National Library of Energy BETA

Sample records for heating equipment cbecs

  1. Compare All CBECS Activities: District Heat Use

    Energy Information Administration (EIA) (indexed site)

    District Heat Use Compare Activities by ... District Heat Use Total District Heat Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 433...

  2. 1999 CBECS Detailed Tables

    Energy Information Administration (EIA) (indexed site)

    Commercial Buildings Energy Consumption Survey (CBECS) > Detailed Tables 1999 CBECS Detailed Tables Building Characteristics | Consumption & Expenditures Data from the 1999...

  3. CBECS 1995 - Executive Summary

    Energy Information Administration (EIA) (indexed site)

    Executive Summary The Commercial Buildings Energy Consumption Survey (CBECS) collects information on physical characteristics of commercial buildings, building use and occupancy...

  4. Background Information on CBECS

    Annual Energy Outlook

    Information on CBECS The following topics provide detailed information on survey methodology, the kinds of errors associated with sample surveys, estimation of standard errors,...

  5. 2003 CBECS RSE Tables

    Gasoline and Diesel Fuel Update

    Dec 2006 Next CBECS will be conducted in 2007 Standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used...

  6. 1992 CBECS C & E

    Energy Information Administration (EIA) (indexed site)

    Consumption of Electricity by End Use, 1989 Electricity Consumption (trillion Btu) Office Space Ventil- Water Refrig- Equip- Total Heating Cooling ation Heating Lighting Cooking...

  7. 1992 CBECS C & E

    Energy Information Administration (EIA) (indexed site)

    Table B4. Consumption of Electricity by End Use, 1989 Electricity Consumption (trillion Btu) Office Space Ventil- Water Refrig- Equip- Total Heating Cooling ation Heating Lighting...

  8. Water Data Collection in the 2007 CBECS

    Gasoline and Diesel Fuel Update

    Water Data Collection in the 2007 CBECS CBECS 2007 - Release date: August 28, 2012 Did you know? Select water data results are described in the accompanying report, Energy ...

  9. CBECS 2012: Energy Usage Summary

    Energy Information Administration (EIA) (indexed site)

    2012 Commercial Buildings Energy Consumption Survey: Energy Usage Summary CBECS 2012 - Release date: March 18, 2016 Despite a 14% increase in total buildings and a 22% increase in ...

  10. Condensing Heating and Water Heating Equipment Workshop Location...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time: ...

  11. CBECS 2012: Building Stock Results

    Gasoline and Diesel Fuel Update

    The 2012 CBECS collected building characteristics data from more than 6,700 U.S. ... includes malls-have become larger, likely a result of the trend towards big box stores. ...

  12. How the 2003 CBECS Was Conducted

    Energy Information Administration (EIA) (indexed site)

    to an establishment, is the basic unit of analysis for the CBECS because the building is the energy-consuming unit. The 2003 CBECS was the eighth survey conducted since...

  13. Commercial Buildings Energy Consumption Survey (CBECS) - U.S...

    Gasoline and Diesel Fuel Update

    Relationship of CBECS Coverage to EIA Supply Surveys The primary purpose of the CBECS is to collect accurate statistics of energy consumption by individual buildings. EIA also ...

  14. Reduce Radiation Losses from Heating Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Radiation Losses from Heating Equipment Reduce Radiation Losses from Heating Equipment This tip sheet describes how to save process heating energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces. PROCESS HEATING TIP SHEET #7 Reduce Radiation Losses from Heating Equipment (January 2006) (277.28 KB) More Documents & Publications Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A

  15. 2007 CBECS Large Hospital Building Methodology Report

    Gasoline and Diesel Fuel Update

    Methodology Report Main Report | Methodology | FAQ | List of Tables CBECS 2007 - Release date: August 17, 2012 Data Collection The data in the Energy Characteristics and Energy Consumed in Large Hospital Buildings in the United States in 2007 report and accompanying tables were collected in the 2007 round of the Commercial Buildings Energy Consumption Survey (CBECS). CBECS is a quadrennial survey is conducted by the Energy Information Administration (EIA) to provide basic statistical information

  16. Instructions to CBECS 1995 Microdata Files

    Energy Information Administration (EIA) (indexed site)

    5 Files WHAT IS CBECS? Please Note: These microdata files, which contain building characteristics, energy consumption and expenditures, and energy end-use estimates replace the...

  17. 1992 CBECS User-Needs Study

    Energy Information Administration (EIA) (indexed site)

    Demand Representatives) indicated that its constituents are moving more toward technology modeling and CBECS, which has collected more and more technology data, is...

  18. CBECS Building Types | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Consumption Survey (CBECS) performed by the U.S. Energy Information Administration (EIA)1. Education Food Sales Food Service Health Care (Inpatient) Health Care...

  19. 1992 CBECS BC

    Gasoline and Diesel Fuel Update

    ... Primary Space Heating Secondary Space Heating Water Heating Cooling Cooking Manu- ... 91 4 38 (*) 6 Q Q 20.6 District Chilled Water ...... 28 -- -- -- 28 -- ...

  20. 1992 CBECS C & E

    Energy Information Administration (EIA) (indexed site)

    of District Heat by End Use, 1989 District Heat Consumption (trillion Btu) Space Water a Total Heating Heating Other RSE Building Row Characteristics Factor 1.0 NF NF NF RSE...

  1. CBECS Buildings Characteristics --Revised Tables

    Gasoline and Diesel Fuel Update

    Buildings and Floorspace, 1995 Table 38. Water-Heating Equipment, Number of Buildings and ... 109 2 Q 9 109 Q 4 3 21.0 District Chilled Water ...... 53 52 Q Q 3 48 3 3 ...

  2. Heating Equipment Checklist for Winter Comfort and Efficiency | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Heating Equipment Checklist for Winter Comfort and Efficiency Heating Equipment Checklist for Winter Comfort and Efficiency December 19, 2014 - 10:59am Addthis Using our heating equipment checklist can help you properly maintain your heating system this winter! | Photo courtesy of iStockphoto.com/lionvision Using our heating equipment checklist can help you properly maintain your heating system this winter! | Photo courtesy of iStockphoto.com/lionvision Paige Terlip Paige Terlip

  3. Commercial Buildings Energy Consumption Survey (CBECS) - How Was Energy

    Gasoline and Diesel Fuel Update

    Usage Information Collected in the 2012 CBECS? Energy Usage Information Collected in the 2012 CBECS? CBECS 2012 - Release date: March 18, 2016 The Commercial Buildings Energy Consumption Survey (CBECS) project cycle spans at least four years, beginning with development of the sample frame and survey questionnaire and ending with release of data to the public. This set of three methodology documents provides details about each of the three major stages of the 2012 CBECS survey process. * How

  4. 1992 CBECS C & E

    Energy Information Administration (EIA) (indexed site)

    0. Consumption of Fuel Oil by End Use, 1989 Fuel Oil Consumption (trillion Btu) Space Water a Total Heating Heating Other RSE Building Row Characteristics Factor 1.0 NF NF NF RSE...

  5. 1992 CBECS C & E

    Energy Information Administration (EIA) (indexed site)

    of Natural Gas by End Use, 1989 Natural Gas Consumption (trillion Btu) Space Water a Total Heating Heating Cooking Other RSE Building Row Characteristics Factor 1.0 NF...

  6. Workshop on Condensing Heating and Water Heating Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Workshop on Condensing Heating and Water Heating Equipment Thursday, October 9, 2014 List of Attendees Organization/Attendees DOE - John Cymbalsky - Ashley Armstrong - Johanna Hariharan AGA - Kathryn Clay - Rick Murphy - Lisa Dundon APGA - Dave Schryver - Bud Miller Gas Technology Institute - Neil Leslie Washington Gas Light - Melissa Adams - Kevin Dunn ACEEE - Harvey Sachs ASAP - Andrew deLaski ASE - Rodney Sobin NRDC - Elizabeth Noll AHRI - Frank Stanonik ACCA - Charlie McCrudden - Glenn

  7. 1989 CBECS EUI

    Energy Information Administration (EIA) (indexed site)

    4. Electricity Consumption and Conditional Energy Intensity for Buildings Heated with Electricity, 1992 Building Characteristics RSE Column Factor: Total Electricity Consumption...

  8. 1992 CBECS BC

    Gasoline and Diesel Fuel Update

    ... 95 8 Q 15 93 Q 2 Q 21.2 District Chilled Water ...... 28 28 Q Q 3 24 Q Q ... 1,081 80 509 855 36 7.0 Buildings with Water Heating ......

  9. 1992 CBECS BC

    Gasoline and Diesel Fuel Update

    ... 1,560 1,884 983 912 18.2 District Chilled Water ...... 28 2 7 10 9 2,066 ... 14,383 21,205 10,296 6.6 Buildings with Water Heating ...... 3,502 625 906 1,307 664 ...

  10. 1992 CBECS BC

    Gasoline and Diesel Fuel Update

    ... 22 14 22 17 10 4 7 20.0 District Chilled Water ...... 28 Q Q 10 5 3 2 3 ... 781 502 384 118 63 31 6.0 Buildings with Water Heating ...... 3,502 1,609 777 512 384 ...

  11. 1992 CBECS BC

    Gasoline and Diesel Fuel Update

    ... 746 1,125 76 50 33.5 9.9 District Chilled Water ...... 28 2,066 2,709 72.6 ... 5.0 853 950 63 51 27.5 4.2 Buildings with Water Heating ......

  12. 1992 CBECS BC

    Gasoline and Diesel Fuel Update

    ... 11 28 16 10 6 5 1 23.0 District Chilled Water ...... 28 Q Q 8 9 Q 2 2 1 ... 519 236 103 59 24 9 7.0 Buildings with Water Heating ...... 3,502 1,733 787 539 ...

  13. Instructions to CBECS 1992 Microdata Files

    Energy Information Administration (EIA) (indexed site)

    and dBASE (CE92F01D.DBF) formats. These files contain the 1992 CBECS basic data including building characteristics, energy consumption and expenditures, and temperature data. The...

  14. Preliminary CBECS End-Use Estimates

    Energy Information Administration (EIA) (indexed site)

    For the past three CBECS (1989, 1992, and 1995), we used a statistically-adjusted engineering (SAE) methodology to estimate end-use consumption. The core of the SAE methodology...

  15. Purchasing Energy-Efficient Light Commercial Heating and Cooling Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Purchasing Energy-Efficient Light Commercial Heating and Cooling Equipment Purchasing Energy-Efficient Light Commercial Heating and Cooling Equipment The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial central air conditioners (CACs). This equipment falls under the light commercial heating and cooling equipment product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies

  16. Direct Heating Equipment- v1.0 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    File Direct Heating Equipment - v1.0 More Documents & Publications Refrigerators and Refrigerator-Freezers (Appendix A1 after May 2, 2011) Residential Refrigerators-Freezers ...

  17. Heating and Cooling System Support Equipment Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics July 30, 2013 - 3:28pm Addthis Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat pumps dehumidify air. Electric and gas meters allow users to track energy use. Thermostats Programmable thermostats can store and repeat multiple daily settings. Users can adjust the times heating or air-conditioning is activated

  18. Heat exchanger for power generation equipment

    DOEpatents

    Nirmalan, Nirm Velumylm; Bowman, Michael John

    2005-06-14

    A heat exchanger for a turbine is provided wherein the heat exchanger comprises a heat transfer cell comprising a sheet of material having two opposed ends and two opposed sides. In addition, a plurality of concavities are disposed on a surface portion of the sheet of material so as to cause hydrodynamic interactions and affect a heat transfer rate of the turbine between a fluid and the concavities when the fluid is disposed over the concavities.

  19. Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time: 10:00 am - 12:30 pm EDT Purpose: To convene representatives from stakeholder organizations in order to enhance their understanding of the characteristics of condensing natural gas heating and water heating equipment that contribute to the unique installation requirements and challenges of this equipment compared to

  20. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis &

    Gasoline and Diesel Fuel Update

    Projections - U.S. Energy Information Administration (EIA) 2012 CBECS Preliminary Results What is a commercial building? The CBECS includes buildings greater than 1,000 square feet that devote more than half of their floorspace to activity that is neither residential, manufacturing, industrial, nor agricultural. When will energy consumption estimates be available? Energy consumption and expenditures data will be available beginning in spring 2015. CBECS data collection is currently in its

  1. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Gasoline and Diesel Fuel Update

    Information Administration (EIA) CBECS Terminology NOTE: This glossary is specific to the 1999, 2003 and 2012Commercial Buildings Energy Consumption Surveys (CBECS). CBECS glossaries for prior years can be found in the appendices of past CBECS reports. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Account Classification: The method in which suppliers of electricity, natural gas, or fuel oil classify and bill their customers. Commonly used account classifications are

  2. New recommended heat gains for commercial cooking equipment

    SciTech Connect

    Fisher, D.R.

    1998-12-31

    Radiant heat gain from cooking equipment can significantly impact the air-conditioning load and/or human comfort in a commercial kitchen. This paper presents and discusses updated heat gain data for several types of commercial cooking equipment based on recent testing by gas and electric utility research organizations. The cooking equipment was tested under exhaust-only, wall-canopy hoods. The fundamentals of appliance heat gain are reviewed and the new data are compared with data published in the 1993 ASHRAE Handbook--Fundamentals, chapter 26, nonresidential cooling and heating load calculations. These updated data are now incorporated in the 1997 ASHRAE Handbook--Fundamentals, chapter 28, nonresidential cooling and heating load calculations. The paper also discusses appliance heat gain with respect to sizing air-conditioning systems for commercial kitchens and presents representative radiant factors that may be used to estimate heat gain from other sizes or types of gas and electric cooking equipment when appliance specific heat gain data are not avoidable.

  3. CBECS Buildings Characteristics --Revised Tables

    Gasoline and Diesel Fuel Update

    Number of Buildings and Floorspace, 1995 Table 26. Water-Heating Energy Sources, Number of Buildings, 1995 Table 27. Water-Heating Energy Sources, Floorspace, 1995 Table 28. ...

  4. Compressor Selection and Equipment Sizing for Cold Climate Heat Pumps

    SciTech Connect

    Shen, Bo; Abdelaziz, Omar; Rice, C Keith

    2014-01-01

    In order to limit heating capacity degradation at -25 C (-13 F) ambient to 25%, compared to the nominal rating point capacity at 8.3 C (47 F), an extensive array of design and sizing options were investigated, based on fundamental equipment system modeling and building energy simulation. Sixteen equipment design options were evaluated in one commercial building and one residential building, respectively in seven cities. The energy simulation results were compared to three baseline cases: 100% electric resistance heating, a 9.6 HSPF single-speed heat pump unit, and 90% AFUE gas heating system. The general recommendation is that variable-speed compressors and tandem compressors, sized such that their rated heating capacity at a low speed matching the building design cooling load, are able to achieve the capacity goal at low ambient temperatures by over-speeding, for example, a home with a 3.0 ton design cooling load, a tandem heat pump could meet this cooling load running a single compressor, while running both compressors to meet heating load at low ambient temperatures in a cold climate. Energy savings and electric resistance heat reductions vary with building types, energy codes and climate zones. Oversizing a heat pump can result in larger energy saving in a less energy efficient building and colder regions due to reducing electric resistance heating. However, in a more energy-efficient building or for buildings in warmer climates, one has to consider balance between reduction of resistance heat and addition of cyclic loss.

  5. Purchasing Energy-Efficient Light Commercial Heating and Cooling Equipment

    Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial central air conditioners (CACs). This equipment falls under the light commercial heating and cooling equipment product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  6. Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment, Final Determination

    Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment, Final Determination

  7. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  8. CBECS 2012: Energy Assessor Experiment in the 2012 Commercial Buildings

    Energy Information Administration (EIA) (indexed site)

    Energy Consumption Survey Select Results from the Energy Assessor Experiment in the 2012 Commercial Buildings Energy Consumption Survey CBECS 2012 - Release date: December 15, 2015 In 2010, the National Research Council published a report1 on how to improve the U.S. Energy Information Administration (EIA)'s energy consumption surveys, including the Commercial Building Energy Consumption Survey (CBECS). Among the panel's recommendations was for EIA to test the feasibility of using energy

  9. Advanced technology options for industrial heating equipment research

    SciTech Connect

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  10. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book

    3 Main Commercial Primary Energy Use of Heating and Cooling Equipment as of 1995 Heating Equipment | Cooling Equipment Packaged Heating Units 25% | Packaged Air Conditioning Units 54% Boilers 21% | Room Air Conditioning 5% Individual Space Heaters 2% | PTAC (2) 3% Furnaces 20% | Centrifugal Chillers 14% Heat Pumps 5% | Reciprocating Chillers 12% District Heat 7% | Rotary Screw Chillers 3% Unit Heater 18% | Absorption Chillers 2% PTHP & WLHP (1) 2% | Heat Pumps 7% 100% | 100% Note(s):

  11. 01-02-2003 - Unattended Laboratory Heating Equipment | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Unattended Laboratory Heating Equipment Document Number: NA Effective Date: 01/2003 File (public): PDF icon 01-02-2003

  12. Description of 2003 CBECS Detailed Tables and Categories of Data

    Gasoline and Diesel Fuel Update

    floorspace heated, cooled, and lit, and energy-using equipment types (heating, cooling, water heating, lighting, and refrigeration). Tables C1-C12 and C1A-C12A contain energy usage...

  13. ISSUANCE 2014-12-23: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Notice of Proposed Rulemaking

  14. ISSUANCE 2015-06-30: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Final Rule

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Final Rule

  15. Reduce Radiation Losses from Heating Equipment; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #7 (Fact Sheet).

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7 * January 2006 Industrial Technologies Program Reduce Radiation Losses from Heating Equipment Heating equipment, such as furnaces and ovens, can experience significant radiation losses when operating at temperatures above 1,000°F. Hot surfaces radiate energy to colder surfaces in their line of sight, and the rate of heat transfer increases with the fourth power of the surface's absolute temperature. Figure 1 shows radiation heat flux from a heat source at a given temperature to 60°F ambient.

  16. Compare All CBECS Activities: Total Energy Use

    Energy Information Administration (EIA) (indexed site)

    are more likely to contain specialized, high energy-consuming equipment-food service (cooking and ventilation equipment), inpatient health care (medical equipment), and food sales...

  17. ISSUANCE 2016-03-25: Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment, Notice of Proposed Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment, Notice of Proposed Determination

  18. DOE Publishes Notice of Proposed Rulemaking for Direct Heating Equipment and Pool Heater Test Procedures

    Energy.gov [DOE]

    The Department of Energy has published a notice of proposed rulemaking regarding test procedures for direct heating equipment and pool heaters.

  19. Table B37. Water Heating Equipment, Number of Buildings and Floorspace, 1999

    Energy Information Administration (EIA) (indexed site)

    7. Water Heating Equipment, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Water Heating","Type of Water Heating Equipment",,,"All Buildings","All Buildings with Water Heating","Type of Water Heating Equipment" ,,,"Central-ized System","Distri-buted System","Combination

  20. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book

    2 Main Commercial Heating and Cooling Equipment as of 1995, 1999, and 2003 (Percent of Total Floorspace) (1) Heating Equipment 1995 1999 2003 (2) Cooling Equipment 1995 1999 2003 (2) Packaged Heating Units 29% 38% 28% Packaged Air Conditioning Units 45% 54% 46% Boilers 29% 29% 32% Individual Air Conditioners 21% 21% 19% Individual Space Heaters 29% 26% 19% Central Chillers 19% 19% 18% Furnaces 25% 21% 30% Residential Central Air Conditioners 16% 12% 17% Heat Pumps 10% 13% 14% Heat Pumps 12% 14%

  1. T:\ClearanceEMEUConsumption\cbecs\pubuse89\txt\layouts&formats.txt

    Energy Information Administration (EIA) (indexed site)

    9/txt/layouts&formats.txt[3/19/2009 11:26:00 AM] December, 2008 1989 CBECS Building Characteristics and Consumption and Expenditures for All Buildings Public Use Files This document contains all the file layouts and format codes for the 1989 Commercial Buildings Energy Consumption Survey (CBECS) building characteristics and consumption and expenditures public use files. The files themselves can be downloaded in CSV (comma separated values) files from the CBECS web site:

  2. Total heat gain and the split between radiant and convective heat gain from office and laboratory equipment in buildings

    SciTech Connect

    Hosni, M.H.; Jones, B.W.; Sipes, J.M.; Xu, Y.

    1998-10-01

    An accurate determination of the cooling load is important in the proper sizing of air-conditioning equipment. Improvements on the thermal insulation characteristics of building materials and recent advances in building envelope systems have reduced the building cooling load from external sources. However, the number of internal cooling load sources have increased due to the addition of various office and laboratory equipment (e.g., microcomputer, monitor, printer copier, scanner, overhead projector, microwave oven, incubator, etc.). In this article, typical office and laboratory equipment such as desktop computers (with a Pentium and a 486DX2-33 processor), monitors, a copier, a laser printer, and a biological incubator are evaluated to determine the total heat gain and the split between radiant and convective heat gain from these items. In addition, two standard objects with well-defined radiant heat loss characteristics, a heated flat slab, and a heated sphere are used to verify the accuracy of measurement and data reduction procedures. The total heat gain from tested office equipment was significantly less than the name plate ratings even when operated continuously. The actual power consumption ranged from 14% to 36% of the name plate ratings. Thus, care must be taken when using equipment nameplate ratings in estimating total heat gain for air-conditioning equipment sizing.

  3. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Gasoline and Diesel Fuel Update

    Information Administration (EIA) Building Type Definitions In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace. A building assigned to a particular principal activity category may be used for other activities in a

  4. Survey Background and Technical Information on CBECS

    Energy Information Administration (EIA) (indexed site)

    place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with different types of...

  5. Energy Conservation Program for Consumer Products: Energy Conservation Standards for Direct Heating Equipment and Pool Heaters, Request for Information

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Consumer Products: Energy Conservation Standards for Direct Heating Equipment and Pool Heaters, Request for Information

  6. 2014-02-21 Issuance: Test Procedure for Commercial Water Heating Equipment; Request for Information

    Energy.gov [DOE]

    This document is a pre-publication Federal Register request for information regarding test procedures for commercial water heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency (February 21, 2014).

  7. EA-1774: Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment

    Energy.gov [DOE]

    This EA evaluates the environmental impacts of the adoption of amended energy conservation standards as required by The Energy Policy and Conservation Act, as amended) for direct heating equipment,...

  8. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book

    4 Residential Air Conditioner and Heat Pump Cooling Efficiencies 2005 2007 2007 Stock Equipment Type Air Conditioners SEER 10.2 13.0 21.0 Heat Pump - Cooling Air-Source SEER 10.0 13.0 17.0 Ground-Source EER 13.8 16.0 30.0 Heat Pump - Heating Air-Source HSPF 6.8 7.7 10.6 Ground-Source COP 3.4 3.4 5.0 Source(s): EIA/Navigant Consulting, EIA - Technology Forecast Updates - Residential and Commercial Buildings Technologies Reference Case, Second Edition (Revised), Sept. 2007, p. 26-31. Efficiency

  9. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book

    1 Main Residential Heating Equipment as of 1987, 1993, 1997, 2001, and 2005 (Percent of Total Households) Equipment Type 1987 1993 1997 2001 2005 Natural Gas 55% 53% 53% 55% 52% Central Warm-Air Furnace 35% 36% 38% 42% 40% Steam or Hot-Water System 10% 9% 7% 7% 7% Floor/Wall/Pipeless Furnace 6% 4% 4% 3% 2% Room Heater/Other 4% 3% 4% 3% 3% Electricity 20% 26% 29% 29% 30% Central Warm-Air Furnace 8% 10% 11% 12% 14% Heat Pump 5% 8% 10% 10% 8% Built-In Electric Units 6% 7% 7% 6% 5% Other 1% 1% 2% 2%

  10. Commercial Buildings Energy Consumption Survey (CBECS) - Data - U.S. Energy

    Gasoline and Diesel Fuel Update

    Information Administration (EIA) What is an RSE? The estimates in the Commercial Buildings Energy Consumption Survey (CBECS) are based on data reported by representatives of a statistically-designed subset of the entire commercial building population in the United States, or a "sample." Consequently, the estimates differ from the true population values. However, the sample design permits us to estimate the sampling error in each value. It is important to understand: CBECS estimates

  11. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    SciTech Connect

    Dale, Larry; Millstein, Dev; Coughlin, Katie; Van Buskirk, Robert; Rosenquist, Gregory; Lekov, Alex; Bhuyan, Sanjib

    2004-01-30

    In this report we calculate the change in final consumer prices due to minimum efficiency standards, focusing on a standard economic model of the air-conditioning and heating equipment (ACHE) wholesale industry. The model examines the relationship between the marginal cost to distribute and sell equipment and the final consumer price in this industry. The model predicts that the impact of a standard on the final consumer price is conditioned by its impact on marginal distribution costs. For example, if a standard raises the marginal cost to distribute and sell equipment a small amount, the model predicts that the standard will raise the final consumer price a small amount as well. Statistical analysis suggest that standards do not increase the amount of labor needed to distribute equipment the same employees needed to sell lower efficiency equipment can sell high efficiency equipment. Labor is a large component of the total marginal cost to distribute and sell air-conditioning and heating equipment. We infer from this that standards have a relatively small impact on ACHE marginal distribution and sale costs. Thus, our model predicts that a standard will have a relatively small impact on final ACHE consumer prices. Our statistical analysis of U.S. Census Bureau wholesale revenue tends to confirm this model prediction. Generalizing, we find that the ratio of manufacturer price to final consumer price prior to a standard tends to exceed the ratio of the change in manufacturer price to the change in final consumer price resulting from a standard. The appendix expands our analysis through a typical distribution chain for commercial and residential air-conditioning and heating equipment.

  12. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book

    8 Major Residential HVAC Equipment Lifetimes, Ages, and Replacement Picture Equipment Type Central Air Conditioners 8 - 14 11 8 5,354 Heat Pumps 9 - 15 12 8 1,260 Furnaces Electric 10 - 20 15 11 N.A. Gas-Fired 12 - 17 15 11 2,601 Oil-Fired 15 - 19 17 N.A. 149 Gas-Fired Boilers (1) 17 - 24 20 17 204 Note(s): Source(s): Lifetimes based on use by the first owner of the product, and do not necessarily indicate that the product stops working after this period. A replaced unit may be discarded or used

  13. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book

    9 Major Commercial HVAC Equipment Lifetimes and Ages Median Equipment Type Lifetime Air Conditioners Through-the-Wall 15 Water-CooledPackage 24 (1) Roof-Top 15 Chillers Reciprocating 20 Centrifugal 25 (1) Absorption 23 Heat Pumps Air-to-Air 15 Water-to-Air 24 (1) Furnaces (gas or oil) 18 Boilers (gas or oil) Hot-Water 24 - 35 Steam 25 - 30 Unit Heaters Gas-Fired or Electric 13 Hot-Water or Steam 20 Cooling Towers (metal or wood) Metal 22 (1) Wood 20 Note(s): Source(s): 1) Data from 2005. All

  14. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book

    U.S. Heating and Air-Conditioning System Manufacturer Shipments, by Type (Including Exports) 2005 Value of 2000 2005 2007 2009 2010 Shipments Equipment Type (1,000s) (1,000s) (1,000s) (1,000s) (1,000s) ($million) (7) Air-Conditioners (1) 5,346 6,472 4,508 3,516 3419 5,837 Heat Pumps 1,539 2,336 1,899 1,642 1,748 2,226 Air-to-Air Heat Pumps 1,339 2,114 1,899 1,642 1748 1,869 Water-Source Heat Pumps (2) 200 222 N.A. N.A. N.A. 357 Chillers 38 37 37 25 29 1,093 Reciprocating 25 24 30 20 24 462

  15. Screening Analysis for EPACT-Covered Commercial HVAC and Water-Heating Equipment

    SciTech Connect

    Somasundaram, Sriram; Armstrong, Peter R.; Belzer, David B.; Gaines, Suzanne C.; Hadley, Donald L.; Katipumula, S.; Smith, David L.; Winiarski, David W.

    2000-04-25

    The Energy Policy and Conservation Act (EPCA) as amended by the Energy Policy Act of 1992 (EPACT) establishes that the U.S. Department of Energy (DOE) regulate efficiency levels of certain categories of commercial heating, cooling, and water-heating equip-ment. EPACT establishes the initial minimum efficiency levels for products falling under these categories, based on ASHRAE/IES Standard 90.1-1989 requirements. EPCA states that, if ASHRAE amends Standard 90.1-1989 efficiency levels, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in the amended Standard 90.1 and that it can establish higher efficiency levels if they would result in significant additional energy savings. Standard 90.1-1999 increases minimum efficiency levels for some of the equipment categories covered by EPCA 92. DOE conducted a screening analysis to determine the energy-savings potential for EPACT-covered products meet and exceeding these levels. This paper describes the methodology, data assumptions, and results of the analysis.

  16. ISSUANCE 2014-12-23: Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters, Final Rule

    Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters, Final Rule

  17. Determining Optimal Equipment Capacities in Cooling, Heating and Power (CHP) Systems

    SciTech Connect

    DeVault, Robert C; Hudson II, Carl Randy

    2006-01-01

    Evaluation of potential cooling, heating and power (CHP) applications requires an assessment of the operations and economics of a particular system in meeting the electric and thermal demands of a specific end-use facility. A key determinate in whether a candidate system will be economic is the proper selection of equipment capacities. A methodology to determine the optimal capacities for CHP prime movers and absorption chillers using nonlinear optimization algorithms has been coded into a Microsoft Excel spreadsheet tool that performs the capacity optimization and operations simulation. This paper presents details on the use and results of this publicly available tool.

  18. 2014-10-10 Issuance: Energy Conservation Standards for Commercial Water Heating Equipment; Request for Information

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document is a pre-publication Federal Register request for information regarding energy conservation standards for commercial water heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on October 10, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  19. Commercial Buildings Energy Consumption Survey (CBECS) - U.S...

    Gasoline and Diesel Fuel Update

    space heating, cooling, ventilation, water heating, lighting, cooking, refrigeration, ... Water Heating. The water heating model uses building activity and size measures from the ...

  20. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book

    5 Commercial Equipment Efficiencies Equipment Type Chiller Screw COP(full-load / IPLV) 2.80 / 3.05 2.80 / 3.05 3.02 / 4.45 Scroll COP 2.80 / 3.06 2.96 / 4.40 N.A. Reciprocating COP(full-load / IPLV) 2.80 / 3.05 2.80 / 3.05 3.52 / 4.40 Centrifugal COP(full-load / IPLV) 5.0 / 5.2 6.1 / 6.4 7.3 / 9.0 Gas-Fired Absorption COP 1.0 1.1 N.A. Gas-Fired Engine Driven COP 1.5 1.8 N.A. Rooftop A/C EER 10.1 11.2 13.9 Rooftop Heat Pump EER (cooling) 9.8 11.0 12.0 COP (heating) 3.2 3.3 3.4 Boilers Gas-Fired

  1. 2014-02-07 Issuance: Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking

    Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding certification of commercial heating, ventilation, and air-conditioning, water-heating, and refrigeration equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 7, 2014.

  2. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Energy.gov [DOE]

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

  3. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Energy.gov [DOE]

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces, Supplemental Notice of Proposed Rulemaking

  4. Screening analysis for EPACT-covered commercial HVAC and water-heating equipment

    SciTech Connect

    S Somasundaram; PR Armstrong; DB Belzer; SC Gaines; DL Hadley; S Katipumula; DL Smith; DW Winiarski

    2000-05-25

    EPCA requirements state that if the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) amends efficiency levels prescribed in Standard 90.1-1989, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in amended Standard 90.1. However, DOE can establish higher efficiency levels if it can show through clear and convincing evidence that a higher efficiency level, that is technologically feasible and economically justified, would produce significant additional energy savings. On October 29, 1999, ASHRAE approved the amended Standard 90.1, which increases the minimum efficiency levels for some of the commercial heating, cooling, and water-heating equipment covered by EPCA 92. DOE asked Pacific Northwest National Laboratory (PNNL) to conduct a screening analysis to determine the energy-savings potential of the efficiency levels listed in Standard 90.1-1999. The analysis estimates the annual national energy consumption and the potential for energy savings that would result if the EPACT-covered products were required to meet these efficiency levels. The analysis also estimates additional energy-savings potential for the EPACT-covered products if they were to exceed the efficiency levels prescribed in Standard 90-1-1999. In addition, a simple life-cycle cost (LCC) analysis was performed for some alternative efficiency levels. This paper will describe the methodology, data assumptions, and results of the analysis. The magnitude of HVAC and SWH loads imposed on equipment depends on the building's physical and operational characteristics and prevailing climatic conditions. To address this variation in energy use, coil loads for 7 representative building types at 11 climate locations were estimated based on a whole-building simulation.

  5. Updated Buildings Sector Appliance and Equipment Costs and Efficiency

    Gasoline and Diesel Fuel Update

    Major residential equipment and commercial heating, cooling, & water heating equipment ... major residential equipment and commercial heating, cooling, and water heating equipment. ...

  6. Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus

    SciTech Connect

    Raustad, Richard; Nigusse, Bereket; Domitrovic, Ron

    2013-09-30

    The University of Central Florida/Florida Solar Energy Center, in cooperation with the Electric Power Research Institute and several variable-refrigerant-flow heat pump (VRF HP) manufacturers, provided a detailed computer model for a VRF HP system in the United States Department of Energy's (U.S. DOE) EnergyPlus? building energy simulation tool. Detailed laboratory testing and field demonstrations were performed to measure equipment performance and compare this performance to both the manufacturer's data and that predicted by the use of this new model through computer simulation. The project goal was to investigate the complex interactions of VRF HP systems from an HVAC system perspective, and explore the operational characteristics of this HVAC system type within a laboratory and real world building environment. Detailed laboratory testing of this advanced HVAC system provided invaluable performance information which does not currently exist in the form required for proper analysis and modeling. This information will also be useful for developing and/or supporting test standards for VRF HP systems. Field testing VRF HP systems also provided performance and operational information pertaining to installation, system configuration, and operational controls. Information collected from both laboratory and field tests were then used to create and validate the VRF HP system computer model which, in turn, provides architects, engineers, and building owners the confidence necessary to accurately and reliably perform building energy simulations. This new VRF HP model is available in the current public release version of DOE?s EnergyPlus software and can be used to investigate building energy use in both new and existing building stock. The general laboratory testing did not use the AHRI Standard 1230 test procedure and instead used an approach designed to measure the field installed full-load operating performance. This projects test methodology used the air enthalpy method

  7. Biodiesel Blends in Space Heating Equipment: January 31, 2001 -- September 28, 2001

    SciTech Connect

    Krishna, C. R.

    2004-05-01

    This report documents an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications.

  8. 2007 CBECS Large Hospital Building FAQs: 2003-2007 Comparison Graphs

    Gasoline and Diesel Fuel Update

    FAQs: 2003-2007 Comparison Graphs Main Report | Methodology | FAQ | List of Tables CBECS 2007 - Release date: August 17, 2012 Jump to: Figure 1 | Figure 2 | Figure 3 | Figure 4 | Figure 5 Figure 1 Number of Large Hospital Buildings and 95% Confidence Intervals by Census Region, 2003 and 2007 Figure 2 Total Floorspace and 95% Confidence Intervals in Large Hospital Buildings by Census Region, 2003 and 2007 Figure 3 Major Fuel Intensity and 95% Confidence Intervals by Census Region, 2003 and 2007

  9. ISSUANCE 2015-12-11: Final Rule Regarding Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment

    Energy.gov [DOE]

    Final Rule Regarding Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment

  10. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis &

    Gasoline and Diesel Fuel Update

    Projections - U.S. Energy Information Administration (EIA) All Reports & Publications Search By: Go Pick a date range: From: To: Go Commercial Buildings Available formats PDF Updated Buildings Sector Appliance and Equipment Costs and Efficiency Released: November 9, 2016 EIA works with technology experts to project the cost and efficiency of future HVAC, lighting, and other major end-use equipment rather than developing residential and commercial technology projections in-house. These

  11. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book

    6 2008 Unitary Air-Conditioner/Heat Pump Manufacturer Market Shares (Percent of Products Produced) Company Market Share (%) Total Units Shipped: (1) UTC/Carrier 27% Goodman (Amana) 14% American Standard (Trane) 14% York 12% Nordyne 12% Rheem 9% Lennox 9% Others 3% Total 100% Note(s): Source(s): 5,833,354 1) Does not include water-source or ground-source heat pumps.

  12. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book

    0 Main Residential Heating Fuel, by Vintage, as of 2005 (Percent of Total Households) 1949 or 1950 to 1960 to 1970 to 1980 to 1990 to 2000 to Heating Fuel Before 1959 1969 1979 1989 1999 2005 Natural Gas 56% 57% 55% 46% 45% 45% 45% Electricity 8% 18% 26% 36% 42% 42% 43% Fuel Oil 14% 10% 7% 5% 2% 2% 2% LPG 5% 3% 2% 5% 6% 8% 8% Other (1) 17% 12% 10% 8% 4% 3% 2% Total 100% 100% 100% 100% 100% 100% 100% Note(s): Source(s): 1) Other includes wood and kerosene. EIA, Residential Energy Consumption

  13. Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency; Industrial Technologies Program (ITP) Process Heating Tip Sheet #11 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    heating applications involving flammable solvent removal use large amounts of energy to maintain safe lower flammable limits (LFL) in the exhaust air. National Fire Protection Association (NFPA) guidelines require the removal of significant amounts of exhaust air to maintain a safe, low-vapor solvent concentration. If LFL monitoring equipment is used to ensure proper vapor concentrations, these guidelines allow for less exhaust air removal. LFL monitoring equipment can improve the efficiency of

  14. CBECS Archive

    Energy Information Administration (EIA) (indexed site)

    Archived Publications & Reports (Click on table headings to sort) Title Release Year Cycle Year Format Large Hospital Buildings in the United States in 2007 Release Date: August...

  15. ISSUANCE 2015-04-29: Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters Notice of petition to extend test procedure compliance date and request for comment

    Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters; Notice of petition to extend test procedure compliance date and request for comment.

  16. ISSUANCE 2015-07-27: Energy Conservation Program: Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program: Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking

  17. Heating equipment installation system

    DOEpatents

    Meuschke, Robert E.; Pomaibo, Paul P.

    1991-01-01

    A method for installing a heater unit assembly (52, 54) in a reactor pressure vessel (2) for performance of an annealing treatment on the vessel (2), the vessel (2) having a vertical axis, being open at the top, being provided at the top with a flange (6) having a horizontal surface, and being provided internally, at a location below the flange (6), with orientation elements (8) which are asymmetrical with respect to the vertical axis, by the steps of: providing an orientation fixture (10) having an upwardly extending guide member (18) and orientation elements (14, 16) and installing the orientation fixture (10) in the vessel (2) so that the orientation elements (14,16) of the orientation fixture (10) mate with the orientation elements (8) of the pressure vessel (2) in order to establish a defined position of the orientation fixture (10) in the pressure vessel (2), and so that the guide member (18) projects above the pressure vessel (2) flange (6); placing a seal ring (30) in a defined position on the pressure vessel (2) flange (6) with the aid of the guide member (18); mounting at least one vertical, upwardly extending guide stud (40) upon the seal ring (30); withdrawing the orientation fixture (10) from the pressure vessel (2); and moving the heater unit assembly (52,54) vertically downwardly into the pressure vessel (2) while guiding the heater unit assembly (52,54) along a path with the aid of the guide stud (40).

  18. Information technology equipment cooling system

    DOEpatents

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  19. 2014-12-22 Issuance: Alternative Efficiency Determination Methods, Basic Model Definition, and Compliance for Commercial HVAC, Refrigeration, and Water Heating Equipment; Final Rule

    Energy.gov [DOE]

    This document is a pre-publication Federal Register final rule regarding alternative efficiency determination methods, basic model definition, and compliance for commercial HVAC, refrigeration, and water heating equipment , as issued by the Deputy Assistant Secretary for Energy Efficiency on December 22, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  20. Materials Selection Considerations for Thermal Process Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief Materials Selection Considerations for Thermal Process Equipment: ...

  1. Information technology equipment cooling method

    DOEpatents

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  2. Updated Buildings Sector Appliance and Equipment Costs and Efficiency

    Gasoline and Diesel Fuel Update

    characterizes most major residential equipment and commercial heating, cooling, and water heating equipment. Appendix A was used in developing Reference case projections, while...

  3. Waste Heat Management Options for Improving Industrial Process Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power.

  4. Strategy Guideline: HVAC Equipment Sizing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... conditioning (HVAC) system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of a house. ...

  5. A bottom-up engineering estimate of the aggregate heating andcooling loads of the entire U.S. building stock

    SciTech Connect

    Huang, Yu Joe; Brodrick, Jim

    2000-08-01

    A recently completed project for the U.S. Department of Energy's (DOE) Office of Building Equipment combined DOE-2 results for a large set of prototypical commercial and residential buildings with data from the Energy Information Administration (EIA) residential and commercial energy consumption surveys (RECS, CBECS) to estimate the total heating and cooling loads in U.S. buildings attributable to different shell components such as windows, roofs, walls, etc., internal processes, and space-conditioning systems. This information is useful for estimating the national conservation potentials for DOE's research and market transformation activities in building energy efficiency. The prototypical building descriptions and DOE-2 input files were developed from 1986 to 1992 to provide benchmark hourly building loads for the Gas Research Institute (GRI) and include 112 single-family, 66 multi-family, and 481 commercial building prototypes. The DOE study consisted of two distinct tasks : (1) perform DOE-2 simulations for the prototypical buildings and develop methods to extract the heating and cooling loads attributable to the different building components; and (2) estimate the number of buildings or floor area represented by each prototypical building based on EIA survey information. These building stock data were then multiplied by the simulated component loads to derive aggregated totals by region, vintage, and building type. The heating and cooling energy consumption of the national building stock estimated by this bottom-up engineering approach was found to agree reasonably well with estimates from other sources, although significant differences were found for certain end-uses. The main added value from this study, however, is the insight it provides about the contributing factors behind this energy consumption, and what energy savings can be expected from efficiency improvements for different building components by region, vintage, and building type.

  6. Heat

    Gasoline and Diesel Fuel Update

    ... Q 1,354 5,925 Q 742 Q District chilled water 4,608 4,561 325 Q 888 3,718 582 756 Q ... 5,864 21,579 48,053 1,534 Buildings with water heating 79,015 76,584 11,576 8,420 19,548 ...

  7. Strategy Guideline. HVAC Equipment Sizing

    SciTech Connect

    Burdick, Arlan

    2012-02-01

    This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, FL. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

  8. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  9. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  10. Use Lower Flammable Limit Monitoring Equipment to Improve Process...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency This process heating ...

  11. 1999 Commercial Buildings Characteristics--Glossary--Space-Heating...

    Energy Information Administration (EIA) (indexed site)

    Space-Heating Equipment Glossary-Space-Heating Equipment Boiler: A type of space-heating equipment consisting of a vessel or tank where heat produced from the combustion of such...

  12. Cleanroom Equipment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Conventional Machining Engis Lapping and Polishing Machine MET One particle Counter Sand Blaster Cabinet Flycutting Machine Lithography Equipment Mann 600 Pattern Generator Oriel UV Exposure Station with Aligner Quintel UL7000-OBS Aligner and DUV Exposure Station Metrology Equipment AFT 210XP Nanospec Digital Instrument 3100 SPM Hitachi S-4500II Field Emission SEM Hitachi U-2001 NIR-UV-VUS Spectrophotometer Nikon MM-22U Measuroscope Nikon OPTIPHOT-88 Optical Microscope OXFORD Plasmalab System

  13. Updated Buildings Sector Appliance and Equipment Costs and Efficiency

    Gasoline and Diesel Fuel Update

    Full report (4.1 mb) Heating, cooling, & water heating equipment Appendix A - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1.9...

  14. Liberty Utilities Iowa High Efficiency Equipment Rebate

    Energy.gov [DOE]

    Liberty Utilities offers a rebate to its Iowa residential and small business customers for the purchase of high efficiency ENERGY STAR natural gas home heating and water heating equipment....

  15. 2014-09-18 Issuance: Energy Conservation Standard for Alternative Efficiency Determination Methods, Basic Model Definition, and Compliance for Commercial HVAC, Refrigeration, and Water Heating Equipment; Supplemental Notice of Proposed Rulemaking

    Energy.gov [DOE]

    This document is a pre-publication Federal Register supplemental notice of proposed rulemaking regarding energy conservation standards for alternative efficiency determination methods, basic model definition, and compliance for commercial HVAC, Refrigeration, and Water Heating Equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 18, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  16. Energy Information Administration (EIA)- About the Commercial Buildings

    Gasoline and Diesel Fuel Update

    Energy Consumption Survey (CBECS) 2. Water-heating equipment, number of buildings and floorspace, 2012 Released: May 2016 Number of buildings (thousand) Total floorspace (million square feet) All buildings Buildings with water heating Type of water-heating equipment All buildings Buildings with water heating Type of water-heating equipment Central- ized system Distrib- uted system Both central- ized and distrib- uted systems Central- ized system Distrib- uted system Both central- ized and

  17. CBECS - public use data

    Energy Information Administration (EIA) (indexed site)

    the data. Several variables are frequently used in the analysis of commercial energy data. These core variables are included in each group of variables: BLDGID3: building...

  18. CBECS - public use data

    Energy Information Administration (EIA) (indexed site)

    the data. Several variables are frequently used in the analysis of commercial energy data. These core variables are included in each group of variables: BLDGID4: building...

  19. 1989 CBECS EUI

    Energy Information Administration (EIA) (indexed site)

    5. Electricity Consumption and Expenditure Intensities, 1992 Building Characteristics RSE Column Factor: Electricity Consumption Electricity Expenditures RSE Row Factor per...

  20. 1989 CBECS EUI

    Energy Information Administration (EIA) (indexed site)

    . Electricity Consumption and Conditional Energy Intensity for Buildings Cooled with Electricity, 1992 Building Characteristics RSE Column Factor: Total Electricity Consumption...

  1. 1989 CBECS EUI

    Energy Information Administration (EIA) (indexed site)

    Table 3.2. Total Energy Consumption by Major Fuel, 1992 Building Characteristics RSE Column Factor: All Buildings Total Energy Consumption (trillion Btu) RSE Row Factor Number of...

  2. 1989 CBECS EUI

    Energy Information Administration (EIA) (indexed site)

    . Consumption for Sum of Major Fuels, 1992 Building Characteristics RSE Column Factor: All Buildings Sum of Major Fuel Consumption RSE Row Factor Number of Buildings (thousand)...

  3. 1989 CBECS EUI

    Energy Information Administration (EIA) (indexed site)

    9. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels, 1992 Building Characteristics RSE Column Factor: Sum of Major Fuel Consumption (trillion Btu)...

  4. 1989 CBECS EUI

    Energy Information Administration (EIA) (indexed site)

    . Expenditures for Sum of Major Fuels, 1992 Building Characteristics RSE Column Factor: All Buildings Sum of Major Fuel Expenditures RSE Row Factor Number of Buildings (thousand)...

  5. 1989 CBECS EUI

    Energy Information Administration (EIA) (indexed site)

    . Total Energy Consumption by Major Fuel, 1992 Building Characteristics RSE Column Factor: All Buildings Total Energy Consumption (trillion Btu) RSE Row Factor Number of Buildings...

  6. 1989 CBECS EUI

    Energy Information Administration (EIA) (indexed site)

    Energy Intensity for Sum of Major Fuels for Mercantile and Office Buildings, 1992 Building Characteristics RSE Column Factor: Sum of Major Fuel Consumption (trillion Btu) Total...

  7. 1989 CBECS EUI

    Energy Information Administration (EIA) (indexed site)

    Energy Intensity for Sum of Major Fuels in Older Buildings by Year Constructed, 1992 Building Characteristics RSE Column Factor: Sum of Major Fuel Consumption (trillion Btu) Total...

  8. 1989 CBECS EUI

    Energy Information Administration (EIA) (indexed site)

    Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels, 1992 Building Characteristics RSE Column Factor: Sum of Major Fuel Consumption (trillion Btu) Total...

  9. 1989 CBECS EUI

    Energy Information Administration (EIA) (indexed site)

    Expenditures by Census Region for Sum of Major Fuels, 1992 Building Characteristics RSE Column Factor: Sum of Major Fuel Expenditures (million dollars) Sum of Major Fuel...

  10. 1989 CBECS EUI

    Energy Information Administration (EIA) (indexed site)

    reported for fewer than 20 buildings. Notes: * To obtain the RSE percentage for any table cell, multiply the corresponding RSE column and RSE row factors. * See Glossary for...

  11. 1989 CBECS EUI

    Energy Information Administration (EIA) (indexed site)

    . Peak Electricity Demand Category, Number of Buildings, 1992 (Thousand) Building Characteristics RSE Column Factor: Demand- Metered Buildings 10 kW or Less 11 to 25 kW 26 to 50 kW...

  12. 1989 CBECS EUI

    Energy Information Administration (EIA) (indexed site)

    Season of Peak Electricity Demand, Number of Buildings and Floorspace, 1992 Building Characteristics RSE Column Factor: Number of Buildings (thousand) Total Floorspace (million...

  13. 1992 CBECS BC

    Energy Information Administration (EIA) (indexed site)

    A57. Energy Conservation Features, Number of Buildings and Floorspace, 1992 Building ... 12,619 12,234 11,655 9,477 6,628 993 9.3 Energy Sources (more than one may apply) ...

  14. 1992 CBECS BC

    Energy Information Administration (EIA) (indexed site)

    Energy Sources, Number of Buildings, 1992 (Thousand) Building Characteristics RSE Column Factor: All Buildings All Buildings Using Any Energy Source Energy Sources Used (more than ...

  15. CBECS - public use data

    Energy Information Administration (EIA) (indexed site)

    the data. Several variables are frequently used in the analysis of commercial energy data. These core variables are included in each group of variables: PUBID8: building...

  16. 2003 CBECS Sample Design

    Energy Information Administration (EIA) (indexed site)

    during the field period. The rate of nonresponse cases where the respondent spoke a language other than English was notably higher for establishments than for buildings (9...

  17. 1992 CBECS BC

    Gasoline and Diesel Fuel Update

    ... Q 416 740 2,154 20.3 Building Shell Conservation Features (more than one may apply) ... HVAC Conservation Features (more than one may apply) Variable Air-Volume System ...

  18. 1992 CBECS Detailed Tables

    Gasoline and Diesel Fuel Update

    (8 pages, 49 KB) -- 3.27, 3.28 -- -- -- Yellow Arrow Peak Demand Intensity and Load Factoring (percentile) (4 pages, 26 KB) -- 3.29 -- -- -- Specific questions on these topics...

  19. 1999 CBECS Sample Design

    Energy Information Administration (EIA) (indexed site)

    contractor for survey verification purposes only. Geographic identifiers and NOAA Weather Division identifiers are not included on micro-data files delivered to EIA....

  20. Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling

    SciTech Connect

    Blum, Helcio; Sathaye, Jayant

    2010-05-14

    We investigate the existence of the principal-agent (PA) problem in non-government, non-mall commercial buildings in the U.S. in 2003. The analysis concentrates on space heating and cooling energy consumed by centrally installed equipment in order to verify whether a market failure caused by the PA problem might have prevented the installation of energy-efficient devices in non-owner-occupied buildings (efficiency problem) and/or the efficient operation of space-conditioning equipment in these buildings (usage problem). Commercial Buildings Energy Consumption Survey (CBECS) 2003 data for single-owner, single-tenant and multi-tenant occupied buildings were used for conducting this evaluation. These are the building subsets with the appropriate conditions for assessing both the efficiency and the usage problems. Together, these three building types represent 51.9percent of the total floor space of all buildings with space heating and 59.4percent of the total end-use energy consumption of such buildings; similarly, for space cooling, they represent 52.7percent of floor space and 51.6percent of energy consumption. Our statistical analysis shows that there is a usage PA problem. In space heating it applies only to buildings with a small floor area (<_50,000 sq. ft.). We estimate that in 2003 it accounts for additional site energy consumption of 12.3 (+ 10.5 ) TBtu (primary energy consumption of 14.6 [+- 12.4] TBtu), corresponding to 24.0percent (+- 20.5percent) of space heating and 10.2percent (+- 8.7percent) of total site energy consumed in those buildings. In space cooling, however, the analysis shows that the PA market failure affects the complete set of studied buildings. We estimate that it accounts for a higher site energy consumption of 8.3 (+-4.0) TBtu (primary energy consumption of 25.5 [+- 12.2]TBtu), which corresponds to 26.5percent (+- 12.7percent) of space cooling and 2.7percent (+- 1.3percent) of total site energy consumed in those buildings.

  1. White Paper for U.S. Army Rapid Equipping Force: Waste Heat Recovery with Thermoelectric and Lithium-Ion Hybrid Power System

    SciTech Connect

    Farmer, J C

    2007-11-26

    By harvesting waste heat from engine exhaust and storing it in light-weight high-capacity modules, it is believed that the need for energy transport by convoys can be lowered significantly. By storing this power during operation, substantial electrical power can be provided during long periods of silent operation, while the engines are not operating. It is proposed to investigate the potential of installing efficient thermoelectric generators on the exhaust systems of trucks and other vehicles to generate electrical power from the waste heat contained in the exhaust and to store that power in advanced power packs comprised of polymer-gel lithium ion batteries. Efficient inexpensive methods for production of the thermoelectric generator are also proposed. The technology that exists at LLNL, as well as that which exists at industrial partners, all have high technology readiness level (TRL). Work is needed for integration and deployment.

  2. Laboratory Equipment Donation Program - Equipment Applications

    Office of Scientific and Technical Information (OSTI)

    Select the "Search Equipment" menu link. Enter the type of equipment desired into the search box or choose the "Equipment List" link, which will allow you see a complete list of ...

  3. Laboratory Equipment Donation Program - Equipment List

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Equipment List Already know the item control number? Submit Reset Item Control Number Equipment Name Date Entered Condition Picture 89022961820152 75164 VACUUM CONDENSER 07272016 ...

  4. Laboratory Equipment Donation Program - Equipment Information

    Office of Scientific and Technical Information (OSTI)

    Before you Apply, please Print This Page for your records Equipment Details No Package found. Item Control Number: Equipment Type: Condition: Date Entered: (you have 30 days from ...

  5. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  6. Strategy Guideline: HVAC Equipment Sizing

    SciTech Connect

    Burdick, A.

    2012-02-01

    The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

  7. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  8. Laboratory Equipment Donation Program - Equipment Information

    Office of Scientific and Technical Information (OSTI)

    Before you Apply, please Print This Page for your records Equipment Details No Package found. Item Control Number: Equipment Type: Condition: Date Entered: (you have 30 days from this date to acquire equipment) Manufacturer: Make: Model: FSC Number: Detailed Description: Location of Equipment: Address Line 2: Address Line 3: City: State: Zip: Contact: Phone: Fax: Email address: Quantity: Original Acquisition Cost: $0.00

  9. Materials Selection Considerations for Thermal Process Equipment: A

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BestPractices Process Heating Technical Brief | Department of Energy Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief This technical brief is a guide to selecting high-temperature metallic materials for use in process heating applications such as burners, electrical heating elements, material handling, load support,

  10. Anne Arundel County- Solar and Geothermal Equipment Property Tax Credits

    Energy.gov [DOE]

    Anne Arundel County offers a one-time credit from county property taxes on residential dwellings that use solar and geothermal energy equipment for heating and cooling, and solar energy equipment...

  11. Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency | Department of Energy Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency This process heating tip sheet recommends using lower flammable limit monitoring equipment to improve oven efficiency. PROCESS HEATING TIP SHEET #11 Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency (October 2007) (228.04 KB) More Documents & Publications Check

  12. Philadelphia Gas Works- Residential and Small Business Equipment Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Philadelphia Gas Works' (PGW) Residential Heating Equipment rebates are available to all PGW residential or small business customers installing high efficiency boilers and furnaces, and programma...

  13. Baoding Solar Thermal Equipment Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Equipment Company Place: Baoding, Hebei Province, China Sector: Solar Product: Solar water heating system manufacturer. Coordinates: 38.855011, 115.480217 Show Map Loading...

  14. Heat pipes and use of heat pipes in furnace exhaust

    DOEpatents

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  15. CenterPoint Energy (Gas)- Residential Heating and Hot Water Rebates

    Energy.gov [DOE]

    CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage...

  16. Line Equipment Operator

    Energy.gov [DOE]

    There are several Line Equipment Operator positions located in Washington and Oregon. A successful candidate in this position will perform Line Equipment Operator work operating trucks and all...

  17. Equipment Listing | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Equipment Listing Crystal Preparation and Characterization Resistance Heated Bridgman Crystal Growth Systems Back-Reflection Laue X-ray System Electro-Discharge Machining High and Low speed Diamond Saws Arc Zone Melting Crystal Growth System Lapping Fixtures for Precise Orientation of Crystals (0.1°) Physical Properties Measurement Facilities - Hardness Testing Vickers and Rockwell Hardness Testing Brinell Hardness Instrument Wilson Tukon Micro Hardness Tester Forming and Characterization

  18. University of Delaware | CCEI Equipment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    CCEI Equipment Click column headings to sort Type Equipment Details Institution Professor Type Equipment Details Institution Lab BACK TO TOP

  19. Equipment | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Zeiss Axiovert 200 Optical Microscope Spark Cutter Fully Equipped Metallographic Laboratory Electropolisher Dimpler

  20. Residential Heating Systems Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Efficiency Vermont offers rebates to residential customers installing new, efficient heating equipment. Through this program, Efficiency Vermont offers $500 rebates to homeowners for efficient...

  1. Waste Heat Management Options: Industrial Process Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam Generation * Fluid Heating * Calcining * Drying * Heat Treating * Metal Heating * Metal and Non-metal Melting * Smelting, agglomeration etc. * Curing and Forming * Other Heating Waste heat is everywhere! Arvind Thekdi, E3M Inc Arvind Thekdi, E3M Inc 3 Waste Heat Sources from Process Heating Equipment * Hot gases -

  2. Waste Heat Utilization System Property Tax Exemption

    Energy.gov [DOE]

    Waste heat utilization systems arefacilities and equipment for the recovery of waste heat generated in the process of generating electricity and the use of such heat to generate additional elect...

  3. Workshop on Condensing Heating and Water Heating Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Institute - Neil Leslie Washington Gas Light - Melissa Adams - Kevin Dunn ACEEE - Harvey Sachs ASAP - Andrew deLaski ASE - Rodney Sobin NRDC - Elizabeth Noll AHRI - Frank ...

  4. Description of CBECS Building Types

    Energy Information Administration (EIA) (indexed site)

    or public safety. jail, reformatory, or penitentiary courthouse or probation office fire or police station Top Religious Worship Buildings in which people gather for religious...

  5. Description of CBECS Building Types

    Energy Information Administration (EIA) (indexed site)

    Buildings used for the preservation of law and order or public safety. police station fire station jail, reformatory, or penitentiary courthouse or probation office Top Religious...

  6. Principal Building Activities--1995 CBECS

    Energy Information Administration (EIA) (indexed site)

    Detailed Tables > Principal Building Activities Table Number of Buildings, Total Floorspace, and Total Site and Primary Energy Consumption for All Principal Building Activities,...

  7. CBECS Buildings Characteristics --Revised Tables

    Energy Information Administration (EIA) (indexed site)

    Totals and Means of Floorspace, Number of Workers, and Hours of Operation, 1995 Building Characteristics RSE Column Factor: All Buildings (thousand) Total Floorspace (million...

  8. 2003 CBECS Detailed Tables: Summary

    Energy Information Administration (EIA) (indexed site)

    c32.pdf c32.xls c32.html Fuel Oil (Tables C33-C36) set12-pdf Table C33. Total Fuel Oil Consumption and Expenditures c33-pdf c33.xls c33.html Table C34. Fuel Oil Consumption...

  9. CBECS Buildings Characteristics --Revised Tables

    Energy Information Administration (EIA) (indexed site)

    ... Q 397 199 22.9 1,997 61 33.8 Solar ...... Q Q Q Q Q ... Notes: * To obtain the RSE percentage for any table cell, multiply the cell's ...

  10. CBECS Buildings Characteristics --Revised Tables

    Annual Energy Outlook

    ... 42 57 20 13 8 4 1 17.9 Building Shell Conservation Features (more than one may apply) ... HVAC Conservation Features (more than one may apply) Variable Air-Volume System ......

  11. CBECS Buildings Characteristics --Revised Tables

    Energy Information Administration (EIA) (indexed site)

    ... 0.8 1.3 1.3 1.1 1.1 1.0 1.1 Lighting Conservation Features (more than one may apply) ... 1.1 1.4 1.2 1.0 1.1 1.1 1.0 Lighting Conservation Features (more than one may apply) ...

  12. CBECS Buildings Characteristics --Revised Tables

    Annual Energy Outlook

    Conservation Tables (16 pages, 86 kb) CONTENTS PAGES Table 41. Energy Conservation Features, Number of Buildings and Floorspace, 1995 Table 42. Building Shell Conservation ...

  13. CBECS Buildings Characteristics --Revised Tables

    Annual Energy Outlook

    ... 1.4 0.5 1.1 1.0 0.9 1.1 Building Shell Conservation Features (more than one may apply) ... HVAC Conservation Features (more than one may apply) Variable Air-Volume System ......

  14. CBECS Buildings Characteristics --Revised Tables

    Annual Energy Outlook

    ... -- 563 1,345 4,341 24.8 Building Shell Conservation Features (more than one may apply) ... HVAC Conservation Features (more than one may apply) Variable Air-Volume System ...... 327 ...

  15. 1999 CBECS Principal Building Activities

    Energy Information Administration (EIA) (indexed site)

    Data Reports > 2003 Building Characteristics Overview A Look at Building Activities in the 1999 Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy...

  16. Changes for the 2012 CBECS

    Gasoline and Diesel Fuel Update

    ... washes) that report having a point-of-use water heater, a question was added to collect the number of these that are "booster" water heaters (used to raise the water temperature, ...

  17. Compare All CBECS Activities: Size

    Energy Information Administration (EIA) (indexed site)

    page, please call 202-586-8800. Square Feet per Building by Building Type Inpatient health buildings were by far the largest building type, on average, while food service and...

  18. 1999 CBECS Public Use Files

    Energy Information Administration (EIA) (indexed site)

    only. Geographic identifiers and National Oceanic and Atmospheric Administration Weather Division identifiers are not included on any data files delivered to EIA. Geographic...

  19. List of Heat pumps Incentives | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Equipment Insulation Heat pumps Windows Ground Source Heat Pumps Yes Agricultural Energy Efficiency Program (New York) State Rebate Program New York Agricultural Agricultural...

  20. Jones-Onslow EMC- Residential Heating and Cooling Rebate Program

    Energy.gov [DOE]

    Jones-Onslow Electric Membership Corporation offers rebates to residential members who install energy efficient heating and cooling equipment. Members can replace an existing central AC or heat...

  1. New Emergency Equipment Notifications

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Notifications Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number: NM4890139088-TSDF Todd A. Shrader/CBFO and Philip J. Breidenbach/NWP dated October 20, 2015 Underground Fire Suppression Vehicles (2) Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number: NM4890139088-TSDF Dana C. Bryson/CBFO and Philip J. Breidenbach/NWP dated September 30, 2015 Underground Ambulance #3 Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number:

  2. power systems equipment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    power systems equipment - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy ...

  3. Electric Vehicle Supply Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Procurement of Electric Vehicle Supply Equipment This Guidance provides a description of the types of requirements to be included in an employer's workplace charging request for ...

  4. Heavy Mobile Equipment Mechanic

    Energy.gov [DOE]

    Join the Bonneville Power Administration (BPA) for a challenging and rewarding career, while working, living, and playing in the Pacific Northwest. The Heavy Mobile Equipment Mechanic (HMEM)...

  5. Heat recovery casebook

    SciTech Connect

    Lawn, J.

    1980-10-01

    Plants and factories could apply a great variety of sources and uses for valuable waste heat. Applications may be evaluated on the basis of real use for a specific waste heat, high-enough temperature and quality of work, and feasibility of mechanical heat transfer method. Classification may be by temperature, application, heat-transfer equipment, etc. Many buildings and industrial processes lend themselves well to heat-recovery strategies. Five case histories describe successful systems used by the Continental Corporation Data Center; Nabisco, Inc.; Kasper Foundry Company; Seven Up Bottling Company of Indiana; and Lehr Precision Tool company. (DCK)

  6. b25.xls

    Gasoline and Diesel Fuel Update

    Space Heating Cooling Water Heating Cooking Manu- facturing All Buildings* ... Released: Dec 2006 Next CBECS will be conducted in 2007 Space Heating Cooling Water ...

  7. Characterization of industrial process waste heat and input heat streams

    SciTech Connect

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  8. Troubleshooting rotating equipment

    SciTech Connect

    Wong, R.F. )

    1992-10-01

    This paper reports that equipment problems in a Peruvian refinery illustrate the process engineer's role as a troubleshooter. Examples show that rotating equipment problems can stem from mechanical or process factors and involve both inspection/maintenance specialists and process engineers.

  9. Solar Equipment Certification Requirement

    Energy.gov [DOE]

    All active solar space-heating and water-heating systems that are sold, offered for sale, or installed on residential and commercial buildings in Minnesota must meet Solar Rating and Certification...

  10. Emergency Management - Equipment Boxes

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Emergency Equipment Boxes Boxes filled with emergency equipment are positioned in four locations on site. The equipment in the boxes is for use when responding to or preventing a life-threatening or environmental emergency. A box may be moved to wherever it is needed. The normal locations and custodians of the boxes are: Building 85 (MCC) in the control room - MCC Safety Warden Building 90 (EEL) near the west wall in the high bay - Bert Manzlak - x7556 Building 58 (Test Lab) outside room 1137 -

  11. Direct Liquid Cooling for Electronic Equipment

    SciTech Connect

    Coles, Henry; Greenberg, Steve

    2014-03-01

    This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used

  12. Energy Information Administration (EIA)- About the Commercial Buildings

    Gasoline and Diesel Fuel Update

    Energy Consumption Survey (CBECS) 8. Heating equipment, number of buildings, 2012 Released: May 2016 Number of buildings (thousand) All buildings Buildings with space heating Heating equipment (more than one may apply) Heat pumps Furnaces Indiv- idual space heaters District heat Boilers Pack- aged heating units Other All buildings 5,557 4,722 628 755 1,247 48 544 2,802 62 Building floorspace (square feet) 1,001 to 5,000 2,777 2,257 286 359 612 Q 128 1,259 Q 5,001 to 10,000 1,229 1,046 147

  13. Energy Information Administration (EIA)- About the Commercial Buildings

    Gasoline and Diesel Fuel Update

    Energy Consumption Survey (CBECS) 9. Heating equipment, floorspace, 2012 Released: May 2016 Total floorspace (million square feet) All buildings Buildings with space heating Heating equipment (more than one may apply) Heat pumps Furnaces Indiv- idual space heaters District heat Boilers Pack- aged heating units Other All buildings 87,093 80,078 11,846 8,654 20,766 5,925 22,443 49,188 1,574 Building floorspace (square feet) 1,001 to 5,000 8,041 6,699 868 1,091 1,747 Q 400 3,809 Q 5,001 to

  14. Solar Equipment Certification

    Energy.gov [DOE]

    Under the Solar Energy Standards Act of 1976, the Florida Solar Energy Center (FSEC) is responsible for certifying all solar equipment sold in Florida. A manufacturer who wishes to have their solar...

  15. Tracking equipment on hire

    SciTech Connect

    Not Available

    1985-06-01

    The first comprehensive computer-based system for managing large inventories of rental equipment in the North Sea has been commissioned by British oilfield services group Expro. Now, after a year of operations in which the system has proved its worth in improving the efficiency of Expro's well testing and other services, it is being offered for sale to other oil industry companies with problems in controlling movement of capital equipment. The computer-based inventory control system to is described.

  16. Appliance and Equipment Standards

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Standards April 22, 2014 John Cymbalsky Program Manager 1 | Energy Efficiency and Renewable Energy eere.energy.gov 2 Appliance & Equipment Standards Mission The Appliance and Equipment Standards Program's Mission to Fulfill its Statutory Obligation to: * Develop and amend energy conservation standards that achieve the maximum energy efficiency that is technologically feasible and economically justified. * Develop and amend test procedures that are repeatable, reproducible, representative,

  17. Hydrogen Equipment Certification Guide

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Equipment Certification Guide U.S. Department of Energy Fuel Cell Technologies Office December 10 th , 2015 Presenter: Nick Barilo Pacific Northwest National Laboratory (PNNL) Hydrogen Safety Program Manager DOE Host: Will James - DOE Fuel Cell Technologies Office 2 | Fuel Cell Technologies Office eere.energy.gov Question and Answer * Please type your questions into the question box 2 / / Hydrogen Equipment Certification Guide: Introduction and Kickoff for the Stakeholder Review Nick Barilo PNNL

  18. Waste Heat Utilization System Income Tax Deduction (Personal)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Waste heat utilization system means facilities and equipment for the recovery of waste heat generated in the process of generating electricity and the use of such heat to generate additional elec...

  19. Waste Heat Utilization System Income Tax Deduction (Corporate)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Waste heat utilization system means facilities and equipment for the recovery of waste heat generated in the process of generating electricity and the use of such heat to generate additional elec...

  20. HPBA Comments NOPR on Energy Conservation Standards for Direct Heating

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Equipment | Department of Energy Comments NOPR on Energy Conservation Standards for Direct Heating Equipment HPBA Comments NOPR on Energy Conservation Standards for Direct Heating Equipment The Hearth, Patio & Barbecue Association (HPBA) provides these comments in response to the Department of Energy (DOE) Notice of Proposed Rulemaking entitled "Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment," published at 76 Fed. Reg. 43941 (July 22,

  1. Identification of existing waste heat recovery and process improvement technologies

    SciTech Connect

    Watts, R.L.; Dodge, R.E.; Smith, S.A.; Ames, K.R.

    1984-03-01

    General information is provided on waste heat recovery opportunities. The currently available equipment for high- and low-temperature applications are described. Other equipment related to wasteheat recovery equipment such as components, instruments and controls, and cleaning equipment is discussed briefly. A description of the microcomputer data base is included. Suppliers of waste heat equipment are mentioned throughout the report, with specific contacts, addresses, and telephone numbers provided in an Appendix.

  2. Health Care Buildings: Equipment Table

    Energy Information Administration (EIA) (indexed site)

    Equipment Table Buildings, Size and Age Data by Equipment Types for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet)...

  3. Laboratory Equipment Donation Program - Guidelines

    Office of Scientific and Technical Information (OSTI)

    ... What equipment is available under the LEDP program? Examples of typical items of educational training apparatus or equipment that may be requested are listed below. It should be ...

  4. Space Heating and Cooling Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Space Heating and Cooling Basics Space Heating and Cooling Basics August 16, 2013 - 1:04pm Addthis A wide variety of technologies are available for heating and cooling homes and other buildings. In addition, many heating and cooling systems have certain supporting equipment in common, such as thermostats and ducts, which provide opportunities for saving energy. Learn how these technologies and systems work. Learn about: Cooling Systems Heating Systems Heat Pump Systems Supporting Equipment for

  5. b24.xls

    Gasoline and Diesel Fuel Update

    Water Heating Cooking Manu- facturing All Buildings* ...... Released: June 2006 Next CBECS will be conducted in 2007 Space Heating Cooling Water ...

  6. Equipment Operational Requirements

    SciTech Connect

    Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

    2009-06-11

    The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

  7. Heat pipe array heat exchanger

    DOEpatents

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  8. Emergency Facilities and Equipment

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-08-21

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  9. Sandia National Laboratories: Supported Equipment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Supported Equipment Alt text This list of PSL supported equipment identifies the electrical Measuring and Test Equipment (M&TE) for which the Primary Standards Laboratory has either developed a calibration procedure or identified a commercial calibration source. Calibration of equipment that is not listed may take additional time and resources. Please contact the PSL at 845-8855 for additional information.

  10. Equipment | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Philips PW1830 X-ray Generator Back-Reflection Laue Camera Heated Bridgman Crystal Growth Systems Back-Reflection Laue Camera High and Low speed Diamond Saws Arc Zone Melting Crystal Growth System Electro-Discharge Machining

  11. Buildings","All Heated

    Energy Information Administration (EIA) (indexed site)

    2. Heating Equipment, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Heated Buildings","Heating Equipment (more than one may apply)" ,,,"Heat Pumps","Furnaces","Individual Space Heaters","District Heat","Boilers","Packaged Heating Units","Other" "All Buildings ................",4657,4016,492,1460,894,96,581,1347,185 "Building

  12. Types of Lighting in Commercial Buildings - Full Report

    Energy Information Administration (EIA) (indexed site)

    light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the...

  13. 1999 Commercial Buildings Characteristics--Conservation Features...

    Energy Information Administration (EIA) (indexed site)

    Conservation Features and Practices Topics: Energy Sources and End Uses End-Use Equipment Conservation Features and Practices Conservation Features and Practices The 1999 CBECS...

  14. Lighting in Residential and Commercial Buildings (1993 and 1995...

    Energy Information Administration (EIA) (indexed site)

    of different kinds of lighting equipment with data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), building floorspace can be described in three different...

  15. Lighting in Commercial Buildings

    Energy Information Administration (EIA) (indexed site)

    Motivation and Computation of Lighting Measures Floorspace by Lighting Equipment Configuration As described in Appendix A, for each building b, the CBECS data set has the total...

  16. Maintaining gas cooling equipment

    SciTech Connect

    Rector, J.D.

    1997-05-01

    An often overlooked key to satisfactory operation and longevity of any mechanical device is proper operation and maintenance in accordance with the manufacturer`s written instructions. Absorption chillers, although they use a different technology than the more familiar vapor compression cycle to produce chilled water, operate successfully in a variety of applications if operated and maintained properly. Maintenance procedures may be more frequent than those required for vapor compression chillers, but they are also typically less complex. The goal of this article is to describe the basic operation of an absorption chiller to provide an understanding of the relatively simple tasks required to keep the machine operating at maximum efficiency for its design life and beyond. A good starting point is definitions. Gas cooling equipment is generally defined as alternative energy, non-electric cooling products. This includes absorption chillers, engine-drive chillers and packaged desiccant units, among others. Natural gas combustion drives the equipment.

  17. Secure authenticated video equipment

    SciTech Connect

    Doren, N.E.

    1993-07-01

    In the verification technology arena, there is a pressing need for surveillance and monitoring equipment that produces authentic, verifiable records of observed activities. Such a record provides the inspecting party with confidence that observed activities occurred as recorded, without undetected tampering or spoofing having taken place. The secure authenticated video equipment (SAVE) system provides an authenticated series of video images of an observed activity. Being self-contained and portable, it can be installed as a stand-alone surveillance system or used in conjunction with existing monitoring equipment in a non-invasive manner. Security is provided by a tamper-proof camera enclosure containing a private, electronic authentication key. Video data is transferred communication link consisting of a coaxial cable, fiber-optic link or other similar media. A video review station, located remotely from the camera, receives, validates, displays and stores the incoming data. Video data is validated within the review station using a public key, a copy of which is held by authorized panics. This scheme allows the holder of the public key to verify the authenticity of the recorded video data but precludes undetectable modification of the data generated by the tamper-protected private authentication key.

  18. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect

    Panchal, C.B.; Bell, K.J.

    1992-08-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  19. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect

    Panchal, C.B.; Bell, K.J.

    1992-01-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  20. 2014-04-28 Issuance: Certification of Commercial HVAC, Water Heating, and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Refrigeration Equipment; Final Rule | Department of Energy 28 Issuance: Certification of Commercial HVAC, Water Heating, and Refrigeration Equipment; Final Rule 2014-04-28 Issuance: Certification of Commercial HVAC, Water Heating, and Refrigeration Equipment; Final Rule This document is a pre-publication Federal Register final rule regarding the certification of commercial heating, ventilation, and air-conditioning (HVAC), water heating (WH), and refrigeration (CRE) equipment, as issued by

  1. Waste heat: Utilization and management

    SciTech Connect

    Sengupta, S.; Lee, S.S.

    1983-01-01

    This book is a presentation on waste heat management and utilization. Topics covered include cogeneration, recovery technology, low grade heat recovery, heat dispersion models, and ecological effects. The book focuses on the significant fraction of fuel energy that is rejected and expelled into the environment either as industrial waste or as a byproduct of installation/equipment operation. The feasibility of retrieving this heat and energy is covered, including technical aspects and potential applications. Illustrations demonstrate that recovery methods have become economical due to recent refinements. The book includes theory and practice concerning waste heat management and utilization.

  2. Enforcement Policy Statement: Commercial HVAC Equipment Issued January 30, 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Commercial HVAC Equipment (January 30, 2015) 1 Enforcement Policy Statement: Commercial HVAC Equipment Issued January 30, 2015 The U.S. Department of Energy (DOE), Office of General Counsel, Office of the Assistant General Counsel for Enforcement (Office of Enforcement) issues the following policy statements regarding Departmental testing of commercial air conditioners and heat pumps subject to test procedures and energy conservation standards found at 10 C.F.R. Part 431, Subpart F. Nothing in

  3. Process Heating Assessment and Survey Tool (PHAST) Introduction

    Energy.gov [DOE]

    This presentation provides an introduction to PHAST, shows how to use the tool to survey process heating equipment that uses fuel, steam, or electricity, and helps plant personnel identify the most energy-intensive equipment.

  4. Agricultural Equipment Technology Conference

    Energy.gov [DOE]

    The 20th Agricultural Equipment Technology Conference will be held Feb. 8–10, 2016, in Louisville, Kentucky. The conference will bring together professionals and experts in the agricultural and biological engineering fields. Bioenergy Technologies Office (BETO) Terrestrial Feedstocks Technology Manager Sam Tagore will be in attendance. Mr. Tagore will moderate a technical session titled “Ash Reduction Strategies for Improving Biomass Feedstock Quality.” The session will include presentations by researchers from Idaho National Laboratory and Oak Ridge National Laboratory supporting BETO, as well as from university and industry.

  5. Equipment Specialist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Equipment Specialist Equipment Specialist Submitted by admin on Sat, 2016-01-16 00:16 Job Summary Organization Name Department Of Energy Agency SubElement Bonneville Power...

  6. Recommended nozzle loads for major equipment in fossil plants

    SciTech Connect

    Basavaraju, C.

    1995-12-31

    Most commonly, equipment nozzles are limiting items in the qualification of piping systems. Difficulty in meeting the allowable nozzle loads for major equipment such as boilers, HRSGs, steam turbines, pumps, tanks, heat exchangers, etc. is a commonly encountered and recurring problem. This issue also has a potential for impact on project costs and schedules due to modifications, piping reanalysis, and repeated interfaces with equipment vendor. The purpose of this paper is to provide guidance with regard to allowable nozzle loads. The approach consisted of utilizing data gathered and experience gained from several recently completed fossil fueled power projects. Tables containing a reasonable set of recommended values for allowable nozzle loads, which do not impose unnecessary burden either on the equipment manufacturers or on the designers and analysts of connected piping, are presented for guidance and use in the procurement of major equipment.

  7. Equipment | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Rare Earth Metal Melting and Casting Unit Tantalum Crucible Welder Oxy-Gon High Temperature Quenching Furnace GCA Vacuum Industries Vacuum Furnace NRC - High Temperature Vacuum Furnace Nonconsumable Arc Casting Furnace Vacuum Induction Melting/Chill Casting Furnaces Arc Melting/Chill Casting Furnaces Box Furnaces Resistance heated vacuum distillation/sublimation furnaces Electrotransport Purification Furnace 2250 psi High Pressure Hydrogen Charging furnace 1000°C Hydrofluorination furnace

  8. Equipment Pool | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Pool What is the Equipment Pool? Property that is no longer required or being used by a research group or administrative office is sent to the Ames Laboratory's warehouse Equipment Pool area for reuitilization within the Laboratory. What property is in the Equipment Pool? 1. Visit the Equipment Pool Listing page, or 2. Visit our Ames Laboratory warehouse between the hours of 7:30-4 p.m. to view the items in the equipment pool. How do I request property from the Pool? Contact Brian Aspengren,

  9. Electrical Room Equipment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electrical Room Equipment voltage phase Max Number Cap Bay High Voltage Power supply(6) 208/220 1 phase 30 Amp 6 Vacuum Pump Station 208/220 3 phase 30 Amp 1 Chiller (Nd:YAG) 208/220 3 phase 30 Amp 1 Short Pulse Lab Nd:YAG Laser 208/220 3 phase 30 Amp 1 Front End Rod Amplifier 208/220 1 phase 30 Amp 1 Purple/Pipe & C beam Vacuum Vacuum Pump Station 208/220 3 phase 30 Amp 1 Target Area Vacuum Pump Station 208/220 3 phase 30 Amp 1 He Cryo Compressor(2) 208/220 3 phase 30 Amp 2 total 7 single

  10. Process Heating Assessment and Survey Tool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in identifying potential energy-saving opportunities in process heating equipment. ... General manufacturing plant information Available energy sources for the plant and the ...

  11. Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate...

    Energy.gov [DOE] (indexed site)

    < Back Eligibility Commercial Industrial Residential Agricultural Savings Category Geothermal Heat Pumps Commercial Refrigeration Equipment Maximum Rebate 1,000ton Program Info...

  12. Hybrid Geothermal Heat Pump System Research Geothermal Project...

    OpenEI (Open Energy Information) [EERE & EIA]

    are an innovation that has the potential to dramatically decrease this high first cost. HyGSHPs connect conventional ground-source heat pump (GSHP) equipment with...

  13. Flathead Electric Cooperative Facility Geothermal Heat Pump System...

    Office of Scientific and Technical Information (OSTI)

    The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, ...

  14. HVAC, Water Heating and Appliances Sub-Program Logic Model

    Energy Saver

    & water heating technologies Researchers equipped with validated solutions to develop or improve components & optimize tech. systems at reduced cost High-efficiency HVAC, water ...

  15. Assessment of Energy Use in Multibuilding Facilities

    Energy Information Administration (EIA) (indexed site)

    form of useful energy (such as heat or steam) by a single process. The CBECS sample design, which is targeted at individual commercial buildings, deliberately screens out...

  16. Assessment of Energy Use in Multibuilding Facilities

    Energy Information Administration (EIA) (indexed site)

    Series Assessment of Energy Use in Multibuilding Facilities 35 data. The CBECS Energy Suppliers Survey remains the best source for estimates of district heating and cooling...

  17. Puerto Rico - Renewable Energy Equipment Certification | Department...

    Energy.gov [DOE] (indexed site)

    State Puerto Rico Program Type Equipment Certification Summary Certification of Photovoltaic Equipment EAA specifies that PV equipment must meet UL 1703 requirements, and...

  18. Design manual. [High temperature heat pump for heat recovery system

    SciTech Connect

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  19. Solar industrial process heat

    SciTech Connect

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  20. LANSCE | Lujan Center | Ancillary Equipment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ancillary Equipment For general questions, please contact the Lujan Center Sample Environments responsible: Victor Fanelli | vfanelli@lanl.gov | 505.667.8755 Sample and Equipment Shipping Instructions For questions regarding shipping procedures, contact the Lujan Center Experiment Coordinator: TBA Low Temperature Equipment Specifications Flight Path/Instrument Compatibility Responsible Displex closed-cycle refrigerators Tmin= 4 K to 12 K Tmax= 300 K to 340 K 11 - Asterix 04 - HIPPO 03 - HIPD 10

  1. Equipment Loans | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Loans Requirements to Loan Property: Ames Laboratory may loan Government Property provided the equipment is not excess to the Laboratory's needs. In order to loan equipment, the following criteria must be met: 1) Equipment shall be used in performing research, studies, and other efforts that result in benefits to both the U.S. Government, the borrower, and provided that the DOE mission is not affected. 2) Used by another DOE organization, contractor, Government agency, or organization that has a

  2. Commercial Kitchen Equipment Rebate Program

    Energy.gov [DOE]

    Efficiency Vermont offers rebates for ENERGY STAR certified fryers, griddles, convection ovens, and steam cookers. Custom rebates for other types of commercial cooking equipment may be available...

  3. Hydrogen Equipment Certification Guide Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Equipment Certification Guide" held on December 10, 2015.

  4. INL '@work' heavy equipment mechanic

    ScienceCinema

    Christensen, Cad

    2013-05-28

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  5. INL '@work' heavy equipment mechanic

    SciTech Connect

    Christensen, Cad

    2008-01-01

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  6. Webinar: Hydrogen Equipment Certification Guide

    Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Hydrogen Equipment Certification Guide" on Thursday, December 10, from 1 to 2 p.m. EST.

  7. Equipment Certification | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fuel Cells Geothermal Electric Hydroelectric energy Hydroelectric (Small) Natural Gas Nuclear Solar Photovoltaics Tidal Energy Wave Energy Wind energy Yes Madison - Equipment...

  8. Geothermal heat pumps for federal buildings

    SciTech Connect

    1999-09-02

    Geothermal heat pumps (GHPs) can provide significant energy savings to a wide range of Federal facilities. GHP equipment can be obtained and installed at no up-front cost through Energy Savings Performance Contracts (ESPCs) through energy service companies (ESCOs).

  9. Geothermal Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    equipped, supply the house with hot water. Some models of geothermal systems are available with two-speed ... air-source system of the same heating and cooling capacity, the ...

  10. Proceedings: Substation equipment diagnostics conference

    SciTech Connect

    Lyons, K.L.

    1994-07-01

    This Substation Equipment Diagnostics Conference held November 3--5, 1993, in New Orleans, Louisiana, reviewed the status of EPRI research on transmission substation diagnostics as well as that of universities, manufacturers, testing organizations, and other researchers. The papers presented were organized under four categories of diagnostics: Transformers, Circuit Breakers, Other Substation Equipment, and Diagnostic Systems.

  11. Direct Heating Equipment- v2.0 | Department of Energy

    Energy Saver

    - Report to Congress | Department of Energy Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to Congress Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to Congress This report provides DOE's plan to develop light water reactor (LWR) fuels with enhanced accident tolerance in response to 2012 Congressional direction and funding authorization. The result of the accident tolerant fuel development activities, if successful,

  12. Assessment of Synthane mechanical equipment

    SciTech Connect

    McCabe, J.T.; Kramberger, F.E.; Hao, B.R.; Dubis, D.; Carson, S.E.

    1980-05-01

    The objective of this report is to provide a base-line condition assessment of the key equipment of the synthane process pilot plant based on a historical review of performance, vibration monitoring and a preliminary systems analysis. The historical review of equipment performance was conducted by reviewing all available maintenance and repair records filed at the Synthane pilot plant, interviewing key Maintenance and Operations personnel and observing repair and maintenance procedures where possible. Field vibration measurements of all major rotating components were made periodically to detect current and approaching equipment problems. An overview of the influence of mechanical equipment on plant performance was provided by a systems analysis. The process equipment was categorized according to subsystem function, design source and application to future-generation plants. The analysis was conducted by examining data from the plant operating log to clarify the causes and implications of important equipment-related events. The results of this base line condition assessment of the key equipment at the Synthane pilot plant emphasize the need to expand the objectives of future pilot and demonstration plants and provide for the following recommendations: include equipment performance and reliability objectives as an integral part of the operational program; maintain an effective maintenance and repair data-collection system; conduct comprehensive equipment-failure analysis; establish structured corrective action procedures with high-level disposition; and conduct concurrent systems analysis and provide feedback to plant operations. The incorporation of these recommendations in future pilot and demonstration plants will yield major cost benefits in the operating phases of these programs and in future commercial plants.

  13. Equipment Inventory | Sample Preparation Laboratories

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Equipment Inventory « Equipment Resources Title Equipment Type Facility Laboratory Building Room Accumet Basic AB15 pH meter pH Meter SSRL BioChemMat Prep Lab 2 131 209 Agate Mortar & Pestle Sets Buchi V-700 Vacuum Pump & condenser Campden Instruments Vibrating Manual Tissue Cutter HA 752 Corning 430 pH Meter pH Meter SSRL BioChemMat Prep Lab 1 120 257 Corning 430 pH Meter pH Meter SSRL BioChemMat Prep Lab 2 131 209 Corning 476436 3-in-1 Combo Electrode pH Meter SSRL BioChemMat Prep Lab

  14. Pioneering Heat Pump Project

    SciTech Connect

    Aschliman, Dave; Lubbehusen, Mike

    2015-06-30

    This project was initiated at a time when ground coupled heat pump systems in this region were limited in size and quantity. There were economic pressures with costs for natural gas and electric utilities that had many organizations considering ground coupled heat pumps; The research has added to the understanding of how ground temperatures fluctuate seasonally and how this affects the performance and operation of the heat pumps. This was done by using a series of temperature sensors buried within the middle of one of the vertical bore fields with sensors located at various depths below grade. Trending of the data showed that there is a lag in ground temperature with respect to air temperatures in the shoulder months, however as full cooling and heating season arrives, the heat rejection and heat extraction from the ground has a significant effect on the ground temps; Additionally it is better understood that while a large community geothermal bore field serving multiple buildings does provide a convenient central plant to use, it introduces complexity of not being able to easily model and predict how each building will contribute to the loads in real time. Additional controllers and programming were added to provide more insight into this real time load profile and allow for intelligent shedding of load via a dry cooler during cool nights in lieu of rejecting to the ground loop. This serves as a means to ‘condition’ the ground loop and mitigate thermal creep of the field, as is typically observed; and It has been observed when compared to traditional heating and cooling equipment, there is still a cost premium to use ground source heat pumps that is driven mostly by the cost for vertical bore holes. Horizontal loop systems are less costly to install, but do not perform as well in this climate zone for heating mode

  15. New Emergency Equipment Notifications 2016

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Notifications 2016 Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number: NM4890139088-TSDF Todd A. Shrader/CBFO and Philip J. Breidenbach/NWP dated January 8, 2016 Underground Fire Suppression Vehicles

  16. Appliance and Equipment Efficiency Standards

    Energy.gov [DOE]

    Arizona’s Appliance and Equipment Efficiency Standards (Arizona Revised Statutes, Title 44, Section 1375) set minimum energy efficiency standards for twelve products, all of which have since been...

  17. Water-Using Equipment: Domestic

    SciTech Connect

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water management is an important aspect of energy engineering. This article addresses water-using equipment primarily used for household purposes, including faucets, showers, toilets, urinals, dishwashers, and clothes washers, and focuses on how the equipment can be optimized to save both water and energy. Technology retrofits and operation and maintenance changes are the primary methods discussed for water and energy conservation. Auditing to determine current consumption rates is also described for each technology.

  18. CBECS 1992 - Detailed Tables Word Definitions

    Energy Information Administration (EIA) (indexed site)

    Confidence Levels Confidence Levels The 95-percent confidence range can be determined using the approximate standard error of the estimate. To calculate the 95-percent confidence...

  19. CBECS 1992 - BC Tables and Definitions

    Energy Information Administration (EIA) (indexed site)

    of building characteristics that provide the most comprehensive breakdown of principal building activity and energy sources and end uses, respectively. Generally, there are two...

  20. 2003 CBECS Pre-Test Questionnaire

    Gasoline and Diesel Fuel Update

    A U.S. Department of Energy Commercial Buildings Energy Consumption Survey for 2007 BUILDING QUESTIONNAIRE Form Approval OMB No.: 1905-0145 Expires: 9302010 TABLE OF CONTENTS How ...

  1. Commercial Buildings Energy Consumption Survey (CBECS) - Data...

    Gasoline and Diesel Fuel Update

    Consequently, the estimates differ from the true population values. However, the sample design permits us to estimate the sampling error in each value. It is important to ...

  2. Compare All CBECS Activities: Electricity Generation

    Energy Information Administration (EIA) (indexed site)

    4, 2009 2:51 PM http:www.eia.govconsumptioncommercialdataarchivecbecspba99comparesize.html If you are having any technical problems with this site, please contact the EIA...

  3. Compare All CBECS Activities: Fuel Oil Use

    Gasoline and Diesel Fuel Update

    Fuel Oil Use Compare Activities by ... Fuel Oil Use Total Fuel Oil Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 1.3 billion gallons...

  4. 2003 CBECS Pre-Test Questionnaire

    Gasoline and Diesel Fuel Update

    ... central physical plant that produces and distributes district hot water, district steam, district chilled water, or electricity to more than one building ? 1 Yes 2 No NEXT IF Yes ...

  5. 2003 CBECS Pre-Test Questionnaire

    Gasoline and Diesel Fuel Update

    ... central physical plant that produces and distributes district hot water, district steam, district chilled water, or electricity to more than one building? 1 Yes 2 No NEXT IF Yes ...

  6. CBECS 1992 - Building Characteristics, Detailed Tables

    Energy Information Administration (EIA) (indexed site)

    major topics of each table. Directions for calculating an approximate relative standard error (RSE) for each estimate in the tables are presented in Figure A1, "Use of RSE Row...

  7. Compare All CBECS Activities: Electricity Use

    Energy Information Administration (EIA) (indexed site)

    Electricity Use Compare Activities by ... Electricity Use Total Electricity Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 908 billion...

  8. CBECS 1992 - Consumption & Expenditures, Detailed Tables

    Energy Information Administration (EIA) (indexed site)

    consumption by major fuel, 1992 Divider Line To View andor Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties,...

  9. Energy Information Administration (EIA)- CBECS Survey Background...

    Gasoline and Diesel Fuel Update

    ... (asked only of certain building types) Table 5. Selected Conservation Measures 1992 1995 1999 2003 Lighting Conservation Specular reflectors; Daylighting controls; Occupancy ...

  10. 2007 CBECS Large Hospital Building FAQs

    Annual Energy Outlook

    The smallest level of geographic detail for which data are available are Census regions, of which there are four in the United States. Will there be a public use data file for ...

  11. Compare All CBECS Activities: Natural Gas Use

    Energy Information Administration (EIA) (indexed site)

    call 202-586-8800. Natural Gas Consumption per Building by Building Type Inpatient health care buildings used by far the most natural gas per building. Figure showing natural...

  12. Webinar December 10: Hydrogen Equipment Certification Guide

    Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Hydrogen Equipment Certification Guide" on Thursday, December 10, from 1 to 2 p.m. EST. The webinar will introduce the Hydrogen Equipment Certification Guide, a document intended to aid in equipment approval until listed equipment are available for the entirety of equipment and components.

  13. MECS 2006 - Transportation Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transportation Equipment MECS 2006 - Transportation Equipment Manufacturing Energy and Carbon Footprint for Transportation Equipment (NAICS 336) Sector with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint Transportation Equipment (121.43 KB) More Documents & Publications Transportation Equipment

  14. "Table HC3.4 Space Heating Characteristics by Owner-Occupied...

    Energy Information Administration (EIA) (indexed site)

    Have Space Heating Equipment",1.2,0.6,0.3,"N","Q","Q","Q" "Have Main Space Heating ... Equipment But Do Not Use It",0.8,0.3,"Q","N","Q","Q","Q" "Main Heating Fuel and ...

  15. Alternative Fuels Data Center: Biodiesel Equipment Options

    Alternative Fuels and Advanced Vehicles Data Center

    Equipment Options to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Equipment Options on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Equipment Options on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Equipment Options on Google Bookmark Alternative Fuels Data Center: Biodiesel Equipment Options on Delicious Rank Alternative Fuels Data Center: Biodiesel Equipment Options on Digg Find More places to share Alternative Fuels Data Center: Biodiesel

  16. Heat exchanger

    DOEpatents

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  17. CVD Equipment Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Place: Ronkonkoma, New York Zip: 11779 Sector: Solar Product: New York-based maker of chemical vapour deposition process equipment. This equipment is used in the manufacture of...

  18. Laboratory Equipment & Supplies | Sample Preparation Laboratories

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Equipment is available to serve disciplines from biology to material science. All ... To view equipment inventory by laboratory, refer to the following pages: Biology Chemistry ...

  19. Commercial Refrigeration Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    standards. File Commercial Refrigeration Equipment -- v2.0 More Documents & Publications Beverage Vending Machines Commercial Refrigeration Equipment Fluorescent Lamp Ballasts

  20. Cruising Equipment Company CECO | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Equipment Company (CECO) Place: Seattle, Washington Zip: 98107 Product: Maker of pollution control equipment - bought by Xantrex in 2000. Coordinates: 47.60356,...

  1. Advanced Battery Manufacturing Facilities and Equipment Program...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program Fact Sheet: Grid-Scale ...

  2. Advanced Battery Manufacturing Facilities and Equipment Program...

    Energy.gov [DOE] (indexed site)

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  3. DMSE Equipment Scheduling | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scheduling Equipment ownercustodian reserves the right to override the schedule for maintenance andor other justified reasons. Abuse of the scheduling system or equipment may...

  4. REAL ESTATE & EQUIPMENT LEASING / RENTAL CALIFORNIA LAWRENCE...

    Office of Environmental Management (EM)

    Email dtchen@lbl.gov Construction, Mining, and Forestry Machinery and Equipment ... Email swanson6@llnl.gov Construction, Mining, and Forestry Machinery and Equipment ...

  5. Processing and Manufacturing Equipment | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Processing and Manufacturing Equipment Jump to: navigation, search TODO: Add description List of Processing and Manufacturing Equipment Incentives Retrieved from "http:...

  6. Personal Computing Equipment | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Computing Equipment Jump to: navigation, search TODO: Add description List of Personal Computing Equipment Incentives Retrieved from "http:en.openei.orgwindex.php?titlePersona...

  7. China Shandong Penglai Electric Power Equipment Manufacturing...

    OpenEI (Open Energy Information) [EERE & EIA]

    Penglai Electric Power Equipment Manufacturing Jump to: navigation, search Name: China Shandong Penglai Electric Power Equipment Manufacturing Place: Penglai, Shandong Province,...

  8. Moncada Solar Equipment | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Moncada Solar Equipment Place: Italy Product: Developer and manufacturer of thin-film modules. References: Moncada Solar Equipment1 This article is a stub. You can...

  9. Laboratory Equipment Donation Program - Guidelines/FAQ

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    eligible to participate in the Laboratory Equipment Donation Program (LEDP) program. ... physically attached to an energy-related laboratory equipment system); General supplies. ...

  10. Laboratory Equipment Donation Program - About Us

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    About LEDP The Laboratory Equipment Donation Program (LEDP), formerly the Energy-Related Laboratory Equipment (ERLE) Grant Program, was established by the United States Department ...

  11. Laboratory Equipment Donation Program - Home Page

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy (DOE), in accordance with its responsibility to encourage research and development in the energy area, awards grants of used energy-related laboratory equipment. equipment

  12. Laboratory Equipment Donation Program - LEDP Widget

    Office of Scientific and Technical Information (OSTI)

    LEDP Widget You can access key features of the Laboratory Equipment Donation Program (LEDP) website by downloading the LEDP widget. Use the widget to search, view the equipment ...

  13. Trends in powder processing equipment

    SciTech Connect

    Sheppard, L.M.

    1993-05-01

    Spray drying is the most widely used process for producing particles. It is used in industries other than ceramics including food, chemicals, and pharmaceutical. The process involves the atomization of a liquid feed stock into a spray of droplets and contacting the droplets with hot air in a drying chamber. The sprays are produced by either rotary or nozzle atomizers. Evaporation of moisture from the droplets and formation of dry particles proceed under controlled temperature and airflow conditions. Powder is then discharged continuously from the drying chamber. Spray drying equipment is being improved to handle an ever-increasing number of applications. Several developments in particle-size reduction equipment are also described.

  14. Susanville District Heating District Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  15. Total Space Heating Water Heating Cook-

    Annual Energy Outlook

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  16. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  17. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  18. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  19. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  20. Energy Information Administration (EIA)- About the Commercial Buildings

    Gasoline and Diesel Fuel Update

    Energy Consumption Survey (CBECS) 0. Cooling equipment, number of buildings, 2012 Released: May 2016 Number of buildings (thousand) All buildings Buildings with cooling Cooling equipment (more than one may apply) Resid- ential- type central air condi- tioners Heat pumps Indiv- idual air condi- tioners District chilled water Central chillers Pack- aged air condi- tioning units Swamp coolers Other All buildings 5,557 4,461 1,546 692 709 54 163 1,909 109 Q Building floorspace (square feet)

  1. Energy Information Administration (EIA)- About the Commercial Buildings

    Gasoline and Diesel Fuel Update

    Energy Consumption Survey (CBECS) 1. Cooling equipment, floorspace, 2012 Released: May 2016 Total floorspace (million square feet) All buildings Buildings with cooling Cooling equipment (more than one may apply) Resid- ential- type central air condi- tioners Heat pumps Indiv- idual air condi- tioners District chilled water Central chillers Pack- aged air condi- tioning units Swamp coolers Other All buildings 87,093 79,294 14,765 12,538 12,420 4,608 17,041 45,153 1,918 328 Building floorspace

  2. Feasibility study for geothermal-water space heating for the Safford Federal Prison Camp, Safford, Arizona

    SciTech Connect

    Not Available

    1981-07-01

    The results of an economic feasibility study for the Oregon Institute of Technology regarding a geothermal heating system for the Federal Prison Camp, Safford, Arizona are presented. The following aspects were examined: heat load calculations of the buildings involved; mechanical equipment retrofits necessary to accept geothermal water for the purpose of space heating; cost estimates for the equipment retrofit; and evaluation of the equipment retrofit to determine economic feasibility.

  3. Waste Heat to Power Market Assessment

    SciTech Connect

    Elson, Amelia; Tidball, Rick; Hampson, Anne

    2015-03-01

    Waste heat to power (WHP) is the process of capturing heat discarded by an existing process and using that heat to generate electricity. In the industrial sector, waste heat streams are generated by kilns, furnaces, ovens, turbines, engines, and other equipment. In addition to processes at industrial plants, waste heat streams suitable for WHP are generated at field locations, including landfills, compressor stations, and mining sites. Waste heat streams are also produced in the residential and commercial sectors, but compared to industrial sites these waste heat streams typically have lower temperatures and much lower volumetric flow rates. The economic feasibility for WHP declines as the temperature and flow rate decline, and most WHP technologies are therefore applied in industrial markets where waste heat stream characteristics are more favorable. This report provides an assessment of the potential market for WHP in the industrial sector in the United States.

  4. Specialty Vehicles and Material Handling Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Power Efficient Simple Clean Today Industrial Power Efficient Simple Clean Today Specialty Vehicles and Material Handling Equipment Specialty Vehicles and Material Handling Equipment Specialty Vehicles and Material Handling Equipment Specialty Vehicles and Material Handling Equipment Matching Federal Government Energy Needs with Energy Efficient F Matching Federal Government Energy Needs with Energy Efficient F Matching Federal Government Energy Needs with Energy Efficient F Matching

  5. Energy-related laboratory equipment (ERLE) guidelines

    SciTech Connect

    Not Available

    1995-01-01

    This document describes the Used Energy-Related Laboratory Equipment grants, and eligibility and procedures for participation. The document contains tables identifying typical equipment that may be requested, where to review ERLE equipment lists, and where to mail applications, a description of the eligible equipment grants access data system, and a copy of the ERLE grant application and instructions for its completion and submission.

  6. Energy Equipment Property Tax Exemption

    Energy.gov [DOE]

    A "solar energy device" for the purpose of this incentive is defined as "a system or series of mechanisms designed primarily to provide heating, to provide cooling, to produce electrical power, t...

  7. Table HC9.4 Space Heating Characteristics by Climate Zone, 2005

    Energy Information Administration (EIA) (indexed site)

    4 Space Heating Characteristics by Climate Zone, 2005 Million U.S. Housing Units Total......................................................................... 111.1 10.9 26.1 27.3 24.0 22.8 Do Not Have Space Heating Equipment................ 1.2 Q Q N 0.3 0.8 Have Main Space Heating Equipment.................... 109.8 10.9 26.0 27.3 23.7 22.0 Use Main Space Heating Equipment..................... 109.1 10.9 26.0 27.3 23.2 21.7 Have Equipment But Do Not Use It........................ 0.8 N N Q

  8. Transportation Equipment (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transportation Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Transportation Equipment (125.57 KB) More Documents & Publications MECS 2006 - Transportation Equipment Cement (2010 MECS) Glass and Glass Products (2010

  9. Energy end-use intensities in commercial buildings

    SciTech Connect

    Not Available

    1994-09-01

    This report examines energy intensities in commercial buildings for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and other. The objective of this analysis was to increase understanding of how energy is used in commercial buildings and to identify targets for greater energy efficiency which could moderate future growth in demand. The source of data for the analysis is the 1989 Commercial Buildings Energy Consumption survey (CBECS), which collected detailed data on energy-related characteristics and energy consumption for a nationally representative sample of approximately 6,000 commercial buildings. The analysis used 1989 CBECS data because the 1992 CBECS data were not yet available at the time the study was initiated. The CBECS data were fed into the Facility Energy Decision Screening (FEDS) system, a building energy simulation program developed by the US Department of Energy`s Pacific Northwest Laboratory, to derive engineering estimates of end-use consumption for each building in the sample. The FEDS estimates were then statistically adjusted to match the total energy consumption for each building. This is the Energy Information Administration`s (EIA) first report on energy end-use consumption in commercial buildings. This report is part of an effort to address customer requests for more information on how energy is used in buildings, which was an overall theme of the 1992 user needs study. The end-use data presented in this report were not available for publication in Commercial Buildings Energy Consumption and Expenditures 1989 (DOE/EIA-0318(89), Washington, DC, April 1992). However, subsequent reports on end-use energy consumption will be part of the Commercial Buildings Energy Consumption and Expenditures series, beginning with a 1992 data report to be published in early 1995.

  10. Used energy-related laboratory equipment grant program for institutions of higher learning. Eligible equipment catalog

    SciTech Connect

    Not Available

    1994-07-01

    This is a listing of energy related equipment available through the Energy-Related Laboratory Equipment Grant Program which grants used equipment to institutions of higher education for energy-related research. Information included is an overview of the program, how to apply for a grant of equipment, eligibility requirements, types of equipment available, and the costs for the institution.

  11. Toward more testable security equipment

    SciTech Connect

    Spencer, D.D.; Murray, D.W. )

    1991-01-01

    An important functional aspect of most security related equipment is the need for periodic performance testing. Sensors, entry-control devices, and other such security equipment usually have some sort or reliability or testing requirements. Unfortunately, testing requirements are seldom considered during equipment design, and testing becomes a prohibitively expensive or inconvenient afterthought. In this paper work at Sandia National Laboratories to address this concern is presented, focusing on metal detectors as a test case. Field testing of metal detectors is usually done by passing a test object through the opening to see whether an alarm is generated or not. Such alarm/no-alarm data are poor for making reliability estimates, and thus, a large quantity of such data is required to make good reliability statements. The detector itself uses much better internal information. Experiments tapping into some of this internal data will be discussed, and conclusions will be drawn about the possibility of redesign of metal detectors for enhanced testability. Such conclusions have implications for other types of security-related devices, as well.

  12. Assessment of HYGAS mechanical equipment

    SciTech Connect

    Albrecht, P.R.; Kramberger, F.E.; Recupero, R.M.; Verden, M.L.; Rees, K.

    1980-10-01

    The HYGAS process, which converts coal to substitute natural gas, is being developed by the Institute of Gas Technology (IGT) using an 80 ton per day pilot plant located in Chicago, Illinois. Plant design started in 1967 and testing began in October 1971. Since then, 18,000 tons of both Eastern and Western coal have been gasified. Assessment of the mechanical equipment was made by Mechanical Technology Incorporated (MTI) in collaboration with a DOE on-site representative and a representative from IGT, the operating contractor. Data for the assessment were obtained by reviewing all available maintenance records, by interviewing key personnel from maintenance and operations, and by observing repairs and maintenance procedures where possible. While operating the plant, a variety of equipment problems were addressed, many of which are generic to HYGAS as well as other coal conversion processes. Some problems were solved completely while others were solved to suit the limited needs of the pilot plant. Accordingly, the emphasis of this study is on the degree of success in dealing with equipment failures, the unresolved problems and the implication to future coal conversion plants.

  13. Using a cold radiometer to measure heat loads and survey heat leaks

    SciTech Connect

    DiPirro, M.; Tuttle, J.; Hait, T.; Shirron, P.

    2014-01-29

    We have developed an inexpensive cold radiometer for use in thermal/vacuum chambers to measure heat loads, characterize emissivity and specularity of surfaces and to survey areas to evaluate stray heat loads. We report here the results of two such tests for the James Webb Space Telescope to measure heat loads and effective emissivities of 2 major pieces of optical ground support equipment that will be used in upcoming thermal vacuum testing of the Telescope.

  14. Heat collector

    DOEpatents

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  15. Heat collector

    DOEpatents

    Merrigan, Michael A.

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  16. Improving Process Heating System Performance: A Sourcebook for Industry,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Third Edition | Department of Energy Third Edition Improving Process Heating System Performance: A Sourcebook for Industry, Third Edition This sourcebook introduces industry to process heating basics, performance opportunities for fuel and electric based systems, waste heat management and where they can find help on optimizing these important industrial systems. Over the years AMO has worked with the Industrial Heating Equipment Association (IHEA) in its development. IHEA's mission is to

  17. Industrial Steam System Heat-Transfer Solutions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat-Transfer Solutions Industrial Steam System Heat-Transfer Solutions This brief provides an overview of considerations for selecting the best heat-transfer equipment for various steam systems and applications. Industrial Steam System Heat-Transfer Solutions (June 2003) (442.68 KB) More Documents & Publications Industrial Steam System Process-Control Schemes Considerations When Selecting a Condensing Economizer Steam Pressure Reduction: Opportunities and Issues

  18. Waste heat driven absorption refrigeration process and system

    DOEpatents

    Wilkinson, William H.

    1982-01-01

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  19. SELF HELPS ST. LUCIE RESIDENTS BEAT THE FLORIDA HEAT | Department...

    Energy.gov [DOE] (indexed site)

    SELF HELPS ST. LUCIE RESIDENTS BEAT THE FLORIDA HEAT In the hot Florida climate, poor insulation or inefficient equipment can have a large impact on homeowners' energy use. Because ...

  20. Process Heating Assessment and Survey Tool User Manuals

    Office of Energy Efficiency and Renewable Energy (EERE)

    PHAST 3.0 User Manuals are available for Electrotechnology and Fuel Fired Technology (for US and International units). The PHAST tool can be used to assess energy use and estimate energy use reduction for industrial process heating equipment.

  1. HAND TRUCK FOR HANDLING EQUIPMENT

    DOEpatents

    King, D.W.

    1959-02-24

    A truck is described for the handling of large and relatively heavy pieces of equipment and particularly for the handling of ion source units for use in calutrons. The truck includes a chassis and a frame pivoted to the chassis so as to be operable to swing in the manner of a boom. The frame has spaced members so arranged that the device to be handled can be suspended between or passed between these spaced members and also rotated with respect to the frame when the device is secured to the spaced members.

  2. Bulk Hauling Equipment for CHG

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BULK HAULING EQUIPMENT FOR CHG Don Baldwin Director of Product Development - Hexagon Lincoln HEXAGON LINCOLN TITAN(tm) Module System Compressed Hydrogen Gas * Capacity 250 bar - 616 kg 350 bar - 809 kg 540 bar - 1155 kg * Gross Vehicle Weight (with prime mover) 250 bar - 28 450 kg 350 bar - 30 820 kg 540 bar - 39 440 kg * Purchase Cost 250 bar - $510,000 350 bar - $633,750 540 bar - $1,100,000 Compressed Natural Gas * Capacity (250 bar at 15 C) - 7412 kg * GVW (With prime mover) - 35 250 kg *

  3. Fire suppression and detection equipment

    SciTech Connect

    E.E. Bates

    2006-01-15

    Inspection and testing guidelines go beyond the 'Code of Federal Regulation'. Title 30 of the US Code of Federal Regulations (30 CFR) contains requirements and references to national standards for inspection, testing and maintenance of fire suppression and detection equipment for mine operators. However, federal requirements have not kept pace with national standards and best practices. The article lists National Fire Protection (NFPA) standards that are referenced by the US Mine Safety and Health Administration (MSHA) in 30 CFR. It then discusses other NFPA Standards excluded from 30 CFR and explains the NFPA standard development process. 2 refs., 3 tabs., 5 photos.

  4. Experimental Equipment | Stanford Synchrotron Radiation Lightsource

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Equipment SSRL plans the distribution of its limited equipment on the basis of the ... positioner (3) Keithly 427 current-to-voltage amplifier TEK 2215 60 MHZ 2 channel scope ...

  5. Laboratory Equipment Donation Program - Application Process

    Office of Scientific and Technical Information (OSTI)

    Equipment listings on the LEDP web site are obtained from the U.S. General Services Administration (GSA) Energy Asset Disposal System (EADS). Once equipment is listed, EADS allows ...

  6. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  7. Laboratory Equipment Donation Program - About Us

    Office of Scientific and Technical Information (OSTI)

    About LEDP The Laboratory Equipment Donation Program (LEDP), formerly the Energy-Related Laboratory Equipment (ERLE) Grant Program, was established by the United States Department of Energy (DOE) to grant surplus and available used energy-related laboratory equipment to universities and colleges in the United States for use in energy oriented educational programs. This grant program is sponsored by the Office of Workforce Development for Teachers and Scientists (WDTS). The listing of equipment

  8. HEAT EXCHANGER

    DOEpatents

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  9. Proceedings: Substation Equipment Diagnostics Conference IX

    SciTech Connect

    2001-09-01

    Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The ninth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

  10. Proceedings: Tenth EPRI Substation Equipment Diagnostics Conference

    SciTech Connect

    2002-06-01

    Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The tenth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

  11. Proceedings: Substation Equipment Diagnostics Conference VIII

    SciTech Connect

    2000-06-01

    Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The eighth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

  12. Liquid-Liquid Extraction Equipment

    SciTech Connect

    Jack D. Law; Terry A. Todd

    2008-12-01

    Solvent extraction processing has demonstrated the ability to achieve high decontamination factors for uranium and plutonium while operating at high throughputs. Historical application of solvent extraction contacting equipment implies that for the HA cycle (primary separation of uranium and plutonium from fission products) the equipment of choice is pulse columns. This is likely due to relatively short residence times (as compared to mixer-settlers) and the ability of the columns to tolerate solids in the feed. Savannah River successfully operated the F-Canyon with centrifugal contactors in the HA cycle (which have shorter residence times than columns). All three contactors have been successfully deployed in uranium and plutonium purification cycles. Over the past 20 years, there has been significant development of centrifugal contactor designs and they have become very common for research and development applications. New reprocessing plants are being planned in Russia and China and the United States has done preliminary design studies on future reprocessing plants. The choice of contactors for all of these facilities is yet to be determined.

  13. Carbon Absorber Retrofit Equipment (CARE)

    SciTech Connect

    Klein, Eric

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  14. Covered Product Category: Light Commercial Heating and Cooling

    Energy.gov [DOE]

    Federal purchases of light commercial heating and cooling equipment must be ENERGY STAR®–qualified. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. This product overview explains how to meet energy-efficiency requirements for Federal purchases of light commercial heating and cooling equipment and how to maximize energy savings throughout products' useful lives.

  15. Heat Treatment Procedure Qualification for Steel Castings

    SciTech Connect

    Mariol Charles; Nicholas Deskevich; Vipin Varkey; Robert Voigt; Angela Wollenburg

    2004-04-29

    Heat treatment practices used by steel foundries have been carefully studied as part of comprehensive heat treatment procedure qualification development trials. These studies highlight the relationships between critical heat treatment process control parameters and heat treatment success. Foundry heat treatment trials to develop heat treatment procedure qualifications have shed light on the relationship between heat treatment theory and current practices. Furnace load time-temperature profiles in steel foundries exhibit significant differences depending on heat treatment equipment, furnace loading practice, and furnace maintenance. Time-temperature profiles of furnace control thermocouples can be very different from the time-temperature profiles observed at the center of casting loads in the furnace. Typical austenitization temperatures and holding times used by steel foundries far exceed what is required for transformation to austenite. Quenching and hardenability concepts were also investigated. Heat treatment procedure qualification (HTPQ) schema to demonstrate heat treatment success and to pre-qualify other alloys and section sizes requiring lesser hardenability have been developed. Tempering success is dependent on both tempering time and temperature. As such, furnace temperature uniformity and control of furnace loading during tempering is critical to obtain the desired mechanical properties. The ramp-up time in the furnace prior to the establishment of steady state heat treatment conditions contributes to the extent of heat treatment performed. This influence of ramp-up to temperature during tempering has been quantified.

  16. Heat Treatment Procedure Qualification -- Final Technical Report

    SciTech Connect

    Robert C. Voigt

    2004-10-15

    Heat treatment practices used by steel foundries have been carefully studied as part of comprehensive heat treatment procedure development trials. These studies highlight the relationships between critical heat treatment process control parameters and heat treatment success. Foundry heat treatment trials to develop heat treatment procedure qualification have shed light on the relationship between heat treatment theory and current practices. Furnace load time-temperature profiles in steel foundries exhibit significant differences depending on heat treatment equipment, furnace loading practice, and furnace maintenance. Time-temperature profiles of the furnace control thermocouples can be very different from the time-temperature profiles observed at the center of casting loads in the furnace. Typical austenitrization temperatures and holding times used by steel foundries far exceed what is required for transformation to austenite. Quenching and hardenability concepts were also investigated. Heat treatment procedure qualification (HTPQ) schema to demonstrate heat treatment success and to pre-qualify other alloys and section sizes requiring lesser hardenability have been developed. Tempering success is dependent on both tempering time and temperature. As such, furnace temperature uniformity and control of furnace loading during tempering is critical to obtain the desired mechanical properties. The ramp-up time in the furnace prior to the establishment of steady state heat treatment conditions contributes to the extent of heat treatment performed. This influence of ramp-up to temperature during tempering has been quantified.

  17. Proceedings: Substation equipment diagnostics conference 6

    SciTech Connect

    Traub, T.P.

    1998-09-01

    Substation Equipment Diagnostics Conference 6 was held to assemble, assess and communicate information on the latest diagnostic techniques, test devices, and systems for substation equipment. It focused on the latest in diagnostic equipment and techniques being developed by EPRI and others in research programs, as well as the equipment and programs now available and in service by electric utilities. The conference brought together the views of researchers, manufacturers and users. The papers presented were organized under three categories: Transformers, Circuit Breakers and Other Substation Equipment, and Communications/Data Management/System Integration. Exhibit booths were provided for attendees to obtain detailed information about vendor products or services.

  18. Laboratory Equipment Donation Program - Application Process

    Office of Scientific and Technical Information (OSTI)

    Equipment listings on the LEDP web site are obtained from the U.S. General Services Administration (GSA) Energy Asset Disposal System (EADS). Once equipment is listed, EADS allows 30 days for grantees from eligible institutions to apply for it on the LEDP site. Equipment Condition Codes are found near the top of the "LEDP Equipment Information" page for each item. The condition of equipment is graded as follows: 1: Unused Good Condition 4: Used Good Condition 7: Repairable Requires

  19. Laboratory Equipment Donation Program - Contact Us

    Office of Scientific and Technical Information (OSTI)

    End of Year Reports At the end of the first year of using LEDP grant equipment, the grantee must provide DOE with a report on the use of the equipment. If a grantee does not submit a report, the DOE OPMO who approved the grant application can pull the equipment back, or not allow that institution to apply for more equipment. The report should describe: Any new courses instituted as a result of the grant of the equipment; Existing courses which have been expanded as a result of the grant of the

  20. Total Space Heating Water Heating Cook-

    Annual Energy Outlook

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 634 578 46 1 Q 116.4 106.3...

  1. Solar Equipment Certification | Department of Energy

    Energy.gov [DOE] (indexed site)

    Certification Summary Minnesota law requires that all active solar space-heating and water-heating systems, sold, offered for sale, or installed on residential and commercial...

  2. Heating apparatus

    SciTech Connect

    Page, V. J.

    1981-02-10

    A solar energy heating apparatus is described comprising means for concentrating solar energy incident thereon at an absorption station, an absorber located at the said absorption station for absorbing solar energy concentrated thereat, a first passageway associated with the said energy concentrating means for directing fluid so as to be preheated by the proportion of the incident energy absorbed by the said means, a second passageway associated with the absorber for effecting principal heating of fluid directed therethrough. The second passageway is such that on directing fluid through the first passageway it is initially preheated by the proportion of the incident energy absorbed by the energy concentrating means, the preheated fluid thereafter being directed to the second passageway where the principal heating takes place.

  3. Industrial heat pump demonstration project

    SciTech Connect

    Not Available

    1988-09-01

    This booklet describes an industrial heat pump demonstration project conducted at a plant in Norwich, New York. The project required retrofitting an open-cycle heat pump to a single-effect, recirculating-type evaporator. The heat pump design uses an electrically driven centrifugal compressor to recover the latent heat of the water vapor generated by the evaporator. The compressed vapor is returned to the process, where it displaces the use of boiler steam. The goal was to reduce costs associated with operating the evaporator, which is used for reduction the water content of whey (a liquid by-product from cheese production). The retrofit equipment has now completed more than one year of successful operation. Heat pump coefficient of performance has been measured and is in the range of 14 to 18 under varying process conditions. Generalization of project results indicates that the demonstrated technology achieved attractive economics over a wide range of energy price assumptions, especially when the heat pump is applied to larger processes. 5 refs., 17 figs.

  4. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Saver

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  5. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) ...

  6. Novel Energy Conversion Equipment for Low Temperatures Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Conversion Equipment for Low Temperatures Geothermal Resources Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources Novel Energy Conversion Equipment ...

  7. Early Markets: Fuel Cells for Material Handling Equipment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Material Handling Equipment Early Markets: Fuel Cells for Material Handling Equipment This fact sheet describes the use of hydrogen fuel cells to power material handling equipment ...

  8. Category:Smart Grid Projects - Equipment Manufacturing | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Smart Grid Projects - Equipment Manufacturing Jump to: navigation, search Smart Grid Projects - Equipment Manufacturing category. Pages in category "Smart Grid Projects - Equipment...

  9. Heat exchanger

    DOEpatents

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  10. FFTF primary heat transport system heating, ventilating and air conditioning system experience

    SciTech Connect

    Umek, A.M.; Hicks, D.F.; Schweiger, D.L.

    1981-01-01

    FFTF cools its primary/in-containment sodium equipment cells by means of a forced nitrogen cooling system which exchanges heat with a water-glycol system. The nitrogen cooling system is also used to maintain an inert gas atmosphere in the cells containing sodium equipment. Sodium Piping and Components have installed electrical resistance heaters to maintain a minimum sodium temperature and stainless steel jacketed mineral insulation to reduce heat loss. Design features and test results of a comprehensive redesign of the HVAC and insulation system required to support long-term nuclear operations are discussed.

  11. Research and Development Roadmap for Water Heating Technologies

    SciTech Connect

    Goetzler, William; Gagne, Claire; Baxter, Van D; Lutz, James; Merrigan, Tim; Katipamula, Srinivas

    2011-10-01

    Although water heating is an important energy end-use in residential and commercial buildings, efficiency improvements in recent years have been relatively modest. However, significant advancements related to higher efficiency equipment, as well as improved distribution systems, are now viable. DOE support for water heating research, development and demonstration (RD&D) could provide the impetus for commercialization of these advancements.

  12. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.

  13. Better metallurgy for process equipment

    SciTech Connect

    Rayner, R.E.

    1994-01-01

    Metallurgy choices have expanded significantly for process equipment and pumps used for handling difficult corrosive fluids. If they have been specifying the austenitic AISI types 316, 316L, 317, 317L or the newer first generation alloy 329 in their pumps, there is a strong message in recent literature. Based on tests and experience there are better, often less costly alternatives. In the case of CD[sub 4]MCu, N08020 and 904L, there are lower-cost material alternatives for many applications. For SA S31254 and SA N08367, there are some less aggressive can be substituted. These alternatives are the new second generation duplex steels. The lower cost of the duplex alloys is a result of the reduced nickel content, which is about half that of the standard austenitics. Also, their carbon content is low; the same as 316L and 317L for most alloys, including S31803. The second generation duplex alloys offer significant value improvement in a vast majority of applications over the common austenitics and ferritics. Further, their improved resistance to corrosion and improved physical properties relative to the expensive. and in many cases proprietary, highly corrosion-resistant, super-ferritics and super-austenitics, means that they can and should be considered as an alternative for applications where those materials are now overqualified. Strength, toughness and wide corrosion resistance are all-important properties and considerations for process pump materials. Combine these with competitive cost and there is an opportunity that must be investigated.

  14. NREL: Energy Storage - Facilities and Equipment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Facilities and Equipment Arial photo of several buildings. NREL's ESIF is the first U.S. facility with capabilities to conduct megawatt-scale R&D examining integration of power grids, buildings, vehicles, charging systems, and energy storage systems. Photo of scientific equipment in a laboratory setting. Differential scanning calorimeter. Photo of a row of ten tall rectangular panels (battery cyclers). Battery cyclers. Photo of scientific equipment and computer monitors in a laboratory

  15. Decontamination and Decommisioning Equipment Tracking System

    Energy Science and Technology Software Center

    1994-08-26

    DDETS is Relational Data Base Management System (RDBMS) which incorporates 1-D (code 39) and 2-D (PDF417) bar codes into its equipment tracking capabilities. DDETS is compatible with the Reportable Excess Automated Property System (REAPS), and has add, edit, delete and query capabilities for tracking equipment being decontaminated and decommissioned. In addition, bar code technology is utilized in the inventory tracking and shipping of equipment.

  16. Equipment-Resources-PHaSe-EFRC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Equipment Equipment photo Last update 30 April 2015. People wishing to use equipment listed below must first receive training and permission from the Facility Director, or present instrument contact person, who can provide basic training and information from an experienced user. Training and access must be arranged in advance of first use. Reservation of usage time for a number of instruments requires you to set up an account on the Facilities Online Manager (FOM) service! Connect to the

  17. Commercial and Industrial Kitchen Equipment Rebate Program

    Energy.gov [DOE]

    NOTE: All equipment must be installed on or after January 1, 2015 through December 31, 2015. The documentation must be received no later than March 31, 2016. 

  18. Agricultural Lighting and Equipment Rebate Program

    Energy.gov [DOE]

    In Vermont, agricultural operations are eligible for prescriptive and customized incentives for equipment proven to help make farms more efficient. Prescriptive rebates are available for lighting...

  19. Process Equipment Cost Estimation, Final Report

    SciTech Connect

    H.P. Loh; Jennifer Lyons; Charles W. White, III

    2002-01-01

    This report presents generic cost curves for several equipment types generated using ICARUS Process Evaluator. The curves give Purchased Equipment Cost as a function of a capacity variable. This work was performed to assist NETL engineers and scientists in performing rapid, order of magnitude level cost estimates or as an aid in evaluating the reasonableness of cost estimates submitted with proposed systems studies or proposals for new processes. The specific equipment types contained in this report were selected to represent a relatively comprehensive set of conventional chemical process equipment types.

  20. Equips Nucleares SA | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    SA Place: Madrid, Spain Zip: 28006 Sector: Services Product: ENSA is a Spanish nuclear components and nuclear services supply company. References: Equips Nucleares, SA1...

  1. Heavy Mobile Equipment Mechanic (1 Mechanic Shop)

    Energy.gov [DOE]

    A successful candidate will perform preventative, predictive, and corrective maintenance on Bonneville Power Administration (BPA's) light and heavy mobile equipment in maintenance and filed...

  2. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    D.C. PDF icon esarravt002flicker2010p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing...

  3. Heavy Mobile Equipment Mechanic (One Mechanic Shop)

    Energy.gov [DOE]

    Join the Bonneville Power Administration (BPA) for a challenging and rewarding career, while working, living, and playing in the Pacific Northwest. The Heavy Mobile Equipment Mechanic (One Mechanic...

  4. CRAD, Nuclear Facility Construction - Mechanical Equipment -...

    Energy.gov [DOE] (indexed site)

    Nuclear Facility Construction - Mechanical Equipment Installation, (HSS CRAD 45-53, Rev. 0) This Criteria Review and Approach Document (HSS CRAD 45-53) establishes review criteria...

  5. Equipment Certification Requirements | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fuel Cells Geothermal Electric Hydroelectric energy Hydroelectric (Small) Natural Gas Nuclear Solar Photovoltaics Tidal Energy Wave Energy Wind energy Yes Madison - Equipment...

  6. PPP Equipment Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PPP Equipment Corporation Sector: Solar Product: PPP-E designs, produces and markets Chemical Vapor Deposition (CVD) reactors and converter systems producing high-purity...

  7. China Power Equipment Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Inc Jump to: navigation, search Name: China Power Equipment Inc Place: Xian, China Zip: 70075 Product: China-based manufacturer of energy saving transformers and transformer cores....

  8. MOV surge arresters: improved substation equipment protection

    SciTech Connect

    Niebuhr, W.D.

    1985-07-01

    The introduction of metal-oxide-varistor (MOV) surge arresters has added a new dimension to substation equipment protection. Through the optimal use of these arresters, it is possible to lower surge arrester ratings and thereby improve protective margins, resulting in a possible reduction of the insulation levels (BIL) of substation equipment. This reduction in BIL can lead to a significant reduction in the cost of substation equipment. General methods are delineated for selecting MOV surge arresters for substation protection and the resulting effect on substation equipment insulation levels.

  9. Smart Buildings Equipment Initiative | Department of Energy

    Energy Saver

    ...equipment; and 3) developing and (selectively) executing test procedures that can be used to evaluate the "demand response compliant" statusmaturity of various technologies. ...

  10. Laboratory Equipment Donation Program - Contact Us

    Office of Scientific and Technical Information (OSTI)

    Contact Us If you have a question about the Laboratory Equipment Donation Program (LEDP), we recommend you check frequently asked questions. If your question still has not been ...

  11. Semiconductor Equipment and Materials International SEMI | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Semiconductor Equipment and Materials International (SEMI) Place: San Jose, California Zip: 95134 2127 Product: Global trade association, publisher and conference...

  12. INL Equipment to Aid Regional Response Team

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    transferred are a Crossley Custom Bomb Trailer for transporting suspect devices to a safe location, and a 3500 GVWR trailer for transporting equipment. Editorial Date November 28...

  13. Stangl Semiconductor Equipment AG | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    German manufacturer of wet chemistry systems for processing silicon and thin-film solar cells. References: Stangl Semiconductor Equipment AG1 This article is a stub. You...

  14. Process and equipment development for hot isostatic pressing treatability study

    SciTech Connect

    Bateman, Ken; Wahlquist, Dennis; Malewitz, Tim

    2015-03-01

    Battelle Energy Alliance (BEA), LLC, has developed processes and equipment for a pilot-scale hot isostatic pressing (HIP) treatability study to stabilize and volume reduce radioactive calcine stored at Idaho National Laboratory (INL). In 2009, the U. S. Department of Energy signed a Record of Decision with the state of Idaho selecting HIP technology as the method to treat 5,800 yd^3 (4,400 m^3) of granular zirconia and alumina calcine produced between 1953 and 1992 as a waste byproduct of spent nuclear fuel reprocessing. Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP within INL hot cells. To execute the remote process at INL, waste is loaded into a stainless-steel or aluminum can, which is evacuated, sealed, and placed into a HIP furnace. The HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its durability. Two 1 gal cans of calcine waste currently stored in a shielded cask were identified as candidate materials for a treatability study involving the HIP process. Equipment and materials for cask-handling and calcine transfer into INL hot cells, as well as remotely operated equipment for waste can opening, particle sizing, material blending, and HIP can loading have been designed and successfully tested. These results demonstrate BEA’s readiness for treatment of INL calcine.

  15. Value of solar thermal industrial process heat

    SciTech Connect

    Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

    1986-03-01

    This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

  16. Appliance/Equipment Efficiency Standards | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    ApplianceEquipment Efficiency Standards Massachusetts Boilers Furnaces No Appliance Energy Efficiency Standards (Maryland) ApplianceEquipment Efficiency Standards Maryland...

  17. Assessment of Synthane mechanical equipment. Technical report

    SciTech Connect

    McCabe, J.T.; Kramberger, F.E.; Hao, B.R.; Dubis, D.; Carson, S.E.

    1980-05-01

    Mechanical equipment in the Synthane pilot plant was subjected to operating conditions outside manufacturers' specifications. In some cases, these encounters were intentional and in other cases they resulted from insufficient data. All 106 of the test runs were terminated involuntarily. For the most part, the repetitive failures of plant materials and equipment originated from a combination of excessive solids overloading and corrosion/erosion caused by abnormal conditions of operation on fluid process streams. The extremes of these conditions were not anticipated nor were they taken into consideration in the design of the plant and in the selection of equipment and materials. Because of this situation, approximately half of the test run terminations were directly attributed to mechanical failures. Generally, for reasons given the maintenance, repair or replacement of failed equipment was not successful in eliminating or alleviating many failures until early 1978. Appropriate early planning can eliminate all these causes of failure in the future. Factors contributing to the difficulties in maintenance, repair, and replacement of failied materials and equipment are listed. In future construction, heavy reliance should be placed on engineering assessments of the equipment selection specifications, acceptance procedures, and the manner in which the equipment is installed, interconnected and operated. It is recommended that an effective and responsive data collection system on equipment specifications, operating conditions, performance, maintenance and repairs of critical equipment be incorporated as part of each pilot and demonstration plant effort. This step is essential to define required operating environments, equipment capabilities, failure histories, equipment and process interactions, as well as plant performance.

  18. Improving Process Heating System Performance: A Sourcebook for Industry,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Second Edition | Department of Energy Second Edition Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition This sourcebook describes basic process heating applications and equipment, and outlines opportunities for energy and performance improvements. It also discusses the merits of using a systems approach in identifying and implementing these improvement opportunities. It is not intended to be a comprehensive technical text on improving process heating

  19. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1979-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  20. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  1. General Restaurant Equipment: Order (2013-CE-5344)

    Energy.gov [DOE]

    DOE ordered General Restaurant Equipment Co. to pay a $8,000 civil penalty after finding General Restaurant Equipment had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  2. Universal null DTE (data terminal equipment)

    DOEpatents

    George, M.; Pierson, L.G.; Wilkins, M.E.

    1987-11-09

    A communication device in the form of data terminal equipment permits two data communication equipments, each having its own master clock and operating at substantially the same nominal clock rate, to communicate with each other in a multi-segment circuit configuration of a general communication network even when phase or frequency errors exist between the two clocks. Data transmitted between communication equipments of two segments of the communication network is buffered. A variable buffer fill circuit is provided to fill the buffer to a selectable extent prior to initiation of data output clocking. Selection switches are provided to select the degree of buffer preload. A dynamic buffer fill circuit may be incorporated for automatically selecting the buffer fill level as a function of the difference in clock frequencies of the two equipments. Controllable alarm circuitry is provided for selectively generating an underflow or an overflow alarm to one or both of the communicating equipments. 5 figs.

  3. Automatic monitoring of vibration welding equipment

    DOEpatents

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  4. Heat transfer and heat exchangers reference handbook

    SciTech Connect

    Not Available

    1991-01-15

    The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

  5. Heating systems for heating subsurface formations

    DOEpatents

    Nguyen, Scott Vinh; Vinegar, Harold J.

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  6. Heat exchanger

    DOEpatents

    Brackenbury, P.J.

    1983-12-08

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  7. Heat exchanger

    DOEpatents

    Brackenbury, Phillip J.

    1986-01-01

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  8. Heat exchanger

    DOEpatents

    Brackenbury, Phillip J.

    1986-04-01

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  9. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer

  10. Electricity-producing heating apparatus utilizing a turbine generator in a semi-closed brayton cycle

    DOEpatents

    Labinov, Solomon D.; Christian, Jeffrey E.

    2003-10-07

    The present invention provides apparatus and methods for producing both heat and electrical energy by burning fuels in a stove or boiler using a novel arrangement of a surface heat exchanger and microturbine-powered generator and novel surface heat exchanger. The equipment is particularly suited for use in rural and relatively undeveloped areas, especially in cold regions and highlands.

  11. Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005

    Energy Information Administration (EIA) (indexed site)

    .4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Space Heating Equipment....... 1.2 0.6 0.3 N Q Q Q Have Main Space Heating Equipment.......... 109.8 77.5 63.7 4.2 1.8 2.2 5.6 Use Main Space Heating Equipment............ 109.1 77.2 63.6 4.2 1.8 2.1 5.6 Have Equipment But Do Not Use It.............. 0.8 0.3 Q N Q Q Q Main Heating Fuel

  12. Table HC4.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005

    Energy Information Administration (EIA) (indexed site)

    .4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Space Heating Equipment....... 1.2 0.6 Q Q Q 0.3 Q Have Main Space Heating Equipment.......... 109.8 32.3 8.0 3.3 5.8 14.1 1.1 Use Main Space Heating Equipment............ 109.1 31.8 8.0 3.2 5.6 13.9 1.1 Have Equipment But Do Not Use It.............. 0.8 0.5 N Q Q Q Q Main Heating Fuel

  13. Table HC6.4 Space Heating Characteristics by Number of Household Members, 2005

    Energy Information Administration (EIA) (indexed site)

    4 Space Heating Characteristics by Number of Household Members, 2005 Total..................................................................... 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Space Heating Equipment............ 1.2 0.3 0.3 Q 0.2 0.2 Have Main Space Heating Equipment............... 109.8 29.7 34.5 18.2 15.6 11.8 Use Main Space Heating Equipment................. 109.1 29.5 34.4 18.1 15.5 11.6 Have Equipment But Do Not Use It................... 0.8 Q Q Q Q Q Main Heating Fuel and

  14. Table HC6.5 Space Heating Usage Indicators by Number of Household Members, 2005

    Energy Information Administration (EIA) (indexed site)

    5 Space Heating Usage Indicators by Number of Household Members, 2005 Total U.S. Housing Units.................................. 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Heating Equipment..................... 1.2 0.3 0.3 Q 0.2 0.2 Have Space Heating Equipment....................... 109.8 29.7 34.5 18.2 15.6 11.8 Use Space Heating Equipment........................ 109.1 29.5 34.4 18.1 15.5 11.6 Have But Do Not Use Equipment.................... 0.8 Q Q Q Q Q Space Heating Usage During 2005

  15. Heat pipe methanator

    DOEpatents

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  16. NAFTA opportunities: Electrical equipment and power generation

    SciTech Connect

    Not Available

    1993-01-01

    The North American Free Trade Agreement (NAFTA) provides significant commercial opportunities in Mexico and Canada for the United States electric equipment and power generation industries, through increased goods and services exports to the Federal Electricity Commission (CFE) and through new U.S. investment in electricity generation facilities in Mexico. Canada and Mexico are the United States' two largest export markets for electrical equipment with exports of $1.53 billion and $1.51 billion, respectively, in 1992. Canadian and Mexican markets represent approximately 47 percent of total U.S. exports of electric equipment. The report presents an economic analysis of the section.

  17. Incidents of chemical reactions in cell equipment

    SciTech Connect

    Baldwin, N.M.; Barlow, C.R.

    1991-12-31

    Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

  18. Water-Using Equipment: Commercial and Industrial

    SciTech Connect

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water is an important aspect of many facets in energy engineering. While the previous article detailed domestic related water-using equipment such as toilets and showerheads, this article focuses on various types of water-using equipment in commercial and industrial facilities, including commercial dishwashers and laundry, single-pass cooling equipment, boilers and steam generators, cooling towers, and landscape irrigation. Opportunities for water and energy conservation are explained, including both technology retrofits and operation and maintenance changes. Water management planning and leak detection are also included as they are essential to a successful water management program.

  19. Proceedings: Substation equipment diagnostics conference III. Proceedings

    SciTech Connect

    1996-03-01

    This Substation Equipment Diagnostics Conference III was held to review the status of transmission substation diagnostics by EPRI, as well as that of the universities, manufacturers, testing organizations, and other researchers. The papers presented were organized under three categories of diagnostics: Transformers, Miscellaneous Equipment, and Systems. A reception on the evening of the first day of the Conference provided an opportunity for the researchers, utilities and manufacturers to display their equipment for the attendees. Separate abstracts have been indexed into the database for articles from this conference.

  20. Subsea equipment marriage is top ROV priority

    SciTech Connect

    Redden, J.

    1985-04-01

    Interfacing subsea equipment with remotely operated vehicles (ROV's) and the further development of arctic-class units are the primary challenges facing manufacturers. Worldwide use of the ROV for drilling support has exploded during this decade as oil companies continue their search in deeper waters. If the unmanned vehicles are to become an even more integral tool of the oilman, experts say they must be able to perform more complex tasks. The evolution of more multi-purpose ROVs, however, hinges on the redesigning of subsea equipment. The severe limitations on subsea support (by ROVs) is the obsolete design associated with the subsea equipment itself. These limitations are discussed.

  1. BCM 2 Equipment Inventory | Sample Preparation Laboratories

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2 Equipment Inventory « Biology Chemistry & Material Science Laboratory 2 Title Equipment Type Description Accumet Basic AB15 pH meter pH Meter pH meters with combination Ag/AgCl electrode and ATC probe. Corning 430 pH Meter pH Meter (Cold Room) Corning 430 pH meter. Corning 6795-420D Digital Stirrer/Hot Plate w/ temp probe Temperature Control Digital Hot Plate/Stirrer, 5 inch x 7 inch ceramic top, temperature range: 5° to 550°C; stir range: 60 to 1100rpm. The hot plate is equipment with

  2. Dual source heat pump

    DOEpatents

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  3. Segmented heat exchanger

    DOEpatents

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  4. Field surveys of office equipment operating patterns

    SciTech Connect

    Webber, Carrie A.; Roberson, Judy A.; Brown, Richard E.; Payne, Christopher T.; Nordman, Bruce; Koomey, Jonathan G.

    2001-09-05

    This paper presents the results of 11 after-hours walk-throughs of offices in the San Francisco CA and Washington D.C. areas. The primary purpose of these walk-throughs was to collect data on turn-off rates for various types of office equipment (computers, monitors, printers, fax machines, copiers, and multifunction products). Each piece of equipment observed was recorded and its power status noted (e.g. on, off, low power). Whenever possible, we also recorded whether power management was enabled on the equipment. The floor area audited was recorded as well, which allowed us to calculate equipment densities. We found that only 44 percent of computers, 32 percent of monitors, and 25 percent of printers were turned off at night. Based on our observations we estimate success rates of 56 percent for monitor power management and 96 percent for enabling of power management on printers.

  5. Property Tax Assessment for Renewable Energy Equipment

    Energy.gov [DOE]

    H.B. 2403 of 2014 clarified that depreciation should be determined using straight-line depreciation over the useful life of the equipment. The taxable original cost equals the original cost of th...

  6. Renewable Energy Equipment Exemption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    100% of sales tax Summary Iowa allow a sales tax exemption for solar, wind, and hydroelectricity equipment. As of August 2014, the Iowa sales tax rate is 6%. Wind For wind energy...

  7. Consider Steam Turbine Drives for Rotating Equipment

    SciTech Connect

    Not Available

    2006-01-01

    This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  8. Hot conditioning equipment conceptual design report

    SciTech Connect

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  9. Automatic monitoring of vibration welding equipment (Patent)...

    Office of Scientific and Technical Information (OSTI)

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via ...

  10. Biomass Equipment & Materials Compensating Tax Deduction

    Energy.gov [DOE]

    In 2005, New Mexico adopted a policy to allow businesses to deduct the value of biomass equipment and biomass materials used for the processing of biopower, biofuels, or biobased products in...

  11. Workplace Charging Equipment and Installation Costs | Department...

    Energy Saver

    Charging equipment costs depend on the type of charging station you decide to install in your workplace. Level 1 (300-1,500) and Level 2 (400-6,500) charging stations are ...

  12. Capital Equipment Validation Form | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Capital Equipment Validation Form Version Number: 2.0 Document Number: Form 48100.001 Effective Date: 02/2015 File (public): Office spreadsheet icon form_48100.001_rev2.xls

  13. Geoscience Equipment Inventory | Sample Preparation Laboratories

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Geoscience Equipment Inventory « Geoscience Laboratory Title Equipment Type Description Coy Anaerobic Chamber Inert Atmosphere Chamber Coy anaerobic chamber (Type C, model 7100-000) with auto airlock for wet and dry sample preparations, 5% H2/95% N2 mix atmosphere, and auto injection system. Fisher Scientific General Purpose Refrigerator Temperature Control Fisher Scientific General Purpose refrigerator. Fisher Scientific Isotemp Freezer Temperature Control Fisher Scientific Isotemp Freezer.

  14. Laboratory Equipment Donation Program - Guidelines/FAQ

    Office of Scientific and Technical Information (OSTI)

    Frequently Asked Questions Who is eligible to apply for equipment? Due to budget constraints, the free shipping program for "high need schools" has been discontinued; and middle and high schools are no longer eligible to participate in the Laboratory Equipment Donation Program (LEDP) program. Participation in the LEDP is limited to accredited, post graduate, degree granting institutions including universities, colleges, junior colleges, technical institutes, museums, or hospitals,

  15. Gas insulated substation equipment for industrial applications

    SciTech Connect

    Kenedy, J.J.

    1984-11-01

    Until recently the only available method for construction of high voltage systems was to use exposed air insulated equipment supported on porcelain columns. The past decade has witnessed the introduction and wide acceptance of compressed gas insulated equipment as a viable alternative to the conventional substation system. The characteristics of gas insulated substations (GIS) and their application for industrial use at service voltages at 69 kV and above are discussed.

  16. Available for Checkout Equipment Inventory | Sample Preparation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Laboratories Available for Checkout Equipment Inventory « Equipment Resources Title Description Agate Mortar & Pestle Sets Agate mortar & pestle sets (100mm, 65 mm, & 50mm sizes). Buchi V-700 Vacuum Pump & condenser Chemically resistant vacuum pump, flow rate 1.8m^3/h, ultimate vacuum less than 10mbar. The secondary condenser (Buchi 047180) is a complete module with insulation and 500mL receiving flask. Campden Instruments Vibrating Manual Tissue Cutter HA 752 Campden

  17. LCLS Equipment Inventory | Sample Preparation Laboratories

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    LCLS Equipment Inventory « LCLS Laboratory Title Equipment Type Description Corning 6795-420D Digital Stirring Hot Plate with Temperature Probe Temperature Control Digital stirring hot plate, 5 inch x 7 inch ceramic top, temperature range: 5° to 550°C; stir range: 60 to 1150rpm. Includes external temperature controller probe (Corning 6795PR). Denver Instrument Summit Series SI-114 Analytical Balance Analytical Balance Capacity 110 g, Readability ±0.1 mg Eppendorf 5424 Microcentrifuge

  18. High Efficiency Cold Climate Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Efficiency Cold Climate Heat Pump 2014 Building Technologies Office Peer Review Bo Shen, shenb@ornl.gov Oak Ridge National Laboratory High Efficiency Cold Climate Heat Pump -(CCHP) CRADA Project Summary Timeline: Start date: 01-Oct-2010 Planned end date: 30-Sep-2015 Key Milestones (single-stage) 1. Equipment modeling and EnergyPlus simulation report - March/2013 2. Lab prototype fabricated and installed - Dec/2013 3. Meet 77% capacity at-13°F vs. 47°F; COP=4.1 at 47°F - March/2014

  19. Pollution-control equipment (Brazil). Industrial waste-treatment equipment, September 1991. Export trade information

    SciTech Connect

    Not Available

    1991-09-01

    The Brazilian market for both solid and liquid industrial waste treatment equipment is promising in view of the expected growth in demand during the next 5 years. The estimated market demand in 1991 is US $243 million and is projected to grow 15% per year reaching US $370 million in 1994. The market for liquid waste equipment is about 85% of the total market for industrial waste equipment. Currently imports of pollution control equipment account for about 13% of the total market. Due to the recent import liberalization program implemented by the Government, local sources forecast the import share will increase to 20% by 1994.

  20. Multiple source heat pump

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  1. Solar heating panel

    SciTech Connect

    Ellsworth, R.L.

    1983-01-18

    A solar heating panel for collecting solar heat energy and method for making same having a heat insulative substrate with a multiplicity of grooves and structural supporting ribs formed therein covered by a thin, flexible heat conductive film to form fluid conducting channels which in turn are connected to manifolds from which fluid is directed into the channels and heated fluid is removed therefrom.

  2. Heat Exchangers for Solar Water Heating Systems | Department...

    Energy Saver

    Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. |...

  3. Alternative Fuels Data Center: Installing New E85 Equipment

    Alternative Fuels and Advanced Vehicles Data Center

    Installing New E85 Equipment to someone by E-mail Share Alternative Fuels Data Center: Installing New E85 Equipment on Facebook Tweet about Alternative Fuels Data Center: Installing New E85 Equipment on Twitter Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Google Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Delicious Rank Alternative Fuels Data Center: Installing New E85 Equipment on Digg Find More places to share Alternative Fuels Data

  4. Master equipment list -- Phase 1. Revision 1

    SciTech Connect

    Jech, J.B.

    1995-04-28

    The purpose of this document is to define the system requirements for the Master Equipment List (MEL) Phase 1 project. The intended audience for this document includes Data Automation Engineering (DAE), Configuration Management Improvement and Control Engineering (CMI and CE), Data Administration Council (DAC), and Tank Waste Remedial System (TWRS) personnel. The intent of Phase 1 is to develop a user-friendly system to support the immediate needs of the TWRS labeling program. Phase 1 will provide CMI and CE the ability to administrate, distribute, and maintain key information generated by the labeling program. CMI and CE is assigning new Equipment Identification Numbers (EINs) to selected equipment in Tank Farms per the TWRS Data Standard ``Tank Farm Equipment Identification Number``. The MEL Phase 1 system will be a multi-user system available through the HLAN network. It will provide basic functions such as view, query, and report, edit, data entry, password access control, administration and change control. The scope of Phase 1 data will encompass all Tank Farm Equipment identified by the labeling program. The data will consist of fields from the labeling program`s working database, relational key references and pointers, safety class information, and field verification data.

  5. Novel Energy Conversion Equipment for Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project objective: Develop ...

  6. Radiation Detection Equipment Up and Running in Slovenia | National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Radiation Detection Equipment Up and Running in Slovenia November 13, 2006 New Monitors ... Administration (NNSA) announced that radiation detection equipment to screen for ...

  7. Nantong Hongbo Windpower Equipment Co Ltd HWE | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Nantong Hongbo Windpower Equipment Co Ltd HWE Jump to: navigation, search Name: Nantong Hongbo Windpower Equipment Co Ltd (HWE) Place: Nantong, Jiangsu Province, China Zip: 226371...

  8. Microsoft Word - CX-2013ElectronicEquipmentUpgrades_WEB.docx

    Office of Environmental Management (EM)

    Equipment Upgrades and Emergency Generator Replacements PP&A Project No: 2571 ... 2013 Electronic Equipment and Emergency Generator Projects 3 Attachment 1 2013 Electronic ...

  9. PNC Bank Equipment Finance and Energy Group | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name: PNC Bank - Equipment Finance and Energy Group Place: Valencia, California Zip: 91355 Product: Energy and Equipment Finance arm of PNC Bank...

  10. Biogas, Solar, and Wind Energy Equipment Exemption | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biogas, Solar, and Wind Energy Equipment Exemption Biogas, Solar, and Wind Energy Equipment Exemption < Back Eligibility Commercial Industrial Residential Agricultural Multifamily...

  11. Zhangjiakou Kunyuan Wind Power Equipment Co | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kunyuan Wind Power Equipment Co Jump to: navigation, search Name: Zhangjiakou Kunyuan Wind Power Equipment Co Place: Zhangjiakou, Hebei Province, China Sector: Wind energy Product:...

  12. Harbin Hafei Winwind Wind Power Equipment Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hafei Winwind Wind Power Equipment Co Ltd Jump to: navigation, search Name: Harbin Hafei-Winwind Wind Power Equipment Co Ltd Place: Harbin, Heilongjiang Province, China Zip: 150060...

  13. Jilin Tianhe Wind Power Equipment Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Equipment Co Ltd Jump to: navigation, search Name: Jilin Tianhe Wind Power Equipment Co Ltd Place: Baicheng, Jilin Province, China Sector: Wind energy Product:...

  14. Foshan Dongxing Fengying Wind Power Equipment Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Dongxing Fengying Wind Power Equipment Co Ltd Jump to: navigation, search Name: Foshan Dongxing Fengying Wind Power Equipment Co Ltd Place: Foshan, China Zip: 528000 Sector: Wind...

  15. Baoding Hengyi Wind Power Equipment Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Baoding Hengyi Wind Power Equipment Co Ltd Jump to: navigation, search Name: Baoding Hengyi Wind Power Equipment Co Ltd Place: Baoding, Hebei Province, China Product: Baoding-based...

  16. Harbin Wind Power Equipment Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Equipment Company Jump to: navigation, search Name: Harbin Wind Power Equipment Company Place: Harbin, Heilongjiang Province, China Sector: Wind energy Product: A wind...

  17. Jiangsu Guoshen Wind Power Equipment Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guoshen Wind Power Equipment Co Ltd Jump to: navigation, search Name: Jiangsu Guoshen Wind Power Equipment Co Ltd Place: Yancheng, Jiangsu Province, China Sector: Wind energy...

  18. Product Standards for Vending Equipment (Japan) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Vending Equipment (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Product Standards for Vending Equipment (Japan) Focus Area: Energy Efficiency Topics: Policy...

  19. Chinese Wind Energy Equipment Association CWEEA | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy Equipment Association CWEEA Jump to: navigation, search Name: Chinese Wind Energy Equipment Association (CWEEA) Place: Beijing, Beijing Municipality, China Zip: 100825...

  20. Best Management Practice #12: Laboratory and Medical Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Best Management Practice 12: Laboratory and Medical Equipment Equipment used in hospitals ... Find more information on the alternative water sources best management practice. Explore ...

  1. Beijing Zhongkexin Electronics Equipment Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Zhongkexin Electronics Equipment Co Ltd Jump to: navigation, search Name: Beijing Zhongkexin Electronics Equipment Co Ltd Place: Beijing Municipality, China Zip: 101111 Product: A...

  2. Data Center Efficiency and IT Equipment Reliability at Wider...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Center Efficiency and IT Equipment Reliability at Wider Operating Temperature and Humidity Ranges Data Center Efficiency and IT Equipment Reliability at Wider Operating Temperature ...

  3. List of Food Service Equipment Incentives | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Refrigeration Equipment Food Service Equipment Yes Alabama Gas Corporation - Residential Natural Gas Rebate Program (Alabama) Utility Rebate Program Alabama Residential Furnaces...

  4. Tuori Solar Energy Equipment Mfg Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tuori Solar Energy Equipment Mfg Company Jump to: navigation, search Name: Tuori Solar Energy Equipment Mfg Company Place: Baoding, Hebei Province, China Zip: 71000 Sector: Solar...

  5. Beijing Jingyi Century Automatic Equipment Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    beijing Jingyi Century Automatic Equipment Co Ltd Place: Beijing Municipality, China Zip: 100079 Product: A Chinese equipment manufacturer provides monosilicon ingot puller and...

  6. CXD 4605, Disposition Excess Equipment from Alpha 1 (4605)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Disposition Excess Equipment from Alpha 1 (4605) Y-12 Site Office Oak Ridge, Anderson County, Tennessee The proposed action is to characterize and disposition equipment that was...

  7. GT Solar Technologies formerly GT Equipment Technologies | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies formerly GT Equipment Technologies Jump to: navigation, search Name: GT Solar Technologies (formerly GT Equipment Technologies) Place: Merrimack, New Hampshire...

  8. Varian Semiconductor Equipment Associates Inc VSEA | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Varian Semiconductor Equipment Associates Inc VSEA Jump to: navigation, search Name: Varian Semiconductor Equipment Associates Inc (VSEA) Place: Gloucester, Massachusetts Zip: 1930...

  9. Process Equipment Cost Estimation, Final Report (Technical Report...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Process Equipment Cost Estimation, Final Report Citation Details In-Document Search Title: Process Equipment Cost Estimation, Final Report You are accessing a document from the ...

  10. Community Wind Handbook/Purchase Equipment | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    * Submit Permit Applications * Find an Installer * Purchase Equipment * Plan for Maintenance Purchase Equipment The purchase of a turbine for a small community wind project is...

  11. Changzhou Jiangnan Electrical Power Equipment Group Co Ltd |...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jiangnan Electrical Power Equipment Group Co Ltd Jump to: navigation, search Name: Changzhou Jiangnan Electrical Power Equipment Group Co., Ltd Place: Changzhou, Jiangsu Province,...

  12. MSA Apparatus Construction for Chemical Equipment Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    MSA Apparatus Construction for Chemical Equipment Ltd Jump to: navigation, search Name: MSA Apparatus Construction for Chemical Equipment Ltd Place: United Kingdom Sector: Hydro,...

  13. Modular Process Equipment for Low Cost Manufacturing of High...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-...

  14. Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Yeelong Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd Place: Hebei Province, China Sector:...

  15. Shenyang Tianxiang Wind Equipments Manufacturing Co Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Tianxiang Wind Equipments Manufacturing Co Ltd Jump to: navigation, search Name: Shenyang Tianxiang Wind Equipments Manufacturing Co., Ltd Place: Shenyang, Liaoning Province, China...

  16. Ningxia Yinxing Energy PV Power Equipment Manufacturing Co Ltd...

    OpenEI (Open Energy Information) [EERE & EIA]

    Yinxing Energy PV Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Ningxia Yinxing Energy PV Power Equipment Manufacturing Co Ltd Place: Yinchuan, Ningxia...

  17. Nordex Yinchuan Wind Power Equipment Manufacturing Co Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Yinchuan Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Nordex (Yinchuan) Wind Power Equipment Manufacturing Co. Ltd Place: Yinchuan, Ningxia...

  18. Yatu Yangjiang Fengdian Equipment Manufacturing Co Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Yatu Yangjiang Fengdian Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Yatu (Yangjiang) Fengdian Equipment Manufacturing Co Ltd Place: Yangjiang, Guangdong...

  19. Nordex Dongying Wind Power Equipment Manufacturing Co Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Dongying Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Nordex (Dongying) Wind Power Equipment Manufacturing Co. Ltd. Place: Dongying, Shandong...

  20. Best Management Practice #9: Single-Pass Cooling Equipment |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    cooling include CAT scanners, degreasers, hydraulic equipment, condensers, air compressors, welding machines, vacuum pumps, ice machines, x-ray equipment, and air conditioners. ...

  1. How Do I Determine what Personal Protective Equipment (PPE) to...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Determine what Personal Protective Equipment (PPE) to Wear? Print General The ALS has a standard Personal Protective Equipment (PPE) policy that covers all activities on the...

  2. China SC Exact Equipment Co LTD | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    SC Exact Equipment Co LTD Jump to: navigation, search Name: China SC Exact Equipment Co., LTD Place: Shenzhen, Guangdong Province, China Zip: 518125 Sector: Solar Product:...

  3. China Ordnance Equipment Group Corporation COEGC | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    China Ordnance Equipment Group Corporation COEGC Jump to: navigation, search Name: China Ordnance Equipment Group Corporation (COEGC) Place: Beijing Municipality, China Sector:...

  4. NREL: Energy Systems Integration Facility - Fixed Equipment and...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Photo of a man's gloved hands working on laboratory equipment. the Energy Systems Integration Facility, researchers have access to a variety of equipment to support energy systems ...

  5. Remote Control of Laboratory Equipment for Educational Purposes...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Remote Control of Laboratory Equipment for Educational Purposes This invention consists of a method to remote control many types of laboratory equipment that is typically found in ...

  6. Recovery Act Incentives for Wind Energy Equipment Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act Incentives for Wind Energy Equipment Manufacturing Recovery Act Incentives for Wind Energy Equipment Manufacturing Document that lists some of the major federal ...

  7. Zhejiang DunAn Artificial Environmental Equipment Co Ltd | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    DunAn Artificial Environmental Equipment Co Ltd Jump to: navigation, search Name: Zhejiang DunAn Artificial Environmental Equipment Co Ltd Place: Zhuji, Zhejiang Province, China...

  8. CRAD, Measuring and Testing Equipment Assessment Plan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Measuring and Testing Equipment Assessment Plan CRAD, Measuring and Testing Equipment Assessment Plan Performance Objective: The objective of this assessment is to determine ...

  9. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1994--September 1994

    SciTech Connect

    Not Available

    1994-10-01

    This paper is a third quarter 1994 report of activities of the Geo-Heat Center of Oregon Institute of Technology. It describes contacts with parties during this period related to assistance with geothermal direct heat applications. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources, and equipment. Research is also being conducted on failures of vertical lineshaft turbines in geothermal wells.

  10. Greenbelt Homes Pilot Program. Summary of Building Envelope Retrofits, Planned HVAC Equipment Upgrades, and Energy Savings

    SciTech Connect

    Wiehagen, J.; Del Bianco, M.; Mallay, D.

    2015-05-22

    The U.S. Department of Energy Building America team Partnership for Home Innovation wrote a report on Phase 1 of the project that summarized a condition assessment of the homes and evaluated retrofit options within the constraints of the cooperative provided by GHI. Phase 2 was completed following monitoring in the 2013–2014 winter season; the results are summarized in this report. Phase 3 upgrades of heating equipment will be implemented in time for the 2014–2015 heating season and are not part of this report.

  11. "Table HC14.4 Space Heating Characteristics by West Census Region, 2005"

    Energy Information Administration (EIA) (indexed site)

    4 Space Heating Characteristics by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Space Heating Characteristics",,,"Mountain","Pacific" "Total",111.1,24.2,7.6,16.6 "Do Not Have Space Heating Equipment",1.2,0.7,"Q",0.7 "Have Main Space Heating Equipment",109.8,23.4,7.5,16

  12. Kethcum District Heating District Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  13. Midland District Heating District Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

  14. Pagosa Springs District Heating District Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  15. Philip District Heating District Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  16. Security Equipment and Systems Certification Program (SESCP)

    SciTech Connect

    Steele, B.J.; Papier, I.I.

    1996-06-20

    Sandia National Laboratories (SNL) and Underwriters Laboratories, Inc., (UL) have jointly established the Security Equipment and Systems Certification Program (SESCP). The goal of this program is to enhance industrial and national security by providing a nationally recognized method for making informed selection and use decisions when buying security equipment and systems. The SESCP will provide a coordinated structure for private and governmental security standardization review. Members will participate in meetings to identify security problems, develop ad-hoc subcommittees (as needed) to address these identified problems, and to maintain a communications network that encourages a meaningful exchange of ideas. This program will enhance national security by providing improved security equipment and security systems based on consistent, reliable standards and certification programs.

  17. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  18. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  19. Electric Resistance Heating Basics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat.

  20. Concentrating solar heat collector

    SciTech Connect

    Fattor, A.P.

    1980-09-23

    A heat storage unit is integrated with a collection unit providing a heat supply in off-sun times, and includes movable insulation means arranged to provide insulation during off-sun times for the heat storage unit.

  1. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  2. Ameren Missouri (Electric)- Residential Heating and Cooling Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Ameren Missouri offers rebates to its residential electric customers for the installation of new energy-efficient heating and cooling equipment. Rebates are available for single-family residences,...

  3. Reduce Natural Gas Use in Your Industrial Process Heating Systems Trifold

    SciTech Connect

    2010-06-25

    This DOE Industrial Technologies Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

  4. Alternative technologies for cooling and refrigeration equipment

    SciTech Connect

    Matchett, J.

    1995-12-01

    Significant national and international attention has focused on the role that chlorofluorocarbons (CFCs) play in stratospheric ozone depletion. The Clean Air Act of 1990 calls for the production of the most harmful CFCs to completely cease by December 31, 1995. This production phaseout affects many CFC-refrigerants which are commonly used in commercial, residential, and industrial cooling processes. The production phaseout of CFCs will require owners of CFC-based refrigeration equipment to make plans to replace their equipment. Many equipment owners find themselves in a {open_quotes}rut{close_quotes}replacing CFCs with another chemical coolant, rather than a new cooling process. Since many of the chemical alternatives are structurally similar to CFCs (i.e., HCFCs, HFCs, and blends) they require minimal changes to current equipment. However, these substances are also believed to affect the global climate. Hence, they may not be the most environmentally sound alternative and probable are subject to other Federal regulations. There are other HVAC/R alternatives which are less environmentally damaging than these chemicals and may actually be more cost-effective and energy efficient and than the {open_quotes}traditional{close_quotes} CFC chemical substitutes. Alternative cooling technologies include absorption systems, desiccant cooling, evaporative cooling, and ammonia vapor compression. These alternative technologies are proven alternatives and are commercially available. Further, significant technological developments in recent years have made these technologies feasible alternatives for applications previously believed to be unacceptable. This paper describes these alternative technologies and the conditions in which they are viable alternatives to CFC-based equipment. Additionally, energy efficiency and life-cycle cost analysis considerations are addressed to provide a more completes analysis of cooling equipment alternatives.

  5. Woven heat exchanger

    DOEpatents

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  6. Conceptual design report, CEBAF basic experimental equipment

    SciTech Connect

    1990-04-13

    The Continuous Electron Beam Accelerator Facility (CEBAF) will be dedicated to basic research in Nuclear Physics using electrons and photons as projectiles. The accelerator configuration allows three nearly continuous beams to be delivered simultaneously in three experimental halls, which will be equipped with complementary sets of instruments: Hall A--two high resolution magnetic spectrometers; Hall B--a large acceptance magnetic spectrometer; Hall C--a high-momentum, moderate resolution, magnetic spectrometer and a variety of more dedicated instruments. This report contains a short description of the initial complement of experimental equipment to be installed in each of the three halls.

  7. BCM 1 Equipment Inventory | Sample Preparation Laboratories

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1 Equipment Inventory « Biology Chemistry & Material Science Laboratory 1 Title Equipment Type Description Corning 430 pH Meter pH Meter The Corning 430 pH meter is designed to handle laboratory applications from the most routine to the highly complex. Encased in spill-resistant housings and feature chemical-resistant, sealed keypad. Model 430 (pH range 0.00 to 14.00) is a basic, yet reliable meter providing accurate, efficient digital measurements. Offers simplified, four-button operation,

  8. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  9. Waste Heat Recovery

    Office of Environmental Management (EM)

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  10. Guide to Geothermal Heat Pumps

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    among the most effcient and comfortable heating and cooling technologies available because they use the earth's natural heat to provide heating, cooling, and often, water heating. ...

  11. Tank waste remediation system heat stress control program report, 1995

    SciTech Connect

    Carls, D.R.

    1995-09-28

    Protecting employees from heat stress within tank farms during the summer months is challenging. Work constraints typically experienced in tank farms complicate the measures taken to protect employees from heat stress. TWRS-Industrial Hygiene (IH) has endeavored to control heat stress injuries by anticipating, recognizing, evaluating and controlling the factors which lead or contribute to heat stress in Tank Farms. The TWRS Heat Stress Control Program covers such areas as: employee and PIC training, communication of daily heat stress alerts to tank farm personnel, setting work/rest regimens, and the use of engineering and personal protective controls when applicable. The program has increased worker awareness of heat stress and prevention, established provisions for worker rest periods, increased drinking water availability to help ensure worker hydration, and allowed for the increased use of other protective controls to combat heat stress. The TWRS Heat Stress Control Program is the cornerstone for controlling heat stress among tank farm employees. The program has made great strides since it`s inception during the summer of 1994. Some improvements can still be made to enhance the program for the summer of 1996, such as: (1) procurement and use of personal heat stress monitoring equipment to ensure appropriate application of administrative controls, (2) decrease the need for use of containment tents and anti-contamination clothing, and (3) providing a wider variety of engineering and personal protective controls for heat stress prevention

  12. Solar heating system installed at Jackson, Tennessee. Final report

    SciTech Connect

    1980-10-01

    The solar energy heating system installed at the Coca-Cola Bottling Works in Jackson, Tennessee is described. The system consists of 9480 square feet of Owens-Illinois evacuated tubular solar collectors with attached specular cylindrical reflectors and will provide space heating for the 70,000 square foot production building in the winter, and hot water for the bottle washing equipment the remainder of the year. Component specifications and engineering drawings are included. (WHK)

  13. Multi-Function Fuel-Fired Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Multi-Function Fuel-Fired Heat Pump CRADA Ed Vineyard Oak Ridge National Laboratory, Building Equipment Research vineyardea@ornl.gov, 865-576-0576 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: 55% residential building energy use for space conditioning & water heating; highly efficient systems needed to facilitate DOE/BTO goal for 50% reduction in building energy use by 2030 Impact of Project: Cumulative energy savings potential of

  14. Appliance and Equipment Standards Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturers produce products with a high level of compliance that meet minimum energy conservation standards, resulting in energy savings in the buildings sector The Appliance & Equipment Standards Program promulgates energy conservation standards and test procedures in a rulemaking process to reduce energy consumption across residential, commercial, and industrial buildings. External Influences: DOE budget, Energy prices, Real estate market, Market incentives, Legislation / Regulation

  15. Right-Sizing Laboratory Equipment Loads

    SciTech Connect

    Frenze, David; Greenberg, Steve; Mathew, Paul; Sartor, Dale; Starr, William

    2005-11-29

    Laboratory equipment such as autoclaves, glass washers, refrigerators, and computers account for a significant portion of the energy use in laboratories. However, because of the general lack of measured equipment load data for laboratories, designers often use estimates based on 'nameplate' rated data, or design assumptions from prior projects. Consequently, peak equipment loads are frequently overestimated. This results in oversized HVAC systems, increased initial construction costs, and increased energy use due to inefficiencies at low part-load operation. This best-practice guide first presents the problem of over-sizing in typical practice, and then describes how best-practice strategies obtain better estimates of equipment loads and right-size HVAC systems, saving initial construction costs as well as life-cycle energy costs. This guide is one in a series created by the Laboratories for the 21st Century ('Labs21') program, a joint program of the U.S. Environmental Protection Agency and U.S. Department of Energy. Geared towards architects, engineers, and facilities managers, these guides provide information about technologies and practices to use in designing, constructing, and operating safe, sustainable, high-performance laboratories.

  16. Geothermal direct-heat utilization assistance: Quarterly project progress report, January--March 1995

    SciTech Connect

    1995-05-01

    The report summarizes geothermal activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-95. It describes 92 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research activities are summarized on geothermal energy cost evaluation, low temperature resource assessment and ground-source heat pump case studies and utility programs. Outreach activities include the publication of a geothermal direct heat Bulletin, dissemination of information, geothermal library, and progress monitor reports on geothermal resources and utilization.

  17. DOE Hydrogen Storage Technical Performance Targets for Material Handling Equipment

    Energy.gov [DOE]

    This table summarizes hydrogen storage technical performance targets for material handling equipment.

  18. Direct fired heat exchanger

    DOEpatents

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  19. Rotary magnetic heat pump

    DOEpatents

    Kirol, Lance D.

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  20. Rotary magnetic heat pump

    DOEpatents

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.