National Library of Energy BETA

Sample records for heating oil electricity

  1. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Saver

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  2. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) ...

  3. Biomass Derivatives Competitive with Heating Oil Costs.

    Energy Saver

    Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average * ...

  4. Electric Resistance Heating Basics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat.

  5. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to $2.97 per gallon. That's down $1.05 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.94 per gallon, down 6.7 cents from last week, and down $1.07

  6. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to $2.91 per gallon. That's down $1.10 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.88 per gallon, down 6.8 cents from last week, and down $1.13

  7. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to $2.84 per gallon. That's down $1.22 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.80 per gallon, down 7.4 cents from last week, and down $1.23

  8. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 4.1 cents from a week ago to $2.89 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.84 per gallon, down 5.4 cents from last week

  9. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to $3.04 per gallon. That's down 99.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.01 per gallon, down 3.6 cents from last week, and down $1.01

  10. Residential heating oil prices available

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil prices available The average retail price for home heating oil is $2.30 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region currently average $2.23

  11. Residential heating oil prices available

    Energy Information Administration (EIA) (indexed site)

    heating oil prices available The average retail price for home heating oil is $2.41 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region currently average $2.35 per gallon. This is Marcela Rourk with EIA, in Washington.

  12. Microsoft Word - Heating Oil Season.docx

    Energy.gov [DOE] (indexed site)

    4-2015 Heating Oil Season Northeast Home Heating Oil Reserve Trigger Mechanism (Cents per Gallon, Except Where Noted) Week Residential Heating Oil Price Average Brent Spot Price ...

  13. Heating Oil Reserve History | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heating Oil Reserve History Heating Oil Reserve History Creation of an emergency reserve of heating oil was directed by President Clinton on July 10, 2000, when he directed ...

  14. Heating Oil and Propane Update

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Holiday Release Schedule The Heating Oil and Propane Update is produced during the winter heating season, which extends from October through March of each year. The standard ...

  15. Heating Oil and Propane Update

    Annual Energy Outlook

    Maps of states participating in Winter Fuels Survey Residential propane PADD map Residential heating oil PADD map

  16. Residential heating oil price decrease

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price decrease The average retail price for home heating oil fell 1.4 cents from a week ago to $2.39 per gallon. That's down 4.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.33 per gallon, down 4-tenths of a cent from last week, and down 4.4

  17. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to $2.18 per gallon. That's down 79 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.13 per gallon, unchanged from last week, and down 88

  18. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to $2.16 per gallon. That's down 75 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.11 per gallon, down 2.8 cents from last week, and down 77

  19. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 5.1 cents from a week ago to $2.11 per gallon. That's down 72 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.05 per gallon, down 5.3 cents from last week, and down 75

  20. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 5 cents from a week ago to $2.06 per gallon. That's down 75 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.01 per gallon, down 4.1 cents from last week, and down 78

  1. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 1.8 cents from a week ago to $2.82 per gallon. That's down $1.36 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.79 per gallon, down 1.5 cents from last week, and down $1.34

  2. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price increases The average retail price for home heating oil rose 1.8 cents from a week ago to $2.08 per gallon. That's down 72 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.02 per gallon, up 3-tenths of a cent from last week, and down 76

  3. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to $2.80 per gallon. That's down $1.44 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.78 per gallon, down 1.2 cents from last week, and down $1.40

  4. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price increases The average retail price for home heating oil rose 1 cent from a week ago to $2.09 per gallon. That's down 82 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.02 per gallon, up 8-tenths of a cent from last week, and down 85

  5. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price increases The average retail price for home heating oil rose 1.1 cents from a week ago to $2.10 per gallon. That's down 94 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 2.3 cents from last week, and down 95

  6. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price decreases The average retail price for home heating oil fell 9-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.09 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, down 1-tenth of a cent from last week, and down $1.11

  7. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price decreases The average retail price for home heating oil fell 5-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.20 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.03 per gallon, down 9-tenths of a cent from last week, and down $1.22

  8. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to $2.10 per gallon. That's down $1.11 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 5-tenths of a cent from last week, and down $1.14

  9. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price increases The average retail price for home heating oil rose 2.6 cents from a week ago to $2.12 per gallon. That's down 91 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.06 per gallon, up 2.1 cents from last week, and down 94

  10. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price increases The average retail price for home heating oil rose 1 cent from a week ago to $2.13 per gallon. That's down 80 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.07 per gallon, up 9-tenths of a cent from last week, and down 83

  11. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 10.5 cents from a week ago to $2.93 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.90 per gallon, down 10.4 cents from last week. This is Marcela Rourk

  12. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price decreases The average retail price for home heating oil fell 1.1 cents from a week ago to $2.38 per gallon. That's down 2.3 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.33 per gallon, down 5-tenths of a cent from last week, and down 1.6

  13. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 2.3 cents from a week ago to $2.38 per gallon. That's down 99 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.32 per gallon, down 3.1 cents from last week, and down $1.00

  14. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 1.5 cents from a week ago to $2.36 per gallon. That's down 97 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.31 per gallon, down 2-tenths of a cent from last week, and down 96

  15. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 3 cents from a week ago to $2.33 per gallon. That's down 89 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.28 per gallon, down 3.5 cents from last week, and down 9

  16. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to $2.26 per gallon. That's down 89 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.19 per gallon, down 8.9 cents from last week, and down 92

  17. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 4.5 cents from a week ago to $2.21 per gallon. That's down 87 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.15 per gallon, down 3.6 cents from last week, and down 89

  18. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 3.5 cents from a week ago to $2.18 per gallon. That's down 87 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.13 per gallon, down 2.2 cents from last week, and down 88

  19. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    5, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to $3.43 per gallon. That's down 39 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.38 per gallon, down 2.6 cents from last week, and down 38.7

  20. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    7, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 7.8 cents from a week ago to $3.14 per gallon. That's down 81.1 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.12 per gallon, down 6.5 cents from last week, and down 79.9

  1. Residential heating oil price increases

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price increases The average retail price for home heating oil rose 1.4 cents from a week ago to $2.38 per gallon. That's down 4.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to $2.32 per gallon, up 3 cents from last week, and down 5.2 cents

  2. Residential heating oil prices available

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price increases The average retail price for home heating oil rose half of a cent from a week ago to $2.40 per gallon. That's down 2.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to $2.33 per gallon, up 6-tenths of a cent from last week, and down 3.4

  3. Residential heating oil prices available

    Energy Information Administration (EIA) (indexed site)

    heating oil prices available The average retail price for home heating oil is $3.52 per gallon. That's down 32.7 cents from a year ago, based on the U.S. Energy Information Administration's weekly residential heating fuel price survey. Heating oil prices in the New England region are at $3.48 per gallon, down 29.1 cents from a year ago. This is Marcela Rourk, with EIA, in Washington

  4. Residential heating oil prices decline

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 2 cents from a week ago to $3.36 per gallon. That's down 52.5 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.31 per gallon, down 1.3 cents from last week, and down 52.6

  5. Residential heating oil prices decline

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to $3.08 per gallon. That's down 90.3 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.05 per gallon, down 6.8 cents from last week, and down 91.6

  6. Residential heating oil prices decline

    Energy Information Administration (EIA) (indexed site)

    2, 2014 Residential heating oil prices decline The average retail price for home heating oil is $3.48 per gallon. That's down 4.5 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $3.43 per gallon, down 5.7 cents from last week. This is Amerine Woodyard

  7. Residential heating oil prices decrease

    Energy Information Administration (EIA) (indexed site)

    heating oil prices decrease The average retail price for home heating oil fell 1.7 cents from a week ago to $4.02 per gallon. That's up 1.7 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 4.01 per gallon, down 6-tenths of a cent from last week, and up 5.8

  8. Residential heating oil prices decrease

    Energy Information Administration (EIA) (indexed site)

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 2.9 cents from a week ago to $3.45 per gallon. That's down 36.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.41 per gallon, down 3 cents from last week, and down 35

  9. Residential heating oil prices increase

    Energy Information Administration (EIA) (indexed site)

    heating oil prices increase The average retail price for home heating oil rose 5.4 cents from a week ago to $4.04 per gallon. That's up 4.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 4.02 per gallon, up 5.6 cents from last week, and up 8

  10. Residential heating oil prices increase

    Energy Information Administration (EIA) (indexed site)

    3, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 4.4 cents from a week ago to $4.06 per gallon. That's up 4.1 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 4.03 per gallon, up 2.5 cents from last week, and up 6

  11. Residential heating oil prices increase

    Energy Information Administration (EIA) (indexed site)

    heating oil prices increase The average retail price for home heating oil rose 12 cents from a week ago to $4.18 per gallon. That's up 13 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 4.13 per gallon, up 9.8 cents from last week, and up 12.9 cents from a

  12. Residential heating oil prices increase

    Energy Information Administration (EIA) (indexed site)

    heating oil prices increase The average retail price for home heating oil rose 3.9 cents last week to $3.96 per gallon. That's down 2.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for heating oil in the New England region averaged 3.92 per gallon, up 5.2 cents from last week, and 1.7

  13. Residential heating oil prices increase

    Energy Information Administration (EIA) (indexed site)

    heating oil prices increase The average retail price for home heating oil rose 2.9 cents from a week ago to $3.98 per gallon. That's up 6-tenths of a penny from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 3.96 per gallon, up 4.1 cents from last week, and up 4.8

  14. Heating Oil and Propane Update

    Gasoline and Diesel Fuel Update

    The Federal forms below are required for State Energy Officials participating in the State Heating Oil and Propane Program (SHOPP) to execute their cooperative agreements with the ...

  15. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 8 cents from a week ago to $3.21 per gallon. That's down 98.7 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.18 per gallon, down 8.1 cents from last week, and down 96.1 cents from a year ago. This is Marcela Rourk

  16. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 17.7 cents from a week ago to $3.03 per gallon. That's down $1.09 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.99 per gallon, down 18.2 cents from last week, and down $1.08 from a year ago. This is Marcela Rourk

  17. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 3.8 cents from a week ago to $3.33 per gallon. That's down 59.1 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.28 per gallon, down 3.7 cents from last week, and down 58.8 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  18. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    6, 2014 Residential heating oil price decreases The average retail price for home heating oil rose 1.6 cents from a week ago to $4.24 per gallon. That's up 8.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 4.16 per gallon, up 6-tenths of a cent from last week, and up 3.9 cents from a year ago. This is Marcela Rourk, with EIA, in Washington. For more information, contact

  19. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    4 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to $3.42 per gallon. That's down 39.5 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.37 per gallon, down 1.2 cents from last week, and down 39.7 cents from a year ago. This is Marcela Rourk, with EIA, in Washington. For more information, contact Marcela

  20. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 10.5 cents from a week ago to $3.22 per gallon. That's down 73.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.19 per gallon, down 9 cents from last week, and down 73.1 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  1. Residential heating oil price increases

    Energy Information Administration (EIA) (indexed site)

    heating oil price increases The average retail price for home heating oil rose 11.2 cents from a week ago to $2.91 per gallon. That's down $1.33 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to $2.87 per gallon, up 9.8 cents from last week, and down $1.29 from a year ago. This is Marcela Rourk with EIA, in Washington.

  2. Residential heating oil price increases

    Energy Information Administration (EIA) (indexed site)

    9, 2015 Residential heating oil price increases The average retail price for home heating oil rose 11.7 cents from a week ago to $3.03 per gallon. That's down $1.20 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to $2.99 per gallon, up 12 cents from last week, and down $1.16 from a year ago. This is Marcela Rourk

  3. Residential heating oil price increases

    Energy Information Administration (EIA) (indexed site)

    5, 2015 Residential heating oil price increases The average retail price for home heating oil rose 14.7 cents from a week ago to $3.19 per gallon. That's down $1.06 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to $3.15 per gallon, up 15.9 cents from last week, and down $1.00 from a year ago. This is Marcela Rourk

  4. Residential heating oil price increases

    Energy Information Administration (EIA) (indexed site)

    heating oil price increases The average retail price for home heating oil rose 10.3 cents from a week ago to $3.29 per gallon. That's down 93.7 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to $3.26 per gallon, up 10.4 cents from last week, and down 89.3 cents from a year ago. This is Marcela Rourk

  5. Residential heating oil price increases

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price increases The average retail price for home heating oil rose 6.3 cents from a week ago to $2.36 per gallon. That's down 7.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to $2.29 per gallon, up 4.9 cents from last week, and down 8.9 cents from a year ago. This is Marcela Rourk, with EIA, in Washington. For more information, contact Marcela Rourk at

  6. Residential heating oil price increases

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price increases The average retail price for home heating oil rose 1.2 cents from a week ago to $2.39 per gallon. That's down 3 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to $2.33 per gallon, up 1.1 cents from last week, and down 3.9 cents from a year ago.

  7. Residential heating oil prices decline

    Energy Information Administration (EIA) (indexed site)

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 3.3 cents from a week ago to $3.38 per gallon. That's down 43.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.33 per . gallon, down 3.5 cents from last week, and down 44.6 cents from a year ago

  8. Residential heating oil prices decrease

    Energy Information Administration (EIA) (indexed site)

    5, 2014 Residential heating oil prices decrease The average retail price for home heating oil fell 1.8 cents from a week ago to $4.00 per gallon. That's down 2-tenths of a cent from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 4.01 per gallon, down 8-tenths of a cent from last week, and up 4.4

  9. Residential heating oil prices increase

    Energy Information Administration (EIA) (indexed site)

    5, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 6.5 cents from a week ago to $4.24 per gallon. That's up 14.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 4.17 per gallon, up 4.1 cents from last week, and up 13.4 cents from a year ago. This is Amerine Woodyard, with EIA, in Washington. For more information, contact Marcela

  10. Residential heating oil prices increase

    Energy Information Administration (EIA) (indexed site)

    4, 2013 Residential heating oil prices increase The average retail price for home heating oil rose 2.9 cents from last week to $3.92 per gallon. That's down 11 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for heating oil in the New England region averaged 3.87 per gallon, up 2.5 cents from last week, but down 7.1 cents from a year earlier. This is Marlana Anderson

  11. DOE to Purchase Heating Oil for the Northeast Home Heating Oil Reserve |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Purchase Heating Oil for the Northeast Home Heating Oil Reserve DOE to Purchase Heating Oil for the Northeast Home Heating Oil Reserve June 23, 2008 - 1:29pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today issued a solicitation seeking to purchase heating oil for the Northeast Home Heating Oil Reserve (NEHHOR) using $3 million in appropriated funds. The Northeast Home Heating Oil Reserve provides an important safety cushion for millions of Americans

  12. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Energy.gov [DOE]

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  13. Sodium heat engine electrical feedthrough

    DOEpatents

    Weber, Neill

    1985-01-01

    A thermoelectric generator device which converts heat energy to electrical energy. An alkali metal is used with a solid electrolyte and a hermetically sealed feedthrough structure.

  14. Electric Resistance Heating | Department of Energy

    Energy.gov [DOE] (indexed site)

    about 30% of the fuel's energy into electricity. Because of electricity generation and transmission losses, electric heat is often more expensive than heat produced in homes or...

  15. Electric Resistance Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Resistance Heating Electric Resistance Heating Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of iStockphotodrewhadley...

  16. Field performance of a premium heating oil

    SciTech Connect

    Santa, T.; Jetter, S.

    1997-01-01

    As part of ongoing research to provide quality improvements to heating oil, Mobil Oil together with Santa Fuel conducted a field trial to investigate the performance of a new premium heating oil. This premium heating oil contains an additive system designed to minimize sludge related problems in the fuel delivery system of residential home heating systems. The additive used was similar to others reported at this and earlier BNL conferences, but was further developed to enhance its performance in oil heat systems. The premium heating oil was bulk additized and delivered to a subset of the customer base. The performance of this premium heating oil is discussed.

  17. Electric Resistance Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat & Cool » Home Heating Systems » Electric Resistance Heating Electric Resistance Heating Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Electric resistance heating is 100% energy efficient in the sense that all the incoming electric energy is converted to heat. However, most electricity is produced from coal, gas, or

  18. Electric Adsorption Heat Pump for Electric Vehicles: Electric-Powered Adsorption Heat Pump for Electric Vehicles

    SciTech Connect

    2011-11-21

    HEATS Project: PNNL is developing a new class of advanced nanomaterial called an electrical metal organic framework (EMOF) for EV heating and cooling systems. The EMOF would function similar to a conventional heat pump, which circulates heat or cold to the cabin as needed. However, by directly controlling the EMOF's properties with electricity, the PNNL design is expected to use much less energy than traditional heating and cooling systems. The EMOF-based heat pumps would be light, compact, efficient, and run using virtually no moving parts.

  19. HISTORICAL NORTHEAST HOME HEATING OIL RESERVE (NEHHOR) TRIGGER...

    Energy Saver

    HISTORICAL NORTHEAST HOME HEATING OIL RESERVE (NEHHOR) TRIGGER REPORTS HISTORICAL NORTHEAST HOME HEATING OIL RESERVE (NEHHOR) TRIGGER REPORTS Historical Northeast Home Heating Oil ...

  20. NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM Historical Northeast Home Heating Oil Reserve Trigger Mechanism Charts ...

  1. Northeast Home Heating Oil Reserve (NEHHOR) | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Northeast Home Heating Oil Reserve (NEHHOR) Northeast Home Heating Oil Reserve (NEHHOR) The Northeast Home Heating Oil Reserve (NEHHOR) is a one million barrel supply of ultra low ...

  2. Releases from the Heating Oil Reserve | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Releases from the Heating Oil Reserve Releases from the Heating Oil Reserve The Northeast Home Heating Oil Reserve (NEHHOR), a one million barrel supply of ultra low sulfur ...

  3. Sodium heat engine electrical feedthrough

    DOEpatents

    Weber, N.

    1985-03-19

    A thermoelectric generator device which converts heat energy to electrical energy is disclosed. An alkali metal is used with a solid electrolyte and a hermetically sealed feedthrough structure. 4 figs.

  4. Proceedings of the 1998 oil heat technology conference

    SciTech Connect

    McDonald, R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  5. Residential heating oil price virtually unchanged

    Energy Information Administration (EIA) (indexed site)

    heating oil price virtually unchanged The average retail price for home heating oil fell 1-tenth of a cent from a week ago to $2.13 per gallon. That's down 76 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.07 per gallon, down 2-tenths of a cent from last week, and down 78

  6. Residential heating oil prices virtually unchanged

    Energy Information Administration (EIA) (indexed site)

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 7.2 cents from a week ago to $4.12 per gallon. That's up 9.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 4.07 per gallon, down 6.3 cents from last week, and up 9.4

  7. Major Fuels","Electricity","Natural Gas","Fuel Oil","District...

    Energy Information Administration (EIA) (indexed site)

    (million square feet)","Total of Major Fuels","Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ...",4657,67338,81552,66424,10...

  8. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    Energy Information Administration (EIA) (indexed site)

    of Buildings (thousand)","Floorspace (million square feet)","Sum of Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District Heat" ,,,,"Primary","Site" "All Buildings...

  9. State heating oil and propane program

    SciTech Connect

    Not Available

    1991-01-01

    The following is a report of New Hampshire's participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

  10. Residential heating oil prices virtually unchanged

    Energy Information Administration (EIA) (indexed site)

    4 Residential heating oil prices virtually unchanged The average retail price for home heating oil rose 2-tenths of a cent from a week ago to $4.24 per gallon. That's up 8.2 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 4.16 per gallon, down 1.7 cents from last week, and up 3.2 cents from a year ago. This is Marcela Rourk, with EIA, in Washington. For more information,

  11. Residential heating oil prices virtually unchanged

    Energy Information Administration (EIA) (indexed site)

    0, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to $4.23 per gallon. That's up 5.1 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 4.15 per gallon, down 8-tenths of a cent from last week, and up 1.5 cents from a year ago. This is Marcela Rourk, with EIA, in Washington. For more information, contact

  12. Residential heating oil prices virtually unchanged

    Energy Information Administration (EIA) (indexed site)

    5, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to $4.23 per gallon. That's up 14.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 4.15 per gallon, down 6-tenths of a cent from last week, and up 10.8

  13. Residential heating oil prices virtually unchanged

    Energy Information Administration (EIA) (indexed site)

    4 Residential heating oil price decreases The average retail price for home heating oil fell 3.1 cents from a week ago to $4.20 per gallon. That's up 13.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 4.14 per gallon, down 1.4 cents from last week, and up 11 cents from a year ago. This is Marcela Rourk, with EIA, in Washington. For more information, contact Marcela Rourk at

  14. Residential heating oil prices virtually unchanged

    Energy Information Administration (EIA) (indexed site)

    heating oil prices virtually unchanged The average retail price for home heating oil fell 4-tenths of a penny from a week ago to $3.95 per gallon. That's down 8-tenths of a penny from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose 3.92 per gallon, up 3-tenths of a cent from last week, and up 3 cents from a year ago

  15. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  16. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound ...

  17. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  18. State Heating Oil & Propane Program. Final report 1997/98 heating season

    SciTech Connect

    Hunton, G.

    1998-06-01

    The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1997/98 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program is funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used for water heating and cooking in areas of the state where natural gas is not available. Lower installation cost, convenience, lower operating costs compared to electricity, and its perception as a clean heating fuel have all worked to increase the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

  19. Electric Power Generation from Coproduced Fluids from Oil and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Principal ... Electric Power Generation from Coproduced Fluids from Oil and Gas Wells 3 | US DOE ...

  20. "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel...

    Energy Information Administration (EIA) (indexed site)

    and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural ... It does not include electricity inputs from onsite" "cogeneration or generation from ...

  1. Electric Power Generation from Coproduced Fluids from Oil and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Electric Power Generation from Coproduced Fluids from Oil and Gas Wells The primary objective of this ...

  2. ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"

    Energy Information Administration (EIA) (indexed site)

    7. Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",4657,4403,4395,2670,434,117,50,451,153 "Building

  3. ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"

    Energy Information Administration (EIA) (indexed site)

    8. Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",67338,65753,65716,45525,13285,5891,2750,6290,2322

  4. Portland General Electric- Heat Pump Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Portland General Electric's (PGE) Heat Pump Rebate Program offers residential customers a $200 rebate for an energy-efficient heat pump installed to PGE’s standards by a PGE-approved contractor....

  5. Valley Electric Association- Solar Water Heating Program

    Energy.gov [DOE]

    Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

  6. Indirect heating pyrolysis of oil shale

    DOEpatents

    Jones, Jr., John B.; Reeves, Adam A.

    1978-09-26

    Hot, non-oxygenous gas at carefully controlled quantities and at predetermined depths in a bed of lump oil shale provides pyrolysis of the contained kerogen of the oil shale, and cool non-oxygenous gas is passed up through the bed to conserve the heat

  7. No. 2 heating oil/propane program

    SciTech Connect

    McBrien, J.

    1991-06-01

    During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

  8. Carbon footprints of heating oil and LPG heating systems

    SciTech Connect

    Johnson, Eric P.

    2012-07-15

    For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

  9. Heating Oil and Propane Update - Energy Information Administration

    Gasoline and Diesel Fuel Update

    Petroleum Reports Heating Oil and Propane Update Note: The heating season is over. Data for residential and wholesale prices for heating oil and propane will return in October 2016. ...

  10. Zone heated diesel particulate filter electrical connection

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-03-30

    An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.

  11. Electrical assembly having heat sink protrusions

    SciTech Connect

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2009-04-21

    An electrical assembly, comprising a heat producing semiconductor device supported on a first major surface of a direct bond metal substrate that has a set of heat sink protrusions supported by its second major surface. In one preferred embodiment the heat sink protrusions are made of the same metal as is used in the direct bond copper.

  12. Biomass Derivatives Competitive with Heating Oil Costs. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Derivatives Competitive with Heating Oil Costs. Biomass Derivatives Competitive with Heating Oil Costs. Presentation at the May 9, 2012, Pyrolysis Oil Workship on biomass derivatives competitive with heating oil costs. pyrolysis_levine.pdf (733.32 KB) More Documents & Publications Challenge # 1. Feedstock & Production Thermochemical Conversion Proceeses to Aviation Fuels A Review of DOE Biofuels Program

  13. Electrically heated DPF start-up strategy

    SciTech Connect

    Gonze, Eugene V; Ament, Frank

    2012-04-10

    An exhaust system that processes exhaust generated by an engine has a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates in the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates. Heat generated by combustion of particulates in the heater induces combustion of particulates within the DPF. A control module selectively enables current flow to the electrical heater for an initial period of a DPF regeneration cycle, and limits exhaust flow while the electrical heater is heating to a predetermined soot combustion temperature.

  14. Northeast Home Heating Oil Reserve (NEHHOR) Weekly Trigger Report...

    Energy.gov [DOE] (indexed site)

    oil season shows the differential levels required to exceed the 60-percent threshold for release. Historical reports are available here. **The 2015-2016 Heating Oil Season has ...

  15. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect

    Forsberg, C.

    2012-07-01

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing

  16. Edmond Electric- Residential Heat Pump Rebate Program

    Energy.gov [DOE]

    Edmond Electric offers rebates to residential customers who install energy-efficient heat pumps. This program applies to installations in both new and existing residential homes and complexes. Air...

  17. Lakeland Electric- Solar Water Heating Program

    Energy.gov [DOE]

    Lakeland Electric, a municipal utility in Florida, offers solar-heated domestic hot water on a "pay-for-energy" basis. The utility bills the customer $34.95 per month regardless of use. The $34.95...

  18. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Energy.gov [DOE] (indexed site)

    Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate

  19. Thermoelectrici Conversion of Waste Heat to Electricity in an...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC ...

  20. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    MB) More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity ...

  1. Electrically heated particulate filter with zoned exhaust flow...

    Office of Scientific and Technical Information (OSTI)

    Electrically heated particulate filter with zoned exhaust flow control Title: Electrically heated particulate filter with zoned exhaust flow control A system includes a particulate ...

  2. Electric heat tracing designed to prevent icing

    SciTech Connect

    Lonsdale, J.T.; Norrby, T.

    1985-11-01

    Mobile offshore rigs designed for warmer climates are not capable of operating year-round in the arctic or near-arctic regions. Icing is but one major operational problem in these waters. The danger of instability due to ice loading exists on an oil rig as well as on a ship. From a safety standpoint, ice must be prevented from forming on the helideck, escape passages, escape doors and hatches and handrails. Norsk Hydro A/S, as one of the major operators in the harsh environment outside northern Norway, recognized at an early stage the need for special considerations for the drilling rigs intended for year-round drilling in these regions. In 1982 Norsk Hydro awarded a contract for an engineering study leading to the design of a harsh environment semisubmersible drilling rig. The basic requirement was to develop a unit for safe and efficient year-round drilling operation in the waters of northern Norway. The study was completed in 1983 and resulted in a comprehensive report including a building specification. The electric heat tracing system designed to prevent icing on the unit is described.

  3. Northeast Home Heating Oil Reserve (NEHHOR) Guidelines for Release...

    Energy.gov [DOE] (indexed site)

    as amended, sets conditions for the release of the Northeast Home Heating Oil Reserve. ... if there is "a dislocation in the heating oil market," or a circumstance exists (other ...

  4. DOE Completes Sale of Northeast Home Heating Oil Stocks | Department...

    Energy.gov [DOE] (indexed site)

    who successfully bid for the purchase of 1,000,000 barrels of heating oil from the Northeast Home Heating Oil Reserve storage sites in Groton and New Haven, CT. Hess Groton ...

  5. Northeast Home Heating Oil Reserve (NEHHOR) Releases | Department...

    Energy.gov [DOE] (indexed site)

    The Northeast Home Heating Oil Reserve (NEHHOR), a one million barrel supply of ultra low ... of Energy (DOE) to request emergency supplies from the Northeast Home Heating Oil Reserve. ...

  6. Bio-Oil Deployment in the Home Heating Market

    Energy.gov [DOE] (indexed site)

    Bio-Oil Deployment in the Home Heating Market March 23, 2015 Dr. Thomas A. Butcher ... and end user acceptance. * Heating oil and diesel transportation both use the same ...

  7. DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve...

    Energy Saver

    for Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve March 14, 2011 - 1:00pm Addthis Washington, DC - The Department of ...

  8. Testing, Evaluation, and Qualification of Bio-Oil for Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Testing, Evaluation, and Qualification of Bio-Oil for Heating March 26, 2015 Dr. Thomas A. ... of 20% of the petroleum-derived heating oil in the Northeast with infrastructure ...

  9. DOE Accepts Bids for Northeast Home Heating Oil Stocks | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Accepts Bids for Northeast Home Heating Oil Stocks DOE Accepts Bids for Northeast Home Heating Oil Stocks February 3, 2011 - 12:00pm Addthis Washington, DC - The U.S. Department of ...

  10. Residential heating oil prices decline

    Energy Information Administration (EIA) (indexed site)

    propane price increase slightly The average retail price for propane is $2.41 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.95 per gallon, up 5-tenths of a cent from last week, and down 10.4

  11. Harvesting Electricity From Wasted Heat

    SciTech Connect

    Schwede, Jared

    2014-06-30

    Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.

  12. Harvesting Electricity From Wasted Heat

    ScienceCinema

    Schwede, Jared

    2016-07-12

    Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.

  13. Indoor unit for electric heat pump

    DOEpatents

    Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

    1984-05-22

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

  14. Northeast Home Heating Oil Reserve (NEHHOR) Guidelines for Release |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Heating Oil Reserve » Northeast Home Heating Oil Reserve (NEHHOR) Guidelines for Release Northeast Home Heating Oil Reserve (NEHHOR) Guidelines for Release The Energy Policy and Conservation Act, as amended, sets conditions for the release of the Northeast Home Heating Oil Reserve. The Secretary of Energy has the authority to sell, exchange, or otherwise dispose of petroleum distillate from the Reserve in order to maintain the quality or quantity of the petroleum

  15. Power supply system for heat and electricity

    SciTech Connect

    Hafner, G.; Finger, H.; Lenz, H.

    1985-03-05

    A power supply system for generating at least one of heat and electricity which includes a number of statically and functionally independent units adapted to generate at least one of heat and electricity which enable a maximum utilization of primary energy. For decentralized power supply over short and low loss supply lines the individual units are constructed as stackable modules. By exchanging or adding one or more modules, it is possible to adapt the flexibility of the power supply system to changes in demand for the energy thereby providing a practical approach to the utilization of waste heat for energy conservation purposes.

  16. Secretary Bodman Hosts Iraqi Ministers of Oil and Electricity...

    Energy Saver

    Iraqi Ministers of Oil and Electricity Secretary Bodman Hosts Iraqi Ministers of Oil and Electricity July 26, 2006 - 4:34pm Addthis Energy Leaders sign MOU to further promote ...

  17. Process for heating coal-oil slurries

    DOEpatents

    Braunlin, Walter A.; Gorski, Alan; Jaehnig, Leo J.; Moskal, Clifford J.; Naylor, Joseph D.; Parimi, Krishnia; Ward, John V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

  18. Process for heating coal-oil slurries

    DOEpatents

    Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

  19. "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural...

    Energy Information Administration (EIA) (indexed site)

    " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal

  20. State Heating Oil and Propane Program

    Energy Information Administration (EIA) (indexed site)

    Program Marcela Rourk 2014 SHOPP Workshop October 8, 2014 | Washington, DC Key Topics Marcela Rourk, Washington, DC October 8, 2014 2 * Expansion of propane data collection * EIA resources available to States * Improvements to SHOPP What is SHOPP? Marcela Rourk, Washington, DC October 8, 2014 3 * State Heating Oil and Propane Program (SHOPP) - cooperative data collection effort between EIA and State Energy Offices (SEOs) - data used by policymakers, industry analysts, and consumers - collects

  1. Indoor unit for electric heat pump

    DOEpatents

    Draper, Robert; Lackey, Robert S.; Fagan, Jr., Thomas J.; Veyo, Stephen E.; Humphrey, Joseph R.

    1984-01-01

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module 10, an air mover module 12, and a resistance heat package module 14, the refrigeration module including all of the indoor refrigerant circuit components including the compressor 36 in a space adjacent the heat exchanger 28, the modules being adapted to be connected to air flow communication in several different ways as shown in FIGS. 4-7 to accommodate placement of the unit in various orientations.

  2. DOE Announces Award of a Contract to Repurchase Heating Oil for...

    Office of Environmental Management (EM)

    Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating ...

  3. The Swiss Competence Center for Energy Research Heat and Electricity...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    on buildings and processes by exploring advanced adiabatic compressed air storage (AA-CAES), pumped heat electric storage (PHES) and high-temperature process heat. iii) Hydrogen...

  4. Ashland Electric Utility - Bright Way to Heat Water Loan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Type Loan Program Summary The City of Ashland Conservation Division offers a solar water heating program to residential electric customers who currently use an electric...

  5. Northeast Home Heating Oil Reserve (NEHHOR) History | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    History Northeast Home Heating Oil Reserve (NEHHOR) History Creation of an emergency reserve of heating oil was directed by President Clinton on July 10, 2000, when he directed then-Energy Secretary Bill Richardson to establish a two million barrel home heating oil component of the Strategic Petroleum Reserve in the Northeast. The intent was to create a buffer large enough to allow commercial companies to compensate for interruptions in supply during severe winter weather, but not so large as to

  6. Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve September 30, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) has completed the acquisition of commercial storage services for the one million barrel Northeast Home Heating Oil Reserve (NEHHOR). Two awards totaling 350,000 barrels have been made to companies that had earlier received storage

  7. NORTHEAST HOME HEATING OIL RESERVE (NEHHOR) QUESTIONS AND ANSWERS

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Questions and Answers document is a compilation of the most commonly asked questions (and answers) concerning the online auction system for the Northeast Home Heating Oil Reserve.

  8. APPARATUS FOR CONVERTING HEAT INTO ELECTRICITY

    DOEpatents

    Crouthamel, C.E.; Foster, M.S.

    1964-01-28

    This patent shows an apparatus for converting heat to electricity. It includes a galvanic cell having an anodic metal anode, a fused salt electrolyte, and a hydrogen cathode having a diffusible metal barrier of silver-- palladium alloy covered with sputtered iron on the side next to the fused electrolyte. Also shown is a regenerator for regenerating metal hydride produced by the galvanic cell into hydrogen gas and anodic metal, both of which are recycled. (AEC)

  9. DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating...

    Energy Saver

    Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve May 24, 2007 - 4:16pm Addthis ...

  10. Lower oil prices also cutting winter heating oil and propane bills

    Energy Information Administration (EIA) (indexed site)

    Lower oil prices also cutting winter heating oil and propane bills Lower oil prices are not only driving down gasoline costs, but U.S. consumers will also see a bigger savings in their heating oil and propane bills this winter. In its new short-term forecast, the U.S. Energy Information Administration said households that use heating oil most of which are located in the Northeast will pay on average $1,779 this winter. That's 25% less or a savings of nearly $600 compared with last winter. The

  11. Electrically heated particulate filter using catalyst striping

    DOEpatents

    Gonze, Eugene V; Paratore, Jr., Michael J; Ament, Frank

    2013-07-16

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating is applied to the PF that increases a temperature of the combustion of the particulates within the PF.

  12. Electrically heated particulate filter enhanced ignition strategy

    DOEpatents

    Gonze, Eugene V; Paratore, Jr., Michael J

    2012-10-23

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating applied to at least one of the PF and the grid. A control module estimates a temperature of the grid and controls the engine to produce a desired exhaust product to increase the temperature of the grid.

  13. Electrically heated particulate filter embedded heater design

    DOEpatents

    Gonze, Eugene V.; Chapman, Mark R.

    2014-07-01

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  14. State heating oil and propane program. Final report, 1996--1997

    SciTech Connect

    Hunton, G.

    1997-08-01

    The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1996-97 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used in rural areas where Natural GAs is not available. Lower installation cost, convenience, lower operating costs compared to electricity and its perception as a clean heating fuel has increased the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

  15. Conductivity heating a subterranean oil shale to create permeability and subsequently produce oil

    SciTech Connect

    Van Meurs, P.; DeRouffignac, E.P.; Vinegar, H.J.; Lucid, M.F.

    1989-12-12

    This patent describes an improvement in a process in which oil is produced from a subterranean oil shale deposit by extending at least one each of heat-injecting and fluid-producing wells into the deposit, establishing a heat-conductive fluid-impermeable barrier between the interior of each heat-injecting well and the adjacent deposit, and then heating the interior of each heat-injecting well at a temperature sufficient to conductively heat oil shale kerogen and cause pyrolysis products to form fractures within the oil shale deposit through which the pyrolysis products are displaced into at least one production well. The improvement is for enhancing the uniformity of the heat fronts moving through the oil shale deposit. Also described is a process for exploiting a target oil shale interval, by progressively expanding a heated treatment zone band from about a geometric center of the target oil shale interval outward, such that the formation or extension of vertical fractures from the heated treatment zone band to the periphery of the target oil shale interval is minimized.

  16. DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Storage Contracts for Northeast Home Heating Oil Reserve DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve August 18, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today announced that new contracts have been awarded for commercial storage of 650,000 barrels of ultra low sulfur distillate (ULSD) for the Northeast Home Heating Oil Reserve (NEHHOR). Awards were made to two companies for storage in New England--Hess Corporation

  17. Ashland Electric Utility - Bright Way to Heat Water Rebate |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    average 800 to 1,000) Summary The City of Ashland Conservation Division offers a solar water heating program to its residential electric customers who currently use an electric...

  18. Lower oil prices also cutting winter heating oil and propane bills

    Energy Information Administration (EIA) (indexed site)

    Household heating bills to be even lower this winter U.S. households will see even lower natural gas and heating oil bills this winter than previously expected the lowest in more than a decade. In its new monthly forecast, the U.S. Energy Information Administration said the average household heating with oil will experience a 41% drop in heating oil expenditures this winter, paying just under $1,100. Meanwhile, households relying primarily on natural gas to stay warm will pay an average $532

  19. Tips: Natural Gas and Oil Heating Systems | Department of Energy

    Energy.gov [DOE] (indexed site)

    more about energy-efficient furnaces and boilers. Addthis Related Articles Tips: Natural Gas and Oil Heating Systems Energy Saver Guide: Tips on Saving Money and Energy at Home...

  20. Tips: Natural Gas and Oil Heating Systems | Department of Energy

    Energy.gov [DOE] (indexed site)

    Furnaces and boilers Oil-fired boilers and furnaces Gas-fired boilers and furnaces ... Federal tax credits are available for geothermal heat pumps through 2016. Learn more. Federal ...

  1. Northeast Home Heating Oil Reserve- Online Bidding System

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy has developed an on-line bidding system - an anonymous auction program - for the sale of product from the one million barrel Northeast Home Heating Oil Reserve.

  2. Quantum Dot Materials Can Reduce Heat, Boost Electrical Output...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Quantum Dot Materials Can Reduce Heat, Boost Electrical Output May 23, 2005 Golden, Colo. - Researchers at the U.S. Department of Energy's National Renewable Energy Laboratory ...

  3. Ash reduction system using electrically heated particulate matter filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  4. An Assessment of Heating Fuels And Electricity Markets During...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PDF icon An Assessment of Heating Fuels And Electricity Markets During the Winters of 2013... Before the House Subcommittee on Energy and Power - Committee on Energy and Commerce

  5. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Energy.gov [DOE] (indexed site)

    truck schock.pdf (2.38 MB) More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate

  6. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Energy.gov [DOE] (indexed site)

    (1.82 MB) More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate

  7. State of Maine residential heating oil survey 2001-02 season summary [SHOPP

    SciTech Connect

    Elder, Betsy

    2002-05-22

    This, as the title implies, is a summary report of the price trends for heating oil, propane and kerosene heating fuels for the heating season.

  8. Mohave Electric Cooperative- Heat Pump Rebate Program

    Energy.gov [DOE]

    Mohave Electric Cooperative is a non-profit that serves the communities of Bullhead City, Fort Mohave, Mohave Valley, Wikieup, Hackberry and Peach Springs. Mohave Electric Cooperative offers...

  9. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade Project Will Take Advantage of Abundant Water in Shallow Aquifer. Demonstrate Low Temperature GSHP System Design. Provides a Baseline for Local Industrial Geothermal Project Costs and Benefits. gshp_talley_flathead_electric.pdf (395.01 KB) More Documents & Publications Development of Design and Simulation Tool for

  10. PROCEEDINGS OF THE 1998 OIL HEAT TECHNOLOGY CONFERENCE

    SciTech Connect

    MCDONALD,R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference will be held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting will be held in cooperation with the Petroleum Marketers Association of America (PMAA). The 1998 Oil Heat Technology Conference, will be the twelfth since 1984, is an important technology transfer activity and is supported by the ongoing Combustion Equipment Technology (Oilheat R and D) program at BNL. The reason for the conference is to provide a forum for the exchange of information and perspectives among international researchers, engineers, manufacturers and marketers of oil-fired space-conditioning equipment. They will provide a channel by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the Conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; and (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

  11. Predicts the Steady-State Heating and Cooling Performance of Electric Heat Pump

    Energy Science and Technology Software Center

    1993-01-13

    Oak Ridge National Laboratory (ORNL) is a leader in the development of analytical tools for the design of electrically driven, air-to-air heat pumps. Foremost among these tools is the ORNL Heat Pump Design Model, which can be used to predict the steady-state heating and cooling performance of an electrically driven, air-source heat pump. This version is three to five times faster than the earlier version, easier to use and more versatile.

  12. Usage possibilities of diesel aggregate for room heating and electric energy production

    SciTech Connect

    Kegl, K.; Vor Ic, J.

    1998-07-01

    Article shows reasons for introduction of cogeneration generally. The present manner of heating and electricity connection at the Faculty of electrical engineering and computer science in Maribor is described. The idea is to build in the cogeneration complex in heating room next to the existent boilers. Gathered data of electricity and heat demand are presented. Paper deals with question of electrical, heat and fuel connections. Comparison between two types of cogeneration (motor and turbine) helps to make a decision: cogeneration with motor. Depending to the daily electricity demands diagram and arranged heating diagram the authors focused to the small cogeneration (around 200 kWe). Availability of natural gas at the placement of the cogeneration leads us to the gas motor but leaves the diesel engine possibility opened. A brief economical estimation includes common investment costs regarding to the savings of energy and fuel expenses. Payback time calculation gives precedence to the gas motor if diesel is used with motor instead of fuel oil. Except the energy savings there are greater benefits of the cogeneration: it can be good study case for students of electrotechnics as well as future mechanical engineers.

  13. DOE Announces Award of a Contract to Repurchase Heating Oil for the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Northeast Home Heating Oil Reserve | Department of Energy Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve July 23, 2008 - 2:15pm Addthis WASHINGTON, DC - The U.S. Department of Energy today announced the award of a contract to Hess Corporation for the delivery of approximately 808,625 gallons (approximately 19,250 barrels) of home heating oil for the

  14. York Electric Cooperative- Dual Fuel Heat Pump Rebate Program

    Energy.gov [DOE]

    York Electric Cooperative, Inc. (YEC) offers a $200 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residences, commercial, and industrial...

  15. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Energy.gov [DOE] (indexed site)

    ace46schock.pdf (1.94 MB) More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste

  16. Blue Ridge Electric Cooperative- Heat Pump Loan Program

    Energy.gov [DOE]

    Blue Ridge Electric Cooperative (BREC) offers low interest loans to help members finance the purchase of energy efficient heat pumps. Loans under $1,500 can be financed for up to 42 months, and...

  17. Geothermal Energy for Production of Heat and Electricity Economically Simulated

    Energy Science and Technology Software Center

    2015-02-28

    GEOPHIRES is a software tool to investigate technical and economic performance of a geothermal system. Possible end-use options are electricity, direct-use heat and co-generation.

  18. Refinery chooses ORC to convert process waste heat to electric power

    SciTech Connect

    Makansi, J.

    1985-03-01

    The organic Rankine-cycle (ORC) waste-heat-recovery system is one of several concepts that DOE, energy-systems suppliers, and others have been developing to make use of low-level waste-heat streams at process and manufacturing plants. Now, several years after the oil crisis of the 1970s accelerated this development, one ORC system has found a home in the energy-intensive refining industry. Mobil Oil Corp has been generating electric power with an ORC system supplied by Turbonetics Energy Inc, a subsidiary of Mechanical Technology Inc (MTI), Latham, NY - at its Torrence (Calif) refinery complex for about nine months. Two modules, each rated at 1070 kW, recover heat from a 300F vapor product stream leaving a fluidcatalytic-cracking (FCC) unit. As a result, cooling duty on the existing overhead coolers has been reduced by about 70-million Btu/hr.

  19. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    SciTech Connect

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  20. Max Tech Electric Heat Pump Water Heater with Lower GWP Halogenated...

    Energy Saver

    Max Tech Electric Heat Pump Water Heater with Lower GWP Halogenated Refrigerant Max Tech Electric Heat Pump Water Heater with Lower GWP Halogenated Refrigerant Information flow ...

  1. Proceedings of the 1997 oil heat technology conference and workshop

    SciTech Connect

    McDonald, R.J.

    1997-09-01

    This report documents the Proceedings of the 1997 Oil Heat Technology Conference and Workshop, held on April 3--4 at Brookhaven National Laboratory (BNL), and sponsored by the US Department of Energy--Office of Building Technologies, State and Community programs (DOE-BTS), in cooperation with the Petroleum Marketers Association of America (PMAA). This Conference is a key technology transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R and D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: identify and evaluate the state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely: and foster cooperation among federal and industrial representatives with the common goal of sustained national economic growth and energy security via energy conservation. The 1997 Oil Technology Conference comprised: (a) five plenary sessions devoted to presentations and summations by public and private sector industry representatives from the US, and Canada, and (b) four workshops which focused on mainstream issues in oil-heating technology. This book contains 14 technical papers and four summaries from the workshops. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  2. Proceedings of the 1993 oil heat technology conference and workshop

    SciTech Connect

    McDonald, R.J.

    1993-09-01

    This report documents the proceedings of the 1993 Oil Heat Technology Conference and Workshop, held on March 25--26 at Brookhaven National Laboratory (BNL), and sponsored by the US Department of Energy - Office of Building Technologies (DOE-OBT), in cooperation with the Petroleum Marketers Association of America. This Conference, which was the seventh held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R&D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space- conditioning equipment. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  3. Heating oil and propane households bills to be lower this winter...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Heating oil and propane households bills to be lower this winter despite recent cold spell Despite the recent cold weather, households that use heating oil or propane as their main ...

  4. Ultra Low Sulfur Home Heating Oil Demonstration Project

    SciTech Connect

    Batey, John E.; McDonald, Roger

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directly related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.

  5. LOW SULFUR HOME HEATING OIL DEMONSTRATION PROJECT SUMMARY REPORT.

    SciTech Connect

    BATEY, J.E.; MCDONALD, R.J.

    2005-06-01

    This project was funded by NYSERDA and has clearly demonstrated many advantages of using low sulfur content heating oil to provide thermal comfort in homes. Prior laboratory research in the United States and Canada had indicated a number of potential benefits of using lower sulfur (0.05%) heating oil. However, this prior research has not resulted in the widespread use of low sulfur fuel oil in the marketplace. The research project described in this report was conducted with the assistance of a well-established fuel oil marketer in New York State (NYS) and has provided clear proof of the many real-world advantages of marketing and using low sulfur content No. 2 fuel oil. The very positive experience of the participating marketer over the past three years has already helped to establish low sulfur heating oil as a viable option for many other fuel marketers. In large part, based on the initial findings of this project and the experience of the participating NYS oilheat marketer, the National Oilheat Research Alliance (NORA) has already fully supported a resolution calling for the voluntary use of low sulfur (0.05 percent) home heating oil nationwide. The NORA resolution has the goal of converting eighty percent of all oil-heated homes to the lower sulfur fuel (0.05 percent by weight) by the year 2007. The Oilheat Manufacturers Association (OMA) has also passed a resolution fully supporting the use of lower sulfur home heating oil in the equipment they manufacture. These are important endorsements by prominent national oil heat associations. Using lower sulfur heating oil substantially lowers boiler and furnace fouling rates. Laboratory studies had indicated an almost linear relationship between sulfur content in the oil and fouling rates. The completed NYSERDA project has verified past laboratory studies in over 1,000 occupied residential homes over the course of three heating seasons. In fact, the reduction in fouling rates so clearly demonstrated by this project is

  6. Farming Out Heat and Electricity through Biopower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Farming Out Heat and Electricity through Biopower Farming Out Heat and Electricity through Biopower December 16, 2011 - 4:00pm Addthis Cows like these in Skagit County, Washington, supply the biodigester developed by Kevin Maas of Farm Power up to 70,000 gallons of manure per day. The newest Farm Power facility in Washington generates enough electricity to power 500 homes. Photo courtesy of <a href="http://creativecommons.org/licenses/by-nc-nd/2.0/">sea_turtle</a>. Cows

  7. SEP Success Story: Farming Out Heat and Electricity through Biopower |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Farming Out Heat and Electricity through Biopower SEP Success Story: Farming Out Heat and Electricity through Biopower December 16, 2011 - 11:46am Addthis Cows like these in Skagit County, Washington, supply the biodigester developed by Kevin Maas of Farm Power up to 70,000 gallons of manure per day. The newest Farm Power facility in Washington generates enough electricity to power 500 homes. Photo courtesy of sea_turtle. Cows like these in Skagit County, Washington,

  8. Impact of Interruptible Natural Gas Service on Northeast Heating Oil Demand

    Reports and Publications

    2001-01-01

    Assesses the extent of interruptible natural gas contracts and their effect on heating oil demand in the Northeast.

  9. Electric Power Generation from Co-Produced and Other Oil Field...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Power Generation from Co-Produced and Other Oil Field Fluids Electric Power Generation from Co-Produced and Other Oil Field Fluids Co-produced and low-temperature ...

  10. Waste heat from kitchen cuts hot water electricity 23%

    SciTech Connect

    Barber, J.

    1984-05-21

    Heat recovered from the Hamburger Hamlet's kitchen in Bethesada, Maryland and used to pre-heat the million gallons of hot water used annually reduced hot water costs 23% and paid off the investment in 1.5 years. Potomac Electric initiated the installation of an air-to-water heat pump in the restaurant kitchen above the dishwasher at a cost of about $5300, with the restaurant obliged to reimburse the utility if performance was satisfactory. Outside water recirculates through storage tanks and the ceiling heat pump until it reaches the required 140/sup 0/F. The amount of electricity needed to bring the preheated water to that temperature was $3770 lower after the installation. Cooled air exhausted from the heat pump circulates throughout the kitchen.

  11. Generator powered electrically heated diesel particulate filter

    DOEpatents

    Gonze, Eugene V; Paratore, Jr., Michael J

    2014-03-18

    A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

  12. Heat Transfer and Thermophotovoltaic Power Generation in Oil-fired Heating Systems

    SciTech Connect

    Butcher, T.; Hammonds, J.S.; Horne, E.; Kamath, B.; Carpenter, J.; Woods, D.R.

    2010-10-21

    The focus of this study is the production of electric power in an oil-fired, residential heatingsystem using thermophotovoltaic (TPV) conversion devices. This work uses experimental, computational, and analytical methods to investigate thermal mechanisms that drive electric power production in the TPV systems. An objective of this work is to produce results that will lead to the development of systems that generate enough electricity such that the boiler is self-powering. An important design constraint employed in this investigation is the use of conventional, yellow-flame oil burners, integrated with a typical boiler. The power production target for the systems developed here is 100 W - the power requirement for a boiler that uses low-power auxiliary components. The important heattransfer coupling mechanisms that drive power production in the systems studied are discussed. The results of this work may lead to the development of systems that export power to the home electric system.

  13. Thermal treatment of low permeability soils using electrical resistance heating

    SciTech Connect

    Udell, K.S.

    1996-08-01

    The acceleration of recovery rates of second phase liquid contaminants from the subsurface during gas or water pumping operations is realized by increasing the soil and ground water temperature. Electrical heating with AC current is one method of increasing the soil and groundwater temperature and has particular applicability to low permeability soils. Several mechanisms have been identified that account for the enhanced removal of the contaminants during electrical heating. These are vaporization of liquid contaminants with low boiling points, temperature-enhanced evaporation rates of semi-volatile components, and removal of residual contaminants by the boiling of residual water. Field scale studies of electrical heating and fluid extraction show the effectiveness of this technique and its applicability to contaminants found both above and below the water table and within low permeability soils. 10 refs., 8 figs.

  14. Proceedings of the 1991 Oil Heat Technology Conference and Workshop

    SciTech Connect

    McDonald, R.J.

    1992-07-01

    This Conference, which was the sixth held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: Identify and evaluate the state-of-the-art and recommend; new initiatives to satisfy consumer needs cost-effectively, reliably, and safely; Foster cooperation among federal and industrial representatives with the common goal of national security via energy conservation. The 1991 Oil Technology Conference comprised: (a) two plenary sessions devoted to presentations and summations by public and private sector representatives from the United States, Europe, and Canada; and, (b) four workshops which focused on mainstream issues in oil-heating technology. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  15. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2001-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  16. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1997-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  17. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1999-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  18. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.

    1997-04-15

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {<=}1% Cr and either {>=}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {>=}0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, {<=}2% Ti, {<=}2% Mo, {<=}1% Zr, {<=}1% C, {<=}0.1% B, {<=}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {<=}1% rare earth metal, {<=}1% oxygen, {<=}3% Cu, balance Fe. 64 figs.

  19. Fuel quality issues in the oil heat industry

    SciTech Connect

    Litzke, Wai-Lin

    1992-12-01

    The quality of fuel oil plays an essential role in combustion performance and efficient operation of residential heating equipment. With the present concerns by the oil-heat industry of declining fuel-oil quality, a study was initiated to identify the factors that have brought about changes in the quality of distillate fuel. A background of information will be provided to the industry, which is necessary to deal with the problems relating to the fuel. The high needs for servicing heating equipment are usually the result of the poor handling characteristics of the fuel during cold weather, the buildup of dirt and water in storage tanks, and microbial growth. A discussion of how to deal with these problems is presented in this paper. The effectiveness of fuel additives to control these problems of quality is also covered to help users better understand the functions and limitations of chemical treatment. Test data have been collected which measure and compare changes in the properties of fuel using selected additives.

  20. Climate, extreme heat, and electricity demand in California

    SciTech Connect

    Miller, N.L.; Hayhoe, K.; Jin, J.; Auffhammer, M.

    2008-04-01

    Climate projections from three atmosphere-ocean climate models with a range of low to mid-high temperature sensitivity forced by the Intergovernmental Panel for Climate Change SRES higher, middle, and lower emission scenarios indicate that, over the 21st century, extreme heat events for major cities in heavily air-conditioned California will increase rapidly. These increases in temperature extremes are projected to exceed the rate of increase in mean temperature, along with increased variance. Extreme heat is defined here as the 90 percent exceedance probability (T90) of the local warmest summer days under the current climate. The number of extreme heat days in Los Angeles, where T90 is currently 95 F (32 C), may increase from 12 days to as many as 96 days per year by 2100, implying current-day heat wave conditions may last for the entire summer, with earlier onset. Overall, projected increases in extreme heat under the higher A1fi emission scenario by 2070-2099 tend to be 20-30 percent higher than those projected under the lower B1 emission scenario, ranging from approximately double the historical number of days for inland California cities (e.g. Sacramento and Fresno), up to four times for previously temperate coastal cities (e.g. Los Angeles, San Diego). These findings, combined with observed relationships between high temperature and electricity demand for air-conditioned regions, suggest potential shortfalls in transmission and supply during T90 peak electricity demand periods. When the projected extreme heat and peak demand for electricity are mapped onto current availability, maintaining technology and population constant only for demand side calculations, we find the potential for electricity deficits as high as 17 percent. Similar increases in extreme heat days are suggested for other locations across the U.S. southwest, as well as for developing nations with rapidly increasing electricity demands. Electricity response to recent extreme heat events, such

  1. Table 2.3 Manufacturing Energy Consumption for Heat, Power, and Electricity Generation by End Use, 2006

    Energy Information Administration (EIA) (indexed site)

    Manufacturing Energy Consumption for Heat, Power, and Electricity Generation by End Use, 2006 End-Use Category Net Electricity 1 Residual Fuel Oil Distillate Fuel Oil LPG 2 and NGL 3 Natural Gas Coal 4 Total 5 Million Kilowatthours Million Barrels Billion Cubic Feet Million Short Tons Indirect End Use (Boiler Fuel) 12,109 21 4 2 2,059 25 – – Conventional Boiler Use 12,109 11 3 2 1,245 6 – – CHP 6 and/or Cogeneration Process – – 10 1 (s) 814 19 – – Direct End Use All Process Uses 657,810

  2. Technologies for Production of Heat and Electricity

    SciTech Connect

    Jacob J. Jacobson; Kara G. Cafferty

    2014-04-01

    Biomass is a desirable source of energy because it is renewable, sustainable, widely available throughout the world, and amenable to conversion. Biomass is composed of cellulose, hemicellulose, and lignin components. Cellulose is generally the dominant fraction, representing about 40 to 50% of the material by weight, with hemicellulose representing 20 to 50% of the material, and lignin making up the remaining portion [4,5,6]. Although the outward appearance of the various forms of cellulosic biomass, such as wood, grass, municipal solid waste (MSW), or agricultural residues, is different, all of these materials have a similar cellulosic composition. Elementally, however, biomass varies considerably, thereby presenting technical challenges at virtually every phase of its conversion to useful energy forms and products. Despite the variances among cellulosic sources, there are a variety of technologies for converting biomass into energy. These technologies are generally divided into two groups: biochemical (biological-based) and thermochemical (heat-based) conversion processes. This chapter reviews the specific technologies that can be used to convert biomass to energy. Each technology review includes the description of the process, and the positive and negative aspects.

  3. Electrically heated particulate filter diagnostic systems and methods

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2009-09-29

    A system that diagnoses regeneration of an electrically heated particulate filter is provided. The system generally includes a grid module that diagnoses a fault of the grid based on at least one of a current signal and a voltage signal. A diagnostic module at least one of sets a fault status and generates a warning signal based on the fault of the grid.

  4. Winter Heating Fuels - Energy Information Administration

    Energy Information Administration (EIA) (indexed site)

    Winter Heating Fuels Click on the map to view state specific heating fuels data below | click to reset to U.S. values Click on map above to view state-specific heating fuel data Propane Heating oil Natural gas Electricity For more data on: Heating oil and propane prices - Heating Oil and Propane Update Propane stocks - Weekly Petroleum Status Report Heating oil/distillate stocks - Weekly Petroleum Status Report Natural gas storage - Weekly Natural Gas Storage Report Natural gas prices - Natural

  5. Integrated exhaust and electrically heated particulate filter regeneration systems

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2013-01-08

    A system includes a particulate matter (PM) filter that includes multiple zones. An electrical heater includes heater segments that are associated with respective ones of the zones. The electrical heater is arranged upstream from and proximate with the PM filter. A post-fuel injection system injects fuel into at least one of a cylinder of an engine and an exhaust system. A control module is configured to operate in a first mode that includes activating the electrical heater to heat exhaust of the engine. The control module is also configured to operate in a second mode that includes activating the post-injection system to heat the exhaust. The control module selectively operates in at least one of the first mode and the second mode.

  6. Michigan residential heating oil and propane price survey: 1995--1996 heating season. Final report

    SciTech Connect

    Moriarty, C.

    1996-05-01

    This report summarizes the results of a survey of residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) prices over the 1995--1996 heating season in Michigan. The Michigan`s Public Service Commission (MPSC) conducted the survey under a cooperative agreement with the US Department of Energy`s (DOE) Energy Information Administration (EIA). This survey was funded in part by a grant from the DOE. From October 1995 through March 1996, the MPSC surveyed participating distributors by telephone for current residential retail home heating oil and propane prices. The MPSC transmitted the data via a computer modem to the EIA using the Petroleum Electronic Data Reporting Option (PEDRO). Survey results were published in aggregate on the MPSC World Wide Web site at http://ermisweb.state.mi.us/shopp. The page was updated with both residential and wholesale prices immediately following the transmission of the data to the EIA. The EIA constructed the survey using a sample of Michigan home heating oil and propane retailers. The sample accounts for different sales volumes, geographic location, and sources of primary supply.

  7. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    Energy Information Administration (EIA) (indexed site)

    0. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Fuel Type, Industry Group, Selected Industries, and End Use, 1994:" " Part 2" " (Estimates in Trillion Btu)" ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding",,"RSE" "SIC",,,"Net","Residual","and Diesel",,,"Coal Coke",,"Row" "Code(a)","End-Use

  8. Electrical installations in oil shale mines. Open file report 21 Sep 81-13 Aug 83

    SciTech Connect

    Gillenwater, B.B.; Kline, R.J.; Paas, N.

    1983-08-01

    This report presents recommended guidelines and regulatory changes applicable to electrical installations in underground oil shale mines. These recommendations are based on information gathered from oil shale operators, government agencies, and other knowledgeable sources familiar with existing plans for mining systems and electrical installations, and on present understanding of the problems and hazards associated with oil shale mining. Additional discussions of specific electrical problems related to oil shale mining include ground fault current levels, permissible electric wheel motors, permissible batteries and electric starting systems, intrinsically safe instrumentation, and applicability of existing test standards.

  9. State heating oil and propane program. Final report, 1990--1991

    SciTech Connect

    Not Available

    1991-12-31

    The following is a report of New Hampshire`s participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

  10. Electric Power Generation from Co-Produced and Other Oil Field Fluids |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Electric Power Generation from Co-Produced and Other Oil Field Fluids Electric Power Generation from Co-Produced and Other Oil Field Fluids Co-produced and low-temperature demonstration projects presentation at the 2013 peer review meeting held in Denver, Colorado. coproduced_demoprojects_peerreview2013.pdf (2.47 MB) More Documents & Publications Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells

  11. Electrode wells for powerline-frequency electrical heating of soils

    DOEpatents

    Buettner, Harley M.; Daily, William D.; Aines, Roger D.; Newmark, Robin L.; Ramirez, Abelardo L.; Siegel, William H.

    1999-01-01

    An electrode well for use in powerline-frequency heating of soils for decontamination of the soil. Heating of soils enables the removal of volatile organic compounds from soil when utilized in combination with vacuum extraction. A preferred embodiment of the electrode well utilizes a mild steel pipe as the current-carrying conductor to at least one stainless steel electrode surrounded by a conductive backfill material, preferably graphite or steel shot. A covering is also provided for electrically insulating the current-carrying pipe. One of the electrode wells is utilized with an extraction well which is under subatmospheric pressure to withdraw the volatile material, such as gasoline and trichioroethylene (TCE) as it is heated.

  12. Electrode wells for powerline-frequency electrical heating of soils

    DOEpatents

    Buettner, H.M.; Daily, W.D.; Aines, R.D.; Newmark, R.L.; Ramirez, A.L.; Siegel, W.H.

    1999-05-25

    An electrode well is described for use in powerline-frequency heating of soils for decontamination of the soil. Heating of soils enables the removal of volatile organic compounds from soil when utilized in combination with vacuum extraction. A preferred embodiment of the electrode well utilizes a mild steel pipe as the current-carrying conductor to at least one stainless steel electrode surrounded by a conductive backfill material, preferably graphite or steel shot. A covering is also provided for electrically insulating the current-carrying pipe. One of the electrode wells is utilized with an extraction well which is under subatmospheric pressure to withdraw the volatile material, such as gasoline and trichloroethylene (TCE) as it is heated. 4 figs.

  13. "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel...

    Energy Information Administration (EIA) (indexed site)

    Coal" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," ...rtation",5,0,11,13,4,0 ," Conventional Electricity Generation",0,0,53,5,2,0 ," Other ...

  14. Heat to electricity conversion by cold carrier emissive energy harvesters

    SciTech Connect

    Strandberg, Rune

    2015-12-07

    This paper suggests a method to convert heat to electricity by the use of devices called cold carrier emissive energy harvesters (cold carrier EEHs). The working principle of such converters is explained and theoretical power densities and efficiencies are calculated for ideal devices. Cold carrier EEHs are based on the same device structure as hot carrier solar cells, but works in an opposite way. Whereas a hot carrier solar cell receives net radiation from the sun and converts some of this radiative heat flow into electricity, a cold carrier EEH sustains a net outflux of radiation to the surroundings while converting some of the energy supplied to it into electricity. It is shown that the most basic type of cold carrier EEHs have the same theoretical efficiency as the ideal emissive energy harvesters described earlier by Byrnes et al. In the present work, it is also shown that if the emission from the cold carrier EEH originates from electron transitions across an energy gap where a difference in the chemical potential of the electrons above and below the energy gap is sustained, power densities slightly higher than those given by Byrnes et al. can be achieved.

  15. Outdoor unit construction for an electric heat pump

    DOEpatents

    Draper, R.; Lackey, R.S.

    1984-09-11

    The outdoor unit for an electric heat pump is provided with an upper portion containing propeller fan means for drawing air through the lower portion containing refrigerant coil means in the form of four discrete coils connected together in a subassembly forming a W shape, the unit being provided with four adjustable legs which are retracted in shipment, and are adjusted on site to elevate the unit to a particular height suitable for the particular location in which the unit is installed. 4 figs.

  16. Outdoor unit construction for an electric heat pump

    DOEpatents

    Draper, Robert; Lackey, Robert S.

    1984-01-01

    The outdoor unit for an electric heat pump is provided with an upper portion 10 containing propeller fan means 14 for drawing air through the lower portion 12 containing refrigerant coil means 16 in the form of four discrete coils connected together in a subassembly forming a W shape, the unit being provided with four adjustable legs 64 which are retracted in shipment, and are adjusted on site to elevate the unit to a particular height suitable for the particular location in which the unit is installed.

  17. Electrically heated particulate filter regeneration using hydrocarbon adsorbents

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2011-02-01

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material selectively heats exhaust passing through the upstream end to initiate combustion of particulates within the PF. A hydrocarbon adsorbent coating applied to the PF releases hydrocarbons into the exhaust to increase a temperature of the combustion of the particulates within the PF.

  18. Silicone oil contamination and electrical contact resistance degradation of low-force gold contacts.

    SciTech Connect

    Dugger, Michael Thomas; Dickrell, Daniel John, III

    2006-02-01

    Hot-switched low-force gold electrical contact testing was performed using a nanomechanical test apparatus to ascertain the sensitivity of simulated microelectromechanical systems (MEMS) contact to silicone oil contamination. The observed cyclic contact resistance degradation was dependent on both closure rate and noncontact applied voltage. The decomposition of silicone oil from electrical arcing was hypothesized as the degradation mechanism.

  19. Final report of the Rhode Island State Energy Office on residential no. 2 heating oil and propane prices [SHOPP

    SciTech Connect

    McClanahan, Janice

    2001-04-01

    Summary report on residential No.2 heating oil and propane prepared under grant. Summarizes the monitoring and analysis of heating oil and propane prices from October 2000 through March 2001.

  20. Electrical properties of dispersions of graphene in mineral oil

    SciTech Connect

    Monteiro, O. R.

    2014-02-03

    Dispersions of graphene in mineral oil have been prepared and electrical conductivity and permittivity have been measured. The direct current (DC) conductivity of the dispersions depends on the surface characteristics of the graphene platelets and followed a percolation model with a percolation threshold ranging from 0.05 to 0.1?wt. %. The difference in DC conductivities can be attributed to different states of aggregation of the graphene platelets and to the inter-particle electron transfer, which is affected by the surface radicals. The frequency-dependent conductivity (?(?)) and permittivity (?(?)) were also measured. The conductivity of dispersions with particle contents much greater than the percolation threshold remains constant and equal to the DC conductivity at low frequencies ? with and followed a power-law ?(?)???{sup s} dependence at very high frequencies with s?0.9. For dispersions with graphene concentration near the percolation threshold, a third regime was displayed at intermediate frequencies indicative of interfacial polarization consistent with Maxwell-Wagner effect typically observed in mixtures of two (or more) phases with very distinct electrical and dielectric properties.

  1. Number 2 heating oil/propane program. Final report, 1991/92

    SciTech Connect

    McBrien, J.

    1992-06-01

    During the 1991--92 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1991 through March, 1992. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1991--1992 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data and responses to the events which unfolded during the 1991--1992 heating season.

  2. U.S. Heat Content of Natural Gas Deliveries to Electric Power...

    Energy Information Administration (EIA) (indexed site)

    Electric Power Consumers (BTU per Cubic Foot) U.S. Heat Content of Natural Gas Deliveries to Electric Power Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  3. Max Tech Electric Heat Pump Water Heater with Lower GWP Halogenated

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Refrigerant | Department of Energy Max Tech Electric Heat Pump Water Heater with Lower GWP Halogenated Refrigerant Max Tech Electric Heat Pump Water Heater with Lower GWP Halogenated Refrigerant Information flow schematic for an integrated heat pump design model and wrapped tank model. Image credit: Oak Ridge National Laboratory. Information flow schematic for an integrated heat pump design model and wrapped tank model. Image credit: Oak Ridge National Laboratory. Information flow schematic

  4. Short-Term Energy Outlook Model Documentation: Regional Residential Heating Oil Price Model

    Reports and Publications

    2009-01-01

    The regional residential heating oil price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 census regions: Northeast, South, Midwest, and West.

  5. QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY

    SciTech Connect

    Saeid Ghamaty

    2006-03-31

    New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

  6. QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY

    SciTech Connect

    Saeid Ghamaty

    2006-02-01

    New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

  7. Development of Numerical Simulation Capabilities for In Situ Heating of Oil

    Office of Scientific and Technical Information (OSTI)

    Shale (Conference) | SciTech Connect Conference: Development of Numerical Simulation Capabilities for In Situ Heating of Oil Shale Citation Details In-Document Search Title: Development of Numerical Simulation Capabilities for In Situ Heating of Oil Shale Authors: Hoda, Nazish [1] ; Fang, Chen [1] ; Kelkar, Sharad [2] ; Pawar, Rajesh J. [2] + Show Author Affiliations ExxonMobil Upstream Research Company, Houston, TX, USA Los Alamos National Laboratory Publication Date: 2012-12-06 OSTI

  8. No. 2 heating oil/propane program. Final report, 1990/91

    SciTech Connect

    McBrien, J.

    1991-06-01

    During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

  9. No. 2 heating oil/propane program. Final report, 1992/93

    SciTech Connect

    McBrien, J.

    1993-05-01

    During the 1992--93 heating season, the Massachusetts Division Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1992 through March, 1993. This final report begins with an overview of the unique events which had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1992--93 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data.

  10. Electric Power Generation from Coproduced Fluids from Oil and Gas Wells

    Energy.gov [DOE]

    The primary objective of this project is to demonstrate the technical and economic feasibility of generating electricity from non-conventional low temperature (150 to 300º F) geothermal resources in oil and gas settings.

  11. Toughened Graphite Electrode for High Heat Electric Arc Furnaces...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ORNL to melt steel, titanium, and other scrap metal in industrial electric arc furnaces. ... Applications and Industries Electric arc furnace steel manufacturing Steel refinement and ...

  12. Multiwalled carbon nanotube/polydimethylsiloxane composite films as high performance flexible electric heating elements

    SciTech Connect

    Yan, Jing; Jeong, Young Gyu, E-mail: ygjeong@cnu.ac.kr [Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2014-08-04

    High performance elastomeric electric heating elements were prepared by incorporating various contents of pristine multiwalled carbon nanotube (MWCNT) in polydimethylsiloxane (PDMS) matrix by using an efficient solution-casting and curing technique. The pristine MWCNTs were identified to be uniformly dispersed in the PDMS matrix and the electrical percolation of MWCNTs was evaluated to be at ?0.27?wt.?%, where the electrical resistivity of the MWCNT/PDMS composite films dropped remarkably. Accordingly, the composite films with higher MWCNT contents above 0.3?wt.?% exhibit excellent electric heating performance in terms of temperature response rapidity and electric energy efficiency at constant applied voltages. In addition, the composite films, which were thermally stable up to 250?C, showed excellent heating-cooling cyclic performance, which was associated with operational stability in actual electric heating applications.

  13. No. 2 heating oil/propane program 1994--1995. Final report

    SciTech Connect

    McBrien, J.

    1995-05-01

    During the 1994--95 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1994 through March 1995. This program augmented the existing Massachusetts data collection system and served several important functions. The information helped the federal and state governments respond to consumer, congressional and media inquiries regarding No. 2 oil and propane. The information also provided policy decision-makers with timely, accurate and consistent data to monitor current heating oil and propane markets and develop appropriate state responses when necessary. In addition, the communication network between states and the DOE was strengthened through this program. This final report begins with an overview of the unique events that had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1994--95 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by EIA and distributed to the states. Finally, the report outlines DOER`s use of the data.

  14. Electricity-producing heating apparatus utilizing a turbine generator in a semi-closed brayton cycle

    DOEpatents

    Labinov, Solomon D.; Christian, Jeffrey E.

    2003-10-07

    The present invention provides apparatus and methods for producing both heat and electrical energy by burning fuels in a stove or boiler using a novel arrangement of a surface heat exchanger and microturbine-powered generator and novel surface heat exchanger. The equipment is particularly suited for use in rural and relatively undeveloped areas, especially in cold regions and highlands.

  15. An Assessment of Heating Fuels And Electricity Markets During the Winters

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of 2013-2014 and 2014-2015 | Department of Energy Heating Fuels And Electricity Markets During the Winters of 2013-2014 and 2014-2015 An Assessment of Heating Fuels And Electricity Markets During the Winters of 2013-2014 and 2014-2015 Cold weather that blanketed much of the Eastern United States in 2013-2014 and 2014-2015 exhibited unique characteristics that prompted different - but related - challenges across heating fuels and electricity markets. In an effort to understand the impacts of

  16. Tips: Natural Gas and Oil Heating Systems | Department of Energy

    Energy.gov [DOE] (indexed site)

    a new energy-efficient furnace to save money over the long term. Install a new energy-efficient furnace to save money over the long term. If you plan to buy a new heating system,...

  17. Automotive Waste Heat Conversion to Electric Power using Skutterudites...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Development of a Scalable 10% Efficient Thermoelectric Generator Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicular ...

  18. Flathead Electric Cooperative Facility Geothermal Heat Pump System...

    Office of Scientific and Technical Information (OSTI)

    The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, ...

  19. Low exhaust temperature electrically heated particulate matter filter system

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2012-02-14

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  20. Development and certification of the innovative pioneer oil burner for residential heating appliances

    SciTech Connect

    Kamath, B.

    1997-09-01

    The Pioneer burner represents another important milestone for the oil heat industry. It is the first practical burner design that is designated for use in small capacity heating appliances matching the needs of modern energy efficient home designs. Firing in the range of 0.3 GPH to 0.65 GPH (40,000-90,000 Btu/hr) it allows for new oil heating appliance designs to compete with the other major fuel choices in the small design load residential market. This market includes energy efficient single family houses, town-houses, condominiums, modular units, and mobile homes. The firing range also is wide enough to cover a large percentage of more conventional heating equipment and home designs as well. Having recently passed Underwriters Laboratory certification tests the burner in now being field tested in several homes and samples are being made available to interested boiler and furnace manufacturers for product development and application testing.

  1. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    Energy.gov [DOE]

    This factsheet describes a project to develop direct steelmaking through the combination of microwave, electric arc, and exothermal heating, a process which is meant to eliminate traditional, intermediate steelmaking steps.

  2. Ameren Missouri (Electric)- Residential Heating and Cooling Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Ameren Missouri offers rebates to its residential electric customers for the installation of new energy-efficient heating and cooling equipment. Rebates are available for single-family residences,...

  3. Commercial CO2 Electric Heat Pump Water Heater | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Commercial CO2 Electric Heat Pump Water Heater Commercial CO2 Electric Heat Pump Water Heater Planned enhanced modeling approach to facilitate analyses of wrapped-tank options for the project. Image credit: Oak Ridge National Laboratory. Planned enhanced modeling approach to facilitate analyses of wrapped-tank options for the project. Image credit: Oak Ridge National Laboratory. Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN FY16 DOE Funding: $150,000 Project Term: October 1, 2015

  4. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect

    Hopman, Ulrich,; Kruiswyk, Richard W.

    2005-07-05

    Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

  5. Integrated gas-fired space-heating/water-heating system with electric air conditioning. Final report. January 1983-December 1987

    SciTech Connect

    Demetri, E.P.; Gerstmann, J.

    1988-01-01

    A Triple-Integrated-Appliance (TIA) for space conditioning and water heating was successfully developed for the multifamily housing market as an economical gas alternative to all-electric systems. The gas-fired portion of the system provides high-efficiency condensing operation in both the space-heating and water-heating modes. The TIA was evaluated in a comprehensive field-test program conducted nationwide at sites representative of multifamily applications. The field-test results demonstrated that the performance goals were achieved under actual usage conditions. The final pre-production prototype configuration provides the design and performance characteristics necessary to compete in the multifamily market.

  6. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    Energy Information Administration (EIA) (indexed site)

    2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural

  7. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    Energy Information Administration (EIA) (indexed site)

    2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural

  8. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade

    SciTech Connect

    Liu, Xiaobing

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle.

  9. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  10. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect

    Gerke, Frank G.

    2001-08-05

    This cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar, Inc. is aimed at demonstrating electric turbocompound technology on a Class 8 truck engine. This is a lab demonstration program, with no provision for on-truck testing of the system. The goal is to demonstrate the level of fuel efficiency improvement attainable with the electric turbocompound system. Also, electric turbocompounding adds an additional level of control to the air supply which could be a component in an emissions control strategy.

  11. Electrical Energy and Demand Savings from a Geothermal Heat Pump...

    Office of Scientific and Technical Information (OSTI)

    space-conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHPs) under an energy savings performance contract. ...

  12. Project Title: Small Scale Electrical Power Generation from Heat...

    Office of Scientific and Technical Information (OSTI)

    Subject: 15 GEOTHERMAL ENERGY Geothermal, ORC, 75kW, Green Machine, ElectraTherm, co-produced, Waste heat to power, Green energy, low temperature Word Cloud More Like This Full ...

  13. DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate

    Office of Energy Efficiency and Renewable Energy (EERE)

    The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy said today.

  14. Impacts of the Weatherization Assistance Program in fuel-oil heated houses

    SciTech Connect

    Levins, W.P.; Ternes, M.P.

    1994-10-01

    In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

  15. Heat wave contributes to higher summer electricity demand in the Northeast

    Energy Information Administration (EIA) (indexed site)

    Heat wave contributes to higher summer electricity demand in the Northeast In its new energy forecast, the U.S. Energy Information Administration expects summer retail electricity prices in the Northeast to be 2.7 percent higher than last summer...mainly due to rising costs for the fuels used to generate electricity. Many households ran their air conditioners more than usual last month to try to beat the East Coast heat wave. While customers in New England are expected to use 1 percent more

  16. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOEpatents

    Daily, William D.; Ramirez, Abelardo L.; Newmark, Robin L.; Udell, Kent; Buetnner, Harley M.; Aines, Roger D.

    1995-01-01

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.

  17. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOEpatents

    Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.

    1995-09-12

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.

  18. Electrically heated particulate filter with zoned exhaust flow control

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2012-06-26

    A system includes a particulate matter (PM) filter that includes X zones. An electrical heater includes Y heater segments that are associated with respective ones of the X zones. The electrical heater is arranged upstream from and proximate with the PM filter. A valve assembly includes Z sections that are associated with respective ones of the X zones. A control module adjusts flow through each of the Z sections during regeneration of the PM filter via control of the valve assembly. X, Y and Z are integers.

  19. Thermal Storage System for Electric Vehicle Cabin Heating Component and System Analysis

    SciTech Connect

    LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar; Wang, Mingyu; WolfeIV, Edward; Craig, Timothy

    2016-01-01

    Cabin heating of current electric vehicle (EV) designs is typically provided using electrical energy from the traction battery, since waste heat is not available from an engine as in the case of a conventional automobile. In very cold climatic conditions, the power required for space heating of an EV can be of a similar magnitude to that required for propulsion of the vehicle. As a result, its driving range can be reduced very significantly during the winter season, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage from an advanced phase change material (PCM) has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The present paper focuses on the modeling and analysis of this electrical PCM-Assisted Thermal Heating System (ePATHS) and is a companion to the paper Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating. A detailed heat transfer model was developed to simulate the PCM heat exchanger that is at the heart of the ePATHS and was subsequently used to analyze and optimize its design. The results from this analysis were integrated into a MATLAB Simulink system model to simulate the fluid flow, pressure drop and heat transfer in all components of the ePATHS. The system model was then used to predict the performance of the climate control system in the vehicle and to evaluate control strategies needed to achieve the desired temperature control in the cabin. The analysis performed to design the ePATHS is described in detail and the system s predicted performance in a vehicle HVAC system is presented.

  20. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part I: Experimental study

    SciTech Connect

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    Two-phase flow pattern and heat transfer characteristics of refrigerant-oil mixture flow boiling inside small tubes with inside diameters of 6.34 mm and 2.50 mm are investigated experimentally. The test condition of nominal oil concentration is from 0% to 5%, mass flux from 200 to 400 kg m{sup -2} s{sup -1}, heat flux from 3.2 to 14 kW m{sup -2}, evaporation temperature of 5 C, inlet quality from 0.1 to 0.8, and quality change from 0.1 to 0.2. Wavy, wavy-annular, annular and mist-annular flow pattern in 6.34 mm tube are observed, while only slug-annular and annular flow pattern are observed in 2.50 mm tube. Oil presence can make annular flow to form early and to retard to diminish in quality direction at nominal oil concentration {>=}3%. Augmentation effect of oil on heat transfer coefficient becomes weakened or even diminishes for small diameter tube while detrimental effect of oil on small tube performance becomes more significant than large tube. For both test tubes, variation of heat transfer coefficient and enhanced factor with oil concentration is irregular. Two-phase heat transfer multiplier with refrigerant-oil mixture properties increases consistently and monotonically with local oil concentration at different vapor quality. (author)

  1. Condensing heat-exchanger systems for oil-fired residential/commercial furnaces and boilers Phase I and II

    SciTech Connect

    Ball, D.A.; White, E.L.; Lux, J.J. Jr.; Locklin, D.W.

    1982-10-01

    The objective of the program reported was to provide supporting research to aid in the development and demonstration of oil-fired residential and commercial heating equipment that will operate in a condensing mode. Materials for heat exchangers are screened through coupon testing in a furnace simulator test rig and in an alternate immersion test rig. Condensate from oil-fired systems is characterized. Some general issues related to field application are treated, including heat exchanger fouling, venting of combustion gases, disposal of flue gas condensate, other means of condensate disposal, and evaluation of codes and standards. A heat transfer analysis is presented for general heat exchangers. (LEW)

  2. Online monitoring of oil film using electrical capacitance tomography and level set method

    SciTech Connect

    Xue, Q. Ma, M.; Sun, B. Y.; Cui, Z. Q.; Wang, H. X.

    2015-08-15

    In the application of oil-air lubrication system, electrical capacitance tomography (ECT) provides a promising way for monitoring oil film in the pipelines by reconstructing cross sectional oil distributions in real time. While in the case of small diameter pipe and thin oil film, the thickness of the oil film is hard to be observed visually since the interface of oil and air is not obvious in the reconstructed images. And the existence of artifacts in the reconstructions has seriously influenced the effectiveness of image segmentation techniques such as level set method. Besides, level set method is also unavailable for online monitoring due to its low computation speed. To address these problems, a modified level set method is developed: a distance regularized level set evolution formulation is extended to image two-phase flow online using an ECT system, a narrowband image filter is defined to eliminate the influence of artifacts, and considering the continuity of the oil distribution variation, the detected oil-air interface of a former image can be used as the initial contour for the detection of the subsequent frame; thus, the propagation from the initial contour to the boundary can be greatly accelerated, making it possible for real time tracking. To testify the feasibility of the proposed method, an oil-air lubrication facility with 4 mm inner diameter pipe is measured in normal operation using an 8-electrode ECT system. Both simulation and experiment results indicate that the modified level set method is capable of visualizing the oil-air interface accurately online.

  3. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part II: Correlations

    SciTech Connect

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    The predictive ability of the available state-of-the-art heat transfer correlations of refrigerant-oil mixture is evaluated with the present experiment data of small tubes with inside diameter of 6.34 mm and 2.50 mm. Most of these correlations can be used to predict the heat transfer coefficient of 6.34 mm tube, but none of them can predict heat transfer coefficient of 2.50 mm tube satisfactorily. A new correlation of two-phase heat transfer multiplier with local properties of refrigerant-oil mixture is developed. This correlation approaches the actual physical mechanism of flow boiling heat transfer of refrigerant-oil mixture and can reflect the actual co-existing conditions of refrigerant and lubricant oil. More than 90% of the experiment data of both test tubes have less than {+-}20% deviation from the prediction values of the new correlations. (author)

  4. Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

    SciTech Connect

    Wang, Mingyu; WolfeIV, Edward; Craig, Timothy; LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar

    2016-01-01

    Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.

  5. High exhaust temperature, zoned, electrically-heated particulate matter filter

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  6. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    SciTech Connect

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-11

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  7. Integrated gas-fired space-heating/water-heating system with electric air conditioning. Annual report, January 1984-December 1984

    SciTech Connect

    Celorier, G.M.; Demetri, E.P.; Gerstmann, J.

    1985-01-01

    The performance of the engineering model of a gas-fired space- and water-heating system with electric air-conditioning has been improved. Modifications to the Phase I engineering model yielded a measured space-heating stack efficiency of over 90% and water-heating recovery efficiency of 85% with standby losses of 1.1% per hour. A Phase II prototype TIA has been designed that incorporates the modifications and improvements made on the Phase I engineering model. Forty-eight Phase II prototypes will be built and field tested. The redesigned package has been reduced to 66 inches, and component placement has been revised to improve accessibility and serviceability. A field-test method has been devised, and work has started on the selection of test sites for the field test.

  8. Diesel particulate filter (DPF) regeneration by electrical heating of resistive coatings

    DOEpatents

    Williamson, Weldon S.; Gonze, Eugene V.

    2008-12-30

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is integrally formed in an upstream end of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  9. DOCUMENTS REQUIRED FOR THE PROCESSING OF STATE HEATING OIL AND PROPRANE PROGRAM (SHOPP)

    Gasoline and Diesel Fuel Update

    Heating Oil and Propane Program (SHOPP) Cooperative Agreement Package Checklist Attachment Estimated OMB* Burden Actions Required SHOPP Project Description NA Review - FYI Statement of Substantial Involvement NA Review - FYI, State listing still subject to change SF-424A, Budget Page 3.0 hours Research and complete form DOE F 1600, Assurance of Compliance 0.25 hours Review, complete and sign Drug-free workplace certification NA Review and sign Intellectual Property Provisions (NRD- 1003) NA

  10. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    Energy Information Administration (EIA) (indexed site)

    1" " (Estimates in Btu or Physical Units)" ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding" ,,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural Gas(d)","LPG","and Breeze)","Other(e)","Row" "Code(a)","End-Use

  11. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    Energy Information Administration (EIA) (indexed site)

    1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion

  12. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    Energy Information Administration (EIA) (indexed site)

    ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000

  13. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    Energy Information Administration (EIA) (indexed site)

    " Part 2" " (Estimates in Trillion Btu)",,,,,,,,"Coal" ,,,,,"Distillate",,,"(excluding" ,,,,,"Fuel Oil",,,"Coal Coke",,"RSE" "SIC",,,"Net","Residual","and Diesel",,,"and",,"Row" "Code(a)","End-Use Categories","Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural

  14. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    Energy Information Administration (EIA) (indexed site)

    1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000

  15. State of Missouri 1991--1992 Energy Information Administration State Heating Oil and Propane Program (SHOPP)

    SciTech Connect

    Not Available

    1992-01-01

    The objective of the Missouri State Heating Oil and Propane Program was to develop a joint state-level company-specific data collective effort. The State of Missouri provided to the US Department of Energy's Energy Information Administration company specific price and volume information on residential No. 2 heating oil and propane on a semimonthly basis. The energy companies participating under the program were selected at random by the US Department of Energy and provided to the Missouri Department of Natural Resources' Division of Energy prior to the implementation of the program. The specific data collection responsibilities for the Missouri Department of Natural Resources' Division of Energy included: (1) Collection of semimonthly residential heating oil and propane prices, collected on the first and third Monday from August 1991 through August 1992; and, (2) Collection of annual sales volume data for residential propane for the period September 1, 1990 through August 31. 1991. This data was required for the first report only. These data were provided on a company identifiable level to the extent permitted by State law. Information was transmitted to the US Department of Energy's Energy Information Administration through the Petroleum Electronic Data Reporting Option (PEDRO).

  16. Impacts of the Weatherization Assistance Program in Fuel-Oil Heated Houses

    SciTech Connect

    Levins, W.P.

    1994-01-01

    In 1990, the U.S. Department of Energy (DOE) initiated a national evaluation of its low-income Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental). Total average costs were $1819 per house ($1192 for

  17. Special ESP configurations designed to test and produce Yemen oil field. [Electric-Submersible Pump

    SciTech Connect

    Wilkie, D.I. )

    1993-09-27

    Innovative electric-submersible-pump (ESP) configurations were used in the exploration phase of a Yemen oil field discovered by Canadian Occidental Petroleum Ltd. Because of subnormal reservoir pressure, CanOxy developed the field with ESPs and had to install surface components that could operate at the high, 130 F., ambient temperatures common in Yemen. The field is in a remote area that has seen very little development. The reservoirs produce a medium-to-heavy crude with a low gas/oil ratio, typically less than 20 scf/bbl. Problems faced in evaluating the field included drilling through unconsolidated sands with high flow capacity and subnormal reservoir pressure. CanOxy had to develop the technology to test the wells during the exploration phase, and intends to use new, or at least uncommon technology, for producing the wells. The paper describes testing the wells, the electric generators and variable speed drives, and the use of these pumps on production wells.

  18. Electrical Power Generation Using Geothermal Fluid Co-produced from Oil &

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gas; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Gas; 2010 Geothermal Technology Program Peer Review Report Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review lowtemp_012_karl.pdf (247.08 KB) More Documents & Publications GRED Drilling Award … GRED III Phase II; 2010 Geothermal Technology Program Peer Review Report

  19. Electrical heating of soils using high efficiency electrode patterns and power phases

    DOEpatents

    Buettner, Harley M.

    1999-01-01

    Powerline-frequency electrical (joule) heating of soils using a high efficiency electrode configuration and power phase arrangement. The electrode configuration consists of several heating or current injection electrodes around the periphery of a volume of soil to be heated, all electrodes being connected to one phase of a multi-phase or a single-phase power system, and a return or extraction electrode or electrodes located inside the volume to be heated being connected to the remaining phases of the multi-phase power system or to the neutral side of the single-phase power source. This electrode configuration and power phase arrangement can be utilized anywhere where powerline frequency soil heating is applicable and thus has many potential uses including removal of volatile organic compounds such as gasoline and tricholorethylene (TCE) from contaminated areas.

  20. High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale

    SciTech Connect

    Forsberg, Charles W.

    2006-07-01

    The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

  1. Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle

    DOEpatents

    Boberg, Evan S.; Gebby, Brian P.

    1999-09-28

    A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

  2. Application of electrical submersible pumps in heavy crude oil in Boscan Field

    SciTech Connect

    Bortolin, L.L.

    1995-12-31

    During recent years optimization of artificial lift methods has been applied in the oil industry, in order to evaluate the effect on oil well production and to establish a company`s optimal investment policies. Higher costs on new artificial lifting equipment and facilities for new fields have created the necessity to review the latest available technology of different lifting methods and specially that related to electrical submersible pumps (ESP). Few studies in the area of heavy crude oil production optimization using ESP as a lifting method have been published. This paper discusses the results of an ESP pilot project performed in 24 wells in Boscan field, and analyzes the performance of the equipment and its application range. The ESP equipment was installed in completions at depths ranging from 7000 to 9000 feet, with a 10{degrees}API gravity crude and bottomhole temperature of 180{degrees}F. It was concluded that despite a reduction of the pump`s efficiency, the ESP equipment does qualify as a good alternative lifting method for heavy oil production. It is also possible to obtain higher production rates. The results obtained in this pilot project, confirm that submersible pumps are an alternative method for lifting heavy crude oil from relatively deep reservoirs.

  3. Report to Congress on the feasibility of establishing a heating oil component to the Strategic Petroleum Reserve. Volume 1

    SciTech Connect

    1998-06-01

    In the Autumn of 1996, consumers and Members of Congress from the Northeast expressed concern about high prices for heating oil and historically low levels of inventories. Some Members of Congress advocated building a Federal inventory of heating oil as part of the Strategic Petroleum Reserve (SPR). Regional reserves are authorized as part of the SPR for import dependent regions by the Energy Policy and Conservation Act. In response, the Department of Energy (DOE) proposed a series of studies related to heating fuels, including a study of the desirability, feasibility, and cost of creating a Federal reserve containing distillate fuel. This report documents that study.

  4. SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane

    SciTech Connect

    Eugene A. Fritzler

    2005-09-01

    The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

  5. Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation

    Energy Information Administration (EIA) (indexed site)

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," ","

  6. Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation

    Energy Information Administration (EIA) (indexed site)

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent

  7. Table A41. Total Inputs of Energy for Heat, Power, and Electricity

    Energy Information Administration (EIA) (indexed site)

    A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and

  8. Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    Energy Information Administration (EIA) (indexed site)

    A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and

  9. Integrated gas-fired space heating/water heating system with electric air conditioning. Annual report on phase 1, Jan-Dec 83

    SciTech Connect

    Vasilakis, A.D.; Celorier, G.M.; Gerstmann, J.

    1984-01-01

    The marketability of a gas space and water heating system combined with an electric air-conditioning system has been examined. This has included a cost effectiveness evaluation when compared to competing systems. The concept appears feasible using a three-year payback criteria. An engineering prototype was constructed which demonstrated space heating efficiencies in the high eighties and water heating recovery efficiencies in the low to mid eighties.

  10. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect

    McDonald, R.

    2009-12-01

    particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns

  11. Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas

    Energy.gov [DOE]

    Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas.

  12. Table 8.6b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a)

    Energy Information Administration (EIA) (indexed site)

    b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 638,798 119,640 1,471,031 762 – 1,591,433 81,669,945 2,804 24,182 5,687

  13. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change

  14. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    SciTech Connect

    Conklin, James C.; Forsberg, Charles W.

    2007-07-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR. (authors)

  15. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    SciTech Connect

    Conklin, Jim; Forsberg, Charles W

    2007-01-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR.

  16. Oil heat venting technology and NFPA standard 31 revision year 2000

    SciTech Connect

    Krajewski, R.F.

    1997-09-01

    The revision of National Fire Protection Association (NFPA) Standard 31 for the year 2000 offers an opportunity to update the Appendix which currently offers recommendations for basic metal relining of masonry chimneys up to and including 25 feet. The paper discusses the proposed update of the existing recommendations to include flexible (rough) metal liners. In addition, the discussion addresses the inclusion of additional information for unlined (non-conforming), lined (conforming to NFPA 211) masonary chimneys, insulated metal chimneys, chimney heights beyond what are now published, as well as power venting both forced and induced draft. Included in the paper is a discussion of the existing Oil Heat Vent Analysis Program (OHVAP Version 3.0) and issues that need resolution to make it a better vent system model.

  17. Oil

    Energy.gov [DOE]

    The Energy Department works to ensure domestic and global oil supplies are environmentally sustainable and invests in research and technology to make oil drilling cleaner and more efficient.

  18. Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation

    Energy Information Administration (EIA) (indexed site)

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry

  19. Table A34. Total Inputs of Energy for Heat, Power, and Electricity Generation

    Energy Information Administration (EIA) (indexed site)

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Employment Size Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)" ,,,,,"Employment Size" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," ",,"1,000","Row"

  20. Dynamic Underground Stripping: In situ steam sweeping and electrical heating to remediate a deep hydrocarbon spill

    SciTech Connect

    Yow, J.L. Jr.; Aines, R.D.; Newmark, R.L.; Udell, K.S.; Ziagos, J.P.

    1994-07-01

    Dynamic Underground Stripping is a combination of in situ steam injection, electrical resistance heating, and fluid extraction for rapid removal and recovery of subsurface contaminants such as solvents or fuels. Underground imaging and other measurement techniques monitor the system in situ for process control. Field tests at a deep gasoline spill at Lawrence Livermore National Laboratory recovered over 7000 gallons of gasoline during several months of field operations. Preliminary analysis of system cost and performance indicate that Dynamic Underground Stripping compares favorably with conventional pump-and-treat and vacuum extraction schemes for removing non-aqueous phase liquids such as gasoline from deep subsurface plumes.

  1. Electrical Energy and Demand Savings from a Geothermal Heat Pump ESPC at Fort Polk, LA

    SciTech Connect

    Shonder, John A; Hughes, Patrick

    1997-06-01

    At Fort Polk, Louisiana, the space-conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHPs) under an energy savings performance contract. At the same time, other efficiency measures, such as compact fluorescent lights, low-flow hot water outlets, and attic insulation, were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. Fifteen-minute interval data were also taken on energy use from a sample of the residences. The analysis presented in this paper shows that for a typical meteorological year, the retrofits result in an electrical energy savings of approximately 25.6 million kWh, or 32.4% of the pre-retrofit electrical use in family housing. Peak electrical demand has also been reduced by about 6.8 MW, which is 40% of pre-retrofit peak demand. In addition, the retrofits save about 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the 'apparent' energy savings observed in the monitored data and are not to be mistaken for the 'contracted' energy savings used as the basis for payments. To determine the 'contracted' energy savings, the 'apparent' energy savings may require adjustments for such things as changes in indoor temperature performance criteri, addition of ceiling fans, and other factors.

  2. Electricity Data Browser

    Energy Information Administration (EIA) (indexed site)

    Data Browser - Data - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade,

  3. EIA - Electric Power Data

    Gasoline and Diesel Fuel Update

    U.S. Energy Information Administration (EIA) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use,

  4. Microscopic model of electric-field-noise heating in ion traps

    SciTech Connect

    Safavi-Naini, A.; Rabl, P.; Weck, P. F.; Sadeghpour, H. R.

    2011-08-15

    Motional heating of ions in microfabricated traps is one of the open challenges hindering experimental realizations of large-scale quantum processing devices. Recently, a series of measurements of the heating rates in surface-electrode ion traps characterized their frequency, distance, and temperature dependencies, but our understanding of the microscopic origin of this noise remains incomplete. In this work we develop a theoretical model for the electric field noise which is associated with a random distribution of adsorbed atoms on the trap electrode surface. By using first-principles calculations of the fluctuating dipole moments of the adsorbed atoms we evaluate the distance, frequency, and temperature dependence of the resulting electric field fluctuation spectrum. Our theory reproduces correctly the d{sup -4} dependence with distance of the ion from the electrode surface and calculates the noise spectrum beyond the standard scenario of two-level fluctuators by incorporating all the relevant vibrational states. Our model predicts a regime of 1/f noise which commences at roughly the frequency of the fundamental phonon transition rate and a thermally activated noise spectrum which for higher temperatures exhibits a crossover as a function of frequency.

  5. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report

    SciTech Connect

    Not Available

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  6. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season

    SciTech Connect

    Not Available

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  7. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    SciTech Connect

    Dr. Xiaodi Huang; Dr. J. Y. Hwang

    2005-03-28

    Steel is a basic material broadly used by perhaps every industry and individual. It is critical to our nation's economy and national security. Unfortunately, the American steel industry is losing competitiveness in the world steel production field. There is an urgent need to develop the next generation of steelmaking technology for the American steel industry. Direct steelmaking through the combination of microwave, electric arc, and exothermal heating is a revolutionary change from current steelmaking technology. This technology can produce molten steel directly from a shippable agglomerate, consisting of iron oxide fines, powdered coal, and ground limestone. This technology is projected to eliminate many current intermediate steelmaking steps including coking, pellet sintering, blast furnace (BF) ironmaking, and basic oxygen furnace (BOF) steelmaking. This technology has the potential to (a) save up to 45% of the energy consumed by conventional steelmaking; (b) dramatically reduce the emission of CO{sub 2}, SO{sub 2}, NO{sub x}, VOCs, fine particulates, and air toxics; (c) substantially reduce waste and emission control costs; (d) greatly lower capital cost; and (e) considerably reduce steel production costs. This technology is based on the unique capability of microwaves to rapidly heat steelmaking raw materials to elevated temperature, then rapidly reduce iron oxides to metal by volumetric heating. Microwave heating, augmented with electric arc and exothermal reactions, is capable of producing molten steel. This technology has the components necessary to establish the ''future'' domestic steel industry as a technology leader with a strong economically competitive position in world markets. The project goals were to assess the utilization of a new steelmaking technology for its potential to achieve better overall energy efficiency, minimize pollutants and wastes, lower capital and operating costs, and increase the competitiveness of the U.S. steel industry. The

  8. Electrically heated ex-reactor pellet-cladding interaction (PCI) simulations utilizing irradiated Zircaloy cladding. [PWR

    SciTech Connect

    Barner, J.O.; Fitzsimmons, D.E.

    1985-02-01

    In a program sponsored by the Fuel Systems Research Branch of the US Nuclear Regulatory Commission, a series of six electrically heated fuel rod simulation tests were conducted at Pacific Northwest Laboratory. The primary objective of these tests was to determine the susceptibility of irradiated pressurized-water reactor (PWR) Zircaloy-4 cladding to failures caused by pellet-cladding mechanical interaction (PCMI). A secondary objective was to acquire kinetic data (e.g., ridge growth or relaxation rates) that might be helpful in the interpretation of in-reactor performance results and/or the modeling of PCMI. No cladding failures attributable to PCMI occurred during the six tests. This report describes the testing methods, testing apparatus, fuel rod diametral strain-measuring device, and test matrix. Test results are presented and discussed.

  9. Condensation heat transfer characteristics of R410A-oil mixture in 5 mm and 4 mm outside diameter horizontal microfin tubes

    SciTech Connect

    Huang, Xiangchao; Ding, Guoliang; Hu, Haitao; Zhu, Yu.; Gao, Yifeng; Deng, Bin

    2010-10-15

    Condensation heat transfer characteristics of R410A-oil mixture in 5 mm and 4 mm outside diameter horizontal microfin tubes were investigated experimentally. The experimental condensing temperature is 40 C, and nominal oil concentration range is from 0% to 5%. The test results indicate that the presence of oil deteriorates the heat transfer. The deterioration effect is negligible at nominal oil concentration of 1%, and becomes obvious with the increase of nominal oil concentration. At 5% nominal oil concentration, the heat transfer coefficient of R410A-oil mixture is found to have a maximum reduction of 25.1% and 23.8% for 5 mm and 4 mm tubes, respectively. The predictabilities of the existing condensation heat transfer correlations were verified with the experimental data, and Yu and Koyama correlation shows the best predictability. By replacing the pure refrigerant properties with the mixture's properties, Yu and Koyama correlation has a deviation of -15% to + 20% in predicting the local condensation heat transfer coefficient of R410A-oil mixture. (author)

  10. TRITIUM IN-BED ACCOUNTABILITY FOR A PASSIVELY COOLED, ELECTRICALLY HEATED HYDRIDE BED

    SciTech Connect

    Klein, J.; Foster, P.

    2011-01-21

    A PAssively Cooled, Electrically heated hydride (PACE) Bed has been deployed into tritium service in the Savannah River Site (SRS) Tritium Facilities. The bed design, absorption and desorption performance, and cold (non-radioactive) in-bed accountability (IBA) results have been reported previously. Six PACE Beds were fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory method. An IBA inventory calibration curve, flowing gas temperature rise ({Delta}T) versus simulated or actual tritium loading, was generated for each bed. Results for non-radioactive ('cold') tests using the internal electric heaters and tritium calibration results are presented. Changes in vacuum jacket pressure significantly impact measured IBA {Delta}T values. Higher jacket pressures produce lower IBA {Delta}T values which underestimate bed tritium inventories. The exhaust pressure of the IBA gas flow through the bed's U-tube has little influence on measured IBA {Delta}T values, but larger gas flows reduce the time to reach steady-state conditions and produce smaller tritium measurement uncertainties.

  11. In-Bed Accountability Development for a Passively Cooled, Electrically Heated Hydride (PACE) Bed

    SciTech Connect

    Klein, J.E.

    2005-07-15

    A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed for implementation into a new Savannah River Site tritium project. The 1.2 meter (four-foot) long process vessel contains on internal 'U-tube' for tritium In-Bed Accountability (IBA) measurements. IBA will be performed on six, 12.6 kg production metal hydride storage beds.IBA tests were done on a prototype bed using electric heaters to simulate the radiolytic decay of tritium. Tests had gas flows from 10 to 100 SLPM through the U-tube or 100 SLPM through the bed's vacuum jacket. IBA inventory measurement errors at the 95% confidence level were calculated using the correlation of IBA gas temperature rise, or (hydride) bed temperature rise above ambient temperature, versus simulated tritium inventory.Prototype bed IBA inventory errors at 100 SLPM were the largest for gas flows through the vacuum jacket: 15.2 grams for the bed temperature rise and 11.5 grams for the gas temperature rise. For a 100 SLPM U-tube flow, the inventory error was 2.5 grams using bed temperature rise and 1.6 grams using gas temperature rise. For 50 to 100 SLPM U-tube flows, the IBA gas temperature rise inventory errors were nominally one to two grams that increased above four grams for flows less than 50 SLPM. For 50 to 100 SLPM U-tube flows, the IBA bed temperature rise inventory errors were greater than the gas temperature rise errors, but similar errors were found for both methods at gas flows of 20, 30, and 40 SLPM.Electric heater IBA tests were done for six production hydride beds using a 45 SLPM U-tube gas flow. Of the duplicate runs performed on these beds, five of the six beds produced IBA inventory errors of approximately three grams: consistent with results obtained in the laboratory prototype tests.

  12. In-Bed Accountability Development for a Passively Cooled, Electrically Heated Hydride (PACE) Bed

    SciTech Connect

    KLEIN, JAMES

    2004-10-12

    A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed for implementation into a new Savannah River Site tritium project. The 1.2 meter (four-foot) long process vessel contains an internal ''U-tube'' for tritium In-Bed Accountability (IBA) measurements. IBA will be performed on six, 12.6 kg production metal hydride storage beds. IBA tests were done on a prototype bed using electric heaters to simulate the radiolytic decay of tritium. Tests had gas flows from 10 to 100 SLPM through the U-tube or 100 SLPM through the bed's vacuum jacket. IBA inventory measurement errors at the 95 percent confidence level were calculated using the correlation of IBA gas temperature rise, or (hydride) bed temperature rise above ambient temperature, versus simulated tritium inventory. Prototype bed IBA inventory errors at 100 SLPM were the largest for gas flows through the vacuum jacket: 15.2 grams for the bed temperature rise and 11.5 grams for the gas temperature rise. For a 100 SLPM U-tube flow, the inventory error was 2.5 grams using bed temperature rise and 1.6 grams using gas temperature rise. For 50 to 100 SLPM U-tube flows, the IBA gas temperature rise inventory errors were nominally one to two grams that increased above four grams for flows less than 50 SLPM. For 50 to 100 SLPM U-tube flows, the IBA bed temperature rise inventory errors were greater than the gas temperature rise errors, but similar errors were found for both methods at gas flows of 20, 30, and 40 SLPM. Electric heater IBA tests were done for six production hydride beds using a 45 SLPM U-tube gas flow. Of the duplicate runs performed on these beds, five of the six beds produced IBA inventory errors of approximately three grams: consistent with results obtained in the laboratory prototype tests.

  13. An update on the development of heat-pipe solar receivers for Stirling/dish-electric systems

    SciTech Connect

    Adkins, D.R. ); Godett, T.M. )

    1991-01-01

    The Department of Energy is sponsoring the development of a 75-kW (thermal) heat-pipe solar receiver to drive a 25-kW (electric) Stirling engine/generator system. A heat pipe solar receiver transfers energy from the focus of a parabolic-dish solar concentrator to the heater tubes of a Stirling engine through the evaporation and condensation of a liquid metal. With a heat pipe receiver, it is possible to transform irregular flux profiles from solar concentrators into a more uniform thermal input at the engine's heater tubes. Recent work in the heat-pipe receiver development program is reviewed in this paper. Techniques for constructing the heat-pipe receiver's wick structure are discussed and findings from recent bench-scale tests are presented. This paper also addresses several problem areas that have been discovered in the course of this program. 9 refs., 10 figs., 1 tab.

  14. Oil-shale utilization at Morgantown, WV

    SciTech Connect

    Shang, J.Y.; Notestein, J.E.; Mei, J.S.; Romanosky, R.R.; King, J.A.; Zeng, L.W.

    1982-01-01

    Fully aware of the nation's need to develop high-risk and long-term research in eastern oil-shale and low-grade oil-shale utilization in general, the US DOE/METC initiated an eastern oil-shale characterization program. In less than 3 months, METC produced shale oil from a selected eastern-US oil shale with a Fischer assay of 8.0 gallons/ton. In view of the relatively low oil yield from this particular oil shale, efforts were directed to determine the process conditions which give the highest oil yield. A 2-inch-diameter electrically heated fluidized-bed retort was constructed, and Celina oil shale from Tennessee was selected to be used as a representative eastern oil shale. After more than 50 runs, the retorting data were analyzed and reviewed and the best oil-yield operating condition was determined. In addition, while conducting the oil-shale retorting experiments, a number of technical problems were identified, addressed, and overcome. Owing to the inherent high rates of heat and mass transfers inside the fluidized bed, the fluidized-bed combustor and retorting appear to be a desirable process technology for an effective and efficient means for oil-shale utilization. The fluidized-bed operation is a time-tested, process-proven, high-throughput, solid-processing operation which may contribute to the efficient utilization of oil-shale energy.

  15. Minnesota Valley Electric Cooperative -Residential Energy Resource...

    Energy.gov [DOE] (indexed site)

    installation Heat pump installation Heat pump with high efficient gas furnace Electric heating solutions to supplement propane heat Electric heat product installations (i.e....

  16. "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural...

    Energy Information Administration (EIA) (indexed site)

    Errors for Table 5.8;" " Unit: Percents." ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for ...

  17. "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...

    Energy Information Administration (EIA) (indexed site)

    Unit: Percents." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for ...

  18. Electric Power Generation from Co-Produced Fluids from Oil and...

    OpenEI (Open Energy Information) [EERE & EIA]

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  19. Convective Heat Transfer Coefficients of Automatic Transmission Fluid Jets with Implications for Electric Machine Thermal Management: Preprint

    SciTech Connect

    Bennion, Kevin; Moreno, Gilberto

    2015-09-29

    Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures were varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.

  20. Heat wave contributes to higher summer electricity demand in the Northeast

    Energy Information Administration (EIA) (indexed site)

    Drop in residential electricity use to continue through 2015 Improvements in energy efficiency in lighting and home appliances are expected to continue to push residential electricity use lower over the next two years. Electricity use by the average residential customer has been trending downward since 2006 and is expected to fall to the lowest level in more than a decade, according to the U.S. Energy Information Administration EIA's new forecast shows household electricity use is expected to

  1. The role of interruptible natural gas customers in New England heating oil markets: A preliminary examination of events in January-February 2000

    SciTech Connect

    2000-11-01

    This report provides an analysis of data collected from gas service providers and end-use customers in the six New England States and offers a preliminary assessment of the impact of interruptible gas customers on the distillate fuel oil market this past winter. Based on information collected and analyzed as of October 2000, the main findings areas follows: (1) For interruptible gas customers with distillate fuel oil as a backup fuel, their volume of interruptions was equivalent to about 1 to 2 percent of the total sales of distillate fuel oil in New England during January-February 2000. For the two peak weeks of gas supply interruptions, however, the equivalent volume of distillate fuel oil amounted to an estimated 3 to 6 percent of total sales in New England. There were no interruptions of the natural gas service during the 2-month period. (2) Purchases of distillate fuel oil by interruptible gas customers may have contributed somewhat to the spike in the price of distillate fuel oil in January-February 2000, especially during the peak weeks of gas interruptions. Nevertheless, other factors--a sudden drop in temperatures, low regional stocks of distillate fuels, and weather-related supply problems during a period of high customer demand--appear to have played a significant role in this price spike, as they have in previous spikes. (3) While this preliminary analysis suggests that interruptible natural gas service does not threaten the stability of the home heating oil market, several steps might be taken-without undermining the benefits of interruptible service--to reduce the potential adverse impacts of gas supply interruptions in times of market stress. Regardless of the magnitude of the impact of distillate fuel oil purchases by interruptible gas customers on Northeast heating oil markets, the threat of future heating oil price spikes and supply problems still remains. To help counter the threat, President Clinton in July 2000 directed Secretary Richardson to

  2. Major Fuels","Site Electricity","Natural Gas","Fuel Oil","District...

    Energy Information Administration (EIA) (indexed site)

    C1. Total Energy Consumption by Major Fuel, 1999" ,"All Buildings",,"Total Energy Consumption (trillion Btu)",,,,,"Primary Electricity (trillion Btu)" ,"Number of Buildings...

  3. Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity

    Energy.gov [DOE]

    Working to expand the usage of thermoelectric technology beyond seat heating and cooling and in doing so reduce CO2 emissions and conserve energy.

  4. Vehicle Technologies Office Merit Review 2014: Electric PCM Assisted Thermal Heating System

    Energy.gov [DOE]

    Presentation given by Delphi Automotive at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric PCM assisted...

  5. Electrical energy and demand savings from a geothermal heat pump energy savings performance contract at Ft. Polk, LA

    SciTech Connect

    Shonder, J.A.; Hughes, P.J.

    1997-06-01

    At Fort Polk, LA the space conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHP) under an energy savings performance contract. At the same time, other efficiency measures such as compact fluorescent lights (CFLs), low-flow hot water outlets, and attic insulation were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. 15-minute interval data was also taken on energy use from a sample of the residences. This paper summarizes the electrical energy and demand savings observed in this data. Analysis of feeder-level data shows that for a typical year, the project will result in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing. Results from analysis of building-level data compare well with this figure. Analysis of feeder-level data also shows that the project has resulted in a reduction of peak electrical demand of 6,541 kW, which is 39.6% of the pre-retrofit peak electrical demand. In addition to these electrical savings, the facility is also saving an estimated 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

  6. Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat

    SciTech Connect

    Wilson, V.C.

    1997-01-01

    A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500W{sub e} at 9.2 V and 15.7{percent} efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel. {copyright} {ital 1997 American Institute of Physics.}

  7. Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat

    SciTech Connect

    Wilson, Volney C.

    1997-01-10

    A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10 A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500 W{sub e} at 9.2 V and 15.7% efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel.

  8. Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas

    Energy.gov [DOE]

    Project objectives: To validate and realize the potential for the production of low temperature resource geothermal production on oil & gas sites. Test and document the reliability of this new technology.; Gain a better understanding of operational costs associated with this equipment.

  9. Hydrogen Removal From Heating Oil of a Parabolic Trough Increases the Life

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    FreedomCAR and Fuel Partnership Hydrogen Production Technical Team This roadmap was created by the Hydrogen Production Technical Team (HPTT) of the FreedomCAR and Fuel Partnership. This is a partnership of industry's U.S. Council for Automotive Research (USCAR), energy companies and the U.S. Department of Energy (DOE) to advance technologies that enable reduced oil consumption and increased energy efficiency in passenger vehicles. The Partnership focuses on the pre-competitive, high-risk

  10. Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight

    Energy.gov [DOE]

    Did you know 50 percent of the energy generated annually from all sources is lost as waste heat? What scientists are doing to take advantage of this opportunity to save money and new developments in harvesting fuel through photosynthesis.

  11. Thermally-enhanced oil recovery method and apparatus

    DOEpatents

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  12. Vehicle Technologies Office Merit Review 2015: ePATHS- electrical PCM Assisted Thermal Heating System

    Energy.gov [DOE]

    Presentation given by Delphi Automotive at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ePATHS - electrical PCM...

  13. Effect of bulk electric field reversal on the bounce resonance heating in dual-frequency capacitively coupled electronegative plasmas

    SciTech Connect

    Liu Yongxin; Zhang Quanzhi; Liu Jia; Song Yuanhong; Wang Younian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Bogaerts, Annemie [Department of Chemistry, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, BE-2610 Wilrijk-Antwerp (Belgium)

    2012-09-10

    The electron bounce resonance heating (BRH) in dual-frequency capacitively coupled plasmas operated in oxygen and argon has been studied by different experimental methods. In comparison with the electropositive argon discharge, the BRH in an electronegative discharge occurs at larger electrode gaps. Kinetic particle simulations reveal that in the oxygen discharge, the bulk electric field becomes quite strong and is out of phase with the sheath field. Therefore, it retards the resonant electrons when traversing the bulk, resulting in a suppressed BRH. This effect becomes more pronounced at lower high-frequency power, when the discharge mode changes from electropositive to electronegative.

  14. Emergency cooling simulation tests on an electrically heated channel typical of SRP (Savannah River Laboratory) reactor fuel channels - RIG B

    SciTech Connect

    Guerrero, H.N.

    1990-01-01

    Emergency cooling simulation tests were conducted on a single electrically heated test channel representative of Savannah River Plant fuel assembly flow channels. The primary objective was to investigate downflow, air-water hydraulic flow conditions that lead to the onset of a runaway thermal excursion in the range of superficial liquid and gas velocities, 1.4 m/sec and 1 m/sec, respectively. The thermal excursion power normalized by the power to reach fluid outlet saturation conditions, or R-factor, was found to decrease from values close to 2, at annular flow conditions to approximately 0.8 at low to zero void fractions. 3 refs., 9 figs.

  15. Induction heating apparatus and methods for selectively energizing an inductor in response to a measured electrical characteristic that is at least partially a function of a temperature of a material being heated

    DOEpatents

    Richardson, John G.; Morrison, John L.; Hawkes, Grant L.

    2006-07-04

    An induction heating apparatus includes a measurement device for indicating an electrical resistance of a material to be heated. A controller is configured for energizing an inductor in response to the indicated resistance. An inductor may be energized with an alternating current, a characteristic of which may be selected in response to an indicated electrical resistance. Alternatively, a temperature of the material may be indicated via measuring the electrical resistance thereof and a characteristic of an alternating current for energizing the inductor may be selected in response to the temperature. Energizing the inductor may minimize the difference between a desired and indicated resistance or the difference between a desired and indicated temperature. A method of determining a temperature of at least one region of at least one material to be induction heated includes correlating a measured electrical resistance thereof to an average temperature thereof.

  16. Heat

    Gasoline and Diesel Fuel Update

    ... Q 1,354 5,925 Q 742 Q District chilled water 4,608 4,561 325 Q 888 3,718 582 756 Q ... 5,864 21,579 48,053 1,534 Buildings with water heating 79,015 76,584 11,576 8,420 19,548 ...

  17. HTR-100 industrial nuclear power plant for generation of heat and electricity

    SciTech Connect

    Brandes, S.; Kohl, W.

    1987-11-01

    Based on their proven high-temperature reactor (HTR) with pebble-bed core, Brown, Boveri and Cie/Hochtemperatur-Reaktorbau have developed an HTR-100 plant that combines favorable capital costs and high availability. Due to the high HTR-specific standards and passive safety features, this plant is especially well suited for siting near the end user. The safety concept permits further operation of the plant or decay heat removal via the operational heat sinks in the event of maloperation and design basis accidents having a higher probability of occurrence. In the event of hypothetical accidents, the decay heat is removed from the reactor pressure vessel by radiation, conduction, and convection to a concrete cooling system operating in natural convection. As an example of the new HTR-100 plant concept, a twin-block plant design for extraction of industrial steam is presented.

  18. Effect of heat treatment time on microstructure and electrical conductivity in LATP glass ceramics

    SciTech Connect

    Sonigra, Dhiren E-mail: ajit.kulkarni@iitb.ac.in; Soman, Swati E-mail: ajit.kulkarni@iitb.ac.in; Kulkarni, Ajit R. E-mail: ajit.kulkarni@iitb.ac.in

    2014-04-24

    Glass-ceramic is prepared by heat treatment of melt quenched 14Li{sub 2}O?9Al{sub 2}O{sub 3}?38TiO{sub 2}?39P{sub 2}O{sub 5} glass in the vicinity of crystallization temperature. Growth of ceramic phase is controlled by tuning heat treatment time at fixed temperature. Ceramic phase was identified to be LiTi{sub 2}(PO{sub 4}){sub 3} from X Ray Diffraction analysis. Microstructural evolution of this phase with hold time was observed under high resolution Scanning Electron Microscope. DC conductivity is observed to increase by 4-5 orders of magnitude in this glass-ceramic compared to parent glass. However, formation of pores and cracks with very large heat treatment time seem to hinder further increase of conductivity.

  19. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY

  20. Variable power distribution for zoned regeneration of an electrically heated particulate filter

    DOEpatents

    Bhatia, Garima [Bangalore, IN; Gonze, Eugene V [Pinckney, MI

    2012-04-03

    A system includes a particulate matter (PM) filter with multiple zones, an electric heater and a control module. The electrical heater includes heater segments, which each correspond with a respective one of the zones. The electrical heater is arranged upstream from and is proximate with the PM filter. The control module selectively applies a first energy level to a first one of the zones via a first one of the heater segments to initiate regeneration in the first zone. The control module also selectively applies a second energy level that is less than the first energy level to a second one of the zones via a second one of the heater segments to initiate regeneration in the second zone.

  1. Technical Information Exchange on Pyrolysis Oil: Potential for a renewable

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    heating oil substitution | Department of Energy renewable heating oil substitution Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution Two-day agenda from the workshop: Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution fuel in New England. pyrolysis_oil_agenda.pdf (464.53 KB) More Documents & Publications Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil

  2. Integrated electric power and heat planning in Russia: The fossil-nuclear tradeoff

    SciTech Connect

    Shavel, I.H.; Blaney, J.C.

    1996-08-01

    For the Joint Energy Alternatives Study (JEAS), ICF Kaiser International was tasked to use its Integrated Planning Model (IPM{copyright}) to estimate the investment requirements for the Russian power sector. The IPM is a least-cost planning model that uses a linear programming algorithm to select investment options and to dispatch generating and load management resources to meet overall electricity demand. For the purpose, ICF was provided with input data by the five Working Groups established under the JEAS. Methodological approaches for processing and adjusting this data were specified by Working Group 5. In addition to the two Reference Cases, ICF used IPM to analyze over forty different Change Cases. For each of these cases, ICF generated summary reports on capacity additions, electric generation, and investment and system costs. These results, along with the parallel work undertaken by the Russian Energy Research Institute formed the analytical basis for the Joint Energy Alternatives Study.

  3. Thermoelectric energy converter for generation of electricity from low-grade heat

    DOEpatents

    Jayadev, T.S.; Benson, D.K.

    1980-05-27

    A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)

  4. Non-Space Heating Electrical Consumption in Manufactured Homes: Residential Construction Demonstration Project Cycle II : Final Report.

    SciTech Connect

    Onisko, Stephen A.; Roos, Carolyn; Baylon, David

    1993-06-01

    This report summarizes submeter data of the non-space heating electrical energy use in a sample of manufactured homes. These homes were built to Super Good Cents insulation standards in 1988 and 1989 under the auspices of RCDP Cycle 2 of the Bonneville Power Administration. They were designed to incorporate innovations in insulation and manufacturing techniques developed to encourage energy conservation in this important housing type. Domestic water heating (DWH) and other non-space heat energy consumption, however, were not generally affected by RCDP specifications. The purpose of this study is to establish a baseline for energy conservation in these areas and to present a method for estimating total energy saving benefits associated with these end uses. The information used in this summary was drawn from occupant-read submeters and manufacturersupplied specifications of building shell components, appliances and water heaters. Information was also drawn from a field review of ventilation systems and building characteristics. The occupant survey included a census of appliances and occupant behavior in these manufactured homes. A total of 150 manufactured homes were built under this program by eight manufacturers. An additional 35 homes were recruited as a control group. Of the original 185 houses, approximately 150 had some usable submeter data for domestic hot water and 126 had usable submeter data for all other nonheating consumption. These samples were used as the basis for all consumption analysis. The energy use characteristics of these manufactured homes were compared with that of a similar sample of RCDP site-built homes. In general, the manufactured homes were somewhat smaller and had fewer occupants than the site-built homes. The degree to which seasonal variations were present in non-space heat uses was reviewed.

  5. STEO October 2012 - home heating use

    Energy Information Administration (EIA) (indexed site)

    Last year's warm U.S. winter temperatures to give way to normal, increasing household heating fuel use U.S. households will likely burn more heating fuels to stay warm this winter compared with last year Average household demand for natural gas, the most common primary heating fuel, is expected to be up 14 percent this winter, according to the U.S. Energy Information Administration's new winter fuels forecast. Demand for electricity will be up 8 percent. And demand for heating oil, used mainly

  6. "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal"

    Energy Information Administration (EIA) (indexed site)

    4 Relative Standard Errors for Table 7.4;" " Unit: Percents." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu

  7. Construction-employment opportunities of four oil-replacing space-heating alternatives for core areas of thirteen major northeastern and midwestern cities

    SciTech Connect

    Santini, D.J.; Wernette, D.R.

    1980-07-01

    Construction employment opportunities are compared for four oil-replacing technologies providing equivalent space-heating services to the core areas of 13 major northeastern and midwestern cities. The four technologies are: cogeneration district heating, coal gasification, coal liquefaction and electrification (coal-fired power plant). It is observed that the district-heating option places a higher percentage of its capital stock within the center city. It also requires lower occupational skills for its construction than the other three alternatives. In view of the lower average educational level of minorities and their concentration in urban areas, substantially more minority employment should occur if district heating is implemented. This alternative also will provide employment opportunities for unemployed nonminority construction laborers and contribute indirectly to the improvement of inner-city neighborhoods where many unemployed construction laborers live.

  8. ,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million"

    Energy Information Administration (EIA) (indexed site)

    7 Relative Standard Errors for Table 5.7;" " Unit: Percents." ,,,"Distillate",,,"Coal" ,,,"Fuel Oil",,,"(excluding Coal" ,"Net Demand","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)" ,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million" "End Use","(million

  9. State of Missouri 1991--1992 Energy Information Administration State Heating Oil and Propane Program (SHOPP). Final report, August 9, 1991--August 8, 1992

    SciTech Connect

    Not Available

    1992-12-31

    The objective of the Missouri State Heating Oil and Propane Program was to develop a joint state-level company-specific data collective effort. The State of Missouri provided to the US Department of Energy`s Energy Information Administration company specific price and volume information on residential No. 2 heating oil and propane on a semimonthly basis. The energy companies participating under the program were selected at random by the US Department of Energy and provided to the Missouri Department of Natural Resources` Division of Energy prior to the implementation of the program. The specific data collection responsibilities for the Missouri Department of Natural Resources` Division of Energy included: (1) Collection of semimonthly residential heating oil and propane prices, collected on the first and third Monday from August 1991 through August 1992; and, (2) Collection of annual sales volume data for residential propane for the period September 1, 1990 through August 31. 1991. This data was required for the first report only. These data were provided on a company identifiable level to the extent permitted by State law. Information was transmitted to the US Department of Energy`s Energy Information Administration through the Petroleum Electronic Data Reporting Option (PEDRO).

  10. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    SciTech Connect

    2012-01-31

    The thermoelectric generator shorting system provides the capability to monitor and short-out individual thermoelectric couples in the event of failure. This makes the series configured thermoelectric generator robust to individual thermoelectric couple failure. Open circuit detection of the thermoelectric couples and the associated short control is a key technique to ensure normal functionality of the TE generator under failure of individual TE couples. This report describes a five-year effort whose goal was the understanding the issues related to the development of a thermoelectric energy recovery device for a Class-8 truck. Likely materials and important issues related to the utility of this generator were identified. Several prototype generators were constructed and demonstrated. The generators developed demonstrated several new concepts including advanced insulation, couple bypass technology and the first implementation of skutterudite thermoelectric material in a generator design. Additional work will be required to bring this system to fruition. However, such generators offer the possibility of converting energy that is otherwise wasted to useful electric power. Uur studies indicate that this can be accomplished in a cost-effective manner for this application.

  11. Crude Oil

    Energy Information Administration (EIA) (indexed site)

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 0 0 0 0 0 0 1986-2015 East Coast (PADD 1) 0 0 0 0

  12. Influence of frequency, grade, moisture and temperature on Green River oil shale dielectric properties and electromagnetic heating processes

    SciTech Connect

    Hakala, J. Alexandra [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Stanchina, William [Univ. of Pittsburgh, PA (United States); National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Soong, Yee [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Hedges, Sheila [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2011-01-01

    Development of in situ electromagnetic (EM) retorting technologies and design of specific EM well logging tools requires an understanding of various process parameters (applied frequency, mineral phases present, water content, organic content and temperature) on oil shale dielectric properties. In this literature review on oil shale dielectric properties, we found that at low temperatures (<200 C) and constant oil shale grade, both the relative dielectric constant (?') and imaginary permittivity (?'') decrease with increased frequency and remain constant at higher frequencies. At low temperature and constant frequency, ?' decreases or remains constant with oil shale grade, while ?'' increases or shows no trend with oil shale grade. At higher temperatures (>200 C) and constant frequency, epsilon' generally increases with temperature regardless of grade while ?'' fluctuates. At these temperatures, maximum values for both ?' and ?'' differ based upon oil shale grade. Formation fluids, mineral-bound water, and oil shale varve geometry also affect measured dielectric properties. This review presents and synthesizes prior work on the influence of applied frequency, oil shale grade, water, and temperature on the dielectric properties of oil shales that can aid in the future development of frequency- and temperature-specific in situ retorting technologies and oil shale grade assay tools.

  13. Reducing home heating and cooling costs

    SciTech Connect

    Not Available

    1994-07-01

    This report is in response to a request from the House Committee on Energy and Commerce that the Energy Information Administration (EIA) undertake a neutral, unbiased analysis of the cost, safety, and health and environmental effects of the three major heating fuels: heating oil, natural gas, and electricity. The Committee also asked EIA to examine the role of conservation in the choice of heating and cooling fuel. To accommodate a wide audience, EIA decided to respond to the Committee`s request in the context of a report on reducing home heating and cooling costs. Accordingly, this report discusses ways to weatherize the home, compares the features of the three major heating and cooling fuels, and comments on the types of heating and cooling systems on the market. The report also includes a worksheet and supporting tables that will help in the selection of a heating and/or cooling system.

  14. Research, development, and testing of a prototype two-stage low-input rate oil burner for variable output heating system applications

    SciTech Connect

    Krajewski, R.F.; Butcher, T.A.

    1997-09-01

    The use of a Two-Stage Fan Atomized Oil Burner (TSFAB) in space and water heating applications will have dramatic advantages in terms of it`s potential for a high Annual Fuel Utilization Efficiency (AFUE) and/or Energy Factor (EF) rating for the equipment. While demonstrations of a single rate burner in an actual application have already yielded sufficient confidence that space and domestic heating loads can be met at a single low firing rate, this represents only a narrow solution to the diverse nature of building space heating and domestic water loads that the industry must address. The mechanical development, proposed control, and testing of the Two-Stage burner is discussed in terms of near term and long term goals.

  15. Energy & Financial Markets: What Drives Crude Oil Prices? - Energy

    Energy Information Administration (EIA) (indexed site)

    Information Administration Crudeoil - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks,

  16. Renewable Electricity-to-Grid Integration | Energy Systems Integration |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption &

  17. An experimental study on the motion, deformation and electrical charging of water drops falling in oil in the presence of high voltage D.C. electric field

    SciTech Connect

    Jalaal, M.; Khorshidi, B.; Esmaeilzadeh, E.

    2010-11-15

    The motion, deformation and electrical charging of conducting water drops falling in an insulating liquid subjected to various electric fields strength were studied experimentally. The drop motion was recorded contentiously by high speed camera and their responses to deformation under the influence of electric field were digitally extracted by image processing of the sequential frames. Two parameters were defined for describing the deviation and deformation of the drops under the electric forces. Outcomes depicted that the deviation of the drops from the vertical line would be increased by adding to the applied electrical potential as well as reduction of drop size. Moreover, regarding to deformation diagram, the results revealed a dissimilar deformation manner between large and small drops, which can be helpful in describing the drop-drop electro coalescence phenomena and in design of electrically driven droplet-based systems. (author)

  18. Heating oil supply/price monitoring report: Part I. Historic data, August 1978-July 1979. Part II. Current data, August 1979-May 1980

    SciTech Connect

    Not Available

    1980-08-01

    The 1973-1974 oil embargo brought national realization to the importance, and need for the collection and analysis of energy data. The Maine Office of Energy Resources (OER) is responsible for the establishment and implementation of energy plans and policies in the State of Maine. The Supply/Price Monitoring System has been created to assist energy planners both in Maine and the nation. This survey is used to analyze trends in home heating oil supply and price, and as a tool in responding to inquiries from: citizens, other state agencies, federal and local offices, and the Office of the Governor. This report will describe the Supply/Price Monitoring System, and the results obtained from the survey, during the period August 1, 1979 through May 31, 1980. Historical data is also provided as required by the aforementioned agreement between the OER and the US Department of Energy.

  19. Heating oil supply/price monitoring report. Part I. Historic data, August 1978-July 1979; Part II. Current data, August 1979-May 1980

    SciTech Connect

    Not Available

    1980-08-01

    The 1973-1974 oil embargo brought national realization to the importance, and need for the collection and analysis of energy data. The Maine Office of Energy Resources (OER) is responsible for the establishment and implementation of energy plans and policies in the State of Maine. The Supply/Price Monitoring System has been created to assist energy planners both in Maine and the nation. This survey is used to analyze trends in home heating oil supply and price, and as a tool in responding to inquiries from: citizens, other state agencies, federal and local offices, and the Office of the Governor. This report will describe the Supply/Price Monitoring System, and the results obtained from the survey, during the period August 1, 1979 through May 31, 1980. Historical data are also provided as required by the aforementioned agreement between the OER and the US Department of Energy.

  20. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability:A Study of Commercial Buildings in California and New York States

    SciTech Connect

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Coffey, Brian; Aki, Hirohisa

    2008-12-01

    In past work, Berkeley Lab has developed the Distributed Energy Resources Customer Adoption Model (DER-CAM). Given end-use energy details for a facility, a description of its economic environment and a menu of available equipment, DER-CAM finds the optimal investment portfolio and its operating schedule which together minimize the cost of meeting site service, e.g., cooling, heating, requirements. Past studies have considered combined heat and power (CHP) technologies. Methods and software have been developed to solve this problem, finding optimal solutions which take simultaneity into account. This project aims to extend on those prior capabilities in two key dimensions. In this research storage technologies have been added as well as power quality and reliability (PQR) features that provide the ability to value the additional indirect reliability benefit derived from Consortium for Electricity Reliability Technology Solutions (CERTS) Microgrid capability. This project is intended to determine how attractive on-site generation becomes to a medium-sized commercial site if economical storage (both electrical and thermal), CHP opportunities, and PQR benefits are provided in addition to avoiding electricity purchases. On-site electrical storage, generators, and the ability to seamlessly connect and disconnect from utility service would provide the facility with ride-through capability for minor grid disturbances. Three building types in both California and New York are assumed to have a share of their sensitive electrical load separable. Providing enhanced service to this load fraction has an unknown value to the facility, which is estimated analytically. In summary, this project began with 3 major goals: (1) to conduct detailed analysis to find the optimal equipment combination for microgrids at a few promising commercial building hosts in the two favorable markets of California and New York; (2) to extend the analysis capability of DER-CAM to include both heat and

  1. Performance of electrostatic precipitators and fabric filter particulate controls on oil-fired electric utility boilers. Final report

    SciTech Connect

    McRanie, R.D.; Baker, S.S. Jr.

    1995-09-01

    Of the 189 hazardous air pollutants (HAPs) listed in Title III of the 1990 Clean Air Act Amendments, 11 are metals commonly found in particulate emissions from oil-fired boilers. In light of the potential future need for additional control of particulate emissions from oil-fired units, a white paper was prepared documenting the extent of particulate and HAPs emissions and the state-of-the-art in the use of electrostatic precipitator (ESP) and fabric filter (FF) technologies to control their emissions from oil-fired boilers. The white paper is based on EPRI research on particulate emissions from oil-fired boilers and a survey of ESP and FF manufacturers. The EPRI ESPM{trademark} performance model was used to estimate the particulate control effectiveness of oil-fired ESPs. The white paper describes the characteristics of oil ash, summarizes particulate and HAPs emission rates for oil-fired boilers, and projects the particulate and HAPs removal effectiveness for baghouses and different sized ESPs. Information on oil-fired ESP operation and maintenance requirements and overall costs is included.

  2. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  3. Electricity Monthly Update

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Electric Power Sector comprises electricity-only and combined heat and power (CHP) plants within the North American Industrial Classification System 22 category whose...

  4. Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used

    Energy Information Administration (EIA) (indexed site)

    0. Space-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",4657,4016,1880,2380,377,96,307,94 "Building Floorspace"

  5. Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used

    Energy Information Administration (EIA) (indexed site)

    5. Water-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings ................",4657,3239,1546,1520,110,62,130 "Building Floorspace" "(Square

  6. Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Using Geothermal Fluid Coproduced from Oil and/or Gas Wells PI - Bernie Karl Chena Hot Springs Resort Track 1 Project Officer: Eric Hass Total Project Funding: $724,000 April 22, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research Project Objectives * Design, build, and operate low temperature, mobile, geothermal power plant capable of co-producing off oil/gas wells *

  7. Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange

    DOEpatents

    Lewis, A.E.; Braun, R.L.; Mallon, R.G.; Walton, O.R.

    1983-09-21

    A cascading bed retorting process and apparatus are disclosed in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  8. Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange

    DOEpatents

    Lewis, Arthur E.; Braun, Robert L.; Mallon, Richard G.; Walton, Otis R.

    1986-01-01

    A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  9. Tips: Heat Pumps | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    electric heating, providing up to three times more heat than the energy they use. Today's heat pump can reduce your electricity use for heating by approximately 50% compared to...

  10. Nebraska Preparing for the Upcoming Heating Season

    Energy Information Administration (EIA) (indexed site)

    N E B R A S K A Nebraska "Preparing for the Upcoming Heating Season" E N E R G Y O F F I C E State Heating Oil and Propane Conference October 8, 2014 Profile of Nebraska Population - 1,868,516 Occupied Housing Units - 733,570 Occupied Housing by Fuel Used for Home Heating in 2012 Natural Gas 63% Fuel Oil and Kerosene 0.50% Electricity 26% Propane 8% Wood 1.60% All Other Fuels 0.09% Coal or Coke 0.01% Solar Energy 0.04% No Fuel Used 0.20% http://www.neo.ne.gov/statshtml/75.html History

  11. The utilization of excess wind-electric power from stock water pumping systems to heat a sector of the stock tank

    SciTech Connect

    Nydahl, J.E.; Carlson, B.O.

    1996-12-31

    On the high plains, a wind-electric stock water pumping system produces a significant amount of excess power over the winter months due to intense winds and the decreased water consumption by cattle. The University of Wyoming is developing a multi-tasking system to utilize this excess energy to resistively heat a small sector of the stock tank at its demonstration/experimental site. This paper outlines the detailed heat transfer analysis that predicted drinking water temperature and icing conditions. It also outlines the optimization criteria and the power produced by the Bergey 1500 wind electric system. Results show that heating a smaller insulated tank inserted into the larger tank would raise the drinking water temperature by a maximum of 6.7 {degrees}C and eliminate icing conditions. The returns associated with the additional cattle weight gain, as a result of the consumption of warmer water, showed that system modification costs would be recovered the first year. 12 refs., 11 figs., 2 tabs.

  12. Conceptual design phase of a district heating and cooling plant with cogeneration to serve James Madison University and the Harrisonburg Electric Commission

    SciTech Connect

    Belcher, J.B.

    1995-12-31

    A unique opportunity for cooperation and community development exists in Harrisonburg, Virginia. James Madison University, located in Harrisonburg, is undergoing an aggressive growth plan of its academic base which also includes the physical expansion of its campus. The City of Harrisonburg is presently supplying steam to meet a portion of the heating needs of the existing James Madison campus from a city owned and operated waste-to-energy plant. In an effort of cooperation, Harrisonburg and James Madison University have now negotiated an agreement for the city to provide all of the heating and cooling requirements of the new campus expansion. In another unique turn of events, the local electrical power distributor, Harrisonburg Electric Commission, approached the city concerning the inclusion of cogeneration in the project in order to reduce and maintain existing electric rates thus further benefiting the community. Through the cooperation of these three entities, the conceptual design phase of the project has been completed. The plant design developed through this process includes 3,000 tons of chilled water capacity, an additional 64,000 lb/hr of steam capacity and 2.5 MW of cogeneration capacity. This paper describes the conceptual design process for this interesting project.

  13. Report to Congress on the feasibility of establishing a heating oil component to the Strategic Petroleum Reserve. Volume 2: Appendices

    SciTech Connect

    1998-06-01

    Nine appendices to the main report are included in this volume. They are: Northeastern US distillate supply systems; New England fuel oil storage capacities and inventories; Characteristics of the northeast natural gas market; Documentation of statistical models and calculation of benefits; Regional product reserve study; Other countries` experience with refined product storage; Global refining supply demand appraisal; Summary of federal authorities relevant to the establishment of petroleum product reserves; Product stability and turnover requirements.

  14. " Electricity Generation by Census Region, Industry...

    Energy Information Administration (EIA) (indexed site)

    "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and ...

  15. Assessment of Heating Fuels and Electricity Markets During the Winters of 2013-2014 and 2014-2015 Now Available

    Energy.gov [DOE]

    Cold weather that blanketed much of the Eastern United States in 2013-2014 and 2014-2015 exhibited unique characteristics that prompted different — but related — challenges across heating fuels and...

  16. PBMR as an Ideal Heat Source for High-Temperature Process Heat Applications

    SciTech Connect

    Correia, Michael; Greyvenstein, Renee; Silady, Fred; Penfield, Scott

    2006-07-01

    The Pebble Bed Modular Reactor (PBMR) is an advanced helium-cooled, graphite-moderated High Temperature Gas-cooled Reactor (HTGR). A 400 MWt PBMR Demonstration Power Plant (DPP) for the production of electricity is being developed in South Africa. This PBMR technology is also an ideal heat source for process heat applications, including Steam Methane Reforming, steam for Oil Sands bitumen recovery, Hydrogen Production and co-generation (process heat and/or electricity and/or process steam) for petrochemical industries. The cycle configuration used to transport the heat of the reactor to the process plant or to convert the reactor's heat into electricity or steam directly influences the cycle efficiency and plant economics. The choice of cycle configuration depends on the process requirements and is influenced by practical considerations, component and material limitations, maintenance, controllability, safety, performance, risk and cost. This paper provides an overview of the use of a PBMR reactor for process applications and possible cycle configurations are presented for applications which require high temperature process heat and/or electricity. (authors)

  17. Technical Information Exchange on Pyrolysis Oil: Potential for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewab;e Heating Oil Substation Fuel in New England Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England This ...

  18. Evaluation of water source heat pumps for the Juneau, Alaska Area

    SciTech Connect

    Jacobsen, J.J.; King, J.C.; Eisenhauer, J.L.; Gibson, C.I.

    1980-07-01

    The purposes of this project were to evaluate the technical and economic feasibility of water source heat pumps (WSHP) for use in Juneau, Alaska and to identify potential demonstration projects to verify their feasibility. Information is included on the design, cost, and availability of heat pumps, possible use of seawater as a heat source, heating costs with WSHP and conventional space heating systems, and life cycle costs for WSHP-based heating systems. The results showed that WSHP's are technically viable in the Juneau area, proper installation and maintenance is imperative to prevent equipment failures, use of WSHP would save fuel oil but increase electric power consumption. Life cycle costs for WSHP's are about 8% above that for electric resistance heating systems, and a field demonstration program to verify these results should be conducted. (LCL)

  19. DOE - Fossil Energy: Soap, Bugs and Other Ways to Produce Oil

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    It hardly flows out of a jar, much less out of an oil reservoir. But if the oil is heated, it becomes thinner and more slippery. To heat heavy oil in a reservoir, oil companies ...

  20. Tips: Heat Pumps | Department of Energy

    Energy.gov [DOE] (indexed site)

    climates, providing up to three times more heat than the energy they use. Today's heat pump can reduce your electricity use for heating by approximately 50% compared to...

  1. Home Heating Systems | Department of Energy

    Office of Environmental Management (EM)

    separately, many homes use the following approaches: Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental heat source. Electric...

  2. Thermoelectric heat exchange element

    DOEpatents

    Callas, James J.; Taher, Mahmoud A.

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  3. Oil-futures markets

    SciTech Connect

    Prast, W.G.; Lax, H.L.

    1983-01-01

    This book on oil futures trading takes a look at a market and its various hedging strategies. Growing interest in trading of commodity futures has spread to petroleum, including crude oil, and key refined products such as gasoline and heating oil. This book describes how the international petroleum trade is structured, examines the working of oil futures markets in the United States and the United Kingdom, and assesses the possible courses of further developments.

  4. List of Heat recovery Incentives | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Energy Storage Nuclear Wind Heat recovery Fuel Cells using Renewable Fuels No Agricultural Energy Efficiency...

  5. Nebraska Preparing for the Upcoming Heating Season

    Energy Information Administration (EIA) (indexed site)

    Heating Oil Propane Residential Propane Price http:www.neo.ne.govstatshtml86.html Residential Heating Oil Price http:www.neo.ne.govstatshtml87.html Weekly Report Using ...

  6. Minnesota Valley Electric Cooperative - Residential Energy Efficiency...

    Energy.gov [DOE] (indexed site)

    heat pumps, ground-source heat pumps, Energy Star appliances, and electric resistance heating products. Equipment rebates are only available to those participating in the...

  7. Promising Technology: Heat Pump Water Heaters

    Energy.gov [DOE]

    A heat pump water heater uses electricity to transfer heat from the ambient air to stored water, as opposed to an electric resistance water heater, which uses electricity to generate the heat directly. This enables the heat pump water heater to be 2 to 3 times as efficient as an electric resistance water heater.

  8. Electric vehicles

    SciTech Connect

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  9. Plug-in hybrid electric vehicles : How does one determine their potential for reducing U.S. oil dependence?

    SciTech Connect

    Vyas, A.; Santini, D.; Duoba, M.; Alexander, M.; Energy Systems; EPRI

    2008-09-01

    Estimation of the potential of plug-in hybrid electric vehicles (PHEV's) ability to reduce U.S. gasoline use is difficult and complex. Although techniques have been proposed to estimate the vehicle kilometers of travel (VKT) that can be electrified, these methods may be inadequate and/or inappropriate for early market introduction circumstances. Factors that must be considered with respect to the PHEV itself include (1) kWh battery storage capability; (2) kWh/km depletion rate of the vehicle (3) liters/km use of gasoline (4) average daily kilometers driven (5) annual share of trips exceeding the battery depletion distance (6) driving cycle(s) (7) charger location [i.e. on-board or off-board] (8) charging rate. Each of these factors is actually a variable, and many interact. Off the vehicle, considerations include (a) primary overnight charging spot [garage, carport, parking garage or lot, on street], (b) availability of primary and secondary charging locations [i.e. dwellings, workplaces, stores, etc] (c) time of day electric rates (d) seasonal electric rates (e) types of streets and highways typically traversed during most probable trips depleting battery charge [i.e. city, suburban, rural and high vs. low density]; (f) cumulative trips per day from charger origin (g) top speeds and peak acceleration rates required to make usual trips. Taking into account PHEV design trade-off possibilities (kW vs. kWh of battery, in particular), this paper attempts to extract useful information relating to these topics from the 2001 National Household Travel Survey (NHTS), and the 2005 American Housing Survey (AHS). Costs per kWh of PHEVs capable of charge depleting (CD) all-electric range (CDE, or AER) vs. those CD in 'blended' mode (CDB) are examined. Lifetime fuel savings of alternative PHEV operating/utilization strategies are compared to battery cost estimates.

  10. An In-Depth Look at Ground Source Heat Pumps and Other Electric Loads in Two GreenMax Homes

    SciTech Connect

    Puttagunta, Srikanth; Shapiro, Carl

    2012-04-01

    Building America research team Consortium for Advanced Residential Buildings (CARB) partnered with WPPI Energy to answer key research questions on in-field performance of ground-source heat pumps and lighting, appliance, and miscellaneous loads (LAMELs) through extensive field monitoring at two WPPI GreenMax demonstration homes in Wisconsin. These two test home evaluations provided valuable data on the true in-field performance of various building mechanical systems and LAMELs.

  11. Geothermal heating facilities for Frontier Inn, Susanville, California

    SciTech Connect

    Not Available

    1982-03-01

    The Frontier Inn, located in Susanville, California, is a 38 unit motel composed of six major sections (coffee shop, A frame units, apartments, back units, two story units and office). These sections were built over a number of years and exhibit widely varying types of construction. Space heating is provided by primarily electric resistance equipment with some propane use. Domestic hot water is provided primarily by propane with some electric resistance. The coffee shop uses fuel oil for both space and domestic hot water heating. The City of Susanville is currently in the process of installing a geothermal district heating system. Although the motel site is not located in the area of present construction activity, it is expected that the pipeline will be extended in the near future. This study examines the potential of retrofitting the existing heating facilities at the Frontier Inn to geothermal.

  12. Carbon or graphite foam as a heating element and system thereof

    DOEpatents

    Ott, Ronald D. (Knoxville, TN) [Knoxville, TN; McMillan, April D. (Knoxville, TN) [Knoxville, TN; Choudhury, Ashok (Oak Ridge, TN) [Oak Ridge, TN

    2004-05-04

    A temperature regulator includes at least one electrically conductive carbon foam element. The foam element includes at least two locations adapted for receiving electrical connectors thereto for heating a fluid, such as engine oil. A combustion engine includes an engine block and at least one carbon foam element, the foam element extending into the engine block or disposed in thermal contact with at least one engine fluid.

  13. Field Performance of Inverter-Driven Heat Pumps in Cold Climates

    SciTech Connect

    Williamson, James; Aldrich, Robb

    2015-08-01

    CARB observed a wide range of operating efficiencies and outputs from site to site. Maximum capacities were found to be generally in line with manufacturer's claims as outdoor temperatures fell to -10°F. The reasons for the wide range in heating performance likely include: low indoor air flow rates, poor placement of outdoor units, relatively high return air temperatures, thermostat set back, integration with existing heating systems, and occupants limiting indoor fan speed. Even with lower efficiencies than published in other studies, most of the heat pumps here still provide heat at lower cost than oil, propane, or certainly electric resistance systems.

  14. "Table B21. Space-Heating Energy Sources, Floorspace, 1999"

    Energy Information Administration (EIA) (indexed site)

    1. Space-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",67338,61612,32291,37902,5611,5534,2728,945 "Building

  15. "Table B22. Primary Space-Heating Energy Sources, Number of Buildings, 1999"

    Energy Information Administration (EIA) (indexed site)

    2. Primary Space-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Space Heating","Primary Space-Heating Energy Source Useda" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ................",4657,4016,1128,2189,302,77 "Building Floorspace" "(Square Feet)" "1,001 to 5,000

  16. "Table B23. Primary Space-Heating Energy Sources, Floorspace, 1999"

    Energy Information Administration (EIA) (indexed site)

    3. Primary Space-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Space Heating","Primary Space-Heating Energy Source Useda" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ................",67338,61602,17627,32729,3719,5077 "Building Floorspace" "(Square Feet)" "1,001 to 5,000

  17. "Table B26. Water-Heating Energy Sources, Floorspace, 1999"

    Energy Information Administration (EIA) (indexed site)

    6. Water-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings ................",67338,56115,24171,29196,2218,4182,1371 "Building Floorspace" "(Square

  18. "Table A2. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    Energy Information Administration (EIA) (indexed site)

    . Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in Barrels per Day) " ,,,,," Input for Heat,",,," Primary" " ",," Consumption for All Purposes",,,"Power, and Generation of Electricity",,," Consumption for Nonfuel Purposes ",,,"RSE" "SIC",,"

  19. Ductless Heat Pumps

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  20. Heat Pump Water Heaters

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  1. Total Space Heat-

    Annual Energy Outlook

    12 1 18 (*) 2 1 Q 6 Buildings without Cooling ... 30 1 (*) 4 (*) 14 (*) 4 (*) 1 6 Water-Heating Energy Source Electricity ... 402 21 57 42...

  2. H. R. 3856: A Bill to amend the Internal Revenue Code of 1986 to impose an excise tax on windfall profits derived from home heating oil, and for other purposes. Introduced in the House of Representatives, One Hundredth First Congress, Second Session, January 23, 1990

    SciTech Connect

    Not Available

    1990-01-01

    The tax would be imposed on the producer or importer of the home heating oil. The amount of the tax would be 90 percent of the windfall profit on each barrel, which is defined as the gross profit over the producer's or importer's average gross profit per barrel from home heating oil sold during November 1989. If significant sales were not made by any person during November 1989, the amount will be determined by the Secretary based on national averages. The bill also establishes a Home Heating Oil Trust Fund to finance grants under the Low-Income Home Energy Assistance Act of 1981.

  3. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    SciTech Connect

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Coffey, Brian; Aki, Hirohisa

    2009-03-10

    Berkeley Lab has for several years been developing methods for selection of optimal microgrid systems, especially for commercial building applications, and applying these methods in the Distributed Energy Resources Customer Adoption Model (DER-CAM). This project began with 3 major goals: (1) to conduct detailed analysis to find the optimal equipment combination for microgrids at a few promising commercial building hosts in the two favorable markets of California and New York, (2) to extend the analysis capability of DER-CAM to include both heat and electricity storage, and (3) to make an initial effort towards adding consideration of power quality and reliability (PQR) to the capabilities of DER-CAM. All of these objectives have been pursued via analysis of the attractiveness of a Consortium for Electric Reliability Technology Solutions (CERTS) Microgrid consisting of multiple nameplate 100 kW Tecogen Premium Power Modules (CM-100). This unit consists of an asynchronous inverter-based variable speed internal combustion engine genset with combined heat and power (CHP) and power surge capability. The essence of CERTS Microgrid technology is that smarts added to the on-board power electronics of any microgrid device enables stable and safe islanded operation without the need for complex fast supervisory controls. This approach allows plug and play development of a microgrid that can potentially provide high PQR with a minimum of specialized site-specific engineering. A notable feature of the CM-100 is its time-limited surge rating of 125 kW, and DER-CAM capability to model this feature was also a necessary model enhancement.

  4. Biodiesel Blends in Space Heating Equipment: January 31, 2001 -- September 28, 2001

    SciTech Connect

    Krishna, C. R.

    2004-05-01

    This report documents an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications.

  5. Slow Radio-Frequency Processing of Large Oil Shale Volumes to Produce Petroleum-Like Shale Oil

    SciTech Connect

    Burnham, A K

    2003-08-20

    A process is proposed to convert oil shale by radio frequency heating over a period of months to years to create a product similar to natural petroleum. Electrodes would be placed in drill holes, either vertical or horizontal, and a radio frequency chosen so that the penetration depth of the radio waves is of the order of tens to hundreds of meters. A combination of excess volume production and overburden compaction drives the oil and gas from the shale into the drill holes, where it is pumped to the surface. Electrical energy for the process could be provided initially by excess regional capacity, especially off-peak power, which would generate {approx}3 x 10{sup 5} bbl/day of synthetic crude oil, depending on shale grade. The electricity cost, using conservative efficiency assumptions, is $4.70 to $6.30/bbl, depending on grade and heating rate. At steady state, co-produced gas can generate more than half the electric power needed for the process, with the fraction depending on oil shale grade. This would increase production to 7.3 x 10{sup 5} bbl/day for 104 l/Mg shale and 1.6 x 10{sup 6} bbl/day for 146 l/Mg shale using a combination of off-peak power and power from co-produced gas.

  6. Electric Storage Water Heaters

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  7. " Electricity Generation by Employment...

    Energy Information Administration (EIA) (indexed site)

    Total Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Employment Size Categories, Industry Group," " and Selected Industries, 1994" " ...

  8. Technical Information Exchange on Pyrolysis Oil: Potential for...

    Energy.gov [DOE] (indexed site)

    Two-day agenda from the workshop: Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution fuel in New England. pyrolysisoilagenda.pdf ...

  9. Influence of Damp Heat on the Electrical, Optical, and Morphological Properties of Encapsulated CuInGaSe2 Devices

    SciTech Connect

    Sundaramoorthy, R.; Pern, F. J.; Teeter, G.; Li, Jian V.; Young, M.; Kuciauskas, D.; Call, N.; Yan, F.; To, B.; Johnston, S.; Noufi, R.; Gessert, T. A.

    2011-01-01

    CuInGaSe{sub 2} (CIGS) devices, encapsulated with different backsheets having different water vapor transmission rates (WVTR), were exposed to damp heat (DH) at 85 C and 85% relative humidity (RH) and characterized periodically to understand junction degradation induced by moisture ingress. Performance degradation of the devices was primarily driven by an increase in series resistance within first 50 h of exposure, resulting in a decrease in fill factor and, accompanied loss in carrier concentration and widening of depletion width. Surface analysis of the devices after 700-h DH exposure showed the formation of Zn(OH){sub 2} from hydrolysis of the Al-doped ZnO (AZO) window layer by the moisture, which was detrimental to the collection of minority carriers. Minority carrier lifetimes observed for the CIGS devices using time resolved photoluminescence (TRPL) remained relatively long after DH exposure. By etching the DH-exposed devices and re-fabricating with new component layers, the performance of reworked devices improved significantly, further indicating that DH-induced degradation of the AZO layer and/or the CdS buffer was the primary performance-degrading factor.

  10. Oil Refund Decisions

    Office of Energy Efficiency and Renewable Energy (EERE)

    During the period 1973 through 1981, the Federal government imposed price and allocation controls of crude oil and refined petroleum products, such as gasoline and heating oil. During that period and for many years afterwards, the DOE had an enforcement program. When a firm was found to have overcharged, the DOE generally required the firm to make refunds to its customers.

  11. Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas ...

  12. Wax and hydrate control with electrical power

    SciTech Connect

    1997-08-01

    Electrical heating of subsea flowlines is an effective way to prevent wax and hydrate information, especially for long transportation distances and in low-temperature deep water. Systems are available for use in conjunction with bundles, pipe-in-pipe, and wet-thermal-insulation systems. These systems provide environmentally friendly fluid-temperature control without chemicals or flaring for pipeline depressurizing. Enhanced production is achieved because no time is lost by unnecessary depressurizing, pigging, heating-medium circulation, or removal of hydrate and wax blockages. The seabed temperature at 100-m and greater water depths may range from 7 to {minus}1.5 C, causing a rapid cooling of the hot well streams being transported in subsea flowlines. Under these supercooling conditions, vulnerable crude oils and multiphase compositions will deposit wax and asphalts; also the gas/water phase may freeze solid with hydrate particles. The paper discusses thermal-insulated flowlines, heat-loss compensation with electrical power, electrical power consumption and operation, and subsea electrical-power distribution system.

  13. Residential Heating Oil Weekly Heating Oil and Propane Prices (October -

    Energy Information Administration (EIA) (indexed site)

    March) 2.366 2.380 2.394 2.399 2.386 2.375 1990-2016 East Coast (PADD 1) 2.370 2.385 2.399 2.404 2.393 2.382 1990-2016 New England (PADD 1A) 2.286 2.317 2.328 2.334 2.336 2.331 1990-2016 Connecticut 2.449 2.503 2.511 2.514 2.530 2.526 1990-2016 Maine 2.010 2.040 2.061 2.086 2.071 2.060 1990-2016 Massachusetts 2.394 2.407 2.423 2.413 2.421 2.426 1990-2016 New Hampshire 2.103 2.156 2.175 2.188 2.200 2.201 1990-2016 Rhode Island 2.462 2.457 2.435 2.451 2.431 2.405 1990-2016 Vermont 2.104 2.151

  14. Wholesale Heating Oil Weekly Heating Oil and Propane Prices (October -

    Energy Information Administration (EIA) (indexed site)

    March) 1.644 1.629 1.639 1.614 1.503 1.471 2013-2016 East Coast (PADD 1) 1.643 1.629 1.640 1.615 1.504 1.471 2013-2016 New England (PADD 1A) 1.655 1.643 1.656 1.631 1.519 1.489 2013-2016 Connecticut 1.655 1.643 1.656 1.632 1.520 1.486 2013-2016 Maine 1.660 1.649 1.659 1.633 1.528 1.495 2013-2016 Massachusetts 1.663 1.651 1.663 1.640 1.525 1.496 2013-2016 New Hampshire 1.608 1.593 1.606 1.583 1.457 1.431 2013-2016 Rhode Island 1.642 1.631 1.648 1.618 1.512 1.477 2013-2016 Vermont 1.724 1.705

  15. List of Geothermal Heat Pumps Incentives | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    using Renewable Fuels Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Hydrogen Landfill Gas Methanol Passive Solar Space Heat Photovoltaics Solar Space Heat...

  16. CO2 Heat Pump Water Heater

    Energy Saver

    CO 2 Heat Pump Water Heater 2014 Building Technologies Office Peer Review Evaporator Kyle ... MarketAudience: Residential electric water heating Key Partners: GE Appliances CRADA ...

  17. Heating Oil and Propane Update

    Annual Energy Outlook

    Administration Act of 1974 (FEAA) (Public Law 93-275), as amended and codified at 15 ... of the Federal Energy Administration Act of 1974 (FEAA) (Public Law 93-275), as amended. ...

  18. Heating Oil and Propane Update

    Gasoline and Diesel Fuel Update

    ... Therefore it is vital that all recipients register with FedConnect at their earliest convenience. As in the past, please note that the distribution of money will be made in one ...

  19. Heating Oil and Propane Update

    Annual Energy Outlook

    Q1: Why are data not collected over the summer? The residential pricing data collected on ... In addition, some State Energy Offices collect these data independent of this survey. Q2: ...

  20. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    Energy Information Administration (EIA) (indexed site)

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  1. Upgrading heavy gas oils

    SciTech Connect

    Ferguson, S.; Reese, D.D.

    1986-05-20

    A method is described of neutralizing the organic acidity in heavy gas oils to produce a neutralization number less than 1.0 whereby they are rendered suitable as lube oil feed stocks which consists essentially of treating the heavy gas oils with a neutralizing amount of monoethanolamine to form an amine salt with the organic acids and then heating the thus-neutralized heavy gas oil at a temperature at least about 25/sup 0/F greater than the boiling point of water and for a time sufficient to convert the amine salts to amides.

  2. System for increasing corona inception voltage of insulating oils

    DOEpatents

    Rohwein, Gerald J.

    1998-01-01

    The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil.

  3. Heat Pump Swimming Pool Heaters | Department of Energy

    Energy.gov [DOE] (indexed site)

    How a heat pump works. How a heat pump works. How They Work Heat pumps use electricity to capture heat and move it from one place to another. They don't generate heat. As the pool...

  4. Heat Pump Swimming Pool Heaters | Department of Energy

    Energy Saver

    Pump Swimming Pool Heaters Heat Pump Swimming Pool Heaters How a heat pump works. How a heat pump works. How They Work Heat pumps use electricity to capture heat and move it from ...

  5. Generators for Small Electrical and Thermal Systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    build and test improved electric-power generators for use in residential Combined Heat and Power (CHP) systems, which capture the generator's heat output for space and water...

  6. East Central Electric Cooperative- Residential Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    East Central Electric Cooperative offers rebates to residential customers to install energy-efficient ground source heat pumps, electric water heaters, and air conditioners. To qualify for the...

  7. Cuivre River Electric- Energy Efficiency Rebate Programs

    Energy.gov [DOE]

    Cuivre River Electric Cooperative, through the Take Control & Save program, offers rebates for cooperative members who purchase efficient geothermal and dual fuel heat pumps, and electric water...

  8. Lane Electric Cooperative- Residential Efficiency Rebate Program

    Energy.gov [DOE]

    Lane Electric Cooperative provides rebates for duct sealing measures, heat pumps, and newly constructed Energy Star Homes. Lane Electric Cooperative must receive the necessary application forms in...

  9. Analysis of space heating and domestic hot water systems for energy-efficient residential buildings

    SciTech Connect

    Dennehy, G

    1983-04-01

    An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

  10. Oil shale retorting method and apparatus

    SciTech Connect

    York, E.D.

    1983-03-22

    Disclosed is an improved method and apparatus for the retorting of oil shale and the formation of spent oil shale having improved cementation properties. The improved method comprises passing feed comprising oil shale to a contacting zone wherein the feed oil shale is contacted with heat transfer medium to heat said shale to retorting temperature. The feed oil shale is substantially retorted to form fluid material having heating value and forming partially spent oil shale containing carbonaceous material. At least a portion of the partially spent oil shale is passed to a combustion zone wherein the partially spent oil shale is contacted with oxidizing gas comprising oxygen and steam to substantially combust carbonaceous material forming spent oil shale having improved cementation properties.

  11. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    SciTech Connect

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  12. EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS

    SciTech Connect

    R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

    2014-09-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

  13. Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids

    SciTech Connect

    Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert

    2013-07-22

    Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.

  14. HEATS: Thermal Energy Storage

    SciTech Connect

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  15. Fuel Oil and Kerosene Sales

    Reports and Publications

    2015-01-01

    Provides information, illustrations and state-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off-highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses.

  16. Combustion heater for oil shale

    DOEpatents

    Mallon, Richard G.; Walton, Otis R.; Lewis, Arthur E.; Braun, Robert L.

    1985-01-01

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

  17. Combustion heater for oil shale

    DOEpatents

    Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

    1983-09-21

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

  18. Total Adjusted Sales of Distillate Fuel Oil

    Gasoline and Diesel Fuel Update

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series ...

  19. Total Sales of Distillate Fuel Oil

    Energy Information Administration (EIA) (indexed site)

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series ...

  20. Tips: Heating and Cooling | Department of Energy

    Energy Saver

    Year and Fuel Type (Quadrillion Btu and Percent of Total). ... and cooling Natural gas and oil heating Programmable ... Rebates & Tax Credits Federal tax credits are available for ...

  1. Thermoacoustic magnetohydrodynamic electrical generator

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  2. Thermoacoustic magnetohydrodynamic electrical generator

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  3. Waste Heat Utilization System Property Tax Exemption

    Energy.gov [DOE]

    Waste heat utilization systems arefacilities and equipment for the recovery of waste heat generated in the process of generating electricity and the use of such heat to generate additional elect...

  4. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  5. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book

    9 Major Commercial HVAC Equipment Lifetimes and Ages Median Equipment Type Lifetime Air Conditioners Through-the-Wall 15 Water-CooledPackage 24 (1) Roof-Top 15 Chillers Reciprocating 20 Centrifugal 25 (1) Absorption 23 Heat Pumps Air-to-Air 15 Water-to-Air 24 (1) Furnaces (gas or oil) 18 Boilers (gas or oil) Hot-Water 24 - 35 Steam 25 - 30 Unit Heaters Gas-Fired or Electric 13 Hot-Water or Steam 20 Cooling Towers (metal or wood) Metal 22 (1) Wood 20 Note(s): Source(s): 1) Data from 2005. All

  6. " Electricity Generation by Census Region...

    Energy Information Administration (EIA) (indexed site)

    A6. Total Inputs of Selected Byproduct Energy for Heat, Power, and" " Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" " ...

  7. October 2012 Electrical Safety Occurrences

    Energy Saver

    subcontractor removed parts on a heating, ventilation and cooling (HVAC) unit. The prime contractor removed electrical power to the work area with the exception of the...

  8. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    Energy Information Administration (EIA) (indexed site)

    A. Total Electricity Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of...

  9. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    Energy Information Administration (EIA) (indexed site)

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  10. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    Energy Information Administration (EIA) (indexed site)

    DIV. Total Electricity Consumption and Expenditures by Census Division, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number...

  11. Heavy oil transportation by pipeline

    SciTech Connect

    Gerez, J.M.; Pick, A.R.

    1996-12-31

    Worldwide there are a number of pipelines used to transport heavy crude oils. The operations are facilitated in a variety of ways. For example, the Alyeska pipeline is an insulated pipeline transporting warm oil over 800 miles. This 48-inch line experiences limited heat loss due to the insulation, volume of oil contained, and heat gain due to friction and pumping. Some European trunk lines periodically handle heavy and waxy crudes. This is achieved by proper sizing of batches, following waxy crudes with non-waxy crudes, and increased use of scrapers. In a former Soviet republic, the transportation of heavy crude oil by pipeline has been facilitated by blending with a lighter Siberian crude. The paper describes the pipeline transport of heavy crudes by Interprovincial Pipe Line Inc. The paper describes enhancing heavy oil transportation by emulsion formation, droplet suspension, dilution, drag reducing agents, and heating.

  12. Absorption Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat Pump Systems » Absorption Heat Pumps Absorption Heat Pumps Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption (or gas-fired) coolers available that work on the same principle. Unlike some absorption heat

  13. Radioisotopic heat source

    DOEpatents

    Jones, G.J.; Selle, J.E.; Teaney, P.E.

    1975-09-30

    Disclosed is a radioisotopic heat source and method for a long life electrical generator. The source includes plutonium dioxide shards and yttrium or hafnium in a container of tantalum-tungsten-hafnium alloy, all being in a nickel alloy outer container, and subjected to heat treatment of from about 1570$sup 0$F to about 1720$sup 0$F for about one h. (auth)

  14. Demonstration of beneficial uses of warm water from condensers of electric-generating plants

    SciTech Connect

    Boyd, L.L.; Ashley, G.C.; Hietala, J.S.; Stansfield, R.V.; Tonkinson, T.R.C.

    1980-05-01

    The report gives results of a project to demonstrate that warmed cooling water from condensers of electric generating plants can effectively and economically heat greenhouses. The 0.2-hectare demonstration greenhouse, at Northern States Power Co.'s Sherburne County (Sherco) Generating Plant, used 29.4 C water to heat both air and soil: finned-tube commercial heat exchangers were used to heat the air; and buried plastic pipes, the soil. Warm water from the Sherco 1 cooling tower was piped over 0.8 km to the greenhouse where it was cooled from 2.7 to 5.6 C before returning to the cooling tower basin. Roses and tomatoes were the principal crops in the 3-year test, although other flowers and vegetables, and conifer seedlings were also grown. The warm water heating system supplied all the greenhouse heating requirements, even at ambient temperatures as low as -40 C. Roses, snapdragons, geraniums, tomatoes, lettuce, and evergreen seedlings were grown successfully. The demonstration proved the concept to be both technically and economically feasible at Sherco, with an apparent saving of $4500/hectare in 1978 dollars over fuel oil heating, plus an annual oil savings of about 500 cu m/hectare. Privately financed commercial greenhouses heated with warm water were built at Sherco in 1977. The commercial greenhouses will expand from 0.48 to almost 1 hectare by late 1980.

  15. Heat pipe array heat exchanger

    DOEpatents

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  16. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book

    0 Main Residential Heating Fuel, by Vintage, as of 2005 (Percent of Total Households) 1949 or 1950 to 1960 to 1970 to 1980 to 1990 to 2000 to Heating Fuel Before 1959 1969 1979 1989 1999 2005 Natural Gas 56% 57% 55% 46% 45% 45% 45% Electricity 8% 18% 26% 36% 42% 42% 43% Fuel Oil 14% 10% 7% 5% 2% 2% 2% LPG 5% 3% 2% 5% 6% 8% 8% Other (1) 17% 12% 10% 8% 4% 3% 2% Total 100% 100% 100% 100% 100% 100% 100% Note(s): Source(s): 1) Other includes wood and kerosene. EIA, Residential Energy Consumption

  17. Large-dimension, high-ZT Thermoelectric Nanocomposites for High-Power High-efficiency Waste Heat Recovery for Electricity Generation

    Energy.gov [DOE]

    Large-dimension, high-ZT BiTe and Pb-based nanocomposites produced with a low-cost scalable process were used for development and testing of TE module prototypes, and demonstration of a waste heat recovery system

  18. The Future of Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Home Heating The Future of Home Heating Huber presentation on May 8, 2012 at the Pyrolysis Oil Workshop on the future of home heating pyrolysis_huber.pdf (752.19 KB) More Documents & Publications Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England Performance of Biofuels and Biofuel Blends A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector

  19. Fuel oil and kerosene sales 1997

    SciTech Connect

    1998-08-01

    The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

  20. Electricity from coal and utilization of coal combustion by-products

    SciTech Connect

    Demirbas, A.

    2008-07-01

    Most electricity in the world is conventionally generated using coal, oil, natural gas, nuclear energy, or hydropower. Due to environmental concerns, there is a growing interest in alternative energy sources for heat and electricity production. The major by-products obtained from coal combustion are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) materials. The solid wastes produced in coal-fired power plants create problems for both power-generating industries and environmentalists. The coal fly ash and bottom ash samples may be used as cementitious materials.

  1. Liquid metal thermal electric converter

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  2. Induction heaters used to heat subsurface formations

    DOEpatents

    Nguyen, Scott Vinh; Bass, Ronald M.

    2012-04-24

    A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.

  3. Combined Heat and Power (CHP) Plant fact sheet | Argonne National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Combined Heat and Power (CHP) Plant fact sheet Argonne National Laboratory's Combined Heat and Power (CHP) plant, expected to be operational in June 2016, will provide electricity...

  4. Improving Process Heating System Performance: A Sourcebook for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This sourcebook introduces industry to process heating basics, performance opportunities for fuel and electric based systems, waste heat management and where they can find help on ...

  5. Jones-Onslow EMC- Residential Heating and Cooling Rebate Program

    Energy.gov [DOE]

    Jones-Onslow Electric Membership Corporation offers rebates to residential members who install energy efficient heating and cooling equipment. Members can replace an existing central AC or heat...

  6. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity ...

  7. Solar retorting of oil shale

    DOEpatents

    Gregg, David W.

    1983-01-01

    An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

  8. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  9. Fluid cooled electrical assembly

    DOEpatents

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2007-02-06

    A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.

  10. Carbon sequestration in depleted oil shale deposits

    SciTech Connect

    Burnham, Alan K; Carroll, Susan A

    2014-12-02

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  11. ,"U.S. Total Sales of Residual Fuel Oil by End Use"

    Energy Information Administration (EIA) (indexed site)

    to Oil Company Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to Electric Utility Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to...

  12. Electric vehicle climate control

    SciTech Connect

    Dauvergne, J.

    1994-04-01

    EVs have insufficient energy sources for a climatic comfort system. The heat rejection of the drivetrain is dispersed in the vehicle (electric motor, batteries, electronic unit for power control). Its level is generally low (no more than 2-kW peaks) and variable according to the trip profile, with no heat rejection at rest and a maximum during regenerative braking. Nevertheless, it must be used for heating. It is not realistic to have the A/C compressor driven by the electric traction motor: the motor does not operate when the vehicle is at rest, precisely when maximum cooling power is required. The same is true for hybrid vehicles during electric operation. It is necessary to develop solutions that use stored onboard energy either from the traction batteries or specific storage source. In either case, it is necessary to design the climate control system to use the energy efficiently to maximize range and save weight. Heat loss through passenger compartment seals and the walls of the passenger compartment must be limited. Plastic body panes help to reduce heat transfer, and heat gain is minimized with insulating glazing. This article describes technical solutions to solve the problem of passenger thermal comfort. However, the heating and A/C systems of electrically operated vehicles may have marginal performance at extreme outside temperatures.

  13. How and why Tampa Electric Company selected IGCC for its next generating capacity addition

    SciTech Connect

    Pless, D.E. )

    1992-01-01

    As the title indicates, the purpose of this paper is to relate how and why Tampa Electric Company decided to select the Integrated Gasification Combined Cycle (IGCC) for their next capacity addition at Polk Power Station, Polk Unit No. 1. For a complete understanding of this process, it is necessary to review the history related to the initial formulation of the IGCC concept as it was proposed to the Department of Energy (DOE) Clean Coal Initiative Round Three. Further, it is important to understand the relationship between Tampa Electric Company and TECO Pay Services Corporation (TPS). TECO Energy, Inc. is an energy related holding company with headquarters in Tampa, Florida. Tampa Electric Company is the principal, wholly-owned subsidiary of TECO Energy, Inc. Tampa Electric Company is an investor-owned electric utility with about 3200 MW of generation capacity of which 97% is coal fired. Tampa Electric Company serves about 2,000 square miles and approximately 470,000 customers, in west central Florida, primarily in and around Hillsborough County and Tampa, Florida. Tampa Electric Company generating units consist of coal fired units ranging in size from a 110 MW coal fired cyclone unit installed in 1957 to a 450 MW pulverized coal unit with wet limestone flue gas desulfurization installed in 1985. In addition, Tampa Electric Company has six (6) No. 6 oil fired steam units totaling approximately 220 MW. Five (5) of these units, located at the Hookers Point Station, were installed in the late 1940's and early 1950's. Tampa Electric also has about 150 MW of No. 2 oil fired start-up and peaking combustion turbines. The company also owns a 1966 vintage 12 MW natural gas fired steam plant (Dinner Lake) and two nO. 6 oil fired diesel units with heat recovery equipment built in 1983 (Phillips Plant).

  14. Fuel oil quality task force

    SciTech Connect

    Laisy, J.; Turk, V.

    1997-09-01

    In April, 1996, the R.W. Beckett Corporation became aware of a series of apparently unrelated symptoms that made the leadership of the company concerned that there could be a fuel oil quality problem. A task force of company employees and industry consultants was convened to address the topic of current No. 2 heating oil quality and its effect on burner performance. The task force studied changes in fuel oil specifications and trends in properties that have occurred over the past few years. Experiments were performed at Beckett and Brookhaven National Laboratory to understand the effect of changes in some fuel oil properties. Studies by other groups were reviewed, and field installations were inspected to gain information about the performance of fuel oil that is currently being used in the U.S. and Canada. There was a special concern about the use of red dye in heating oils and the impact of sulfur levels due to the October, 1993 requirement of low sulfur (<0.05%) for on-highway diesel fuel. The results of the task force`s efforts were published in July, 1996. The primary conclusion of the task force was that there is not a crisis or widespread general problem with fuel oil quality. Localized problems that were seen may have been related to refinery practices and/or non-traditional fuel sources. System cleanliness is very important and the cause of many oil burner system problems. Finally, heating oil quality should get ongoing careful attention by Beckett engineering personnel and heating oil industry groups.

  15. Florida's electric industry and solar electric technologies

    SciTech Connect

    Camejo, N.

    1983-12-01

    The Florida Electric Industry is in a process of diversifying its generation technology and its fuel mix. This is being done in an effort to reduce oil consumption, which in 1981 accounted for 46.5% of the electric generation by fuel type. This does not compare well with the rest of the nation where oil use is lower. New coal and nuclear units are coming on line, and probably more will be built in the near future. However, eventhough conservation efforts may delay their construction, new power plants will have to be built to accomodate the growing demand for electricity. Other alternatives being considered are renewable energy resources. The purpose of this paper is to present the results of a research project in which 10 electric utilities in Florida and the Florida Electric Power Coordinating Group rated six Solar Electric options. The Solar Electric options considered are: 1) Wind, 2) P.V., 3) Solar thermal-electric, 4) OTEC, 5) Ocean current, and 6) Biomass. The questionaire involved rating the economic and technical feasibility, as well as, the potential environmental impact of these options in Florida. It also involved rating the difficulty in overcoming institutional barriers and assessing the status of each option. A copy of the questionaire is included after the references. The combined capacity of the participating utilities represent over 90% of the total generating capacity in Florida. A list of the participating utilities is also included. This research was done in partial fulfillment for the Mater's of Science Degree in Coastal Zone Management. This paper is complementary to another paper (in these condensed conference proceedings) titled COASTAL ZONE ENERGY MANAGEMENT: A multidisciplinary approach for the integration of Solar Electric Systems with Florida's power generation system, which present a summary of the Master's thesis.

  16. Absorption Heat Pump Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat Pump Basics Absorption Heat Pump Basics August 19, 2013 - 11:11am Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption coolers available that work on the same principal, but are not reversible and

  17. Heat Pump System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Space Heating & Cooling » Heat Pump System Basics Heat Pump System Basics August 19, 2013 - 11:02am Addthis Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate heat, heat pumps can provide up to four times the amount of energy they consume. Air-Source Heat Pump Transfers heat between the inside of a building and the outside air. Ductless

  18. Yellowstone Valley Electric Cooperative- Residential/Commercial Efficiency Rebate Program

    Energy.gov [DOE]

    The Yellowstone Valley Electric Cooperative offers rebates to residential and commercial members for purchasing energy efficient add-on heat pumps, geothermal heat pumps, water heaters, dishwashers...

  19. Central Alabama Electric Cooperative- Residential Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Central Alabama Electric Cooperative, a Touchstone Electric Cooperative, offers the Touchstone Energy Home Program. Touchstone Energy Homes with a dual-fuel or geothermal heat pump qualify for...

  20. Ozark Border Electric Cooperative- Residential Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Ozark Border Electric Cooperative has made rebates available to residential members for the installation of energy efficient geothermal and air source heat pumps, electric water heaters, and room...

  1. Enhanced heat transfer using nanofluids

    DOEpatents

    Choi, Stephen U. S.; Eastman, Jeffrey A.

    2001-01-01

    This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

  2. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power: High-Temperature Static Experiments

    SciTech Connect

    Bell, Jason R; Joseph III, Robert Anthony; McFarlane, Joanna; Qualls, A L

    2012-05-01

    Concentrating solar power (CSP) may be an alternative to generating electricity from fossil fuels; however, greater thermodynamic efficiency is needed to improve the economics of CSP operation. One way of achieving improved efficiency is to operate the CSP loop at higher temperatures than the current maximum of about 400 C. ORNL has been investigating a synthetic polyaromatic oil for use in a trough type CSP collector, to temperatures up to 500 C. The oil was chosen because of its thermal stability and calculated low vapor and critical pressures. The oil has been synthesized using a Suzuki coupling mechanism and has been tested in static heating experiments. Analysis has been conducted on the oil after heating and suggests that there may be some isomerization taking place at 450 C, but the fluid appears to remain stable above that temperature. Tests were conducted over one week and further tests are planned to investigate stabilities after heating for months and in flow configurations. Thermochemical data and thermophysical predictions indicate that substituted polyaromatic hydrocarbons may be useful for applications that run at higher temperatures than possible with commercial fluids such as Therminol-VP1.

  3. Electrical initiation of an energetic nanolaminate film

    DOEpatents

    Tringe, Joseph W.; Gash, Alexander E.; Barbee, Jr., Troy W.

    2010-03-30

    A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

  4. Air-Source Heat Pumps | Department of Energy

    Energy Saver

    When displacing oil (i.e., the oil system remains, but operates less frequently), the average annual savings are near 3,000 kWh (or about 300). Types of Air-Source Heat Pumps The ...

  5. Process for removing heavy metal compounds from heavy crude oil

    DOEpatents

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  6. Bio-oil fractionation and condensation

    SciTech Connect

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  7. World oil trends

    SciTech Connect

    Anderson, A. )

    1991-01-01

    This book provides data on many facets of the world oil industry topics include; oil consumption; oils share of energy consumption; crude oil production; natural gas production; oil reserves; prices of oil; world refining capacity; and oil tankers.

  8. Fuel oil and kerosene sales 1996

    SciTech Connect

    1997-08-01

    The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.

  9. Geothermal Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pumps Geothermal Heat Pumps Two commercial 36-ton geothermal heat pumps being used at the College of Southern Idaho. The Geothermal Technologies Office focuses only on electricity generation. For additional information about geothermal heating and cooling and ground source heat pumps, please visit the U.S. Department of Energy (DOE)'s Buildings Technologies Office. The geothermal heat pump, also known as the ground source heat pump, is a highly efficient renewable energy technology that is

  10. Methods for deoxygenating biomass-derived pyrolysis oil

    SciTech Connect

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-06-30

    Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method for deoxygenating a biomass-derived pyrolysis oil comprising the steps of combining a biomass-derived pyrolysis oil stream with a heated low-oxygen-pyoil diluent recycle stream to form a heated diluted pyoil feed stream is provided. The heated diluted pyoil feed stream has a feed temperature of about 150.degree. C. or greater. The heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen at first hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.

  11. Technical Information Exchange on Pyrolysis Oil: Potential for...

    Energy.gov [DOE] (indexed site)

    Potential for a renewable heating oil substitution fuel in New England - Agenda Time Pre-Conference Presentation and Discussion (Grenier Room) May 8, 2012; Manchester New Hampshire ...

  12. Table 8.3b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    Energy Information Administration (EIA) (indexed site)

    b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 12,768 8,013 66,801 2,243 89,825 19,346 4,550 23,896 679 114,400 1990 20,793 9,029 79,905 3,822 113,549 18,091 6,418 24,509 28 138,086 1991 21,239 5,502 82,279 3,940 112,960 17,166 9,127 26,293 590 139,843 1992 27,545 6,123 101,923

  13. Enhanced oil recovery system

    DOEpatents

    Goldsberry, Fred L.

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  14. Native Village of Teller Addresses Heating Fuel Shortage, Improves...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    utility, which runs its own diesel fuel bulk storage facility for the diesel generators. However, residential heating oil and fuel for all public buildings except the...

  15. "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)"

    Energy Information Administration (EIA) (indexed site)

    2 Relative Standard Errors for Table 5.2;" " Unit: Percents." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)&

  16. "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

    Energy Information Administration (EIA) (indexed site)

    6 Relative Standard Errors for Table 5.6;" " Unit: Percents." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel

  17. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1983-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  18. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1977-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  19. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  20. Process for converting heavy oil deposited on coal to distillable oil in a low severity process

    DOEpatents

    Ignasiak, Teresa; Strausz, Otto; Ignasiak, Boleslaw; Janiak, Jerzy; Pawlak, Wanda; Szymocha, Kazimierz; Turak, Ali A.

    1994-01-01

    A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.