-alkali environments that were capable of operating at higher temperatures (goal of increasing operating temperature by 100-200oC depending on process) or for longer periods of time (goal of twice the life span of current materials or next process determined service increment). This would lead to less process down time, greater energy efficiency for associated manufacturing processes (more heat kept in process), and materials that could be installed/repaired in a more efficient manner. The overall project goal was a 5% improvement in energy efficiency (brought about through a 20% improvement in thermal efficiency) resulting in a savings of 3.7 TBtu/yr (7.2 billion ft3 natural gas) by the year 2030. Additionally, new

  9. Development of advanced low-temperature heat transfer fluids for district heating and cooling, final report

    SciTech Connect

    Cho, Y.I.; Lorsch, H.G.

    1991-03-31

    The feasibility of adding phase change materials (PCMS) and surfactants to the heat transfer fluids in district cooling systems was investigated. It increases the thermal capacity of the heat transfer fluid and therefore decreases the volume that needs to be pumped. It also increases the heat transfer rate, resulting in smaller heat exchangers. The thermal behavior of two potential PCMS, hexadecane and tetradecane paraffin wax, was experimentally evaluated. The heat of fusion of these materials is approximately 60% of that of ice. They exhibit no supercooling and are stable under repeated thermal cycling. While test results for laboratory grade materials showed good agreement with data in the literature, both melting point and heat of fusion for commercial grade hexadecane were found to be considerably lower than literature values. PCM/water mixtures were tested in a laboratory-scale test loop to determine heat transfer and flow resistance properties. For 10% and 25% PCM/water slurries, the heat transfer enhancement was found to be approximately 18 and 30 percent above the value for water, respectively. Within the turbulent region, there is only a minor pumping penalty from the addition of up to 25% PCM to the water. Research is continuing on these fluids in order to determine their behavior in large-size loops and to arrive at optimum formulations.

  10. High Temperature/Low Humidity Polymer Electrolytes Derived from...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High TemperatureLow Humidity Polymer Electrolytes Derived from Ionic Liquids High TemperatureLow Humidity Polymer Electrolytes Derived from Ionic Liquids Presentation on High ...

  11. High Temperature Materials Interim Data Qualification Report

    SciTech Connect

    Nancy Lybeck

    2010-08-01

    ABSTRACT Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: 1. Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing – 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. 2. Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram – 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

  12. Life assessment of high temperature headers

    SciTech Connect

    Nakoneczny, G.J.; Schultz, C.C.

    1995-08-01

    High temperature superheater and reheater headers have been a necessary focus of any boiler life extension project done by the electric utilities. These headers operate at high temperatures in excess of 900 F and are subject to thermal stresses and pressure stresses that can lead to cracking and failure. Babcock and Wilcox Company`s investigation of these problems began in 1982 focusing on P11 materials (1{1/4}Cr-{1/2}Mo). Early assessment was limited to dimensional analysis methods which were aimed at quantifying swell due to creep. Condition assessment and remaining useful life analysis methods have evolved since these initial studies. Experience coupled with improved inspection methods and analytical techniques has advanced the life assessment of these high temperature headers. In the discussion that follows the authors provide an overview of B and W`s approach to header life assessment including the location and causes for header failures, inspection techniques and analysis methods which are all directed at determining the remaining useful life of these high temperature headers.

  13. High Efficiency Microturbine with Integral Heat Recovery | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy High Efficiency Microturbine with Integral Heat Recovery High Efficiency Microturbine with Integral Heat Recovery Introduction The U.S. economic market potential for distributed generation is significant. This market, however, remains mostly untapped in the commercial and small industrial buildings that are well suited for microturbines. Gas turbines have many advantages, including high power density, light weight, clean emissions, fuel flexibility, low vibration, low maintenance,

  14. Use of aluminum nitride to obtain temperature measurements in a high temperature and high radiation environment

    DOEpatents

    Wernsman, Bernard R.; Blasi, Raymond J.; Tittman, Bernhard R.; Parks, David A.

    2016-04-26

    An aluminum nitride piezoelectric ultrasonic transducer successfully operates at temperatures of up to 1000.degree. C. and fast (>1 MeV) neutron fluencies of more than 10.sup.18 n/cm.sup.2. The transducer comprises a transparent, nitrogen rich aluminum nitride (AlN) crystal wafer that is coupled to an aluminum cylinder for pulse-echo measurements. The transducer has the capability to measure in situ gamma heating within the core of a nuclear reactor.

  15. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect

    Hans Gougar

    2014-05-01

    Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.

  16. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect

    Gougar, Hans D.

    2014-10-01

    Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.

  17. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect

    Hans Gougar

    2014-05-01

    program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.

  18. Metal Hydrides for High-Temperature Power Generation

    DOE PAGES [OSTI]

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, ormore » during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.« less

  19. Metal Hydrides for High-Temperature Power Generation

    SciTech Connect

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, or during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.

  20. High temperature annealing of ion irradiated tungsten

    SciTech Connect

    Ferroni, Francesco; Yi, Xiaoou; Fitzgerald, Steven P.; Edmondson, Philip D.; Roberts, Steve G.

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source and were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.

  1. High temperature annealing of ion irradiated tungsten

    DOE PAGES [OSTI]

    Ferroni, Francesco; Yi, Xiaoou; Arakawa, Kazuto; Fitzgerald, Steven P.; Edmondson, Philip D.; Roberts, Steve G.

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source andmore » were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.« less

  2. High temperature intermetallic binders for HVOF carbides

    SciTech Connect

    Shaw, K.G.; Gruninger, M.F.; Jarosinski, W.J.

    1994-12-31

    Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr{sub 3}C{sub 2}-NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr{sub 3}C{sub 2} cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr{sub 3}C{sub 2}-NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders.

  3. Low Temperature Heat Source Utilization Current and Advanced Technology

    SciTech Connect

    Anderson, James H. Jr.; Dambly, Benjamin W.

    1992-06-01

    Once a geothermal heat source has been identified as having the potential for development, and its thermal, physical, and chemical characteristics have been determined, a method of utilization must be decided upon. This compendium will touch upon some of these concerns, and hopefully will provide the reader with a better understanding of technologies being developed that will be applicable to geothermal development in East Africa, as well as other parts of the world. The appendices contain detailed reports on Down-the-Well Turbo Pump, The Vapor-Turbine Cycle for Geothermal Power Generation, Heat Exchanger Design for Geothermal Power Plants, and a Feasibility Study of Combined Power and Water Desalting Plant Using Hot Geothermal Water. [DJE-2005

  4. Aqueous Geochemistry at High Pressures and High Temperatures

    SciTech Connect

    Bass, Jay D.

    2015-05-21

    This project is aimed at experimental characterization of the sound velocities, equations of state (EOS), and derived physical and chemical properties of aqueous solutions and carbon dioxide at extreme pressure and temperature conditions relevant to processes occurring in the interior of the Earth. Chemical transport, phase changes (including melting), fluid-solid reactions, and formation of magmatic liquids at convergent plat boundaries are a key motivation for this project. Research in this area has long been limited by the extreme experimental challenges and lack of data under the appropriate pressure-temperature (P-T) conditions. The vast majority of studies of aqueous geochemistry relevant to terrestrial problems of fluid-rock interactions have been conducted at 0.3 GPa or less, and the widely used Helgeson-Kirkham-Flowers equation of state for aqueous species is applicable only at ~ < 0.5 GPa. These limits are unfortunate because fluid flow and reactions plays a central role in many deeper environments. Recent efforts including our own, have resulted in new experimental techniques that now make it possible to investigate properties of homogeneous and heterogeneous equilibria involving aqueous species and minerals over a much broader range of pressure and temperature appropriate for deep crustal and upper mantle processes involving water-rich fluids. We carried out 1) Brillouin scattering measurements of the equations of state and molar volume of water and carbon dioxide to over 10 GPa and 870K using precise resistance heating of samples under pressure in the diamond anvil cell, and 2) the phase diagrams of the water and CO2, and 3) Exploring new experimental approaches, including CO2 laser heating of samples in a diamond cell, to measurements of sound velocities, EOS, and phase relations by Brillouin scattering to far greater pressures and temperatures.

  5. High Temperature Gas-cooled Reactor Projected Markets and Scoping Economics

    SciTech Connect

    Larry Demick

    2010-08-01

    The NGNP Project has the objective of developing the high temperature gas-cooled reactor (HTGR) technology to supply high temperature process heat to industrial processes as a substitute for burning of fossil fuels, such as natural gas. Applications of the HTGR technology that have been evaluated by the NGNP Project for supply of process heat include supply of electricity, steam and high-temperature gas to a wide range of industrial processes, and production of hydrogen and oxygen for use in petrochemical, refining, coal to liquid fuels, chemical, and fertilizer plants.

  6. Reaction-induced temperature deviations during coal devolatilization in a heated grid

    SciTech Connect

    Freihaut, J.D.; Zabielski, M.F.; Seery, D.J.

    1981-01-01

    To gain further insight into the primary devolatilization process, particularly with respect to the tar yields, a new control circuit was designed to permit any heating rate from 800 C/sec to 4 x 10/sup 3/ C/sec to any final temperature in the 300 to 1100/sup 0/C range. With this circuit, the effects of sample characteristics on local heating of the grid were examined to assess the influence of devolatilization on programmed heating rates. The results clearly demonstrate that the devolatilization process has a considerable influence on the time-temperature history of the local screen in immediate contact with the sample. With respect to the coal particles, the direct implication is that the temperature path is the resultant of several components: the resistive heating of the grid, the physical properties of the samples, the devolatilization properties of the sample. Once the range of devolatilization temperatures of a particular coal is achieved, the primary devolatilization process appears to dominate the temperature-time trajectory. Because the heat requirement of the primary devolatilization affects the temperature trajectory of the coal particle, a real time model of primary coal devolatilization must necessarily include a consideration of this requirement. In addition, the data appears to indicate that the heat requirement varies with the rank characteristics of the coal. For a transient process such as rapid coal devolatilization the absolute magnitude of the heat required to vaporize the volatile components need not be large to result in a significant deviation from a programmed heating rate or a calculated heating rate of a nonvolatile particle. The results indicate that the tar release is closely coupled in time to the devolatilization-induced temperature deviations during primary devolatilization and the onset of the tar release significantly precedes the slower light hydrocarbon gas evolution.

  7. High-temperature zirconia insulation and method for making same

    DOEpatents

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.; Lewis, J. Jr.

    1988-05-10

    The present invention is directed to a highly pure, partially stabilized, fibrous zirconia composite for use as thermal insulation in environments where temperatures up to about 2,000 C are utilized. The composite of the present invention is fabricated into any suitable configuration such as a cone, cylinder, dome or the like by vacuum molding an aqueous slurry of partially stabilized zirconia fibers into a desired configuration on a suitably shaped mandrel. The molded fibers are infiltrated with zirconyl nitrate and the resulting structure is then dried to form a rigid structure which may be removed and placed in a furnace. The structure is then heated in air to a temperature of about 600 C for driving off the nitrate from the structure and for oxidizing the zirconyl ion to zirconia. Thereafter, the structure is heated to about 950 to 1,250 C to fuse the zirconia fibers at their nexi in a matrix of zirconia. The composite produced by the present invention is self-supporting and can be readily machined to desired final dimensions. Additional heating to about 1,800 to 2,000 C further improves structural rigidity.

  8. High-temperature zirconia insulation and method for making same

    DOEpatents

    Wrenn, Jr., George E. (Clinton, TN); Holcombe, Jr., Cressie E. (Knoxville, TN); Lewis, Jr., John (Oak Ridge, TN)

    1988-01-01

    The present invention is directed to a highly pure, partially stabilized, fibrous zirconia composite for use as thermal insulation in environments where temperatures up to about 2000.degree. C. are utilized. The composite of the present invention is fabricated into any suitable configuration such as a cone, cylinder, dome or the like by vacuum molding an aqueous slurry of partially stabilized zirconia fibers into a desired configuration on a suitably shaped mandrel. The molded fibers are infiltrated with zirconyl nitrate and the resulting structure is then dried to form a rigid structure which may be removed and placed in a furnace. The structure is then heated in air to a temperature of about 600.degree. C. for driving off the nitrate from the structure and for oxidizing the zirconyl ion to zirconia. Thereafter, the structure is heated to about 950.degree. to 1,250.degree. C. to fuse the zirconia fibers at their nexi in a matrix of zirconia. The composite produced by the present invention is self-supporting and can be readily machined to desired final dimensions. Additional heating to about 1800.degree. to 2000.degree. C. further improves structural rigidity.

  9. A scheme to produce high density and high temperature plasma for opacity measurement

    SciTech Connect

    Xu, Yan; Wu, SiZhong; Zheng, WuDi

    2015-04-15

    The opacity of shock-compressed material is of general scientific interest for astrophysical plasmas and for inertial confinement fusion research. A proposal is suggested to produce high temperature plasma with density around 1 g/cm{sup −3}. Two types of opacity target (the sandwich target and the foam enhanced sandwich target) are investigated numerically. The foam enhanced sandwich target has structure of foam–solid-sample-solid-foam. The foam will increase laser absorption efficiency and the ablating pressure. Hydrodynamic simulations confirm that the laser can be fully absorbed by the under-critical-density foam and a faster shock is produced inside the CH layer. High intensity lasers heat opacity target from both sides. The CH layers must be thick enough to keep the laser away from the sample. The laser-driven shocks move inward and collide at the center. Part of their kinetic energy is converted into internal energy and high density and high temperature local thermodynamic equilibrium sample plasma is produced. The plasma produced by laser heating the foam enhanced sandwich target has higher sample temperature than by laser heating the sandwich target. It may be useful for measuring the opacity of shock compressed material in laboratory.

  10. Simple method for highlighting the temperature distribution into a liquid sample heated by microwave power field

    SciTech Connect

    Surducan, V.; Surducan, E.; Dadarlat, D.

    2013-11-13

    Microwave induced heating is widely used in medical treatments, scientific and industrial applications. The temperature field inside a microwave heated sample is often inhomogenous, therefore multiple temperature sensors are required for an accurate result. Nowadays, non-contact (Infra Red thermography or microwave radiometry) or direct contact temperature measurement methods (expensive and sophisticated fiber optic temperature sensors transparent to microwave radiation) are mainly used. IR thermography gives only the surface temperature and can not be used for measuring temperature distributions in cross sections of a sample. In this paper we present a very simple experimental method for temperature distribution highlighting inside a cross section of a liquid sample, heated by a microwave radiation through a coaxial applicator. The method proposed is able to offer qualitative information about the heating distribution, using a temperature sensitive liquid crystal sheet. Inhomogeneities as smaller as 1°-2°C produced by the symmetry irregularities of the microwave applicator can be easily detected by visual inspection or by computer assisted color to temperature conversion. Therefore, the microwave applicator is tuned and verified with described method until the temperature inhomogeneities are solved.

  11. High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale

    SciTech Connect

    Forsberg, Charles W.

    2006-07-01

    The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

  12. Compliant high temperature seals for dissimilar materials

    DOEpatents

    Rynders, Steven Walton; Minford, Eric; Tressler, Richard Ernest; Taylor, Dale M.

    2001-01-01

    A high temperature, gas-tight seal is formed by utilizing one or more compliant metallic toroidal ring sealing elements, where the applied pressure serves to activate the seal, thus improving the quality of the seal. The compliant nature of the sealing element compensates for differences in thermal expansion between the materials to be sealed, and is particularly useful in sealing a metallic member and a ceramic tube art elevated temperatures. The performance of the seal may be improved by coating the sealing element with a soft or flowable coating such as silver or gold and/or by backing the sealing element with a bed of fine powder. The material of the sealing element is chosen such that the element responds to stress elastically, even at elevated temperatures, permitting the seal to operate through multiple thermal cycles.

  13. Low-temperature waste-heat recovery in the food and paper industries

    SciTech Connect

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  14. High Temperature, High Voltage Fully Integrated Gate Driver Circuit |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ape003_tolbert_2010_p.pdf (757.36 KB) More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Wide Bandgap Materials Smart Integrated Power Module

  15. High Temperature, High Voltage Fully Integrated Gate Driver Circuit |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape_03_marlino.pdf (846.17 KB) More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Smart Integrated Power Module Wide Bandgap Materials

  16. Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes

    SciTech Connect

    Lee O. Nelson

    2011-04-01

    This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

  17. Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility

    SciTech Connect

    Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

    2009-07-01

    A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

  18. High Magnetic Field Processing - A Heat-Free Heat Treating Method

    SciTech Connect

    Ludtka, Gerard Michael; Ludtka, Gail Mackiewicz-; Wilgen, John B; Kenik, Edward A; Parish, Chad M; Rios, Orlando; Rogers, Hiram; Manuel, Michele; Kisner, Roger A; Watkins, Thomas R; Murphy, Bart L

    2012-08-01

    The High and Thermal Magnetic Processing/Electro-magnetic Acoustic Transducer (HTMP/EMAT) technology has been shown to be an enabling disruptive materials processing technology, that can achieve significant improvements in microstructure and consequently material performance beyond that achievable through conventional processing, and will lead to the next generation of advanced performance structural and functional materials. HTMP exposure increased the reaction kinetics enabling refinement of microstructural features such as finer martensite lath size, and finer, more copious, homogeneous dispersions of strengthening carbides leading to combined strength and toughness improvements in bainitic steels. When induction heating is applied in a high magnetic field environment, the induction heating coil is configured so that high intensity acoustic/ultrasonic treatment occurs naturally. The configuration results in a highly effective electromagnetic acoustical transducer (EMAT). HTMP combined with applying high-field EMAT, produce a non-contact ultrasonic treatment that can be used to process metal alloys in either the liquid state resulting in significant microstructural changes over conventional processing. Proof-of-principle experiments on cast irons resulted in homogeneous microstructures in small castings along with improved casting surface appearance. The experiment showed that by exposing liquid metal to the non-contact acoustic/ultrasonic processing technology developed using HMFP/EMAT wrought-like microstructures were developed in cast components. This Energy Intensive Processes (EIP) project sponsored by the DOE EERE Advanced Manufacturing Office (AMO) demonstrated the following: (1) The reduction of retained austenite in high carbon/high alloy steels with an ambient temperature HTMP process, replacing either a cryogenic or double tempering thermal process normally employed to accomplish retained austenite transformation. HTMP can be described as a 'heat

  19. Advanced High Temperature Reactor Systems and Economic Analysis

    SciTech Connect

    Holcomb, David Eugene; Peretz, Fred J; Qualls, A L

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience with

  20. Heat exchanger temperature response for duty-cycle transients in the NGNP/HTE.

    SciTech Connect

    Vilim, R. B.; Nuclear Engineering Division

    2009-03-12

    Control system studies were performed for the Next Generation Nuclear Plant (NGNP) interfaced to the High Temperature Electrolysis (HTE) plant. Temperature change and associated thermal stresses are important factors in determining plant lifetime. In the NGNP the design objective of a 40 year lifetime for the Intermediate Heat Exchanger (IHX) in particular is seen as a challenge. A control system was designed to minimize temperature changes in the IHX and more generally at all high-temperature locations in the plant for duty-cycle transients. In the NGNP this includes structures at the reactor outlet and at the inlet to the turbine. This problem was approached by identifying those high-level factors that determine temperature rates of change. First are the set of duty cycle transients over which the control engineer has little control but which none-the-less must be addressed. Second is the partitioning of the temperature response into a quasi-static component and a transient component. These two components are largely independent of each other and when addressed as such greater understanding of temperature change mechanisms and how to deal with them is achieved. Third is the manner in which energy and mass flow rates are managed. Generally one aims for a temperature distribution that minimizes spatial non-uniformity of thermal expansion in a component with time. This is can be achieved by maintaining a fixed spatial temperature distribution in a component during transients. A general rule of thumb for heat exchangers is to maintain flow rate proportional to thermal power. Additionally the product of instantaneous flow rate and heat capacity should be maintained the same on both sides of the heat exchanger. Fourth inherent mechanisms for stable behavior should not be compromised by active controllers that can introduce new feedback paths and potentially create under-damped response. Applications of these principles to the development of a plant control strategy for

  1. Thermal fuse for high-temperature batteries

    DOEpatents

    Jungst, Rudolph G.; Armijo, James R.; Frear, Darrel R.

    2000-01-01

    A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately 400.degree. C. and 500.degree. C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

  2. Low Temperature Direct Use District Heating Geothermal Facilities...

    OpenEI (Open Energy Information) [EERE & EIA]

    >

    Temperature: 79.0u00b0C, 174.0u00b0FnFlow: 4,000 gpm, 15,160 LminnAnnual Generation: 66.2 x109 Btuyrn

    ","title":"Boise City...

  3. Woven heat exchanger

    DOEpatents

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  4. Institute of Chemical Engineering and High Temperature Chemical...

    OpenEI (Open Energy Information) [EERE & EIA]

    Chemical Engineering and High Temperature Chemical Processes ICEHT Jump to: navigation, search Name: Institute of Chemical Engineering and High Temperature Chemical Processes...

  5. Microchannel High-Temperature Recuperator for Fuel Cell Systems...

    Energy Saver

    Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 FuelCell ...

  6. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This ...

  7. Final Report: Ionization chemistry of high temperature molecular...

    Office of Scientific and Technical Information (OSTI)

    Final Report: Ionization chemistry of high temperature molecular fluids Citation Details In-Document Search Title: Final Report: Ionization chemistry of high temperature molecular ...

  8. High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R&D Presented at the NREL ... DC, August 11-12, 2011. PDF icon High Temperature Fuel Cell (Phosphoric Acid) ...

  9. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission Measurements. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission ...

  10. Topological Hubbard Model and Its High-Temperature Quantum Hall...

    Office of Scientific and Technical Information (OSTI)

    Topological Hubbard Model and Its High-Temperature Quantum Hall Effect Title: Topological Hubbard Model and Its High-Temperature Quantum Hall Effect Authors: Neupert, Titus ; ...

  11. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) ...

  12. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Enhanced High and Low Temperature Performance of NOx Reduction Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) ...

  13. High-Speed, Temperature Programmable Gas Chromatography Utilizing...

    Office of Scientific and Technical Information (OSTI)

    High-Speed, Temperature Programmable Gas Chromatography Utilizing a Microfabricated Chip ... Title: High-Speed, Temperature Programmable Gas Chromatography Utilizing a Microfabricated ...

  14. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Applied low temperature combustion to the Navistar ...

  15. Syngas Enhanced High Efficiency Low Temperature Combustion for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant ...

  16. High Temperature Membrane Working Group Meeting (HTWGM) Agenda...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Meeting (HTWGM) Agenda High Temperature Membrane Working Group Meeting (HTWGM) Agenda Preliminary agenda for the October 10 meeting of the High Temperature Membrane Working Group ...

  17. Lead Research and Development Activity for High Temperature,...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Temperature, Low Relative Humidity Membrane Program Lead Research and Development Activity for High Temperature, Low Relative Humidity Membrane Program A presentation to the High ...

  18. Membrane Development for Medium and High Temperature PEMFC in...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Europe (Presentation) Membrane Development for Medium and High Temperature PEMFC in Europe (Presentation) Presented at the High Temperature Membrane Working Group Meeting ...

  19. New Membranes for High Temperature Proton Exchange Membrane Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Proton Exchange Membrane Fuel Cells Based on Heteropoly Acids New Membranes for High Temperature Proton Exchange Membrane Fuel Cells Based on Heteropoly Acids ...

  20. High Temperature Membrane Working Group, Minutes of Meeting on...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Membrane Working Group, Minutes of Meeting on September 14, 2006 These meeting minutes provide information about the High Temperature Membrane Working Group ...

  1. Agenda of the High Temperature Membrane Working Group Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Agenda of the High Temperature Membrane Working Group Meeting, Monday, June 9, 2008 Agenda of the High Temperature Membrane Working Group Meeting, Monday, June 9, 2008 HTMWG ...

  2. High Temperature Membrane Working Group Meeting, May 14, 2007...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Meeting, May 14, 2007 High Temperature Membrane Working Group Meeting, May 14, 2007 This agenda provides information about the High Temperature Membrane Working Group Meeting on ...

  3. Preliminary Agenda: October 2008 High Temperature Membrane Working...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Preliminary Agenda: October 2008 High Temperature Membrane Working Group Meeting Preliminary Agenda: October 2008 High Temperature Membrane Working Group Meeting Agenda for October ...

  4. High Temperature Membrane with HUmidification-Independent Cluster...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Membrane with HUmidification-Independent Cluster Structure A presentation ... More Documents & Publications High Temperature Membrane Working Group New Proton ...

  5. Development of Advanced High Temperature Fuel Cell Membranes

    Energy.gov [DOE]

    Presentation on Development of Advanced High Temperature Fuel Cell Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  6. High Temperature Polymer Membrane Development at Argonne National...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Temperature Polymer Membrane Development at Argonne National Laboratory High Temperature Polymer Membrane Development at Argonne National Laboratory Summary of ANL's high ...

  7. High-Temperature Solar Thermoelectric Generators (STEG) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High-Temperature Solar Thermoelectric Generators (STEG) High-Temperature Solar Thermoelectric Generators (STEG) This presentation was delivered at the SunShot Concentrating Solar ...

  8. High Temperature Gas Reactors: Assessment of Applicable Codes...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: High Temperature Gas Reactors: Assessment of Applicable Codes and Standards Citation Details In-Document Search Title: High Temperature Gas Reactors: Assessment ...

  9. Reversible Metal Hydride Thermal Energy Storage for High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reversible Metal Hydride Thermal Energy Storage for High Temperature Power Generation Systems Reversible Metal Hydride Thermal Energy Storage for High Temperature Power Generation ...

  10. 2005 High Temperature Membrane Working Group Meeting Archives...

    Energy.gov [DOE] (indexed site)

    of Advanced High Temperature Fuel Cell Membranes, Andrew Chafin and Jennifer ... High-Temperature Fuel Cells, Xiao-Guang Sun, Gao Liu, John B. Kerr, Lawrence Berkeley ...

  11. High temperature aqueous stress corrosion testing device

    DOEpatents

    Bornstein, A.N.; Indig, M.E.

    1975-12-01

    A description is given of a device for stressing tensile samples contained within a high temperature, high pressure aqueous environment, thereby permitting determination of stress corrosion susceptibility of materials in a simple way. The stressing device couples an external piston to an internal tensile sample via a pull rod, with stresses being applied to the sample by pressurizing the piston. The device contains a fitting/seal arrangement including Teflon and weld seals which allow sealing of the internal system pressure and the external piston pressure. The fitting/seal arrangement allows free movement of the pull rod and the piston.

  12. Molten-Salt-Cooled Advanced High-Temperature Reactor for Production of Hydrogen and Electricity

    SciTech Connect

    Forsberg, Charles W.; Peterson, Per F.; Pickard, Paul S.

    2003-12-15

    The molten-salt-cooled Advanced High-Temperature Reactor (AHTR) is a new reactor concept designed to provide very high-temperature (750 to 1000 deg. C) heat to enable efficient low-cost thermochemical production of hydrogen (H{sub 2}) or production of electricity. This paper provides an initial description and technical analysis of its key features. The proposed AHTR uses coated-particle graphite-matrix fuel similar to that used in high-temperature gas-cooled reactors (HTGRs), such as the General Atomics gas turbine-modular helium reactor. However, unlike the HTGRs, the AHTR uses a molten-salt coolant and a pool configuration, similar to that of the General Electric Super Power Reactor Inherently Safe Module (S-PRISM) liquid-metal reactor. Because the boiling points for molten fluoride salts are near {approx}1400 deg. C, the reactor can operate at very high temperatures and atmospheric pressure. For thermochemical H{sub 2} production, the heat is delivered at the required near-constant high temperature and low pressure. For electricity production, a multireheat helium Brayton (gas-turbine) cycle, with efficiencies >50%, is used. The low-pressure molten-salt coolant, with its high heat capacity and natural circulation heat transfer capability, creates the potential for robust safety (including fully passive decay-heat removal) and improved economics with passive safety systems that allow higher power densities and scaling to large reactor sizes [>1000 MW(electric)].

  13. Negative thermal expansion and anomalies of heat capacity of LuB50 at low temperatures

    DOE PAGES [OSTI]

    Novikov, V. V.; Zhemoedov, N. A.; Matovnikov, A. V.; Mitroshenkov, N. V.; Kuznetsov, S. V.; Bud'ko, S. L.

    2015-07-20

    Heat capacity and thermal expansion of LuB50 boride were experimentally studied in the 2–300 K temperature range. The data reveal an anomalous contribution to the heat capacity at low temperatures. The value of this contribution is proportional to the first degree of temperature. It was identified that this anomaly in heat capacity is caused by the effect of disorder in the LuB50 crystalline structure and it can be described in the soft atomic potential model (SAP). The parameters of the approximation were determined. The temperature dependence of LuB50 heat capacity in the whole temperature range was approximated by the summore » of SAP contribution, Debye and two Einstein components. The parameters of SAP contribution for LuB50 were compared to the corresponding values for LuB66, which was studied earlier. Negative thermal expansion at low temperatures was experimentally observed for LuB50. The analysis of the experimental temperature dependence for the Gruneisen parameter of LuB50 suggested that the low-frequency oscillations, described in SAP mode, are responsible for the negative thermal expansion. As a result, the glasslike character of the behavior of LuB50 thermal characteristics at low temperatures was confirmed.« less

  14. Negative thermal expansion and anomalies of heat capacity of LuB 50 at low temperatures

    DOE PAGES [OSTI]

    Novikov, V. V.; Zhemoedov, N. A.; Matovnikov, A. V.; Mitroshenkov, N. V.; Kuznetsov, S. V.; Bud'ko, S. L.

    2015-07-20

    Heat capacity and thermal expansion of LuB50 boride were experimentally studied in the 2300 K temperature range. The data reveal an anomalous contribution to the heat capacity at low temperatures. The value of this contribution is proportional to the first degree of temperature. It was identified that this anomaly in heat capacity is caused by the effect of disorder in the LuB50crystalline structure and it can be described in the soft atomic potential model (SAP). The parameters of the approximation were determined. The temperature dependence of LuB50 heat capacity in the whole temperature range was approximated by the sum ofmoreSAP contribution, Debye and two Einstein components. The parameters of SAP contribution for LuB50 were compared to the corresponding values for LuB66, which was studied earlier. Negative thermal expansion at low temperatures was experimentally observed for LuB50. The analysis of the experimental temperature dependence for the Gruneisen parameter of LuB50 suggested that the low-frequency oscillations, described in SAP mode, are responsible for the negative thermal expansion. Thus, the glasslike character of the behavior of LuB50 thermal characteristics at low temperatures was confirmed.less

  15. High Reliability, High TemperatureThermoelectric Power Generation...

    Energy.gov [DOE] (indexed site)

    Key technologies and system approaches to excellent record of thermoelectric power sources ... Heat Recovery Applications Waste Heat Recovery Opportunities for Thermoelectric Generators

  16. Investigating Methods of Heat Recovery from Low-Temperature PEM Fuel Cells in CHP Applications

    SciTech Connect

    Jalalzadeh-Azar, A. A.

    2004-01-01

    Heat recovery from low-temperature proton exchange membrane (PEM) fuel cells poses a number of challenges. In response to these challenges, thermodynamic assessments of proposed heat recovery methods are studied in the context of combined heat and power (CHP) for building applications. Preheating combustion air in conjunction with desiccant dehumidification and absorption cooling technologies is one of the two strategies examined in this study. The other approach integrates the PEM fuel cell with a water-loop heat pump (WLHP) for direct heat recovery. As the primary objective, energy-saving potentials of the adopted heat recovery strategies are estimated with respect to various benchmarks. The quantified energy-saving potentials are translated into effective CHP performance indices and compared with those typically specified by the manufacturers for service hot water applications. The need for developing CHP performance protocols is also discussed in light of the proposed energy recovery techniques - thereby, accomplishing the secondary objective.

  17. Hotline IV …High Temperature ESP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hotline IV …High Temperature ESP Hotline IV …High Temperature ESP Project Objective: Increase temperature rating of high temperature ESPs. high_dhruva_hotline_iv.pdf (1.64 MB) More Documents & Publications Creation of an Engineered Geothermal System through Hydraulic and Thermal Stimulation Novel Energy Conversion Equipment for Low Temperature Geothermal Resources High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production

  18. Convective heat transfer in a high aspect ratio minichannel heated on one side

    SciTech Connect

    Forrest, Eric C.; Hu, Lin -Wen; Buongiorno, Jacopo; McKrell, Thomas J.

    2015-10-21

    Experimental results are presented for single-phase heat transfer in a narrow rectangular minichannel heated on one side. The aspect ratio and gap thickness of the test channel were 29:1 and 1.96 mm, respectively. Friction pressure drop and Nusselt numbers are reported for the transition and fully turbulent flow regimes, with Prandtl numbers ranging from 2.2 to 5.4. Turbulent friction pressure drop for the high aspect ratio channel is well-correlated by the Blasius solution when a modified Reynolds number, based upon a laminar equivalent diameter, is utilized. The critical Reynolds number for the channel falls between 3500 and 4000, with Nusselt numbers in the transition regime being reasonably predicted by Gnielinski's correlation. The dependence of the heat transfer coefficient on the Prandtl number is larger than that predicted by circular tube correlations, and is likely a result of the asymmetric heating. The problem of asymmetric heating condition is approached theoretically using a boundary layer analysis with a two-region wall layer model, similar to that originally proposed by Prandtl. The analysis clarifies the influence of asymmetric heating on the Nusselt number and correctly predicts the experimentally observed trend with Prandtl number. Furthermore, a semi-analytic correlation is derived from the analysis that accounts for the effect of aspect ratio and asymmetric heating, and is shown to predict the experimental results of this study with a mean absolute error (MAE) of less than 5% for 4000 < Re < 70,000.

  19. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    SciTech Connect

    Turnquist, Norman; Qi, Xuele; Raminosoa, Tsarafidy; Salas, Ken; Samudrala, Omprakash; Shah, Manoj; Van Dam, Jeremy; Yin, Weijun; Zia, Jalal

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  20. High-temperature superconducting current leads

    SciTech Connect

    Niemann, R.C.

    1995-03-01

    Use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature can reduce refrigeration requirements to values significantly below those achievable with conventional leads. HTS leads are now near commercial realization. Argonne National Laboratory (ANL) has developed a sinter-forge process to fabricate current leads from bismuth-based superconductors. The current-carrying capacity of these leads is five times better than that of HTS leads made by a conventional fabrication process. ANL along with Superconductivity, Inc., has developed a 1500 ampere current lead for an existing superconducting magnetic energy storage (SMES) device. With Babcock & Wilcox Company, Argonne is creating 16-kiloampere leads for use in a 0.5 MWh SMES. In a third project Argonne performed characterization testing of a existing, proprietary conduction-cooled lead being developed by Zer Res Corp.