National Library of Energy BETA

Sample records for heavy-duty freight transportation

  1. Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy U.S. Automakers Collaborate to Improve Heavy-Duty Freight Efficiency Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Efficiency November 22, 2013 - 5:37pm Addthis As part of the 21st Century Truck Partnership, the Army will demonstrate technology that converts waste heat from an exhaust system to electricity used in its Stryker vehicle. | Photo courtesy of U.S. Army As part of the 21st Century Truck Partnership, the Army will demonstrate technology that

  2. Feasibility evaluation of fuel cells for selected heavy-duty transportation systems

    SciTech Connect (OSTI)

    Huff, J.R.; Murray, H.S.

    1982-10-01

    A study of the feasibility of using fuel cell power plants for heavy duty transportation applications is performed. It is concluded that it will be feasible to use fuel cell technology projected as being available by 1995 to 2000 for powering 3000-hp freight locomotives and 6000-hp river boats. The fuel cell power plant is proposed as an alternative to the currently used diesel or diesel-electric system. Phosphoric acid and solid polymer electrolyte fuel cells are determined to be the only applicable technologies in the desired time frame. Methanol, chemically reformed to produce hydrogen, is determined to be the most practical fuel for the applications considered. Feasibility is determined on the basis of weight and volume constraints, compatibility with existing propulsion components, and adequate performance relative to operational requirements. Simulation results show that performance goals are met and that overall energy consumption of heavy duty fuel cell power plants is lower than that of diesels for the same operating conditions. Overall energy consumption is substantially improved over diesel operation for locomotives. Operating cost comparisons are made using assumed diesel fuel and methanol costs. Development areas are identified to achieve the desired fuel cell capabilities. The required activities are in the areas of fuel cell electrode performance, catalyst development, fuel processing, controls, power conditioning, and system integration.

  3. NREL: Transportation Research - Heavy-Duty Vehicle Thermal Management

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Heavy-Duty Vehicle Thermal Management Infrared image of a semi cab and two people. NREL testing and modeling assess the energy saving impact of advanced climate control materials and equipment on heavy-duty vehicles. Photo by Dennis Schroeder, NREL Illustration of a truck with labeled energy-saving elements. NREL researchers assess the energy saving potential of films, paints, advanced insulation, micro-environmental design, and idle reduction technologies. Illustration by Ray David, NREL

  4. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    SciTech Connect (OSTI)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  5. The transportable heavy-duty engine emissions testing laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    West Virginia University has designed and constructed a Transportable Emissions Testing Laboratory for measuring emissions from heavy duty vehicles, such as buses and trucks operating on conventional and alternative fuels. The laboratory facility can be transported to a test site located at, or nearby, the home base of the vehicles to be tested. The laboratory has the capability of measuring vehicle emissions as the vehicle is operated under either transient or steady state loads and speeds. The exhaust emissions from the vehicle is sampled and the levels of the constituents of the emission are measured. The laboratory consists of two major units; a power absorber unit and an emissions measurement unit. A power absorber unit allows for the connection of a dynamic load to the drive train of the vehicle so that the vehicle can be driven'' through a test cycle while actually mounted on a stationary test bed. The emissions unit contains instrumentation and equipment which allows for the dilution of the vehicle's exhaust with air. The diluteed exhaust is sampled and analyzed to measure the level of concentration of those constituents which have been identified to have impact on the clean environment. Sampling probes withdraw diluted exhaust which is supplied to a number of different exhaust gas analysis instruments. The exhaust gas analysis instruments have the capability to measure the levels of the following exhaust gas constituents: carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), unburned hydrocarbons (HC), formaldehyde (HCHO), methane and particulate matter. Additional instruments or sampling devices can be installed whenever measurements of additional constituents are desired. A computer based, data acquisition system is used to continuously monitor a wide range of parameters important to the operation of the test and to record the test results.

  6. Heavy-Duty Powertrain and Vehicle Development - A Look Toward...

    Energy.gov (indexed) [DOE]

    Globalization in emissions regulation will be driving freight efficiency improvements and will require heavy-duty engine and powertrain advancements, vehicle improvements, and ...

  7. The transportable heavy-duty engine emissions testing laboratory. Annual progress report, April 1990--April 1991

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    West Virginia University has designed and constructed a Transportable Emissions Testing Laboratory for measuring emissions from heavy duty vehicles, such as buses and trucks operating on conventional and alternative fuels. The laboratory facility can be transported to a test site located at, or nearby, the home base of the vehicles to be tested. The laboratory has the capability of measuring vehicle emissions as the vehicle is operated under either transient or steady state loads and speeds. The exhaust emissions from the vehicle is sampled and the levels of the constituents of the emission are measured. The laboratory consists of two major units; a power absorber unit and an emissions measurement unit. A power absorber unit allows for the connection of a dynamic load to the drive train of the vehicle so that the vehicle can be ``driven`` through a test cycle while actually mounted on a stationary test bed. The emissions unit contains instrumentation and equipment which allows for the dilution of the vehicle`s exhaust with air. The diluteed exhaust is sampled and analyzed to measure the level of concentration of those constituents which have been identified to have impact on the clean environment. Sampling probes withdraw diluted exhaust which is supplied to a number of different exhaust gas analysis instruments. The exhaust gas analysis instruments have the capability to measure the levels of the following exhaust gas constituents: carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), unburned hydrocarbons (HC), formaldehyde (HCHO), methane and particulate matter. Additional instruments or sampling devices can be installed whenever measurements of additional constituents are desired. A computer based, data acquisition system is used to continuously monitor a wide range of parameters important to the operation of the test and to record the test results.

  8. Heavy-Duty Powertrain and Vehicle Development- A Look Toward 2020

    Office of Energy Efficiency and Renewable Energy (EERE)

    Globalization in emissions regulation will be driving freight efficiency improvements and will require heavy-duty engine and powertrain advancements, vehicle improvements, and optimized system integration

  9. NEMS Freight Transportation Module Improvement Study

    U.S. Energy Information Administration (EIA) (indexed site)

    NEMS Freight Transportation Module Improvement Study February 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | NEMS Freight Transportation Module Improvement Study i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other

  10. Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I

    SciTech Connect (OSTI)

    1997-12-01

    This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

  11. Transportation Energy Futures Series: Freight Transportation...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    may make slow steaming a permanent feature of marine operations by integrating slower-design speeds into the construction of new vessels (Maersk Line 2011). - Freight Demand...

  12. On-Road Development of the C-Gas Plus Engine in Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    Fact sheet details on-road development of C-Gas Plus natural gas engine in Viking Freight heavy-duty trucks, including emissions, fuel costs, and petroleum displacement.

  13. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Vehicle Technologies Office Merit Review 2014: Heavy-Duty ...

  14. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Vehicle Technologies Office Merit Review 2014: Heavy-Duty Low-Temperature and Diesel ...

  15. Efficient Use of Natural Gas Based Fuels in Heavy-Duty Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Use of Natural Gas Based Fuels in Heavy-Duty Engines Efficient Use of Natural Gas Based Fuels in Heavy-Duty Engines Natural gas and other liquid feedstocks for transportation fuels ...

  16. APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heavy Duty NOx AdsorberDPF Project: Heavy Duty Linehaul Platform Project Update APBF-DEC Heavy Duty NOx AdsorberDPF Project: Heavy Duty Linehaul Platform Project Update 2003 DEER ...

  17. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty ...

  18. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Peer Evaluation PDF icon ace001musculus2011o.pdf More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Heavy-Duty ...

  19. NEMS Freight Transportation Module Improvement Study - Energy...

    Gasoline and Diesel Fuel Update

    EIA is now using the Freight Analysis Framework in place of the Commodity Flow Survey in the determination of historical census division and commodity ton-mile data, including the ...

  20. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Modeling | Department of Energy Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace001_musculus_2012_o.pdf (6.73 MB) More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Vehicle Technologies

  1. The GREET Model Expansion for Well-to-Wheels Analysis of Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    Cai, Hao; Burnham, Andrew; Wang, Michael; Hang, Wen; Vyas, Anant

    2015-05-01

    Heavy-duty vehicles (HDVs) account for a significant portion of the U.S. transportation sector’s fuel consumption, greenhouse gas (GHG) emissions, and air pollutant emissions. In our most recent efforts, we expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREETTM) model to include life-cycle analysis of HDVs. In particular, the GREET expansion includes the fuel consumption, GHG emissions, and air pollutant emissions of a variety of conventional (i.e., diesel and/or gasoline) HDV types, including Class 8b combination long-haul freight trucks, Class 8b combination short-haul freight trucks, Class 8b dump trucks, Class 8a refuse trucks, Class 8a transit buses, Class 8a intercity buses, Class 6 school buses, Class 6 single-unit delivery trucks, Class 4 single-unit delivery trucks, and Class 2b heavy-duty pickup trucks and vans. These vehicle types were selected to represent the diversity in the U.S. HDV market, and specific weight classes and body types were chosen on the basis of their fuel consumption using the 2002 Vehicle Inventory and Use Survey (VIUS) database. VIUS was also used to estimate the fuel consumption and payload carried for most of the HDV types. In addition, fuel economy projections from the U.S. Energy Information Administration, transit databases, and the literature were examined. The U.S. Environmental Protection Agency’s latest Motor Vehicle Emission Simulator was employed to generate tailpipe air pollutant emissions of diesel and gasoline HDV types.

  2. Heavy Duty Vehicle Futures Analysis.

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett.; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  3. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and ...

  4. Hydrogen in the Heavy Duty Market? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in the Heavy Duty Market? Hydrogen in the Heavy Duty Market? 2002 DEER Conference Presentation: Sandia National Laboratories PDF icon 2002deerkeller.pdf More Documents & ...

  5. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using ...

  6. Heavy Duty Vehicle In-Use Emission Performance | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heavy Duty Vehicle In-Use Emission Performance Heavy Duty Vehicle In-Use Emission Performance 2003 DEER Conference Presentation: VTT Technical Research Centre of Finland ...

  7. California Policy Stimulates Carbon Negative CNG for Heavy Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    California Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks California Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks Describes system for fueling truck ...

  8. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Energy.gov (indexed) [DOE]

    More Documents & Publications Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium and Heavy-Duty Vehicle Field Evaluations Battery Pack Requirements and ...

  9. Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Energy.gov [DOE]

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use.After describing federal policy actions that could influence freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.

  10. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  11. Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    Energy.gov [DOE]

    Freight transportation modes—truck, rail, water, air, and pipeline—each serve a distinct share of the freight transportation market. A variety of factors influence the modes chosen by shippers, carriers, and others involved in freight supply chains. Analytical methods can be used to project future modal shares, and federal policy actions could influence future freight mode choices. This report considers how these topics have been addressed in existing literature and offers insights on federal policy decisions with the potential to prompt mode choices that reduce energy use and greenhouse gas emissions.

  12. Transient Simulation of a 2007 Prototype Heavy-Duty Engine |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Simulation of a 2007 Prototype Heavy-Duty Engine Transient Simulation of a 2007 Prototype Heavy-Duty Engine 2004 Diesel Engine Emissions Reduction (DEER) Conference PresentationL ...

  13. SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 ...

  14. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis 2012 DOE Hydrogen and Fuel Cells Program ...

  15. Making a Difference: Heavy-Duty Combustion Engine Research Saved...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heavy-Duty Combustion Engine Research Saved Billions Making a Difference: Heavy-Duty Combustion Engine Research Saved Billions December 29, 2015 - 12:22pm Addthis Sandia researcher ...

  16. Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF In reference ...

  17. Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle Data

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Results | Department of Energy Medium and Heavy Duty Vehicle Data and Results Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle Data and Results The Vehicle Technologies Office supports work to collect extensive data on light-duty, medium-duty and heavy-duty vehicles through the Advanced Vehicle Testing Activity (AVTA). Idaho National Laboratory and the National Renewable Energy Laboratory (NREL) test and evaluate medium and heavy-duty fleet vehicles that use hybrid

  18. NREL: Transportation Research - Projects

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Projects Illustration of aerodynamic light-, medium, and heavy-duty vehicles. NREL research helps optimize the energy efficiency of a wide range of vehicle technologies and applications. NREL's innovative transportation research, development, and deployment projects accelerate widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. The following NREL transportation projects are propelling

  19. Streamlining Transportation Corridor Planning Processess: Freight and Traffic Information

    SciTech Connect (OSTI)

    Franzese, Oscar

    2010-08-01

    The traffic investigation is one of the most important parts of an Environmental Impact Statement of projects involving the construction of new roadway facilities and/or the improvement of existing ones. The focus of the traffic analysis is on the determination of anticipated traffic flow characteristics of the proposed project, by the application of analytical methods that can be grouped under the umbrella of capacity analysis methodologies. In general, the main traffic parameter used in EISs to describe the quality of traffic flow is the Level of Service (LOS). The current state of the practice in terms of the traffic investigations for EISs has two main shortcomings. The first one is related to the information that is necessary to conduct the traffic analysis, and specifically to the lack of integration among the different transportation models and the sources of information that, in general, reside in GIS databases. A discussion of the benefits of integrating CRS&SI technologies and the transportation models used in the EIS traffic investigation is included. The second shortcoming is in the presentation of the results, both in terms of the appearance and formatting, as well as content. The presentation of traffic results (current and proposed) is discussed. This chapter also addresses the need of additional data, in terms of content and coverage. Regarding the former, other traffic parameters (e.g., delays) that are more meaningful to non-transportation experts than LOS, as well as additional information (e.g., freight flows) that can impact traffic conditions and safety are discussed. Spatial information technologies can decrease the negative effects of, and even eliminate, these shortcomings by making the relevant information that is input to the models more complete and readily available, and by providing the means to communicate the results in a more clear and efficient manner. The benefits that the application and use of CRS&SI technologies can provide to

  20. Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

    2013-03-01

    Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  1. NREL: Transportation Research Home Page

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transportation Research Silver Toyota Prius being driven in front of NREL entrance sign. NREL helps industry partners develop the next generation of energy efficient, high performance vehicles and fuels. Thermal image of two men standing in front of tractor trailer cab. NREL conducts research on the full range of vehicle types, from light-duty passenger cars to heavy-duty freight trucks. Female researcher holding coin cell battery. NREL's transportation research spans from the materials to the

  2. LNT + SCR Aftertreatment for Medium-Heavy Duty Applications:...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LNT + SCR Aftertreatment for Medium-Heavy Duty Applications: A Systems Approach Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER ...

  3. Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions ...

  4. SCRT Technology for Retrofit of Heavy-Duty Diesel Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SCRT Technology for Retrofit of Heavy-Duty Diesel Applications 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerconway.pdf (183.03 KB) ...

  5. Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling...

    Energy.gov (indexed) [DOE]

    Program Truck Duty Cycle and Performance Data Collection and Analysis Program Vehicle Technologies Office Merit Review 2014: Powertrain Controls Optimization for Heavy Duty ...

  6. NOx Adsorber Regeneration Phenomena In Heavy Duty Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Adsorber Regeneration Phenomena In Heavy Duty Applications NOx Adsorber Regeneration ... More Documents & Publications Fuel-Borne Reductants for NOx Aftertreatment: Preliminary ...

  7. Heavy-Duty Low Temperature Combustion Development Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Low Temperature Combustion Development Activities at Caterpillar Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar Presentation given at the 2007 Diesel ...

  8. Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Combustion: Heavy-Duty Optical-Engine Research Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research 2009 DOE Hydrogen Program and Vehicle Technologies ...

  9. Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Charge Motion for 2007-2010 Heavy Duty Diesel Engines Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines 2003 DEER Conference Presentation: AVL Powertrain Engineering ...

  10. 2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    -2009 USA Emission Solutions for Heavy-Duty Diesel Engines 2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines 2002 DEER Conference Presentation: Southwest Research ...

  11. The Road to Improved Heavy Duty Fuel Economy | Department of...

    Energy.gov (indexed) [DOE]

    Heavy duty diesel engine fuel economy is improved by lowering the viscosity of engine lubricant, especially when engine speed is increased or load is decreased, as in long distance ...

  12. Heavy Duty Diesels - The Road Ahead | Department of Energy

    Energy.gov (indexed) [DOE]

    This presentation gives a landscape picture of diesel engine technologies from the Daimler point of view. deer10bockenhoff.pdf (1.16 MB) More Documents & Publications Heavy-Duty ...

  13. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis PI: Jeff Gonder (NREL) Team: Laurie Ramroth and Aaron Brooker May 15, 2012 Project ID : VSS043 This ...

  14. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis DOE VTP Annual Merit Review PI: Robb A. Barnitt Organization: NREL May 10, 2011 Project ID: VSS043 This ...

  15. New Demands on Heavy Duty Engine Management Systems

    Energy.gov [DOE]

    The purpose of this research was to investigate the potential of emissions-based process control to meet future heavy-duty emissions legislation by identifying suitable actuated variables and developing hardware and related controllers.

  16. The ethanol heavy-duty truck fleet demonstration project

    SciTech Connect (OSTI)

    1997-06-01

    This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

  17. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy

    Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Cummins Inc. Heavy-Duty Truck Engine Program

  18. Vehicle Technologies Office Merit Review 2015: Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy-duty low...

  19. Vehicle Technologies Office Merit Review 2014: Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy-duty low...

  20. Alternative Fuels Data Center: Sacramento Adds Regional Heavy-Duty LNG

    Alternative Fuels and Advanced Vehicles Data Center

    Fueling Station Sacramento Adds Regional Heavy-Duty LNG Fueling Station to someone by E-mail Share Alternative Fuels Data Center: Sacramento Adds Regional Heavy-Duty LNG Fueling Station on Facebook Tweet about Alternative Fuels Data Center: Sacramento Adds Regional Heavy-Duty LNG Fueling Station on Twitter Bookmark Alternative Fuels Data Center: Sacramento Adds Regional Heavy-Duty LNG Fueling Station on Google Bookmark Alternative Fuels Data Center: Sacramento Adds Regional Heavy-Duty LNG

  1. Effect of a sudden fuel shortage on freight transport in the United States: an overview

    SciTech Connect (OSTI)

    Hooker, J N

    1980-01-01

    A survey was made of the potential effects of a sudden reduction of fuel supplies on freight transport via truck, rail, water, and pipeline. After a brief discussion of the energy characteristics of each of these modes of transport, short-term strategies for making better use of fuel in a crisis are investigated. Short-term is taken to mean something on the order of six months, and a crisis is taken to be the result of something on the order of a 20% drop in available fuel. Although no succinct or well-established conclusions are drawn, the gist of the paper is that the potential for short-term conservation, without a serious disruption of service, exists but does not appear to be large. It is remarked that it is possible, through further study, to obtain a fairly accurate reckoning of the physical ability of the freight transport network to weather a fuel crisis, but that it is impossible to say in advance what freight carriers will in fact do with the network.

  2. Impact of Heavy Duty Vehicle Emissions Reductions on Global Climate

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Thomson, Allison M.

    2010-08-01

    The impact of a specified set of emissions reductions from heavy duty vehicles on climate change is calculated using the MAGICC 5.3 climate model. The integrated impact of the following emissions changes are considered: CO2, CH4, N2O, VOC, NOx, and SO2. This brief summarizes the assumptions and methods used for this calculation.

  3. Effects of Catalysts on Emissions from Heavy-Duty Diesel Retrofits...

    Energy.gov (indexed) [DOE]

    SCRT Technology for Retrofit of Heavy-Duty Diesel Applications ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses Diesel Health Impacts & Recent Comparisons to ...

  4. Measurement of Real-World Emissions from Heavy-Duty Diesel Vehicles...

    Energy.gov (indexed) [DOE]

    Evaluation of NTE Windows and a Work-Based Method to Determine In-Use Emissions of a Heavy-Duty Diesel Engine Reduction of Emissions from a High Speed Ferry Heavy-Duty Truck ...

  5. APBF- DEC Heavy-Duty NOx Adsorber/DPF Project: Catalyst Aging...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DEC Heavy-Duty NOx AdsorberDPF Project: Catalyst Aging Study APBF- DEC Heavy-Duty NOx AdsorberDPF Project: Catalyst Aging Study 2004 Diesel Engine Emissions Reduction (DEER) ...

  6. High-Load Partially Premixed Combustion in a Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High-Load Partially Premixed Combustion in a Heavy-Duty Diesel Engine High-Load Partially Premixed Combustion in a Heavy-Duty Diesel Engine 2005 Diesel Engine Emissions Reduction ...

  7. Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control 2002deeraardahl.pdf (7.98 ...

  8. Summary of In-Use Evaluation of Two Heavy Duty Hybrid Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Evaluation of NTE Windows and a Work-Based Method to Determine In-Use Emissions of a Heavy-Duty Diesel Engine Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty ...

  9. Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab 2002 DEER Conference Presentation: University of ...

  10. Medium- and Heavy-Duty Vehicle Field Evaluations; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Kelly, Kenneth; Cosgrove, Jon; Duran, Adam; Konan, Arnaud; Lammert, Mike; Prohaska, Bob

    2015-06-09

    This presentation summarizes medium-duty and heavy-duty vehicle field evaluation test results, aggregated data, and detailed analysis.

  11. Energy 101: Heavy Duty Vehicle Efficiency

    SciTech Connect (OSTI)

    2015-05-14

    Although Class 8 Trucks only make up 4% of the vehicles on the road, they use about 20% of the nation's transportation fuel. In this video, learn how new fuel-efficient technologies are making our country's big rigs quieter, less polluting, more energy-efficient, and less expensive to operate over time.

  12. Energy 101: Heavy Duty Vehicle Efficiency

    Education Teach & Learn

    Although Class 8 Trucks only make up 4% of the vehicles on the road, they use about 20% of the nation's transportation fuel. In this video, learn how new fuel-efficient technologies are making our country's big rigs quieter, less polluting, more energy-efficient, and less expensive to operate over time.

  13. Medium and Heavy Duty Vehicle Field Evaluations (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.

    2014-06-01

    This presentation discusses field evaluations of medium- and heavy-duty vehicles performed by NREL. The project provides medium-duty (MD) and heavy-duty (HD) test results, aggregated data, and detailed analysis, including 3rd party unbiased data (data that would not normally be shared by industry in an aggregated and detailed manner). Over 5.6 million miles of advanced technology MD and HD truck data have been collected, documented, and analyzed on over 240 different vehicles since 2002. Data, analysis, and reports are shared within DOE, national laboratory partners, and industry for R&D planning and strategy. The results help guide R&D for new technology development, help define intelligent usage of newly developed technology, and help fleets/users understand all aspects of advanced technology.

  14. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss043_gonder_2012_o.pdf (2.42 MB) More Documents & Publications Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Battery Pack Requirements and Targets Validation FY 2009 DOE Vehicle

  15. Heavy-Duty Natural Gas Drayage Truck Replacement Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Natural Gas Drayage Truck Replacement Program Heavy-Duty Natural Gas Drayage Truck Replacement Program 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt045_ti_white_2012_o.pdf (517.25 KB) More Documents & Publications Heavy-Duty Natural Gas Drayage Truck Replacement Program Heavy-Duty Natural Gas Drayage Truck Replacement Program UPS Ontario - Las Vegas LNG Corridor Extension Project: Bridging the G

  16. Vehicle Technologies Office Merit Review 2015: Medium and Heavy-Duty

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Field Evaluations | Department of Energy Medium and Heavy-Duty Vehicle Field Evaluations Vehicle Technologies Office Merit Review 2015: Medium and Heavy-Duty Vehicle Field Evaluations Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about medium and heavy-duty vehicle field evaluations. vss001_kelly_2015_p.pdf (3.01 MB) More Documents &

  17. Alternative Fuels Data Center: Coca-Cola Continues to Expand Its Heavy-Duty

    Alternative Fuels and Advanced Vehicles Data Center

    Hybrid Fleet in Atlanta Coca-Cola Continues to Expand Its Heavy-Duty Hybrid Fleet in Atlanta to someone by E-mail Share Alternative Fuels Data Center: Coca-Cola Continues to Expand Its Heavy-Duty Hybrid Fleet in Atlanta on Facebook Tweet about Alternative Fuels Data Center: Coca-Cola Continues to Expand Its Heavy-Duty Hybrid Fleet in Atlanta on Twitter Bookmark Alternative Fuels Data Center: Coca-Cola Continues to Expand Its Heavy-Duty Hybrid Fleet in Atlanta on Google Bookmark Alternative

  18. Clean Cities' Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    Guide describes the alternative fuel and advanced medium- and heavy-duty vehicles available on the market, including buses, vans, refuse haulers, and more.

  19. Exhaust Heat Driven Rankine Cycle for a Heavy Duty Diesel Engine

    Energy.gov [DOE]

    Presents progress to date and plans to develop a viable Rankine engine to harness useful brake power from wasted heat energy in heavy duty truck engine exhaust

  20. Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel Engines? Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). ...

  1. Technologies for a Sustainable Heavy-Duty On-Road Fleet | Department...

    Energy.gov (indexed) [DOE]

    Only selected energy pathways for the heavy-duty on-road fleet are consistent with the joint objectives of reducing petroleum dependence and mitigating climate change ...

  2. INFOGRAPHIC: How SuperTruck is Making Heavy Duty Vehicles More Efficient |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy How SuperTruck is Making Heavy Duty Vehicles More Efficient INFOGRAPHIC: How SuperTruck is Making Heavy Duty Vehicles More Efficient March 1, 2016 - 10:45am Addthis Our latest infographic explains how heavy-duty trucks are more getting more sustainable thanks to the Energy Department's SuperTruck initiative. | Infographic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department. Our latest infographic explains how heavy-duty trucks are more

  3. Heavy-Duty Engine Technology for High Thermal Efficiency at EPA...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology for High Thermal Efficiency at EPA 2010 Emissions Regulations Heavy-Duty Engine Technology for High Thermal Efficiency at EPA 2010 Emissions Regulations Presentation ...

  4. SCR Potential and Issues for Heavy-Duty Applications in the United...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SCR Potential and Issues for Heavy-Duty Applications in the United States 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Daimler Chrysler Detroit Diesel ...

  5. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy...

    Energy.gov (indexed) [DOE]

    Heavy-Duty Truck Engine Program PDF icon 2004deernelson.pdf More Documents & Publications High Engine Efficiency at 2010 Emissions Achieving High Efficiency at 2010 Emissions ...

  6. Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma...

    Energy.gov (indexed) [DOE]

    More Documents & Publications Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Selective reduction of NOx in oxygen rich environments with plasma-assiste...

  7. SuperTruck Leading the Way for Efficiency in Heavy-Duty, Long-Haul Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy SuperTruck Leading the Way for Efficiency in Heavy-Duty, Long-Haul Vehicles SuperTruck Leading the Way for Efficiency in Heavy-Duty, Long-Haul Vehicles June 27, 2016 - 10:55am Addthis Heavy-duty trucks are getting more efficient thanks to the Energy Department's SuperTruck initiative. Heavy-duty trucks are getting more efficient thanks to the Energy Department's SuperTruck initiative. David Friedman David Friedman Assistant Secretary for Energy Efficiency and Renewable

  8. Medium and Heavy-Duty Vehicle Field Evaluations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Medium and Heavy-Duty Vehicle Field Evaluations Medium and Heavy-Duty Vehicle Field Evaluations 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss001_walkowicz_2012_o.pdf (1.73 MB) More Documents & Publications Medium-

  9. Medium- and Heavy-Duty Vehicle Field Evaluations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Medium- and Heavy-Duty Vehicle Field Evaluations Medium- and Heavy-Duty Vehicle Field Evaluations 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss001_walkowicz_2011_o.pdf (900.73 KB) More Documents & Publications Medium

  10. Using LNG as a Fuel in Heavy-Duty Tractors

    SciTech Connect (OSTI)

    Liquid Carbonic, Inc. and Trucking Research Institute

    1999-08-09

    Recognizing the lack of operational data on alternative fuel heavy-truck trucks, NREL contracted with the Trucking Research Institute (TRI) in 1994 to obtain a cooperative agreement with Liquid Carbonic. The purpose of this agreement was to (1) purchase and operate liquid natural gas- (LNG-) powered heavy-duty tractor-trailers with prototype Detroit Diesel Corporation (DDC) Series 60 natural gas (S60G) engines in over-the-road commercial service applications; and (2) collect and provide operational data to DDC to facilitate the on-road prototype development of the engine and to NREL for the Alternative Fuels Data Center. The vehicles operated from August 1994 through April of 1997 and led to a commercially available, emissions-certified S60G in 1998. This report briefly documents the engine development, the operational characteristics of LNG, and the lessons learned during the project.

  11. Emissions standards for heavy-duty clean-fuel fleets. Regulatory support document. Draft report

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The document is intended to provide technical, environmental, and economic analyses of the heavy-duty portion of the Clean-Fuel Fleet program. The heavy-duty portion of the fleet program applies to only light heavy-duty and medium-heavy-duty vehicles and the engines designated for use in these vehicles. EPA is proposing to set a heavy-duty clean-fuel fleet vehicle standard of 3.5 g/Bhp-hr non-methane hydrocarbon (NMHC) and oxides of nitrogen (NOx). Credit generating standards for the fleet program are also being proposed. Technological discussions of NMHC and NOx formation and control, calculations of environmental benefits and an assessment of costs and cost effectiveness are also discussed.

  12. Vehicle Technologies Office Merit Review 2014: Heavy Duty Roots Expander Heat Energy Recovery (HD-REHER)

    Energy.gov [DOE]

    Presentation given by Eaton Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy duty roots expander...

  13. Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF

    Energy.gov [DOE]

    In reference to legacy heavy-duty vehicles, emissions and fuel use are less closely related to immediate engine load than was the case without the use of aftertreatments.

  14. A European Perspective of EURO 5/U.S. 07 Heavy-Duty Engine Technologie...

    Energy.gov (indexed) [DOE]

    Towards Meeting Euro 4 Emission Standards in 2005 State-of-the-Art and Emergin Truck Engine Technologies SCR Potential and Issues for Heavy-Duty Applications in the United States

  15. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty...

    Energy.gov (indexed) [DOE]

    Emissions tests of in-use heavy-duty vehicles showed that, natural gas- and propane-fueled vehicles have high emissions of NH3 and CO, compared to diesel vehicles, while meeting ...

  16. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Emissions tests of in-use heavy-duty vehicles showed that, natural gas- and propane-fueled vehicles have high emissions of NH3 and CO, compared to diesel vehicles, while meeting certification requirements

  17. Vehicle Technologies Office Merit Review 2015: Zero-Emission Heavy-Duty Drayage Truck Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about zero-emission heavy-duty drayage truck...

  18. Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 1

    SciTech Connect (OSTI)

    2000-03-02

    The transportation sector accounts for approximately 65% of US petroleum consumption. Consumption for light-duty vehicles has stabilized in the last 10--15 years; however, consumption in the heavy-duty sector has continued to increase. For various reasons, the US must reduce its dependence on petroleum. One significant way is to substitute alternative fuels (natural gas, propane, alcohols, and others) in place of petroleum fuels in heavy-duty applications. Most alternative fuels have the additional benefit of reduced exhaust emissions relative to petroleum fuels, thus providing a cleaner environment. The best long-term technology for heavy-duty alternative fuel engines is the 4-stroke cycle, direct injected (DI) engine using a single fuel. This DI, single fuel approach maximizes the substitution of alternative fuel for diesel and retains the thermal efficiency and power density of the diesel engine. This report summarizes the results of the first year (Phase 1) of this contract. Phase 1 focused on developing a 4-stroke cycle, DI single fuel, alternative fuel technology that will duplicate or exceed diesel power density and thermal efficiency, while having exhaust emissions equal to or less than the diesel. Although the work is currently on a 3500 Series DING engine, the work is viewed as a basic technology development that can be applied to any engine. Phase 1 concentrated on DING engine component durability, exhaust emissions, and fuel handling system durability. Task 1 focused on identifying primary areas (e.g., ignition assist and gas injector systems) for future durability testing. In Task 2, eight mode-cycle-averaged NO{sub x} emissions were reduced from 11.8 gm/hp-hr (baseline conditions) to 2.5 gm/hp-hr (modified conditions) on a 3501 DING engine. In Task 3, a state-of-the-art fuel handling system was identified.

  19. Making a Difference: Heavy-Duty Combustion Engine Research Saved Billions |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Heavy-Duty Combustion Engine Research Saved Billions Making a Difference: Heavy-Duty Combustion Engine Research Saved Billions December 29, 2015 - 12:22pm Addthis Sandia researcher John Dec holds a specialized optical piston used in engine research at the Combustion Research Facility. | Photo courtesy of Randy Wong, Sandia National Laboratories. Sandia researcher John Dec holds a specialized optical piston used in engine research at the Combustion Research Facility. |

  20. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gaps for Lightweight and Propulsion Materials | Department of Energy Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials wr_trucks_hdvehicles.pdf (811.37 KB) More Documents & Publications WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials Summary of the Output

  1. High Fuel Economy Heavy-Duty Truck Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Economy Heavy-Duty Truck Engine High Fuel Economy Heavy-Duty Truck Engine 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace060_tai_2011_o.pdf (434.09 KB) More Documents & Publications Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement Vehicle Technologies Office Merit Review 2016: Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement SuperTruck Program: Engine Project Review

  2. Demonstrating and evaluating heavy-duty alternative fuel operations

    SciTech Connect (OSTI)

    Peerenboom, W.

    1998-02-01

    The principal objectives of this project was to understand the effects of using an alternative fuel on a truck operating fleet through actual operation of trucks. Information to be gathered was expected to be anecdotal, as opposed to statistically viable, because the Trucking Research institute (TRI) recognized that projects could not attract enough trucks to produce statistically credible volumes of data. TRI was to collect operational data, and provide them to NREL, who would enter the data into the alternative fuels database being constructed for heavy-duty trucks at the time. NREL would also perform data analysis, with the understanding that the demonstrations were generally pre-production model engines and vehicles. Other objectives included providing information to the trucking industry on the availability of alternative fuels, developing the alternative fuels marketplace, and providing information on experience with alternative fuels. In addition to providing information to the trucking industry, an objective was for TRI to inform NREL and DOE about the industry, and give feedback on the response of the industry to developments in alternative fuels in trucking. At the outset, only small numbers of vehicles participated in most of the projects. Therefore, they had to be considered demonstrations of feasibility, rather than data gathering tests from which statistically significant conclusions might be drawn. Consequently, data gathered were expected to be useful for making estimates and obtaining valuable practical lessons. Project data and lessons learned are the subjects of separate project reports. This report concerns itself with the work of TRI in meeting the overall objectives of the TRI-NREL partnership.

  3. Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck

    SciTech Connect (OSTI)

    Daw, C Stuart; Gao, Zhiming; Smith, David E; LaClair, Tim J; Pihl, Josh A; Edwards, Kevin Dean

    2013-01-01

    We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

  4. Natural Gas as a Future Fuel for Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    Wai-Lin Litzke; James Wegrzyn

    2001-05-14

    In addition to their significant environmental impacts, medium-duty and heavy-duty (HD) vehicles are high volume fuel users. Development of such vehicles, which include transit buses, refuse trucks, and HD Class 6-8 trucks, that are fueled with natural gas is strategic to market introduction of natural gas vehicles (NGV). Over the past five years the Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) has funded technological developments in NGV systems to support the growth of this sector in the highly competitive transportation market. The goals are to minimize emissions associated with NGV use, to improve on the economies of scale, and to continue supporting the testing and safety assessments of all new systems. This paper provides an overview of the status of major projects under a program supported by DOE/OHVT and managed by Brookhaven National Laboratory. The discussion focuses on the program's technical strategy in meeting specific goals proposed by the N GV industry and the government. Relevant projects include the development of low-cost fuel storage, fueling infrastructure, and HD vehicle applications.

  5. Evaluation of the European PMP Methodologies Using Chassis Dynamometer and On-road Testing of Heavy-duty Vehicles

    Energy.gov [DOE]

    Critical evaluation of new protocol for measurement of heavy-duty diesel engine particulate matter emissions proposed for potential use in California.

  6. Energy Department Announces $11 Million to Accelerate Alternative Fuel Use in Medium- and Heavy-Duty Vehicles

    Energy.gov [DOE]

    The Energy Department today announced $11 million in available funding to support development and demonstration of innovative alternative technologies for medium- and heavy-duty vehicles, designed...

  7. Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication

    SciTech Connect (OSTI)

    LaClair, Tim J; Verma, Rajeev; Norris, Sarah; Cochran, Robert

    2014-01-01

    In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

  8. A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Diesel and WHR-ORC Engines | Department of Energy A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_regner.pdf (339.01 KB) More Documents &

  9. Chapter 8 - Advancing Clean Transportation and Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chapter 8 - Advancing Clean Transportation and Vehicle Systems and Technologies Transportation is a complex sector composed of light duty, medium duty, heavy duty, and non-highway ...

  10. NOx Adsorbers for Heavy Duty Truck Engines-Testing and Simulation

    SciTech Connect (OSTI)

    Hakim, N; Hoelzer, J.; Liu, Y.

    2002-08-25

    This feasibility study of NOx adsorbers in heavy-duty diesel engines examined three configurations (dual-leg, single-leg and single-leg-bypass) in an integrated experimental setup, composed of a Detroit Diesel Class-8 truck engine, a catalyzed diesel particulate filter and the NOx absorber system. The setup also employed a reductant injection concept, sensors and advanced control strategies.

  11. Fact #846: November 10, 2014 Trucks Move 70% of all Freight by Weight and 74% of Freight by Value

    Energy.gov [DOE]

    According to the preliminary 2012 Commodity Flow Survey (CFS) data, trucks transport the vast majority of freight by both weight and value. The two pie charts below show the share of freight moved...

  12. Fuel comsumption of heavy-duty trucks : potential effect of future technologies for improving energy efficiency and emission.

    SciTech Connect (OSTI)

    Saricks, C. L.; Vyas, A. D.; Stodolsky, F.; Maples, J. D.; Energy Systems; USDOE

    2003-01-01

    The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration's long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology's potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

  13. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  14. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  15. High temperature solid lubricant materials for heavy duty and advanced heat engines

    SciTech Connect (OSTI)

    DellaCorte, C.; Wood, J.C.

    1994-10-01

    Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

  16. NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy - News Releases

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    | NREL NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy September 11, 2012 A performance evaluation of Class 8 hybrid electric tractor trailers compared with similar conventional vehicles by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) shows significant improvements in fuel economy. "During our 13-month study, the hybrid tractors demonstrated 13.7 percent higher fuel economy than the conventional tractors, resulting in a 12 percent

  17. Coal-freight rate-making: negotiating domestic and export coal-transportation contracts

    SciTech Connect (OSTI)

    Lawson, J.W.; Harris, F.S. II; Shiriak, B.D.

    1982-01-01

    Three conference speakers describe various legal and economic principles in setting rates for rail transport of coal. Part I explains non-regulated rate-making and legislation prior to the Staggers Act. Part II gives a perspective on the current regulatory environment in areas of market dominance, revenue computation and adequacy, standards and criteria for setting rates, adjustments for inflation, and rate flexibility zones. Part III applies current legislative and regulatory principles in the areas of contract rates, antitrust laws, and comparisons with public utilities. Part IV covers the major legal principles of rail contracts, while Part V describes several contract negotiating strategies. There are nine appendices and a supplement on factors in determining the base rate. 32 references, 1 figure, 4 tables. (DCK)

  18. Heavy Duty

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... for diesel fuel, HCCISCCI fundamentals generic to all engine sizes, ...

  19. Design and Commissioning of a Wind Tunnel for Integrated Physical and Chemical Measurements of PM Dispersing Plume of Heavy Duty Diesel Truck

    Energy.gov [DOE]

    Presents plume characterization of three vehicles with different aftertreatment configuration, representative of legacy, current and future heavy-duty truck fleets

  20. Engine-External HC-Dosing for Regeneration of Diesel Particulate Filters for Heavy Duty and NRMM According to Annex XXVII StVZO

    Energy.gov [DOE]

    This presentation discusses how a diesel particulate filter can be integrated in the exhaust piping of a heavy-duty engine.

  1. Freight Wing Trailer Aerodynamics

    SciTech Connect (OSTI)

    Graham, Sean; Bigatel, Patrick

    2004-10-17

    Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

  2. Development of all-ceramic glow plugs for heavy-duty engines: Phase 2

    SciTech Connect (OSTI)

    Johar, S.; Das Gupta, S.

    1997-12-31

    Details the development work performed in phase 2 of a project to develop all-ceramic glow plugs for heavy-duty diesel engines. All-ceramic glow plugs, compared to traditional metallic plugs, offer a number of advantages including high corrosion resistance, operation at higher temperatures allowing for quicker start and improved engine performance, low power use, high dimensional stability, and longer service life. Work in phase 2 focused on increasing the operational voltage ratings of the proof-of-concept plugs developed in phase 1 in order to meet all commercial expectations in terms of performance, reliability, durability, and economic manufacture. The work involved optimization of the material composition to meet design specifications, development of a manufacturing process, fabrication of plugs, and bench and engine tests. Results compare the all-ceramic plugs to conventional plugs.

  3. FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E

    2013-01-01

    We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

  4. Evolution of Westinghouse heavy-duty power generation and industrial combustion turbines

    SciTech Connect (OSTI)

    Scalzo, A.J.; Bannister, R.L.; DeCorso, M.; Howard, G.S.

    1996-04-01

    This paper reviews the evolution of heavy-duty power generation and industrial combustion turbines in the United States from a Westinghouse Electric Corporation perspective. Westinghouse combustion turbine genealogy began in March of 1943 when the first wholly American designed and manufactured jet engine went on test in Philadelphia, and continues today in Orlando, Florida, with the 230 MW, 501G combustion turbine. In this paper, advances in thermodynamics, materials, cooling, and unit size will be described. Many basic design features such as two-bearing rotor, cold-end drive, can-annular internal combustors, CURVIC{sup 2} clutched turbine disks, and tangential exhaust struts have endured successfully for over 40 years. Progress in turbine technology includes the clean coal technology and advanced turbine systems initiatives of the US Department of Energy.

  5. Fleet Evaluation and Factory Installation of Aerodynamic Heavy Duty Truck Trailers

    SciTech Connect (OSTI)

    Beck, Jason; Salari, Kambiz; Ortega, Jason; Brown, Andrea

    2013-09-30

    The purpose of DE-EE0001552 was to develop and deploy a combination of trailer aerodynamic devices and low rolling resistance tires that reduce fuel consumption of a class 8 heavy duty tractor-trailer combination vehicle by 15%. There were 3 phases of the project: Phase 1 – Perform SAE Typed 2 track tests with multiple device combinations. Phase 2 – Conduct a fleet evaluation with selected device combination. Phase 3 – Develop the devices required to manufacture the aerodynamic trailer. All 3 phases have been completed. There is an abundance of available trailer devices on the market, and fleets and owner operators have awareness of them and are purchasing them. The products developed in conjunction with this project are at least in their second round of refinement. The fleet test undertaken showed an improvement of 5.5 – 7.8% fuel economy with the devices (This does not include tire contribution).

  6. Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

    SciTech Connect (OSTI)

    McCormick, R. L.; Tennant, C. J.; Hayes, R. R.; Black, S.; Ireland, J.; McDaniel, T.; Williams, A.; Frailey, M.; Sharp, C. A.

    2005-11-01

    Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were the following: 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NO{sub x}+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NO{sub x} emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NO{sub x} increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines. The cetane improver 2-ethyl hexyl nitrate was shown to have no measurable effect on NO{sub x} emissions from B20 in these engines, in contrast to observations reported for older engines. The effect of intake air humidity on NO{sub x} emissions from the Cummins ISB was quantified. The CFR NO{sub x}/humidity correction factor was shown to be valid for an engine equipped with EGR, operating at 1700 m above sea level, and operating on conventional or biodiesel.

  7. Class 8 Truck Freight Efficiency Improvement Project

    Energy.gov (indexed) [DOE]

    Derek Rotz (PI & Presenter) Dr. Maik Ziegler Daimler Truck ... controls integration (aux, hybrid, powertrain, waste heat, ... 20% improvement through a heavy-duty diesel engine capable ...

  8. Materials-Enabled High-Efficiency (MEHE) Heavy-Duty Diesel Engines

    SciTech Connect (OSTI)

    Kass, M.; Veliz, M.

    2011-09-30

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UTBattelle, Inc. and Caterpillar, Inc. was to improve diesel engine efficiency by incorporating advanced materials to enable higher combustion pressures and temperatures necessary for improved combustion. The project scope also included novel materials for use in advanced components and designs associated with waste-heat recovery and other concepts for improved thermal efficiency. Caterpillar initially provided ORNL with a 2004 Tier 2 C15 ACERT diesel engine (designed for on-highway use) and two 600 hp motoring dynamometers. The first year of the CRADA effort was focused on establishing a heavy-duty experimental engine research cell. First year activities included procuring, installing and commissioning the cell infrastructure. Infrastructure components consisted of intake air handling system, water tower, exhaust handling system, and cell air conditioning. Other necessary infrastructure items included the fuel delivery system and bottled gas handling to support the analytical instrumentation. The second year of the CRADA focused on commissioning the dynamometer system to enable engine experimentation. In addition to the requirements associated with the dynamometer controller, the electrical system needed a power factor correction system to maintain continuity with the electrical grid. During the second year the engine was instrumented and baseline operated to confirm performance and commission the dynamometer. The engine performance was mapped and modeled according to requirements provided by Caterpillar. This activity was further supported by a Work-for-Others project from Caterpillar to evaluate a proprietary modeling system. A second Work-for-Others activity was performed to evaluate a novel turbocharger design. This project was highly successful and may lead to new turbocharger designs for Caterpillar heavy-duty diesel engines. During the third (and final) year of the CRADA, a

  9. Evaluation of fuel consumption potential of medium and heavy duty vehicles through modeling and simulation.

    SciTech Connect (OSTI)

    Delorme, A.; Karbowski, D.; Sharer, P.; Energy Systems

    2010-03-31

    The main objective of this report is to provide quantitative data to support the Committee in its task of establishing a report to support rulemaking on medium- and heavy-duty fuel efficiency improvement. In particular, it is of paramount importance for the Committee to base or illustrate their conclusions on established models and actual state-of-the art data. The simulations studies presented in the report have been defined and requested by the members of the National Academy committee to provide quantitative inputs to support their recommendations. As such, various technologies and usage scenarios were considered for several applications. One of the objective is to provide the results along with their associated assumptions (both vehicle and drive cycles), information generally missing from public discussions on literature search. Finally, the advantages and limitations of using simulation will be summarized. The study addresses several of the committee tasks, including: (1) Discussion of the implication of metric selection; (2) Assessing the impact of existing technologies on fuel consumption through energy balance analysis (both steady-state and standard cycles) as well as real world drive cycles; and (3) Impact of future technologies, both individually and collectively.

  10. Freight Shuttle System: Cross-Border Movement of Goods

    SciTech Connect (OSTI)

    2011-05-31

    The Freight Shuttle System (FSS) is designed to provide freight transportation services between those short and intermediate distance locations (within 600 miles) that are currently handling large volumes of freight traffic. Much like trucks, the FSS's transporters are autonomous: each transporter has its own propulsion and travels independently of other transporters. Inspired by railroads, each FSS transporter has steel wheels operating on a steel running surface and can carry either a standardsize freight container or an over-the-road truck trailer. However, unlike either rail or trucks, the FSS runs on an elevated, dedicated guideway to avoid the interference of other transportation systems. The objective of this report is to examine the potential viability for an alternative transportation system for trailers and containers in a multi-national, cross-border setting. The El Paso-Ciudad Juarez region serves as the environment of this analysis.

  11. Final regulatory impact analysis: Refueling emission regulations for light duty vehicles and trucks and heavy duty vehicles

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    Culminating a rulemaking process which has spanned more than a decade, the Environmental Protection Agency (EPA) is now promulating final regulations requiring all highway light-duty vehicles, light-duty trucks, and heavy-duty vehicles to meet onboard refueling vapor recovery (ORVR or onboard control) standards. The purpose of this analysis is to evaluate the costs, benefits, and overall cost effectiveness of onboard control for the reduction of refueling emissions from highway motor vehicles.

  12. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    VEHICLE TECHNOLOGIES OFFICE WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials February 2013 FINAL REPORT This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

  13. Development of analytic intermodal freight networks for use within a GIS

    SciTech Connect (OSTI)

    Southworth, F.; Xiong, D.; Middendorf, D.

    1997-05-01

    The paper discusses the practical issues involved in constructing intermodal freight networks that can be used within GIS platforms to support inter-regional freight routing and subsequent (for example, commodity flow) analysis. The procedures described can be used to create freight-routable and traffic flowable interstate and intermodal networks using some combination of highway, rail, water and air freight transportation. Keys to realistic freight routing are the identification of intermodal transfer locations and associated terminal functions, a proper handling of carrier-owned and operated sub-networks within each of the primary modes of transport, and the ability to model the types of carrier services being offered.

  14. Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications

    SciTech Connect (OSTI)

    Daniel T. Hennessy

    2010-06-15

    Changing economic and environmental needs of the trucking industry is driving the use of auxiliary power unit (APU) technology for over the road haul trucks. The trucking industry in the United States remains the key to the economy of the nation and one of the major changes affecting the trucking industry is the reduction of engine idling. Delphi Automotive Systems, LLC (Delphi) teamed with heavy-duty truck Original Equipment Manufacturers (OEMs) PACCAR Incorporated (PACCAR), and Volvo Trucks North America (VTNA) to define system level requirements and develop an SOFC based APU. The project defines system level requirements, and subsequently designs and implements an optimized system architecture using an SOFC APU to demonstrate and validate that the APU will meet system level goals. The primary focus is on APUs in the range of 3-5 kW for truck idling reduction. Fuels utilized were derived from low-sulfur diesel fuel. Key areas of study and development included sulfur remediation with reformer operation; stack sensitivity testing; testing of catalyst carbon plugging and combustion start plugging; system pre-combustion; and overall system and electrical integration. This development, once fully implemented and commercialized, has the potential to significantly reduce the fuel idling Class 7/8 trucks consume. In addition, the significant amounts of NOx, CO2 and PM that are produced under these engine idling conditions will be virtually eliminated, inclusive of the noise pollution. The environmental impact will be significant with the added benefit of fuel savings and payback for the vehicle operators / owners.

  15. Quantitative Effects of Vehicle Parameters on Fuel Consumption for Heavy-Duty Vehicle

    SciTech Connect (OSTI)

    Wang, Lijuan; Kelly, Kenneth; Walkowicz, Kevin; Duran, Adam

    2015-10-16

    The National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluations team recently conducted chassis dynamometer tests of a class 8 conventional regional delivery truck over the Heavy Heavy-Duty Diesel Truck (HHDDT), West Virginia University City (WVU City), and Composite International Truck Local and Commuter Cycle (CILCC) drive cycles. A quantitative study was conducted by analyzing the impacts of various factors on fuel consumption (FC) and fuel economy (FE) by modeling and simulating the truck using NREL's Future Automotive Systems Technology Simulator (FASTSim). Factors used in this study included vehicle weight, and the coefficients of rolling resistance and aerodynamic drag. The simulation results from a single parametric study revealed that FC was approximately a linear function of the weight, coefficient of aerodynamic drag, and rolling resistance over various drive cycles. Among these parameters, the truck weight had the largest effect on FC. The study of the impact of two technologies on FE suggested that, depending on the circumstances, it may be more cost effective to reduce one parameter (such as coefficient of aerodynamic drag) to increase fuel economy, or it may be more beneficial to reduce another (such as the coefficient of rolling resistance). It also provided a convenient way to estimate FE by interpolating within the parameter values and extrapolating outside of them. The simulation results indicated that the FC could be reduced from 38.70 L/100 km, 50.72 L/100 km, and 38.42 L/100 km in the baseline truck to 26.78 L/100 km, 43.14 L/100 km and 29.84 L/100 km over the HHDDT, WVU City and CILCC drive cycles, respectively, when the U.S. Department of Energy's three targeted new technologies were applied simultaneously.

  16. Vehicle Technologies Office Issues Notice of Intent for Medium and Heavy-Duty Vehicle Demonstration Funding Opportunity

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office has issued a Notice of Intent (No. DE-FOA-0001355) to make interested parties aware of its plan to issue a Funding Opportunity Announcement (FOA) entitled “Medium and Heavy Duty Vehicle Powertrain Electrification and Dual Fuel Fleet Demonstration.” The information contained in the notice is subject to change. As this is only a notice of intent, applications and questions are not currently being accepted for this FOA. It is anticipated that this FOA will be posted to the EERE Exchange website in August 2015.

  17. Opportunities for Low Cost Titanium in Reduced Fuel Consumption, Improved Emissions, and Enhanced Durability Heavy Duty Vehicles

    SciTech Connect (OSTI)

    Kraft, E.H.

    2002-07-22

    The purpose of this study was to determine which components of heavy-duty highway vehicles are candidates for the substitution of titanium materials for current materials if the cost of those Ti components is very significantly reduced from current levels. The processes which could be used to produce those low cost components were also investigated. Heavy-duty highway vehicles are defined as all trucks and busses included in Classes 2C through 8. These include heavy pickups and vans above 8,500 lbs. GVWR, through highway tractor trailers. Class 8 is characterized as being a very cyclic market, with ''normal'' year volume, such as in 2000, of approximately 240,000 new vehicles. Classes 3-7 are less cyclic, with ''normal'' i.e., year 2000, volume totaling approximately 325,000 new vehicles. Classes 3-8 are powered about 88.5% by diesel engines, and Class 2C at very roughly 83% diesel. The engine portion of the study therefore focused on diesels. Vehicle production volumes were used in estimates of the market size for candidate components.

  18. Class 8 Truck Freight Efficiency Improvement Project

    Energy.gov (indexed) [DOE]

    least 20% improvement through a heavy-duty diesel engine capable of ... Tractor Trailer 16.5% 2.4% (incl. hybrid) NEXT STEP: build the truck Approach Daimler Trucks and Buses ...

  19. Correlation testing of the European EMA (Engine Manufacturers Association) round-robin engine (Daimler-Benz OM 366a). Heavy-duty engine testing report. Technical report

    SciTech Connect (OSTI)

    Baines, T.M.

    1987-12-01

    This report examines the results of testing the Daimler-Benz OM 366 A heavy-duty engine at the Environmental Protection Agency Motor Vehicle Emission Laboratory. This heavy-duty engine was tested for the purpose of providing correlation data for the comparison with similar data developed by European Engine Manufacturers (EMA). The European EMA members organized a round robin testing program and decided to test a Daimler-Benz OM 366A engine, and to focus the program on gathering simple cold start/hot start Federal Test Procedure data. The report includes the results of the tests, including engine description, fuels, test procedures and test plans.

  20. Michael W. Hancock, P.E., President Secretary, Kentucky Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ...ial.transportation.org Statement of Chris Smith Senior Program Manager for Freight ... you have additional questions. Sincerely, Chris Smith Senior Program Manager for Freight

  1. Chapter 8 — Advancing Clean Transportation and Vehicle Systems and Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This chapter focuses mainly on technologies applicable to light and heavy duty road vehicles, and surveys other modes as well as systems-level technologies for the improvement of energy use across the transportation system.

  2. Fact #655: December 27, 2010 New Freight Analysis Tool | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    version of the Freight Analysis Framework, a comprehensive data set on freight movement. ... The Freight Analysis Framework data set is available for download. Tonnage on Highways, ...

  3. Effect of post injections on mixture preparation and unburned hydrocarbon emissions in a heavy-duty diesel engine

    DOE PAGES-Beta [OSTI]

    O'Connor, Jacqueline; Musculus, Mark P. B.; Pickett, Lyle M.

    2016-05-30

    This work explores the mechanisms by which a post injection can reduce unburned hydrocarbon (UHC) emissions in heavy-duty diesel engines operating at low-temperature combustion conditions. Post injections, small, close-coupled injections of fuel after the main injection, have been shown to reduce UHC in the authors’ previous work. In this work, we analyze optical data from laser-induced fluorescence of both CH2O and OH and use chemical reactor modeling to better understand the mechanism by which post injections reduce UHC emissions. The results indicate that post-injection efficacy, or the extent to which a post injection reduces UHC emissions, is a strong functionmore » of the cylinder pressure variation during the post injection. However, the data and analysis indicate that the pressure and temperature rise from the post injection combustion cannot solely explain the UHC reduction measured by both engine-out and optical diagnostics. In conclusion, the fluid-mechanic, thermal, and chemical interaction of the post injection with the main-injection mixture is a key part of UHC reduction; the starting action of the post jet and the subsequent entrainment of surrounding gases are likely both important processes in reducing UHC with a post injection.« less

  4. The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs

    DOE PAGES-Beta [OSTI]

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2015-02-14

    Here, we present a parametric analysis of factors that can influence advanced fuel and technology deployments in U.S. Class 7–8 trucks through 2050. The analysis focuses on the competition between traditional diesel trucks, natural gas vehicles (NGVs), and ultra-efficient powertrains. Underlying the study is a vehicle choice and stock model of the U.S. heavy-duty vehicle market. Moreover, the model is segmented by vehicle class, body type, powertrain, fleet size, and operational type. We find that conventional diesel trucks will dominate the market through 2050, but NGVs could have significant market penetration depending on key technological and economic uncertainties. Compressed naturalmore » gas trucks conducting urban trips in fleets that can support private infrastructure are economically viable now and will continue to gain market share. Ultra-efficient diesel trucks, exemplified by the U.S. Department of Energy's SuperTruck program, are the preferred alternative in the long haul segment, but could compete with liquefied natural gas (LNG) trucks if the fuel price differential between LNG and diesel increases. However, the greatest impact in reducing petroleum consumption and pollutant emissions is had by investing in efficiency technologies that benefit all powertrains, especially the conventional diesels that comprise the majority of the stock, instead of incentivizing specific alternatives.« less

  5. Heavy-duty diesel engine NO{sub x} reduction with nitrogen-enriched combustion air. Final CRADA report.

    SciTech Connect (OSTI)

    McConnell, S.; Energy Systems

    2010-07-28

    The concept of engine emissions control by modifying intake combustion gas composition from that of ambient air using gas separation membranes has been developed during several programs undertaken at Argonne. These have led to the current program which is targeted at heavy-duty diesel truck engines. The specific objective is reduction of NO{sub x} emissions by the target engine to meet anticipated 2007 standards while extracting a maximum of 5 percent power loss and allowing implementation within commercial constraints of size, weight, and cost. This report includes a brief review of related past programs, describes work completed to date during the current program, and presents interim conclusions. Following a work schedule adjustment in August 2002 to accommodate problems in module procurement and data analysis, activities are now on schedule and planned work is expected to be completed in September, 2004. Currently, we believe that the stated program requirements for the target engine can be met, based upon extrapolation of the work completed. Planned project work is designed to experimentally confirm these projections and result in a specification for a module package that will meet program objectives.

  6. The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2015-02-14

    Here, we present a parametric analysis of factors that can influence advanced fuel and technology deployments in U.S. Class 7–8 trucks through 2050. The analysis focuses on the competition between traditional diesel trucks, natural gas vehicles (NGVs), and ultra-efficient powertrains. Underlying the study is a vehicle choice and stock model of the U.S. heavy-duty vehicle market. Moreover, the model is segmented by vehicle class, body type, powertrain, fleet size, and operational type. We find that conventional diesel trucks will dominate the market through 2050, but NGVs could have significant market penetration depending on key technological and economic uncertainties. Compressed natural gas trucks conducting urban trips in fleets that can support private infrastructure are economically viable now and will continue to gain market share. Ultra-efficient diesel trucks, exemplified by the U.S. Department of Energy's SuperTruck program, are the preferred alternative in the long haul segment, but could compete with liquefied natural gas (LNG) trucks if the fuel price differential between LNG and diesel increases. However, the greatest impact in reducing petroleum consumption and pollutant emissions is had by investing in efficiency technologies that benefit all powertrains, especially the conventional diesels that comprise the majority of the stock, instead of incentivizing specific alternatives.

  7. The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2015-02-14

    Here, we present a parametric analysis of factors that can influence advanced fuel and technology deployments in U.S. Class 78 trucks through 2050. The analysis focuses on the competition between traditional diesel trucks, natural gas vehicles (NGVs), and ultra-efficient powertrains. Underlying the study is a vehicle choice and stock model of the U.S. heavy-duty vehicle market. Moreover, the model is segmented by vehicle class, body type, powertrain, fleet size, and operational type. We find that conventional diesel trucks will dominate the market through 2050, but NGVs could have significant market penetration depending on key technological and economic uncertainties. Compressed natural gas trucks conducting urban trips in fleets that can support private infrastructure are economically viable now and will continue to gain market share. Ultra-efficient diesel trucks, exemplified by the U.S. Department of Energy's SuperTruck program, are the preferred alternative in the long haul segment, but could compete with liquefied natural gas (LNG) trucks if the fuel price differential between LNG and diesel increases. However, the greatest impact in reducing petroleum consumption and pollutant emissions is had by investing in efficiency technologies that benefit all powertrains, especially the conventional diesels that comprise the majority of the stock, instead of incentivizing specific alternatives.

  8. Energy Intensity Indicators: Transportation Energy Consumption

    Energy.gov [DOE]

    This section contains an overview of the aggregate transportation sector, combining both passenger and freight segments of this sector. The specific energy intensity indicators for passenger and freight can be obtained from the links, passenger transportation, or freight transportation. For further detail within the transportation sector, download the appropriate Trend Data worksheet containing detailed data and graphics for specific transportation modes.

  9. Transportation Energy Futures Series: Freight Transportation...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,...

  10. Heavy Duty Fuels

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel ... Laser enters piston bowl through windows in cylinder wall (not shown) and piston bowl-rim. ...

  11. Why is energy use rising in the freight sector?

    SciTech Connect (OSTI)

    Mintz, M.; Vyas, A.D.

    1991-12-31

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985{endash}2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades.

  12. Why is energy use rising in the freight sector

    SciTech Connect (OSTI)

    Mintz, M.; Vyas, A.D.

    1991-01-01

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985{endash}2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades.

  13. Supertruck technologies for 55% thermal efficiency and 68% freight...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Supertruck technologies for 55% thermal efficiency and 68% freight efficiency Supertruck technologies for 55% thermal efficiency and 68% freight efficiency Discusses technological ...

  14. Fact #602: December 21, 2009 Freight Statistics by Mode, 2007...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    21, 2009 Freight Statistics by Mode, 2007 Commodity Flow Survey Fact 602: December 21, 2009 Freight Statistics by Mode, 2007 Commodity Flow Survey Results from the 2007 Commodity ...

  15. Methodology for Estimating ton-Miles of Goods Movements for U.S. Freight Mulitimodal Network System

    SciTech Connect (OSTI)

    Oliveira Neto, Francisco Moraes; Chin, Shih-Miao; Hwang, Ho-Ling

    2013-01-01

    Ton-miles is a commonly used measure of freight transportation output. Estimation of ton-miles in the U.S. transportation system requires freight flow data at disaggregated level (either by link flow, path flows or origin-destination flows between small geographic areas). However, the sheer magnitude of the freight data system as well as industrial confidentiality concerns in Census survey, limit the freight data which is made available to the public. Through the years, the Center for Transportation Analysis (CTA) of the Oak Ridge National Laboratory (ORNL) has been working in the development of comprehensive national and regional freight databases and network flow models. One of the main products of this effort is the Freight Analysis Framework (FAF), a public database released by the ORNL. FAF provides to the general public a multidimensional matrix of freight flows (weight and dollar value) on the U.S. transportation system between states, major metropolitan areas, and remainder of states. Recently, the CTA research team has developed a methodology to estimate ton-miles by mode of transportation between the 2007 FAF regions. This paper describes the data disaggregation methodology. The method relies on the estimation of disaggregation factors that are related to measures of production, attractiveness and average shipments distances by mode service. Production and attractiveness of counties are captured by the total employment payroll. Likely mileages for shipments between counties are calculated by using a geographic database, i.e. the CTA multimodal network system. Results of validation experiments demonstrate the validity of the method. Moreover, 2007 FAF ton-miles estimates are consistent with the major freight data programs for rail and water movements.

  16. Chapter 8 - Advancing Clean Transportation and Vehicle Systems and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies | Department of Energy 8 - Advancing Clean Transportation and Vehicle Systems and Technologies Chapter 8 - Advancing Clean Transportation and Vehicle Systems and Technologies Chapter 8 - Advancing Clean Transportation and Vehicle Systems and Technologies Transportation is a complex sector composed of light duty, medium duty, heavy duty, and non-highway vehicles; rail; aircraft; and ships used for personal transport, movement of goods, construction, agriculture, and mining as

  17. Simulation of high-altitude effects on heavy-duty diesel emissions. Final report, 31 October 1988-30 September 1989

    SciTech Connect (OSTI)

    Human, D.M.; Ullman, T.L.

    1989-09-01

    Exhaust emissions from heavy-duty diesel engines operating at high altitude are of concern. EPA and Colorado Department of Health sponsored the project to characterize regulated and selected unregulated emissions from a naturally-aspirated Caterpillar 3208 and a turbocharged Cummins NTC-350 diesel engine at both low and simulated high altitude conditions (about 6000 ft). Emissions testing was performed over cold- and hot-start transient cycles as well as selected steady-state modes. Additionally, the turbocharged engine was operated with mechanically variable and fixed retarded fuel injection timing to represent normal and malfunction conditions, respectively. High altitude operation generally reduced NOx emissions approximately 10% for both engines. Average composite transient emissions of HC, CO, particulate matter, and aldehydes measured at high altitude for the naturally-aspirated engine were 2 to 4 times the levels noted for low altitude conditions. The same emission constituents from the turbocharged engine at high altitude with normal timing were 1.2 to 2 times the low altitude levels, but were 2 to 4 times the low altitude levels with malfunction timing.

  18. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    SciTech Connect (OSTI)

    Bahman Habibzadeh

    2010-01-31

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

  19. Automated Transportation Logistics and Analysis System (ATLAS...

    Office of Environmental Management (EM)

    Automated Transportation Logistics and Analysis System (ATLAS) ATLAS is an integrated web-based logistics management system allowing users to manage inbound and outbound freight ...

  20. Heavy Duty Vehicle Modeling & Simulation

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  1. Fact #846: November 10, 2014 Trucks Move 70% of all Freight by Weight and 74% of Freight by Value – Dataset

    Energy.gov [DOE]

    Excel file with dataset for Fact #846: Trucks Move 70% of all Freight by Weight and 74% of Freight by Value

  2. NREL: Transportation Research - Truck Stop Electrification Testing

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Truck Stop Electrification Testing Photo of series of truck stop electrification pedestals near highway with heavy-duty truck parked in the background. NREL is monitoring the use of truck stop electrification sites across the nation. Photo courtesy of Shorepower Technologies NREL's fleet test and evaluation team is evaluating and documenting the use of 50 truck stop electrification (TSE) sites along the busiest transportation corridors in the United States. Truck drivers typically idle their

  3. Class 8 Truck Freight Efficiency Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Daimler Trucks and Buses 1 Super Truck Program: Vehicle Project Review Recovery Act -Class 8 Truck Freight Efficiency Improvement Project Project ID: ARRAVT080 This presentation does not contain any proprietary, confidential, or otherwise restricted information Derek Rotz (PI & Presenter) Dr. Maik Ziegler Daimler Truck North America LLC June 19 th , 2014 Daimler Trucks and Buses 2 Overview * Project start: April 2010 * Project end: March 2015 * Percent complete: 80% * Resolve thermal &

  4. Class 8 Truck Freight Efficiency Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt080_vss_rotz_2012_o.pdf (2.58 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight Efficiency

  5. Class 8 Truck Freight Efficiency Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt080_vss_rotz_2013_o.pdf (1.46 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project Class 8 Truck Freight Efficiency

  6. Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency Improvement Project | Department of Energy Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project Presentation given by Daimler Truck North America LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Class 8 Truck Freight Efficiency Improvement Project. arravt080_vss_rotz_2014_o.pdf (1.59 MB) More

  7. Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency Improvement Project | Department of Energy Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight Efficiency Improvement Project Presentation given by DTNA at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about class 8 truck freight efficiency improvement project. arravt080_vss_rotz_2015_o.pdf (2.28 MB) More Documents & Publications

  8. Super Truck-- 50% Improvement In Class 8 Freight Efficiency

    Energy.gov [DOE]

    Presents first year highlights from Detroit Diesel Corporation and Daimler Trucks, NA joint SuperTruck engine and vehicle project to demonstrate a 50 percent freight efficiency improvement

  9. SuperTruck Team Achieves 115% Freight Efficiency Improvement...

    Energy.gov (indexed) [DOE]

    While the original SuperTruck goal was to improve freight efficiency by 50 percent compared to a baseline vehicle, Daimler Trucks North America (DTNA) announced that their ...

  10. Transportation energy use in Mexico

    SciTech Connect (OSTI)

    Sheinbaum, C.; Meyers, S.; Sathaye, J.

    1994-07-01

    This report presents data on passenger travel and freight transport and analysis of the consequent energy use in Mexico during the 1970--1971 period. We describe changes in modal shares for passenger travel and freight transport, and analyze trends in the energy intensity of different modes. We look in more detail at transportation patterns, energy use, and the related environmental problems in the Mexico City Metropolitan Area, and also discuss policies that have been implemented there to reduce emissions from vehicles.

  11. NREL: Transportation Research - Archives for the Transportation...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    - Marketplace Impact October 2014 - Reliability, Durability, and Safety July 2014 - Big Data, Models & Tools May 2014 - Medium- and Heavy-Duty Vehicles March 2014 - NREL in the ...

  12. Fuel consumption of freight trains hauled by diesel electric locomotives

    SciTech Connect (OSTI)

    Radford, R.W.

    1983-05-01

    The cost of railway diesel fuel has become an increasingly high proportion of railway operating expenses. The paper analyzes the generation and utilization of rail horsepower in freight train operations. The effects on fuel consumption of variations in several parameters including train consist, car weight, gradient, average speed, meet strategy, throttle control, locomotive axle arrangement, and train marshalling are examined. Estimates are made of the value, in terms of fuel cost, of weight reduction of freight cars and of selective train marshalling.

  13. The dieselization of America: An integrated strategy for future transportation fuels

    SciTech Connect (OSTI)

    Eberhardt, J.J.

    1997-12-31

    The Diesel Cycle engine has already established itself as the engine-of-choice for the heavy duty transport industry because of its fuel efficiency, durability, and reliability. In addition, it has also been shown to be capable of using alternative fuels, albeit at efficiencies lower than that achieved with petroleum-derived diesel fuel. Alternative fuel dedicated engines have not made significant penetration of the heavy duty truck market because truck fleet operators need a cost-competitive fuel and reliable supply and fueling infrastructure. In lieu of forcing diverse fuels from many diverse domestic feedstocks onto the end-users, the Office of Heavy Vehicle Technologies envisions that a future fuels strategy for the heavy duty transport sector is one where the diverse feedstocks are utilized to provide a single fuel specification (dispensed from the existing fueling infrastructure) that would run efficiently in a single high efficiency energy conversion device, the Diesel Cycle engine. In so doing, the US Commercial transport industry may gain a measure of security from the rapid fuel price increases by relying less on a single feedstock source to meet its increasing fuel requirements.

  14. Recent progress in 3-D imaging of sea freight containers

    SciTech Connect (OSTI)

    Fuchs, Theobald Schön, Tobias Sukowski, Frank; Dittmann, Jonas; Hanke, Randolf

    2015-03-31

    The inspection of very large objects like sea freight containers with X-ray Computed Tomography (CT) is an emerging technology. A complete 3-D CT scan of a see-freight container takes several hours. Of course, this is too slow to apply it to a large number of containers. However, the benefits of a 3-D CT for sealed freight are obvious: detection of potential threats or illicit cargo without being confronted with legal complications or high time consumption and risks for the security personnel during a manual inspection. Recently distinct progress was made in the field of reconstruction of projections with only a relatively low number of angular positions. Instead of today’s 500 to 1000 rotational steps, as needed for conventional CT reconstruction techniques, this new class of algorithms provides the potential to reduce the number of projection angles approximately by a factor of 10. The main drawback of these advanced iterative methods is the high consumption for numerical processing. But as computational power is getting steadily cheaper, there will be practical applications of these complex algorithms in a foreseeable future. In this paper, we discuss the properties of iterative image reconstruction algorithms and show results of their application to CT of extremely large objects scanning a sea-freight container. A specific test specimen is used to quantitatively evaluate the image quality in terms of spatial and contrast resolution and depending on different number of projections.

  15. Annual Energy Outlook 2014 Preliminary Results

    Gasoline and Diesel Fuel Update

    - New region specific consumer behavior and E85 demand - Updated battery electric vehicle cost, efficiency, and availability * Heavy-duty vehicle, freight rail, and ...

  16. Heavy Duty Low-Temperature & Diesel Combustion

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Security Lab Foundations Bioscience Computing & Info Sciences Geoscience Engineering ... diesel engines will likely require unconventional engine combustion and operating ...

  17. Zero Emission Heavy Duty Drayage Truck Demonstration

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Heavy Duty Vehicle Modeling and Simulation

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  19. Heavy-Duty Vehicle Field Evaluations

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  20. Lightweight Composite Materials for Heavy Duty Vehicles

    SciTech Connect (OSTI)

    Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

    2013-08-31

    The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.

  1. Solid oxide fuel cells for transportation: A clean, efficient alternative for propulsion

    SciTech Connect (OSTI)

    Kumar, R.; Krumpelt, M.; Myles, K.M.

    1993-04-01

    Fuel cells show great promise for providing clean and efficient transportation power. Of the fuel cell propulsion systems under investigation, the solid oxide fuel cell (SOFC) is particularly attractive for heavy duty transportation applications that have a relatively long duty cycle, such as locomotives, trucks, and barges. Advantages of the SOFC include a simple, compact system configuration; inherent fuel flexibility for hydrocarbon and alternative fuels; and minimal water management. The specific advantages of the SOFC for powering a railroad locomotive are examined. Feasibility, practicality, and safety concerns regarding SOFCs in transportation applications are discussed, as am the major R&D issues.

  2. Solid oxide fuel cells for transportation: A clean, efficient alternative for propulsion

    SciTech Connect (OSTI)

    Kumar, R.; Krumpelt, M.; Myles, K.M.

    1993-01-01

    Fuel cells show great promise for providing clean and efficient transportation power. Of the fuel cell propulsion systems under investigation, the solid oxide fuel cell (SOFC) is particularly attractive for heavy duty transportation applications that have a relatively long duty cycle, such as locomotives, trucks, and barges. Advantages of the SOFC include a simple, compact system configuration; inherent fuel flexibility for hydrocarbon and alternative fuels; and minimal water management. The specific advantages of the SOFC for powering a railroad locomotive are examined. Feasibility, practicality, and safety concerns regarding SOFCs in transportation applications are discussed, as am the major R D issues.

  3. Cognitive Radio will revolutionize American transportation

    ScienceCinema (OSTI)

    None

    2013-12-06

    Cognitive Radio will revolutionize American transportation. Through smart technology, it will anticipate user needs; detect available bandwidths and frequencies then seamlessly connect vehicles, infrastructures, and consumer devices; and it will support the Department of Transportation IntelliDrive Program, helping researchers, auto manufacturers, and Federal and State officials advance the connectivity of US transportation systems for improved safety, mobility, and environmental conditions. Using cognitive radio, a commercial vehicle will know its driver, onboard freight and destination route. Drivers will save time and resources communicating with automatic toll booths and know ahead of time whether to stop at a weigh station or keep rolling. At accident scenes, cognitive radio sensors on freight and transportation modes can alert emergency personnel and measure on-site, real-time conditions such as a chemical leak. The sensors will connect freight to industry, relaying shipment conditions and new delivery schedules. For industry or military purposes, cognitive radio will enable real-time freight tracking around the globe and its sensory technology can help prevent cargo theft or tampering by alerting shipper and receiver if freight is tampered with while en route. For the average consumer, a vehicle will tailor the transportation experience to the passenger such as delivering age-appropriate movies via satellite. Cognitive radio will enhance transportation safety by continually sensing what is important to the user adapting to its environment and incoming information, and proposing solutions that improve mobility and quality of life.

  4. Fact #602: December 21, 2009 Freight Statistics by Mode, 2007 Commodity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Flow Survey | Department of Energy 2: December 21, 2009 Freight Statistics by Mode, 2007 Commodity Flow Survey Fact #602: December 21, 2009 Freight Statistics by Mode, 2007 Commodity Flow Survey Results from the 2007 Commodity Flow Survey (CFS) show that about 70% of all freight movement in the U.S. is by truck, in terms of the shipment value and tonnage. Rail moves about 15% of freight tons, but moves those tons over great distances, accounting for 37% of ton-miles. Parcel delivery, US

  5. Secure Freight Initiative Launched to Secure U.S. From Nuclear...

    National Nuclear Security Administration (NNSA)

    phase of the Secure Freight Initiative, an unprecedented effort to build upon existing port security measures by enhancing the federal government's ability to scan containers for...

  6. NREL: Transportation Research - Alternative Fuel Fleet Vehicle...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Although biodiesel is the most commonly used alternative fuel in medium- and heavy-duty ... fuel cell buses. Renewable Diesel and Biodiesel Renewable diesel is a conventional ...

  7. Transportation Infrastructure

    Office of Environmental Management (EM)

    09 Archive Transportation Fact of the Week - 2009 Archive #603 Where Does Lithium Come From? December 28, 2009 #602 Freight Statistics by Mode, 2007 Commodity Flow Survey December 21, 2009 #601 World Motor Vehicle Production December 14, 2009 #600 China Produced More Vehicles than the U.S. in 2008 December 7, 2009 #599 Historical Trend for Light Vehicle Sales November 30, 2009 #598 Hybrid Vehicle Sales by Model November 23, 2009 #597 Median Age of Cars and Trucks Rising in 2008 November 16, 2009

  8. Recovery Act--Class 8 Truck Freight Efficiency Improvement Project

    SciTech Connect (OSTI)

    Trucks, Daimler

    2015-07-26

    Daimler Trucks North America completed a five year, $79.6M project to develop and demonstrate a concept vehicle with at least 50% freight efficiency improvement over a weighted average of several drive cycles relative to a 2009 best-in-class baseline vehicle. DTNA chose a very fuel efficient baseline vehicle, the 2009 Freightliner Cascadia with a DD15 engine, yet successfully demonstrated a 115% freight efficiency improvement. DTNA learned a great deal about the various technologies that were incorporated into Super Truck and those that, through down-selection, were discarded. Some of the technologies competed with each other for efficiency, and notably some of the technologies complemented each other. For example, we found that Super Truck’s improved aerodynamic drag resulted in improved fuel savings from eCoast, relative to a similar vehicle with worse aerodynamic drag. However, some technologies were in direct competition with each other, namely the predictive technologies which use GPS and 3D digital maps to efficiently manage the vehicles kinetic energy through controls and software, versus hybrid which is a much costlier technology that essentially targets the same inefficiency. Furthermore, the benefits of a comprehensive, integrated powertrain/vehicle approach was proven, in which vast improvements in vehicle efficiency (e.g. lower aero drag and driveline losses) enabled engine strategies such as downrating and downspeeding. The joint engine and vehicle developments proved to be a multiplier-effect which resulted in large freight efficiency improvements. Although a large number of technologies made the selection process and were used on the Super Truck demonstrator vehicle, some of the technologies proved not feasible for series production.

  9. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  10. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  12. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  13. Longitudinal review of state-level accident statistics for carriers of interstate freight

    SciTech Connect (OSTI)

    Saricks, C.; Kvitek, T.

    1994-03-01

    State-level accident rates by mode of freight transport have been developed and refined for application to the US Department of Energy`s (DOE`s) environmental mitigation program, which may involve large-quantity shipments of hazardous and mixed wastes from DOE facilities. These rates reflect multi-year data for interstate-registered highway earners, American Association of Railroads member carriers, and coastal and internal waterway barge traffic. Adjustments have been made to account for the share of highway combination-truck traffic actually attributable to interstate-registered carriers and for duplicate or otherwise inaccurate entries in the public-use accident data files used. State-to-state variation in rates is discussed, as is the stability of rates over time. Computed highway rates have been verified with actual carriers of high- and low-level nuclear materials, and the most recent truck accident data have been used, to ensure that the results are of the correct order of magnitude. Study conclusions suggest that DOE use the computed rates for the three modes until (1) improved estimation techniques for highway combination-truck miles by state become available; (2) continued evolution of the railroad industry significantly increases the consolidation of interstate rail traffic onto fewer high-capacity trunk lines; or (3) a large-scale off-site waste shipment campaign is imminent.

  14. UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA

    SciTech Connect (OSTI)

    Davis, S.C.

    2000-11-16

    The Energy Information Administration's (EIA's) National Energy Modeling System (NEMS) Freight Truck Stock Adjustment Model (FTSAM) was created in 1995 relying heavily on input data from the 1992 Economic Census, Truck Inventory and Use Survey (TIUS). The FTSAM is part of the NEMS Transportation Sector Model, which provides baseline energy projections and analyzes the impacts of various technology scenarios on consumption, efficiency, and carbon emissions. The base data for the FTSAM can be updated every five years as new Economic Census information is released. Because of expertise in using the TIUS database, Oak Ridge National Laboratory (ORNL) was asked to assist the EIA when the new Economic Census data were available. ORNL provided the necessary base data from the 1997 Vehicle Inventory and Use Survey (VIUS) and other sources to update the FTSAM. The next Economic Census will be in the year 2002. When those data become available, the EIA will again want to update the FTSAM using the VIUS. This report, which details the methodology of estimating and extracting data from the 1997 VIUS Microdata File, should be used as a guide for generating the data from the next VIUS so that the new data will be as compatible as possible with the data in the model.

  15. NREL/DOE Launch New Alternative Transportation Web Tools - News...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    with five alternative fuels - biodiesel, electricity, ethanol, natural gas and ... vehicles?" "What if I start using B20 biodiesel in my heavy-duty trucks?" "What if I ...

  16. Development of a Transportable, 1065-Compliant Emissions Measurement System

    Energy.gov [DOE]

    CFR 1065 test procedures for heavy-heavy duty engines for the 2010 model year and later require laboratory upgrades to measure emissions

  17. Transportation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transportation Resources Policies, Manuals & References Map Transportation Publications ⇒ Navigate Section Resources Policies, Manuals & References Map Transportation Publications View Larger Map Main Address 1 Cyclotron Rd‎ University of California Berkeley Berkeley, CA 94720 The Laboratory is in Berkeley on the hillside directly above the campus of the University of California at Berkeley. Our address is 1 Cyclotron Road, Berkeley CA 94720. To make the Lab easily accessible, the

  18. Assessing Temporal Effect of Economic Activity on Freight Volumes with Two-Period Cross-Sectional Data

    SciTech Connect (OSTI)

    Oliveira Neto, Francisco Moraes; Chin, Shih-Miao; Hwang, Ho-Ling

    2012-01-01

    The most comprehensive publicly available freight databases are the Commodity Flow Survey (CFS) and the FHWA s Freight Analysis Framework (FAF). These two sources contain dollar value and weight of freight movements at high geographic levels, such as state or metropolitan areas. Due to the difficulty in obtaining freight data at lower geographies various practitioners and researchers have been suggesting to estimate freight models based on aggregate data. Following these recent practices, a methodology to estimate a nationwide production and attraction models for U.S. domestic trade of goods is presented. To this end, a CFS s data set provided by U.S. Census Bureau and composed of two-nonconsecutive year period (2002 and 2007) of movements of goods between U.S. states for 27 industry sectors was used. The state payroll by industry sector, obtained from the County Business Patterns of the U.S. Census, was the variable used to estimate freight generation models. The main objective of this paper is to analyze the temporal stability and predictability of the proposed aggregate models. The results indicate that the payroll alone explains a significant portion of the freight production and attraction at the state level. However, such simplification in the model process did not result in reasonable predictions of freight for a future year horizon. It is recommended that time-dependent factors (e.g. variables related to changes industry productivity) affecting freight demand should be considered in the modeling process.

  19. transportation

    National Nuclear Security Administration (NNSA)

    security missions undertaken by the U.S. government.

    Pantex Plant's Calvin Nelson honored as Analyst of the Year for Transportation Security http:nnsa.energy.gov...

  20. Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 1: April 2, 2012 Heavy Trucks Move Freight Efficiently Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently Though discussions of vehicle efficiency are often centered on a measurement of miles per gallon, it is also important to consider how efficiently a vehicle carries its payload. Although heavy vehicles like buses or class 8 trucks get much fewer miles per gallon than cars, a greater percentage of their mass is payload which means that they are much more efficient at

  1. HYDROGEN COMMERCIALIZATION: TRANSPORTATION FUEL FOR THE 21ST CENTURY

    SciTech Connect (OSTI)

    APOLONIO DEL TORO

    2008-05-27

    Since 1999, SunLine Transit Agency has worked with the U.S. Department of Energy (DOE), U.S. Department of Defense (DOD), and the U.S. Department of Transportation (DOT) to develop and test hydrogen infrastructure, fuel cell buses, a heavy-duty fuel cell truck, a fuel cell neighborhood electric vehicle, fuel cell golf carts and internal combustion engine buses operating on a mixture of hydrogen and compressed natural gas (CNG). SunLine has cultivated a rich history of testing and demonstrating equipment for leading industry manufacturers in a pre-commercial environment. Visitors to SunLine's "Clean Fuels Mall" from around the world have included government delegations and agencies, international journalists and media, industry leaders and experts and environmental and educational groups.

  2. Railroad transportation of spent nuclear fuel

    SciTech Connect (OSTI)

    Wooden, D.G.

    1986-03-01

    This report documents a detailed analysis of rail operations that are important for assessing the risk of transporting high-level nuclear waste. The major emphasis of the discussion is towards ''general freight'' shipments of radioactive material. The purpose of this document is to provide a basis for selecting models and parameters that are appropriate for assessing the risk of rail transportation of nuclear waste.

  3. WIPP Documents - Transportation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transportation

  4. Sandia Energy - HCCI/SCCI Engine Fundamentals

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    HCCISCCI Engine Fundamentals Home Transportation Energy Predictive Simulation of Engines Engine Combustion Heavy Duty HCCISCCI Engine Fundamentals HCCISCCI Engine...

  5. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  6. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  7. National Academy of Sciences Reviews 21st Century Truck Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and heavy-duty vehicles to safely and cost-effectively move ever larger volumes of freight and number of passengers while minimizing pollution and the dependency on foreign oil. ...

  8. The Ethanol Heavy-Duty Truck Fleet Demonstration Project

    Alternative Fuels and Advanced Vehicles Data Center

  9. Policy Discussion- Heavy-Duty Truck Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presesntation: National Commission on Energy Policy

  10. Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discusses Detroit Diesel collaborative multi-year technology program which includes systematic experimental and analytical assessment of enabling technologies for post-2020 NAFTA line haul trucks

  11. Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles...

    Energy.gov (indexed) [DOE]

    Discusses Detroit Diesel collaborative multi-year technology program which includes systematic experimental and analytical assessment of enabling technologies for post-2020 NAFTA ...

  12. NAFTA Heavy Duty Engine and Aftertreatment Technology: Status...

    Energy.gov (indexed) [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. ...

  13. Evaluations of 1997 Fuel Consumption Patterns of Heavy Duty Trucks

    SciTech Connect (OSTI)

    Santini, Danilo

    2001-08-05

    The proposed 21st Century Truck program selected three truck classes for focused analysis. On the basis of gross vehicle weight (GVW) classification, these were Class 8 (representing heavy), Class 6 (representing medium), and Class 2b (representing light). To develop and verify these selections, an evaluation of fuel use of commercial trucks was conducted, using data from the 1997 Vehicle Inventory and Use Survey (VIUS). Truck fuel use was analyzed by registered GVW class, and by body type.

  14. Emission Controls for Heavy-Duty Trucks | Department of Energy

    Energy.gov (indexed) [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. ...

  15. Heavy Duty HCCI Development Activities - DOE High Efficiency...

    Energy.gov (indexed) [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. ...

  16. Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction...

    Alternative Fuels and Advanced Vehicles Data Center

    Clean Cities Annual Petroleum Savings Clean Cities Annual Petroleum Savings Incentive and Law Additions by FuelTechnology Type Incentive and Law Additions by FuelTechnology Type ...

  17. Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar

    Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  18. Lightweight Composite Materials for Heavy Duty Vehicles (Technical...

    Office of Scientific and Technical Information (OSTI)

    between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their ...

  19. Development of High Performance Heavy Duty Engine Oils | Department...

    Energy.gov (indexed) [DOE]

    FAME biodiesel will likely remain a part of the global diesel pool for the coming years and the use of biodiesel can lead to lubrication issues. deer09lauterwasser.pdf (1.36 MB) ...

  20. Design of Integrated Laboratory and Heavy-Duty Emissions Testing...

    Energy.gov (indexed) [DOE]

    of Houston and City of Houston: Collaboration to Determine Best Solutions for Diesel Emission Reductions Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions

  1. Advanced Natural Gas Engine Technology for Heavy Duty Vehicles...

    Energy.gov (indexed) [DOE]

    Natural gas engine technology has evolved to meet the requirements of HD vehicle applications. deer09kamel.pdf (835.23 KB) More Documents & Publications Light-Duty Diesel Market ...

  2. California Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks

    Office of Energy Efficiency and Renewable Energy (EERE)

    Describes system for fueling truck fleet with biomethane generated from anaerobic digestion of organic waste it collects

  3. Medium and Heavy-Duty Vehicle Field Evaluations

    Energy Savers

    Media Release Media Contact FOR IMMEDIATE RELEASE Heather Rasmussen September 22, 2011 Communication Specialist (801) 819-7623 hrasmussen@wecc.biz WECC releases its first-ever transmission plan for the Western Interconnection The Western Electricity Coordinating Council (WECC) announced the release of its first 10-Year Regional Transmission Plan (Plan) for the Western Interconnection. Looking ahead to 2020, the Plan focuses on how to meet the Western Interconnection's transmission requirements;

  4. Heavy-Duty Natural Gas Drayage Truck Replacement Program

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  5. Medium and Heavy-Duty Vehicle Field Evaluations

    Office of Environmental Management (EM)

    ... Report - June 2014 o BARTA Inductive Charging Startup Report - September 2014 o XL ... of EV buses with inductive charge (WPT wireless power transfer) 2. XL hybrid evaluation ...

  6. HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...

    Energy.gov (indexed) [DOE]

    5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deererkkila.pdf (398.95 KB) More Documents & Publications Evaluating Exhaust Emission ...

  7. Medium and Heavy Duty Vehicle Field Evaluations | Department of Energy

    Office of Environmental Management (EM)

    records check list: Information that should be requested by SOMD of receiving facility Medical records: Problem list: list of all past and current medical diagnosis and surgical procedures. Medication list Physical exam notes Lab and diagnostic testing results Pertinent HRP notes. (temporary removals, medical and psychological issues) Psychiatric records: A summary or actual note of the psychiatric or psychological evaluation

    Medical Records Checklist - September 14, 2010 Medical Records

  8. Heavy-duty H2-Diesel Dual Fuel Engines

    Energy.gov [DOE]

    Brake thermal efficiency can be improved with the addition of a large amount of hydrogen at medium to high loads

  9. Medium and Heavy-Duty Vehicle Field Evaluations

    Office of Environmental Management (EM)

    ... fuel savings on track and field tests * Collaboration with LLNL computational fluid dynamics (CFD) and wind tunnel (WT) testing to answer aerodynamic questions raised during ...

  10. Heavy-Duty HCCI Development Activities | Department of Energy

    Energy.gov (indexed) [DOE]

    and Posters PDF icon 2005deerduffy.pdf More Documents & Publications Heavy-Truck Clean Diesel (HTCD) Program Diesel HCCI Results at Caterpillar Diesel HCCI Results at ...

  11. Medium and Heavy-Duty Vehicle Field Evaluations

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  12. NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation...

    Energy.gov (indexed) [DOE]

    This report provides the results of an analytical and experimental sA PDF icon 2002deerhakim.pdf More Documents & Publications Use of a Diesel Fuel Processor for Rapid and ...

  13. Heavy Duty Roots Expander for Waste Heat Energy Recovery

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. High Efficiency Clean Combustion for Heavy-Duty Engine | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    techniques to minimize engine-out emissions while optimizing fuel economy. deer09zhang.pdf (656.54 KB) More Documents & Publications Heavy Truck Engine Development & HECC ...

  15. High Efficiency Clean Combustion for Heavy-Duty Engine | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Innovative dual mode combustion strategy enabled by variable fuel injection offers emission reduction and efficiency improvement advantages. deer08zhang.pdf (1.34 MB) More ...

  16. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentation discusses a virtual lab which can model sophisticated future vehicle systems using three layers of model fidelity supporting each other. deer11zhang.pdf (2.07 MB) ...

  17. Medium and Heavy Duty Vehicle and Engine Testing

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  18. Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    use hybrid electric, plug-in electric, hydraulic hybrid, and alternative fuel technologies. ... help fleet managers better understand their options for purchasing and using vehicles. ...

  19. Heavy-Duty Natural Gas Drayage Truck Replacement Program

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  20. Heavy Duty Powertrain System Optimization and Emissions Test Procedure Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. NAFTA Heavy Duty Engine and Aftertreatment Technology: Status and Outlook

    Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  2. Vehicle Technologies Office Merit Review 2016: Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Sandia National Laboratory (SNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  3. Energy efficiency in passenger transportation: What the future may hold

    SciTech Connect (OSTI)

    Plotkin, S.

    1996-12-31

    This presentation very briefly projects future impacts of energy efficiency in passenger transportation. Continuing expansion of the U.S. transportation sector, with a corresponding increased dependency on imported oil, is noted. Freight trucks and air fleets are targeted as having the greatest potential for increased energy efficiency. The light duty vehicle is identified as the only technology option for major efficiency increases. 4 figs., 11 tabs.

  4. Efficient Mobility Summit: Transportation and the Future of Dynamic Mobility Systems

    SciTech Connect (OSTI)

    2015-12-01

    On October 27, 2015, The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) brought together local and national thought leaders to discuss the convergence of connectivity, vehicle automation, and transportation infrastructure investments at the Future Energy Efficient Mobility Workshop. The half-day workshop was held in conjunction with the Colorado Department of Transportation's (CDOT) Transportation Matters Summit and featured four panel sessions that showcased perspectives on efficient mobility from federal and state agencies, automakers and their suppliers, transportation data providers, and freight companies. This summary provides highlights from the meeting's exchanges of ideas and existing applications. Transportation's (CDOT) Transportation Matters Summit and featured four panel sessions that showcased perspectives on efficient mobility from federal and state agencies, automakers and their suppliers, transportation data providers, and freight companies. This summary provides highlights from the meeting's exchanges of ideas and existing applications.

  5. Single line reversing system capsular pneumatic freight pipelines

    SciTech Connect (OSTI)

    Weaver, P.B.

    1999-07-01

    In the 1800's the first Pneumatic Tube Systems sent a carrier vertically from one floor to another in a hospital using a foot-powered bellows. The carrier was returned to the starting point down the same tube using gravity. This was the first Single Line Reversing system. As the stations were moved apart horizontally the foot-powered bellows at both ends became ineffective and were replaced with a single blower or exhauster. The blower/exhauster ran continuously therefore a second line for returning carriers to the starting point, had to be installed - hence Twin Line systems. These systems were used for transporting mail, paperwork, medications, steel mill samples, parts, tools, medical lab samples, etc., in hospitals, stores and other businesses. Twin Line systems were very popular until about 1970 at which time installation labor and material costs became expensive and controls were becoming unnecessarily complicated and expensive. These reasons plus new technology forced the return to Single Line Reversing technology. Back in the 1800's three ``people transporting'' subways were built. A fourth system was built under the Pentagon in the 1950's or 1960's. It is difficult to find information on this one. All are Single Line Reversing systems. The difference between a Single Line Reversing and a Twin Line system is exactly as the names imply. The principle of the operation of these systems is covered herein. The physics for these two kinds of systems is the same. The Single Line Reversing system is technically more complex but capital and operating expense is far less costly. These costs are discussed herein.

  6. Fuel cells for transportation applications. Progress report, January 1-December 31, 1981

    SciTech Connect (OSTI)

    Huff, J.R.

    1982-06-01

    The aims of the program are to use the fuel cell's high efficiency, low pollution (both air and noise), and ability to use nonpetroleum fuels to develop a prototype vehicle power plant with the following characteristics: better than vehicles powered by an internal combustion engine (ICE); purchase cost competitive with ICE vehicles and superior maintenance cost; range, performance, and refueling time equivalent to ICE vehicles; and utilization of methanol or some other nonpetroleum-based fuel that can be easily distributed and stored. The fuel cell technologies currently being assessed for potential vehicle use are: phosphoric acid electrolyte fuel cells (PAFC); solid polymer electrolyte (SPE) fuel cells; and super acid electrolyte fuel cells. From these alternatives, one or two technologies will be selected for further electrochemical research with emphasis directed at the requirements peculiar to vehicles. In addition, a verification effort will be closely coupled with the electrochemical basic research program, which both have the objectives of reducing or eliminating platinum requirements, developing improved and/or less costly electrolytes, and increasing cell performance. The results of the assessments of the PAFC and the SPE fuel cell systems substantiate the technical feasibility of using these two systems in vehicular applications. Initial results indicate substantial energy savings from using fuel cell power plants in heavy-duty freight locomotives and inland waterway push-tow boats. More information is needed on the operational duty cycles of these applications to complete the assessment and suggest what research is required. Adsorption studies on cathodes in various acids confirmed the concept that to improve the oxygen electrode performances, neutral or anionic species must not be allowed to adsorb. Various means of achieving this are being explored. (WHK)

  7. NREL: Transportation Research - Renewable Fuels and Lubricants Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Renewable Fuels and Lubricants Laboratory Photo of a heavy-duty truck being driven on a chassis dynamometer. The heavy-duty chassis dynamometer at the ReFUEL Laboratory simulates on-road driving in a controlled laboratory setting. Photo by Dennis Schroeder, NREL NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development focuses on overcoming barriers to the increased use of renewable

  8. Transportation (technology 86)

    SciTech Connect (OSTI)

    Caplan, G.

    1986-01-01

    As railroads strive to cut operating and maintenance costs in an increasingly competitive transportation industry, AC propulsion and microprocessors figure prominently in their plans. New generations of locomotives and cars incorporating AC propulsion and microprocessors entered service last year, and the trend is destined to continue. Electronics is also making possible freight trains that rely on a telemetry unit at the rear to monitor airbrake pressure, instead of a manned caboose. AC is gaining acceptance because it permits simpler motors with fewer parts to wear and replace, and it saves energy by allowing the traction motors to work as generators during braking. Microprocessors are being used in locomotives not only to reduce energy waste through better regulation of traction motor currents and auxiliary devices such as cooling fans, but also to control engine speed, braking, and other functions.

  9. Rail versus truck fuel efficiency: The relative fuel efficiency of truck-competitive rail freight and truck operations compared in a range of corridors. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    The report summarizes the findings of a study to evaluate the fuel efficiency of rail freight operations relative to competing truckload service. The objective of the study was to identify the circumstances in which rail freight service offers a fuel efficiency advantage over alternative truckload options, and to estimate the fuel savings associated with using rail service. The findings are based on computer simulations of rail and truck freight movements between the same origins and destinations. The simulation input assumptions and data are based on actual rail and truck operations. Input data was provided by U.S. regional and Class I railroads and by large truck fleet operators.

  10. Geospatial Products and Techniques at the Center for Transportation Analysis

    SciTech Connect (OSTI)

    Chin, Shih-Miao; Hwang, Ho-Ling; Peterson, Bruce E

    2008-01-01

    This paper highlights geospatial science-related innovations and developments conducted by the Center for Transportation Analysis (CTA) at the Oak Ridge National Laboratory. CTA researchers have been developing integrated inter-modal transportation solutions through innovative and cost-effective research and development for many years. Specifically, this paper profiles CTA-developed Geographic Information System (GIS) products that are publicly available. Examples of these GIS-related products include: the CTA Transportation Networks; GeoFreight system; and the web-based Multi-Modal Routing Analysis System. In addition, an application on assessment of railroad Hazmat routing alternatives is also discussed.

  11. Trends in transportation energy use, 1970--1988: An international perspective

    SciTech Connect (OSTI)

    Schipper, L.; Steiner, R.; Meyers, S.

    1992-05-01

    Personal mobility and timely movement of goods have become increasingly important around the world, and energy use for transportation has grown rapidly as a consequence. Energy is used in transportation for two rather different activities: moving people, which we refer to as passenger travel, and moving freight. While freight transport is closely connected to economic activity, much of travel is conducted for personal reasons. In the OECD countries, travel accounts for around 70% of total transportation energy use. In contrast, freight transport accounts for the larger share in the Former East Bloc and the developing countries (LDCs). In our analysis, we focus on three elements that shape transportation energy use: activity, which we measure in passenger-km (p-km) or tonne-km (t-km), modal structure (the share of total activity accounted for by various modes), and modal energy intensities (energy use per p-km or t-km). The modal structure of travel and freight transport is important because there are often considerable differences in energy intensity among modes. The average 1988 average energy use per p-km of different travel modes in the United States (US), West Germany, and Japan are illustrated. With the exception of rail in the US, bus and rail travel had much lower intensity than automobile and air travel. What is perhaps surprising is that the intensity of air travel is only slightly higher than that of automobile travel. This reflects the much higher utilization of vehicle capacity in air travel and the large share of automobile travel that takes place in urban traffic (automobile energy intensity in long-distance driving is much lower than the average over types of driving).

  12. NREL's ReFUEL Laboratory: Center for Transportation Technologies and Systems (CTTS) Fact Sheet

    SciTech Connect (OSTI)

    Not Available

    2002-09-01

    CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Heavy-Duty Vehicle Emissions Reduction Grants The Goods Movement Emission Reduction Program (Program) provides funding for projects that reduce emissions from freight movement in the state, including heavy-duty truck replacement, repower, or retrofit; and truck stop electrification infrastructure development. For more information about funding application opportunities, see the Program website. (Reference California Health and Safety Code 39625-39627.5) Point of Contact Goods Movement Emission

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Heavy-Duty Natural Gas Vehicle (NGV) Rebates As part of the Delaware Clean Transportation Incentive Program, the Delaware Department of Natural Resources and Environmental Control ...

  15. Fiber Bulk Gaseous Carriers

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Compressed natural gas Compressed hydrogen gas * Vehicle fuel cylinders Passenger cars Buses and Heavy-duty vehicles * Transport and storage cylinders Bulk hauling ...

  16. Models and Tools | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    need tools that can help them assess potential energy use, oil use and carbon emission impacts of advanced light- and heavy-duty transportation technologies and alternative...

  17. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    SciTech Connect (OSTI)

    1998-01-01

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  18. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.

    2009-05-01

    Transportation mobility in India has increased significantly in the past decades. From 1970 to 2000, motorized mobility (passenger-km) has risen by 888%, compared with an 88% population growth (Singh,2006). This contributed to many energy and environmental issues, and an energy strategy incorporates efficiency improvement and other measures needs to be designed. Unfortunately, existing energy data do not provide information on driving forces behind energy use and sometime show large inconsistencies. Many previous studies address only a single transportation mode such as passenger road travel; did not include comprehensive data collection or analysis has yet been done, or lack detail on energy demand by each mode and fuel mix. The current study will fill a considerable gap in current efforts, develop a data base on all transport modes including passenger air and water, and freight in order to facilitate the development of energy scenarios and assess significance of technology potential in a global climate change model. An extensive literature review and data collection has been done to establish the database with breakdown of mobility, intensity, distance, and fuel mix of all transportation modes. Energy consumption was estimated and compared with aggregated transport consumption reported in IEA India transportation energy data. Different scenarios were estimated based on different assumptions on freight road mobility. Based on the bottom-up analysis, we estimated that the energy consumption from 1990 to 2000 increased at an annual growth rate of 7% for the mid-range road freight growth case and 12% for the high road freight growth case corresponding to the scenarios in mobility, while the IEA data only shows a 1.7% growth rate in those years.

  19. Comparison of CNG and LNG technologies for transportation applications

    SciTech Connect (OSTI)

    Sinor, J.E. Consultants, Inc., Niwot, CO )

    1992-01-01

    This report provides a head-to-head comparison of compressed natural gas (CNG) and liquefied natural gas (LNG) supplied to heavy-duty vehicles. The comparison includes an assessment of the overall efficiency of the fuel delivery system, the cost of the fuel supply system, the efficiency of use in heavy-duty vehicles, and the environmental impact of each technology. The report concludes that there are applications in which CNG will have the advantage, and applications in which LNG will be preferred.

  20. Rotating Liner Engine: Improving Efficiency of Heavy Duty Diesels by Significant Friction Reduction, and Extending the Life of Heavy Duty Engines.

    SciTech Connect (OSTI)

    Dardalis, Dimitrios

    2013-12-31

    This report describes the work on converting a 4 cylinder Cummins ISB engine into a single cylinder Rotating Liner Engine functioning prototype that can be used to measure the friction benefits of rotating the cylinder liner in a high pressure compression ignition engine. A similar baseline engine was also prepared, and preliminary testing was done. Even though the fabrication of the single cylinder prototype was behind schedule due to machine shop delays, the fundamental soundness of the design elements are proven, and the engine has successfully functioned. However, the testing approach of the two engines, as envisioned by the original proposal, proved impossible due to torsional vibration resonance caused by the single active piston. A new approach for proper testing has been proposed,

  1. Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine Test Schedule for Representative Measurement of Heavy-Duty Engine Emissions

    Office of Energy Efficiency and Renewable Energy (EERE)

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  2. Transportation Statistics Annual Report 1997

    SciTech Connect (OSTI)

    Fenn, M.

    1997-01-01

    accessibility patterns? How are commodity flows and transportation services responding to global competition, deregulation, economic restructuring, and new information technologies? How do U.S. patterns of personal mobility and freight movement compare with other advanced industrialized countries, formerly centrally planned economies, and major newly industrializing countries? Finally, how is the rapid adoption of new information technologies influencing the patterns of transportation demand and the supply of new transportation services? Indeed, how are information technologies affecting the nature and organization of transportation services used by individuals and firms?

  3. Transportation Fact of the Week - 2009 Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    09 Archive Transportation Fact of the Week - 2009 Archive #603 Where Does Lithium Come From? December 28, 2009 #602 Freight Statistics by Mode, 2007 Commodity Flow Survey December 21, 2009 #601 World Motor Vehicle Production December 14, 2009 #600 China Produced More Vehicles than the U.S. in 2008 December 7, 2009 #599 Historical Trend for Light Vehicle Sales November 30, 2009 #598 Hybrid Vehicle Sales by Model November 23, 2009 #597 Median Age of Cars and Trucks Rising in 2008 November 16, 2009

  4. Transportation Fact of the Week - 2010 Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 Archive Transportation Fact of the Week - 2010 Archive #655 New Freight Analysis Tool December 27, 2010 #654 New Light Vehicle Leasing is Big in 2010 December 20, 2010 #653 Import Cars and Trucks Gaining Ground December 13, 2010 #652 U.S. Crude Oil Production Rises December 6, 2010 #651 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 November 29, 2010 #650 Diesel Fuel Prices hit a Two-Year High November 22, 2010 #649 Number of New Light Vehicle Dealerships Continues to Shrink

  5. Fact #846: November 10, 2014 Trucks Move 70% of all Freight by...

    Energy.gov (indexed) [DOE]

    Notes: Air transport includes truck and air. The CFS data for pipeline exclude most shipments of crude oil. Multiple modes includes data for parcel, U.S. Postal Service, or ...

  6. NREL: Transportation Research - News Release Archives

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    0 December 28, 2010 NREL Helps Corporate Fleets Go Green Researchers work with companies to evaluate the latest technology commercially available in the medium and heavy-duty truck markets. December 14, 2010 Hydrogen Bus Lets Lab Visitors Glimpse Future The hydrogen bus uses the same basic technology as a conventional gasoline-powered engine but runs on renewable hydrogen. October 18, 2010 NREL's Hydrogen-Powered Bus Serves as Showcase for Advanced Vehicle Technologies NREL uses its

  7. Forecast of transportation energy demand through the year 2010

    SciTech Connect (OSTI)

    Mintz, M.M.; Vyas, A.D.

    1991-04-01

    Since 1979, the Center for Transportation Research (CTR) at Argonne National Laboratory (ANL) has produced baseline projections of US transportation activity and energy demand. These projections and the methodologies used to compute them are documented in a series of reports and research papers. As the lastest in this series of projections, this report documents the assumptions, methodologies, and results of the most recent projection -- termed ANL-90N -- and compares those results with other forecasts from the current literature, as well as with the selection of earlier Argonne forecasts. This current forecast may be used as a baseline against which to analyze trends and evaluate existing and proposed energy conservation programs and as an illustration of how the Transportation Energy and Emission Modeling System (TEEMS) works. (TEEMS links disaggregate models to produce an aggregate forecast of transportation activity, energy use, and emissions). This report and the projections it contains were developed for the US Department of Energy's Office of Transportation Technologies (OTT). The projections are not completely comprehensive. Time and modeling effort have been focused on the major energy consumers -- automobiles, trucks, commercial aircraft, rail and waterborne freight carriers, and pipelines. Because buses, rail passengers services, and general aviation consume relatively little energy, they are projected in the aggregate, as other'' modes, and used primarily as scaling factors. These projections are also limited to direct energy consumption. Projections of indirect energy consumption, such as energy consumed in vehicle and equipment manufacturing, infrastructure, fuel refining, etc., were judged outside the scope of this effort. The document is organized into two complementary sections -- one discussing passenger transportation modes, and the other discussing freight transportation modes. 99 refs., 10 figs., 43 tabs.

  8. Estimation of an origin–destination table for U.S. imports of waterborne containerized freight

    SciTech Connect (OSTI)

    Wang, Hao; Gearhart, Jared; Jones, Katherine; Frazier, Christopher; Nozick, Linda; Levine, Brian; Jones, Dean

    2016-01-01

    This study presents a probabilistic origin–destination table for waterborne containerized imports. The analysis makes use of 2012 Port Import/Export Reporting Service data, 2012 Surface Transportation Board waybill data, a gravity model, and information on the landside transportation mode split associated with specific ports. This analysis suggests that about 70% of the origin–destination table entries have a coefficient of variation of less than 20%. This 70% of entries is associated with about 78% of the total volume. This analysis also makes evident the importance of rail interchange points in Chicago, Illinois; Memphis, Tennessee; Dallas, Texas; and Kansas City, Missouri, in supporting the transportation of containerized goods from Asia through West Coast ports to the eastern United States.

  9. Estimation of an origin–destination table for U.S. imports of waterborne containerized freight

    DOE PAGES-Beta [OSTI]

    Wang, Hao; Gearhart, Jared; Jones, Katherine; Frazier, Christopher; Nozick, Linda; Levine, Brian; Jones, Dean

    2016-01-01

    This study presents a probabilistic origin–destination table for waterborne containerized imports. The analysis makes use of 2012 Port Import/Export Reporting Service data, 2012 Surface Transportation Board waybill data, a gravity model, and information on the landside transportation mode split associated with specific ports. This analysis suggests that about 70% of the origin–destination table entries have a coefficient of variation of less than 20%. This 70% of entries is associated with about 78% of the total volume. This analysis also makes evident the importance of rail interchange points in Chicago, Illinois; Memphis, Tennessee; Dallas, Texas; and Kansas City, Missouri, in supportingmore » the transportation of containerized goods from Asia through West Coast ports to the eastern United States.« less

  10. Trends in state-level freight accident rates: An enhancement of risk factor development for RADTRAN

    SciTech Connect (OSTI)

    Saricks, C.; Kvitek, T.

    1991-01-01

    Under the Nuclear Waste Policy Act, the Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) is concerned with understanding and managing risk as it applies to the shipment of spent commercial nuclear reactor fuel. Understanding risk in relation to mode and geography may provide opportunities to minimize radiological and non-radiological risks of transportation. To enhance such an understanding, a set of state-or waterway-specific accident, fatality, and injury rates (expressed as rates per shipment kilometer) by transportation mode and highway administrative class was developed, using publicly-available data bases. Adjustments made to accommodate miscoded or incomplete information in accident data are described, as well as the procedures for estimating state-level flow data. Results indicate that the shipping conditions under which spent fuel is likely to be transported should be less subject to accidents than the average'' shipment within mode. 10 refs., 3 tabs.

  11. Resilience and Robustness in Long-Term Planning of the National Energy and Transportation System

    SciTech Connect (OSTI)

    Ibanez, Eduardo; Lavrenz, Steven; Gkritza, Konstantina; Mejia-Giraldo, Diego A.; Krishnan, Venkat; McCalley, James D.; Somani, Arun K.

    2016-01-01

    The most significant energy consuming infrastructures and the greatest contributors to greenhouse gases for any developed nation today are electric and freight/passenger transportation systems. Technological alternatives for producing, transporting and converting energy for electric and transportation systems are numerous. Addressing costs, sustainability and resilience of electric and transportation needs requires long-term assessment since these capital-intensive infrastructures take years to build with lifetimes approaching a century. Yet, the advent of electrically driven transportation, including cars, trucks and trains, creates potential interdependencies between the two infrastructures that may be both problematic and beneficial. We are developing modelling capability to perform long-term electric and transportation infrastructure design at a national level, accounting for their interdependencies. The approach combines network flow modelling with a multi-objective solution method. We describe and compare it to the state of the art in energy planning models. An example is presented to illustrate important features of this new approach.

  12. Demonstration of Alternative Fuel, Light and Heavy Duty Vehicles in State and Municipal Vehicle Fleets

    SciTech Connect (OSTI)

    Kennedy, John H.; Polubiatko, Peter; Tucchio, Michael A.

    2002-02-06

    This project involved the purchase of two Compressed Natural Gas School Buses and two electric Ford Rangers to demonstrate their viability in a municipal setting. Operational and maintenance data were collected for analysis. In addition, an educational component was undertaken with middle school children. The children observed and calculated how electric vehicles could minimize pollutants through comparison to conventionally powered vehicles.

  13. DOE Issues Request for Information on Medium- and Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the support of Clean Cities projects in those states. | Photo courtesy of Jonathan Burton, NREL. National Clean Fleets Partners Get the Best of Both Worlds with Hybrid Vehicles

  14. Diesel-fueled solid oxide fuel cell auxiliary power units for heavy-duty vehicles

    SciTech Connect (OSTI)

    Krause, T.; Kumar, R.; Krumpelt, M.

    2000-05-15

    This paper explores the potential of solid oxide fuel cells (SOFCS) as 3--10 kW auxiliary power units for trucks and military vehicles operating on diesel fuel. It discusses the requirements and specifications for such units, and the advantages, challenges, and development issues for SOFCS used in this application. Based on system design and analysis, such systems should achieve efficiencies approaching 40% (lower heating value), with a relatively simple system configuration. The major components of such a system are the fuel cell stack, a catalytic autothermal reformer, and a spent gas burner/air preheater. Building an SOFC-based auxiliary power unit is not straightforward, however, and the tasks needed to develop a 3--10 kW brassboard demonstration unit are outlined.

  15. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission Measurements.

    Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  16. Heavy-Duty Powertrain DevelopmentCurrent Status and Future Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  17. Predicted Impact of Idling Reduction Options for Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of ...

  18. Study of Fuel Property Effects Using Future Low Emissions Heavy Duty Truck Engine Hardware

    SciTech Connect (OSTI)

    Li, Sharon

    2000-08-20

    Fuel properties have had substantial impact on engine emissions. Fuel impact varies with engine technology. An assessment of fuel impact on future low emission designs was needed as part of an EMAEPA-API study effort

  19. Investigation of the Application of the European PMP Method to Clean Heavy Duty Vehicles

    Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  20. Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...

    Energy.gov (indexed) [DOE]

    More Documents & Publications Development of Advanced Combustion Technologies for Increased Thermal Efficiency Biodiesel Research Update Effect of the Composition of Hydrocarbon ...

  1. Demonstration of a Low-NOx Heavy-Duty Natural Gas Engine

    SciTech Connect (OSTI)

    Not Available

    2004-02-01

    Results of a Next Generation Natural Gas Vehicle engine research project: A Caterpillar C-12 natural gas engine with Clean Air Power Dual-Fuel technology and exhaust gas recirculation demonstrated low NOx and PM emissions.

  2. Heavy-Duty Trucks Poised to Accelerate Growth of American Alternative...

    Alternative Fuels and Advanced Vehicles Data Center

    The domi- nant share of AFV, particularly natural gas vehicle (NGV) activity, focused on light-duty vehicles that belonged to the natural gas utilities, state governments, the ...

  3. Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed...

    Energy.gov (indexed) [DOE]

    5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deermauderly.pdf (324.89 KB) More Documents & Publications Relationship Between Composition ...

  4. ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit...

    Energy.gov (indexed) [DOE]

    More Documents & Publications CNG and Diesel Transite Bus Emissions in Review Diesel Health Impacts & Recent Comparisons to Other Fuels Investigation of the Effects of Fuels and ...

  5. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  6. Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ft004mueller2010o.pdf More...

  7. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  8. Development of NOx Adsorber System for Dodge Ram 2007 Heavy duty Pickup Truck

    Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  9. Reduction of Heavy-Duty Fuel Consumption and CO2 Generation ...

    Energy.gov (indexed) [DOE]

    Smart regulations, funding for advanced technologies, and improvements to operations and infrastructure play important roles in reducing fuel consumption deer09aneja.pdf (876.94 ...

  10. Downspeeding a Heavy-Duty Pickup Truck with a Combined Supercharger...

    Energy.gov (indexed) [DOE]

    Discusses forward looking dynamic models developed for 6.6L diesel engine and a ton pickup truck with 8500 lb. curb weight, and validation against in-house engine and vehicle ...

  11. Vehicle Technologies Office Merit Review 2016: Combined Aero and Underhood Thermal Analysis for Heavy Duty Trucks

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle...

  12. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  13. Vehicle Technologies Office Merit Review 2014: Zero-Emission Heavy-Duty

    Office of Environmental Management (EM)

    Using Two-Factor RSA Token with WebVPN Using Two-Factor RSA Token with WebVPN Your RSA token is used to esbablish a connection to the Internet and connect to https://connect.doe.gov . Using-TwoFactorRSA-Token w VPN.pdf (469 KB) More Documents & Publications Instructions for WebVPN Connectivity Citrix_2FA_Authentication_09.09 Microsoft Word - Citrix_2FA_Authentication_12_3_2009.doc of Energy

    Using Weather Data to Improve Capacity of Existing Power Lines Using Weather Data to Improve

  14. Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications

    Energy.gov [DOE]

    Evaluation of a system consisting of SCRDPF in comparison to a commercial 2010 CDPF system on an engine under high and low engine-out NOx conditions

  15. Long-Term Aging of NOx Sensors in Heavy-Duty Engine Exhaust

    Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Advanced Petroleum-Based Fuels-Diesel Emission Control (APBF-DEC) Project

  16. Development of high temperature liquid lubricants for low-heat rejection heavy duty diesel engines

    SciTech Connect (OSTI)

    Wiczynski, T.A.; Marolewski, T.A.

    1993-03-01

    Objective was to develop a liquid lubricant that will allow advanced diesel engines to operate at top ring reversal temperatures approaching 500 C and lubricant sump temperatures approaching 250 C. Base stock screening showed that aromatic esters and diesters has the lowest deposit level, compared to polyol esters, poly-alpha-olefins, or refined mineral oil of comparable viscosity. Classical aryl and alkyl ZDP antiwear additives are ineffective in reducing wear with aromatic esters; the phosphate ester was a much better antiwear additive, and polyol esters are more amenable to ZDP treatment. Zeolites and clays were evaluated for filtration.

  17. Aftertreatment Technologies for Off-Highway Heavy-Duty Diesel Engines

    SciTech Connect (OSTI)

    Kass, M.D.

    2008-07-15

    The objective of this program was to explore a combination of advanced injection control and urea-selective catalytic reduction (SCR) to reduce the emissions of oxides of nitrogen (NOx) and particulate matter (PM) from a Tier 2 off-highway diesel engine to Tier 3 emission targets while maintaining fuel efficiency. The engine used in this investigation was a 2004 4.5L John Deere PowerTechTM; this engine was not equipped with exhaust gas recirculation (EGR). Under the original CRADA, the principal objective was to assess whether Tier 3 PM emission targets could be met solely by increasing the rail pressure. Although high rail pressure will lower the total PM emissions, it has a contrary effect to raise NOx emissions. To address this effect, a urea-SCR system was used to determine whether the enhanced NOx levels, associated with high rail pressure, could be reduced to Tier 3 levels. A key attraction for this approach is that it eliminates the need for a Diesel particulate filter (DPF) to remove PM emissions. The original CRADA effort was also performed using No.2 Diesel fuel having a maximum sulfur level of 500 ppm. After a few years, the CRADA scope was expanded to include exploration of advanced injection strategies to improve catalyst regeneration and to explore the influence of urea-SCR on PM formation. During this period the emission targets also shifted to meeting more stringent Tier 4 emissions for NOx and PM, and the fuel type was changed to ultra-low sulfur Diesel (ULSD) having a maximum sulfur concentration of 15 ppm. New discoveries were made regarding PM formation at high rail pressures and the influences of oxidation catalysts and urea-SCR catalysts. These results are expected to provide a pathway for lower PM and NOx emissions for both off- and on-highway applications. Industrial in-kind support was available throughout the project period. Review of the research results were carried out on a regular basis (annual reports and meetings) followed by suggestions for improvement in ongoing work and direction for future work. A significant portion of the industrial support was in the form of experimentation, data analysis, data exchange, and technical consultation.

  18. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors

    Office of Energy Efficiency and Renewable Energy (EERE)

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  1. Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  3. Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  4. SCR Potential and Issues for Heavy-Duty Applications in the United States

    Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Daimler Chrysler Detroit Diesel Corporation

  5. Design and Implementation of Silicon Nitride Valves for Heavy Duty Diesel Engines

    Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  6. Development of LNG-Powered Heavy-Duty Trucks in Commercial Hauling

    SciTech Connect (OSTI)

    Detroit Diesel Corporation; Trucking Research Institute

    1998-12-03

    In support of the U.S. Department of Energy's development, deployment, and evaluation of alternative fuels, NREL and the Trucking Research Institute contracted with Detroit Diesel Corporation (DDC) to develop and operate a liquid natural gas fueled tractor powered by a DDC Series 50 prototype natural gas engine. This is the final report on the project.

  7. Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications The Advanced Collaborative Emissions Study (ACES):Phase 3 Evaluation of the European PMP Methodologies Using Chassis Dynamometer and On-road Testing ...

  8. Development of Urea Dosing System for 10 Liter Heavy Duty Diesel Engine Powered Vehicle

    Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  9. Evaluating Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty Chassis Dynamometer

    Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: VTT Technical Research Centre of Finland

  10. Application Experience with a Combined SCR and DPF Technology for Heavy Duty Diesel Retrofit

    Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  11. Development of NOx Adsorber System for Dodge Ram 2007 Heavy duty...

    Energy.gov (indexed) [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of ...

  12. Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  13. Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  14. Second Stage Intercooling Using LNG for Turbocharged Heavy Duty Road Vehicles Phase I Final Report

    SciTech Connect (OSTI)

    1999-09-21

    It is well documented in engine performance literature that reduced engine inlet air temperature increases power output and reduces NO, emissions for both diesel and spark ignited (SI) engines. In addition, reduced inlet temperature increases the knock resistance of SI engines. In that most HD natural gas engines are SI derivatives of diesel engines it is appropriate to evaluate the benefits of reduced engine air temperature through LNG fuel. This project investigated the ''real world'' possibilities of a patented process for utilizing the ''cold'' in LNG to chill engine inlet air. The results support the conclusion that doing so is a practical means to increase engine power and reduce engine-out NO{sub x}.

  15. Heavy-Duty Engine Technology for High Thermal Efficiency at EPA 2010 Emissions Regulations

    Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  16. Heavy-Duty Powertrain DevelopmentCurrent Status and Future Opportuniti...

    Energy.gov (indexed) [DOE]

    BLUETEC - Heading for 50 State Diesel Vehicle Technologies Office Merit Review 2015: SuperTruck Program: Engine Project Review Vehicle Technologies Office Merit Review 2015: Class ...

  17. Heavy Duty HCCI Development Activities- DOE High Efficiency Clean Combustion (HECC)

    Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  18. APBF- DEC Heavy-Duty NOx Adsorber/DPF Project: Catalyst Aging Study

    Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: National Renewable Energy Laboratory

  19. Effects of Catalysts on Emissions from Heavy-Duty Diesel Retrofits for PM and NOX Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    The more heavily catalyzed and the hotter the exhaust temperature, the more strongly the aftertreatment will oxidize the exhaust.

  20. Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling Expansion

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  1. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking

    Energy.gov [DOE]

    Presentation discusses a virtual lab which can model sophisticated future vehicle systems using three layers of model fidelity supporting each other.

  2. Development of Urea Dosing System for 10 Liter Heavy Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    with Urea-SCR System Deactivation Mechanisms of Base MetalZeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials

  3. Vehicle Technologies Office Merit Review 2014: High Strength, Light-Weight Engines for Heavy Duty Trucks

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high strength,...

  4. Cold starting capabilities of petroleum and syntehetic lubricants in heavy-duty diesel engines

    SciTech Connect (OSTI)

    Margeson, M.A.; Belmesch, B.J. )

    1989-01-01

    The objective of the work described in this paper was to compare the cold weather starting ability of diesel engines lubricated with SAE 15W-40 petroleum and SAE 5W-30 synthetic motor oil. Laboratory bench tests were used to compare rhelogical features such as borderline pumping temperature and cold cranking simulator profiles. A cold box provided a well controlled environment in which cranking and starting studies were carried out on the two oils in a turbocharged diesel engine. The SAE 5W-30 synthetic exhibited higher cranking speeds, lower starter amperage draw and immediate oil pressure readings when compared to the SAE l5W-40 petroleum. The SAE 5W-30 synthetic oil was safely started at {minus} l0 {sup 0}F oil temperature without auxiliary heaters. The comparative cylinder turbocharged diesel engines representing conditions commonly found in the commercial and off-highway sectors, These studies indicate that combining high capacity cold cranking amperage batteries, high pressure ether aid injection, and SAE 5W-30 synthetic oil resulted in a system that safely starts diesel engines down to actual oil temperatures of at least {minus} 10 {sup 0}F.

  5. A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid...

    Energy.gov (indexed) [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. ...

  6. Vehicle Technologies Office Merit Review 2014: Medium and Heavy-Duty Vehicle Field Evaluations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about medium...

  7. Development and Demonstration of a Low Cost Hybrid Drive Train for Medium and Heavy Duty Vehicles

    SciTech Connect (OSTI)

    Strangas, Elias; Schock, Harold; Zhu, Guoming; Moran, Kevin; Ruckle, Trevor; Foster, Shanelle; Cintron-Rivera, Jorge; Tariq, Abdul; Nino-Baron, Carlos

    2011-04-30

    The DOE sponsored effort is part of a larger effort to quantify the efficiency of hybrid powertrain systems through testing and modeling. The focus of the DOE sponsored activity was the design, development and testing of hardware to evaluate the efficiency of the electrical motors relevant to medium duty vehicles. Medium duty hybrid powertrain motors and generators were designed, fabricated, setup and tested. The motors were a permanent magnet configuration, constructed at Electric Apparatus Corporation in Howell, Michigan. The purpose of this was to identify the potential gains in terms of fuel cost savings that could be realized by implementation of such a configuration. As the electric motors constructed were prototype designs, the scope of the project did not include calculation of the costs of mass production of the subject electrical motors or generator.

  8. Vehicle Technologies Office Merit Review 2014: Powertrain Controls Optimization for Heavy Duty Line Haul Trucks

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about powertrain...

  9. Vehicle Technologies Office Merit Review 2015: Powertrain Controls Optimization for Heavy Duty Line Haul Trucks

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about powertrain...

  10. Emissions from Idling Heavy-Duty Trucks and Idling-Reduction Equipment |

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Technical Report NREL/TP-540-36355 December 2005 Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S.

  11. Design of Integrated Laboratory and Heavy-Duty Emissions Testing Center

    Energy.gov [DOE]

    Both simulated and actual diesel emissions were able to be measured and analyzed using a bench-top adiabatic reactor.

  12. Simulation and Analysis of HP/LP EGR for Heavy-Duty Applications

    Energy.gov [DOE]

    High- and low-pressure exhaust gas recirculation can be combined for an advanced airpath control strategy

  13. Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel Engines?

    Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  14. LNT + SCR Aftertreatment for Medium-Heavy Duty Applications: A Systems Approach

    Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  15. Heavy-Duty Waste Hauler with Chemically Correct Natural Gas Engine...

    Alternative Fuels and Advanced Vehicles Data Center

    ... rpm * Turbocharger: Holset HY 40V VGT. Water-cooled bearing housing * Low-pressure, ... compressor inlet temperature to prevent water from dropping out before the turbocharger ...

  16. Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions

    Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  17. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  18. Vehicle Technologies Office Merit Review 2016: Medium and Heavy-Duty Vehicle Field Evaluations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory (NREL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  19. DOE Issues Request for Information on Medium- and Heavy-Duty Fuel Cell Electric Truck Targets

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy’s Fuel Cell Technologies Office has issued a request for information to obtain feedback and opinions from truck operators, truck and storage tank manufacturers, fuel cell manufacturers, station equipment designers, and other related stakeholders on issues related to fuel cell electric truck targets.

  20. Waste Management's LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    2001-01-25

    Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

  1. Comparison of CNG and LNG technologies for transportation applications. Final subcontract report, June 1991--December 1991

    SciTech Connect (OSTI)

    Sinor, J.E.

    1992-01-01

    This report provides a head-to-head comparison of compressed natural gas (CNG) and liquefied natural gas (LNG) supplied to heavy-duty vehicles. The comparison includes an assessment of the overall efficiency of the fuel delivery system, the cost of the fuel supply system, the efficiency of use in heavy-duty vehicles, and the environmental impact of each technology. The report concludes that there are applications in which CNG will have the advantage, and applications in which LNG will be preferred.

  2. Fuel cell propulsion systems for large vehicles: buses, freight locomotives, and marinecraft

    SciTech Connect (OSTI)

    Altseimer, J.H.; Frank, J.A.; Nochumson, D.H.

    1983-08-01

    A recent Los Alamos study assessed the use of fuel cell systems in transportation vehicles. Study results for buses, railroad locomotives, and marinecraft are presented in this paper. Levelized-life-cycle costs and a figure-of-merit ranking technique for noneconomic criteria were used. Advanced fuel cell systems appear necessary for fuel-cell-powered buses to be costcompetitive. The application of near-term fuel cell technology to city buses might still be worthwhile because of air pollution considerations. For locomotives and marinecraft especially, the cost data was rather limited but certain design and operational features of fuel cell systems were found that could impact favorably on both railroad and ship applications. These are discussed.

  3. Investigating potential efficiency improvement for light-duty transportation applications through simulation of an organic Rankine cycle for waste-heat recovery

    SciTech Connect (OSTI)

    Edwards, Kevin Dean; Wagner, Robert M

    2010-01-01

    Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to heat loss and combustion irreversibility. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, the potential benefits of such a strategy for light-duty applications are unknown due to transient operation, low-load operation at typical driving conditions, and the added mass of the system. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. Results from steady-state and drive-cycle simulations are presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and competition between waste-heat recovery systems, turbochargers, aftertreatment devices, and other systems for the limited thermal resources.

  4. Vehicle Technologies Office: 21st Century Truck Partnership | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 21st Century Truck Partnership Vehicle Technologies Office: 21st Century Truck Partnership Logo for 21st Century Truck Partnership. Partial outline of three various size medium to heavy-duty trucks followed by the words, 21st Century Truck Partnership. Medium-duty and heavy-duty trucks play a vital role in moving freight and passengers, serving as the backbone of America's economy. These trucks also play essential roles in other parts of society, such as maintaining our electricity

  5. Transportation Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    transportation-research TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Transportation Research Current Research Overview The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and

  6. NREL: Transportation Research - Fleet Test and Evaluation Publications

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Fleet Test and Evaluation Publications NREL publishes technical reports, fact sheets, and other documents about its fleet test and evaluation activities: Hybrid electric vehicle publications Electric and plug-in hybrid electric vehicle publications Alternative fuel vehicle publications Hydraulic hybrid vehicle publications Truck platooning publications Truck stop electrification publications For more documents about energy-saving technologies for medium- and heavy-duty vehicles, search the NREL

  7. Transportation and Parking

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transportation and Parking

  8. Radiation Transport

    SciTech Connect (OSTI)

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  9. Transportation Sector Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  10. Chamber transport

    SciTech Connect (OSTI)

    OLSON,CRAIG L.

    2000-05-17

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

  11. Potential benefits of superconductivity to transportation in the United States

    SciTech Connect (OSTI)

    Rote, D.M.; Johnson, L.R.

    1988-01-01

    Research in US transportation applications of superconductors is strongly motivated by a number of potential national benefits. These include the reduction of dependence on petroleum-based fuels, energy savings, substantially reduced air and noise pollution, increased customer convenience, and reduced maintenance costs. Current transportation technology offers little flexibility to switch to alternative fuels, and efforts to achieve the other benefits are confounded by growing congestion at airports and on urban roadways. A program has been undertaken to identify possible applications of the emerging superconducting applications to transportation and to evaluate potential national benefits. The current phase of the program will select the most promising applications for a more detailed subsequent study. Transportation modes being examined include highway and industrial vehicles, as well as rail, sea, air transport and pipelines. Three strategies are being considered: (1) replacing present components with those employing superconductors, (2) substituting new combinations of components or systems for present systems, and (3) developing completely new technologies. Distinctions are made between low-, medium-, and near-room-temperature superconductors. The most promising applications include magnetically levitated passenger and freight vehicles; replacement of drive systems in locomotives, self-propelled rail cars, and ships; and electric vehicles inductively coupled to electrified roadways.

  12. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-02-01

    Over the past year, several modifications have been made to the NEMS Transportation Model, incorporating greater levels of detail and analysis in modules previously represented in the aggregate or under a profusion of simplifying assumptions. This document is intended to amend those sections of the Model Documentation Report (MDR) which describe these superseded modules. Significant changes have been implemented in the LDV Fuel Economy Model, the Alternative Fuel Vehicle Model, the LDV Fleet Module, and the Highway Freight Model. The relevant sections of the MDR have been extracted from the original document, amended, and are presented in the following pages. A brief summary of the modifications follows: In the Fuel Economy Model, modifications have been made which permit the user to employ more optimistic assumptions about the commercial viability and impact of selected technological improvements. This model also explicitly calculates the fuel economy of an array of alternative fuel vehicles (AFV`s) which are subsequently used in the estimation of vehicle sales. In the Alternative Fuel Vehicle Model, the results of the Fuel Economy Model have been incorporated, and the program flows have been modified to reflect that fact. In the Light Duty Vehicle Fleet Module, the sales of vehicles to fleets of various size are endogenously calculated in order to provide a more detailed estimate of the impacts of EPACT legislation on the sales of AFV`s to fleets. In the Highway Freight Model, the previous aggregate estimation has been replaced by a detailed Freight Truck Stock Model, where travel patterns, efficiencies, and energy intensities are estimated by industrial grouping. Several appendices are provided at the end of this document, containing data tables and supplementary descriptions of the model development process which are not integral to an understanding of the overall model structure.

  13. AEO2017 Modeling updates in the transportation sector

    Gasoline and Diesel Fuel Update

    Massachusetts, Rhode Island, Vermont * CD2: New ... * Update total freight ton-mile and vehicle miles traveled ... - Stock is made up of three types of aircraft: ...

  14. UPS CNG Truck Fleet Final Results: Alternative Fuel Truck Evaluation Project (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2002-08-01

    This report provides transportation professionals with quantitative, unbiased information on the cost, maintenance, operational and emissions characteristics of CNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

  15. Sandia Energy - Spray Combustion

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Spray Combustion Home Transportation Energy Predictive Simulation of Engines Engine Combustion Heavy Duty Spray Combustion Spray CombustionAshley Otero2015-10-28T02:00:56+00:00...

  16. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    21 results. Video Energy 101: Heavy Duty Vehicle Efficiency Although Class 8 Trucks only make up 4% of the vehicles on the road, they use about 20% of the nation's transportation...

  17. Economic and Environmental Impacts of Increased US Exports of...

    Energy Savers

    ... Finally, we examine the impacts on the use of CNG in the transport sector. The CES virtually eliminates the use of CNG or LNG in the heavy duty truck sub-sector as shown in Figure ...

  18. Presentation Title

    Annual Energy Outlook

    ... not cite or circulate 7 Percent diesel heavy duty vehicles on road by Census division Source: 2014 Polk data 8 AEO2016 Transportation Working Group Washington, D.C., December 15, ...

  19. Beam Transport

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Beam Transport A simplified drawing of the beam transport system from the linac to Target-1 (Lujan Center), Target-2 (Blue Room) and Target-4 is shown below. In usual operation ...

  20. WIPP Transportation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transuranic Waste Transportation Container Documents Documents related to transuranic waste containers and packages. CBFO Tribal Program Information about WIPP shipments across tribal lands. Transportation Centralized Procurement Program - The Centralized Procurement Program provides a common method to procure standard items used in the packaging and handling of transuranic wasted destined for WIPP. Transuranic Waste Transportation Routes - A map showing transuranic waste generator sites and

  1. Greening Transportation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work schedule options. Our goal is to reduce emissions related to employee travel and commuting to and from work by 13 percent. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science

  2. Sustainable Transportation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  3. SBOT DIST OF COLUMBIA HEADQUARTERS PROCUREMENT POC Michael Raizen

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Construction 236220 Water and Sewer Line and Related ... Other Heavy and Civil Engineering Construction 237990 ... Deep Sea Freight Transportation 483111 Inland Water Freight ...

  4. SBOT OHIO EM BUSINESS CENTER POC Karen Bahan Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Construction 236220 Water and Sewer Line and Related ... Other Heavy and Civil Engineering Construction 237990 ... Deep Sea Freight Transportation 483111 Inland Water Freight ...

  5. Progress on Fuel Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Efficiency and Market Adoption Introduction The Department of Energy (DOE) launched the SuperTruck initiative in 2009 with the goal of developing and demonstrating a 50 percent improvement in overall freight effciency (expressed in a ton-mile per gallon metric) for a heavy-duty Class 8 tractor-trailer. To date, the industry teams participating in the initiative have successfully met or are on track to exceed this goal, leveraging suites of technologies that hold signifcant potential for

  6. DOE Announces $22 Million in Funding to Accelerate the Development of Plug-In Electric Vehicles and Use of Other Sustainable Transportation Technologies

    Energy.gov [DOE]

    The Energy Department (DOE) announced $22 million to support research, development, and demonstration of innovative plug-in electric vehicle (PEV) and direct injection propane engine technologies, as well as community-based projects to accelerate the adoption of light, medium, and heavy duty vehicles that operate on fuels such as biodiesel, electricity, E85, hydrogen, natural gas, and propane.

  7. Particle Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies

    Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  8. Demonstration of Air-Power-Assist (APA) Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application

    Energy.gov [DOE]

    2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  9. Measurement of Real-World Emissions from Heavy-Duty Diesel Vehicles: The State-of-the-Art

    Energy.gov [DOE]

    2003 DEER Conference Presentation: West Virginia University - Dept. of Mechanical and Aerospace Engineering

  10. Vehicle Technologies Office Merit Review 2014: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Energy.gov [DOE]

    Presentation given by Caterpillar at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  11. Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application

    SciTech Connect (OSTI)

    Hyungsuk Kang; Chun Tai

    2010-05-01

    The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA system were delivered to VPTNA and then assembly of APA engine was completed by June 2007. Functional testing of APA engine was performed and AC and AM modes testing were completed by October 2007. After completing testing, data analysis and post processing were performed. Especially, the models were instrumental in identifying some of the key issues with the experimental HVA system. Based upon the available engine test results during AC and AM modes, the projected fuel economy improvement over the NY composite cycle is 14.7%. This is close to but slightly lower than the originally estimated 18% from ADVISOR simulation. The APA project group demonstrated the concept of APA technology by using simulation and experimental testing. However, there are still exists of technical challenges to meet the original expectation of APA technology. The enabling technology of this concept, i.e. a fully flexible valve actuation system that can handle high back pressure from the exhaust manifold is identified as one of the major technical challenges for realizing the APA concept.

  12. Heavy duty insulator assemblies for 500-kV bulk power transmission line with large diameter octagonalbundled conductor

    SciTech Connect (OSTI)

    Tsujimoto, K.; Hayase, I.; Hirai, J.; Inove, M.; Naito, K.; Yukino, T.

    1982-11-01

    This paper describes the design procedure and the results of field tests on mechanical performances of insulator assemblies newly developed to support octagonal-bundled conductors for 500-kV bulk power transmission. Taking account of conductor-motion-induced peak tensile load, fatigue, torsional torque and others, a successful design has been achieved in two prototype assemblies for such heavy mechanical duties as encountered during conductor galloping or swing. This has been proved throughout three years of the field tests.

  13. Vehicle Technologies Office Merit Review 2014: Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

  14. Experiences with CNG and LPG operated heavy duty vehicles with emphasis on US HD diesel emission standards

    SciTech Connect (OSTI)

    VanDerWeide, J.; Seppen, J.J.; VanLing, J.A.N.; Dekker, H.J

    1988-01-01

    The lengthy experience of TNO with the application of gaseous fuels in engines is discussed. The emphasis is on emissions and efficiency of optimal gaseous fuelled engines in comparison to systems with partial diesel fuel replacement. In spark ignition operation (100% diesel fuel replacement) lean-burn and stoichiometric (electronic control and 3-way catalyst) concepts have been developed. In the optimization mathematical modelling of combustion and flow phenomena is used in combination with engine test bed work. Essential new hardware including micro-electronic control systems is developed.

  15. Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced heavy...

  16. Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 2

    SciTech Connect (OSTI)

    Cox, G.B.; DelVecchio, K.A.; Hays, W.J.; Hiltner, J.D.; Nagaraj, R.; Emmer, C.

    2000-03-02

    This report summarizes the results of Phase 2 of this contract. The authors completed four tasks under this phase of the subcontract. (1) They developed a computational fluid dynamics (CFD) model of a 3500 direct injected natural gas (DING) engine gas injection/combustion system and used it to identify DING ignition/combustion system improvements. The results were a 20% improvement in efficiency compared to Phase 1 testing. (2) The authors designed and procured the components for a 3126 DING engine (300 hp) and finished assembling it. During preliminary testing, the engine ran successfully at low loads for approximately 2 hours before injector tip and check failures terminated the test. The problems are solvable; however, this phase of the program was terminated. (3) They developed a Decision & Risk Analysis model to compare DING engine technology with various other engine technologies in a number of commercial applications. The model shows the most likely commercial applications for DING technology and can also be used to identify the sensitivity of variables that impact commercial viability. (4) MVE, Inc., completed a preliminary design concept study that examines the major design issues involved in making a reliable and durable 3,000 psi LNG pump. A primary concern is the life of pump seals and piston rings. Plans for the next phase of this program (Phase 3) have been put on indefinite hold. Caterpillar has decided not to fund further DING work at this time due to limited current market potential for the DING engine. However, based on results from this program, the authors believe that DI natural gas technology is viable for allowing a natural gas-fueled engine to achieve diesel power density and thermal efficiency for both the near and long terms.

  17. Vehicle Technologies Office Merit Review 2015: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Caterpillar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  18. The new Mercedes-Benz OM 904 LA light heavy-duty diesel engine for class 6 trucks

    SciTech Connect (OSTI)

    Schittler, M.; Bergmann, H.; Flathmann, K.

    1996-09-01

    As part of a comprehensive strategic product initiative the most important commercial vehicle manufacturer--Mercedes-Benz AG--is step by step renewing its entire product range. This primarily refers to the heart of the vehicles--the engine. After the OM 457 LA, which was developed together with DDC for the special American market demands and which is produced and sold in the US by DDC under the label Series 55, has had its premiere in Freightliner`s Century Class, the OM 904 LA will now follow in the light commercial vehicle class. This engine has a completely new concept of a direct-injection, highly sophisticated turbocharged four-cylinder in-line engine with air-to-air intercooler, whose main characteristics can be outlined by the terms multi-valve technology, high-pressure injection via unit pumps and electronic engine control. This small engine has several interesting features, which--up to now--were only known from class 8 engines. In addition to fulfilling increased customer demands with regard to long service life, easy maintenance, reliability and economy, great attention was paid during the design of the engine to not only fulfill the global regulations, but also account for sufficient potential to comply with further aggravations to be expected. The most important design features and the attained engine ratings are indicated and explained in detail.

  19. Vehicle Technologies Office Merit Review 2016: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Caterpillar at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Propulsion Materials

  20. Vehicle Technologies Office Merit Review 2016: Affordable Rankine Cycle (ARC) Waste Heat Recovery for Heavy Duty Trucks

    Energy.gov [DOE]

    Presentation given by Eaton at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Combustion Engines 

  1. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration

    Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  2. Transportation Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Algae Raceway to speed path to biofuels News, Transportation Energy Algae Raceway to speed path to biofuels With the aim of transforming algae into a cost-competitive biofuel, ...

  3. Transportation Fuels

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transportation Fuels DOE would invest $52 million to fund a major fleet transformation at Idaho National Laboratory, along with the installation of nine fuel management systems, purchase of additional flex fuel cars and one E85 ethanol fueling station. Transportation projects, such as the acquisition of highly efficient and alternative-fuel vehicles, are not authorized by ESPC legislation. DOE has twice proportion of medium vehicles and three times as many heavy vehicles as compared to the

  4. Transportation | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transportation NREL's transportation infrastructure and programs are designed to significantly reduce petroleum use campus-wide. This infographic shows NREL's FY2015 fleet performance and fleet vehicle history compared to baseline FY 2005 and FY 2014. Petroleum fuel use decreased 28% from 2014 and increased 17% from baseline 2005. Alternative fuel use increased 53% from 2014 and increased 127% from baseline 2005. In baseline 2005, the fleet used 6,521 gasoline gallon equivalent (GGE) of E-85, in

  5. NREL: Transportation Research - Transportation News

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transportation News The following news stories highlight transportation research at NREL. November 4, 2016 NREL Technologies Honored at R&D 100 Awards Ceremony Research teams honored for advances in residential buildings, energy storage testing and power inverters November 1, 2016 NREL Issued Patent for Award-Winning Isothermal Battery Calorimeters The National Renewable Energy Laboratory (NREL) was recently issued a patent for its R&D 100 Award-winning Isothermal Battery Calorimeters

  6. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    SciTech Connect (OSTI)

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily; Markel, Tony; Schroeder, Alex; Zhang, Yimin; Chipman, Peter; Johnson, Shawn

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  7. Low-sulfur coal usage alters transportation strategies

    SciTech Connect (OSTI)

    Stein, H.

    1995-07-01

    As electricity production has grown, so has the amount of coal burned by US utilities. In order to comply with the 1990 Clean Air Act Amendments (CAAA), many utilities have changed from high-sulfur coal to lower-sulfur coal to reduce sulfur dioxide emissions. The primary mode of transporting coal to utilities remains the railroad, and coal represents the largest freight tonnage shipped - two out of every five tons. Since coal is so important to the railroads, it is logical that as utilities have changed their coal-buying strategies, the railroads` strategies have also changed. The increased demand for Western coal has caused rail lines some capacity problems which they are attempting to meet head-on by buying new railcars and locomotives and expanding track capacities. The new railcars typically have aluminum bodies to reduce empty weight, enabling them to carry larger loads of coal. Train locomotives are also undergoing upgrade changes. Most new locomotives have as motors to drive the wheels which deliver more motive power (traction) to the wheel trucks. In fact the motors are up to 30% more efficient at getting the traction to the trucks. Trackage is also being expanded to alleviate serious congestion on the tracks when moving Western coal.

  8. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

  9. Transporting particulate material

    DOE Patents [OSTI]

    Aldred, Derek Leslie; Rader, Jeffrey A.; Saunders, Timothy W.

    2011-08-30

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  10. Transportation Systems Modeling

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling TRANSPORTATION SYSTEMS MODELING Overview of TSM Transportation systems modeling research at TRACC uses the TRANSIMS (Transportation Analysis SIMulation System) traffic micro simulation code developed by the U.S. Department of Transportation (USDOT). The TRANSIMS code represents the latest generation of traffic simulation codes developed jointly under multiyear programs by USDOT, the

  11. High Efficiency, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous

  12. Transportation Data Programs:Transportation Energy Data Book...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transportation Data Programs:Transportation Energy Data Book,Vehicle Technologies Market Report, and VT Fact of the Week Transportation Data Programs:Transportation Energy Data ...

  13. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    National Transportation Stakeholders Forum OSRP * NNSA Contractors transporting in commerce, are required law to comply with applicable regulations required law to comply with ...

  14. Transportation sector energy consumption

    Annual Energy Outlook

    Chapter 8 Transportation sector energy consumption Overview In the International Energy Outlook 2016 (IEO2016) Reference case, transportation sector delivered energy consumption ...

  15. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

    2009-03-31

    The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

  16. Transportation engine commercialization at Ballard Power Systems

    SciTech Connect (OSTI)

    Otto, N.C.; Howard, P.F.

    1996-12-31

    Ballard is adapting its leading fuel cell technology for transit bus engines in three phases. In the first phase, completed in 1993, Ballard developed and demonstrated a 125 HP fuel cell engine in a 32-foot light duty transit bus. This was the world`s first zero-emission vehicle (ZEV) powered completely by PEM fuel cells. The bus is a reliable, smooth performing vehicle that clearly established the viability of Ballard Fuel Cells for zero-emission transit bus operation. In the second phase, completed in 1995, Ballard refined its fuel cell technology, building a 275 HP fuel cell engine for a 40-foot heavy duty transit bus. The fuel cell engine fits in the existing engine compartment and meets the performance of a combustion powered vehicle, but with no pollution. In the third phase, small fleets of ZEV buses will be tested with Chicago Transit Authority and BC Transit. These test fleets will provide the performance, cost and reliability data necessary for commercial production. Commercial production of Ballard`s environmentally clean engines will begin in the 1998-1999 timeframe.

  17. Transportation Organization and Functions

    Energy.gov [DOE]

    Office of Packaging and Transportation list of organizations and functions, with a list of acronyms.

  18. NREL: Transportation Research - Transportation and Hydrogen Newsletter

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transportation and Hydrogen Newsletter The Transportation and Hydrogen Newsletter is a monthly electronic newsletter that provides information on NREL's research, development, and deployment of transportation and hydrogen technologies. Photo of a stack of newspapers September 2016 Issue Fuels Performance Read the latest issue of the newsletter. Subscribe: To receive new issues by email, subscribe to the newsletter. Archives: For past issues, read the newsletter archives. Printable Version

  19. NREL: Transportation Research - Sustainable Transportation Basics

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transportation Basics Compare Vehicle Technologies 3-D illustration of electric car diagramming energy storage, power electronics, and climate control components. The following links to the U.S. Department of Energy's Alternative Fuels Data Center (AFDC) provide an introduction to sustainable transportation. NREL research supports development of electric, hybrid, hydrogen fuel cell, biofuel, natural gas, and propane vehicle technologies. Learn more about vehicles, fuels, and transportation

  20. NREL: Transportation Research - Transportation Deployment Support

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transportation Deployment Support Photo of a car parked in front of a monument. A plug-in electric vehicle charges near the Thomas Jefferson Memorial in Washington, D.C. Photo from Julie Sutor, NREL NREL's transportation deployment team works with vehicle fleets, fuel providers, and other transportation stakeholders to help deploy alternative and renewable fuels, advanced vehicles, fuel economy improvements, and fleet-level efficiencies that reduce emissions and petroleum dependence. In

  1. NREL: Transportation Research - News

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    News NREL provides a number of transportation and hydrogen news sources. Transportation News Find news stories that highlight NREL's transportation research, development, and deployment (RD&D) activities, including work on vehicles and fuels. Hydrogen and Fuel Cells News Find news stories that highlight NREL's hydrogen RD&D activities, including work on fuel cell electric vehicle technologies. Transportation and Hydrogen Newsletter Stay up to date on NREL's RD&D of transportation and

  2. Secure Transportation Management

    SciTech Connect (OSTI)

    Gibbs, P. W.

    2014-10-15

    Secure Transport Management Course (STMC) course provides managers with information related to procedures and equipment used to successfully transport special nuclear material. This workshop outlines these procedures and reinforces the information presented with the aid of numerous practical examples. The course focuses on understanding the regulatory framework for secure transportation of special nuclear materials, identifying the insider and outsider threat(s) to secure transportation, organization of a secure transportation unit, management and supervision of secure transportation units, equipment and facilities required, training and qualification needed.

  3. The U. S. transportation sector in the year 2030: results of a two-part Delphi survey.

    SciTech Connect (OSTI)

    Morrison, G.; Stephens, T.S.

    2011-10-11

    A two-part Delphi Survey was given to transportation experts attending the Asilomar Conference on Transportation and Energy in August, 2011. The survey asked respondents about trends in the US transportation sector in 2030. Topics included: alternative vehicles, high speed rail construction, rail freight transportation, average vehicle miles traveled, truck versus passenger car shares, vehicle fuel economy, and biofuels in different modes. The survey consisted of two rounds -- both asked the same set of seven questions. In the first round, respondents were given a short introductory paragraph about the topic and asked to use their own judgment in their responses. In the second round, the respondents were asked the same questions, but were also given results from the first round as guidance. The survey was sponsored by Argonne National Lab (ANL), the National Renewable Energy Lab (NREL), and implemented by University of California at Davis, Institute of Transportation Studies. The survey was part of the larger Transportation Energy Futures (TEF) project run by the Department of Energy, Office of Energy Efficiency and Renewable Energy. Of the 206 invitation letters sent, 94 answered all questions in the first round (105 answered at least one question), and 23 of those answered all questions in the second round. 10 of the 23 second round responses were at a discussion section at Asilomar, while the remaining were online. Means and standard deviations of responses from Round One and Two are given in Table 1 below. One main purpose of Delphi surveys is to reduce the variance in opinions through successive rounds of questioning. As shown in Table 1, the standard deviations of 25 of the 30 individual sub-questions decreased between Round One and Round Two, but the decrease was slight in most cases.

  4. Transportation Management Workshop: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This report is a compilation of discussions presented at the Transportation Management Workshop held in Gaithersburg, Maryland. Topics include waste packaging, personnel training, robotics, transportation routing, certification, containers, and waste classification.

  5. Transportation Energy Futures Study

    Energy.gov [DOE]

    Transportation accounts for 71% of total U.S. petroleum consumption and 33% of total greenhouse gas emissions. The Transportation Energy Futures (TEF) study examines underexplored oil-savings and...

  6. Packaging and Transportation Safety

    Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-14

    The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Supersedes DOE O 460.1B.

  7. Packaging and Transportation Safety

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

  8. Packaging and Transportation Safety

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

  9. Packaging and Transportation Safety

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-02

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

  10. NREL: Innovation Impact - Transportation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transportation Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Improved transportation technologies are essential for reducing U.S. petroleum dependence. Close The United States consumes roughly 19 million barrels of petroleum per day, but replacing petroleum-based liquid fuels is difficult because of their high energy density, which helps

  11. Water Transport Within the STack: Water Transport Exploratory...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Within the STack: Water Transport Exploratory Studies Water Transport Within the STack: Water Transport Exploratory Studies Part of a 100 million fuel cell award announced by DOE ...

  12. NREL: Transportation Research - Publications

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Publications NREL researchers document their findings in technical reports, conference papers, journal articles, and fact sheets. Visit the following online resources to find publications about sustainable transportation research, development, and deployment. Capabilities Overviews These recent publications highlight some of our capabilities, facilities, and projects: Image of fact sheet cover. Sustainable Transportation This overview fact sheet describes NREL's sustainable transportation

  13. NREL: Transportation Research - Transportation and Hydrogen Newsletter...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    This is the May 2015 issue of the Transportation and Hydrogen Newsletter. May 28, 2015 Photo of a car refueling at a hydrogen dispensing station. DOE's H2FIRST project focuses on ...

  14. Vehicle Technologies Office Merit Review 2016: Cummins-ORNL\\Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines, Self-Diagnosing SmartCatalyst Systems

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  15. Vehicle Technologies Office Merit Review 2014: Cummins-ORNL/FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins-ORNL...

  16. EPA GHG Certification of Medium- and Heavy-Duty Vehicles: Development of Road Grade Profiles Representative of US Controlled Access Highways

    SciTech Connect (OSTI)

    Wood, Eric; Duran, Adam; Burton, Evan; Gonder, Jeffrey; Kelly, Kenneth

    2015-05-12

    This report includes a detailed comparison of the TomTom national road grade database relative to a local road grade dataset generated by Southwest Research Institute and a national elevation dataset publically available from the U.S. Geological Survey. This analysis concluded that the TomTom national road grade database was a suitable source of road grade data for purposes of this study.

  17. An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel

    Energy.gov [DOE]

    Optical engine experiments suggest that near stoichiometric charge-gas mixtures in the standing premixed autoignition zone near flame lift-off length explains biodiesel NOx increase under all conditions

  18. Effect of Engine-Out NOx Control Strategies on PM Size Distribution in Heavy-Duty Diesel Engines Developed for 2010

    Energy.gov [DOE]

    A distinct relationship was found between engine-out and SCR-out PM distributions for single-mode testing.

  19. Vehicle Technologies Office Merit Review 2016: Dual-Fuel Technology Development for Heavy-Duty Long Haul Applications in 2014 and Beyond

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Clean Air Power at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Fuel & Lubricants

  20. Evaluation of NTE Windows and a Work-Based Method to Determine In-Use Emissions of a Heavy-Duty Diesel Engine

    Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  1. Reduction of Heavy-Duty Fuel Consumption and CO2 Generation-- What the Industry Does and What the Government Can Do

    Office of Energy Efficiency and Renewable Energy (EERE)

    Smart regulations, funding for advanced technologies, and improvements to operations and infrastructure play important roles in reducing fuel consumption

  2. Cost-Effective Fabrication Routes for the Production of Quantum Well Type Structures and Recovery of Waste Heat from Heavy Duty Trucks

    Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  3. Downspeeding a Heavy-Duty Pickup Truck with a Combined Supercharger and Turbocharger Boosting System to Improve Drive Cycle Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discusses forward looking dynamic models developed for 6.6L diesel engine and a ¾ ton pickup truck with 8500 lb. curb weight, and validation against in-house engine and vehicle data library

  4. 08FFL-0020Influence of High Fuel Rail Pressure and Urea Selective Catalytic Reduction on PM Formation in an Off-Highway Heavy-Duty Diesel Engine

    SciTech Connect (OSTI)

    Kass, Michael D; Domingo, Norberto; Storey, John Morse; Lewis Sr, Samuel Arthur

    2008-01-01

    The influence of fuel rail pressure (FRP) and urea-selective catalytic reduction (SCR) on particulate matter (PM) formation is investigated in this paper along with notes regarding the NOx and other emissions. Increasing FRP was shown to reduce the overall soot and total PM mass for four operating conditions. These conditions included two high speed conditions (2400 rpm at 540 and 270 Nm of torque) and two moderated speed conditions (1400 rpm at 488 and 325 Nm). The concentrations of CO2 and NOx increased with fuel rail pressure and this is attributed to improved fuel-air mixing. Interestingly, the level of unburned hydrocarbons remained constant (or increased slightly) with increased FRP. PM concentration was measured using an AVL smoke meter and scanning mobility particle sizer (SMPS); and total PM was collected using standard gravimetric techniques. These results showed that the smoke number and particulate concentrations decrease with increasing FRP. However the decrease becomes more gradual as very high rail pressures. Additionally, the total PM decreased with increasing FRP; however, the soluble organic fraction (SOF) reaches a maximum after which it declines with higher rail pressure. The total PM was collected for the two 1400 rpm conditions downstream of the engine, diesel oxidation catalyst, and a urea-SCR catalyst. The results show that significant PM reduction occurs in the SCR catalyst even during high rates of urea dosage. Analysis of the PM indicates that residual SOF is burned up in the SCR catalyst.

  5. Heavy-Duty Stoichiometric Compression Ignition Engine with Improved Fuel Economy over Alternative Technologies for Meeting 2010 On-Highway Emission

    SciTech Connect (OSTI)

    Kirby J. Baumgard; Richard E. Winsor

    2009-12-31

    The objectives of the reported work were: to apply the stoichiometric compression ignition (SCI) concept to a 9.0 liter diesel engine; to obtain engine-out NO{sub x} and PM exhaust emissions so that the engine can meet 2010 on-highway emission standards by applying a three-way catalyst for NO{sub x} control and a particulate filter for PM control; and to simulate an optimize the engine and air system to approach 50% thermal efficiency using variable valve actuation and electric turbo compounding. The work demonstrated that an advanced diesel engine can be operated at stoichiometric conditions with reasonable particulate and NOx emissions at full power and peak torque conditions; calculated that the SCI engine will operate at 42% brake thermal efficiency without advanced hardware, turbocompounding, or waste heat recovery; and determined that EGR is not necessary for this advanced concept engine, and this greatly simplifies the concept.

  6. Development of the Cummins L10 engine to operate on natural gas for heavy duty transit bus applications. Final report, August 1988-December 1991

    SciTech Connect (OSTI)

    Welliver, D.R.

    1993-07-01

    This report covers all of the activities of a program undertaken to develop a natural gas fueled engine using the Cummins L10 diesel engine as the base engine. The base diesel engine is a 10 liter turbocharged jacket water aftercooled carcass that develops 270 hp at 2100 rpm. The design goals included developing a natural gas version at 240 hp with 750 lb-ft of peak torque with exhaust emission level demonstration meeting the 1991 EPA Urban Bus Emission Mandate. Additional goals included demonstrating diesel like vehicle performance and diesel like reliability and durability. Two fuel delivery systems were evaluated, one mechanical and the other electronic closed loop. Field and laboratory test engines were utilized to document reliability. Results of this program led to the production release of the gas engine for transit bus applications and California Air Resources Board certification during 1992.

  7. Cost-Effective Fabrication Routes for the Production of Quantum Well Structures and Recovery of Waste Heat from Heavy Duty Trucks

    SciTech Connect (OSTI)

    Willigan, Rhonda

    2009-09-30

    The primary objectives of Phase I were: (a) carry out cost, performance and system level models, (b) quantify the cost benefits of cathodic arc and heterogeneous nanocomposites over sputtered material, (c) evaluate the expected power output of the proposed thermoelectric materials and predict the efficiency and power output of an integrated TE module, (d) define market acceptance criteria by engaging Caterpillar's truck OEMs, potential customers and dealers and identify high-level criteria for a waste heat thermoelectric generator (TEG), (e) identify potential TEG concepts, and (f) establish cost/kWatt targets as well as a breakdown of subsystem component cost targets for the commercially viable TEG.

  8. Transportation safety training

    SciTech Connect (OSTI)

    Jones, E.

    1990-01-01

    Over the past 25 years extensive federal legislation involving the handling and transport of hazardous materials/waste has been passed that has resulted in numerous overlapping regulations administered and enforced by different federal agencies. The handling and transport of hazardous materials/waste involves a significant number of workers who are subject to a varying degree of risk should an accident occur during handling or transport. Effective transportation training can help workers address these risks and mitigate them, and at the same time enable ORNL to comply with the federal regulations concerning the transport of hazardous materials/waste. This presentation will outline how the Environmental and Health Protection Division's Technical Resources and Training Section at the Oak Ridge National Laboratory, working with transportation and waste disposal personnel, have developed and implemented a comprehensive transportation safety training program to meet the needs of our workers while satisfying appropriate federal regulations. 8 refs., 3 tabs.

  9. EBS Radionuclide Transport Abstraction

    SciTech Connect (OSTI)

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  10. Intelligent Transportation Systems

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Intelligent Transportation Systems This email address is being protected from spambots. You need JavaScript enabled to view it. - TRACC Director Background The development and deployment of Intelligent Transportation Systems (ITS) in the United States is an effort of national importance. Through the use of advanced computing, control, and communication technologies, ITS promises to greatly improve the efficiency and safety of the existing surface transportation system and reduce the

  11. Fermilab | Visit Fermilab | Transportation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transportation Transportation to and from Chicago O'Hare Airport or Midway Airport is available by limousine, taxi or car rental. Transportation to and from the Geneva local commuter Metra train station on the Union Pacific West line is available by taxi or Pace Call-n-Ride. Car rental All of the usual rental companies (such as Hertz, Avis, Budget and National) are located at the airports. Limousine service Reservations for limousine service should be made in advance when possible. West Suburban

  12. Transportation | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Technologies Available for Licensing Energy Storage Industrial & Manufacturing Processes Instrumentation & Devices Licensable Software Life Sciences Materials Transportation Fact Sheets and Forms Transportation Influencing the future of vehicles, fuels Argonne's transportation research efforts bring together scientists and engineers from many disciplines to find cost-effective solutions to critical issues like foreign-oil dependency and greenhouse gas emissions. As one of the U.S.

  13. WASTE PACKAGE TRANSPORTER DESIGN

    SciTech Connect (OSTI)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  14. Transportation Energy Consortiums

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Physics of hydrogen in materials - Our research develops an understanding of reactions on surfaces, hydrogen transport in materials, embrittlement mechanisms, deformation and ...

  15. Transportation Storage Interface

    Office of Environmental Management (EM)

    transportation * High priority technical information needs have * Overall low level of knowledge * Overall high regulatory impact 12 Extended Spent Fuel Storage and...

  16. Sustainable Transportation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  17. UZ Colloid Transport Model

    SciTech Connect (OSTI)

    M. McGraw

    2000-04-13

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

  18. NREL: Transportation Research - Capabilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A Vision for Sustainable Transportation Line graph illustrating three pathways (biofuel, hydrogen, and electric vehicle) to reduce energy use and greenhouse gas emissions. Electric ...

  19. Transportation Energy Futures Snapshot

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    modes, manage the demand for transportation, and shift the fuel mix to more sustainable sources necessary to reach these significant outcomes. Coordinating a...

  20. integrated-transportation-models

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    support a wider application of integrated transportation models, especially focusing on travel demand and network ... irrevocable worldwide license in said article to ...

  1. Radioactive Material Transportation Practices

    Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  2. Transportation Energy Futures Snapshot

    Energy.gov [DOE]

    This snapshot is a summary of the EERE reports that provide a detailed analysis of opportunities and challenges along the path to a more sustainable transportation energy future.

  3. Next Generation Natural Gas Vehicle (NGNGV) Program Brochure

    SciTech Connect (OSTI)

    Elling, J.

    2000-10-26

    The Department of Energy's Office of Transportation Technologies is initiating the Next Generation Natural Gas Vehicle (NGNGV) Program to develop commercially viable medium- and heavy-duty natural gas vehicles. These new vehicles will incorporate advanced alternative fuel vehicle technologies that were developed by DOE and others.

  4. 2014 Vehicle Technologies Market Report Released

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oak Ridge National Laboratory recently released the Vehicle Technologies Market Report, which details the past year’s major trends in light-, medium-, and heavy-duty car and truck markets as well as patterns in the underlying economic and transportation systems. The report specifically focuses on developments in high-efficiency and alternative-fuel vehicle technologies over the course of 2014.

  5. Downloads | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Technologies Available for Licensing Energy Storage Industrial & Manufacturing Processes Instrumentation & Devices Licensable Software Life Sciences Materials Transportation Fact Sheets and Forms Downloads Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel ---Electric drive technology ---Fuel economy ---Fuel injection ---Heavy-duty vehicles ---Hybrid & electric vehicles

  6. Transport Version 3

    Energy Science and Technology Software Center (OSTI)

    2008-05-16

    The Transport version 3 (T3) system uses the Network News Transfer Protocol (NNTP) to move data from sources to a Data Reporisoty (DR). Interested recipients subscribe to newsgroups to retrieve data. Data in transport is protected by AES-256 and RSA cryptographic services provided by the external OpenSSL cryptographic libraries.

  7. Packaging and Transportation Safety

    Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-04-04

    To establish safety requirements for the proper packaging and transportation of Department of Energy (DOE)/National Nuclear Security Administration (NNSA) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1A. Canceled by DOE O 460.1C.

  8. NREL: Transportation Research - Transportation and Hydrogen Newsletter:

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Fuels Performance Fuels Performance This is the September 2016 issue of the Transportation and Hydrogen Newsletter. September 26, 2016 A photo of a worker using a small crane to lift a cylindrical tank. Compressed natural gas (CNG) tanks, such as those shown above, should be retired from service following a safety protocol and manufacturers' instructions, according to NREL's CNG tank decommissioning video. Video Promotes Safe CNG Tank Decommissioning Practices A video on CNG fuel tank

  9. WIPP Transportation (FINAL)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    WIPP TRANSPORTATION SYSTEM Waste Isolation Pilot Plant U.S. Department Of Energy The U.S. Department of Energy (DOE) has established an elaborate system for safely transporting transuranic, or TRU, radioactive waste to the Waste Isolation Pilot Plant (WIPP) for permanent disposal, or between generator sites. The waste is transported in four shipping casks approved for use by the U.S. Nuclear Regulatory Commission (NRC). Three shipping casks, the TRUPACT-II, HalfPACT and TRUPACT-III, are designed

  10. Transportation for Lab Employees

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transportation Transportation for Lab Employees Choose the transportation option that works best for you: car, rail, taxi or public transit Contact Us Email Getting to the Lab Whether it be for an interview or a day on the job, using the right map and directions will make your travel to the Lab much easier. Visit our Maps webpage for maps and directions on how to get to Los Alamos from various communities in Northern New Mexico. Commuting options Sixty-six percent of the Los Alamos workforce

  11. EBS Radionuclide Transport Abstraction

    SciTech Connect (OSTI)

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers

  12. The Geography of Transport Systems-Maritime Transportation |...

    Open Energy Information (Open El) [EERE & EIA]

    report Website: people.hofstra.edugeotransengch3enconc3ench3c4en.html Cost: Free Language: English References: Maritime Transportation1 "Maritime transportation, similar to...

  13. Transportation Baseline Report

    SciTech Connect (OSTI)

    Fawcett, Ricky Lee; Kramer, George Leroy Jr.

    1999-12-01

    The National Transportation Program 1999 Transportation Baseline Report presents data that form a baseline to enable analysis and planning for future Department of Energy (DOE) Environmental Management (EM) waste and materials transportation. In addition, this Report provides a summary overview of DOEs projected quantities of waste and materials for transportation. Data presented in this report were gathered as a part of the IPABS Spring 1999 update of the EM Corporate Database and are current as of July 30, 1999. These data were input and compiled using the Analysis and Visualization System (AVS) which is used to update all stream-level components of the EM Corporate Database, as well as TSD System and programmatic risk (disposition barrier) information. Project (PBS) and site-level IPABS data are being collected through the Interim Data Management System (IDMS). The data are presented in appendices to this report.

  14. Accident resistant transport container

    DOE Patents [OSTI]

    Andersen, John A.; Cole, James K.

    1980-01-01

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  15. Transportation | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu...

  16. Accident resistant transport container

    DOE Patents [OSTI]

    Anderson, J.A.; Cole, K.K.

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  17. Electron Heat Transport Measured

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Heat Transport Measured in a Stochastic Magnetic Field T. M. Biewer, * C. B. Forest, ... limit of s &29; 1, RR assumed the electron heat flux to be diffusive, obeying Fourier's ...

  18. Program Analyst (Transportation Safety)

    Energy.gov [DOE]

    A successful candidate in this position will serve as a Program Analyst(Transportation Safety) supporting and advising management on safety and health matters for nuclear and non-nuclear activities.

  19. Transportation fuels from wood

    SciTech Connect (OSTI)

    Baker, E.G.; Elliott, D.C.; Stevens, D.J.

    1980-01-01

    The various methods of producing transportation fuels from wood are evaluated in this paper. These methods include direct liquefaction schemes such as hydrolysis/fermentation, pyrolysis, and thermochemical liquefaction. Indirect liquefaction techniques involve gasification followed by liquid fuels synthesis such as methanol synthesis or the Fischer-Tropsch synthesis. The cost of transportation fuels produced by the various methods are compared. In addition, three ongoing programs at Pacific Northwest Laboratory dealing with liquid fuels from wood are described.

  20. Fluid transport container

    DOE Patents [OSTI]

    DeRoos, Bradley G.; Downing, Jr., John P.; Neal, Michael P.

    1995-01-01

    An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitment for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container.

  1. Tape transport mechanism

    DOE Patents [OSTI]

    Groh, Edward F.; McDowell, William; Modjeski, Norbert S.; Keefe, Donald J.; Groer, Peter

    1979-01-01

    A device is provided for transporting, in a stepwise manner, tape between a feed reel and takeup reel. An indexer moves across the normal path of the tape displacing it while the tape on the takeup reel side of the indexer is braked. After displacement, the takeup reel takes up the displaced tape while the tape on the feed reel side of the indexer is braked, providing stepwise tape transport in precise intervals determined by the amount of displacement caused by the indexer.

  2. Fluid transport container

    DOE Patents [OSTI]

    DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.

    1995-11-14

    An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.

  3. Transportation Data Archiving

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transportation Data Archiving This email address is being protected from spambots. You need JavaScript enabled to view it. - TRACC Director Background Urban and regional transportation planning and operations applications, (e.g. traffic modeling) require a large volume of accurate traffic-related data for a wide range of conditions. Significant real-time data on traffic volumes, highway construction, accidents, weather, airline flights, commuter and rail schedules, etc., are recorded each day by

  4. Transportation Politics and Policy

    Gasoline and Diesel Fuel Update

    Reducing Greenhouse Gas Emissions from U.S. Transportation Steven Plotkin, Argonne National Laboratory (co-author is David Greene of Oak Ridge) 2011 EIA Energy Conference May 26-27, 2011 Washington, DC Overview  Presentation based on recent report from the Pew Center on Global Climate Change  Task: Assess the potential to substantially reduce transportation's GHG emissions by 2035 & 2050.  Base Case: Annual Energy Outlook 2010 Reference Case, extended to 2050  Three scenarios

  5. Badger Transport | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Transport Jump to: navigation, search Name: Badger Transport Place: Clintonville, Wisconsin Zip: 54929 Product: Heavy haul and specialty trucking company active in the US Midwest....

  6. Washington: Integrated Transportation Programs & Coordinated...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Integrated Transportation Programs & Coordinated Regional Planning Washington: Integrated Transportation Programs & Coordinated Regional Planning November 6, 2013 - 5:42pm Addthis ...

  7. Transportation Resources | Advanced Photon Source

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transportation Resources The following means of transportation are available for getting to Argonne. Airports Argonne is located within 25 miles of two major Chicago airports:...

  8. Sustainable Transportation - Continuum Magazine | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A Closer Look Slideshow: Sustainable Transportation NREL research, development, and ... Continuum Sustainable Transportation Fall 2013 Issue 5 Download the print version. RSS ...

  9. Spring 2016 National Transportation Stakeholders Forum Meeting...

    Office of Environmental Management (EM)

    Transportation Stakeholders Forum Meeting, Florida Spring 2016 National Transportation Stakeholders Forum Meeting, Florida Spring 2016 National Transportation Stakeholders ...

  10. California Department of Transportation | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Transportation Jump to: navigation, search Name: California Department of Transportation Place: Sacramento, California References: California Department of Transportation1 This...

  11. Implementing Advances in Transport Security Technologies | Department...

    Office of Environmental Management (EM)

    Implementing Advances in Transport Security Technologies Implementing Advances in Transport Security Technologies Implementing Advances in Transport Security Technologies More...

  12. Transportation Efficiency Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resources Transportation Efficiency Resources Transportation efficiency reduces travel demand as measured by vehicle miles traveled (VMT). While transportation efficiency policies ...

  13. National Transportation Stakeholders Forum (NTSF) Charter | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Services Waste Management Packaging and Transportation National Transportation Stakeholders Forum National Transportation Stakeholders Forum (NTSF) Charter National ...

  14. Spring 2015 National Transportation Stakeholders Forum Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transportation Stakeholders Forum Meeting, New Mexico Spring 2015 National Transportation Stakeholders Forum Meeting, New Mexico Spring 2015 National Transportation Stakeholders ...

  15. NREL: Transportation Research - Transportation and Hydrogen Newsletter:

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Energy Storage Energy Storage This is the November 2015 issue of the Transportation and Hydrogen Newsletter. November 6, 2015 Photo of a light blue car with a pump nozzle in front of a fuel dispenser. Hydrogen is pumped into a fuel cell electric vehicle at NREL's new station. Image by Dennis Schroeder/NREL 34598 New H2 Station Launched In fuel cell electric vehicles, energy is stored in hydrogen gas and then converted to electricity in a fuel cell. In October, NREL dedicated a 700-bar

  16. NREL: Transportation Research - Transportation and Hydrogen Newsletter:

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Market Impact Hydrogen Fuel Cells This is the July 2016 issue of the Transportation and Hydrogen Newsletter. July 28, 2016 A photo of a public hydrogen fuel cell bus parked in a parking lot. Fuel cell electric buses (FCEBs), such as this one operating in Oakland, California, are providing data to compare FCEB performance with that of buses using conventional technology. Photo by Leslie Eudy, NREL NREL Helps Pave Way for H2 Technologies As deployment of hydrogen fueling stations increases to

  17. Transportation Anslysis Simulation System

    Energy Science and Technology Software Center (OSTI)

    2004-08-23

    TRANSIMS version 3.1 is an integrated set of analytical and simulation models and supporting databases. The system is designed to create a virtual metropolitan region with representation of each of the region’s individuals, their activities and the transportation infrastructure they use. TRANSIMS puts into practice a new, disaggregate approach to travel demand modeling using agent-based micro-simulation technology. TRANSIMS methodology creates a virtual metropolitan region with representation of the transportation infrastructure and the population, at themore » level of households and individual travelers. Trips a planned to satisfy the population’s activity pattems at the individual traveler level. TRANSIMS then simulates the movement of travelers and vehicles across the transportation network using multiple modes, including car, transit, bike and walk, on a second-by-second basis. Metropolitan planners must plan growth of their cities according to the stringent transportation system planning requirements of the Interniodal Surface Transportation Efficiency Act of 1991, the Clean Air Act Amendments of 1990 and other similar laws and regulations. These require each state and its metropotitan regions to work together to develop short and long term transportation improvement plans. The plans must (1) estimate the future transportation needs for travelers and goods movements, (2) evaluate ways to manage and reduce congestion, (3) examine the effectiveness of building new roads and transit systems, and (4) limit the environmental impact of the various strategies. The needed consistent and accurate transportation improvement plans require an analytical capability that properly accounts for travel demand, human behavior, traffic and transit operations, major investments, and environmental effects. Other existing planning tools use aggregated information and representative behavior to predict average response and average use of transportation facilities. They do not

  18. Water Transport Within the STack: Water Transport Exploratory Studies |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Within the STack: Water Transport Exploratory Studies Water Transport Within the STack: Water Transport Exploratory Studies Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. 2_lanl.pdf (22.05 KB) More Documents & Publications Water Transport Exploratory Studies Fuel Cell Kickoff Meeting Agenda

  19. Vehicle Technologies Office: 21st Century Truck Partners

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 21st Century Truck Partnership is an industry-government collaboration among heavy-duty engine manufacturers, medium-duty and heavy-duty truck and bus manufacturers, heavy-duty hybrid...

  20. Chapter 17 - Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    8,2005 MEMORANDUM FOR FROM: SUBJECT: Accounting Handbook - Chapter 1 7, Transportation Attached is the final version of Chapter 17, "Transportation," of the Department's Accounting Handbook. A draft version of this chapter was circulated for review and comment in a November 1,2004, memorandum "Request for Review of D r a f t DOE Accounting Handbook Chapter 17." There were no comments on this chapter. We appreciate your assistance in the update of the Accounting Handbook. When

  1. CASL - Radiation Transport Methods Update

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Radiation Transport Methods Update The Radiation Transport Methods (RTM) focus area is responsible for the development of methods, algorithms, and implementations of radiation transport methods as they apply to the design and analysis of light water nuclear reactors. the fundamental areas of investigation in RTM include high-order deterministic transport low-order transport approximations multigroup cross section generation depletion as it applies to in-core neutronics and material coupling

  2. EPAct Transportation Regulatory Activities

    SciTech Connect (OSTI)

    2011-11-21

    The U.S. Department of Energy's (DOE) Vehicle Technologies Program manages several transportation regulatory activities established by the Energy Policy Act of 1992 (EPAct), as amended by the Energy Conservation Reauthorization Act of 1998, EPAct 2005, and the Energy Independence and Security Act of 2007 (EISA).

  3. Storing and transporting energy

    DOE Patents [OSTI]

    McClaine, Andrew W.; Brown, Kenneth

    2010-09-07

    Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a metal hydride slurry; and the metal hydride slurry is transported to a second location remote from the first location.

  4. Artificial oxygen transport protein

    DOE Patents [OSTI]

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  5. NREL: Transportation Research - Webmaster

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Transportation Research Home Capabilities Projects

  6. Saturated Zone Colloid Transport

    SciTech Connect (OSTI)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation

  7. Freight Wing & Aerodynamic Fairings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Box-Shaped Semi-Trailers A great deal of scientific research has demonstrated that streamlining box-shaped semi-trailers can significantly reduce a truck's fuel consumption....

  8. Class 8 Truck Freight Efficiency Improvement Project

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  9. Class 8 Truck Freight Efficiency Improvement Project

    Energy.gov (indexed) [DOE]

    ... HEV Engine controls Integration SAE Hybrid Committee Standards development for ... testing on-going HV-LV DCDC Inverter Junction Box HV-MV DCDC HV Battery eAC Comp. ...

  10. Freight Best Practice Website | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho,...

  11. Mass Transport within Soils

    SciTech Connect (OSTI)

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated zone

  12. Vehicle Technologies Office Merit Review 2014: Advanced Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions ...

  13. Modeling the Effects of Steam-Fuel Reforming Products on Low...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Modeling the Effects of Steam-Fuel Reforming Products on Low Temperature Combustion of ... Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

  14. Regulated Emissions from Diesel and Compressed Natural Gas Transit...

    Energy.gov (indexed) [DOE]

    Emission Performance of Urban Buses Using Transient Heavy-Duty Chassis Dynamometer Heavy Duty Vehicle In-Use Emission Performance Comparison of Clean Diesel Buses to CNG Buses

  15. Diesel HCCI Results at Caterpillar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Diesel HCCI Results at Caterpillar Heavy Duty HCCI Development Activities - DOE High Efficiency Clean Combustion (HECC) Heavy-Duty Low Temperature ...

  16. European Diesel Engine Technology: An Overview | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solution for Euro VI Emissions Heavy Duty Vehicle In-Use Emission Performance Evaluating Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty Chassis Dynamometer

  17. Design and Implementation of Silicon Nitride Valves for Heavy...

    Energy Savers

    Design and Implementation of Silicon Nitride Valves for Heavy Duty Diesel Engines Design and Implementation of Silicon Nitride Valves for Heavy Duty Diesel Engines Poster ...

  18. H2 Internal Combustion Engine Research Towards 45% efficiency...

    Energy.gov (indexed) [DOE]

    Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

  19. In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel...

    Energy.gov (indexed) [DOE]

    More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty ... (RCCI) Combustion in a Light-Duty Engine High Efficiency Fuel Reactivity ...

  20. Evaluating Exhaust Emission Performance of Urban Buses Using...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty Chassis Dynamometer Evaluating Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty Chassis ...